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Abstract

We consider a class of asymptotically linear variational inequalities. We show the
existence of a nontrivial solution under assumptions which allow the problem to be
degenerate at the origin.

1 Introduction

Let Ω be a bounded open subset of Rn and g : R → R be a function of class C1 with
g(0) = 0 and linear growth at infinity. The existence of nontrivial solutions u to the
semilinear elliptic problem  ∆u+ g(u) = 0 in Ω

u = 0 on ∂Ω

was first studied by Amann and Zehnder in [1] by means of Conley index. The main result
was then refind by Chang, Lazer and Solimini [3, 13], using Morse theory, and Saccon [15],
again by means of Conley index. The key assumptions are that there exists

g′(∞) := lim
|s|→∞

g(s)

s

and that the quadratic forms

Q0(u) =

∫
Ω

(
|Du|2 − g′(0)u2

)
dx ,

Q∞(u) =

∫
Ω

(
|Du|2 − g′(∞)u2

)
dx

have different index in H1
0 (Ω) .
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More recently, the result has been also extended to variational inequalities by Saccon
[16] and to quasilinear equations by Corvellec, Degiovanni, and Lancelotti [6, 12]. In the
first case, one also considers a closed convex subset K of H1

0 (Ω) with 0 ∈ K and looks for
nontrivial solutions u ∈ K of the variational inequality

(1.1)

∫
Ω

[DuD(v − u)− g(u)(v − u)] dx ≥ 0 ∀v ∈ K .

It is interesting to remark that the constraint K can induce the existence of nontrivial
solutions also when g(s) = λs with λ ∈ R . However, if for instance

K =
{
u ∈ H1

0 (Ω) : φ1 ≤ u ≤ φ2

}
with φ1 < 0 < φ2 , the assumptions considered in [16] require the quadratic form Q0 to be
nondegenerate at the origin, a restriction which is not needed for semilinear equations (see
[13]).

Our purpose is to prove the existence of nontrivial solutions to (1.1) without assuming
such a nondegeneracy at 0 . While the approach of [16] was based on Conley index, we find
it more convenient to use Morse theory. More precisely, since the precence of the constraint
K makes the problem nonsmooth, we take advantage of the extension of Morse theory to
continuous functionals developed in [5].

Our main result is theorem 2.2, where we prove the existence of a nontrivial solution
to (1.1) in the degenerate case, even if the family of constraints K considered is not so
wide as in [16] (see assumption (2.1)). Since our approach is different, we also treat in
theorem 2.4 the nondegenerate case already considered in [16].

As in [13], the first step in the proof is to find a saddle point u of the functional
f : K → R defined by

f(u) =
1

2

∫
Ω

|Du|2 dx−
∫
Ω

G(u) dx , G(s) =

∫ s

0

g(t) dt ,

with a suitable information about its critical groups. This is done by an adaptation of
Rabinowitz saddle theorem (see theorem 4.2). Then the main point is to obtain estimates
about the critical groups of f at the origin. Since 0 is possibly degenerate, we adapt to
our nonsmooth setting some ideas of the generalized Morse lemma (see [4, 9, 14]). After
that, it is possible to show that u ̸= 0 , obtaining the existence of a nontrivial solution.

The author wishes to thank Marco Degiovanni for helpful discussions.

2 Statement of the main results

Let Ω be a bounded open subset of Rn , n ≥ 3, φ1 : Ω → [−∞, 0] and φ2 : Ω → [0,+∞] be
two functions such that φ1 is quasi-upper semicontinuous and φ2 is quasi-lower semicon-
tinuous. We consider the convex set

K =
{
u ∈ H1

0 (Ω) : φ1(x) ≤ ũ(x) ≤ φ2(x) for q.e. x in Ω
}
,

where ũ is a quasi-continuous representative of u. We also consider g : Ω × R → R such
that:
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(a) the function {s 7−→ g(x, s)} is of class C1 for a.e. x ∈ Ω and the function {x 7−→
g(x, s)} is measurable for every s ∈ R ;

(b) g(x, 0) = 0 for a.e. x ∈ Ω ;

(c) there exists b ∈ L
n
2 (Ω) such that for a.e. x ∈ Ω and for every s ∈ R

|Dsg(x, s)| ≤ b(x) ;

(d) for a. e. x ∈ Ω there exists

Dsg(x,∞) := lim
|s|→∞

g(x, s)

s
.

Let us consider the following subsets of Ω:

F 0
1 = {x ∈ Ω : φ1(x) = 0} ,

F∞
1 = {x ∈ Ω : φ1(x) = −∞} ,

F 0
2 = {x ∈ Ω : φ2(x) = 0} ,

F∞
2 = {x ∈ Ω : φ2(x) = +∞} .

Moreover, let us consider the following closed linear subspaces of H1
0 (Ω):

H0 = {u ∈ H1
0 (Ω) : ũ = 0 for q.e. x in F 0

1 ∩ F 0
2 } ,

H∞ = {u ∈ H1
0 (Ω) : ũ = 0 for q.e. x outside F∞

1 ∪ F∞
2 } ,

H ′
0 = {u ∈ H1

0 (Ω) : ũ = 0 for q.e. x in F 0
1 ∪ F 0

2 } ,

H ′
∞ = {u ∈ H1

0 (Ω) : ũ = 0 for q.e. x outside F∞
1 ∩ F∞

2 } .

