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Abstract— Control contraction metrics (CCMs) are a new
approach to nonlinear control design based on contraction the-
ory. The resulting design problems are expressed as pointwise
linear matrix inequalities and are and well-suited to solution
via convex optimization. In this paper, we extend the theory on
CCMs by showing that a pair of “dual” observer and controller
problems can be solved using pointwise linear matrix inequali-
ties, and that when a solution exists a separation principle holds.
That is, a stabilizing output-feedback controller can be found.
The procedure is demonstrated using a benchmark problem of
nonlinear control: the Moore-Greitzer jet engine compressor
model.

I. INTRODUCTION

Output-feedback control design for nonlinear systems
remains a challenging problem, because of the unlimited
diversity of possible nonlinearities [1], [2], [3]. In this paper
we present new results on output-feedback design based on
control contraction metrics [4], [5] that recover many attrac-
tive properties of linear control design, including separation
of controller and observer, and convexity of optimization
problems.

State-feedback controllers for nonlinear systems can be
characterized by the existence of control Lyapunov functions
[6], [7], however these may be difficult to find [8]. Con-
structive methods, such as feedback linearization [2], back-
stepping [9], and energy-based methods [10] are generally
applicable only to a limited class of systems. Nonlinear MPC
is emerging as a feasible tool (see, e.g. [11]) but despite
some clear benefits, it generally remains difficult to predict
or analyse performance of nonlinear MPC schemes by any
method other than exhaustive simulations.

Recently there has been signficant interest in using meth-
ods of convex optimization to search numerically for feed-
back control systems. Particular formulations include includ-
ing density functions [8], [12], occupation measures [13], and
LQR-Trees [14]. These methdos all produce a state-feedback
controller.

There are several approaches to observer design for non-
linear systems, including the circle criterion, [15], high-gain
observers [16], sliding mode [1], and contraction theory [17].
However, unlike linear systems, even if a state-feedback
controller and a stable observer are found, they can not
necessarily be combined to give a stabilizing output-feedback

control system. The particular properties of systems, con-
trollers, and observers must be analysed to ensure output
feedback stability [18], [19], [20].

Contraction analysis [17], [21], is based on the study
of differential dynamics. Roughly speaking, if all solutions
of a nonlinear system are locally stable, then all solutions
converge. Thus global stability results are derived from local
criteria, and the problem of motion stability is decoupled
from the choice of a particular solution. The search for a
contraction metric can be formulated as a convex optimisa-
tion problem using sum-of-squares programming [22] and
can be extended to the study of limit cycles [23].

A contraction metric can be thought of as a Riemannian
metric with the additional property that differential displace-
ments get smaller (with respect to the metric) under the flow
of the system. A control contraction metric has the property
that differential displacements can be made to get shorter by
control action. This is analogous to the relationship between
a Lyapunov function and a control Lyapunov function.

In [4] we derived a procedure for state-feedback control
design in the form of state-dependent linear matrix inequali-
ties. This is an attractive property because it opens the door
to solution via convex optimization methods, such as sum-of-
squares [24]. In [5] we discussed the duality of this control
design method with a type of metric observer design, similar
to that proposed in [25].

In this paper, we show that such dual designs can be used
to construct stabilizing output-feedback controllers. That is,
a so-called “separation principle” holds for controllers and
observers based on control contraction metrics. We illustrate
this method on a classic benchmark problem in nonlinear
control: the Moore-Greitzer jet engine system.

II. PRELIMINARIES

For most of this paper, we will consider a nonlinear time-
dependant control-affine system

ẋ(t) = f(x(t), t) +B(t)u(t), y(t) = C(t)x(t) (1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp are state, control
input, and measured output, respectively, at time t ∈ R+ :=
[0,∞). The function f : Rn × R+ → Rn is assumed to
be smooth, and B(t) and C(t) are possibly time-dependent
matrices of appropriate dimension.
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Contraction analysis is the study of (1) by way of the
associated system of differential dynamics:

δ̇x(t) = A(x, t)δx(t) +B(t)δu(t), δy(t) = C(t)δx(t) (2)

where A(x, t) = ∂
∂xf(x, t) is the Jacobian matrix.

