378 research outputs found

    A Solid State Transformer model for power flow calculations

    Get PDF
    This paper presents the implementation of a Solid State Transformer (SST) model in OpenDSS. The goal is to develop a SST model that could be useful for assessing the impact that the replacement of the conventional iron-and-copper transformer with the SST can have on the distribution system performance. Test distribution systems of different characteristics and size have been simulated during different time periods. The simulations have been carried out assuming voltage-dependent loads and considering that power flow through either the HV/MV substation transformer or any of the MV/LV distribution transformers can be bidirectional. Simulation results prove that a positive impact should be expected on voltages at both MV and LV levels, but the efficiency of current SST designs should be improved.Postprint (author's final draft

    A new AC/AC power converter

    Get PDF
    The Future Electrical Network will be based on the integration of different renewable energy sources. In this regard, modular bidirectional power converter architectures will get special attention. Galvanic isolation in such power converter architectures plays a vital role in confining faults. This paper presents a new AC/AC converter concept suitable for Solid State Transformer (SST) applications. The basic operation of the topology is first presented, followed by the development of suitable modulation, commutation and protection methods. The proposed idea is validated in simulation with PLECS

    Loss Estimation of a Dual Active Bridge as part of a Solid State Transformer using Frequency Domain Modelling

    Get PDF
    This paper proposes an improved method for the loss estimation of a Dual Active Bridge (DAB) using frequency domain modelling. The method uses a detailed, frequency depending transformer model to describe even highly utilized DABs. The model is used to estimate the occurring losses of a DAB as part of an modular Solid State Transformer (SST). The influence of the SST\u27s phase power ripple is considered for the loss estimation. The results of the frequency domain model and the loss calculation are validated using measurement data of an SST-cell prototype

    The dynamic behavior of a solid state transformer (SST) during recloser operation in distribution systems

    Get PDF
    Electrical power systems are continuously facing increasing electrical power demand in the last years to meet the requirements of modern life style. In order to satisfy such needs electricity authorities are taking appropriate measures to enhance the performance of power networks. One of the solutions to meet the customer\u27s demands for energy was the trend to use the renewable energy. The increasing use of renewable energy and other distributed generation sources made the electrical grid more complex. Many researches have been carried out to find out solutions to overcome this complexity. One of these researches -- which was on a Solid-State Transformer technology- attracted scholars in recent years. The motivation for this thesis is to study the behavior of the SST under operation of protective devices such as recloser and fuse. In order to investigate the dynamic behavior of the SST, a recloser model has been designed and implemented in PSCAD®/EMTDC™. The accuracy of the model has been verified through comparison between simulation and theoretical results. Then, the recloser model has been deployed in a small distribution system along with the SST. Finally, different SLG fault scenarios have been applied and the SST has been investigated --Abstract, page iii

    Solid State Transformer with Integrated Input Stage

    Get PDF
    In this paper, a solid state transformer (SST) with integrated stages is addressed. The SST has been originally proposed for traction applications, after as an option to face the new requirements of the distributed generation but also suggested in many applications. There are different topologies, from one to three stages; certainly each one with their advantages and limitations. Some challenges for this type of systems are reducing the cost and increasing the efficiency.The components reduction is discussed in this paper, by integrating two stages of the SST; the ac/dc converter and the DAB converter share one leg. The proposed scheme is described and numerically simulated

    Coordinated Control of Energy Storage in Networked Microgrids under Unpredicted Load Demands

    Full text link
    In this paper a nonlinear control design for power balancing in networked microgrids using energy storage devices is presented. Each microgrid is considered to be interfaced to the distribution feeder though a solid-state transformer (SST). The internal duty cycle based controllers of each SST ensures stable regulation of power commands during normal operation. But problem arises when a sudden change in load or generation occurs in any microgrid in a completely unpredicted way in between the time instants at which the SSTs receive their power setpoints. In such a case, the energy storage unit in that microgrid must produce or absorb the deficit power. The challenge lies in designing a suitable regulator for this purpose owing to the nonlinearity of the battery model and its coupling with the nonlinear SST dynamics. We design an input-output linearization based controller, and show that it guarantees closed-loop stability via a cascade connection with the SST model. The design is also extended to the case when multiple SSTs must coordinate their individual storage controllers to assist a given SST whose storage capacity is insufficient to serve the unpredicted load. The design is verified using the IEEE 34-bus distribution system with nine SST-driven microgrids.Comment: 8 pages, 10 figure

