
Requirements Engineering: a review and research agenda

Anthony Finkelstein

City University, Department of Computer Science, London EC1V 0HB
acwf@cs.city.ac.uk

Abstract

This paper reviews the area of requirements engineering. It
outlines the key concerns to which attention should be
devoted by both practitioners, who wish to "reengineer" their
development processes, and academics, seeking intellectual
challenges. It presents an assessment of the state-of-the-art
and draws conclusions in the form of a research agenda.

1 Introduction

The purpose of this paper is to give a review of requirements
engineering and to present a research agenda based on this
review.

The review is not intended to be comprehensive, on the
contrary it is based on a particular framework and
categorisation of the principal issues, and it relies on a
personal assessment of the contributions in each of the key
areas. In particular, papers are cited as illustrative examples
of work and not as a survey of the literature. For some
surveys of the literature reference may be made to Thayer &
Dorfman (1990) and to Davis (1990). A useful source of
recent references can be found in Greenspan et al. (1994).

In order to orient the paper it is necessary to have a
definition of the scope of requirements engineering. I favour
that given by Zave (1994). "Requirements engineering is the
branch of systems engineering concerned with the real-world
goals for, services provided by, and constraints on a large
and complex software-intensive system. It is also concerned
with the relationship of these factors to precise
specifications of system behaviour, and to their evolution
over time and across system families."

Put crudely requirements engineering focuses on
improvements to the front-end of the system development
life-cycle. Establishing the needs that have given rise to the
development process and organising this information in a
form that wil l support system conception and
implementation. You are asked to note the broad systems
engineering remit of requirements engineering.

It is probably unnecessary to set down an extensive
motivation for research in requirements engineering. In the

final analysis the quality of a system is determined by the
extent to which it meets the requirements of the stakeholders.
The most direct route to improving system quality i s
therefore to ensure that requirements are accurately
determined and that a requirements focus is maintained
through the development process. I prefer this positive view
of the importance of requirements engineering to the
predominant negative view, which is as follows. Whenever
practitioners are questioned about difficulties in system
development they stress inadequate requirements engineering
as a major cause of problems. Errors or misconceptions
identified early in the development process are relatively
cheap to eliminate. As development proceeds the cost of
error removal escalates rapidly until the system is in the field
at which point it is generally prohibitively expensive to
correct any errors. Further, as development proceeds errors
are more difficult to localise as they spread across
components of the system.

The paper is divided into seven areas and into key concerns
within each of these areas. The areas reflect the basic
structure of the requirements engineering process, they are:
the context in which the requirements engineering process
takes place; the groundwork necessary for requirements
engineering; the acquisition of the "raw" requirements;
rendering these requirements useable through modelling and
specification; analysis of the requirements; measurement to
control the requirements and systems engineering process;
communication and documentation of the results of
requirements engineering. Where possible I have tried to
order the concerns to reflect the progress of a rationalised
requirements engineering process. I make no strong claims
for this structure except perhaps that it embraces most of the
current discussion on requirements engineering without the
burden of introducing a novel conceptual framework.

For each of the key concerns the discussion is broken down
into three parts: a brief orientation; an assessment of the
state-of-the art; and a discussion of research issues.

2 C o n t e x t

What are the necessary precondi t ions f o r
effective Requirements Engineering?

Orientation. Before devoting increased effort and resources
to requirements engineering it is essential for certain
preconditions to be satisfied otherwise it will be dissipated
by a generally disorganised development process. In other
words it is important that developers do not run before they
can walk! Because organisational distance can dim the "voice
of the customer" in the subsequent development process,
requirements engineering effort is particularly susceptible to
wasteage. It should be immediately clear that a defined and
documented development process and rigorous project
management of costs, schedule & changes are prerequisites
for effective requirements engineering. Without these there is
no ability to make informed commitments in the
development process nor channel for the information
produced by requirements engineering.

Assessment. This area has been brought to general attention
in the literature on software process maturity (Humphrey,
1988). Perhaps the most important research lesson that this
area of work has taught us is that improvements in software
development are interlocking. The results of associated
studies have firmly indicated to the research community that
many of its concerns are beyond the immediate capabilities
of industry and that it needs to clearly identify the priorities
associated with different improvements and their supporting
preconditions (Humphrey et al, 1989). Requirements
engineering research has been no better than any other area
of software and systems engineering in this regard.

Issues. Much of the work in requirements engineering has
been built on the tacit assumption that it is situated in a
standard "waterfall" process of system development. In this
case there is a clear mechanism for feeding the products of the
requirements engineering process through to design and
obvious management breakpoints for measurement and
control. We have an intuitive understanding of the
preconditions for requirements engineering and how to
establish them. In "unconventional" processes such as
incremental development there is less clarity on the interface
between requirements engineering and the overall system
development process and how to maintain the link between a
design and the emerging requirements. Further work i s
necessary in this area.