In [4] we also considered more general systems ẋ =
f(x, u, t) but for the moment we note that many systems not
naturally appearing in the form (1) can be put in that form,
either exactly or approximately, by change of variables or
introducing new states.

In this paper we study dynamic output-feedback control-
systems for (1). Such a controller is a system of the form

ẋc(t) = fc(xc(t), y(t), t), u(t) = gc(xc(t), y(t), t). (3)

Frequently the controller will take the form of a state-
estimator combined with a state-feedback controller.

The main objective is to design such a feedback system
so that the behaviour of the closed-loop system

ẋ(t) = f(x(t), t) +B(t)gc(xc(t), C(t)x(t), t) (4)
ẋc(t) = fc(xc(t), C(t)x(t), t), (5)

is stable.
In particular, given a target trajectory (x?, u?), feasible for

(1), it is desired that there exists positive constants K and λ
such that

|x(t)− x?(t)| ≤ Ke−λt|x0 − x?(0)|

for all x(0), and the controller state xc(t) remains bounded
(assuming the target trajectory itself remains bounded).

Following [4], we say a system is universally exponentially
stabilizable by output feedback if every feasible solution
(x?, u?) is globally exponentially stabilizable. This is a
stronger condition than global stabilizability of a particular
solution (e.g. the origin).

III. CONTROL CONTRACTION METRICS

We now give the basic idea of a control contraction metric
(CCM), proposed by the authors in [4]. Suppose a system
has the property that every solution is locally stabilizable, i.e.
the time-varying linear system (2) is stabilizable, where the
partial derivatives are evaluated along any particular solution
x(t), u(t) of (1). Each local controller may have small region
of stability, but if a “chain” of states joining the current state
x to x?(t) is stabilised, in the sense that if each “link” in
the chain gets shorter, then x(t) is driven towards x?(t).

Construction of a CCM is based on taking this concept to
the limit as the number of links in the chain goes to infinity,
and becomes a smooth path γ(s) connecting x?(t) and x(t)
in the state space. The differential dynamics (2) describe the
dynamics of infinitesimal path segments. Now, suppose one
can find a Riemannian metric V (x, δ) = δ′M(x, t)δ which
verifies that a differential feedback law δu = K(x, t)δx is
stabilising, i.e.

(A+BK)′M +M(A+BK) + Ṁ < 0 (6)

then we refer to M(x) as a control contraction metric. The
right hand side above can be replaced with −2λM for

exponential stability with rate λ, or various other supply rates
for other design criteria such as differential passivity [23],
[26], [27] or small gain [5]. The control signal applied is
then computed by integrating the differential control signals
δu along the path γ, i.e.

u(t) = u?(t) +

∫
γ

K(γ(s))
∂γ

∂s
ds. (7)

Roughly speaking, one stabilises a smooth nonlinear system
by stabilising an one-parameter family of linear systems.

In a sense, this is a generalisation of the concept of
a control Lyapunov function to differential dynamics. The
advantage is that the rich repertoire of design techniques
for linear systems using linear matrix inequalities (LMIs)
can be adapted to nonlinear systems as pointwise-LMIs. Fur-
thermore, pointwise LMIs are now computationally tractable
for many important systems thanks to recent advances in
semialgebraic optimisation [28], [29].

The following definition is central to this paper:
Definition 1: A function V (x, δx, t) = δ′xM(x, t)δx, with

α1I ≤M(x, t) ≤ α2I for some α2 ≥ α1 > 0, is said to be a
control contraction metric for the system (1) if ∂V

∂xB(t) = 0
and
∂V

∂δx
B(t) = 0 =⇒ ∂V

∂t
+
∂V

∂x
f(x, t) +

∂V

∂δx
A(x, t)δx < 0

(8)
for all x, t.
Non quadratic Riemann-Finsler metrics can be used without
substantial changes to the theory – see [30] for a thorough
exploration in the context of stability analysis – but the
associated computational problems for control design are
more computationally challenging. In this paper we restrict
attention to Riemannian metrics.

