
OPTIMIZATION OF NETWORK RESOURCE ALLOCATION FOR
SOFTWARE-DEFINED DATA CENTER NETWORKS

A Dissertation
Presented to

The Academic Faculty

By

Chuanji Zhang

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

December 2019

Copyright c© Chuanji Zhang 2019

OPTIMIZATION OF NETWORK RESOURCE ALLOCATION FOR
SOFTWARE-DEFINED DATA CENTER NETWORKS

Approved by:

Dr. Douglas M. Blough
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Henry L. Owen III
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Yusun Chang
School of Electrical Engineering
Kennesaw State University

Dr. Linda M. Wills
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Ellen W. Zegura
School of Computer Science
Georgia Institute of Technology

Date Approved: July 30, 2019

ACKNOWLEDGEMENTS

Over the past five years of my doctoral study, I have received support and help from a

great number of individuals in different forms. First and foremost, I would like to express

my deepest gratitude to my advisor, Dr. Douglas M. Blough, for his continuous encourage-

ment and support during my doctoral study. His excellent guidance and intellectual insights

help me steadily advance towards the successful completion of my Ph.D. program, as well

as this dissertation. It has been an honor and privilege to be his student and work with him.

While thanking Dr. Blough, I must also thank Dr. George Riley. I am a better person and

researcher for knowing him. Although he is not with us anymore, I will always remember

his guidance and encouragements.

I would also like to thank all the academic members of the School of Electrical and

Computer Engineering at the Georgia Institute of Technology for their help throughout my

Ph.D. program. Special thanks go to Dr. Henry Owen and Dr. Yusun Chang, who provided

me valuable and constructive suggestions on my work and also kindly serve in my Ph.D.

Defense Reading Committee. I also thank Dr. Linda Wills and Dr. Ellen Zegura who

kindly serve in my Ph.D. Defense Committee. All of their valuable comments and advice

have greatly improved my research and the quality of this dissertation.

I would also like to thank my friends and colleagues at Georgia Tech, Hemin Yang,

Mengyao Ge, Qiang Hu, Yan Yan, and Yuchen Liu, for their everlasting friendship and

constant support, and for every unforgettable moment we have had together at Atlanta.

Finally, I would like to express my gratitude to my family, particularly to my parents,

for their endless love and support. I could never successfully complete my Ph.D. program

without your trust, sacrifice, and encouragement.

iii

TABLE OF CONTENTS

Acknowledgments . iii

List of Tables . ix

List of Figures . x

Chapter 1: Introduction . 1

1.1 Motivation and Research Objectives . 1

1.2 Contributions and Scope . 3

1.3 Organization of the Dissertation . 5

Chapter 2: Background and Related Work . 6

2.1 Cloud Computing and Data Center Network 6

2.2 SDN and OpenFlow Protocol . 8

2.2.1 SDN . 10

2.2.2 OpenFlow Protocol . 13

2.3 Resource Constraints of Software-defined DCN 15

2.3.1 Switch-to-Controller Link . 15

2.3.2 Flow Table . 16

2.4 Resource Allocation Optimization in SDN 17

iv

2.5 Chapter Summary . 20

Chapter 3: Queueing Analysis of Auxiliary-Connection-Enabled Switches 21

3.1 Introduction . 21

3.2 Analytical Model . 23

3.2.1 Queueing Model . 23

3.2.2 Model Analysis . 24

3.2.3 Performance Analysis . 31

3.2.4 Multiple-Switch Network . 32

3.3 Validation through Simulation . 34

3.4 Network Performance Evaluation . 35

3.4.1 Number of Packets in Controller 35

3.4.2 Varying Packet Arrival Rate . 36

3.4.3 Varying 1− β . 37

3.4.4 Varying Switch Buffer Space . 41

3.5 Chapter Summary . 42

Chapter 4: Admission Control in View of Flow Table Capacity 43

4.1 Introduction . 43

4.2 Flow Table Overloading in SDN . 44

4.2.1 Flow Table Capacity . 44

4.2.2 Existing Flow Table Management 45

4.3 Admission Control in Software-defined DCN 46

4.4 Simulation Setup . 48

v

4.4.1 Data center Topology . 48

4.4.2 SDN Implementation . 49

4.5 Results and Discussions . 50

4.5.1 Data Plane Performance . 50

4.5.2 Control Plane Performance . 54

4.6 Chapter Summary . 55

Chapter 5: High Satisfaction and Fair Allocation of Resources 57

5.1 Introduction . 57

5.2 System Model . 59

5.3 Satisfaction Maximization and Fairness 63

5.3.1 Satisfaction Maximization . 63

5.3.2 Fairness Models . 65

5.4 Performance Evaluation . 69

5.4.1 Simulation Setup . 69

5.4.2 Running Time . 70

5.4.3 Comparison of Algorithms . 72

5.4.4 Comparison of Fairness Models 73

5.4.5 Fairness Relaxation . 76

5.5 Chapter Summary . 78

Chapter 6: Delay-Guaranteed Fair Allocation of Resources 80

6.1 Introduction . 80

6.2 Delay-Guaranteed Fair Resources Allocation 82

vi

6.2.1 System Model . 83

6.2.2 Satisfaction Maximization with Bounded Delay 84

6.2.3 Priority and Fairness Model . 85

6.3 End-to-End Delay in SDN Networks . 86

6.3.1 Queueing Model for SDN . 86

6.3.2 Queueing Model with System Model Parameters 90

6.3.3 Delay Constraint and Approximation 92

6.4 Performance Evaluation . 94

6.4.1 Simulation Setup . 94

6.4.2 End-to-End Delay . 95

6.4.3 Performance Comparison . 97

6.4.4 Fairness Relaxation . 99

6.5 Chapter Summary . 99

Chapter 7: Practical Considerations of Resources Allocation Algorithms 102

7.1 Introduction . 102

7.2 Practical Considerations . 103

7.2.1 Complexity Analysis . 103

7.2.2 Rounding Effects . 105

7.2.3 Sensitivity Study . 108

7.3 Chapter Summary . 111

Chapter 8: Conclusions . 112

8.1 Conclusions . 112

vii

8.2 Future Work . 114

8.3 Publications . 115

References . 124

viii

LIST OF TABLES

3.1 Notations for the queueing model of the auxiliary-connection-enabled switches 23

3.2 Parameter settings for validation and performance evaluation 32

4.1 Average number of TCP connection attempts 54

4.2 Number of packet in events . 55

4.3 Controller processing delay [ms] . 55

5.1 Notations for system model in Chapter 5 60

6.1 Notations for system model in Chapter 6 82

6.2 Notations for queueing model of SDN . 88

6.3 End-to-end delay comparison [ms] . 95

6.4 Algorithm performance . 97

7.1 Performance variation after rounding . 107

ix

LIST OF FIGURES

2.1 Data center usage in 2016 - 2021 according to [11] 7

2.2 Traditional network vs. SDN . 9

2.3 SDN framework . 12

2.4 OpenFlow switch architecture . 13

2.5 Packet matching process . 14

3.1 Queueing model of auxiliary-connection-enabled switches for SDN. The
switch is modeled as a two-node queueing network composing of S0 and
S1. The controller is modeled as a single queue node C. 25

3.2 Validation for analytical model . 33

3.3 Average number of packets at controller 36

3.4 Network performance with varying λS , N = 100, β = 90% 38

3.5 Network performance with varying 1− β, λS = 800k, N = 100 39

3.6 Network performance with varying N, λS = 800k, β = 90% 40

4.1 Data center network topology . 49

4.2 Total received data . 51

4.3 The congestion window and buffered data waiting to be sent (a) with default
flow table management, and (b) with admission control and unlimited case. 52

5.1 Simple network model . 61

x

5.2 Simulation topology . 70

5.3 Satisfaction ratio comparison among algorithms 71

5.4 Algorithm performance with demand scaling 74

5.5 Satisfaction ratio distribution . 75

5.6 Algorithm performance with varying relaxation parameter 77

6.1 Queueing model of SDN. 87

6.2 End-to-end delay with varying Xn . 96

6.3 End-to-end delay violation from requirements 98

6.4 Fairness relaxation . 100

7.1 Complexity analysis . 104

7.2 Satisfaction ratio variation from theoretical values [%] 106

7.3 Algorithm performance with different maximum deviation rates 109

7.4 Violation from delay constraints with different maximum deviation rates . . 110

xi

SUMMARY

As cloud computing and data center network flourishes, the network that was once de-

signed to support traditional networking scenario must now satisfy new requirements, such

as on-demand dynamic connectivity, central management, agility, scalability, etc, to suit

for the cloud environment and increasing demands. Improvements in networking technol-

ogy are expected to help accommodate the new requirements. In particular, the Software-

Defined Networking (SDN) paradigm, with the control plane separated from the data plane,

is widely regarded as the next-generation networking technique.

The objective of this work is to optimize network resources allocation in the software-

defined data center networks (DCN). The SDN resources considered here are the SDN

switch to controller link bandwidth and the switch flow table size. First, in view of the pro-

posal of utilizing multiple connections between switches and controller by OpenFlow 1.3,

a queueing model is formulated accordingly. The model considers different interactions be-

tween switches and controller and can be used to provision the network with an appropriate

number of switch-to-controller connections. Second, a controller-level admission control

mechanism is proposed to determine if a new flow should be admitted to the network. The

mechanism utilizes only the flow information and statistics collected by existing controller

functionalities. With tolerable overheads, it strives to provide the best service quality to

most users and at the same time generate good benefits for the service providers. Third, we

study the fair and high-satisfaction resources allocation problem with the routing path op-

timized in software-defined DCN. We aggregate individual flows into flow groups and then

find the optimal routing paths and the corresponding resource allocation vectors for each

flow group. Three fairness models with a relaxation parameter are considered. Fourth, with

a new formulation of the end-to-end delay in software-defined DCN derived using queue-

ing theory, a new resources allocation problem which considers both the fairness constraint

and the delay constraint is studied. Fifth, some practical issues, including the algorithm

xii

complexity, the rounding effects, and the algorithm sensitivity to varying traffic demands,

are considered for the resources allocation algorithms. The provided theoretical analysis

and simulation results in this dissertation improve the efficiency of resource allocation in

software-defined DCN.

xiii

CHAPTER 1

INTRODUCTION

Over the last decade, data center network (DCN) has experienced dramatic growth in terms

of scale and traffic, and will reach the zettabyte era in the near future. Although technolo-

gies like SSD storage and virtualization are expected to help DCN to accommodate the

huge traffic demands, easy policy update and application optimization, efficient resource

allocation, and dynamically routing will be required in future DCN. In order to fulfill these

requirements, DCN providers have turned to software-defined DCN for help in view of the

benefits brought by software-defined networking (SDN).

1.1 Motivation and Research Objectives

SDN enables flexible network management and fast network innovations. Dynamic and

optimized management of network resources becomes possible with the controller’s global

view. However, the resource allocation problem in software-defined DCN exposes itself to

new challenges in this scenario. As the focus of this dissertation, one of the main challenges

is to cope with the new resource constraints brought by the unique architecture of SDN.

That is the capacity of the switch-to-controller link, which limits the message exchange rate

between switch and controller, and the size of the flow table, which restricts the number

of flow entries support by the switch. Additional research challenges range from enabling

multi-tenant resource allocation and network resource utilization monitoring, etc. Next, we

review the two resource limitations in details.

• The flow table of most commodity OpenFlow switches are placed in Ternary Con-

tent Addressable Memory (TCAM) to seek for single-clock-cycle lookup time. The

size of the TCAM is limited due to power, cost, and chip size constraints and thus

1

the flow table size in OpenFlow switches is limited in real physical implementation.

For example, the HP 5406zl switch hardware can only support 1500 flow entries [1]

and the Broadcom chipset, which is widely used in commercial switches, can only

support 2000 flow entries [2]. More recent hardware OpenFlow switch products can

support up to 16000 [3] flow entries with the cost of high price and power [4, 5].

However, in a normal data center, the arrival rate of flows can reach 10000 flows

per second per server rack [6]. Moreover, SDN allows fine-grained control of traffic.

Instead of using the traditional 5-tuple definition of flows, OpenFlow 1.5.0 [7] de-

fined 45 fields to identify a flow. The involved fields include VLAN ID, TCP flags,

etc. This fine-grained control would dramatically increase the number of flows need

to be managed in the network compared with the traditional 5-tuple definition and

consequently make the situation worse.

• In terms of the switch-to-controller link bandwidth, the measured loopback band-

width between the Application Specific Integrated Circuit (ASIC) and the manage-

ment CPU of an OpenFlow switch is 80 Mbps in the HP 5406zl switch [1]. The

switch only supports limited control channel bandwidth due to its low internal con-

trol path bandwidth and limited CPU performance. However, in a normal data center

with 100 edge switches, the controller can see as many as 10 million new flows

per second in the worst case [6]. Assuming the average size of the packets sent by

the switch to the controller for each new flow is 100 Bytes, the required switch-to-

controller link bandwidth per edge switch is at least 80 Mbps. The demand will get

much higher on the core switches and aggregation switches, in a commercial cloud

data center, and as the traffic demands in DCN increases. Besides, the collection of

statistics and network statuses, such as the traffic rate in each link and the available

flow table size, is also conducted via the switch-to-controller link. Such communica-

tions contribute to the traffic load on the switch-to-controller link by a non-negligible

fraction [8]. Moreover, in-band SDN is proposed [9] and reinforces the need to have

2

sufficient switch-to-controller link bandwidth.

The large gaps between the demands and the available resources will cause packet loss

and intolerable latency in the network. Solutions need to be investigated to address these

limitations, and at the same time, the resources allocation algorithms designed for software-

defined DCN should take these new constraints into consideration. The objective of this

work is to optimize network resource allocation for software-defined DCN, constrained by

the aforementioned capacity limitations.

1.2 Contributions and Scope

The primary contributions of this work are:

• The first contribution (Chapter 3) is that we develop a queueing model for auxiliary-

connection-enabled SDN switches with limited buffer space. The model captures not

only the packet in interaction, but also the stats/feature request/reply interactions,

which are of great importance to enable SDN benefits, such as efficient resource

allocation. The model is validated for lower traffic loads using the network simula-

tor ns-3 [10], where network protocols including OpenFlow are implemented. Our

model is then used to perform an in-depth analysis of switch performance under real-

istic data center traffic loads. With limited hardware resource available at a switch to

build auxiliary connections, our model can serve as a tool to predict network perfor-

mance and provision switches with the appropriate number of connections to satisfy

the network quality of service (QoS) requirements.