Organisational sett ing

Orientation. Requirements engineering can take place in
many organisational settings. The development process may
be: internal to an organisation, where the system is being
produced by that organisation for its own use; bespoke,
where a client requests another organisation to produce a
system specific to its requirements; customisation in which
some generic product or framework is tailored to meet a set of

requirements set down by an external client; cooperative in
which knowledge of the application, the requirements, and
the eventual use of the system is distributed among different
organisations who are partners in a development process;
product oriented in which an organisation develops a product
to be placed in a perceived market. Each of these settings
confers slightly different responsibilities and in each case
suggest different technical priorities.

Assessment. The issue of organisational context and its
ramifications for the organisation of system development
has, until recently (Jones & Brooks, 1994), been neglected
in software engineering. The information systems
community has, by contrast, recognised this issue (Yadav,
1983) and has attempted to make the assumptions about
organisational context, on which methods and techniques
depend, explicit. Broadly the dominant view from within
software engineering has been fixed on bespoke
development. This is largely because this type of
development is characteristic of the defence organisations
and contractors who have been most articulate about their
difficulties and who have funded software engineering
research.

Issues. There is a growing recognition of the importance of
system customisation and extension (Lubars et al, 1993)
cynics might suggest that this reflects the tougher stance of
defence procurement agencies. There is virtually no work on
the support for developing products for markets though this
concern is surfacing within general debate, in particular
through large telecommunications organisations who, since
deregulation, now deliver services into a global competitive
marketplace.

Contract and procurement procedures

Orientation. In many organisational settings the
requirements engineering process is framed by contractual
and procurement issues. Statements of requirements assume a
different force when embedded in a legally binding contract.
The ability to question or pose alternatives to certain
requirements may be blocked by the procurement procedures
of which system development is only a part. Unless
attention is paid to the subtle interactions between contract,
procurement and requirements engineering relatively trivial
issues can severely distort the development of the system.

Assessment. Most introductory texts on software and system
development make mention of the concept of the
specification as contract. The contract metaphor has been
extensively exploited in the study of specification and of
tool support (Lehman, 1985). Generally however,
contractual and procurement matters are regarded as
organisationally specific or otherwise out of the scope of
requirements engineering.
Issues. Requirements engineering does not take place in a
vacuum. Let us take as an example a typical competitive
tender. Both the tender document and the bids that respond to

it contain products of requirements engineering. These may
be coloured by the commercial context and the risks of
giving advantage to competitors also engaged in the
process. Linked to this is the difficult matter of how to
demonstrate the capacity to respond to a set of customer
needs without actually doing the design. These are real and
significant concerns which should be addressed by research.

Personne l and s t a f f i n g t h e requirements
engineering process

Orientation. Requirements engineering requires particular
skills both on the part of the engineers principally involved
in the system development process and on the part of the
client representing the requirements within that process.
These skills are largely communication skills. On the part of
the systems engineer: the ability to listen and to assimilate
the vocabulary and problems of the client. On the part of the
client representative: to understand their constituents; to
have the authority to make commitments and to be held
responsible for those commitments. In the final analysis the
effectiveness of a requirements engineering process i s
constrained by the skills of the individuals who are party to
i t .

Assessment. There is a longstanding recognition in the
software and systems engineering literature of the
importance of communication skills in all phases of the
requirements engineering process (Scharer, 1985). Some
more detailed accounts arising from research on participative
methods are also available. Unfortunately most of the
literature is anecdotal and unsuitable as a basis for selection
and training.

Issues. There is substantial empirical evidence to support the
importance of skilled individuals to the development process
as a whole (Boehm & Papaccio, 1988) and corresponding to
this there is a body of work on the psychology, selection and
training of programmers (Curtis, 1987). It would be
extremely valuable if this work could be extended to the
participants in requirements engineering though doing so
may pose some methodological difficulties.

3 Groundwork

B o u n d i n g

Orientation. The first step in a requirements engineering
exercise is to establish the scope and delineate the bounds of
the requirements and design space. To set out the broad area of
concern and to distinguish it form those aspects of the world
which are not of concern or, viewed the other way, to define
the space in which as engineers we are free to act. If the
bounds are set too narrowly we may be constrained to miss an
opportunity to respond to an underlying need. If the bounds
are set to widely we may waste time or act outside our
competence or authority. Bounding errors are characteristic
of novice systems engineers.

Assessment. The issue of bounding is one of the most thorny
in requirements engineering. There have been very few
attempts to tackle it head on. A notable exception is Jackson
& Zave (1993). It appears relatively straightforward in any
given case to draw bounds but to give general guidance on
how to make bounding decisions is very difficult.