Finally, let us denote by
(
λ
(0)
k

)
,
(
µ
(0)
k

)
the eigenvalues of the linear operator −∆ −

Dsg(x, 0) respectively in H0 and H
′
0 , and by

(
λ
(∞)
k

)
,
(
µ
(∞)
k

)
the eigenvalues of the linear

operator −∆ − Dsg(x,∞) respectively in H∞ and H ′
∞ (∆ is the Laplace operator and

eigenvalues are repeated according to multiplicity).

Remark 2.1 Since H ′
0 ⊆ H0 and H ′

∞ ⊆ H∞ , we have that

∀k ∈ N : λ
(0)
k ≤ µ

(0)
k , λ

(∞)
k ≤ µ

(∞)
k .

Theorem 2.2 Assume that

(2.1) (φ1(x) ̸= 0 and φ2(x) ̸= 0) =⇒ (φ1(x) = −∞ and φ2(x) = +∞) q.e. in Ω.

and that µ
(∞)
k < 0 < λ

(∞)
k+1 for some k. Moreover, suppose there exists h ̸= k such that

either
h < k and µ

(0)
h ≤ 0 < λ

(0)
h+1
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or
h > k and µ

(0)
h < 0 .

Then there exists a nontrivial solution u of the semilinear variational inequality

(2.2)


u ∈ K ,∫
Ω

DuD(v − u) dx−
∫
Ω

g(x, u)(v − u) dx ≥ 0 ∀v ∈ K .

Remark 2.3 Assumption (2.1) is satisfied, for instance, if K has the form

K =
{
u ∈ H1

0 (Ω) : ũ(x) ≥ 0 for q.e. x in E1 and ũ(x) ≤ 0 for q.e. x in E2

}
,

where E1, E2 are two subsets of Ω.
The novelty of theorem 2.2 is that we allow the cases h < k with µ

(0)
h = 0 < λ

(0)
h+1 and

h > k with µ
(0)
h < 0 = λ

(0)
h+1, which were excluded in [16].

The next result has been proved also in [16].

Theorem 2.4 Assume that there exist h ̸= k such that

µ
(∞)
k < 0 < λ

(∞)
k+1 ,

µ
(0)
h < 0 < λ

(0)
h+1 .

Then there exists a nontrivial solution u of the semilinear variational inequality
u ∈ K ,∫
Ω

DuD(v − u) dx−
∫
Ω

g(x, u)(v − u) dx ≥ 0 ∀v ∈ K .

3 Background in nonsmooth critical point theory

In this section we recall from [5, 7, 8] some basic facts that will be needed in the following.
Let X denote a metric space endowed with the metric d and f : X → R a continuous
function. Moreover, let Br (u) be the open ball of radius r > 0 centered at u ∈ X . For
every c ∈ R let us set

f c = {u ∈ X : f(u) ≤ c} .

Definition 3.1 For every u ∈ X let us denote by |d f | (u) the supremum of the σ’s in
[0,+∞[ such that there exist δ > 0 and a continuous map H : Bδ (u)× [0, δ] → X with

∀v ∈ Bδ (u) , ∀t ∈ [0, δ] : d(H(v, t), v) ≤ t ,

∀v ∈ Bδ (u) , ∀t ∈ [0, δ] : f(H(v, t)) ≤ f(v)− σt .

The extended real number |d f | (u) is called the weak slope of f at u.
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It is easily seen that the function |d f | : X → [0,+∞] is lower semicontinuous. Moreover,
if X is an open subset of a normed space and f a function of class C1, it turns out that
|d f | (u) = ∥f ′(u)∥ for every u ∈ X.

Let us point out that the above notion has been independently introduced also in [11],
while a variant can be found in [10].

Definition 3.2 An element u ∈ X is said to be a critical point of f , if |d f | (u) = 0. A
real number c is said to be a critical value of f , if there exists a critical point u ∈ X of f
such that f(u) = c. Otherwise c is said to be a regular value of f .

Definition 3.3 Let c be a real number. The function f is said to satisfy the Palais - Smale
condition at level c ((PS)c for short), if every sequence (uh) in X with |d f | (uh) → 0 and
f(uh) → c admits a subsequence (uhk

) converging in X (any cluster point of (uh) is a
critical point of f by the lower semicontinuity of |d f |).

Definition 3.4 Let K be a field. For u ∈ X and c = f(u) set Cq(f ;u) = Hq(f c, f c\{u}),
where Hq(A,B) denotes the q−th cohomology group of the pair (A,B) , with coefficients in
K (here we consider the Alexander-Spanier cohomology [17]). The vector space Cq(f ;u) is
called the q−th critical group of f at u .

Because of the excision property, for every neighbourhood U of u we have

Cq(f ;u) ≈ Hq(f c ∩ U, (f c ∩ U) \ {u}) .

Therefore Cq(f ;u) depends only on the behaviour of f near u.

Theorem 3.5 Let X be a Banach space which splits into a direct sum X = X− ⊕ X+

with dimX− = m < +∞ and X+ closed. Let K be a closed subset of X and f : K → R a
continuous function. Assume there exist a, b ∈ R with a < b and r > 0 such that

X− ∩ Br (0) ⊆ K ,

max
X−∩∂ Br(0)

f < a < inf
K∩X+

f and max
X−∩Br(0)

f < b .