• The second contribution (Chapter 4) is that we propose and analyze a lightweight ad-

mission control mechanism for SDN, which controls the flow entrance to the network

when the flow table is congested. The admission control mechanism is implemented

at the controller level and strives to provide the best QoS to most users and generate

good benefits for service providers. Simulations are carried out using a canonical

3

three-tier data center topology and the mechanism is thoroughly evaluated in terms

of data plane performance and control plane performance.

• The third contribution (Chapter 5) is that we address the resource allocation problem

in software-defined DCNs, with the objective to maximize the total satisfaction ratio

of the two SDN resources, subject to three different fairness constraints. A relaxation

parameter δ ∈ [0, 1] is also introduced into these fairness models to allow the network

operator to control the trade-off between the total demand satisfaction and fairness.

Our approach is to aggregate individual flows into flow groups and then find the

optimal routing path and the corresponding resource allocation vectors for each flow

group satisfying all constraints.

• The fourth contribution (Chapter 6) is that we strive to provide delay guarantees to

the delay-sensitive flows when allocating the SDN resources as in our previous work.

The end-to-end delay constraint for each packet, considering both the control plane

delay and data plane delay in SDN, is derived using queueing theory. To the best of

our knowledge, this is the first work to provide a solution to the resource-constrained

delay-guarantee problem considering the unique architecture of SDN.

• The fifth contribution (Chapter 7) is that we study some practical considerations for

the proposed resource allocation algorithms to be implemented in the real world.

The algorithm complexity and running time, the rounding effects, and its sensitivity

to varying traffic demands are studied. The results confirm that our algorithms are

scalable and can perform stably in a regular-size DCN with varying traffic demands.

The queueing model for auxiliary-connection-enabled SDN switches in Chapter 3 is

developed for the single switch case, because the goal is to appropriately provision indi-

vidual switches. The admission control mechanism studied in Chapter 4 targets a single

controller SDN domain. The resource allocation algorithms studied in Chapter 5, 6, and 7

are designed for small and medium sized DCNs. As shown in Chapter 7, the optimization

4

problem for DCNs with 50-60 switches can be solved in a few minutes. Unfortunately, due

to the exponential growth in running time, use of the algorithms for very large DCNs, e.g.

100 or more switches, is not feasible with current processing hardware.

1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, we provide a brief in-

troduction of basic SDN concepts and OpenFlow protocol, and discuss the related works.

Then, in Chapter 3, the switch-to-controller link capacity is investigated by developing a

queueing model of auxiliary-connection-enabled SDN switches. Moreover, in Chapter 4,

an admission control mechanism in software-defined DCN is proposed to control the flow

entrance when the flow table is congested. In addition, the problem of high satisfaction and

fair allocation of resources in software-defined DCNs, including routing path selection, is

addressed in Chapter 5. Different types of fairness models are studied. In Chapter 6, the

delay guarantee for delay-sensitive flows in SDN is provided based on the work in Chapter

5. In Chapter 7, we study some of the practical issues for the resource allocation algorithms

to be implemented in real world. Finally, in Chapter 8, our conclusions and suggestions for

future work are provided.

5

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Cloud Computing and Data Center Network

With rapid advances of technologies in processing and storage and the success of the In-

ternet, computing resources have become cheaper, more powerful and more ubiquitously

available. These technological trends have enabled the realization of cloud computing,

where different kinds of computing services, including servers, storage, databases, net-

working, software, analytics, and intelligence, are delivered over the Internet (“the cloud”).

Most cloud computing services fall into three broad categories: infrastructure as a service

(IaaS), platform as a service (Paas), and software as a service (SaaS). Cloud computing is

a critical shift from the traditional way companies think about IT Resources. It provides

faster innovation, flexible resources and economies of scale. Over the last few years, cloud

adoption has evolved from a developing technology to a well-established networking solu-

tion that is widely accepted and deployed. Google, Amazon, Microsoft, and other industrial

giants have heavily invested in cloud computing and products like Google Drive, Amazon

AWS and Microsoft Azure are making great profits to the companies. The widespread use

of cloud computing is accelerating traffic growth, changing the end-user experience, and

bringing new requirements and demands to data centers and cloud-based infrastructures.

A data center interconnects components such as servers, communication media, and

data storage facilities and thus enables the usage of cloud computing. DCN plays a key

role in a data center because it incorporates all of the data center resources together. DCN

needs to be scalable and efficient to connect tens or even hundreds of thousands of servers

to meet the growing demands of Cloud computing. Commonly used DCN topology in-

cludes three-tier DCN, fat tree DCN, etc. In both the three-tier DCN and the fat tree DCN,

6

(a) Global IP traffic in data centers [Zettabytes]

(b) Amount of data stored in data centers [Exabytes]

Figure 2.1: Data center usage in 2016 - 2021 according to [11]

the network topology is composed of three layers of network switches, namely the edge

layer, the aggregation layer, and the core layer. The servers are connected directly to the

edge layer switches. The aggregation layer switches are interconnected via the core layer

switches. The core layer switches are also responsible for connecting the data center to

other data centers and to the Internet. Over the last decade, DCN has experienced dramatic

growth in terms of scale and traffic. According to the Cisco global cloud index [11] as

shown in Fig. 2.1, the traffic demand and the data storage in DCN are experiencing a 20%-

30% compound annual growth rate now. We are already in the zettabyte era. Although

technologies like SSD storage and virtualization are expected to help DCN to accommo-

date the huge traffic demands, more and more network capabilities are required to cope

with the cloud environment. Some of the desired network capabilities are summarized as

follows.

• On-demand and dynamic connectivity: dynamically allocate the network resources

7

and build network connections to meet the evolving needs of services.

• Acceleration: speed up the deployment of workloads in a non-disruptive manner.

• Security: prevent security vulnerabilities from spreading across the network and de-

ploy new mitigation policies easily.

• Central management: define and control policies that govern both physical and vir-

tual networks in a central-controlled manner.

• Agility: implement and update network policies fast and consistently at scale.

• Scalability, programmability, automation, etc.

In order to fulfill these requirements, DCN providers have turned to SDN for help. For

example, A commercial deployment of SDN in clouds was proposed by Nicira in [12].

Google leveraged SDN principles to build its Jupiter network which achieves a capacity

scale-up by 100 times [13]. Besides the usage in clouds and DCN, SDN has also been

invested in wide-area-network (WAN). In 2013, Microsoft presented its software-driven

WAN (SWAN) [14], and according to the data-driven simulations of two production net-

works, the SWAN carries 60% more traffic than the current practice. Afterward, NTT

launched software-defined WAN which spans over 190 countries in 2017 [15]. In the fol-

lowing section, we will elaborate on the concepts, history, and benefits of SDN.

2.2 SDN and OpenFlow Protocol

As shown in Fig. 2.2a, in traditional network, the networking functions are mainly imple-

mented on dedicated devices, such as switches, routers, etc. Besides, most of the function-

alities in these dedicated devices are implemented in dedicated hardware, such as ASIC.

In other words, the network devices in traditional network are closed and bundling with

both software and hardware. The control component and data component are vertically

integrated in this case. This hardware-centric paradigm leads to many limitations.

8

(a) Traditional network architecture

(b) SDN architecture

Figure 2.2: Traditional network vs. SDN

• Vendor-locked devices: some of the network devices come from the vendors as black

boxes. The control logic is already embedded in the device when shipped. Any

changes of the control logic would be complex and cumbersome. Moreover, a net-

work administrator with extensive knowledge of all device types is required under

this situation.

• Time consuming and error-prone network configuration: since the network function-

alities are implemented on individual devices and coupled with hardware, manual

configurations are required to update logic functions, add devices, and remove de-

vices. This static configuration approach makes it very complex to deploy a consis-

tent set of policies. Security breaches, non-compliance, and inconsistent configura-

tions are likely to happen. It fails to meet the demands of the continuously changing

network.

9

• Inefficient network management: Since the network devices are distributed and op-

erated according to specific protocols, the control and management of the numerous

and heterogeneous networking devices would be inefficient. Besides, the balance be-

tween over-provision and under-provision is difficult to maintain due to a lack of a

global view.

• Distributed network control: with the usage of various types of applications grow-

ing, the network needs to accommodate different levels of QoS/QoE requirements

of these applications, such as the dynamic multimedia streams, Internet of Things,

etc. Thus, complex and high-level policies taking care of different network events

are needed to deliver the required QoS/QoE. However, the highly constrained low-

level device configuration commands are not sufficient to fulfill the task. Moreover, a

complex policy usually involves the corporation of multiple network devices, which

requires tedious manual configuration on each device as stated before.

2.2.1 SDN

In order to tackle the aforementioned limitations and suit the new cloud environment, the

Open Networking Foundation (ONF) [16], a user-led organization dedicated to the promo-

tion and adoption of SDN, proposed a novel network architecture, SDN, where the control

plane and data plane are separated with each other as shown in Fig. 2.2b. The control plane

and data plane can evolve independently since they are not integrated anymore. The history

of SDN [17] can be traced back to the mid- 1990s, when the active networks were proposed

to introduce programmable functions in the network to enable greater innovations [18, 19].

Before the proposal of active network, researchers usually designed and tested new network

protocols in small lab settings, simulated larger network behaviors, and then asked the In-

ternet Engineering Task Force (IETF) [20] to finalize the protocols as standards. As the

Internet took off in early- to mid- 1990s, the conventional way to test and deploy new ideas

for improving network services is slow and cumbersome so researchers were looking for al-

10

ternative approaches. This was when active networking came to the table. The subsequent

efforts were narrowly focused on routing and configuration management. These efforts

drew a clear distinction and separation between the control functions and data planes [17,

21]. The history of the control plane and data plane separation can actually be traced back

to the public switched telephone network, when people tried to separate the control and

data plane as a way to simplify provisioning and management. This separation made it

possible to solely focus on innovations in the control plane. The IETF also published a

few standards from the year 2004 on decoupling the control and forwarding functions [22,

23]. However, these attempts failed to gain much attention at that time because the Internet

community saw this separation as a risky action. The control plane is a single point fail-

ure in the network and the application programming interfaces (APIs) between the control

and data plane would cause increasing competition. Finally, the emergence of OpenFlow

API [24] and controller platforms such as NOX [25] (from 2007 to around 2010), repre-

sented the first instance of widespread acceptance of an open interface and enabled scalable

and practical control-data plane separation.

The SDN framework (as shown in Fig. 2.3) consists of an application layer, a control

layer, an infrastructure layer, and the interfaces between them. The controller lays on the

control layer and is the ”brain” of the network. It communicates with business applications

in the application layer through the northbound APIs, and relays the information to the

network infrastructure, like switches, routers, etc, through the southbound protocols. In

SDN, the controller has a full control over the whole network. It configures the network

behaviors by installing flow entries on the switches. With this unique architecture, SDN

enables many benefits which cannot be achieved using traditional networking technologies.

Those benefits are summarized as follows.

• Programmability: first, the northbound APIs enable the application developers to

program the network directly. Any choosing control policies can be implemented

with a small cost. Network function implementation and update can be automated

11

Figure 2.3: SDN framework

since they are in the form of high-level programming codes. In traditional network,

this can only be done through protocols and tedious manual device configuration.

• Efficient network management: second, with the controller’s global view, the net-

work applications can be more intelligent and proficient to handle different network

scenarios. For example, flexible resource management, optimized traffic engineer-

ing policies, and better mitigation mechanism based on current traffic status in the

network can be achieved.

• Centralization: third, SDN enables central management. It allows resource provi-

sioning from a centralized location, and the service provider is able to control the

network through a centralized interface.

• Dynamic control: finally, since SDN is software-based, it allows the users to control

both the physical-level resources and the virtual-level resources through the control

plane. Dynamic network paths configuration and proactively network services de-

12

Figure 2.4: OpenFlow switch architecture

ployment become possible.

The different aspects of the benefits brought by SDN incorporate together with each other

and provide a new picture of future networking. In summary, with SDN, the introduction

of network innovations can be very fast and the management of large networks can be

radically simplified and automated.

2.2.2 OpenFlow Protocol

Managed by the ONF, OpenFlow [26] is the de facto southbound protocol defining the

communication routine between the control layer and infrastructure layer and is usually

viewed as the enabler of SDN. It defines the switch components, such as ports, flow table

and group table, the switch functionalities, such as packet matching and pipeline process-

ing, and the interactions between switch and controller, such as statistics collection and

feature collection. The OpenFlow Switch Specification has been published from version

1.0 to version 1.5 in the year 2011-2015.

As shown in Fig. 2.4, an OpenFlow switch integrates one or more flow tables, which

perform packet lookups and forwarding, an OpenFlow channel to an external controller,

and the OpenFlow protocol. The flow entries containing in a flow table are composed

of the match fields, counters, and a set of instructions. A packet is matched against the

match fields, which include packet headers, the ingress port, and the metadata value. The

13

Figure 2.5: Packet matching process

number of times a particular entry being matched is recorded using the counter field, which

is essential for the statistics collection function. Possible instructions for a matched flow

include sending the packet out through a certain port, modifying some fields in the packet,

simply dropping the packet, etc. The secure channel remotely connects the OpenFlow

switch to the controller. The communication between switch and controller is standardized

by the OpenFlow protocol.

As one of the core functionalities of OpenFlow switches, the packet matching process is

shown in Fig. 2.5. When an OpenFlow-enabled switch receives a packet from data plane, it

iterates through its flow tables to look for matched flow entry. If a matched entry exists, the

switch will execute corresponding instructions and update the counter. If the switch cannot

find a matched entry and the table-miss flow entry is set as sending to controller, which is

the most common configuration for the table-miss entry, the switch will send a packet in

message to the controller via the switch-to-controller link. Otherwise, the packet will get

dropped. After the controller receives the packet in message, it will set up corresponding

routing path, install flow entries on involved switches, and instruct the switch to forward the

14

matched packets according to the entry. If the flow table is full and the new flow does not

match with any existing entries, the OpenFlow switch will evict some existing flow entries

to install new flow entries. However, when the packets from the evicted entries come into

the network, the switch will identify them as unmatched flows and send packet in message

to the controller again. This switch-controller communication will cause extra delay for the

packet. Besides packet matching and routing path setup, the controller can also perform

functionalities like statistics collection and state maintenance via the OpenFlow protocol to

manage the network.