Issues. Further foundational and conceptual work is required
in this area. Interesting possibilities include the use of
design experience to inform bounding decisions.

Feasibility and risk

Orientation. It is quite clear that there are certain
requirements which it is infeasible to respond to. Typically
these are cases where the costs of establishing the
requirements exceeds the benefits gained in satisfying the
needs which underpin them; or, where satisfying the
requirements would be, prima facie, illegal, unethical or
contrary to the laws of science. It is common sense that
feasibility should be determined as early as possible.
Alongside this it is important to identify the primary risks to
which the system development process is exposed. This
involves a basic assessment of the consequences of errors or
failures in each part of the development process. Once this
has been done it is possible to make a sensible allocation of
effort across all aspects of development.

Assessment. Feasibility studies, a feature of almost all
industrial system development processes have been largely
ignored in the research literature. The exception being where
such studies are linked to the development of prototypes (see
exploration below). The area of risk as it relates to system
development is attracting attention and there have been some
significant contributions to this literature (Boehm et al,
1994).

Issues. Establishing feasibility is linked to the same
problems of "premature design" as bounding, discussed
above. Obviously our ability to establish feasibility and risk
can be improved by analysis of previous projects,
particularly post-mortem analysis of system failures.
Methods for carrying out such analyses and for recording and
deploying the resulting knowledge are of interest.

4 Acqui s i t i on

Stakeholder analysis

Orientation. The process of stakeholder analysis involves
identifying those individuals or roles who should have a
voice in the requirements engineering process. These may be
clients, users and other beneficiaries, they may also be
people involved in subsequent design, implementation,
maintenance of the system. Stakeholder analysis involves
understanding their responsibilities, capacities and the
organisational relations between them. This analysis serves
as a map for subsequent information gathering and a means of

interpreting the information provided and its status.

Assessment. There are two threads making up current work on
stakeholder analysis. The first thread arises out of work on
viewpoint-based methods in which viewpoints are tied to
client authorities responsible for information provided
within those viewpoints (Kotonya & Sommerville, 1992).
The second thread arises from work on enterprise modelling
in which identifying stakeholders is part of the process of
modelling the organisational environment in which the
system is to be placed (Blyth et al, 1993).

Issues. The work in this area needs to be brought together.
From the method thread - organised guidance to assist in
identifying stakeholders; from the enterprise modelling
thread - modelling schemes for capturing the products of
analysis. Means for reasoning about, and drawing
consequences from, stakeholder analysis can be built on this.

P a r t i c i p a t i o n

Orientation. Requirements engineering is a group process
involving cooperation. An important part of the
requirements engineering task is facilitating collaborative
work, consensus building and negotiation between
stakeholders.

Assessment. There has been a significant body of work on
participation and cooperation in requirements engineering.
The most significant of this is the work on participative,
joint or facilitated systems development (Macaulay, 1993)
This work is related to, but distinct from, work on the
application of "groupware" to requirements engineering (for
example Kaplan, 1992).

Issues. The shortcomings, and hence the research issues, in
this area are mostly common to the study of cooperative
work in general (Grudin, 1990). There is not much solid
empirical work and what there is, is too narrow to form a
basis for effective support, either by tools or methods. The
underlying models of cooperation are too impoverished to
have real application in a complex task such as requirements
engineering.

Information gathering

Orientation. Probably the most difficult task in requirements
engineering is information gathering - that is gathering
information on the needs and the "domain" or "environment"
in which these needs are situated. This information may be
set down in large documents, may be held by identifiable
experts, may be buried in the work practices of individual
users, and so on.

Assessment. For the most part the techniques available in
this area have been borrowed from related fields.
Requirements engineering has yet to evolve a distinct set of
techniques of its own. The use of structured interviews and

questionnaires is frequently cited but little analysed.
Similarly text and document analysis. Techniques such as
repertory grids have been drawn from area of knowledge
acquisition. An interesting emergent area is the use of
ethnographic and associated "observational" methods. A
good starting point is Goguen & Linde (1993).

Issues. It is already evident that any realistic domain requires
a judicious selection and combination of techniques. How to
make such a selection and combination is however far from
clear. There is clearly significant scope for further work in
this area.

5 M o d e l l i n g

Value modelling

Orientation. Decisions and tradeoffs required during design
must be built on a systematic appreciation of those attributes
(loosely, qualities) which are valued in a system which
responds to the originating needs. This means building a
model, independent of any subsequent implementation
decisions, that documents and relates these values.

Assessment. It is unsurprising, given that the literature on
software engineering does not recognise decision between
alternatives and tradeoffs at any level above choice of
algorithm, that it does not take a value-based view of
requirements. Some relevant analysis can however be found
in the ideas of multi-perspective development, for example
the use of utility analysis by Robinson (1990). The general
engineering design literature Finkelstein & Finkelstein
(1983) and discussions of quality management provide some
useful pointers.