Suppose also that f satisfies the (PS)c condition for any c ∈ [a, b].
Then f admits a critical value in [a, b]; more precisely, either f admits infinitely many

critical points in f−1([a, b]), or there exists a critical point u of f in f−1([a, b]) such that
Cm(f, 0) ̸= {0} .

Proof. Consider the homomorphisms, induced by inclusion maps,

Hm(X,X \X+) −→ Hm(f b, fa) −→ Hm(X− ∩ Br (0), X
− ∩ ∂ Br (0)) .

Since the inclusion map (X−∩Br (0), X
−∩∂ Br (0)) → (X,X\X+) induces an isomorphism

in cohomology, the homomorphism

Hm(f b, fa) −→ Hm(X− ∩ Br (0), X
− ∩ ∂ Br (0))

is surjective. On the other hand, it is well-known thatHm(X−∩Br (0), X
−∩∂ Br (0)) ̸= {0}.

It follows that Hm(f b, fa) ̸= {0}.
From [5, Theorem 4.4] the assertion follows.
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4 The saddle point

In this section let us consider K and g as in sect. 2. Let f1 : H
1
0 (Ω) → R be the functional

defined by

f1(u) =
1

2

∫
Ω

|Du|2 dx−
∫
Ω

G(x, u) dx ,

where G(x, s) =

∫ s

0

g(x, t) dt , and let f : K → R be the restriction of f1 to K.

Let also Q∞ : H1
0 (Ω) → R be the quadratic form defined by

Q∞(u) =

∫
Ω

|Du|2 dx−
∫
Ω

Dsg(x,∞)u2 dx .

In the following, ∥ · ∥1,2 and ∥ · ∥−1,2 will denote the standard norms in H1
0 (Ω) and H

−1(Ω).

Proposition 4.1 The following facts hold:

(a) K is a convex closed subset of H1
0 (Ω) containing 0 ;

(b) the functional f1 is of class C2 with f ′
1(0) = 0 ;

(c) for every u ∈ K there exists η ∈ H−1(Ω) such that ∥η∥−1,2 ≤ |d f | (u) and∫
Ω

DuD(v − u) dx−
∫
Ω

g(x, u)(v − u) dx ≥ ⟨η, v − u⟩ ∀v ∈ K .

Proof. Assertions (a) and (b) are well-known. Assertion (c) follows from [8, Theorem (2.11)
and Proposition (2.10)].

Theorem 4.2 Let us assume that there exists k ∈ N such that

µ
(∞)
k < 0 < λ

(∞)
k+1 .

Then, if f has only a finite number of critical points, there exists a critical point u of
f such that Ck(f, u) ̸= {0} .

Proof. Let X− be a maximal subspace of H ′
∞ where Q∞ is negative definite. Since

µ
(∞)
k < 0 < λ

(∞)
k+1 ≤ µ

(∞)
k+1 , we have dimX− = k . Let us set

X̂+ =

{
u ∈ H∞ :

∫
Ω

DuDv dx−
∫
Ω

Dsg(x,∞)uv dx = 0 ∀v ∈ X−
}
,

so that H∞ = X− ⊕ X̂+. Moreover, Q∞ is positive definite on X̂+ . In fact, consider for
a contradiction u ∈ X̂+ , u ̸= 0 , such that Q∞(u) ≤ 0 . It follows that Q∞ is negative
semidefinite on (X− ⊕ span (u)) ⊆ H∞ with dim (X− ⊕ span (u)) = k+1 : a contradiction,

because λ
(∞)
k+1 > 0 .
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Now we have the decomposition H1
0 (Ω) = X− ⊕ X+, where X+ =

(
X̂+ ⊕H⊥

∞

)
and

H⊥
∞ is the orthogonal of H∞ in H1

0 (Ω) with respect to the standard scalar product.
We want to apply theorem 3.5 to the functional f : K → R. First of all we have that

f is bounded from below on K ∩X+ . In fact, by contradiction, let us consider a sequence
(uh) in K ∩ X+ such that f(uh) → −∞ . Since f is bounded on bounded subsets, we
have that ∥uh∥1,2 → +∞ . Let uh = ρhwh , with ρh = ∥uh∥1,2 and ∥wh∥1,2 = 1 . Up to a
subsequence, (wh) is weakly convergent to some w ∈ X+. Since

∀t > 0 : tφ1 ≤ wh ≤ tφ2 q.e. in Ω

eventually as h→ ∞, we also have w ∈ K∞ :=
∩
t>0

(tK). On the other hand K∞ ⊆ H∞, so

that w ∈ X̂+. Since Q∞ is positive definite on X̂+, ∥wh∥1,2 = 1 and

lim
h

∫
Ω

G(x, ρhwh)

ρ2h
dx =

∫
Ω

Dsg(x,∞)w2 dx ,

it follows

lim inf
h

[
1

2

∫
Ω

|Dwh|2 dx−
∫
Ω

G(x, ρhwh)

ρ2h
dx

]
> 0 .

In particular, we have

lim
h
f(uh) = lim

h
ρ2h

[
1

2

∫
Ω

|Dwh|2 dx−
∫
Ω

G(x, ρhwh)

ρ2h
dx

]
= +∞ ,

whence a contradiction.
In a similar (and simpler) way, one can show that

lim
∥u∥1,2→∞

u∈X−

f1(u) = −∞ ,

so that there exists r > 0 such that

max
u∈X−∩∂ Br(0)

f1 < inf
u∈K∩X+

f1 .