However, before this new paradigm can be widely deployed in enterprises, the scalabil-

ity issues caused by the limited resources at SDN switches should be addressed.

2.3 Resource Constraints of Software-defined DCN

As discussed in previous chapter, to take full advantage of the benefits brought by SDN

and achieve optimized network resource allocation, the new resource constraints coming

with the SDN architecture need to be examined and coped with in the resource allocation

algorithms for software-defined DCN.

2.3.1 Switch-to-Controller Link

In order to address the switch-to-controller link capacity limitation, proactive entry instal-

lation is proposed to reduce the switch-to-controller load [27]. However, proactive flow

entry installation goes against the key benefits of SDN, such as flexible network manage-

ment. Besides, the switch-to-controller link overflow problem is still unsolved when a large

number of unmatched flows come into the network or when frequent statistic collections

are needed. Meanwhile, researchers also try to optimize the control applications to reduce

the interactions between switches and controller. For example, a new routing scheme is

proposed in [28] to reduce the number of network events need to be sent to the controller.

The results show that this new scheme can reduce the network events handled in the control

15

plane by 430% compared to a traditional routing scheme in SDN. In [29], the flow’s path

information is encapsulated into the packets’ header at the source switches. This prevents

the interaction between the controller and the intermediate switches along the routing path

during path setup. Moreover, some researchers also propose to utilize multiple controllers

in SDN to provide a scalable and resilient network operation, and the optimized controller

placement algorithms are studied to reduce the switch-to-controller latency [30, 31, 32,

33]. Yet utilizing multiple controllers will induce extra overhead and higher maintenance

cost. For example, the multiple-controller cases generate 30%-50% messaging overhead

due to synchronization and controller-to-controller communication in [30]. Corresponding

strategies are required to mitigate the side effects with multiple controllers in SDN. Last

but not least, auxiliary connections were introduced from OpenFlow 1.3 [26] to exploit the

parallelism of switch implementation and alleviate the switch-to-controller link overflow.

Some academic works propose that the auxiliary connections are also beneficial for failure

restoration and path migration [34, 35, 36]. The auxiliary connection is already enabled in

many open-source SDN controllers such as FloodLight [37] and OpenDaylight [38], but its

performance is not fully studied yet with the DCN implementation. In [39], the OpenFlow

1.3 model of network simulator ns-3 [40] is extended to support multiple TCP/UDP aux-

iliary connections. However, a single simulation run with realistic data center traffic loads

would take days of computation time. In this context, an analytical model which produces

evaluation results for realistic DCN scale within a reasonable time is indispensable.

2.3.2 Flow Table

The flow tables of OpenFlow switches are usually placed on expensive and power-hungry

TCAM, which achieves single-clock-cycle lookup time. It is obvious that the flow table

capacity is limited due to power, cost, and chip size constraints. Yet there is another hidden

cost of highly consumed flow tables. M. Kuniar et al. [41] discover that the performance

of OpenFlow switches drops with an increasing number of installed rules even before the

16

flow table is full. Therefore, maintaining the flow table size at a reasonable level is of

significant importance in terms of both avoiding flow table overflow and retaining normal

switch performance.

In order to address this issue, intelligent and adaptive time-out setting mechanisms for

flow entries are proposed. A suitable setting on the time-out value can avoid unnecessary

packet in events caused by deleting the entry prematurely, and at the same time reduce the

number of invalid flow entries in the flow table. The combination of a heuristic algorithm to

compute adaptive time-outs and a mechanism to proactively evict the flow rules is proposed

in [42], with the objective of effective utilization and low misses of TCAM. Besides, as-

signing proper time-outs to flows according to their traffic characteristics in DCN [43], and

determining the lower and upper bound of time-out values for Instant Messaging [44] are

also proposed. Finally, flow aggregation is proposed in some works to reduce the number

of required flow entries in the network. For example, since the traffic engineering algo-

rithms cannot operate at the granularity of individual applications, Google’s WAN B4 [45]

aggregates applications to flow groups defined by (src, dst, application QoS) for scalability.

According to the results in [46], with flow rule compression considering the QoS of traffic,

the number of required entries reduces by around 30% for the simulated topology.

2.4 Resource Allocation Optimization in SDN

Different methods and techniques have been studied to improve network resource alloca-

tion using SDN. In order to improve resource allocation in the cloud environment, a band-

width allocation approach that satisfies QoS requirements for all priority cloud users based

on SDN is proposed in [47]. Application-aware resource allocation scheme is also studied

in [48] to predict resource requirements and allocate an appropriate number of virtual ma-

chines for each application in SDN-based cloud data center. A. Ghosh et al. [49] examine

two traffic management designs to optimize sending rates at the flow-level across multiple

traffic classes in software-defined data center backbone networks. As for the SDN-based

17

wireless network, S. Namal et al. [50] study the load balancing algorithm leveraged by flow

admission control with SDN in the 5G network and achieve more than 200% of per-flow

resource allocation. Moreover, an SDN-based resource allocation framework is proposed

in [51] to properly orchestrate heterogeneous radio bandwidth in emerging LTE/WLAN

multi-radio networks in a centralized and holistic manner. The aforementioned research

works are focused on leveraging the benefits brought by SDN to optimize network re-

source allocation, but they do not consider the new resource constraints brought by the

SDN architecture.

Traditional route selection algorithms usually focus on optimizing the objectives with

the link capacity constraint. However, the link utilization level on all the links keeps low

in data center [6]. On the other hand, the flow table size is limited as previously discussed.

Thus the route selection algorithms proposed for SDN should take the flow table capacity

constraint into consideration. In order to achieve better resource allocation for SDN with

the new resource constraints, some researchers propose to optimize the routing rules to

reduce and balance the flow table usage. In [52], R. Cohen et al. concentrate on satisfying

global network objectives, such as maximum flow, in environments where the size of the

forwarding table in network devices is limited. Dynamic routing algorithms to maximize

network throughput, by jointly considering the flow table capacity at each switch and the

bandwidth capacity at each link, for both unicast and multicast cases are studied in [53].

The controller processing capacity constraint is added to the SDN throughput maximization

problem for the first time in [54].

Besides seeking to allocate a limited set of resources to a set of individuals with de-

mands and targeting at maximizing a global network objective, fairness is another common

objective in resource allocation optimizations. J. Zhang et al. in [55] propose to opti-

mize with max-min fairness in SDN multi-path routing with the joint consideration of the

forwarding rule placement. A price-based joint allocation model and a fair allocation al-

gorithm of link bandwidth and flow table for multiple control applications in SDN are

18

presented in [56]. The proportional fair allocation of the link bandwidth and the minimum

global delay are obtained at the same time. The Multi-Class QoS-Guaranteed Traffic Man-

agement (MCTEQ) algorithm presented in [57] is a constrained utility-optimization formu-

lation of the joint-bandwidth allocation problem for multiple classes of traffic in inter-data

center communication. The flows allocation of the same class satisfies proportional fair-

ness and the classes with higher priority such as the interactive traffic have a larger weight

in the optimization problem. Finally, the SWAN algorithm presented in [48] also allocates

bandwidth in a max-min fair manner within a traffic class.

With a lot of ongoing research to tackle the network resource allocation problem for

SDN, there are still unexplored areas in this direction. First, an intelligent admission control

mechanism determining how to admit incoming flows into the network with congested

flow tables is still required. M. Huang et al. in [53] propose to admit a new flow only

when there is a routing path to meet its resource demands. In [58], Z. Guo et al. also

propose to reject the new flow if every pre-generated path contains a switch with a fully-

loaded flow table, arguing that this action can improve network throughput and reduce

the controller’s workload. However, simply dropping the new flows when there is not

enough resource will degrade the user experience and cause profit loss of the DCN service

provider. The admission/rejection decision should be made to maximize the overall benefits

for all users, including both the users of the existing flows and the users of the new flows.

The trade-off between the throughput of existing flows and the acceptance rate of new

flows should be considered. Therefore, a more systematic admission control mechanism

in a software-defined DCN taking the flow table capacity into consideration is in need.

Besides, as one of the resource constraints of software-defined DCN, the limited bandwidth

capacity of the switch-to-controller link is not considered in the previously proposed route

selection algorithms. High flow inter-arrival rate to a switch will cause intensive message

exchanges between switch and controller. As stated in previous section, with auxiliary

connections implemented, different switches will have various switch-to-controller link

19

capacities. This should be considered as one of the constraints when designing routing

rules for the network. Finally, in order to achieve application-requirement-aware resource

allocation, the expression of the application requirements, such as end-to-end delay, in

SDN environment need to be reconsidered due to the unique network architecture.

2.5 Chapter Summary

In this chapter, we first look into the increasing usage of cloud computing and DCN, and

the new network capabilities desired. Then we compare the traditional network architecture

and the SDN architecture. We also review the de facto southbound protocol, OpenFlow of

SDN and its packet matching process. Finally, we examine the new resource limitations

brought by the novel SDN architecture and the resource allocation optimization algorithms

in SDN.

20

CHAPTER 3

QUEUEING ANALYSIS OF AUXILIARY-CONNECTION-ENABLED SWITCHES

3.1 Introduction

The large gap between the data center demand and the current switch-to-controller link

bandwidth will cause packets loss and prolonged flow setup delay, and degrade the network

performance. In order to address this challenge, auxiliary connections were introduced

from OpenFlow 1.3 [26] to exploit the parallelism of switch implementation. By default,

the channel between an OpenFlow switch and controller is a single network connection.

OpenFlow 1.3 proposed to create auxiliary connections besides the main connection be-

tween switches and the controller. According to the specification, the controller is free to

use the various switch connections for sending OpenFlow messages at its entire discre-

tion. The auxiliary connection is already enabled by many open-source SDN controllers

such as OpenDaylight. Besides, some academic works also propose auxiliary connections

are beneficial. However, the auxiliary connection is not fully studied yet at the switch side.

Therefore, an understanding on the potential of auxiliary connections in improving network

performance is a prerequisite for its real-world data center deployment. In this context, an

analytical model which produces evaluation results with realistic data center traffic loads is

indispensable.

Analytical models have been developed for SDN [59, 60, 61, 62, 63, 64], but they

are limited in the following aspects. First, none of them considers auxiliary connections in

their model. Second, the only interaction considered in these works is the packet in process.

They omit the feature/stats request/reply interactions. Furthermore, only [62] considers a

realistic OpenFlow switch with limited buffer space. Without a realistic assumption of the

OpenFlow switch, the models will not be able to capture the accurate network performance,

21

such as packet loss rate. Finally, the validation results are not provided in [59]. In this

context, we propose our model to compensate for these limitations.

In this chapter, we develop a queueing model for auxiliary-connection-enabled switches

with limited buffer space. Since the OpenFlow Specification has been very vague about the

actual implementation, to test its performance, we assume that the auxiliary connections

behave the same as the main connection and they are all referred to as multiple connections

in this chapter. When a new packet from the data plane comes to the switch, if the switch

cannot find a matched entry, it sends a packet in message to the controller via the switch-

to-controller link. It can either only send the packet header with the payload buffered at

the switch, or send the whole packet to the controller without buffering it depending on the

switch implementation. The first approach suffers from the limited switch buffer size, while

the second one suffers from the limited bandwidth of the switch-to-controller link. With

auxiliary connections implemented and the switch-to-controller link limitation addressed,

the second approach is advantageous since it avoids switch buffer overflow. Therefore

in this work, we focus on the second approach, which is also utilized by OpenvSwitch

2.7 and after [65]. The model captures not only the packet in interaction, but also the

stats/feature request/reply interactions, which are of great importance to enable SDN ben-

efits, such as efficient resource allocation. Equations are derived to evaluate the network

performance. The model is validated for lower traffic loads using the network simulator

ns-3 [10], where network protocols including OpenFlow are implemented. Our model is

then used to perform an in-depth analysis of switch performance under realistic data center

traffic loads. In particular, we thoroughly characterize the packet loss rate, average number

of packets in switch, and flow setup delay in the network. With limited hardware resource

available at a switch to build auxiliary connections, our model can serve as a tool to predict

network performance and provision switches with the appropriate number of connections

to satisfy the network QoS requirements. To the best of our knowledge, this is the first

analytical model of auxiliary-connection-enabled OpenFlow switches.

22

Table 3.1: Notations for the queueing model of the auxiliary-connection-enabled switches

S0 Queue node at switch to collect arriving packets
S1 Queue node at switch to send packets to controller
C Queue node at controller
W Number of connections between switch and controller
λS Packet arrival rate to S0 from data plane
λC Packet arrival rate of the controller-generated packets
µS0 Service rate of S0
µ1, µ2, · · ·, µW Individual service rates of the servers in S1
µS1 Overall service rate at S1
µC Service rate of C
β Probability that the packets not sent to controller
α Probability that the packets are finished at controller
N Switch buffer size
i, j, k The number of packets at queue node C, S0 and S1
T Multi-dimensional state space
Q Transition rate matrix
π Steady-state probability vector
THC , THS0, THS1 Average departure rate at C, S0 and S1
LC , LS0, LS1 Average number of customers in C, S0 and S1
LS Average number of packets in switch
PS Packet loss rate of the system
Tsetup Flow setup delay
Tprop Two-way propagation delay

3.2 Analytical Model

In this section we develop and validate the queueing model of auxiliary-connection-enabled

switches as shown in Fig.3.1 and the parameters are listed in Table 3.1.

3.2.1 Queueing Model

The switch is modeled as a two-node queueing network composing of S0 and S1. Node S0

collects all the incoming messages to the switch while S1 sends messages to the controller.

External packets from the network arrive at S0 according to a Poisson process with rate λS .

Its service time is exponentially distributed with rate µS0. We assume that the probability

of packets not being sent to controller is β, e.g., packets from the matched flows. The

messages need to be sent to the controller, e.g., packets from the unmatched flows, will be

23

sent to S1. The multiple connections between the switch and controller are modeled as W

servers of S1, with exponentially distributed service times at rates µ1, µ2 · · ·µW . The total

buffer space at the switch is limited at N and packet loss will happen if the buffer space is

full.