Issues. The application of multi-criteria decision making
techniques in software development as a whole is an
interesting open area. Techniques such as QFD (Brown, 1991)
which have been extensively applied to manufacturing
development may be transferable.

Modelling goals and required services

Orientation. The core of requirements engineering, and the
primary means by which the needs are rendered in a form that
can be used to realise them, is the identification of the goals
that a projected system is required to satisfy and the services
that it should supply. The goals may, of course have
interdependencies or conflicts which must be modelled and
where appropriate resolved. In certain circumstances, goals
may be interpreted as service provision; however, in
identifying these it is necessary to identify the "external"
actions the system should perform without constraining
precisely how they should be performed.

Assessment. A number of approaches have emerged which
explicitly represent goals and build a system model round
these goals. Foremost among them are: Feather (1987);

Dardenne et al (1993); Fickas & Helm (1992). Though these
approaches differ in specifics the broad outline is the same. I
regard them as among the most promising work in the broad
area of requirements engineering.

Issues. The approaches all provide means of modelling goals
and reasoning about the relations between those goals. They
are weak on techniques for actually identifying those goals.
If the approaches developed in this area are to be taken up in
practice they need to be properly tested in large case studies.
Some merging of related methods would be beneficial. The
approaches may also have to be shorn of representation
schemes which, while important to their development hinder
further exploitation.

Domain modelling

Orientation. The projected system will reside in an
environment whose structure and behaviour must be
understood. To this end a model, or more accurately models,
of the environment must be constructed. These models must
be in a form that the interactions of the system with the
environment can be defined.

Assessment. The term domain modelling has been used in a
variety of different senses a common usage is that of
modelling an "application domain" within which a class of
related systems will be built. This is a reuse issue, discussed
below. I am employing a less conventional use of the term,
that of modelling the "domain" objects with which a
projected system system will interact. Clearly there is an
overlap between these usages. The main contributions to this
area are the object-oriented analysis methods for example
Rumbaugh et al. (1991).

Issues. A practical problem in this area is deciding among
the various methods and associated modelling schemes that
have been proposed. As yet no clear means of assessing
these proposals has emerged. A number of interesting
approaches to the identification of domain objects have been
suggested, mostly based on the use of events and scenarios
(Jacobsen et al, 1992). This seems an important and
interesting area for further research.

Task analysis

Orientation. Most systems interact with humans. It i s
essential therefore to identify these people and understand
the tasks that they perform using the system. This model can
be used to predict the problems they might encounter and to
suggest ways in which the interface to the system can be
organised to have a better fit with their tasks and the way in
which they understand the system and its properties.

Assessment. In some sense much of the work carried on under
the heading of task analysis mirrors other modelling carried
out in requirements engineering. The difference is in the
modelling focus and in the type of analysis to which these

models are subject (to determine user based notions of
consistency, complexity, and so on). A reasonable review i s
given in Johnson (1992).

Issues. Task analysis has largely been of concern to the user
interface design community and the techniques which have
arisen from it have, with some notable exceptions (Lim et al,
1990), not been treated as part of a larger systems
engineering process. Work on method integration is required
and may yield substantial economies as information
collected in task models is obtainable elsewhere in the
requirements engineering process. Further work on
identifying relevant aspects of human task performance that
can be derived from task models is also required.

Reuse

Orientation. It might be thought from the discussion above
that requirements engineering is always done de novo. This
is, of course far from the case. There is scope for reusing both
the products and process of requirements engineering from
previous exercises and for organising the process of
requirements engineering so as to enhance the opportunities
for subsequent reuse.

Assessment. Obviously the use of modelling schemes,
employing inheritance or the like, which are capable of
supporting reuse have attracted attention within requirements
engineering. The most significant application of these
schemes has been in the specification of "families of
systems", where rather than setting down the requirements
for a single system, the system is seen as an member of a
family or class of related systems which share goals,
services, domain models, and so on (Garlan, 1989). There i s
some evidence that for narrow domains with small variants,
this approach may yield dividends, at the higher level
however (Reubenstein & Waters, 1989) it is unproven. An
interesting development in this area is the use of case-based
techniques for example Maiden & Sutcliffe (1992).

Issues. I must confess to a scepticism about reuse in
requirements engineering. This stems from a basic
discomfort about the overall idea of reuse in the context of
requirements (as distinct from design) and broader research
strategy worries about treating with reuse before we have
established practice for use. I feel effort is better spent in the
weak link of reuse - giving developers the ability to rapidly
assimilate and understand the documents and models produced
by others. Given that my scepticism is unlikely to turn the
tide of work on reuse the research issues are the construction
of significant case bases and generic domain models for
realistic domains.

