160 research outputs found

    End-of-Life and Constant Rate Reliability Modeling for Semiconductor Packages Using Knowledge-Based Test Approaches

    Get PDF
    End-of-life and constant rate reliability modeling for semiconductor packages are the focuses of this dissertation. Knowledge-based testing approaches are applied and the test-to-failure approach is approved to be a reliable approach. First of all, the end-of-life AF models for solder joint reliability are studied. The research results show using one universal AF model for all packages is flawed approach. An assessment matrix is generated to guide the application of AF models. The AF models chosen should be either assessed based on available data or validated through accelerated stress tests. A common model can be applied if the packages have similar structures and materials. The studies show that different AF models will be required for SnPb solder joints and SAC lead-free solder joints. Second, solder bumps under power cycling conditions are found to follow constant rate reliability models due to variations of the operating conditions. Case studies demonstrate that a constant rate reliability model is appropriate to describe non solder joint related semiconductor package failures as well. Third, the dissertation describes the rate models using Chi-square approach cannot correlate well with the expected failure mechanisms in field applications. The estimation of the upper bound using a Chi-square value from zero failure is flawed. The dissertation emphasizes that the failure data is required for the failure rate estimation. A simple but tighter approach is proposed and provides much tighter bounds in comparison of other approaches available. Last, the reliability of solder bumps in flip chip packages under power cycling conditions is studied. The bump materials and underfill materials will significantly influence the reliability of the solder bumps. A set of comparable bump materials and the underfill materials will dramatically improve the end-of-life solder bumps under power cycling loads, and bump materials are one of the most significant factors. Comparing to the field failure data obtained, the end-of-life model does not predict the failures in the field, which is more close to an approximately constant failure rate. In addition, the studies find an improper underfill material could change the failure location from solder bump cracking to ILD cracking or BGA solder joint failures

    Heterogeneous 2.5D integration on through silicon interposer

    Get PDF
    © 2015 AIP Publishing LLC. Driven by the need to reduce the power consumption of mobile devices, and servers/data centers, and yet continue to deliver improved performance and experience by the end consumer of digital data, the semiconductor industry is looking for new technologies for manufacturing integrated circuits (ICs). In this quest, power consumed in transferring data over copper interconnects is a sizeable portion that needs to be addressed now and continuing over the next few decades. 2.5D Through-Si-Interposer (TSI) is a strong candidate to deliver improved performance while consuming lower power than in previous generations of servers/data centers and mobile devices. These low-power/high-performance advantages are realized through achievement of high interconnect densities on the TSI (higher than ever seen on Printed Circuit Boards (PCBs) or organic substrates), and enabling heterogeneous integration on the TSI platform where individual ICs are assembled at close proximity

    Dynamic Mechanical and Failure Properties of Solder Joints

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    ADVANCEMENT OF MOIRÉ INTERFEROMETRY FOR RATE-DEPENDENT MATERIAL BEHAVIOR AND MICROMECHANICAL DEFORMATIONS

    Get PDF
    Moiré interferometry is an optical technique to map full field in-plane deformations with extremely high resolution and signal to noise ratio. The technique is advanced and implemented to study the rate-dependent thermo-mechanical behavior of Sn-based Pb-free solder alloys and micromechanical deformations. In Part I, the mechanical/optical configuration of moiré interferometry for real-time observation of thermal deformations is enhanced to provide measurement capabilities required for the analyses. Two most notable advancements are (1) development of a conduction-based thermal chamber for a wide range of ramp rates with accurate temperature control, and (2) implementation of microscope objectives in the imaging system to observe a microscopic field of view. The advanced system is implemented to analyze the anisotropic behavior of Sn-based Pb-free solder alloys. A novel copper-steel specimen frame is developed to apply a controlled loading to single-grain solder joints. After measuring the grain orientation by electron backscatter diffraction (EBSD), detailed in-situ deformation evolutions and accumulated deformations of solder alloys are documented during a thermal cycle of -40 °C to 125 °C. The results quantify grain orientation-dependent deformations that can lead more accurate anisotropic constitutive properties of Sn-based Pb-free solder alloys. In Part II, an advanced immersion microscopic moiré interferometry system based on an achromatic configuration is developed and implemented for higher displacement sensitivity and spatial resolution. In order to achieve the desired displacement resolution, a high frequency grating (2500 lines/mm) is fabricated on a silicon substrate using lithography first. The square profile is subsequently modified by reactive-ion etching so that it can be used to produce a specimen grating by replication. Secondly, the algorithm of the optical/digital fringe multiplication method is improved to further enhance the measurement resolution of the immersion microscopic moiré interferometry. The system and the noise-free grating are used to analyze thermal deformations of micro-solder bumps. With the basic contour interval of 200 nm, the displacement resolution of 25 nm is achieved with the multiplication factor of 8