The controller is modeled as a single queue node C with service time, following ex-

ponential distribution at rate µC , which includes both the controller processing time and

the transmission time to switch, and is positively correlated with W since the transmission

time is dependent on the number of connections. The incoming traffic to C is made up

of the messages from the switch, (such as packet in, feature/stats reply) and the controller-

generated messages (such as flow mod, feature/stats request). The second type of messages

is generated according to a Poisson process with rate λC . The incoming traffic to C either

causes a corresponding message to be sent to switch, (e.g., a packet out message will be

sent to the switch for each packet in message) or will be finished at the controller (e.g., the

controller collects the statistics with the stats reply messages). We assume the probability

that the incoming messages are finished at controller is α. Parameter λC and α varies based

on the number of feature/stats request/reply messages in the network, and is used to model

these interactions. Since SDN controller is implemented on a high-power server, we as-

sume the buffer space of C is unlimited. This assumption will be justified in the evaluation

section by the approximated average number of total packets at the controller.

3.2.2 Model Analysis

This queueing model can be analyzed as a three-dimensional continuous time Markov chain

(CTMC) using quasi-birth-death process [66]. Its multidimensional state space T is given

as set of tuples:

T = {(i, j, k)|i, j, k ∈ N0, j + k ≤ N},

where i, j, k is the number of packets in node C, S0, and S1. With i as the level variable,

the transition rate matrix of the CTMC can be grouped into finite sub-matrices with block

24

Figure 3.1: Queueing model of auxiliary-connection-enabled switches for SDN. The switch
is modeled as a two-node queueing network composing of S0 and S1. The controller is
modeled as a single queue node C.

structures: B0, A0, A1, and A2, which is given as:

Q =

T0 T1 T2 T3 · · ·



T0 B0 A0 0 0 · · ·

T1 A2 A1 A0 0 · · ·

T2 0 A2 A1 A0 · · ·

T3 0 0 A2 A1 · · ·
...

...
...

...
... . . .

,

where Ti is a subset of T with the same i value. Moreover, B0 is the transition rate matrix

within level i = 0, and A2, A1, A0 are transition rate matrices from level i to level i − 1,

within level i, and from level i to level i + 1, respectively. Taking j as the second level

variable, each of the matrices can be further grouped into sub-matrices to determine its

elements. The detailed steps are shown in the following.

25

A0

If the value of i increases by 1, the incoming packet at C can come from the controller-

generated messages or from the switch, and thus the value of k does not change or decreases

by 1, respectively. The value of j does not change in both cases. Therefore, A0 can be

structured as:

A0 =

Ti+1,0 Ti+1,1 Ti+1,2 · · · Ti+1,N



Ti,0 C0 0 0 · · · 0

Ti,1 0 C1 0 · · · 0

Ti,2 0 0 C2 · · · 0

...
...

...
...

Ti,N 0 0 0 · · · CN

.

Matrix Cj is dependent on the second level variable j and is a square matrix with size

(N + 1− j)× (N + 1− j).

Cj

(k,k′)∈NN−j×NN−j
=


λC , if k′ = k

µS1, if k′ = k − 1

0, Otherwise

,

where Nn denotes the set of natural numbers {0, 1, · · ·n}, and µS1 is the overall service

rate at queue node S1:

µS1 =


µ1 + · · ·+ µk, if k < W

µ1 + · · ·+ µW , Otherwise
.

26

A2

If the value of i decreases by 1, the outgoing message either goes to S0 or is finished at C,

and thus the value of j increases by 1 or does not change, respectively. The value of k does

not change in both cases. Thus A2 is:

A2 =

Ti−1,0 Ti−1,1 Ti−1,2 · · · Ti−1,N



Ti,0 D0 E0 0 · · · 0

Ti,1 0 D1 E1 · · · 0

Ti,2 0 0 D2 · · · 0

...
...

...
...

Ti,N 0 0 0 · · · DN

,

where

Dj

(k,k′)∈NN−j×NN−j
=


αµC , if k′ = k

0, Otherwise
,

and

Ej

(k,k′)∈NN−j×NN−j−1
=


(1− α)µC , if k′ = k

0, Otherwise
.

Dj is a square matrix with size (N + 1 − j) × (N + 1 − j) and matrix Ej has size

(N + 1− j)× (N − j). Ej is not a square matrix to make sure that the sum of j and k is

still within the switch buffer limitation after the state change.

27

A1

If the value of i does not change, the value of j can increase by 1, decrease by 1, or do not

change. Thus, A1 is structured as following:

A1 =

Ti,0 Ti,1 Ti,2 · · · Ti,N



Ti,0 G0 H0 0 · · · 0

Ti,1 F 1 G1 H1 · · · 0

Ti,2 0 F 2 G2 · · · 0

...
...

...
...

Ti,N 0 0 0 · · · GN

.

If i does not change and j decreases by 1, the output message of S0 can either be

forwarded to S1 with probability 1− β, or be finished at switch with probability β. Thus

F j

(k,k′)∈NN−j×NN−j+1
=


βµS0, if k′ = k

(1− β)µS0, if k′ = k + 1

0, Otherwise

.

Next, we derive the (N+1−j)×(N−j) matrixHj , where j increases by 1 and k does not

change. The incoming packet to S0 is from the external network since i does not change.

Hj

(k,k
′
)∈NN−j×NN−j−1

=


λS, if k′ = k

0, Otherwise
.

The (N + 1 − j) × (N + 1 − j) matrix Gj

(k,k′)∈NN−j×NN−j
is a diagonal matrix, whose

elements stand for the transition rates where the values of i, j, k do not change. It ensures

28

that all elements in each row of Q sum up to 0. Its diagonal elements are:

Gj
(k,k) =



−λC − λS − µC , if j = 0 and k = 0

−λC − λS − µC − µS1, if j = 0 and 0 < k < N

−λC − λS − µC − µS0, if k = 0 and 0 < j < N

−λC − µS1 − αµC , if j = 0 and k = N

−λC − µS0 − αµC , if k = 0 and j = N

−λC − µS1 − αµC − µS0, if 0 < j < N and k = N − j

−λC − λS − µC − µS1 − µS0, if 0 < j < N and 0 < k < N − j

B0

Matrix B0 has the same structure, and sub-matrices F 0,j, H0,j as F j, Hj in A1. The only

difference is the diagonal matrix G0,j , where

G0,j
(k,k) =



−λC − λS, if j = 0 and k = 0

−λC − λS − µS1, if j = 0 and 0 < k < N

−λC − λS − µS0, if k = 0 and 0 < j < N

−λC − µS1, if j = 0 and k = N

−λC − µS0, if k = 0 and j = N

−λC − µS1 − µS0, if 0 < j < N and k = N − j

−λC − λS − µS1 − µS0, if 0 < j < N and 0 < k < N − j

This CTMC process is stable if πAA01 < πAA21, where πA is the steady-state prob-

ability vector of the generator matrix A = A0 + A1 + A2, and 1 is a column vector of

1’s. With a stable CTMC and the transition rate matrix Q constructed, the steady-state

29

probability vector π can be calculated. First, we partition π according to the level variable

i:

π = [~π0, ~π1, · · ·]T ,

where

~πi = [πi,0,0, πi,0,1, · · · , πi,0,N , πi,1,0, · · · , πi,1,N−1, · · · , πi,N,0].

The global balance equations for i > 0 is:

~πi−1A0 + ~πiA1 + ~πi+1A2 = 0. (3.1)

Since ~πi can be defined in terms of ~πi−1 and the transitions between the levels are inde-

pendent of the level number i, a constant rate matrix R is defined to lead to the matrix-

geometric equation:

~πi = ~πi−1R = ~π1R
i−1, i > 0. (3.2)

Substitute Equation (3.2) into Equation (3.1), we obtain

A0 +RA1 +R2A2 = 0 (3.3)

to solve R. To calculate R, we use the Logarithmic Reduction algorithm described in [67].

Finally, the steady-state probability vector ~πi can be obtained using R, the boundary con-

dition:

~π0B0 + ~π1A2 = 0,

~π0A0 + ~π1A1 + ~π2A2 = 0,

and the fact that the sum of all elements in π is 1.

30

3.2.3 Performance Analysis

With the steady-state probability calculated, we derive the equations for main network

performance metrics, including the packet loss rate (PS), average number of packets in

switch (LS), and the flow setup delay (Tsetup).

The average departure rates at C, S0, and S1 are:

THC = µC(1−
∑

(0,j,k)∈T

π0,j,k),

THS0 = µS0(1−
∑

(i,0,k)∈T

πi,0,k),

THS1 = µS1(1−
∑

(i,j,0)∈T

πi,j,0).

In stationary state, the incoming and outgoing traffic at switch obeys the following relation:

[λS + (1− α)THC](1− PS) = β ∗ THS0 + THS1,

and thus the loss rate at switch can be derived. The average number of customers in each

queue node (LC , LS0, LS1) and in the switch (LS) is:

LC =
∑

(i,j,k)∈T

i× πi,j,k,

LS0 =
∑

(i,j,k)∈T

j × πi,j,k,

LS1 =
∑

(i,j,k)∈T

k × πi,j,k,

LS = LS0 + LS1.

The flow setup delay is defined as the time interval between the time that the first packet of

a new flow arrives at the switch and the time it is forwarded by the switch to network. It

31

Table 3.2: Parameter settings for validation and performance evaluation

Parameters Validation Evaluation
λC [packets/s] 70 10k
µC [packets/s] 220W 120000W
λS [packets/s] 25− 370 100k − 1000k
µS0 [packets/s] 2000 1000k
µ1, µ2, · · · [packets/s] 100, 100, · · · 50k, 50k, · · ·
W [connections] [1, 2, 3] [1, 2, 3]
N [packets] 20 10− 120
α 1% 10%
β 80% 87%− 99%

is composed of the queueing delays at the switch and controller and the propagation delay.

Based on Little’s Law [68],

Tsetup =
LS0
THS0

+
LS1
THS1

+
LC
THC

+
LS0
THS0

+ Tprop,

where Tprop is the two-way propagation delay.

3.2.4 Multiple-Switch Network

To utilize the switch model in network with M switches, we assume that for a certain mes-

sage sent from controller to switch, the probability that the destination is switch 1, 2, · · · ,M

is p1, p2, · · · , pM and
∑M

m=1 pm = 1. Thus, the transition rate where switch m receives a

packet from controller is pm(1− α)µC , and transition rate where C receives a packet from

switches is
∑M

m=1 µ
m
S1. The network becomes a 2M +1 dimensional CTMC and the perfor-

mance of each switch can be analyzed following similar procedure as presented above. In

this chapter, the analysis and equation derivation is detailed for the single-switch case for

readers to easier understand the model.

32

(a) Packet loss rate

(b) Number of packets at switch

(c) Flow setup delay

Figure 3.2: Validation for analytical model

33

3.3 Validation through Simulation

We first confirm the mathematical solution using Python simulation [69] and the parameters

are in the “Validation” column of Table 3.2. The simulated queueing model reflects the

structure shown in Fig.3.1. Our analytical results for PS, LS and Tsetup matched exactly

with the simulation results validating the correctness of our analyses.

In order to validate our queueing model in a realistic network environment, we used

ns-3 to simulate an SDN network with OpenFlow and auxiliary connections implemented

[39]. There is one OpenFlow switch with varying number of connections to the controller.

There are 200 hosts attached to the switch and each host starts to send traffic randomly. In

the simulation, we use a realistic traffic generator on each host to relax the assumption of

the Poisson arrival process used in the analytical model. The traffic is ON/OFF and the bit

rate is constant. The actual packet inter-arrival rate to switch (λS) is calculated based on the

simulation results. The “Validation” column of Table 3.2 lists some additional parameters.

The results are shown in Fig.3.2, where each data point is obtained based on ten simulation

runs using different random seeds. With real-world incoming traffic pattern, the simulation

results match well with the theoretical ones indicating that our analytical model is able

to capture the trend of performance changes. The slight mismatch may come from the

difference in the traffic pattern. Besides, the specific implementation of utilized network

protocols, such as TCP congestion control, will also impact the actual performance.

In view of the fact that a single simulation run for a realistic-scaled data center network

takes hours to finish and consumes a great amount of memory, in both parts of the valida-

tion, we scale down the number of events in the simulation to obtain the validation results

in an appropriate amount of time. This fact strengthens the need for an analytical model to

obtain a comprehensive analysis.

34

3.4 Network Performance Evaluation

In this section, we use our analytical model to evaluate switch performance with 1–3

switch-to-controller connections. The parameter settings are from the “Evaluation” col-

umn in Table 3.2. Note that the packet inter-arrival rate is more than 3 orders of magnitude

larger than the value used in this section. With this larger inter-arrival rate, Python sim-

ulation would take several days, the ns-3 simulation would need almost one week, but

evaluation using our analytical model required only seconds. We first approximate the av-

erage number of packets at controller to justify our assumption of adequate buffer space in

controller. Then we vary λS , 1−β (the probability that an incoming packet goes to the con-

troller), and N to evaluate the network performance. Evaluations such as these can be used

to provision switches with an appropriate number of connections based on the expected

traffic characteristics within a deployed network.

3.4.1 Number of Packets in Controller

In order to justify our assumption on the unlimited buffer space of controller, we measure

the number of packets in controller with varying packet arrival rates to the switch as shown

in Fig. 3.3. First, with more number of connections between switch and controller, the

packets will arrive at the controller from switch at a higher rate. However, at the same

time, the more number of connections also enable faster transmission from controller to

switch, so with the same packet arrival rate to the switch, the average number of packets

at the controller decreases with the increasing number of switch-to-controller connections.

For the one-connection case, when the packet arrival rate is greater than 1000k packets/s,

the system becomes unstable due to the limited processing capability at controller. In this

case, the number of packets queueing at the controller will become infinity and cannot

be modeled. When the packet arrival rate is 1000k packets/s and the system is stable, the

number of packets at the switch for the one-connection case is around 72. Since each switch

35

Figure 3.3: Average number of packets at controller

will have separate connections to the controller, for a DCN with 100 switches, the total

number of packets at the controller in this worst case can be estimated as 72× 100 = 7200.

Assuming that each packet is 100 Byte, the required memory space is around 0.7 MB,

which can be achieved in any servers. The packet arrival rate at 1000k per switch is a high

enough number to represent most data centers. Therefore, it is reasonable to assume that

the buffer space at the controller is adequate even in this worst case scenario.