We will also make use of a Riemannian distance function
between any two points at a given time d(x1, x2, t) : Rn ×
Rn×R+ → R+ defined like so: let Γ(x1, x2) denote the set
of all smooth paths connecting x1 and x2, where each γ ∈
Γ(x1, x2) is parametrised by s ∈ [0, 1], i.e. γ(s) : [0, 1] →
Rn. The path length of γ is then defined as

L(γ, t) :=

∫ 1

0

D

(
γ(s),

∂

∂s
γ(s), t

)
ds

where D(x, δx, t) =
√
δ′xM(x, t)δx is the length of a dif-

ferential line element δx with respect to the metric M(x, t).
The distance between two points is then defined as

d(x1, x2, t) = min
γ∈Γ(x1,x2)

L(γ, t)

The existence of a minimizing path, which we denote
γx2
x1

(t, s), is implied by the Hopf-Rinow Theorem [31].
We now briefly summarize some of the results of [4] that

we will use in this paper.
Theorem 1: [4] If a control contraction metric exists for

a system of the form (1), then the system is universally
stabilizable by static state feedback.

A convex criterion for exponential stabilization is the
following:



Theorem 2: [4] Consider the system (1) with differential
dynamics (2). If there exists a matrix function Wc(x, t) ∈
Sn+, ρ(x, t) ≥ 0 and α2 ≥ α1 > 0 such that

α1I ≤Wc ≤ α2I, (9)

−Ẇc +WcA
′ +AWc − ρBB′ ≤ −2λWc, (10)

for all x, u, t, then the system is universally exponentially
stabilizable with rate λ by state feedback. In particular,
V (x, δ, t) = δ′Mc(x, t)δ is a control contraction metric with
Mc(x, t) = Wc(x, t)

−1, and the following differential gain
is stabilizing: K(x, t) = − 1

2ρ(x, t)W (x, t)−1B′ when used
with (7).

In the above condition, Ẇc(x, t) is a matrix with the i, j
element given by ∂wi,j

∂t +
∂wi,j

∂x (f(x, t)+B(t)u), where wi,j
is the i, j element of Wc(x, t).

IV. OBSERVER CONTRACTION METRIC

It is well-known that the problems of control design and
observer design for linear systems have a very attractive
“duality” (see, e.g., [32]). It was recently shown by the
authors that such a relation also holds for designs based on
contraction metrics, building upon past work of [17] and
[25].

We will call a nonlinear system universally detectable if
the following condition holds: any two solutions x1(t), x2(t)
that induce identical outputs y1(t) = y2(t) ∀t have the
property that x1(t)→ x2(t) as t→∞. I.e. indistinguishable
states are convergent.

For such systems, It has been shown by the authors that the
existence of a matrix function Wo(x, t) and scalar function
ρ(x, t) ≥ 0 satisfying the following condition

Ẇo +A′Wo +WoA− ρC ′C ≤ −2λWo, (11)

with Wo(x, t) bounded above and below as in (9), guarantees
existence of an exponentially stable observer [5].

We note that a similar condition has appeared before in
the literature giving necessary conditions for existence of a
particular class of observer [25]. By Finsler’s theorem, (11)
is equivalent to the statement that

C(t)δx(t) = 0 =⇒ d

dt
[δ′xWo(x, t)δx] ≤ −λδ′xWo(x, t)δx.

That is, in directions orthogonal (with respect to Wo) to
the subspace spanned by the columns of C(t), the system
is contracting. Note that in this conditions W (x, t) is the
contraction metric, whereas in (10) M(x, t) = Wc(x, t)

−1

was the contraction metric.

