201,776 research outputs found

    Optimization of network resource allocation for software-defined data center networks

    Get PDF
    As cloud computing and data center network flourishes, the network that was once designed to support traditional networking scenario must now satisfy new requirements to suit for the cloud environment and increasing demands. The Software-Defined Networking (SDN) paradigm, with the control plane separated from the data plane, is widely regarded as the next generation networking technique. The objective of this thesis is to optimize network resources allocation in the software-defined data center networks (DCN). The SDN resources considered here are the SDN switch to controller link bandwidth and the switch flow table size. First, a queueing model is developed to provision the SDN switches with an appropriate number of switch-to-controller connections. Second, a controller-level admission control mechanism is proposed to determine if a new flow should be admitted to the network when the flow table is congested. Third, we study the fair and high-satisfaction resources allocation problem with the routing path optimized in software-defined DCN. The delay guarantees for delay-sensitive flows are also provided. Finally, some practical issues are considered for the resources allocation algorithms. The provided theoretical analysis and simulation results in this dissertation improve the efficiency of resource allocation in software-defined DCN.Ph.D

    Experimenting adaptive services in sea-cloud innovation environment

    Get PDF
    Most of existing network testbeds can only support the experimentation of L2~L4 forwarding protocols, leaving the evaluation of L4~L7 applications still a tremendous challenge. This paper pioneers to present the design of sea-cloud innovation environment (SCIE) based on the software defined networking (SDN) and network functions virtualization (NFV) paradigms to support adaptive service-oriented experimentation, where the virtualized network functions (VNFs) can be implemented or deimplemented dynamically on network devices according to ondemand requirements. The experimentation is running to form an adaptive chain of network functions, which can be achieved by the protocol oblivious forwarding (POF) via user-defined fields and generic flow instruction set to forward the data to appropriate devices with VNFs. In SCIE, we demonstrate the experimentation of DPI service with on-demand requirement of security check

    Data centre optimisation enhanced by software defined networking

    Get PDF
    Contemporary Cloud Computing infrastructures are being challenged by an increasing demand for evolved cloud services characterised by heterogeneous performance requirements including real-time, data-intensive and highly dynamic workloads. The classical way to deal with dynamicity is to scale computing and network resources horizontally. However, these techniques must be coupled effectively with advanced routing and switching in a multi-path environment, mixed with a high degree of flexibility to support dynamic adaptation and live-migration of virtual machines (VMs). We propose a management strategy to jointly optimise computing and networking resources in cloud infrastructures, where Software Defined Networking (SDN) plays a key enabling role

    Leveraging synergy of SDWN and multi-layer resource management for 5G networks

    Get PDF
    Fifth-generation (5G) networks are envisioned to predispose service-oriented and flexible edge-to-core infrastructure to offer diverse applications. Convergence of software-defined networking (SDN), software-defined radio (SDR), and virtualization on the concept of software-defined wireless networking (SDWN) is a promising approach to support such dynamic networks. The principal technique behind the 5G-SDWN framework is the separation of control and data planes, from deep core entities to edge wireless access points. This separation allows the abstraction of resources as transmission parameters of users. In such user-centric and service-oriented environment, resource management plays a critical role to achieve efficiency and reliability. In this paper, we introduce a converged multi-layer resource management (CML-RM) framework for SDWN-enabled 5G networks, that involves a functional model and an optimization framework. In such framework, the key questions are if 5G-SDWN can be leveraged to enable CML-RM over the portfolio of resources, and reciprocally, if CML-RM can effectively provide performance enhancement and reliability for 5G-SDWN. In this paper, we tackle these questions by proposing a flexible protocol structure for 5G-SDWN, which can handle all the required functionalities in a more cross-layer manner. Based on this, we demonstrate how the proposed general framework of CML-RM can control the end-user quality of experience. Moreover, for two scenarios of 5G-SDWN, we investigate the effects of joint user-association and resource allocation via CML-RM to improve performance in virtualized networks

    Passive Thermal Design Approach for the Space Communications and Navigation (SCaN) Testbed Experiment on the International Space Station (ISS)

