L=
View metadata, citation and similar papers at core.ac.uk brought to you by .i. CORE

provided by NASA Technical Reports Server

N93-3215¢

The Knowledge-Based Software Assistant:
? Beyond CASE

Joseph A Carozzoni
Rome Laboratory: Knowledge Engineering Branch
Griffiss AFB, NY 13441-5700
carozzoni@aivax.rl.af.mil

Abstract

This paper will outline the similarities and differences between two paradigms of software
development. Both support the whole software life cycle and provide automation for most of the
software development process, but have different approaches. The CASE approach is based on a
set of tools linked by a central data repository. This tool-based approach is a data driven and views
software development as a series of sequential steps, each resulting in a product. The KBSA
approach, a radical departure from existing software development practices, is knowledge driven
and centers around a formalized software development process. KBSA views software
development as an incremental, iterative, and evolutionary process with development occurring at
the specification level.

1. Introduction

Attempts to solve the software crisis have varied from philosophies of management and disciplines
of programming to new languages and tools. Many of these innovations have found their way into
integrated environments and defined as Computer Aided Software Engineering (CASE). The
outcome of these approaches were minor gains in productivity, reliability and maintainability.
Although additional improvements may be achieved by continuing in this direction, the order of
magnitude improvements needed to address the software crisis are not likely to be realized.

A major problem with present design and implementation activities is an informal development
paradigm based on a series of sequential phases. The design rationale involved in the creation of
software is lost once the initial implementation is completed. Additionally, modifications to
completed systems are performed at the source code level where design information has been
obscured by implementation and efficiency considerations.

Recognizing these problems, Rome Laboratory has undertook a program using technology from
automatic programming and artificial intelligence to develop a knowledge based system that
addresses the entire software life cycle. The Knowledge Based Software Assistant (KBSA), a
retreat from pure automatic programming, is based on the belief that by retaining the human in the
process, many of the unsolved problems encountered in automatic programming may be avoided.
It proposes a new software development paradigm in which software activities are machine
mediated and supported throughout the life cycle.

The underlying concept of KBSA is that the software development process will be formalized and
automated. This will allow a knowledge base to evolve that will capture the history of the software
development process and allow automated reasoning about the software under development. The
impact on the software development process is that software will be algorithmically derived from
requirements and specifications through a series of user guided formal transformations.
Maintenance will occur at the requirements and specification level and the implementation process
will be “replayed” as needed.

445


https://core.ac.uk/display/42805545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. CASE: The Tool-Based Approach

Early efforts to automate software development focused on providing an environment of individual
tools designed to handle particular activities. This early approach inspired by DoD 2167
requirements was data and product based. It ignored the software development process. A typical
model of an early software development environment is the Unix operating system and a number
of associated tools such as text editors, language compilers, the make facility, lint syntax checker,
debugger, SCCR version control software, etc. Early tool-based approaches produced modest
improvements in software productivity, but tended to ignore the growing crisis in software
maintenance. The major drawbacks to this kind of environment were the lack of integration
between the tools, and the requirement that the tools be used sequentially. Communication
between the various tools relied on the host file system.

Efforts to improve the tool-based approach focused on creating a tighter integration of the
individual tools. Reliance on the host file system gave way to more sophisticated “common
repositories” such as relational databases. Representative of the improved tool-based approach is
Integrated Case (ICASE), Portable Common Tool Environment (PCTE), and Software
Engineering Environments (SEE). The primary goal of this evolving paradigm is standardizing the
data exchange to allow inter-operability between differing tools and environments. Central to the
evolution of the current CASE approach is increased sophistication of the central data repository.
Still, mainstream CASE is data and product oriented.

3. KBSA: The Knowledge-Based Approach

While other technologies have readily adapted to production engineering techniques, software has
resisted because the creative processes are informal and unspecified. Any solution to the software
crisis must address the human intensive facets of software development such as conceptualization
and reasoning. Traditional software technology has neglected to address issues dealing with the
process of software development. Rather, it has been immersed in addressing the products (ie.
written documents, program form, programming languages, management structure, metrics, etc.).
Without a paradigm shift from product orientation to process orientation, software development
and maintenance will never keep pace with increasing demands.