6 A n a l y s i s

Va l i d a t i o n

Orientation. Assuming that the acquisition and modelling
processes are imperfect some validation of the products of
the requirements engineering process is necessary. That is ,
they must be analysed in order to establishing the extent to
which they accurately embody the requirements. Where there
is a mismatch between the conception of the stakeholders
and the requirements as documented this must be ironed out.

Assessment. The bulk of the work on validation has
concentrated on exploration and inspection which are
discussed separately below. Much of the remainder has
concentrated on providing modelling schemes which are, in
some sense, easy to validate (graphical languages and so on).
Other work relevant to validation includes the use of
scenarios (Benner et al, 1992) and specification animation
(Finkelstein & Kramer, 1991). Work on tools which allow
multiple views and browsing of complex document and model
structures are also significant (see information management
below). Alternative directions are suggested by work on
specification critiquing (Fickas & Nagarajan, 1988) and on
annotation schemes for marking errors in specifications
(Finkelstein, 1992).

Issues. Ideally validation should be as tightly tied to and
interleaved with requirements production as possible.
However organisational factors can intervene to prevent
this. In such cases the validator may be faced with large
amounts of information and no guidance on how to proceed
or what questions to ask. Research on methods for providing
such guidance and on developing interesting or relevant
questions to ask of the products of requirements engineering
would be valuable.

E x p l o r a t i o n

Orientation. It is well known that when confronted with a
system people are able to identify its merits and demerits
while unable to set down their requirements on a blank piece
of paper. One way round this problem is to build a prototype
or devise a system simulation as a vehicle for exploring the
requirements.

Assessment. There is a considerable body of work on
prototyping and exploratory development. An example of
such work immediately relevant to requirements engineering
is Luqi (1992). Perhaps the most interesting area of work i s
at the meeting point of formal specification and exploration
both in executable specification and automated reasoning.

Issues. The difficulties of exploration are well documented:
what should be included in the prototype or simulation; how
much of the prototype or simulation should be carried
through to the final realisation; and, how to guide
exploration and organise feedback. Despite the amount of

work in the area these difficulties remain as unresolved
research issues.

Ve r i f i c a t i o n

Orientation. Verification seeks to establish that the
subsequent products of the development process accurately
reflect the requirements as documented (note the distinction
between this and validation). It is no use taking great care
with the requirements only to be unable to check that they are
carried forward through development, for example to the
formulation of a testing programme, in a consistent fashion.

Assessment. Software development orthodoxy sets down that
at each stage in software development you should be able to
prove that the specification (however construed) you have
developed is secure with respect to the preceding
specification. There is a great deal of research aiming to
establish the means to achieve this a good selection can be
found in IWSSD (1993).

Issues. Clearly, automated support for formal reasoning and
proof requires significant further research. However, for
those who are not wholehearted subscribers to the formal or
transformational development agendas the issues are less
clear. Verification becomes a matter of consistency
management (Finkelstein et al , 1994) in which
inconsistency is tolerated at certain points in development
while at others consistency is checked and enforced. Taking
this more permissive view of verification poses research
challenges which still have to be resolved.

I n s p e c t i o n

Orientation. To complement more formal analysis,
systematic inspection is a proven route to eliminating
errors. The purpose of inspection is to remove errors and
misconceptions as near source as possible hence reducing
costs of rework. The basic approach involves defining exit
criteria for each of the major elements of the requirements
engineering process and establishing team based review with
respect to these criteria. Analysis of the results of such
inspections can be used for requirements engineering process
improvement.

Assessment. Inspection is proven to work, it is simple and
widely used throughout industry. It should follow from this
that there is widespread research interest. Strangely this i s
not the case. The cornerstone of most research and practice in
the area of inspection is still Fagan (1976). There have been
some refinements (Porter & Votta, 1994) but the basic
approach remains essentially unchanged. Inspection as a
software engineering activity lends itself nicely to data
gathering and empirical research.

Issues. The use of computer support for inspection and
automated data gathering are deserving of attention. The
development of groupware support for inspection has been

considered (Johnson, 1994) there is however considerable
scope for further work in this area.

7 Measurement

M e t r i c s

Orientation. A requirements engineering process is not much
different from any other industrial process. It is important
that the process be predictable and that schedule
commitments are met with reasonable consistency. This
means measurement of the products and process of
requirements engineering and statistical control applied to
process improvement.

Assessment. Without a settled or established requirements
engineering process and an agreed set of products derived
from that process it is difficult to define appropriate metrics.
It should not be surprising therefore that work on metrics has
not devoted much attention to requirements engineering. A
good review appears in Fenton (1991). Some of the simpler
metrics discussed in the literature, for example error detection
rates, are broadly applicable across software development
and can often provide useful indicators in requirements
engineering

Issues. Progress on requirements metrics must lag inevitably
research in requirements engineering. While I acknowledge
the importance of measurement, a broad range of general
purpose metrics in this area may not be achievable in the
medium-term future.