    Get PDF
    The Space Communications and Navigation (SCaN) Program Office at NASA Headquarters oversees all of NASAs space communications activities. SCaN manages and directs the ground-based facilities and services provided by the Deep Space Network (DSN), Near Earth Network (NEN), and the Space Network (SN). Through the SCaN Program Office, NASA GRC developed a Software Defined Radio (SDR) testbed experiment (SCaN testbed experiment) for use on the International Space Station (ISS). It is comprised of three different SDR radios, the Jet Propulsion Laboratory (JPL) radio, Harris Corporation radio, and the General Dynamics Corporation radio. The SCaN testbed experiment provides an on-orbit, adaptable, SDR Space Telecommunications Radio System (STRS) - based facility to conduct a suite of experiments to advance the Software Defined Radio, Space Telecommunications Radio Systems (STRS) standards, reduce risk (Technology Readiness Level (TRL) advancement) for candidate Constellation future space flight hardware software, and demonstrate space communication links critical to future NASA exploration missions. The SCaN testbed project provides NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, software defined radio platforms and the STRS Architecture.The SCaN testbed is resident on the P3 Express Logistics Carrier (ELC) on the exterior truss of the International Space Station (ISS). The SCaN testbed payload launched on the Japanese Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV) and was installed on the ISS P3 ELC located on the inboard RAM P3 site. The daily operations and testing are managed out of NASA GRC in the Telescience Support Center (TSC)

    March 2016 progress report

    Get PDF
    Cyberinfrastructure is broadly defined as the human and technological support framework for advanced data acquisition, data storage, data management, data integration, data mining, data visualization, data curation and other computing and information processing services within the research environment. Research Computing has been growing to meet the needs of researchers on campus with a number of improvements, new services, and a new direction. Highlights of 2015 include the following: More than one petabyte of newly installed General Purpose Research Storage has been installed on campus to address the urgent need for research data storage. ; The High Performance Computing (HPC) cluster has been upgraded with more capacity and an updated architecture, and user training has been expanded. ; MU faculty has helped guide the introduction of a number of grant-friendly services to help researchers gain computing capacity without having to worry about managing the underlying infrastructure. ; A next generation 100-Gigabit Software Defined Networking (SDN) high-speed network has been installed to address the future needs of researchers and their need to access off-campus resources and remote collaboration. Through all these changes, and with the guidance of MU's Cyberinfrastructure Council, the Division of IT is striving to better support MU researchers with their computational needs

    DAIM: a Mechanism to Distribute Control Functions within OpenFlow Switches

    Full text link
    Abstract—Telecommunication networks need to support a wide range of services and functionalities with capability of autonomy, scalability and adaptability for managing applications to meet business needs. Networking devices are increasing in complexity among various services and platforms, from different vendors. The network complexity is required experts ’ operators. This paper explores an introduction to networks programmability, by distributing independent computing environment, which would be demonstrated through a structured system named DAIM model (Distributed Active information Model). In addition it seeks to enhance current SDN (Software-Defined Networking) approach which has some scalability issues. The DAIM model can provide richness of nature-inspired adaptation algorithms on a complex distributed computing environment. The DAIM model uses a group of standard switches, databases, and corresponding between them by using DAIM agents. These agents are imposed by a set of network applications, which is integrated with a DAIM model databases. DAIM model also considers challenges of autonomic functionalities, where each network’s device can make its own decisions on the basis of collected information by the DAIM agents. The DAIM model is expected to satisfy the requirement of autonomic functionalities. Moreover, this paper discussed the processing of packets forwarding within DAIM model as well as the risk scenarios of the DAIM model

    AROMA: An adapt-or-reroute strategy for multimedia applications over SDN-based wireless environments

    Get PDF
    To support new and advanced multimedia-rich applications and services while providing satisfactory user experience, the underlying network infrastructure needs to evolve and adapt. One of the key enabling technologies of the next generation (5G) networks is the integration of Software Defined Networking (SDN) within a heterogeneous wireless environment to enable interoperability and QoS provisioning. Leveraging on the features of the SDN paradigm, it is possible to introduce new solutions to handle the increasing mobile video transmission challenges with strict QoS requirements, such as: low delay, jitter, packet loss, and high bandwidth demands. However, degradation and instability perceived from video traffic makes it difficult to satisfy various end-users. In this context, this paper proposes AROMA, an Adapt-or-reROute strategy for Multimedia Applications over SDN-based wireless environments. AROMA enables QoS provisioning over multimedia-oriented SDN-based WLAN environments. The proposed solution is evaluated using a real experimental test-bed setup
    • …
    corecore