With this in mind, KBSA has broken away from the traditional tool-based approach in favor of a
knowledge based approach to software development. Early attempts at pure automatic
programming indicated that the knowledge of programming was still too immature to replace all of
the human involvement. With pure automatic programming out of reach, KBSA sought near term
relief by keeping the human in the decision making process. Figure 1 is the KBSA process model.

Under the KBSA paradigm, software activities are machine mediated and supported throughout the
life cycle. By formalizing and automating the software development process, a knowledge base
can evolve that will capture the history of the life cycle processes and support automated reasoning
about the software under development. The payoff of this process formalization is that software
can be derived from requirements and specifications through a series of human assisted formal
transformations. In addition, requirements validation is automatic since the formal transformations
have the property of being correctness preserving.

With this new paradigm, maintenance becomes analogous to development and will be performed at
the requirements and specification level. Validation and verification are supported as it will be
possible to "replay" the process of implementation as chronicled in the knowledge base. KBSA
will provide a corporate memory of how objects are related, the reasoning that took place during
design, the rationale behind decisions, the relationships among requirements, specifications, &

446




code, and an explanation of the development process. This assistance and design capture will be
accomplished through a collection of life cycle activity facets, each tailored to its particular role.
These facets will be highly integrated within a common environment.

Requirements Specification ; Specification
Acquisition Development Im%?gmentauon
/ Modification
Reusable
Components Requests \
&Q’erational
ironment
Knowledge cs\?gglulsz:gle I%O"%mBSA
Library Components Y /s s
Formal Validation Reengineeri
Automated Testin; cengeenne

Figure 1: The KBSA Process Model

As envisioned, the KBSA environment will allow design to take place at a higher level of
abstraction than is current practice. Knowledge based assistance mediates all activities and
provides process coordination and guidance to users, assisting them in translating informal
application domain representations into formal executable specifications.. The majority of software:
development activities are moved to the specification level where early validation is provided
through prototyping, symbolic evaluation, and simulation. Implementations are derived from
formal specifications through a series of automated, meaning-preserving transformations, verifying
that the implementation correctly represents the specification.

Post deployment support of the developed application is also concentrated at the
requirements/specification level with subsequent implementations being efficiently generated
through a largely automated "replay” process. This capability provides the additional benefit of
design reuse as families of systems are spawned from the original application. Management
policies are also formally stated, enabling machmc assisted cnforcement and structuring of the
software life cycle processes.

The techniques for achieving these goals are:

» Formal representation and automatic recording of all the processes and objects
associated with the software life cycle.

« Extensible knowledge based representation and inferencing to represent and use
knowledge in the software development and application domains.

* A wide spectrum specification language in which high level constructs are freely
mixed with implementation level constructs.

» Correctness preserving transformations that enable iterative refinement of high
level constructs (specifications) into implementation level constructs (HOL or
machine code) as KBSA carries out the design decisions of the developer.

447



4. Similarities between KBSA and CASE

Currently, software development is a human-intensive task. KBSA and CASE share the high level
goal of facilitating software development by automating much of the work that is presently
performed by humans. Both provide automated support for software development by
encompassing the entire software development life cycle.

A key area in software development enjoying an increase in appreciation is reuse. If unaltered
reuse is not possible, then the next step is assistance in taking something you already have in-hand
and modifying it to fit your needs. Reuse has the advantage of being fast and the products mostly
debugged. Both KBSA and CASE place significant emphasis on reuse.

Both address the life cycle from various view points which are connected by some form of
centralized repository of information. Other areas of commonality of KBSA with some of the
more robust and comprehensive CASE environments are automated assistance for: -

» Documentation generation (e.g. DoD 2176A).

* Sharing and locking mechanisms for concurrent development.

» Expanded view beyond just software to address the development of systems.
* Graphical interfaces to ease development.

» Consistency checking (pre-defined and user-definable).

» Code and data generation.

*» Configuration management.

* Prototyping tools.

Project management facilities (planning, monitoring, and resources)
* Traceability.