E s t i m a t i o n

Orientation. It is the responsibility of requirements
engineering to supply preliminary estimates of development
cost, effort and schedule. These estimates may be derived
from the measurements discussed above and records of
development experience. However, this is an area in which
current requirements engineering practice is inadequate.

Assessment. Much of what has been said above for metrics
applies to estimation. which adds to the challenges of
measurement those of predictive models (Boehm & Papaccio,
1988) and data collection.

Issues. Following on from the comments on metrics I would
not place research on estimation high on a requirements
engineering research agenda. However we need to frame
requirements engineering processes and products with a view
to estimation. This means among other things building
support for comprehensive data collection into methods and
tools.

8 Communication & Documentation

Information management

Orientation. The requirements engineering process produces
large amounts of richly interrelated technical information
and documentation. Some of this is textual, some graphic
(drawings and diagrams). Storage and retrieval and production
of high quality, tailored documentation is of considerable
practical importance

Assessment. There have been substantial improvements in
software support for this task based largely on improvements
on improved database technology for example James (1994).
The broad thrust of research in this area is linked to progress
on software engineering repositories and the associated
issues of distribution and long transactions.

Issues. In the future we can expect to add video and sound
records of technical meetings and document annotations.
There has been some preliminary work on this (Christel et al,
1993). The management of this information and its use in a
principled manner is of research interest. Information
presentation and extraction from large volumes of
requirements engineering also presents interesting research
issues.

Recording rationale and argumentation

Orientation. In the discussion above we have placed great
emphasis on the creation and tracking of models,
specifications and associated information - the products of
requirements engineering. However in most system
development processes more than 70% of costs are in rework
and half the effort in these activities are about understanding
the system in order to make effective corrections and
enhancements. In order to achieve this understanding you
need to know what decisions were considered, assumptions
made and alternative solutions rejected. This information
may be remembered but with time and staff turnover it soon
gets lost. It is essential to keep a "process-oriented" record
of the rationale and argumentation underpinning the products
of requirements engineering.

Assessment. This area has attracted much attention with
variants of, and improvements on, the work of Conklin
(1989). For a useful discussion see Lee & Lai (1991) and for
tool support Kaplan et al. (1992). Recent work of Potts et al.
(1994) suggests more focussed application of argumentation
support in requirements engineering.
Issues. The use of argumentation support in systems
development as a whole has proceeded rapidly without any
systematic assessment. Different argumentation schemes
have been advanced without a clear understanding of their
advantages and drawbacks with respect to existing
proposals. This needs to be rectified before the area can
advance further.

T r a c e a b i l i t y

Orientation. Traceability is the ability to follow the "life" of
requirements in both a forward and backward direction
through the development process. Forward traceability i s
needed to demonstrate how a requirement is manifested in a
system and the intermediate products of system development.
Backward traceability is required in order to maintain the
integrity of the requirements in the face of subsequent design
changes or in the environment in which the system operates.

Assessment. This area has recently seen an upsurge in
research interest. The bulk of the work concentrates on the
ability to link fragments of text, to visualise navigate these
links. A detailed assessment is included in Gotel &
Finkelstein, 1994.

Issues. In this assessment the issue of "pre-requirements
traceability" is highlighted. In particular the problems of
linking artifacts produced during requirements engineering to
the groups and individuals involved in their production.
Some interesting ideas on the use of truth-maintenance and
constraint networks in this context are also emerging and
appear worthy of further research attention.

Standards and Conformance

Orientation. Most organisations with mature systems
engineering practices require conformance to external
standards and codes of practice which set down how
requirements should be documented and how the process
should be organised.

Assessment. For the most part standards and guidelines in the
requirements engineering consist of rather crude checklists
and prescribed document layouts (for a good collection of
examples see Dorfman & Thayer, 1990).

Issues. Standards constitute minimal good practice thus there
will always be a gap between what is suggested by standard
bodies and the state-of-the-art. In an area of rapid change
such as requirements engineering this is doubly true.
However I am inclined to the view that standards in the
requirements engineering area have slipped further from what
is known in research and advanced practice than i s
acceptable. This is a challenge to those involved in the
standards process, particularly large system procurers, to
reexamine this area.

9 C o n c l u s i o n

I have highlighted a spread of issues that belong on a
requirements engineering research agenda and have where
possible tried to indicate the priority I believe should be
attached to them. However, by presenting these issues area
by area I have missed what I regard as the most important
problem in requirements engineering research and practice.
We lack an adequate understanding of the requirements

engineering process as a whole. That is of how the many
individual contributions can be assembled into a coherent
tool-supported method (using that term loosely). Alongside
advance on the issues highlighted above there is an
important need for consolidation at both the conceptual and
pragmatic levels.