3.4.2 Varying Packet Arrival Rate

As shown in Fig.3.4a, the packet loss rate of the single-connection case increases fast when

λS > 400k packets/s and reaches around 50% when λS = 900k packets/s. On the other

hand, the loss rate does not increase until λS reaches 850k packets/s for the multiple-

connection cases. The three-connection case outperforms the two-connection case but the

improvement (around 1%) is minimal. In this case, the capacity limitation exists in S0, so

increasing the number of connections in S1 cannot improve the performance significantly.

36

Overall, with different traffic load, different number of connections are recommended.

We use the buffer utilization level to indicate the average number of packets stored in

switch (shown in Fig.3.4b). With a smaller packet arrival rate (λS < 400k packets/s), the

switch buffer utilization level stays at a relatively low level for all cases, which corresponds

with a zero packet loss rate. The switch buffer becomes more utilized as λS increases, and

finally is bounded by the buffer size limitation. A high utilization level indicates that the

switch is full most of the time and thus high loss rate is caused. When the utilization level

is greater than 10%, all the cases start to induce packet loss.

Fig.3.4c shows the average flow setup delay. Multiple connections can improve the flow

setup delay by 37-50% with varying λS . According to the queueing theory, the queueing

delay depends on the buffer size. Thus when the buffer utilization level is greater than 90%,

the flow setup delay of the single-connection case stays at a fixed value.

3.4.3 Varying 1− β

The value of 1 − β depends on the network traffic characteristics. For example, if the

average flow length in the network is low, the probability that a packet is the first packet of

a flow and needs to go to the controller is high, which means 1−β is high. In general, when

the probability of the incoming packets going to the controller increases, the performance

(as shown in Fig.3.5) persists a similar trend as λS increases since they both burden S1.

However, while the value of λS impacts the overall load on the switch, including both

S0 and S1, the change of 1 − β will induce different load to S1 specifically. Thus, a

higher processing rate of S1 can improve the performance significantly. The performance

improvement induced by utilizing more connection is much more obvious compared with

the case when we vary λS . For example, when 1 − β = 12%, the three-connection case

induces a notably better performance for all the metrics than the two-connection case.

37

(a) Packet loss rate

(b) Switch buffer utilization

(c) Flow setup delay

Figure 3.4: Network performance with varying λS , N = 100, β = 90%

38

(a) Packet loss rate

(b) Switch buffer utilization

(c) Flow setup delay

Figure 3.5: Network performance with varying 1− β, λS = 800k, N = 100

39

(a) Packet loss rate

(b) Switch buffer utilization

(c) Flow setup delay

Figure 3.6: Network performance with varying N, λS = 800k, β = 90%

40

3.4.4 Varying Switch Buffer Space

As shown in Fig.3.6a, as the switch buffer size increases, the multiple-connection cases can

decrease the loss rate by 30-45% compared with the single-connection case and achieve a

stable service. With varying buffer space available in the switch, the loss rate with single-

connection case stays at 50%, indicating more buffer space is required to provide a stable

service. In general, with more connections in use, the switch requires less buffer to provide

a stable service.

In terms of buffer utilization level as shown in Fig.3.6b, the switch with only one con-

nection tends to be fully occupied all the time, and thus the packet loss rate stays high.

Cases with more connections always generate a lower utilization level. For example, the

three-connection case incurs around 10% less utilization than the two-connection case.

Fig.3.6c shows that the flow setup delay of the single-connection case increases linearly

with the switch buffer size. This linear increase can be justified by queueing theory, which

states that a larger buffer size allows more packets waiting in the queue and thus may cause

a longer delay. With only one connection, more buffer space does not help with the packet

loss rate, but generates a longer flow setup delay instead. On the other hand, with multiple

connections, the switch maintains a low buffer utilization level, and thus the flow setup

delay stays at a lower level.

In summary, the single-connection case requires much larger switch buffer size to main-

tain a stable service than the multiple-connection cases. However, larger buffer size might

incur longer flow setup delay. Furthermore, with different traffic characteristics, different

number of connections are recommended to improve the network performance. Our model

can serve as a tool to find the minimum number of required connections.

41

3.5 Chapter Summary

In this chapter, we propose and validate an analytical queueing model for auxiliary-connection-

enabled OpenFlow switches. This is the first known work to analytically study auxiliary

connections in SDN. An in-depth analysis on the network performance with varying num-

ber of connections between OpenFlow switch and controller is also carried out. Our analy-

sis can be used in the network deployment phase to provision switches with the appropriate

number of auxiliary connections based on expected traffic characteristics. We believe this

model lays the foundation of the deployment of OpenFlow auxiliary connections.

42

CHAPTER 4

ADMISSION CONTROL IN VIEW OF FLOW TABLE CAPACITY

4.1 Introduction

The large gap between the flow table capacity and the data center demand causes prolonged

end-to-end delay of packets and possible congestion on the switch to controller link. With

the default flow table management mechanism defined in OpenFlow 1.3 Switch Specifi-

cation, if a switch cannot find any space in the requested table to add the incoming flow

entry, the switch will send a message to controller and drop the new entry. At the same

time, the incoming packet can be forwarded based on the packet out message. This naive

approach ensures that the existing flow entries will not get dropped, but this will induce

continuous packet in messages to the controller since every packet from the new flows

cannot be matched by the full switches. It burdens the controller with unnecessary process-

ing and causes resource waste at switch if some existing flows are inactive. Although the

flow entries of the existing flows are not removed, the computation and storage resources

consumed by the new flows will affect the existing flows.

Admission control is a process to check if the current resource is sufficient to accept the

new request. In the traditional network, admission control algorithms have been studied

for years. On-line and off-line algorithms were proposed in [70, 71] to gain the maximum

profits and balance the link bandwidth in the network. With the benefits brought by the

centralized controller, several research works focused on using SDN to control the flow

admission in the network. In [72], J. Huang et al. proposed a model for admission control

with flow aggregation. S. Namal et al. in [50] utilized two admission control mechanisms,

namely ”cut-off priority” and ”fractional guard channel” in SDN. J. Leguay et al. in [73]

adapted some key admission control algorithms from the literature in SDN and proposed an

43

admission control meta-algorithm using machine learning technique. However, the afore-

mentioned works focus on proposing an algorithm to make a decision on whether to accept

the incoming flow in view of the link utilization and none of these works consider the flow

table capacity limitation in SDN. SDN flow table overloading attacks and mitigation mech-

anisms were studied in [74] and [75]. They proposed to leverage the unused flow table

space in other switches to install new rules when a switch runs out of its own flow table.

R. Cohen et al. in [52] focused on maximizing the network utilization where the network

forwarding table is limited, but the algorithm can only handle the static scene. A K Similar

Greedy Tree (KSGT) algorithm was proposed in [76] to maximize the number of flows in

the network, constrained by the limited flow table space in SDN switches. However, an

admission control mechanism determining when to admit incoming flows into the network

if the flow table is congested is still required when all the active flows are legitimate.

In this chapter, we propose and analyze a lightweight admission control mechanism for

SDN. It controls the flow entrance to the network when the flow table is congested. The

admission control mechanism is implemented at the controller level and strives to provide

the best QoS to most users and generate good benefits for service providers. Simulations

are carried out using a canonical three-tier data center topology and the mechanism is

thoroughly evaluated in terms of data plane and control plane performance.

4.2 Flow Table Overloading in SDN

The flow table overloading problem in software-defined DCN is analyzed in this section.

We elaborate on the flow table capacity in SDN and some simple flow table management

mechanisms.

4.2.1 Flow Table Capacity

According to the statistics collected in [6], the number of active flows at an access switch of

a datacenter ranges from 1000 to 5000 about 90% of the time. If the flow entry timeout is 60

44

seconds, an average access switch might have roughly 78000 flow entries [1]. Besides, the

aggregation switches and core switches will install more flow rules than the edge switches.

This large demand for flow table capacity incurs scalability problems in data center. First,

when a switch with full flow tables receives a flow mod message from the controller, it

needs to decide if an existing flow entry should be removed to accommodate the new entry.

This results in the contention between new and existing flows. The QoS of the flows cannot

be guaranteed if their entries are removed from the flow table. The extra queuing and

processing delay induced by its removed entry may degrade the users’ experience. Second,

the packet in message will be generated again when future packets from the removed flow

come in. Repeated packet in message processing consumes the computation and storage

resources at both controllers and switches, and limits their capabilities to provide service

to other users. In addition, the repeated packet in messages will cause congestion at the

southbound interface and lead to packet loss. The transmission queue from the switch to

the controller has finite length and will drop the packets if it is full [1]. Almost all the

traffic in the data center utilizes TCP protocol, and thus the packet loss at switch will result

in limited data rate of the traffic and extra congestion in data plane to transmit lost packets.

4.2.2 Existing Flow Table Management

The default flow table management mechanism defined in the OpenFlow Specification

is described in the previous section. It will cause performance degradation and resource

waste. A simple improvement is to remove the least recently used (LRU) entry in the flow

table to accommodate the incoming entries if a switch is full. In general, the LRU entry is

highly possible to be inactive. However, this is not guaranteed to be true. If all the flow

entries are active, removing LRU entry will behave similarly as dropping the new entry. In

addition, iterating through the flow tables to look for the LRU entry incurs extra process-

ing. Moreover, implementing this removing-LRU-entry table management goes against

the founding principle of SDN to delegate all the intelligence to the controller. Thus, a

45

Algorithm 1 Admission Control Algorithm

1: Initialize: switches← [A, B, C,]
2: Initialize: uncongested switches← [A, B, C,]
3: Initialize: rejected count← []
4: Initialize: max←max no retries
5: procedure FLOW TABLE UTILIZATION MONITOR

6: for all switch ∈ switches[] do
7: if flow table utilization of switch > threshold then
8: remove switch from uncongested switches[]
9: else

10: add switch to uncongested switches[]
11: end if
12: end for
13: end procedure
14: procedure PACKET IN EVENT

15: route, out port← calculate route(flow, uncongested switches[])
16: if route = NULL then
17: rejected count[flow] + 1
18: if rejected count[flow]>max then
19: route, out port← calculate route(flow, switches[])
20: rejected count[flow] = 0
21: end if
22: end if
23: if route = NULL then
24: packet out← Drop
25: else
26: packet out← out port, f low mod← route
27: end if
28: end procedure

more intelligent admission control mechanism implemented in the controller is required to

improve the SDN scalability and the QoS of the network traffic.

4.3 Admission Control in Software-defined DCN

The admission control mechanism implemented in data center should be lightweight con-

sidering the large amount of active flows. Besides, balancing the flow table usage while

admitting flow entries to a switch is always more efficient compared to regulating the ex-

isting entries. Finally, the controller should admit a flow only when the switches on the

46

route which the flow will go through can offer enough flow table space. Otherwise, if

the flow is rejected at a bottleneck switch, the flow table space at other switches is un-

necessarily consumed. Based on these principles, we propose a controller level admission

control mechanism in this section. It focuses on restricting new flow entrance on congested

switches while maintaining the data plane performance.

The algorithm is introduced in Algorithm 1. The controller will keep track of the con-

gested switches and the number of times being rejected for each flow (rejected count).

First, The flow table utilization level is monitored by the controller using the flow removed

messages or the flow table statistics from switches. Many controller functions already re-

quire such information from switches so little overhead will be induced by our proposal.

When the flow table utilization level at a switch exceeds a threshold, we define the switch

as congested. Otherwise, the switch is uncongested. Flow table capacity at congested

switches is reserved by setting the threshold. Second, when receiving a packet in message,

the controller will calculate a route with only the uncongested switches for the flow. This

ensures that the flow entries are balanced among the switches. It also makes sure once

the flow is admitted, it will not be dropped by other bottleneck switches, and thus avoids

further congestion at intermediate switches along the route. In brief, routes do not pass

the congested switches will be enforced in the network. Furthermore, if all the switches

are congested and no alternate route can be found (route = NULL), the controller will

instruct the switch to simply drop the packets and no new entry will be installed. Note that

the dropped packets are usually the initial packets of the flows (e.g., ARP Request, SYN

message for TCP flows). In this way, the servers will try to initialize the flow again after

timeout. If the former congested switches become available, the flow will be admitted to

the network and the corresponding flow entries will get installed. 50% of the flows in the

data center last less than 0.1 seconds [6], so the possibility that the congested switches be-

come available is fairly high. At the same time, existing flows will not be affected. This

avoids the repeated packet in messages if the flow is admitted at its first try. If the server has

47

attempted formax number of retries and the switches are still congested, the controller will

admit the flow using the reserved capacity to avoid further delay. If there are multiple con-

trollers in the network, the switch information can be synchronized among the controllers

during the collaboration process, and thus the algorithm is feasible in this case. Depending

on the multi-controller architecture, the admission control mechanism can be deployed ac-

cordingly. In the following sections, we particularly focus on the single controller scenario.

In the following sections, we elaborate on the results of simulation experiments conducted

in a data center network and compare them with respect to data plane and control plane

performance.

4.4 Simulation Setup

Experimentations have been performed using the network simulation software ns-3 to eval-

uate the performance of the proposed admission control mechanism.

4.4.1 Data center Topology

The network topology used in the simulation, as shown in Fig. 4.1, is a canonical three-

tier data center topology. Each of the access layer switches is connected to 15 servers. A

single node acts as the core switch and represents the gateway to other data centers and the

Internet. In this work, the number of aggregation switches and access switches is set to be 3

and 16. The total number of servers in the topology is 240, which can represent a common

scale of a university data center [6]. Network links are all wired links with the following

characteristics:

• Server to Access Switch: 100 Mbps, 1 ms delay

• Access to Aggregation Switch: 10 Gbps, 1 ms delay

• Aggregation to Core Switch: 10 Gbps, 1 ms delay

• Switch to Controller: 17 Mbps [1], 1 ms delay

48

Access Switch

Servers

……

Core Switch

Aggregation Switch

10Gbps, 1ms delay

100Mbps, 1ms delay

…… ………………

Figure 4.1: Data center network topology

The data center traffic in the simulation is set according to real-world measurements in [6].

The transport layer protocol of traffic in data centers is composed mostly by TCP and 80%

of the flow inter-arrival times are between 4ms and 40ms. In our simulation environment,

each flow is targeting at either another server or the Internet. The average flow inter-arrival

time is set to be 4 ms, 8 ms, 16 ms, 32 ms with a Poisson distribution. The application data

rate is 500 kbps.