Since X− ⊆ H ′
∞ ⊆ K, we trivially have X− ∩ Br (0) ⊆ K.

Now let us prove that f satisfies (PS)c for every c ∈ R . Let (uh) be a sequence in K
such that f(uh) → c and |d f | (uh) → 0 . First of all, let us prove that (uh) is bounded.
By contradiction, let ∥uh∥1,2 → +∞ . By proposition 4.1, there exists a sequence (ηh) in
H−1(Ω) with ηh → 0 and

(4.1)

∫
Ω

DuhD(v − uh) dx−
∫
Ω

g(x, uh)(v − uh) dx ≥ ⟨ηh, v − uh⟩ ∀v ∈ K .

Let uh = ρhwh , with ρh = ∥uh∥1,2 and ∥wh∥1,2 = 1 . As in the previous step, up to a
subsequence (wh) is weakly convergent to some w ∈ K∞ ⊆ H∞. Moreover, we have that

(4.2)

∫
Ω

DwhD(v − wh) dx−
∫
Ω

g(x, ρhwh)

ρh
(v − wh) dx ≥ ⟨ηh

ρh
, v − wh⟩ ∀v ∈ K∞ .
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Going to the limit as h→ ∞, we get

(4.3)

∫
Ω

DwD(v − w) dx−
∫
Ω

Dsg(x,∞)w(v − w) dx ≥ 0 ∀v ∈ K∞ .

On the other hand, choosing v = 0 in (4.2) we obtain∫
Ω

|Dwh|2 dx ≤
∫
Ω

g(x, ρhwh)

ρh
wh dx+ ⟨ηh

ρh
, wh⟩ ,

whence w ̸= 0.
Let w = w− + w+ with w− ∈ X− and w+ ∈ X̂+ . Since X− ⊆ H ′

∞ ⊆ K∞ , we may
choose v = 2w− = (w− − w+) + w in (4.3), obtaining∫

Ω

D(w− + w+)D(w− − w+) dx−
∫
Ω

Dsg(x,∞)(w− + w+)(w− − w+) dx ≥ 0 ,

hence∫
Ω

|Dw−|2 dx−
∫
Ω

Dsg(x,∞)(w−)
2 dx ≥

∫
Ω

|Dw+|2 dx−
∫
Ω

Dsg(x,∞)(w+)
2 dx .

Since Q∞ is negative definite on X− and positive definite on X̂+ , we have that w = 0 and
a contradiction follows.

Being bounded, (uh) is weakly convergent, up to a subsequence, to some u ∈ K. If we
choose v = u in (4.1), we obtain∫

Ω

|Duh|2 dx ≤
∫
Ω

[DuhDu− g(x, uh)(u− uh)] dx − ⟨ηh, u− uh⟩ .

It follows

lim sup
h

∫
Ω

|Duh|2 dx ≤
∫
Ω

|Du|2 dx ,

so that (uh) is strongly convergent to u .
Since dimX− = k , by theorem 3.5 there exists a critical point u of f such that

Ck(f, u) ̸= {0} .

5 Critical groups for q large enough

In this section we consider a reflexive Banach space X , a convex closed subset K of X
with 0 ∈ K and a continuous function f : K → R . Let us assume that X splits into a
direct sum X = V ⊕W , with dimV = m < +∞ and W closed, and denote by PV and PW

the associated projections. Moreover, let us suppose that:

(i) for every sequence (uh) in K weakly convergent to u with lim
h
f(uh) = f(u), one has

that (uh) is strongly convergent to u;

(ii) for every u ∈ K, the function f is strictly convex on K ∩ (u+W );
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(iii) there exists a continuous function ψ : V → R such that {u 7−→ f(u) + ψ(PV u)} is
convex on K;

(iv) V ⊆
∪
t>0

(tK);

(v) f(w) ≥ f(0) for every w ∈ W ∩K .

Theorem 5.1 We have Cq(f, 0) = {0} for every q ≥ m+ 1 .

Theorem 5.2 Under the previous assumptions, let us suppose that there exists δ > 0 such
that V ∩ Bδ (0) ⊆ K and f(v) ≤ f(0) for every v ∈ V ∩ Bδ (0) .

Then

Cq(f, 0) ≈

{
{0} if q ̸= m,

K if q = m.

The section will be devoted to the proof of these results.

Theorem 5.3 Assume that K is also bounded.

Then, for every v ∈ PV (K), the function {w 7−→ f(v + w)} has one and only one
minimum point in (K − v) ∩W .

Moreover, if we denote by Φ(v) such a minimum point, then the following properties
hold:

(a) 0 ∈ intV (PV (K)) and the map Φ : intV (PV (K)) → W is continuous with Φ(0) = 0 ;

(b) the function φ : intV (PV (K)) → R defined by φ(v) = f(v + Φ(v)) is continuous;

(c) Cq(φ, 0) ≈ Cq(f, 0) for every q .

Proof. Suppose, for a contradiction, that 0 ̸∈ intV (PV (K)). Since dimV < +∞, there
exists η ∈ V ∗ \ {0} such that ⟨η, v⟩ ≤ 0 for any v ∈ PV (K). It follows ⟨η, PV u⟩ ≤ 0 for
any u ∈ K, hence for any u ∈

∪
t>0

(tK). From assumption (iv) we deduce that ⟨η, v⟩ ≤ 0

for any v ∈ V , which is clearly impossible.