A. Construction of an Observer

Suppose condition (11) is satisfied, and choose an initial
state estimate x̂(0). At each time t, define the set Xy(t) :=
{x : C(t)x = y(t)} as the set of states perfectly consistent
with the measurement at time t. Now let γ(s, t) be the short-
est path, with respect to the Riemannian metric δ′Wo(x, t)δ,
between x̂(t) and the set Xy(t).

Then construct an observer with the following dynamics:

˙̂x(t) = f(x̂(t), t) +

∫ T

0

K(γ(s))δy(s)ds (12)

where
K(x) =

1

2
ρ(x, t)W (x, t)−1C(t)′.

Note that if W and ρ are independent of x, this reduces to
a standard Luenberger-type observer

˙̂x(t) = f(x̂(t), t) +K(t)(y(t)− C(t)x̂(t)).

A set S is called geodesically convex with respect to a
metric δ′W (x, t)δ if for any two points x1 and x2 in S,
the minimal geodesic connecting them remains in S. The
following result was recently proved by the authors:

Theorem 3: [5] If the condition (11) hold and, addition-
ally, the set Xy(t) is geodesically convex with respect to
the metric W (x, t), then the observer constructed above
converges, i.e x̂(t) → x(t). By construction, the system is
universally detectable.

Note that if W is independent of x, then any set of the
form {x : y(t) = C(t)x} – i.e. an affine variety – is
geodesically convex.

V. SEPARATION OF OBSERVER AND CONTROLLER
DESIGN

If a linear system is both stabilizable and detectable, then
it is stabilizable by output feedback using a combination of
a stable observer and a state-feedback controller. This ex-
tremely useful property, known as the “separation principle”,
fails to hold for general nonlinear systems.

In this section we prove the main theoretical result of
this paper: that if the stronger property holds that a system
is universally stabilizable and detectable, then a separation
principle does indeed hold.

Firstly, we prove a result on input-to-state stability of
systems controlled using CCMs:

Theorem 4: Consider a system of the form

ẋ = f(x) +Bu+ w

where x and u are state and control input, and w is a distur-
bance input. If the state-feedback control design proposed in
Section III is used then the following holds:

ḋ(t) ≤ −λd(t) +
√
α1‖w‖

where d(t) is the Riemannian distance from x(t) to x?(t),
with respect to the metric M(x) and Θ(x)′Θ(x) = M(x).

Proof: The distance at time t is

d(x(t), x?(t)) =

∫
γ

‖Θ(x)δx‖ds

with x = γ(s) and δx = ∂γ
∂s .

The differential dynamics at each point on the geodesic
γ(s), s ∈ [0, 1] satisfy

δ̇x = (A+BK)δx + w.



where δx = ∂γ
∂s . At each point on the geodesic, we consider

the differential change of coordinates δz = Θ(x)δx, and we
have

δ̇z = Fδz + Θ(x)w,

where F is a generalised Jacobian [17] satisfying δ′zFδz ≤
−λ‖δz‖ for all δz .

The control contraction condition implies that

δ′(Ṁ + (A+BK)′M +M(A+BK) + 2λM)δ ≤ 0,

which gives the following expression for the derivative of
the length of a differential line element

√
δ′Mδ =

√
δ′zδz =

‖δz‖:
d

dt

√
δ′zδz =

δ′zFδz + δ′zΘ(x)w√
δ′zδz

.

So by the bound on the generalized jacobian, and by ap-
plying the Cauchy-Schwarz inequality to give δ′zΘ(x)w ≤
‖Θ(x)w‖‖δz‖, we have

d

dt
‖δz‖ ≤ −λ‖δz‖+ ‖Θ(x)w‖

From the bound Wc ≥ α1I we have Mc ≤ α1I , and since
M = Θ′Θ we have‖Θ(x)w‖ ≤ √α2‖w‖ for all x on the
path γt, and so integrating the above inequality along γt
gives the result of the theorem.