» Testing.

KBSA and CASE have similar goals and attempt to enhance software development. Where they
diverge is in their respective orientations (product versus process) and the level to which support is
provided.

5. Differences between KBSA and CASE

The major differences between KBSA and CASE originate in the choice between product and
process oriented development. Some CASE vendors mistakenly regard their approach as being
process oriented, when in fact it is product oriented. Most CASE tools implement some derivative
of the Waterfall model for software development This model was developed in the late 1960’s in
response to the growing software needs of DoD, and can be described by three basic
characteristics:

« Software development is a sequence of several discrete stages.
+ The product of each stage is documentation which in turn feeds the following stage.
« After each stage is completed it must be validated and verified against the prior stage.

There are many inherent problems in this model which impede software development. These
problems occur because the Waterfall model is product based and fails to address the process of
software development itself. The basic assumption that software development is a relatively
uniform and orderly sequence of development steps is flawed. The extreme sensitivity to task
sequence in this model does not provide direct support for modern methods of software
development such as rapid prototyping and evolutionary development. Incremental, iterative, and
evolutionary design is central to successful software development.

448




KBSA has put aside the product orientation and has placed focused instead on automating the
software development process. A major feature of the KBSA approach is its formalized software

development process. With the formalized life cycle, the machine captures all software decisions

and provides knowledge-based reasoning assistance. This provides a “corporate memory” of the
development history and knowledgeable assistance to humans throughout the life cycle. With this
change in focus, KBSA has introduced a paradigm shift from addressing low-level programming
problems to addressing high-level knowledge acquisition problems.

CASE has evolved from individual tools targeted for individual activities to an integrated set of
tools targeted at those same activities. The accomplishment of ICASE has been to smooth out inter-
tool communication. KBSA is a much deeper integration of the software development activities.
While integration of CASE has occurred with data, KBSA has also integrated knowledge (about
the software development process). The key to the flexibility and robustness offered by KBSA is
this highly integrated environment.

KBSA offers a form of prototyping which is more robust than that offered by CASE. Present
CASE prototyping is user-interface oriented opposed to the incremental, iterative, and executable
design prototyping provided by KBSA. CASE typically has little semantic information which
limits the sophistication of the analytic tools and has little automatic support for code generation
and reuse. KBSA has rich semantic knowledge about the programming domain and the decisions
made during system development which permits sophisticated analysis and has automated support
for implementation and reuse.

The diagrammatic tools common in CASE environments use informal specifications and only
represent the syntactics of a problem. In addition, the informal specifications used by the
individual tools do not allow various views to be related and managed in a conceptually clean and
consistent manner. The KBSA knowledge-base integrations varying views (different
methodologies) into a single, unified formal representation. This single, unified formal
representation captures both the syntactics and semantics of a specification. While CASE
developers are typically restricted to a single methodology, KBSA developers can work in a mixed
methodology environment. This also provides excellent support for concurrent developers.

Another difference is the manner in which reuse is addressed. CASE addresses reuse at the code
level. During the coding phase, a programmer attempts to find a code module which most closely
matches the design at hand. Finding a suitable code module for reuse can be time consuming.
Even if one is found, modifications may have to be performed to fit the intended design. KBSA
addresses at a higher level of abstraction and focuses on design reuse. By concentrating on
design, reuse occurs during the requirements and specification phases. Design reuse is more direct
and efficient than code module reuse. Code itself is not even part of the KBSA paradigm.

Post deployment maintenance now accounts for 80% of all software costs. The Waterfall model
used by most CASE environments performs maintenance at the code level and as a separate
process. In KBSA, maintenance is part of the evolutionary development process. Thus
maintenance is performed at the requirements and specification level. In addition, this approach
lends itself well to support reverse engineering. Legacy software systems can be analyzed and
“feed” back into the KBSA process model as specification development. The specifications of
legacy software can be recovered integrated with new software developments.

6. What Limits the Capability of a S/W Development Environment?

The KBSA approach to software development and maintenance greatly surpasses present state-of-
the-art CASE tools. Some of the technological areas where KBSA excels are:

449

C-7



* The level of integration of the environment.

