4,470 research outputs found

    Conformal 3D Material Extrusion Additive Manufacturing for Large Moulds

    Get PDF
    Industrial engineering applications often require manufacturing large components in composite materials to obtain light structures; however, moulds are expensive, especially when manufacturing a limited batch of parts. On the one hand, when traditional approaches are carried out, moulds are milled from large slabs or laminated with composite materials on a model of the part to produce. In this case, the realisation of a mould leads to adding time-consuming operations to the manufacturing process. On the other hand, if a fully additively manufactured approach is chosen, the manufacturing time increases exponentially and does not match the market’s requirements. This research proposes a methodology to improve the production efficiency of large moulds using a hybrid technology by combining additive manufacturing and milling tools. A block of soft material such as foam is milled, and then the printing head of an additive manufacturing machine deposits several layers of plastic material or modelling clay using conformal three-dimensional paths. Finally, the mill can polish the surface, thus obtaining a mould of large dimensions quickly, with reduced cost and without needing trained personnel and handcraft polishing. A software tool has been developed to modify the G-code read by an additive manufacturing machine to obtain material deposition over the soft mould. The authors forced conventional machining instructions to match those of an AM machine. Thus, additive deposition of new material uses 3D conformal trajectories typical of CNC machines. Consequently, communication between two very different instruments using the same language is possible. At first, the code was tested on a modified Fused Filament Fabrication machine whose firmware has been adapted to manage a milling tool and a printing head. Then, the software was tested on a large machine suitable for producing moulds for the large parts typical of marine and aerospace engineering. The research demonstrates that AM technologies can integrate conventional machinery to support the composite materials industry when large parts are required

    A comparison of processing techniques for producing prototype injection moulding inserts.

    Get PDF
    This project involves the investigation of processing techniques for producing low-cost moulding inserts used in the particulate injection moulding (PIM) process. Prototype moulds were made from both additive and subtractive processes as well as a combination of the two. The general motivation for this was to reduce the entry cost of users when considering PIM. PIM cavity inserts were first made by conventional machining from a polymer block using the pocket NC desktop mill. PIM cavity inserts were also made by fused filament deposition modelling using the Tiertime UP plus 3D printer. The injection moulding trials manifested in surface finish and part removal defects. The feedstock was a titanium metal blend which is brittle in comparison to commodity polymers. That in combination with the mesoscale features, small cross-sections and complex geometries were considered the main problems. For both processing methods, fixes were identified and made to test the theory. These consisted of a blended approach that saw a combination of both the additive and subtractive processes being used. The parts produced from the three processing methods are investigated and their respective merits and issues are discussed

    Software Engineers' Information Seeking Behavior in Change Impact Analysis - An Interview Study

    Get PDF
    Software engineers working in large projects must navigate complex information landscapes. Change Impact Analysis (CIA) is a task that relies on engineers' successful information seeking in databases storing, e.g., source code, requirements, design descriptions, and test case specifications. Several previous approaches to support information seeking are task-specific, thus understanding engineers' seeking behavior in specific tasks is fundamental. We present an industrial case study on how engineers seek information in CIA, with a particular focus on traceability and development artifacts that are not source code. We show that engineers have different information seeking behavior, and that some do not consider traceability particularly useful when conducting CIA. Furthermore, we observe a tendency for engineers to prefer less rigid types of support rather than formal approaches, i.e., engineers value support that allows flexibility in how to practically conduct CIA. Finally, due to diverse information seeking behavior, we argue that future CIA support should embrace individual preferences to identify change impact by empowering several seeking alternatives, including searching, browsing, and tracing.Comment: Accepted for publication in the proceedings of the 25th International Conference on Program Comprehensio

    Reducing risk in pre-production investigations through undergraduate engineering projects.