Acknowledgements

I would like to acknowledge my colleagues at Imperial
College and at City University for their guidance. I am
grateful to the BritishCouncil for travel support.

References

Benner, K.; Feather, M.; Johnson, W.L. & Zorman, L.
(1992); Utilizing Scenarios in the Software Development
Process; Proc. IFIP WG 8.1 Working Conference on
Information Systems Development Process; North-Holland.

Blyth, A., Chudge, J., Dobson, J. & Strens, M. (1993);
ORDIT: a new methodology to assist in the process of
eliciting and modelling organisational requirements; ACM
Conference on Organizational Computing Systems 1993; pp
216-223, ACM Press.

Boehm, B.; Bose, P.; Horowitz, E. & Lee, M.J. (1994);
Software Requirements as Negotiated Win Conditions; Proc.
1st International Conference on Requirements Engineering;
pp 74-83, IEEE CS Press.

Boehm, B.W & Papaccio, P.N. (1988); Understanding and
Controlling Software Costs; IEEE Transactions on Software
Engineering, SE4, 10, pp 1462-77.

Brown, P. (1991); QFD: echoing the voice of the customer;
AT&T Technical Journal; March-April; pp18-32.

Christel, M.; Wood, D.; Stevens, S. (1993); AMORE: The
Advanced Multimedia Organizer for Requirements Elicitation;
CMU Technical Report; CMU/EI-93-TR-12.

Conklin, J. (1989); Design Rationale and Maintainability;
Proc 22nd Hawaii International Conference on System
Sciences; II, pp533-539; IEEE CS Press.

Curtis, B. (1987); Five Paradigms in the Psychology of
Programming; MCC Technical Report; STP-132-87.

Dardenne, A.; Fickas, S. & van Lamsweerde, A. (1993); Goal-
directed Requirements Acqusition; Science of Computer
Proigramming; 20, pp 3-50.

Davis, A.M. (1990); Software Requirements: analysis and
specification; Prentice Hall Inc.

Dorfman, M. & Thayer, R.H. (1990); Standards, Guidelines
and Examples on System and Software Requirements
Engineering; IEEE CS Press Tutorial.

Fagan, M.E. (1976); Design and Code Inspections to Reduce
Errors in Program Development; IBM Systems Journal; 15,
3, pp 182-211.

Feather, M.S. (1987); Language Support for the
Specification and Development of Composite Systems, ACM

Transactions on Programming Languages and Systems; 9, 2 ,
pp 198-234.

Fenton, N.E. (1991); Software Metrics: a rigorous approach;
Chapman & Hall.

Fickas, S. & Helm, R. (1992); Knowledge Representation
and Reasoning inthe Design of Composite Systems; IEEE
Transactions on Software Engineering; pp 470- 482.

Fickas, S. & Nagarajan, P. (1988); Being Suspicious:
critiquing problem specifications; Proc AAAI 88; 1, pp19-
24; Morgan Kaufmann Pub.

Finkelstein, A. & Finkelstein, L.(1983); Review of Design
Methodology; Proc. IEE,130 ptA,4, pp213-222.

Finkelstein, A. & Kramer, J. (1991); TARA: Tool Assisted
Requirements Analysis; Conceptual Modelling, Databases &
CASE: an integrated view of information systems
development; [Eds] Loucopoulos, P. & Zicari, R.; Addison-
Wesley.

Finkelstein, A. (1992); Reviewing and Correcting
Specifications; Instructional Science, 21, pp183-198.

Finkelstein, A.; Gabbay, D.; Hunter, A.; Kramer, J.; &
Nuseibeh, B. (1994); Inconsistency Handling in
Multiperspective Specifications; IEEE Transactions on
Software Engineering; 20, 8, pp 569-578.

Garlan, D. (1989); The Role of Formalized Domain-Specific
Software Frameworks; Proc. 5th International Software
Process Workshop; IEEE CS Press

Goguen, J. & Linde, C. (1993); Techniques for Requirements
Elicitation; Proc. IEEE International Symposium on
Requirements Engineering; pp 152-164, IEEE CS Press.

Gotel, O. & Finkelstein, A. (1994); An Analysis of the
Requirements Traceability Problem; Proc. International
Conference on Requirements Engineering; pp 94-101; IEEE
CS Press.

Greenspan, S.; Mylopoulos, J. & Borgida, A. (1994); On
Formal Requirements Modelling Languages: RML revisited;
Proc. 16th International Conference on Software
Engineering; pp 135-147, IEEE CS Press

Grudin, J. (1990); Groupware and Cooperative Work:
problems and prospects; [In] Laurel, B. [Ed.], The Art of
Human-Computer Interface Design; Addison-Wesley.