* The handling of informal requirements.

+ The transformation of requirements to specifications.

« The types of specifications which may be used.

« If specifications are automatically maintained consistent with each other.

« The level to which specification consistency is addressed (syntactic versus semantic).
+ The manner in which specifications are validated.

 The potential for optimization of the final system.

¢ Project management functions provided.

« The level to which project management functions are integrated and enforced.
o If the paradigm is product versus process driven.

Level of Integration: The major limiting factor in a software development environment is the level
to which the system is integrated. The level of integration can be broken down into three primary
levels. Early CASE tools represent the lowest level of integration where only data is shared via the
host file system. The tools may or may not be stand alone products. The Unix operating system
and its standard set of “bin tools” is a good example. The next level of integration encompasses a
set of tools (i.e. ICASE) which communicate through a “common repository”’, normally a standard
relational database. Common to both levels of integration is the reliance on “data” as the inter-tool
communication medium. KBSA represents the highest level of integration where not only data,
but knowledge (of the software process) is dealt with. Integrating both knowledge and data at the
repository level requires a much more sophisticated knowledge representation schema than CASE
repositories currently allow. KBSA provides robust inferencing and knowledge representation
services.

Requirements Acquisition and Implementation: Eliciting requirements from users is difficult and
imprecise. Discrepancies easily arise because the user and the developer communicate from
different perspectives. Informal requirements are normally formed out of randomly ordered
English text. This informal description of system behavior must be coordinated into more
organized and structured requirements. The requirements must then be transformed into more
precise and less ambiguous specifications. KBSA provides knowledge-based assistance for
requirements acquisition (reference the following paper on ARIES in the proceedings).

Transformation of Requirements to Specifications: CASE informally transforms requirements to
specifications using a human mediated conversion. This conversion is imprecise and looses
requirements traceability links. KBSA uses formal transformations which have a sound
mathematical basis. The transformation is machine mediated, correctness preserving, and does not
loose requirements traceability links.

Specifications Types: Specifications may be informal, semi-formal, or formal. Informal and semi-
formal specifications do not have a complete mathematical basis and cannot be handled with
automated theorem proving techniques. Additionally, informal specifications only allow
syntactical analysis and cannot offer semantical analysis. Examples of informal and semi-formal
specifications are textual statements of work, pseudo-code, etc. Examples of formal specifications
are the formal specification languages Z, VDM, CSP, and temporal logic. KBSA is based on
formal specifications, and uses knowledge-based techniques to hide the complexity from the user.
The use of formal specifications allow KBSA to perform both syntactical and semantical analysis

Specifications Consistency: The degree to which specifications can be maintained consistent with
one another is limited by the underlying representation schema. Informal specifications require
human mediated consistency analysis which is time consuming and error prone. The use of formal
specifications in KBSA allow machine mediated consistency analysis which is automatic and

450




precise. Maintaining specification consistency is complicated if the environment allows the use of
multiple views (mixing of methodologies). The use of formal specifications allow KBSA to
integrate multiple views into a single formal representation.

Specification Validation. Specifications that were informally derived must be manually validated
against requirements. Because the specifications in KBSA are derived by a formal transformation
of the requirements, validation is automatically ensured.

Optimization Potential: Two aspects of optimization are program size and execution speed. The
level to which optimization can be achieved is dependent on where and when the optimization
effort originated. Normally, there are two opportunities where optimization can be performed.
The first chance to optimize is with the specification and/or algorithm itself. The other occurs
during coding. While current compiler technology is very good at optimization of code, the
optimization of the specification and/or algorithm has not been integrated into CASE environments.
KBSA has integrated facilities to address specification and/or algorithm optimization.

Project Management Functions Provided: Project management is often considered a separate
activity. The result of using a separate project management system is inaccurate and untimely
reporting of data. Additionally, it is easy for programmers to bypass project management efforts
by inaccurately reporting data. In KBSA, project management is integrated into the knowledge
base. This provides instantaneous and accurate reporting, and eliminates attempts to bypass the
system. Also, KBSA is being extended to include knowledge-based estimation and forecasting.