4.4.2 SDN Implementation

The OpenFlow switch is implemented using OFSWITCH13 module [40]. It includes the

switch network device, the controller application interface, the OpenFlow channel, and

the external ofsoftswitch13 library. The flow table management is implemented using the

ofsoftswitch13 library. The flow table capacity is defined as 1000, which is a typical value

according to [1]. Flow entries will be removed after the flows end to guarantee that all

the entries in the switch are active. All the switches are controlled by a self-implemented

controller running the Dijkstra’s algorithm to calculate the routes in the topology. The

controller is connected to the switch through the controller application interface provided

49

by OFSWITCH13. The threshold is set to be 90% and the max number of retries is 3 based

on simulation test results. We are particularly interested in the robustness of our proposed

mechanism in terms of different traffic inter-arrival time in the network. Different inter-

arrival time indicates different traffic load in a unit time.

4.5 Results and Discussions

In this section, we analyze the simulation results to evaluate the performance of the pro-

posed admission control mechanism. We compare the data plane and control plane perfor-

mance between three cases: with default flow table management, with admission control

mechanism, and the unlimited case where the flow table capacity is sufficient. The un-

limited case serves as a reference in the evaluation but it is not feasible in the real-world

implementation.

4.5.1 Data Plane Performance

To evaluate the data plane performance, we measure the total received data, the TCP con-

gestion window and goodput, the TCP connection attempts before the service is estab-

lished, and the number of services provided to the users.

Total received data

The service provider of data centers will get revenue based on the amount of data trans-

mitted in the network. As shown in Fig. 4.2, we capture the total received data over a 300

seconds interval for the three cases. As expected, the unlimited case achieves the highest

amount of received data. Our admission control mechanism receives around 95% of the

unlimited case while with default management, the received data is only around 75%. The

admission control mechanism increases the total received data by 23-25% compared to the

default management. The mechanism performs stably regarding different flow inter-arrival

time and can handle high flow arrival rate.

50

Figure 4.2: Total received data

TCP congestion control and goodput

One of the service quality provided to the data center clients is goodput. Goodput is defined

as the amount of useful data delivered in a unit time. We study the goodput performance

and its relation to the TCP congestion control mechanism. Originally, the TCP congestion

avoidance mechanism is designed to avoid congestion in the data plane. It assumes network

congestion if a packet is lost. However, with SDN-based network, the packet loss at switch

indicates congestion at the southbound interface and will also lead to a shrinking conges-

tion window of the sender. We monitor the congestion window of the same flow when the

inter-arrival time is 32ms and plot it in Fig. 4.3. The data waiting to be sent at the TCP

socket is also displayed. The difference between the congestion window and waiting data

for each case indicates the data plane performance. With the default table management, the

flow is set up successfully at 25.2 seconds, which is 6 seconds after the flow is initiated.

The congestion window starts to grow but packets loss happens throughout the flow trans-

mission process and the seesaw oscillations are observed. The waiting data accumulates at

51

25 30 35 40 45 50 55
Time [s]

100

101

102

103

Si
ze

 [p
ac

ke
t]

Default Management
Congestion Window

(a) Packet loss rate

(b) Switch buffer utilization

Figure 4.3: The congestion window and buffered data waiting to be sent (a) with default
flow table management, and (b) with admission control and unlimited case.

52

the TCP socket since packets loss happen and congestion window size varies. In this case,

the throughput is limited by the congestion window size. Notice that the goodput will be

lower than throughput since the retransmitted packets are duplicates of the lost ones. With

the unlimited and admission control cases, the congestion window keeps increasing, indi-

cating no packet loss at both data plane and southbound interface. This suggests that the

packets loss in the default management case happens at the southbound interface since all

three cases employ the same data plane capacity. The waiting data is smaller than the con-

gestion window size so the goodput is primarily limited by the application data rate. This

analysis can be verified by their throughput and goodput. The throughput of the default

management case is 1130 kbps while its goodput is only 435 kbps. The throughput and

goodput for the other two cases are both 499 kbps, which is 1kbps less than the application

data rate. The results indicate that our mechanism can reduce packet loss at the SDN switch

and improve goodput.

Request success rate and TCP connection attempts per request

In order to illustrate the user experience of clients, we also measure how many services are

provided to the users successfully and how many TCP connection attempts are initiated be-

fore the service is established. There are 2880 service requests throughout the simulation.

The average request success rate of the unlimited case, admission control case, and default

management case is 99.8%, 98.1%, and 56.0% respectively. Our proposal increases the

number of provided service by 42% compared to the default management case, and per-

forms as good as the unlimited case. Regarding to the number of TCP connection attempts

before the connection is established, the measurements are collected for the successfully

established requests and showed in Table 4.1. More TCP attempts indicate a longer service

setup delay. The number for the unlimited case persists around the same value for differ-

ent flow inter-arrival time, which indicates that the congestion level at the data plane stays

the same. As the flow inter-arrival time decreases, the average number of TCP connection

53

Table 4.1: Average number of TCP connection attempts

Flow Inter-arrival Time 4 ms 8 ms 16 ms 32 ms
Unlimited 1.5 1.4 1.3 1.3
Admission Control 2.6 2.3 1.8 1.4
Default Management 3.3 2.8 2.7 2.6

attempts for the other two cases increases since the SDN southbound interface is more con-

gested due to the limited capacity of the flow table. The admission control mechanism can

reduce an average of one TCP attempt per request from the default management case.

4.5.2 Control Plane Performance

To evaluate the control plane performance, we measure the total number of packet in events

to the controller and the average controller processing delay.

Number of packet in events

Table 4.2 shows the number of packet in events processed by the SDN controller. The num-

ber of the default management case is less than the other two cases since some packet in

messages are dropped at the switch transmission queue and around 40% of the service is

not established as shown in Section 4.5.1. The number for the unlimited case stays around

19160 for varying flow inter-arrival time. Our admission control algorithm incurs 4% to

18% more packet in events than the unlimited case. This is because some flows are not

admitted to the network when the flow table is congested initially. Their retries for con-

nection will generate extra packet in events. As the flow inter-arrival time increases, the

overhead on the number of packet in events decreases.

Average controller processing delay

The controller is running on a workstation with a 4-core 3.2GHz Intel i5-6500 proces-

sor and 7.7 GiB memory. We define the controller processing delay as the time interval

between the controller receives the packet in message from switches and sends out the

54

Table 4.2: Number of packet in events

Flow Inter-arrival Time 4 ms 8 ms 16 ms 32 ms
Unlimited 19168 19165 19166 19160
Admission Control 22727 20463 20232 20018
Default Management 12611 12360 13639 15522

Table 4.3: Controller processing delay [ms]

Flow Inter-arrival Time 4 ms 8 ms 16 ms 32 ms
Unlimited 3.4 1.8 2.5 2.8
Admission Control 8.6 5.3 4.9 3.4
Default Management 0.3 0.4 0.5 0.4

corresponding packet out and flow mod messages. The measurements are summarized in

Table 4.3. The default management case has the lowest processing delay due to its rela-

tively small number of packet in events. The prolonged processing delay of the admission

control case is incurred by the higher number of packet in events and extra processing de-

lay to calculate routes for flows at controller. However, based on the measurements from

[77], the controller response time, which includes the traversal of networking stacks on

both the controller and Cbench sides twice, as well as the processing time of the controller,

can reach to hundreds of milliseconds. The controller processing overhead caused by the

admission control is insignificant in this case.

4.6 Chapter Summary

In this chapter, we present a lightweight controller level admission control mechanism for

software-defined DCN in view of the flow table capacity at switches. It utilizes only the

flow information and statistics collected by the existing controller functionalities. More-

over, an in-depth performance evaluation was carried out based on a canonical data center

topology. In particular, we found that the current flow table management fails to provide

service to 44% of the users and has a relatively long service establishment delay. With a

tolerable number of packet in events and controller processing delay, the proposed mecha-

nism increases the number of services provided by 42% and improves the network goodput

55

by reducing the number of packet loss at switches. The total number of data received is also

increased by 23-25%. We believe this work lays out the foundation for admission control

in a software-defined DCN.

56

CHAPTER 5

HIGH SATISFACTION AND FAIR ALLOCATION OF RESOURCES

5.1 Introduction

In view of the two new resources constraints brought by the SDN architecture, new re-

source allocation algorithms in software-defined DCN need to be investigated. In general,

high demand satisfaction and fairness are two fundamental objectives in resource alloca-

tion that cannot be maximized simultaneously. This motivates the investigation of inherent

trade-offs between the two objectives, where a common approach is to maximize demand

satisfaction subject to some fairness constraints. The existing literature in the field of SDN

resource allocation is discussed as follows. Some research works propose to maximize the

network flows or network throughput in SDN with limited flow table size [52, 54], with-

out considering any fairness constraints among flows. A heuristic algorithm is designed

in [55] to maximize the minimum throughput satisfaction. That work considers only a

simple max-min fairness model and does not allow trade-offs between fairness and satis-

faction. The aforementioned algorithms only consider the flow table size constraint while

the control channel bandwidth is another important constraint for software-defined DCNs.

The controller processing capacity constraint is added to the SDN throughput maximization

problem in [54], but the control channel bandwidth limitation is still omitted. Moreover,

these works focus on maximizing network throughput with limited flow table space. How-

ever, in current DCNs, the data plane link utilization level is relatively low [6], and thus

the throughput demands of users can be easily satisfied. On the other hand, the resource

constraints brought by the unique architecture of SDN are likely to become the bottleneck.

Optimization problems with the objective to improve SDN resource usage have not been

well explored.

57

In this chapter, we address the resource allocation problem in software-defined DCNs,

with the objective to maximize the total satisfaction ratio of the aforementioned two SDN

resources, subject to different fairness constraints. Our approach is to aggregate individ-

ual flows into flow groups and then find the optimal routing paths and the corresponding

resource allocation vectors for each flow group satisfying our objective. Our main contri-

butions are as follows:

• We address the resource allocation problem coupled with satisfaction maximization,

fairness constraints, and routing path selection in software-defined DCNs. The net-

works can better meet resource demands when a combination of fair and efficient

allocation algorithms and intelligent routing decisions is employed. Therefore, in-

stead of fixing the routing and allocating the resources subject to fairness constraints,

we include routing path selection into the optimization problem to better meet the

resource demands. The evaluation results show that deviating from simple shortest-

path routing can improve the satisfaction ratio by 25%-30% while maintaining very

good fairness.

• We investigate different fairness models, including the classical max-min fairness,

simple max-min fairness, and equal share fairness model. The fairness models are

also modified to cooperate with our two-resource satisfaction maximization case.

Moreover, to accommodate various network requirements, we introduce a relaxation

parameter δ ∈ [0, 1] into these fairness models. It allows the network operator to

control the trade-off between total demand satisfaction and fairness.

• We consider joint optimization of the two SDN resources, which leads to better net-

work utilization compared with single-resource optimization.

58

5.2 System Model

In this section, we introduce our system model. The parameters used are listed in Table 5.1.

We consider a scenario where the software-defined DCN is modeled as a graphG = (V,E)

and the flows from each server are aggregated into flow groups at the source switches based

on their destination switches. The set of all aggregated flow groups F = [f1, f2, · · ·, fN]

and fn is defined as:

fn = (sn, tn, Db(n), Dfe(n), Dsc(n)),

where sn and tn is the source and destination switch of fn, and Db(n), Dfe(n), and Dsc(n)

are the total data plane bandwidth demand, flow table demand, and control channel band-

width demand requested by fn, respectively. The previous traffic statistics or the real-time

measurement at switch. can be used to form the demands of flow groups. The flow aggre-

gation step will not only reduce the computation complexity of the optimization problem

significantly, but also help reduce the flow table usage. While SDN enables individual

flow management, this fine-grained control will cause flow table overflow problem. There-

fore, coarse-grained control is used in some cases. For example, in the software-defined

WAN deployed by Google, the flows are aggregated to groups defined by {src, dst,QoS}

for scalability [45]. In this work, we assume that with the flow aggregation, some flow

rules (e.g., rules for the flows with the same source and destination address, and QoS

class, or some mice flows that do not need full control) can be compressed together. With

OpenFlow-enabled switches, the QoS requirement can be achieved by the OpenFlow queue

and meters. The number of flow rules demanded after aggregation depends on the num-

ber of QoS classes enforced in the network, and level of control granularity the service

providers prefer. The flow entries of the same flow group can be placed on the same flow

table to enable easier management for switch. The parameter Dsc(n) is the control channel

bandwidth required to set up the flow entries, collect the statistics, and maintain the flows.

Although these two demands in network are time-varying and the value of Dsc(n) is af-

59

Table 5.1: Notations for system model in Chapter 5

v Switch in SDN
e Data plane link in SDN
V All switches in SDN
E All data plane links in SDN
N Number of flow groups
fn Flow group
sn Source switch of fn
tn Destination switch of fn
Db(n) Total data plane bandwidth demand of fn
Dfe(n) Total flow table demand of fn
Dsc(n) Total control channel bandwidth demand of fn
Pn Path candidates for fn
p Path in Pn
Cb(e) Bandwidth capacity of link e
Cfe(v) Maximum flow table size of switch v
Csc(v) Control channel bandwidth capacity of v
Xn Flow table satisfaction ratio of fn
~X Flow table satisfaction ratio vector
Yn Control channel satisfaction ratio of fn
~Y Control channel satisfaction ratio vector
xpn Whether fn goes through path p
ype Whether path p goes through link e
zpv Whether path p goes through switch v
δ Fairness relaxation parameter
Rfe, Rsc Unsaturated switches in terms of flow table and control channel
Qfe, Qsc Non-bottlenecked flows in terms of flow table and control channel
Ufe(v), Usc(v) Current utilization level of switch v in terms of the two resources
Tfe(v), Tsc(v) Total demands of non-bottlenecked flows on v in terms of the two resources
vfe, vsc The most bottlenecked switch in terms of flow table and control channel

fected by the amount of allocated flow table resource, the changes are smooth. Besides,

since our algorithm can run in an online fashion periodically and tolerate certain amount of

divergence between the real-time traffic and the inputs as discussed later, the current traffic

measurement or previous traffic statistics can be used as input demands.

Simple shortest-path routing may lead to unfavorable cases for resource sharing in the

network. Besides, with SDN deployed, optimized routing becomes possible. Thus in this

work, we explore the resource allocation problem with routing path selections to improve

the optimization results. The number of paths connecting the sources and destinations can

60

Figure 5.1: Simple network model

be of exponential size in network, but in practice, potential paths for routing the traffic are

limited to a specific set and provided ahead of operation time. We thus consider a practical

case where a set of pre-generated paths p for flow group fn are provided as inputs. Let Pn

be the set of p for fn and the size of Pn is k.