We are now ready to state the main theoretical result of
the paper.

Theorem 5: A system of the form (1). Construct the ob-
server as in Section IV-A giving the state estimate x̂(t), and
construct the control signal as in Section III, but with x̂(t) in
place of x(t), then the closed-loop system is exponentially
stable.

Proof: The closed-loop dynamics can be written as

ẋ = f(x, t) +Bk(x, t) +B(k(x̂, t)− k(x, t))

where k(x, t) = u?(t) +
∫
γ
K(x, t)δxds is the control law

from Section III.
The the exponential convergence of the state estimates

x̂→ x and smoothness of k implies that k(x̂, t)− k(x, t) is
bounded and converges to zero asymptotically. This further
ensures boundedness of the state x, by Theorem 4 and the
boundedness of x̂?. On any compact set K(x, t) is uniformly
bounded, and so we can also affirm that k(x̂) − k(x) → 0
exponentially.

The uniform boundedness of Θ then guarantees the exis-
tence of some α > 0, β > 0 such that

‖Θ(γt(s))B(k(x̂(t))− k(x(t)))‖ ≤ βe−αt

for all s ∈ [0, 1] and t ≥ 0.

Now, using again Theorem 4 with w(t) = B(k(x̂, t) −
k(x, t)) it follows that

d(t) ≤d(0)e−λt+∫ T

0

e−λ(T−t) max
s∈[0,1]

‖Θ(γτ (s))B(k(x̂, t)− k(x, t))‖dt

≤ d(0)e−λt + β

∫ T

0

e−λ(T−t)e−αtdt

which implies that d(t)→ 0 exponentially.
The uniform boundedness of the metric then implies that

‖x(t)− x?(t)‖ converges to zero exponentially.

VI. SIMPLIFICATION FOR CONSTANT METRICS

We have presented a general construction of output-
feedback controller that allows state-varying contraction met-
rics for both the observer and controller parts. In the special
case that one can find constant metrics – i.e. independent of
x this construction can be substantially simplified.

For a constant metric Mc = W−1
c , the geodesic joining x̂

and x? is always a straight line. Defining ∆c(t) = x?(t) −
x̂(t) as the error between the current state estimate and the
target trajectory, the control signal (7) is:

u(t) = u?(t) +
1

2

∫ 1

0

ρ(x(s, t))McB
′∆c(t)ds

where x(s, t) = x̂(t) + s∆c(t). But since Mc, B and ∆c are
independent of s, they can be taken outside the integral and
we get

u(t) = u?(t) +
1

2

(∫ 1

0

ρ(x(s, t))ds

)
McB

′∆c(t).

Furthermore, the integral in the brackets is just a one
dimensional integral of ρ, with a particular one-dimensional
locus of points substituted as argument. In the case when ρ is
a polynomial (as when sum-of-squares programming is used
to compute the controller) this can be expressed analytically
as a difference of two polynomials in x. Hence the state-
feedback portion of the control law becomes expressed as a
polynomial in x̂(t).

Similarly, for the observer design, the minimal geodesic
joining x̂(t) to Xy(t) is a straight line and can be analytically
constructed, since it is simply a linearly constrained weighted
least-squares problem:

x̄(t) = arg min
x∈Rn

(x− x̂(t))′Wo(x− x̂(t)

subject to y(t) = C(t)x.

This can be obtained analytically be solving the linear
system: [

Wo C(t)′

C(t) 0

] [
x̄(t)
λ

]
=

[
Wox̂(t)
y(t)

]
.

Then the observer can be constructed in explicit form as for
the controller, except with ∆o = x̂(t)− x̄(t).

Hence, in the case of polynomial dynamics and con-
stant control and observer contraction metrics, and output-
feedback control can be explicitly constructed as a polyno-
mial control law and a polynomial state observer.