Product versus Process Orientation: Software development has not been adaptable to standard
production oriented techniques, thus the actual process of software development itself must be
addressed. Product-oriented techniques focus on software development as an assembly line
operation consisting of sequential phases. Process oriented techniques address software
development as evolutionary and ormational. A common misnomer is to label the “process
of generating the individual products” as being process oriented, while the actual process of
software development itself remains assembly line oriented. KBSA is truly a process-oriented
approach to software development.

7. Conclusions

Both KBSA and CASE are meant to improve software development, yet have significant
differences in their approaches. The underpinnings of CASE is a central data repository for inter-
tool communication and data sharing. In current tools, this repository is typically a relational
database. Most CASE tools, whether following the waterfall, spiral, or comparable
methodologies, use a phased approach to software development based on a series of sequential
steps. This data driven model views the software development process as the generation of
individual products (e.g. requirements document, design document, code, etc.). The central data
repository in the present CASE model can store only meta-data (data about data), and facilitates
control over access to that data. This product oriented model is insufficient and lacks the
expressive power required to successfully attack the software crisis. KBSA has a much deeper
and richer representation schema at the repository level. KBSA is a knowledge-based approach
which includes not only data, but also contains knowledge of the software development process
itself. Table 1 highlights significant differences between KBSA and CASE.

As envisioned, the KBSA environment will allow design to take place at a higher level of

abstraction than is current practice. Knowledge-based assistance mediates all activities and
provides process coordination and guidance to users, assisting them in translating informal

451



| AREA CASE KBSA

Development Phased Transformational

Incremental, iterative & evolutionary;

Prototyping User interaction; rapid mock up executable specifications :
Validation Code against intent Specification against intent
hig‘fgg;gggn Manual (AD HOC) Automated (provably correct)
P Structural and functional testing Minimal;
Verification of code modules correctness preserving transformations

Automatic and current;

Documentation | Only products; design history lost history and rationale captured

Development . . Executable specification integrity
Emphasis Documentation and coding and system evolution
i ; Specification revised,
Maintenance Code patching pecification revised

then development replayed

Table 1: CASE versus KBSA

application domain representations into formal executable specifications. The majority of software
development activities are moved to the specification level as early validation is provided through
prototyping, symbolic evaluation, and simulation. Implementations are derived from formal
specifications through a series of automated meaning preserving transformations, insuring that the
implementation correctly represents the specification. Post deployment support of the developed
application is also concentrated at the requirements/specification level with subsequent
implementations being efficiently generated through a largely automated "replay" process. This
capability provides the additional benefit of reuse of designs as families of systems that can spawn
from the original application. Management policies are also formally stated enabling machine
assisted enforcement and structuring of the software life cycle processes.

References

1..Green, C. et al.,, "Report on a Knowledge-Based Software Assistant,” RADC Tech. Report
TR-83-195, RADC, Griffiss AFB, NY, Aug, 1983.

2..Jullig, R., et al., "KBSA Project Management Assistant," Final Technical Report, RADC,
Griffiss AFB, NY, July 1987, TR-87-78 (two volumes).

3.."Knowledge-Based Specification Assistant,” Final Technical Report, RADC Contract
F30602-85-C-0221, June, 1988.

4.Larson, A. and Huseth, S., "KBSA Common Framework Implementation,” RADC, 2nd
Annual KBSA Conference, Utica, NY, Aug 18-20, 1987.

5..Sanders Associates, "Knowledge-Based Requirements Assistant,” Final Technical Report,
RADC Tech. Report, TR-88-205 (two volumes), Griffiss AFB, NY, Oct., 1988.

Epilogue: For more information, one may attend:

The 7th Knowledge-Based Software Engineering Conference
September 20-23, 1992
Sponsored by Rome Laboratory; In cooperation with ACM, IEEE, and AAAI
McLean Hilton at Tysons Comner; McLean, Virginia
Tel: 315-336-0937 (Barb Radzisz)
EMAIL: kbse7-request@cs.rpi.edu

452