    Solid state transformer technologies and applications: a bibliographical survey

    Get PDF
    This paper presents a bibliographical survey of the work carried out to date on the solid state transformer (SST). The paper provides a list of references that cover most work related to this device and a short discussion about several aspects. The sections of the paper are respectively dedicated to summarize configurations and control strategies for each SST stage, the work carried out for optimizing the design of high-frequency transformers that could adequately work in the isolation stage of a SST, the efficiency of this device, the various modelling approaches and simulation tools used to analyze the performance of a SST (working a component of a microgrid, a distribution system or just in a standalone scenario), and the potential applications that this device is offering as a component of a power grid, a smart house, or a traction system.Peer ReviewedPostprint (published version

    Solid-State Transformers for Interfacing Solar Panels to the Power Grid: An Optimum Design Methodology of a High Frequency Transformer for dc-dc Converter Applications

    Get PDF
    Nowadays the use of power electronic interfaces to integrate distributed generation with the power grid is becoming relevant due to the increased penetration of renewable energy sources like solar, and the continued interest to move to a smarter and more robust electric grid. Those interfaces, which also provide a voltage step-up or step-down function, are of particular interest because renewable energy sources do not always have voltages compatible with the connecting grid. Among them, the so-called “power electronic transformer” or “solid-state transformer” (SST) is the focus of significant research. Advantages such as bidirectional power flow, improved system control, reduced size, and premium power quality at the output terminals, increase the interest of the SST for future electric grids. The SST consists mainly of two components: a high-frequency transformer (made out of advanced magnetic materials) and power converters (employing efficient power semiconductor devices like those based on silicon carbide (SiC)) to enable operation at frequencies higher than the grid frequency. This paper presents an optimum design method that can be employed to build a high-frequency transformer for a SST intended to interface a renewable energy source (e.g., a photovoltaic system) to the electric grid. Core material, geometry, and size will be analyzed in order to provide an optimum balance between cost, efficiency, thermal management, and size. Special consideration will also be given to the selection of the winding conductors given the skin effect associated with operation at high frequencies

    Input Parallel Output Series Structure of Planar Medium Frequency Transformers for 200 kW Power Converter: Model and Parameters Evaluation

    Get PDF
    Nowadays, the demand for high power converters for DC applications, such as renewable sources or ultra-fast chargers for electric vehicles, is constantly growing. Galvanic isolation is mandatory in most of these applications. In this context, the Solid State Transformer (SST) converter plays a fundamental role. The adoption of the Medium Frequency Transformers (MFT) guarantees galvanic isolation in addition to high performance in reduced size. In the present paper, a multi MFT structure is proposed as a solution to improve the power density and the modularity of the system. Starting from 20 kW planar transformer model, experimentally validated, a multi- transformer structure is analyzed. After an analytical treatment of the Input Parallel Output Series (IPOS) structure, an equivalent electrical model of a 200 kW IPOS (made by 10 MFTs) is introduced. The model is validated by experimental measurements and tests

    EMTP model of a bidirectional cascaded multilevel solid state transformer for distribution system studies

    Get PDF
    This paper presents a time-domain model of a MV/LV bidirectional solid state transformer (SST). A multilevel converter configuration of the SST MV side is obtained by cascading a single-phase cell made of the series connection of an H bridge and a dual active bridge (dc-dc converter); the aim is to configure a realistic SST design suitable for MV levels. A three-phase four-wire converter has been used for the LV side, allowing the connection of both load/generation. The SST model, including the corresponding controllers, has been built and encapsulated as a custom-made model in the ATP version of the EMTP for application in distribution system studies. Several case studies have been carried out in order to evaluate the behavior of the proposed SST design under different operating conditions and check its impact on power qualityPostprint (published version
    • …
    corecore