VII. APPLICATION EXAMPLE: JET ENGINE
OSCILLATIONS

The Moore-Greitzer model, a simplified model of surge-
stall dynamics of a jet engine [33], has motivated substantial
development in nonlinear control design (see, e.g., [33],
[9], [34], and references therein). In [22], sum-of-squares
programming was applied for robustness analysis of stable
solutions, and in [23] transverse contraction was used to anal-
yse the orbital stability of compressor oscillations. Output
feedback control has previously been addressed in [35], [36].

A model of surge-stall dynamics was derived in [33]
based on a Galerkin projection of the PDE on to a Fourier
basis. The following reduced model of the surge dynamics
is frequently studied:[

φ̇

ψ̇

]
=

[
−ψ − 3

2φ
2 − 1

2φ
3

φ+ u

]
.

with u as the input and a sensor on ψ only. Here φ is a
measure of mass flow through the compressor, and ψ is
a measure of the pressure rise in the compressor, under a
change of coordinates, see [9, p. 68]. The source of difficulty
is the nonlinearity − 3

2φ
2 − 1

2φ
3 which does not satisfy any

global Lipschitz bound, and affects the dynamics of the
variable φ, which is not directly controlled or measured.

The system can be written in the form (1) with x =
[φ, ψ]′,

f(x) =

[
−ψ − 3

2φ
2 − 1

2φ
3

φ

]
, B =

[
0
1

]
, C =

[
0 1

]
.

and

A(x) =

[
−3φ− 3

2φ
2 −1

1 0

]
.

As is well known, from certain initial conditions this sys-
tem can exhibit orbitally stable oscillating solutions, as seen
in Figure 1. This is an inherently nonlinear phenomenon.
The objective of the control design is to stabilize these
oscillations to zero.

We used Yalmip sum-of-squares module [37], [38] to set
up a two decoupled convex feasibility problems, one for the
state-feedback controller:

−δ′(WcA(x)′ +A(x)Wc − ρc(x)BB′ + λWc)δ ∈ Σ2[x, δ]

ρc(x) ∈ Σ2[x]

Wc ≥ α1I,Wc ≤ α2I,

and one for the observer:

−δ′(WoA(x)′ +A(x)Wo − ρo(x)C ′C + λWo)δ ∈ Σ2[x, δ]

ρo(x) ∈ Σ2[x],

Wo ≥ α1I, Wo ≤ α2I.

Here the decision variables are the symmetric matrices
Wc,Wo and the coefficients of the degree-two polynomials
ρc, ρo – these appear linearly in the above constraints. The
“abstract” variables over which the sum-of-squares con-
straints hold are x and δ, where Σ2[·] denotes a sum of
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Fig. 1. States and state estimates of Moore-Greitzer jet engine model in
open-loop, exhibiting combustion oscillations.

squares constraint with respect to the abstract variable in the
argument.

The bounds α1, α2, λ were fixed in advance and the same
for controller and observer, although they could be different
and considered as variables for optimization.

The controller and observer problems were solved se-
pearately. The sum-of-squares relaxations each had seven
scalar variables, four 2 × 2 matrix variables, and 27 con-
straints. Using the commercial solver Mosek version 7 [39],
each of these semidefinite programs took less than 0.4
seconds to solve on a standard desktop workstation.

The results exhibit the trade-off between speed of conver-
gence and shaping transient response. Specifying a relatively
slow rate of convergence of λ = 0.1, we were able to find
a constant metrics with satisfying (9) with α1 = 0.1 and
α2 = 1.3. The simulation is shown in Figure 2. As can
be seen, the system actually converges significantly faster
than this constraint requires. The relative sizes of the upper
and lower bounds on Wc and Wo correspond loosely to
overshoot: each differential line element in each geodesic
(for controller and observer) has strictly forward-invariant
sets of the form δ′Wδ = c for any c > 0. Hence a W
which is “close” to identity results in little overshoot, in the
system’s original coordinates.