By assumption (ii), for every v ∈ PV (K), the function {w 7−→ f(v + w)} has one
and only one minimum point Φ(v) in (K − v) ∩W . From assumption (v) it follows that
Φ(0) = 0.

Let us define a function f̂ : K → R by

f̂(u) = f(u) + ψ(PV u) .

By assumption (iii), f̂ is convex and continuous. Moreover, for every v ∈ PV (K), we
have that Φ(v) is also the unique minimum point of the function {w 7−→ f̂(v + w)} in
(K − v) ∩W . Define φ̂ : PV (K) → R by φ̂(v) = f̂(v + Φ(v)) = φ(v) + ψ(v).
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We claim that φ̂ is convex and lower semicontinuous. Actually, let v0, v1 ∈ PV (K) and
let t ∈ [0, 1] . Since f̂ is convex, we have

φ̂((1− t)v0 + tv1) = f̂ ((1− t)v0 + tv1 + Φ((1− t)v0 + tv1)) ≤
≤ f̂ ((1− t)v0 + tv1 + (1− t)Φ(v0) + tΦ(v1)) ≤
≤ (1− t)f̂ (v0 + Φ(v0)) + tf̂ (v1 + Φ(v1)) =

= (1− t)φ̂(v0) + tφ̂(v1) .

Now, let (vh) be a sequence in PV (K) converging to v. Up to a subsequence, (Φ(vh)) is
weakly convergent to some w ∈ W with v + w ∈ K. It follows

φ̂(v) = f̂(v + Φ(v)) ≤ f̂(v + w) ≤ lim inf
h

f̂(vh + Φ(vh)) = lim inf
h

φ̂(vh) .

Being convex and lower semicontinuous, φ̂ is continuous on intV (PV (K)). Therefore, if
(vh) is convergent to v in intV (PV (K)), we have that (Φ(vh)) is weakly convergent to Φ(v).
From assumption (i) it follows that (Φ(vh)) is strongly convergent to Φ(v). At the end,
also φ is continuous on intV (PV (K)).

Finally, let us prove property (c). Without loss of generality, we may assume that
f(0) = φ(0) = 0. If we set

U = intV (PV (K)) +W ,

M = {v + Φ(v) : v ∈ intV (PV (K))} ,

then {v 7−→ v +Φ(v)} is a homeomorphism of intV (PV (K)) onto M . Since Φ(0) = 0, the

pair (φ0, φ0 \ {0}) is homeomorphic to the pair
((
f|M

)0
,
(
f|M

)0 \ {0}) . In particular,

Cq(φ, 0) = Hq
(
φ0, φ0 \ {0}

)
≈ Hq

((
f|M

)0
,
(
f|M

)0 \ {0}) .

On the other hand, since {w 7→ f(v+w)} is convex, the map η : (f 0 ∩ U, (f 0 ∩ U) \ {0})×
[0, 1] → (f 0 ∩ U, (f 0 ∩ U) \ {0}) defined by

η(u, t) = PV u+ (1− t)PWu+ tΦ(PV u) ,

is a strong deformation retraction of (f 0 ∩ U, (f 0 ∩ U) \ {0}) in
((
f|M

)0
,
(
f|M

)0 \ {0}). In
particular,

Hq
((
f|M

)0
,
(
f|M

)0 \ {0}) ≈ Hq
(
f 0 ∩ U, (f 0 ∩ U) \ {0}

)
≈ Cq(f, 0) .

and assertion (c) follows.

Now we may prove the main results of this section.

Proof of theorem 5.1. By substituting K with K ∩ B1 (0), we may assume that K is also
bounded. Let φ : intV (PV (K)) → R be as in theorem 5.3. We know that

∀q : Cq(f, 0) ≈ Cq(φ, 0) .

10



Since φ0 \ {0} ⊆ φ0 ⊆ V with dimV = m , it follows that Cq(φ, 0) = {0} whenever
q ≥ m+ 1.

Proof of theorem 5.2. Again, we may assumeK to be bounded. Let Φ : intV (PV (K)) → W
and φ : intV (PV (K)) → R be as in theorem 5.3. For every v ∈ K ∩ Bδ (0), we have

φ(v) = f(v + Φ(v)) ≤ f(v) ≤ f(0) = φ(0) .

Therefore

Cq(f, 0) ≈ Cq(φ, 0) ≈ Hq
(
φ0 ∩ Bδ (0) , (φ

0 ∩ Bδ (0)) \ {0}
)
=

= Hq (V ∩ Bδ (0) , (V ∩ Bδ (0)) \ {0})

and the assertion follows.

6 Critical groups for q small enough

In this section we consider a Banach space X , a convex closed subset K of X with 0 ∈ K
and a continuous function f : K → R . Let us assume that X splits into a direct sum
X = V ⊕W , with dimV = m < +∞ and W closed. Moreover, let us suppose that:

(i) there exists δ > 0 such that

(V ∩ Bδ (0)) + (K ∩W ∩ Bδ (0)) ⊆ K ;

(ii) for every w ∈ K ∩W ∩ Bδ (0) , the function {v 7→ f(v + w)} is strictly concave on
V ∩ Bδ (0) .

