39,422 research outputs found

    Enhancing System Realisation in Formal Model Development

    Get PDF
    Software for mission-critical systems is sometimes analysed using formal specification to increase the chances of the system behaving as intended. When sufficient insights into the system have been obtained from the formal analysis, the formal specification is realised in the form of a software implementation. One way to realise the system's software is by automatically generating it from the formal specification -- a technique referred to as code generation. However, in general it is difficult to make guarantees about the correctness of the generated code -- especially while requiring automation of the steps involved in realising the formal specification. This PhD dissertation investigates ways to improve the automation of the steps involved in realising and validating a system based on a formal specification. The approach aims to develop properly designed software tools which support the integration of formal methods tools into the software development life cycle, and which leverage the formal specification in the subsequent validation of the system. The tools developed use a new code generation infrastructure that has been built as part of this PhD project and implemented in the Overture tool -- a formal methods tool that supports the Vienna Development Method. The development of the code generation infrastructure has involved the re-design of the software architecture of Overture. The new architecture brings forth the reuse and extensibility features of Overture to take into account the needs and requirements of software extensions targeting Overture. The tools developed in this PhD project have successfully supported three case studies from externally funded projects. The feedback received from the case study work has further helped improve the code generation infrastructure and the tools built using it

    A Modeling and Formal Approach for the Precise Specification of Security Patterns

    Get PDF
    International audienceNon-functional requirements such as Security and Dependability (S &D) become more important as well as more difficult to achieve. In fact, the integration of security features requires the availability of both application domain specific knowledge and security expertise at the same time. Hence, capturing and providing this expertise by the way of security patterns can support the integration of S&D features by design to foster reuse during the process of software system development.The solution envisaged here is based on combining metamodeling techniques and formal methods to represent security pattern at two levels of abstraction fostering reuse during the process of pattern development and during the process of pattern-based development. The contribution of this work is twofold: (1) An improvement of our previous pattern modeling language for representing security pattern in the form of a subsystem providing appropriate interfaces and targeting security properties, (2) Formal specification and validation of pattern properties, using the interactive Isabelle/HOL proof assistant. The resulting validation artifacts may mainly complete the definitions, and provide semantics for the interfaces and the properties in the context of S&D. As a result, validated patterns will be used as bricks to build applications through a Model-Driven engineering approach

    Requirements engineering: a review and research agenda

    Get PDF
    This paper reviews the area of requirements engineering. It outlines the key concerns to which attention should be devoted by both practitioners, who wish to "reengineer" their development processes, and academics, seeking intellectual challenges. It presents an assessment of the state-of-the-art and draws conclusions in the form of a research agenda

    The Knowledge-Based Software Assistant: Beyond CASE

    Get PDF
    This paper will outline the similarities and differences between two paradigms of software development. Both support the whole software life cycle and provide automation for most of the software development process, but have different approaches. The CASE approach is based on a set of tools linked by a central data repository. This tool-based approach is data driven and views software development as a series of sequential steps, each resulting in a product. The Knowledge-Based Software Assistant (KBSA) approach, a radical departure from existing software development practices, is knowledge driven and centers around a formalized software development process. KBSA views software development as an incremental, iterative, and evolutionary process with development occurring at the specification level
    • …
    corecore