With a faster rate of convergence, λ = 5, we needed to
expand the range of the bounds on Wc and Wo to α1 =
0.1, α2 = 30. As can be seen in Figure 4, there is some
overshoot, or “peaking” observed. Note that the scale of the
time axis has changed. Such peaking is a common issue in
certain high-gain observer designs.

With an even fast rate of convergence λ = 10, more severe
peaking is observed, see Figure 6. This may be impractical
for the real system, so we can see that adjusting the bounds
α1, α2 and λ allows a trade-off between convergence and
overshoot. Note that the system’s convergence rate is quite
well approximated by the theoretical bound, as seen by the
slopes of the lines in Figure 7, indicating that in this case
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Fig. 2. States and state estimates of stabilized Moore-Greitzer system with
convergence rate λ = 0.1, α1 = 0.1, α2 = 1.3.
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Fig. 3. Exponential convergence of simulation, and theoretical upper-bound
with λ = 1, α1 = 0.1, α2 = 1.3.
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Fig. 4. States and state estimates of stabilized Moore-Greitzer system with
convergence rate λ = 5, α1 = 0.1, α2 = 30.
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Fig. 5. Exponential convergence of simulation, and theoretical upper-bound
with λ = 5, α1 = 0.1, α2 = 30.
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Fig. 6. States and state estimates of stabilized Moore-Greitzer system with
convergence rate λ = 10, α1 = 0.1, α2 = 100.

the constraints were quite tight.

On the other hand, this is just the behaviour of one
particular method of designing a differential feedback gain.
An advantage of the control contraction metric formalism
is that many techniques from linear control can be directly
adapted, e.g. LQG-like output feedback. There is much work
be to be done to explore the possibilities.

An output-feedback controller should also be able to
operate with noisy measurements. We simulated the closed-
loop system with λ = 0.1 with a measurement noise on the
output y(t) = ψ(t)+n(t) where n(t) was a Gaussian white-
noise process with standard deviation 0.3. As can be seen
from Figure 8, the controller is very able to keep the system
stabilised, despite the quite small signal to noise ratio from
the sensor – see Figure 9.
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Fig. 7. Exponential convergence of simulation, and theoretical upper-bound
with λ = 10, α1 = 0.1, α2 = 100
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Fig. 8. States and state estimates of stabilized Moore-Greitzer system with
measurement noise.
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Fig. 9. Visualisation of measurement noise: measurement y(t) and the
true value of ψ(t).

VIII. CONCLUSIONS

In this paper we have shown that recent methods for
state-feedback controller design and observer design based
on control contraction metrics can be combined to form a
stabilizing output-feedback controller. This extends the well-
known separation theorem for linear systems to a class of
nonlinear systems.

The constructions are computationally tractable, taking the
form of pointwise linear matrix inequalities. The numerical
search for such metrics forms a convex optimization (or fea-
sibility) problem. When the system has polynomial dynam-
ics, this can be solved using sum-of-squares programming
and a semidefinite programming solver, of which there are
several free and commercial options.

In future work we will continue to investigate practical
examples, especially in robotics, as well as different methods
of generating gains. We will also investigate the potential to
extend these results to robust and adaptive control design,
using the recently developed concept of differential passivity
[23], [26], [27], and differential L2 gain [5]. We will also
explore the use of nonlinear convex parameterizations of
stable models proposed in [40], [41].

REFERENCES

[1] J.-J. E. Slotine and W. Li, Applied nonlinear control. Prentice-Hall,
1991.

[2] A. Isidori, Nonlinear control systems. Springer, 1995.
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control via occupation measures and lmi-relaxations,” SIAM Journal
on Control and Optimization, vol. 47, no. 4, pp. 1643–1666, 2008.

[14] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “LQR-
Trees: Feedback motion planning via sums-of-squares verification,”
The International Journal of Robotics Research, vol. 29, no. 8, pp.
1038–1052, 2010.
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