Theorem 6.1 We have Cq(f, 0) = {0} for every q ≤ m− 1 .

The section will be devoted to the proof of this result.

Lemma 6.2 Let S be a symmetric subset of V and C be a convex subset of W such that
0 ∈ C and S + (K ∩ C) ⊆ K.

Then S + (K ∩ C) = K ∩ (S + C). In particular, it is

(V ∩ Bδ (0)) + (K ∩W ∩ Bδ (0)) = K ∩ [(V ∩ Bδ (0)) + (W ∩ Bδ (0))] .

Proof. Let v + w ∈ K with v ∈ S and w ∈ C. If ŵ ∈ K ∩ C, we have −v + ŵ ∈ K, hence
(w+ŵ)/2 ∈ K∩C. Starting from 0 ∈ K∩C, we find by induction that (1−2−k)w ∈ K∩C
for any k ∈ N. It follows that w ∈ K, whence v+w ∈ S+(K ∩C). The opposite inclusion
is obvious.

11



Lemma 6.3 Let V = span (e) ⊕ Z with e ̸= 0 and assume that f(v) ≤ f(0) for every
v ∈ V ∩ Bδ (0) .

Then there exist r > 0 and ρ ∈ ]0, r] such that:

(a) for every u ∈ (Z∩Bρ (0))+(K∩W ∩Bρ (0)) and every t ∈ [−r, r] we have te+u ∈ K ;

(b) for every u ∈ (Z ∩ Bρ (0)) + (K ∩W ∩ Bρ (0)) the function {t 7→ f(te+ u)} has one
and only one maximum point ϑ(u) on [−r, r] with |ϑ(u)| < r;

(c) the function ϑ : (Z ∩ Bρ (0)) + (K ∩W ∩ Bρ (0)) → R is continuous with ϑ(0) = 0 ;

(d) the function φ : (Z ∩Bρ (0))+ (K ∩W ∩Bρ (0)) → R defined by φ(u) = f(ϑ(u)e+u)
is continuous;

(e) we have

∀z ∈ Z ∩ Bρ (0) : φ(z) ≤ φ(0)

and for every w ∈ K ∩W ∩ Bρ (0) the function {z 7→ φ(z + w)} is strictly concave
on Z ∩ Bρ (0) .

Proof. Let r ∈]0, δ[ be such that ∥te + z∥ < δ whenever |t| ≤ r and z ∈ Z ∩ Br (0). From
assumption (i) , it follows that

∀u ∈ (Z ∩ Br (0)) + (K ∩W ∩ Br (0)), ∀t ∈ [−r, r] : te+ u ∈ K .

By assumption (ii) we have that f(−re) < f(0) and f(re) < f(0). Therefore, there exists
ρ ∈ ]0, r] such that

∀u ∈ (Z ∩ Bρ (0)) + (K ∩W ∩ Bρ (0)) : f(−re+ u) < f(u) , f(re+ u) < f(u) .

Then assertions (a) and (b) easily follow. Moreover, since f(te) ≤ f(0) for every t ∈ [−r, r] ,
we have ϑ(0) = 0 .

Now, let (uh) be a sequence in (Z∩Bρ (0))+(K∩W ∩Bρ (0)) converging to u . Up to a
subsequence, (ϑ(uh)) is convergent to some t ∈ [−r, r] . On the other hand f(ϑ(uh)e+uh) ≥
f(ϑ(u)e + uh) . Since f is continuous it follows that f(te + u) ≥ f(ϑ(u)e + u), whence
t = ϑ(u) . Therefore ϑ is continuous. Of course, φ also is continuous.

For every z ∈ Z ∩Bρ (0) and t ∈ [−r, r] we have f(te+ z) ≤ f(0), whence φ(z) ≤ φ(0).
Finally, let w ∈ K ∩W ∩ Bρ (0) , z0, z1 ∈ Z ∩ Bρ (0) with z0 ̸= z1 and let t ∈ ]0, 1[ . From
assumtion (ii) it follows that

φ((1− t)z0 + tz1 + w) = f(ϑ((1− t)z0 + tz1 + w)e+ (1− t)z0 + tz1 + w) ≥
≥ f([(1− t)ϑ(z0 + w) + tϑ(z1 + w)]e+ (1− t)z0 + tz1 + w) >

> (1− t)f(ϑ(z0 + w)e+ z0 + w) + tf(ϑ(z1 + w)e+ z1 + w) =

= (1− t)φ(z0 + w) + tφ(z1 + w) .

Therefore the function {z 7→ φ(z + w)} is strictly concave on Z ∩ Bρ (0) .

12



Let us set

E+ =
{
te+ u : u ∈ (Z ∩ Bρ (0)) + (K ∩W ∩ Bρ (0)) , ϑ(u) ≤ t ≤ r

}
,

E− =
{
te+ u : u ∈ (Z ∩ Bρ (0)) + (K ∩W ∩ Bρ (0)) , −r ≤ t ≤ ϑ(u)

}
,

E = E+ ∩ E− =
{
ϑ(u)e+ u : u ∈ (Z ∩ Bρ (0)) + (K ∩W ∩ Bρ (0))

}
,

Ur,ρ = E+ ∪ E− =
{
te+ u : u ∈ (Z ∩ Bρ (0)) + (K ∩W ∩ Bρ (0)) , −r ≤ t ≤ r

}
.