Next, we present a simple example as an illustration. Consider the scenario in Fig. 5.1,

where three flows a, b and c are aggregated at switch A. Since flow a and b are destined at

switch B, flow a and b are aggregated as flow group:

f1 = (A,B,Db(1), Dfe(1), Dsc(1)),

where Db(1), Dfe(1), and Dsc(1) are the aggregated data plane link bandwidth, flow table

size, and control channel bandwidth requested by flow a and b. Assuming the number of

flow entries required by a and b is 1, if both flow a and b belong to the same QoS class

and can be aggregated, Dfe(1) = 1. On the other hand, if a and b are from different QoS

classes, Dfe(1) = 2. Dsc(1) is the control channel bandwidth required to maintain flow a

61

and b. Similarly flow c is aggregated as flow group:

f2 = (A,C,Db(2), Dfe(2), Dsc(2)).

Let k = 2, which is the maximum number in this case,

P1 = {(A,B), (A,C,B)},

and

P2 = {(A,C), (A,B,C)}.

Our algorithm should return the optimal routing paths for f1 and f2 on P1 and P2, and

the amount of resource allocated to each group to meet our objective. A feasible solution

should satisfy the following capacity constraints:

• For each flow group fn, the total resources assigned to it should be equal to or less

than its demands.

• For each data plane link e, the total amount of flows going through it should not

exceed Cb(e), where Cb(e) is the bandwidth capacity for link e

• For each node v, the total number of flow entries assigned to the flow groups should

not exceed Cfe(v), where Cfe(v) is the total number of flow entries of all flow tables

at v.

• For each node v, the total traffic going through its control channel should not exceed

its capacity Csc(v).

62

5.3 Satisfaction Maximization and Fairness

5.3.1 Satisfaction Maximization

Since maximizing the actual amount of resources might lead to unfair solutions where a

high-demanded group only gets a small fraction of resources, we ensure the first level of

fairness in the allocation problem by targeting on maximizing the ratio between allocation

and demand for each group.

The satisfaction ratio of the flow table demand for flow group fn, Xn ∈ [0, 1], is defined

as the ratio between the allocated flow table space for fn on the selected path, and its

demand Dfe(n). If Xn < 1, cases will happen where a new flow comes into the network

and the allocated flow table resources are already fully used. As introduced in Chapter 2,

the switch will evict another entry of the same flow group based on certain eviction rules

and install the new entry. However, when the packets from the evicted entry come into the

network, they will experience extra delay due to the new flow entry setup process. The

satisfaction ratio of control channel bandwidth demand, Yn ∈ [0, 1], is defined in a similar

way. The satisfaction ratio vectors/resource allocation vectors of the two resources are

~X = [X1, X2, · · ·, XN], and ~Y = [Y1, Y2, · · ·, YN]. The overall satisfaction ratio of a flow

group is the sum of the two individual ratio (Xn + Yn). We target on maximizing the total

overall satisfaction ratio of all the flow groups. Additional constraints on the value of Xn

and Yn are set to avoid highly unbalanced solutions as discussed in next section. Since the

data plane link utilization level is relatively low in DCNs [6], we assume that the data plane

bandwidth can always be well satisfied, and so we do not include it in the maximization

objective.

Let the variable xpn ∈ {0, 1} denote whether flow fn goes through path p ∈ Pn or not,

and variable ype , z
p
v ∈ {0, 1} denote whether path p goes through link e and node v or not.

63

The capacity constraints can be presented as:

∑
n≤N

∑
p∈Pn

xpny
p
e · 1 ·Db(n) ≤ Cb(e) ∀e ∈ E (5.1)

∑
n≤N

∑
p∈Pn

xpnz
p
v ·Xn ·Dfe(n) ≤ Cfe(v) ∀v ∈ V (5.2)

∑
n≤N

∑
p∈Pn

xpnz
p
v · Yn ·Dsc(n) ≤ Csc(v) ∀v ∈ V (5.3)

∑
p∈Pn

xpn = 1 ∀n ≤ N (5.4)

Dfe(n) is defined as the number of flow entries required by the fn, which should be an

integer. Since we are considering aggregated flow groups in this work, the value of Dfe(n)

is at the level of hundreds and the flow table capacity is at the level of thousands. Allowing

the value of XnDfe(n) to be fractional when solving the optimization problem, and round-

ing it to its nearest integer when deploying the network will not affect the performance

significantly, but will improve the computation efficiency by a substantial amount.

We refer to the Pure Maximization case as the optimization problem with the objective

to maximize the total satisfaction ratio in the network for all flow groups subject to the

above resource constraints. However, since each flow group represents all the flows gener-

ated from a single switch, fairness should also be considered to avoid severely biased cases

where some flow groups are poorly satisfied in the Pure Maximization problem. In order

to address this issue, we consider different fairness models as constraints.

64

5.3.2 Fairness Models

Simple max-min fairness

We first consider a simple max-min fairness model. The allocation vectors ~X∗ and ~Y ∗ is

said to be simple max-min if min(~X∗) and min(~Y ∗) is maximized among all the possible

routings and allocations. Our objective is to seek the maximum satisfaction ratio among

all the simple max-min guaranteed allocations. This optimization can be formulated as

a mathematical problem composing of two sub-problems: the Max-Min problem to cal-

culate the maximized minimum satisfaction for all flow groups, and the total Satisfaction

Maximization problem. The Max-Min problem is defined as:

maximize α + β

subject to Eq(5.1)− Eq(5.4)

Xn ≥ α ∀n ≤ N

Yn ≥ β ∀n ≤ N,

and the Satisfaction Maximization problem is:

maximize
∑
n≤N

Xn +
∑
n≤N

Yn

subject to Eq(5.1)− Eq(5.4)

C1 : Xn ≥ δ · α∗ ∀n ≤ N

C2 : Yn ≥ δ · β∗ ∀n ≤ N,

where α∗ and β∗ are the solution to the first sub-problem.

Instead of setting Xn + Yn ≥ α + β, we tighten the constraints by setting Xn ≥ α and

Yn ≥ β. This avoids the highly suboptimal solutions of very large Xn with very small Yn

or vice versa. Constraints C1 and C2 in the Satisfaction Maximization problem enforce the

fairness constraint by making sure that each flow group has a minimum overall satisfaction

65

ratio at δ(α + β)∗. The fairness relaxation parameter δ ∈ [0, 1] allows controlled trade-

offs between satisfaction and fairness. When δ = 1, the solution leads to perfect simple

max-min fairness with the minimum satisfaction ratio maximized. The fairness constraint

is relaxed as δ decreases and when δ = 0, the optimization problem corresponds to the Pure

Maximization case with no fairness constraint.

Classical max-min fairness

The classical max-min fairness is said to be achieved by an allocation if and only if the al-

location is feasible and an attempt to increase the allocation of any participant necessarily

results in the decrease in the allocation of some other participant with an equal or smaller

allocation. The classical max-min fair allocation can be obtained by a progressive filling

algorithm where the allocation for each user starts from 0. Since our objective is to achieve

fairness in terms of the satisfaction ratio with two resources, we propose a slightly differ-

ent algorithm than the conventional progressive filling method as described in Algorithm 2.

The algorithm seeks classical max-min for the flow table satisfaction ratio and control chan-

nel satisfaction ratio separately. The evaluation results show that this method can actually

achieve a high and fair allocation for both resources at the same time. In Algorithm 2, pa-

rameters Rfe, Rsc denote the unsaturated switches in terms of flow table and control chan-

nel, and Qfe, Qsc denote the non-bottlenecked flows for the two resources. Ufe(v), Usc(v)

and Tfe(v), Tsc(v) are the current utilization level and total demands of non-bottlenecked

flows on switch v, respectively. Since our optimization objective is the satisfaction ratio,

we define the most bottlenecked switch vfe, vsc based on Tfe(v), Tsc(v), instead of the num-

ber of flows on switch v as in the conventional progressive filling algorithm. Besides, the

increment of Xn, Yn is also based on the satisfaction ratio.

66

Algorithm 2 Classical Max-min Fairness Algorithm with Two Resources
Input: Feasible routing paths assignment xpn, traffic demands matrices

Output: ~X, ~Y

1: Initialize : ~X ← ~0, ~Y ← ~0, Rfe ← V,Rsc ← V

2: Initialize: Qfe ← F,Qsc ← F,Ufe ← ~0, Usc ← ~0

3: Initialize: Tfe(v) =
∑

fn∈Qfe

∑
p∈Pn

xpnz
p
vDfe(n)

4: Initialize: Tsc(v) =
∑

fn∈Qsc

∑
p∈Pn

xpnz
p
vDsc(n)

5: while Qfe 6= ∅ or Qsc 6= ∅ do

6: vfe = argminv
Cfe(v)−Ufe(v)

Tfe(v)
, ∀v ∈ Rfe

7: vsc = argminv
Csc(v)−Usc(v)

Tsc(v)
, ∀v ∈ Rsc

8: Xn+ = min(
Cfe(vfe)−Ufe(vfe)

Tfe(vfe)
,min∀fn∈Qfe

(1−Xn)) ,∀fn ∈ Qfe

9: Yn+ = min(Csc(vsc)−Usc(vsc)
Tsc(vsc)

,min∀fn∈Qsc(1− Yn)), ∀fn ∈ Qsc

10: Ufe(v) =
∑

n≤N
∑

p∈Pn
xpnz

p
v ·Xn ·Dfe(n)

11: Usc(v) =
∑

n≤N
∑

p∈Pn
xpnz

p
v · Yn ·Dsc(n)

12: Rfe ← {v|Cfe(v)− Ufe(v) > 0}

13: Rsc ← {v|Csc(v)− Usc(v) > 0}

14: Qfe ← {fn|fn spans only on v ∈ Rfe and Xn < 1}

15: Qsc ← {fn|fn spans only on v ∈ Rsc and Yn < 1}

16: end while

Furthermore, in our case, the resource allocation is coupled with routing path selection

and thus the solution cannot be obtained using only the progressive filling algorithm, where

the routing paths should be provided as inputs. To solve this problem, a brute-force method

which evaluates all possible routing paths and selects the best one can return the optimal

solution, but since brute-force is not scalable in a large network, we propose a heuristic

approach to approximate the brute-force method. With a proper initial routing path, the

total satisfaction is calculated subject to the classical max-min fairness constraint. Next,

the rerouting of the bottlenecked flows is considered. The possible reroutings are evaluated

67

greedily by starting with the flows at the most bottlenecked switch. To reduce the compu-

tation complexity, we only consider rerouting each flow once and set a limit on how many

reroutings will be explored in each run. Finally, the routing path selections xp∗n and the

allocation vectors ~X∗, ~Y ∗, which generate the highest total satisfaction ratio with classical

max-min fairness, are selected.

To relax the fairness constraint, after we get the optimal routing path selection xp∗n and

the allocation vectors ~X∗, ~Y ∗, we allow the actual satisfaction ratio for fn (Xn and Yn) to

be in the range of [δX∗n,
X∗n
δ
] and [δY ∗n ,

Y ∗n
δ
], where δ ∈ [0, 1]. The maximum satisfaction

ratio and the corresponding routing paths can be obtained with the following optimization

problem:

maximize
∑
n≤N

Xn +
∑
n≤N

Yn

subject to Eq(5.1)− Eq(5.4)

δX∗n ≤ Xn ≤
X∗n
δ
∀n ≤ N

δY ∗n ≤ Yn ≤
Y ∗n
δ
∀n ≤ N.

Equal Share

Another fairness model considered in this work is strictly equal share, where all the flow

groups should achieve the same level of satisfaction, which leads toX1 = X2 = ···XN = α

and Y1 = Y2 = · · ·YN = β. This allocation will achieve optimal Jain’s fairness index [78].

The maximum satisfaction ratio with equal share fairness guaranteed can be obtained by

solving the following optimization problem:

maximize α + β

subject to Eq(5.1)− Eq(5.4)

Xn = α ∀n ≤ N

Yn = β ∀n ≤ N.

68

In order to relax the fairness constraint with parameter δ, the following problem needs to

be solved:
maximize

∑
n≤N

Xn +
∑
n≤N

Yn

subject to Eq(5.1)− Eq(5.4)

C3 : δα∗ ≤ Xn ≤
α∗

δ
∀n ≤ N

C4 : δβ∗ ≤ Yn ≤
β∗

δ
∀n ≤ N,

where α∗ and β∗ are the solution to the previous problem. Parameter δ ∈ [0, 1] allows

control of how tightly the solution achieves the fairness objective.

5.4 Performance Evaluation

5.4.1 Simulation Setup

The network topology used for performance evaluation is a fat-tree topology [79] as shown

in Fig. 5.2, which has been widely used in DCNs. The topology contains 4 core switches, 8

aggregation switches, and 8 edge switches, which can represent a typical scale of a private

data center [6]. Each edge switch is connected to hundreds of servers and the flows are

aggregated into groups such that, for each edge switch, there is one flow group destined

to every other edge switch. The bandwidth of the data plane links are 10 Gbps and the

flow tables of switches are limited to 2000 entries. In this work, we focus on smaller-size

DCN and the flow table size is set to match the Broadcom chipset [2] capability, which can

be used in smaller DCN, such as private DCN, due to cost control. Newer generations of

OpenFlow switches can support larger flow table size and can be used in large enterprise

DCN, but in large DCN, the number of flows would be dramatically high and the flow table

size is still not sufficient. The same problem exists and needs to be addressed. Multiple

connections between switch and controller are proposed in OpenFlow 1.3 and analyzed

in [80]. Thus, we assume the control channel bandwidth is 200 Mbps for the core switches,

and 100 Mbps for the aggregation and edge switches. The individual demands are gener-

69

Figure 5.2: Simulation topology

ated randomly according to a uniform distribution and all the results are obtained based on

eight random trials.