    Thermo-mechanical reliability studies of lead-free solder interconnects

    Get PDF
    N/ASolder interconnections, also known as solder joints, are the weakest link in electronics packaging. Reliability of these miniature joints is of utmost interest - especially in safety-critical applications in the automotive, medical, aerospace, power grid and oil and drilling sectors. Studies have shown that these joints' critical thermal and mechanical loading culminate in accelerated creep, fatigue, and a combination of these joints' induced failures. The ball grid array (BGA) components being an integral part of many electronic modules functioning in mission-critical systems. This study investigates the response of solder joints in BGA to crucial reliability influencing parameters derived from creep, visco-plastic and fatigue damage of the joints. These are the plastic strain, shear strain, plastic shear strain, creep energy density, strain energy density, deformation, equivalent (Von-Mises) stress etc. The parameters' obtained magnitudes are inputted into established life prediction models – Coffin-Manson, Engelmaier, Solomon (Low cycle fatigue) and Syed (Accumulated creep energy density) – to determine several BGA assemblies' fatigue lives. The joints are subjected to thermal, mechanical and random vibration loadings. The finite element analysis (FEA) is employed in a commercial software package to model and simulate the responses of the solder joints of the representative assemblies' finite element models. As the magnitude and rate of degradation of solder joints in the BGA significantly depend on the composition of the solder alloys used to assembly the BGA on the printed circuit board, this research studies the response of various mainstream lead-free Sn-Ag-Cu (SAC) solders (SAC305, SAC387, SAC396 and SAC405) and benchmarked those with lead-based eutectic solder (Sn63Pb37). In the creep response study, the effects of thermal ageing and temperature cycling on these solder alloys' behaviours are explored. The results show superior creep properties for SAC405 and SAC396 lead-free solder alloys. The lead-free SAC405 solder joint is the most effective solder under thermal cycling condition, and the SAC396 solder joint is the most effective solder under isothermal ageing operation. The finding shows that SAC405 and SAC396 solders accumulated the minimum magnitudes of stress, strain rate, deformation rate and strain energy density than any other solder considered in this study. The hysteresis loops show that lead-free SAC405 has the lowest dissipated energy per cycle. Thus the highest fatigue life, followed by eutectic lead-based Sn63Pb37 solder. The solder with the highest dissipated energy per cycle was lead-free SAC305, SAC387 and SAC396 solder alloys. In the thermal fatigue life prediction research, four different lead-free (SAC305, SAC387, SAC396 and SAC405) and one eutectic lead-based (Sn63Pb37) solder alloys are defined against their thermal fatigue lives (TFLs) to predict their mean-time-to-failure for preventive maintenance advice. Five finite elements (FE) models of the assemblies of the BGAs with the different solder alloy compositions and properties are created with SolidWorks. The models are subjected to standard IEC 60749-25 temperature cycling in ANSYS 19.0 mechanical package environment. SAC405 joints have the highest predicted TFL of circa 13.2 years, while SAC387 joints have the least life of circa 1.4 years. The predicted lives are inversely proportional to the magnitude of the areas of stress-strain hysteresis loops of the solder joints. The prediction models are significantly consistent in predicted magnitudes across the solder joints irrespective of the damage parameters used. Several failure modes drive solder joints and damage mechanics from the research and understand an essential variation in the models' predicted values. This investigation presents a method of managing preventive maintenance time of BGA electronic components in mission-critical systems. It recommends developing a novel life prediction model based on a combination of the damage parameters for enhanced prediction. The FEA random vibration simulation test results showed that different solder alloys have a comparable performance during random vibration testing. The fatigue life result shows that SAC405 and SAC396 have the highest fatigue lives before being prone to failure. As a result of the FEA simulation outcomes with the application of Coffin-Manson's empirical formula, the author can predict the fatigue life of solder joint alloys to a higher degree of accuracy of average ~93% in an actual service environment such as the one experienced under-the-hood of an automobile and aerospace. Therefore, it is concluded that the combination of FEA simulation and empirical formulas employed in this study could be used in the computation and prediction of the fatigue life of solder joint alloys when subjected to random vibration. Based on the thermal and mechanical responses of lead-free SAC405 and SAC396 solder alloys, they are recommended as a suitable replacement of lead-based eutectic Sn63Pb37 solder alloy for improved device thermo-mechanical operations when subjected to random vibration (non-deterministic vibration). The FEA simulation studies' outcomes are validated using experimental and analytical-based reviews in published and peer-reviewed literature.N/