Lemma 6.4 Under the assumptions of the previous lemma, we have Cq(f, 0) ≈ Cq−1(φ, 0)
for any q.

Proof. Without loss of generality, we may assume that f(0) = 0. From lemma 6.2 and (a)
of lemma 6.3, it follows that Ur,ρ is a neighbourhood of 0 in K.

Now, let τ : E+ → [0,+∞[ be a continuous function such that τ(u)e+ u ∈ E+ for any
u ∈ E+ and τ(0) > 0 . Let us define H : (f 0 ∩ E+)× [0, 1] → f 0 ∩ E+ by

H(u, s) = u+ sτ(u)e .

ThenH is continuous and takes actually its values in f 0∩E+ by assumption (ii). Moreover,
we have

∀u ∈ f 0 ∩ E+ : H(u, 0) = u , H(u, 1) ̸= 0 ,

∀u ∈ (f 0 ∩ E+) \ {0} , ∀s ∈ [0, 1] : H(u, s) ̸= 0.

It follows
∀q : Hq

(
f 0 ∩ E+, (f 0 ∩ E+) \ {0}

)
= {0} .

In a similar way, we find that

∀q : Hq
(
f 0 ∩ E−, (f 0 ∩ E−) \ {0}

)
= {0} .

Since E+ and E− are closed in Ur,ρ and we are considering Alexander-Spanier cohomology
in a metric space, we have the Mayer-Vietoris exact sequence

→ Hq−1
(
f 0 ∩ E−, (f 0 ∩ E−) \ {0}

)
⊕Hq−1

(
f 0 ∩ E+, (f 0 ∩ E+) \ {0}

)
→

→ Hq−1
(
f 0 ∩ E, (f 0 ∩ E) \ {0}

)
→ Hq

(
f 0 ∩ Ur,ρ, (f

0 ∩ Ur,ρ) \ {0}
)
→

→ Hq
(
f 0 ∩ E−, (f 0 ∩ E−) \ {0}

)
⊕Hq

(
f 0 ∩ E+, (f 0 ∩ E+) \ {0}

)
.

It follows that

Hq
(
f 0 ∩ Ur,ρ, (f

0 ∩ Ur,ρ) \ {0}
)
≈ Hq−1

(
f 0 ∩ E, (f 0 ∩ E) \ {0}

)
,

hence Cq(f, 0) ≈ Cq−1(f|E, 0). On the other hand, Φ(u) = ϑ(u)e + u is a homeomorphism

of (Z ∩ Bρ (0)) + (K ∩W ∩ Bρ (0)) onto E with Φ(0) = 0. It follows that Cq−1(φ, 0) ≈
Cq−1(f|E, 0).
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Proof of theorem 6.1. If there exists v0 ∈ V ∩ Bδ (0) such that f(v0) > f(0) , then
|d f | (0) ̸= 0 . Actually, by assumption (ii) we may assume that ∥v0∥ < δ/2. If

0 < σ <
f(v0)− f(0)

∥v0∥
,

by lemma 6.2 there exists δ′ > 0 such that, for every u ∈ K ∩ Bδ′ (0), one has that
{u+ sv0 : −δ′ ≤ s ≤ 1} ⊆ K, f is concave on {u+ sv0 : −δ′ ≤ s ≤ 1} and

f(u+ v0)− f(u)

∥v0∥
≥ σ .

Let H : (K ∩ Bδ′ (0))× [0, δ′] → K be defined by

H(u, t) = u− t
v0

∥v0∥
.

Then H is continuous and ∥H(u, t) − u∥ = t . Moreover, for every u ∈ K ∩ Bδ′ (0) and
t ∈ [0, δ′], we have

u =
t

t+ ∥v0∥
(u+ v0) +

∥v0∥
t+ ∥v0∥

H(u, t) ,

hence

f(u) ≥ t

t+ ∥v0∥
f(u+ v0) +

∥v0∥
t+ ∥v0∥

f(H(u, t)) ,

which is equivalent to

f(H(u, t)) ≤ f(u)− t

∥v0∥
(f(u+ v0)− f(u)) .

It follows f(H(u, t)) ≤ f(u) − σt, whence |d f | (0) ≥ σ > 0 . By [5, Proposition (3.4)] we
deduce that Cq(f, 0) = {0} for every q .

Therefore, we may assume that f(v) ≤ f(0) for every v ∈ V ∩Bδ (0) . Let us argue by
induction on m = dimV .

If m = 0 , i.e. V = {0} , there is nothing to prove. Now let m ≥ 1 and assume the
assertion is true for m−1 . Let φ : (Z∩Bρ (0))+(K∩W ∩Bρ (0)) → R be as in lemma 6.4.
We know that

∀q : Cq(f, 0) ≈ Cq−1(φ, 0) .

On the other hand, by lemma 6.3 φ satisfies the same assumptions of f , with V substituted
by Z and K by (Z ∩ Bρ (0)) + (K ∩W ∩ Bρ (0)). Since dimZ = m− 1 , by the inductive
assumption we have that

∀q ≤ m− 2 : Cq(φ, 0) = {0}

and the assertion follows.
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7 Proof of the main results

This section is devoted to the proof of Theorems 2.2 and 2.4.
Let K, g, f1 and f be as in sect. 4. Let also Q0 : H1

0 (Ω) → R be the quadratic form
defined by

Q0(u) =

∫
Ω

|Du|2 dx−
∫
Ω

Dsg(x, 0)u
2 dx .

