254,763 research outputs found

    Minimal Committee Problem for Inconsistent Systems of Linear Inequalities on the Plane

    Full text link
    A representation of an arbitrary system of strict linear inequalities in R^n as a system of points is proposed. The representation is obtained by using a so-called polarity. Based on this representation an algorithm for constructing a committee solution of an inconsistent plane system of linear inequalities is given. A solution of two problems on minimal committee of a plane system is proposed. The obtained solutions to these problems can be found by means of the proposed algorithm.Comment: 29 pages, 2 figure

    A constrained tropical optimization problem: complete solution and application example

    Full text link
    The paper focuses on a multidimensional optimization problem, which is formulated in terms of tropical mathematics and consists in minimizing a nonlinear objective function subject to linear inequality constraints. To solve the problem, we follow an approach based on the introduction of an additional unknown variable to reduce the problem to solving linear inequalities, where the variable plays the role of a parameter. A necessary and sufficient condition for the inequalities to hold is used to evaluate the parameter, whereas the general solution of the inequalities is taken as a solution of the original problem. Under fairly general assumptions, a complete direct solution to the problem is obtained in a compact vector form. The result is applied to solve a problem in project scheduling when an optimal schedule is given by minimizing the flow time of activities in a project under various activity precedence constraints. As an illustration, a numerical example of optimal scheduling is also presented.Comment: 20 pages, accepted for publication in Contemporary Mathematic

    Output-Feedback Control of Nonlinear Systems using Control Contraction Metrics and Convex Optimization

    Get PDF
    Control contraction metrics (CCMs) are a new approach to nonlinear control design based on contraction theory. The resulting design problems are expressed as pointwise linear matrix inequalities and are and well-suited to solution via convex optimization. In this paper, we extend the theory on CCMs by showing that a pair of "dual" observer and controller problems can be solved using pointwise linear matrix inequalities, and that when a solution exists a separation principle holds. That is, a stabilizing output-feedback controller can be found. The procedure is demonstrated using a benchmark problem of nonlinear control: the Moore-Greitzer jet engine compressor model.Comment: Conference submissio

    Nontrivial solutions of variational inequalities. The degenerate case

    Get PDF
    We consider a class of asymptotically linear variational inequalities. We show the existence of a nontrivial solution under assumptions which allow the problem to be degenerate at the origin

    On the Two Obstacles Problem in Orlicz-Sobolev Spaces and Applications

    Full text link
    We prove the Lewy-Stampacchia inequalities for the two obstacles problem in abstract form for T-monotone operators. As a consequence for a general class of quasi-linear elliptic operators of Ladyzhenskaya-Uraltseva type, including p(x)-Laplacian type operators, we derive new results of C1,Ī±C^{1,\alpha} regularity for the solution. We also apply those inequalities to obtain new results to the N-membranes problem and the regularity and monotonicity properties to obtain the existence of a solution to a quasi-variational problem in (generalized) Orlicz-Sobolev spaces

    Riemann-Hilbert problem for the small dispersion limit of the KdV equation and linear overdetermined systems of Euler-Poisson-Darboux type

    Full text link
    We study the Cauchy problem for the Korteweg de Vries (KdV) equation with small dispersion and with monotonically increasing initial data using the Riemann-Hilbert (RH) approach. The solution of the Cauchy problem, in the zero dispersion limit, is obtained using the steepest descent method for oscillatory Riemann-Hilbert problems. The asymptotic solution is completely described by a scalar function \g that satisfies a scalar RH problem and a set of algebraic equations constrained by algebraic inequalities. The scalar function \g is equivalent to the solution of the Lax-Levermore maximization problem. The solution of the set of algebraic equations satisfies the Whitham equations. We show that the scalar function \g and the Lax-Levermore maximizer can be expressed as the solution of a linear overdetermined system of equations of Euler-Poisson-Darboux type. We also show that the set of algebraic equations and algebraic inequalities can be expressed in terms of the solution of a different set of linear overdetermined systems of equations of Euler-Poisson-Darboux type. Furthermore we show that the set of algebraic equations is equivalent to the classical solution of the Whitham equations expressed by the hodograph transformation.Comment: 32 pages, 1 figure, latex2
    • ā€¦
    corecore