7,159 research outputs found

    Surface texturing of CVD diamond assisted by ultrashort laser pulses

    Get PDF
    Diamond is a wide bandgap semiconductor with excellent physical properties which allow it to operate under extreme conditions. However, the technological use of diamond was mostly conceived for the fabrication of ultraviolet, ionizing radiation and nuclear detectors, of electron emitters, and of power electronic devices. The use of nanosecond pulse excimer lasers enabled the microstructuring of diamond surfaces, and refined techniques such as controlled ablation through graphitization and etching by two-photon surface excitation are being exploited for the nanostructuring of diamond. On the other hand, ultrashort pulse lasers paved the way for a more accurate diamond microstructuring, due to reduced thermal effects, as well as an effective surface nanostructuring, based on the formation of periodic structures at the nanoscale. It resulted in drastic modifications of the optical and electronic properties of diamond, of which “black diamond” films are an example for future high-temperature solar cells as well as for advanced optoelectronic platforms. Although experiments on diamond nanostructuring started almost 20 years ago, real applications are only today under implementation

    Space-Time Transfinite Interpolation of Volumetric Material Properties

    Get PDF
    The paper presents a novel technique based on extension of a general mathematical method of transfinite interpolation to solve an actual problem in the context of a heterogeneous volume modelling area. It deals with time-dependent changes to the volumetric material properties (material density, colour and others) as a transformation of the volumetric material distributions in space-time accompanying geometric shape transformations such as metamorphosis. The main idea is to represent the geometry of both objects by scalar fields with distance properties, to establish in a higher-dimensional space a time gap during which the geometric transformation takes place, and to use these scalar fields to apply the new space-time transfinite interpolation to volumetric material attributes within this time gap. The proposed solution is analytical in its nature, does not require heavy numerical computations and can be used in real-time applications. Applications of this technique also include texturing and displacement mapping of time-variant surfaces, and parametric design of volumetric microstructures

    Beam impingement angle effects on secondary electron emission characteristics of textured pyrolytic graphite

    Get PDF
    Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for untreated and ion-textured pyrolytic graphite over a range of primary electron energy levels and electron beam impingement angles are presented. Information required to develop high efficiency multistage depressed collectors (MDC's) for microwave amplifier traveling-wave tubes for space communication and aircraft applications is provided. To attain the highest possible MDC efficiencies, the electrode surfaces must have low secondary electron emission characteristics. Pyrolytic graphite, a chemically vapor-deposited material, is a particularly promising candidate for this application. The pyrolytic graphite surfaces studied were tested over a range of primary electron beam energies and beam impingement angles from 200 to 2000 eV and direct (0 deg) to near-grazing angles (85 deg), respectively. Surfaces both parallel to and normal to the planes of material deposition were examined. The true secondary electron emission and reflected primary electron yield characteristics of the pyrolytic graphite surfaces are compared to those of sooted control surfaces

    Secondary electron emission characteristics of molybdenum-masked, ion-textured OFHC copper

    Get PDF
    A method for producing a uniform, highly textured surface on oxygen-free, high conductivity (OFHC) copper by ion bombardment using sputtered molybdenum as a texture-inducing masking film was developed and used to provide samples for study. The purpose was to develop a basically OFHC copper surface having very low secondary electron emission characteristics. Surfaces having low secondary electron emission are a requirement for the electrodes of very high efficiency multistage depressed collectors (MDC's). Such MDC's are used in microwave amplifier traveling wave tubes for space communications and other applications. OFHC copper is the material most commonly used for MDC electrodes because it has high thermal conductivity, it is easy to machine, and its fabrication and brazing procedures are well established. However, its untreated surface displays relatively very high levels of secondary electron emissions. Textured OFHC copper samples were tested for true secondary electron emission and relative reflected primary electron yield at primary electron beam energy levels from 200 to 2000 eV and at direct (0 deg) to oblique (60 deg) beam impingement angles. The test results for three of the samples, each of which was processed in a slightly different way, are compared with each other and with test results for a machined OFHC copper sample. Although the textured samples are not represented here as having been processed optimally, their measured secondary electron emission characteristics are significantly lower than those of the untreated OFHC copper sample over the range of conditions studied. Importantly, the relative reflected primary electron yield of one of the textured samples is conspicuously lower than that of the others. Clearly, with further development, the molybdenum-masked ion-textured OFHC copper surface will be a promising material for high-efficiency MDC electrodes

    On the Optimization of Visualizations of Complex Phenomena

    Get PDF
    The problem of perceptually optimizing complex visualizations is a difficult one, involving perceptual as well as aesthetic issues. In our experience, controlled experiments are quite limited in their ability to uncover interrelationships among visualization parameters, and thus may not be the most useful way to develop rules-of-thumb or theory to guide the production of high-quality visualizations. In this paper, we propose a new experimental approach to optimizing visualization quality that integrates some of the strong points of controlled experiments with methods more suited to investigating complex highly-coupled phenomena. We use human-in-the-loop experiments to search through visualization parameter space, generating large databases of rated visualization solutions. This is followed by data mining to extract results such as exemplar visualizations, guidelines for producing visualizations, and hypotheses about strategies leading to strong visualizations. The approach can easily address both perceptual and aesthetic concerns, and can handle complex parameter interactions. We suggest a genetic algorithm as a valuable way of guiding the human-in-the-loop search through visualization parameter space. We describe our methods for using clustering, histogramming, principal component analysis, and neural networks for data mining. The experimental approach is illustrated with a study of the problem of optimal texturing for viewing layered surfaces so that both surfaces are maximally observable

    Industrial ion source technology

    Get PDF
    An analytical model was developed to describe the development of a coned surface texture with ion bombardment and simultaneous deposition of an impurity. A mathematical model of sputter deposition rate from a beveled target was developed in conjuction with the texturing models to provide an important input to that model. The establishment of a general procedure that will allow the treatment of manay different sputtering configurations is outlined. Calculation of cross sections for energetic binary collisions was extened to Ar, Kr.. and Xe with total cross sections for viscosity and diffusion calculated for the interaction energy range from leV to 1000eV. Physical sputtering and reactive ion etching experiments provided experimental data on the operating limits of a broad beam ion source using CF4 as a working gas to produce reactive species in a sputtering beam. Magnetic clustering effects are observed when Al is seeded with Fe and sputtered with Ar(?) ions. Silicon was textured at a micron scale by using a substrate temperature of 600 C
    corecore