By proposition 4.1, each critical point of f is a solution of (2.2). Therefore, without loss of
generality, we may assume that f has only a finite number of critical points. By theorem 4.2
there exists a critical point u of f such that Ck(f, u) ̸= {0} . Therefore, it is sufficient to
show that Ck(f, 0) = {0} .

Proof of theorem 2.2. Suppose first that there exists h < k such that µ
(0)
h ≤ 0 < λ

(0)
h+1 .

Let V be a maximal subspace of H ′
0 where Q0 is negative semidefinite and let Ŵ be a

maximal closed subspace of H0 where Q0 is positive definite. Since µ
(0)
h ≤ 0 < λ

(0)
h+1 , we

have dimV = codimH0 Ŵ = h . Let H0 = V̂ ⊕ Ŵ and let PV̂ , PŴ be the projections

associated with the decomposition. We clearly have V ∩ Ŵ = {0}. Therefore PV̂ : V → V̂

is injective, hence bijective. For any u ∈ H0, let u = v̂ + ŵ with v̂ ∈ V̂ and ŵ ∈ Ŵ . Let
also v ∈ V with PV̂ v = v̂. Then we have

u = PV̂ v + ŵ = v +
(
ŵ − PŴv

)
∈ V + Ŵ .

Therefore H0 = V ⊕ Ŵ .

Consequently, we have the decomposition H1
0 (Ω) = V ⊕W , where W =

(
Ŵ ⊕H⊥

0

)
and H⊥

0 is the orthogonal of H0 in H
1
0 (Ω) with respect to the standard scalar product. Let

PV be the associated projection on V .
We want to apply theorem 5.1. Assumption (i) is clearly satisfied. Since f1 is of class

C2, f ′
1(0) = 0 and f ′′

1 (0) is positive definite on Ŵ , there exist ω, δ > 0 such that

∀w ∈ Ŵ ∩ Bδ (0) : f1(w) ≥ f1(0) ,

∀u ∈ Bδ (0) : the function f1 is strictly convex on Bδ (0) ∩ (u+ Ŵ ) ,{
u 7→ f1(u) + ω∥PV u∥2

}
is convex on H0 ∩ Bδ (0) .

Since we want to estimate the critical groups of f at 0, we may substituteK withK∩Bδ (0).
As K ⊆ H0, it follows that assumptions (ii), (iii) and (v) are satisfied. Finally, according
to [16], we have∪

t>0

(tK) =
{
u ∈ H1

0 (Ω) : u(x) ≥ 0 q.e. in F 0
1 and u(x) ≤ 0 q.e. in F 0

2

}
.

It follows V ⊆ H ′
0 ⊆

∪
t>0

(tK) . By theorem 5.1 we conclude that Ck(f, 0) = {0} .

Now, suppose that there exists h > k such that µ
(0)
h < 0 . Arguing as in the proof of

theorem 4.2, we find a decomposition of the form H1
0 (Ω) = V ⊕W , where W is closed and
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V is a subspace of H ′
0 with dimV = h such that Q0 = f ′′

1 (0) is negative definite on V . By
assumption (2.1) we have H ′

0 ⊆ K , hence V +K = K . Moreover, there exists δ > 0 such
that, for every w ∈ Bδ (0), the function {v 7→ f1(v + w)} is strictly concave on V ∩ Bδ (0).
By theorem 6.1 we conclude that Ck(f, 0) = {0} .

Proof of theorem 2.4. Arguing as in the proof of theorem 4.2, we find a decomposition of
the form H1

0 (Ω) = Ṽ ⊕ Ŵ ⊕ H⊥
0 , where Ŵ is closed in H0, Ṽ is a subspace of H ′

0 with

dim Ṽ = h, Q0 = f ′′
1 (0) is negative definite on Ṽ and positive definite on Ŵ . Set also

W = Ŵ ⊕ H⊥
0 . It is readily seen that H ′

0 ⊆
∪
t>0

(t(K ∩ (−K))). Let {z1, . . . , zh} be a

basis in Ṽ . Given ε > 0, there exist tj > 0 and vj ∈ tj(K ∩ (−K)) with ∥vj − zj∥ < ε.
Let V be the linear subspace spanned by {v1, . . . , vh}. If ε is sufficiently small, we have
dimV = h, H1

0 (Ω) = V ⊕W and f ′′
1 (0) is negative definite also on V . Moreover, we have

[−t−1
j , t−1

j ]vj ⊆ K, hence

(7.1)

[
− 1

ht1
,
1

ht1

]
v1 + · · ·+

[
− 1

hth
,
1

hth

]
vh ⊆ K .

As in the proof of theorem 2.2, we see that assumptions (i) − (v) of sect. 5 are satisfied.
Since f ′′

1 (0) is negative definite on V , by (7.1) we find δ > 0 such that V ∩Bδ (0) ⊆ K and
f1(v) ≤ f1(0) for any v ∈ V ∩ Bδ (0). From theorem 5.2 we conclude that Ck(f, 0) = {0} .

Remark 7.1 Let us point out that assumption (2.1) is actually needed only to treat the

case h > k with µ
(0)
h < 0, while it is not used in the case h < k with µ

(0)
h ≤ 0 < λ

(0)
h+1.
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