    Get PDF
    This poster is the culmination of final year Bachelor of Engineering Technology (B.Eng.Tech) student projects in 2017 and 2018. The B.Eng.Tech is a level seven qualification that aligns with the Sydney accord for a three-year engineering degree and hence is internationally benchmarked. The enabling mechanism of these projects is the industry connectivity that creates real-world projects and highlights the benefits of the investigation of process at the technologist level. The methodologies we use are basic and transparent, with enough depth of technical knowledge to ensure the industry partners gain from the collaboration process. The process we use minimizes the disconnect between the student and the industry supervisor while maintaining the academic freedom of the student and the commercial sensitivities of the supervisor. The general motivation for this approach is the reduction of the entry cost of the industry to enable consideration of new technologies and thereby reducing risk to core business and shareholder profits. The poster presents several images and interpretive dialogue to explain the positive and negative aspects of the student process

    Modeling functional requirements using tacit knowledge: a design science research methodology informed approach

    Get PDF
    The research in this paper adds to the discussion linked to the challenge of capturing and modeling tacit knowledge throughout software development projects. The issue emerged when modeling functional requirements during a project for a client. However, using the design science research methodology at a particular point in the project helped to create an artifact, a functional requirements modeling technique, that resolved the issue with tacit knowledge. Accordingly, this paper includes research based upon the stages of the design science research methodology to design and test the artifact in an observable situation, empirically grounding the research undertaken. An integral component of the design science research methodology, the knowledge base, assimilated structuration and semiotic theories so that other researchers can test the validity of the artifact created. First, structuration theory helped to identify how tacit knowledge is communicated and can be understood when modeling functional requirements for new software. Second, structuration theory prescribed the application of semiotics which facilitated the development of the artifact. Additionally, following the stages of the design science research methodology and associated tasks allows the research to be reproduced in other software development contexts. As a positive outcome, using the functional requirements modeling technique created, specifically for obtaining tacit knowledge on the software development project, indicates that using such knowledge increases the likelihood of deploying software successfully

    Machine Learning for Software Engineering: Models, Methods, and Applications

    Get PDF
    Machine Learning (ML) is the discipline that studies methods for automatically inferring models from data. Machine learning has been successfully applied in many areas of software engineering ranging from behaviour extraction, to testing, to bug fixing. Many more applications are yet be defined. However, a better understanding of ML methods, their assumptions and guarantees would help software engineers adopt and identify the appropriate methods for their desired applications. We argue that this choice can be guided by the models one seeks to infer. In this technical briefing, we review and reflect on the applications of ML for software engineering organised according to the models they produce and the methods they use. We introduce the principles of ML, give an overview of some key methods, and present examples of areas of software engineering benefiting from ML. We also discuss the open challenges for reaching the full potential of ML for software engineering and how ML can benefit from software engineering methods

    Automated analysis of feature models: Quo vadis?

    Get PDF
    Feature models have been used since the 90's to describe software product lines as a way of reusing common parts in a family of software systems. In 2010, a systematic literature review was published summarizing the advances and settling the basis of the area of Automated Analysis of Feature Models (AAFM). From then on, different studies have applied the AAFM in different domains. In this paper, we provide an overview of the evolution of this field since 2010 by performing a systematic mapping study considering 423 primary sources. We found six different variability facets where the AAFM is being applied that define the tendencies: product configuration and derivation; testing and evolution; reverse engineering; multi-model variability-analysis; variability modelling and variability-intensive systems. We also confirmed that there is a lack of industrial evidence in most of the cases. Finally, we present where and when the papers have been published and who are the authors and institutions that are contributing to the field. We observed that the maturity is proven by the increment in the number of journals published along the years as well as the diversity of conferences and workshops where papers are published. We also suggest some synergies with other areas such as cloud or mobile computing among others that can motivate further research in the future.Ministerio de Economía y Competitividad TIN2015-70560-RJunta de Andalucía TIC-186

    Software Engineering for Millennials, by Millennials

    Full text link
    Software engineers need to manage both technical and professional skills in order to be successful. Our university offers a 5.5 year program that mixes computer science, software and computer engineering, where the first two years are mostly math and physics courses. As such, our students' first real teamwork experience is during the introductory SE course, where they modify open source projects in groups of 6-8. However, students have problems working in such large teams, and feel that the course material and project are "disconnected". We decided to redesign this course in 2017, trying to achieve a balance between theory and practice, and technical and professional skills, with a maximum course workload of 150 hrs per semester. We share our experience in this paper, discussing the strategies we used to improve teamwork and help students learn new technologies in a more autonomous manner. We also discuss what we learned from the two times we taught the new course.Comment: 8 pages, 9 tables, 4 figures, Second International Workshop on Software Engineering Education for Millennial

    Engineering at San Jose State University, Spring 2015

    Get PDF
    https://scholarworks.sjsu.edu/engr_news/1013/thumbnail.jp
    corecore