Humphrey, W.S. (1988); Characterizing the Software
Process: a maturity framework; IEEE Software; 5, 2, pp 73-
79.

Humphrey. W.S.; Kitson, D.H. & Kasse, T.C. (1989); The
State of Software Engineering Practice: a preliminary report;
Proc. 11th International Conference on Software
Engineering; pp 277-288, IEEE CS Press.

IWSSD (1993); Proc. of the 7th International Workshop on
Software Specification and Design; IEEE CS Press.

Jackson, M. & Zave, P. (1993); Domain Descriptions; Proc.
I E E E I n t e r n a t i o n a l S y m p o s i u m o n R e q u i r e m e n t s
Engineering; pp 56-64, IEEE CS Press.

Jacobsen, I; Christerson, M.; Jonsson, P. & Overgaard, G.
(1992); Object-Oriented Software Engineering: a use-case
driven approach; Addison-Wesley.

James, L. (1994); Practical Experience in Automatic
Requirements Elicitation: the real issues; Proc. of Workshop
on Requirements Elicitation for Software-based Systems
(RESS); University of Keele, UK.

Johnson, P. (1992); Human Computer Interaction:
psychology, task analysis and software engineering;
McGraw-Hill.

Johnson, P. (1994); An Instrumented Approach to Improving
Software Quality through Formal Technical Review; Proc.
16th International Conference on Software Engineering;
pp113-122, IEEE CS Press.

Jones, M. & Brooks, L. (1994); Addressing Organisational
Context in Requirements Analysis Using Cognitive
Mapping;; Proc. of Workshop on Requirements Elicitation
for Software-based Systems (RESS); University of Keele, UK.

Kaplan, S.M. et al (1992); Supporting Collaborative
Software Development with Conversation Builder; Proc.
ACM SDE; pp 11-20.

Kotonya, G. & Sommerville, I (1992); Viewpoints for
Requirements Definition; Software Engineering Journal; 7 ,
6, pp 375-387.

Lee, J. & Lai, K-Y. (1991); What's in Design Rationale?;
Human-Computer Interaction; 6, 3-4, pp 251-280.

Lehman, M. (1985); Approach to a Disciplined Development
Process - The ISTAR Integrated Project Support
Environment; Imperial College Dept. of Computing Tech
Report 85/19.

Lim, K.Y; Long, J.B. & Silcock, N. (1990); Requirements,
Research and Strategy for Integrating Human Factors with
Structured Analysis and Design Methods: The Case of the
Jackson System Development Method; [In] Contemporary
Ergonomics 1990; Proc. Ergonomics Society Conference;
Taylor and Francis.

Lubars, M. & Potts, C. & Richter, C. (1993); Developing
Initial OOA Models; Proc. 15th International Conference on
Software Engineering; IEEE CS Press.

Luqi (1992); Computer-aided Prototyping for a Command-
and-Control System Using CAPS; IEEE Software; 9, 1, pp
56-67.

Macaulay, L. (1993); Requirements Capture as a Cooperative
Activity; Proc. IEEE International Symposium on
Requirements Engineering; pp 174-181, IEEE CS Press.

Maiden, N. & Sutcliffe, A. (1993); Exploiting Reuseable
Specifications Through Analogy; Communications of the
ACM; 35, 4, pp 55-64.

Porter, A.A. & Votta, L.G. (1994); An Experiment to Assess
Different Defect Detection Methods for Software
Requirements Inspection; Proc. 16th International
Conference on Software Engineering; pp 103-112, IEEE CS
Press.

Potts, C.; Takahashi, K.; Anton, A. (1994); Inquiry-Based
Scenario Analysis of System Requirements; Georgia Tech
Technical Report; GIT-CC-94-14.

Reubenstein, H. & Waters, R. (1989); The Requirements
Apprentice: an initial scenario; Proc 5th International
Workshop on Software Specification & Design; pp 211-218,
IEEE CS Press.

Robinson, W. (1990); Negotiation Behaviour During
Requirements Specification; Proc. 12th International
Conference on Software Engineering; pp 268-276, IEEE CS
Press.

Rumbaugh, J.; Blaha, W.; Premerlani, F. & Lorenson, W.
(1991); Object-Oriented Modelling and Design; Prentice-Hall
Inc.

Scharer, L. (1985); Pinpointing Requirements; Datamation;
April, 1981; pp 139-151.

Thayer, R.H. & Dorfman, M. (1990); System and Software
Requirements Engineering; IEEE CS Press Tutorial; IEEE CS
Press.

Yadav, S.B. (1983); Determining an Organisations
Information Requirements: a state-of-the-art survey;
Database; 3-20.

Zave, P. (1994); Call for Papers and Associated
Classification Scheme; IEEE International Symposium on
Requirements Engineering 1995.