    A THERMOMECHANICAL FATIGUE LIFE PREDICTION METHODOLOGY FOR BALL GRID ARRAY COMPONENTS WITH REWORKABLE UNDERFILL

    Get PDF
    Underfill materials were originally developed to improve the thermo-mechanical reliability of flip-chip devices due to the large coefficient of thermal expansion (CTE) mismatch between the silicon die and substrate. More recently, underfill materials, specifically reworkable underfills, have been used to improve reliability of second level interconnects in ball grid array (BGA) packages in harsh end-use environments such as automotive, military and aerospace. In these environments, electronic components are exposed to mechanical shock, vibration, and large fluctuations in temperatures. Although reworkable underfills improve the reliability of BGA components under mechanical shock and vibration, some reworkable underfills have been shown to reduce reliability during thermal cycling environments. Consequently, this research employs experimental and numerical approaches to investigate the impact of reworkable underfill materials on thermomechanical fatigue life of solder joints in BGA packages. In the first section of the analysis, material characterization of a reworkable underfill is performed to determine appropriate material models for reworkable underfills. In the second analysis section, a variety of underfill materials with different properties are exposed to harsh and benign thermal cycles to determine the stress state responsible for reducing fatigue life of solder joints in BGA packages. In the final analysis section, simulations are performed on the BGAs with reworkable underfill to develop a fatigue life predication methodology that implements a modified mode separation scheme. The model developed in this work provides a working fatigue life approach for BGA packages with reworkable underfills exposed to thermal loading. The results of this study can be utilized by the automotive, military, and aerospace industries to optimize underfill material selection process and provide reliability assessment of BGA components in real world environments

    Reliability Analysis of Electrotechnical Devices

    Get PDF
    This is a book on the practical approaches of reliability to electrotechnical devices and systems. It includes the electromagnetic effect, radiation effect, environmental effect, and the impact of the manufacturing process on electronic materials, devices, and boards

    Lifetime Estimation of IGBTs in a Grid-connected STATCOM

    Get PDF
    Lifetime estimation of power semiconductor devices, and IGBT devices in particular, used in the power electronics integrated with power systems has gained technical importance in recent times with increased scope of distributed generation, renewable energy systems and FACTS. Since most of the common failures (wire bond and solder fatigue) are caused by thermo-mechanical stresses, the methodology of lifetime estimation starts with temperature estimation, cycle counting based on rainflow algorithm, and finally degradation calculation based on linear accumulation model. Different number of RC cells for each packaging layer in the module for the thermal model, including the influence of encapsulant is proposed for temperature estimation of IGBTs in power modules. A modified rainflow algorithm with faster execution time and time dependent temperature calculation is introduced for cycle counting. Finally, the lifetime of the IGBT is estimated during STATCOM operation using real-time load profiles for power factor variation. For a power factor variation data for a building, the lifetime is estimated to be about 3 years. Similarly, a month long arc furnace load data is considered to compare the equivalent temperature based calculation to conventional tests. 4% more degradation is observed in the equivalent temperature based calculation than compared with conventional rainflow algorithm. A simulation study on the operation parameter dependence on the stresses in a wire is considered to estimate lifetime from Finite Element Analysis (FEA) in COMSOL. Power cycling tests are conducted on two different modules (600 V, 50 A H-bridge module and a 1200 V, 150 A phase leg module) to validate the lifetime model for four months. The low power module was tested without any protection circuits and hence failed catastrophically. Wire melt-off or fusing failure was dominantly observed, following by dielectric based short circuit failure. The high power module was tested with protection circuits to prevent catastrophic damage for a maximum of 4 months. A maximum of 20% degradation in static characteristics, with decreased on state resistance was observed in the modules. The degradation is attributed to increased junction temperature as the thermal resistance increases owing to solder fatigue

    The Development of Novel Interconnection Technologies for 3D Packaging of Wire Bondless Silicon Carbide Power Modules

    Get PDF
    This dissertation advances the cause for the 3D packaging and integration of silicon carbide power modules. 3D wire bondless approaches adopted for enhancing the performance of silicon power modules were surveyed, and their merits were assessed to serve as a vision for the future of SiC power packaging. Current efforts pursuing 3D wire bondless SiC power modules were investigated, and the concept for a novel SiC power module was discussed. This highly-integrated SiC power module was assessed for feasibility, with a focus on achieving ultralow parasitic inductances in the critical switching loops. This will enable higher switching frequencies, leading to a reduction in the size of the passive devices in the system and resulting in systems with lower weight and volume. The proposed concept yielded an order-of-magnitude reduction in system parasitics, alongside the possibility of a compact system integration. The technological barriers to realizing these concepts were identified, and solutions for novel interconnection schemes were proposed and evaluated. A novel sintered silver preform was developed to facilitate flip-chip interconnections for a bare-die power device while operating in a high ambient temperature. The preform was demonstrated to have 3.75× more bonding strength than a conventional sintered silver bond and passed rigorous thermal shock tests. A chip-scale and flip-chip capable power device was also developed. The novel package combined the ease of assembly of a discrete device with a performance exceeding a wire bonded module. It occupied a 14× smaller footprint than a discrete device, and offered power loop inductances which were less than a third of a conventional wire bonded module. A detailed manufacturing process flow and qualification is included in this dissertation. These novel devices were implemented in various electrical systems—a discrete Schottky barrier diode package, a half-bridge module with external gate drive, and finally a half-bridge with integrated gate driver in-module. The results of these investigations have been reported and their benefits assessed. The wire bondless modules showed \u3c 5% overshoot under all test conditions. No observable detrimental effects due to dv/dt were observed for any of the modules even under aggressive voltage slew rates of 20-25 V/ns

    DEVELOPMENT OF A SIMPLIFIED, MASS PRODUCIBLE HYBRIDIZED AMBIENT, LOW FREQUENCY, LOW INTENSITY VIBRATION ENERGY SCAVENGER (HALF-LIVES)

    Get PDF
    Scavenging energy from environmental sources is an active area of research to enable remote sensing and microsystems applications. Furthermore, as energy demands soar, there is a significant need to explore new sources and curb waste. Vibration energy scavenging is one environmental source for remote applications and a candidate for recouping energy wasted by mechanical sources that can be harnessed to monitor and optimize operation of critical infrastructure (e.g. Smart Grid). Current vibration scavengers are limited by volume and ancillary requirements for operation such as control circuitry overhead and battery sources. This dissertation, for the first time, reports a mass producible hybrid energy scavenger system that employs both piezoelectric and electrostatic transduction on a common MEMS device. The piezoelectric component provides an inherent feedback signal and pre-charge source that enables electrostatic scavenging operation while the electrostatic device provides the proof mass that enables low frequency operation. The piezoelectric beam forms the spring of the resonant mass-spring transducer for converting vibration excitation into an AC electrical output. A serially poled, composite shim, piezoelectric bimorph produces the highest output rectified voltage of over 3.3V and power output of 145uW using ¼ g vibration acceleration at 120Hz. Considering solely the volume of the piezoelectric beam and tungsten proof mass, the volume is 0.054cm3, resulting in a power density of 2.68mW/cm3. Incorporation of a simple parallel plate structure that provides the proof mass for low frequency resonant operation in addition to cogeneration via electrostatic energy scavenging provides a 19.82 to 35.29 percent increase in voltage beyond the piezoelectric generated DC rails. This corresponds to approximately 2.1nW additional power from the electrostatic scavenger component and demonstrates the first instance of hybrid energy scavenging using both piezoelectric and synchronous electrostatic transduction. Furthermore, it provides a complete system architecture and development platform for additional enhancements that will enable in excess of 100uW additional power from the electrostatic scavenger
    corecore