5.4.2 Running Time

The optimization problems are solved using Gurobi 8.0.1 [81] on a 4-core 3.2GHz Intel i5-

6500 processor with 7.7 GB memory and running Linux Mint 17.3. The Gurobi Optimizer

is a state-of-the-art solver for mathematical programming. The basic strategy involved is to

use a linear-programming based branch-and-bound algorithm. Specifically, the solver first

removes all of the integrality restrictions to obtain the linear-programming relaxation of

the original problem. Then, a branch-and-bound algorithm is performed to search system-

atically for the optimal integer solution. The remarkable improvements in solving mixed

integer programming have been witnessed in recent years and advance the solver. For ex-

ample, the advanced preprocessing techniques, which is utilized in the Gurobi solver, can

70

Figure 5.3: Satisfaction ratio comparison among algorithms

be performed before the branch-and-bound algorithm to limit the size of the branch-and-

bound tree.

The average running times for the joint optimization cases in Section 5.4.3 with simple

max-min and equal share fairness model are 0.93s and 0.20s, respectively. Due to multiple

iterations in the classical max-min fairness algorithm, its average running time is 70.2s.

The traffic in a DCN is relatively stable on the timescale of a few seconds up to a few

minute [82]. In addition, only the amounts of the three demands need to be collected for

calculation, which will incur only a very small overhead in the network. Given these con-

ditions, our algorithm can be run periodically in an online fashion to optimize the network

resource allocation.

71

5.4.3 Comparison of Algorithms

We first compare the satisfaction ratio in terms of the two SDN resources under different

optimization scenarios as shown in Fig. 5.3. The total demands for the two SDN resources

are set to be larger than the network capacity with the average demand being 200 flow

entries and 10 Mbps bandwidth per group. The optimization scenarios include: 1) the

Pure Maximization case with no fairness constraint, 2) the optimization cases for a single

resource (Flow Table Only or Control Link Only) with simple max-min fairness, 3) the

jointly optimized cases for both resources with different fairness constraints, and 4) the

optimization case with Shortest Path routing and simple max-min fairness.

First, as expected, the Pure Maximization case achieves the highest satisfaction ratio

for both resources. However, it will generate undesirable solutions where some of the

flow groups get very low satisfaction ratio. On average, 7% of the flow groups get 0%

satisfaction ratio for flow table space and 13% of the flow groups get 0% satisfaction ratio

for the control channel resource. To make things worse, the flow groups receiving no flow

entry resource are not identical to the flow groups receiving no control plane resource.

Thus, some resources are wasted with pure maximization since a flow group cannot be

routed successfully with only one SDN resource.

Second, utilizing optimized routing shows substantial improvement compared with the

Shortest Path case. Shortest path routing is 30% and 25% worse compared with the op-

timized routing case with simple max-min fairness enforced, in terms of flow table and

control channel satisfaction.

Lastly, when the allocation of a single resource is set as the optimization target (Flow

Table Only and Control Link Only), the satisfaction ratio of the targeted resource is slightly

better than the corresponding jointly optimized case, but it causes around 10% satisfaction

degradation on the other resource. This fact emphasizes the need to jointly optimize the

allocation of the two resources. The jointly optimized cases with all three fairness objec-

tives produce well-balanced allocation of the two resources, and achieve almost as good a

72

satisfaction ratio as the targeted resource in the single-resource optimization cases.

Next, we will elaborate on the difference between the fairness models and the impacts

of fairness relaxation. Since the satisfaction ratios of the two SDN resources can be opti-

mized jointly with all three fairness models as shown in Fig. 5.3, we only show the overall

satisfaction ratio (the sum of the two individual ratios) in the following analyses.

5.4.4 Comparison of Fairness Models

As the traffic in DCNs has grown dramatically in recent years and there is an increasing

need to manage the traffic with finer-grained control, the SDN resources might not be suf-

ficient to satisfy the demands of all flow groups. We scale up the demands from where the

network resources are sufficient to where resources are insufficient and resource allocation

optimization is required, and study the performance using the different fairness models.

The overall satisfaction ratios and Jain’s fairness index achieved under different demand

scalings are shown in Fig. 5.4. A demand scaling of x means x times the baseline demand

(100 flow entries and 5 Mbps bandwidth per group on average).

When demand scaling is low, all models achieve the maximum satisfaction ratio of 2.0.

As demand scaling increases, the overall satisfaction ratio as shown in Fig. 5.4a decreases,

and the pure maximization model achieves higher satisfaction than the other approaches.

However, as discussed before, the solution to the pure maximization is undesirable due

to unfairness and resource waste. For the other three fairness models, the simple max-

min model yields the highest satisfaction ratio while the equal share model generates the

lowest at first, but as the demand scaling factor keeps increasing, the benefits of the simple

max-min over the classical max-min in terms of the overall satisfaction ratio diminishes

and finally, all the three models achieve similar satisfaction ratios. Based on the individual

satisfaction ratio of the flow groups, we find that with high demands in the network, the

three fairness models tend to generate the similar allocation as discussed in the following

subsection.

73

(a) Satisfaction ratio with varying demand scaling

(b) Jain’s fairness index with varying demand scaling

Figure 5.4: Algorithm performance with demand scaling

74

(a) Flow table satisfaction ratio distribution

(b) Control channel link satisfaction ratio distribution

Figure 5.5: Satisfaction ratio distribution

75

As for the fairness index, when the demand scaling is low, all models achieve perfect

fairness since all the flow groups can get the satisfaction ratio at 2.0. As the demand scaling

increases, the equal share model still achieves perfect fairness as expected, with the trade-

off of low average satisfaction ratio as shown in Fig. 5.4a. The pure maximization model

shows a sharp decrease and when the demand scaling factor reaches 6, the fairness index of

the pure max algorithm is only around 0.3. The fairness index of the other two models both

maintain at a reasonable level with varying demand scaling and the simple max-min model

has higher fairness index than the classical max-min model at first. When the demand

scaling is large, e.g., the demand scaling is 6, the fairness index of the classic max-min

model increases again since different models tend to generate similar allocation with high

demands in the network.

To compare the fairness approaches more closely, we investigate the satisfaction ratios

for each flow group when demand scaling is 3 as shown in Fig. 5.5. For both resources, pure

maximization causes a severe bias where some groups get 0% satisfaction, which means

the access to the network for these flow groups is denied, while other groups get perfect

satisfaction. With equal share model, all flow groups obtain equal satisfaction ratio for

the two resources as expected. For the two max-min models, the majority of flow groups

obtain the same satisfaction ratio as with equal share fairness. A few groups get higher

satisfaction than others and thus a higher total satisfaction ratio is achieved than with the

equal share model. With the classical max-min model, the flow groups are partitioned to

several clusters (usually the number of clusters is very small) and within each cluster, all

flow groups achieve exactly the same satisfaction. As the demand scaling increases, the

allocation of both the max-min models converges to the equal share model.

5.4.5 Fairness Relaxation

Finally, the impacts of the fairness relaxation parameter δ are studied. When δ = 0, the

optimization problems with different fairness objectives all become a pure maximization

76

(a) Achieved overall satisfaction ratio compared with pure maximization [%]

(b) Jain’s fairness index

Figure 5.6: Algorithm performance with varying relaxation parameter

77

problem. We show the overall satisfaction ratio degradation compared with the pure max-

imization when demand scaling is 3 with varying δ. The results are shown in Fig. 5.6. As

the fairness requirement is tightened, the achieved satisfaction ratio decreases as shown in

Fig. 5.6a. When δ < 0.6, the degradation of the three models is the same because the

fairness constraint is too relax to take a significant effect among different models. As δ

keeps increasing, simple max-min fairness tends to achieve the highest satisfaction ratio.

With perfect fairness, the performance degradation compared with the pure maximization

algorithm of the simple max-min, classical max-min, and equal share model are 10%, 12%,

and 17%, respectively.

We also investigate Jain’s fairness index of the satisfaction ratio as displayed in Fig. 5.6b.

When the fairness requirement is relaxed (δ < 0.6), the three models all produce the same

fairness index. Combined with the satisfaction ratio results, we can infer that with relaxed

fairness requirement, the three models produce identical results. As δ increases, while the

simple max-min model leads to the highest satisfaction ratio, it also generates a slightly

higher fairness index than the classical max-min model. The equal share model achieves

the highest fairness index and will reach the optimal Jain’s index when δ = 1.0.

In summary, the parameter δ allows control of how tightly the solution achieves the

specified fairness objective. This produces a range of solutions that allow for controlled

trade-offs between satisfaction and fairness. This would be very useful in scenarios where

performance is critical and lower fairness index can be tolerated. Performance and fairness

trade-off can be achieved by choosing the proper δ and fairness model. A service provider

can determine the best fairness possible for a given minimum performance threshold or

determine the best performance for a given minimum fairness threshold.

5.5 Chapter Summary

In this chapter, we address the high satisfaction and fair allocation of resources in software-

defined DCNs, including routing path selection. Our approach is to aggregate individual

78

flows into flow groups and then find the optimal routing paths and the corresponding re-

source allocation vectors for each flow group. We jointly optimize the allocation of flow ta-

ble and control channel resources with different fairness constraints. The joint optimization

algorithm outperforms the single-objective algorithm and fixed routing algorithm. Three

fairness models are compared and a mechanism to relax these constraints is studied. The

results show that the simple max-min model is more flexible than the other two and can

achieve a better balance in terms of satisfaction ratio and fairness. Besides, the fairness

relaxation parameter allows the service provider to control the trade-off between perfor-

mance and fairness. In next chapter, we will consider the problem of delay-guaranteed fair

allocation of resources in software-defined DCN.

79

CHAPTER 6

DELAY-GUARANTEED FAIR ALLOCATION OF RESOURCES

6.1 Introduction

SDN is proposed to improve the QoS provisioning for various network applications in

DCN [83]. For example, the interactive applications (e.g., web search, video call) are

delay-sensitive, while the background applications (e.g., data synchronization) are through-

put sensitive. SDN can be utilized to provision the network based on their performance re-

quirements. However, the novel architecture of SDN brings new challenges to this problem.

Besides the new resource limitations in SDN we addressed in previous chapters, another

challenge is that the end-to-end delay in SDN networks is different from the delay in tra-

ditional network. When an SDN switch receives a packet, it iterates through its flow tables

for matched entries. If the matched entry exists, it will forward the packet to the data plane

accordingly. Otherwise, the switch will send a message to the controller for instruction.

We refer to the data plane delay as the sum of the entry lookup time and the transmission

and propagation delay in the data plane. The control plane delay is regarded as the time

the switch used to consult the controller, including the transmission and propagation delay

of the packet in/packet out message, the controller processing delay, etc. If a matched en-

try exists, the end-to-end delay of the packet only consists of the data plane delay, which

is different from the one in traditional network due to the new entry lookup time. More-

over, if there is no matched entry, the end-to-end delay will involve both the data plane

delay and control plane delay. According to the measurements in [84], the delay at SDN

switches contributes a large proportion to the entire delay. Therefore, a new expression for

the end-to-end delay in SDN considering both the data plane and control plane delay is in

need.

80

Some research works have studied the multi-class traffic management problem in SDN [14,

49, 57] to provide delay guarantee for high priority traffic, such as the interactive traffic,

but they are limited in the following aspects. First, they focus on optimizing the data plane

bandwidth allocation without considering the resource limitations brought by the SDN ar-

chitecture. However, in current DCNs, the data plane link utilization level is relatively

low [6], and thus the throughput demands of users can be easily satisfied. On the other

hand, the resource constraints brought by the unique architecture of SDN are likely to

become the new bottleneck. Optimization problems considering the new resource con-

straints should be explored. Second, the soft or hard delay guarantee offered in [14, 49,

57] only involves the packet transmission and propagation delay on data plane links. In

SDN, however, the end-to-end delay must also incorporate delays associated with control

functions. Third, the fairness models utilized in [14, 57] obey the strict priorities between

traffic classes. Although fairness within a single traffic class is achieved, these models sim-

ply favor the allocation for higher priority flows and thus fairness between traffic classes

is ignored. Finally, our work [85] in previous chapter studies the fair resource allocation

problem with SDN-specific constraints, but delay requirements of flows are not considered.

In this chapter, we formulate the delay-guaranteed fair resource allocation problem in

software-defined DCN, with the objective to maximize the total satisfaction ratio of the

aforementioned two SDN resources, subject to the fairness and delay constraints. Our

approach is to aggregate individual flows into flow groups and then find the optimal routing

paths and the corresponding resource allocation vectors for each flow group satisfying our

objective. Our main contributions are as follows:

• We address the resource allocation problem coupled with satisfaction maximization,

fairness constraint, delay constraint, and routing path selection in software-defined

DCNs.

• The end-to-end delay constraint for each packet, considering both the control plane

delay and data plane delay in SDN, is derived using queueing theory. To the best of

81

Table 6.1: Notations for system model in Chapter 6

v Switch in SDN
e Data plane link in SDN
V All switches in SDN
E All data plane links in SDN
N Number of flow groups
fn Flow group
sn Source switch of fn
tn Destination switch of fn
Db(n) Total data plane bandwidth demand of fn
Dfe(n) Total flow table demand of fn
Dsc(n) Total control channel bandwidth demand of fn
Pn Path candidates for fn
p Path in Pn
Cb(e) Bandwidth capacity of link e
Cfe(v) Maximum flow table size of switch v
Csc(v) Control channel bandwidth capacity of v
dn Worst case end-to-end delay of fn
dreqn Delay requirement of fn
Xn Flow table satisfaction ratio of fn
~X Flow table satisfaction ratio vector
Yn Control channel satisfaction ratio of fn
~Y Control channel satisfaction ratio vector
xpn Whether fn goes through path p
ype Whether path p goes through link e
zpv Whether path p goes through switch v
δ Fairness relaxation parameter

our knowledge, this is the first work to provide a solution to the resource constrained

delay-guarantee problem considering the unique architecture of SDN.

• In order to accommodate various network requirements, we introduce a relaxation

parameter δ ∈ [0, 1] into the fairness model. It allows the network operator to control

the trade-off between total demand satisfaction and fairness.

6.2 Delay-Guaranteed Fair Resources Allocation

In this Section, we first present the system model, followed by the optimization goal. Then

the fairness model with a relaxation mechanism is introduced.

82

6.2.1 System Model

In this work, we consider two broad traffic types:

• Delay-sensitive flows such as those from interactive applications. They take up a

small portion of the overall traffic but are highly sensitive to delay – even small delay

increases can severely degrade the user experience.

• Non-delay-sensitive flows such as those from background traffic. They have a large

bandwidth demand but are insensitive to delay.

The system model follows the model in Chapter 5, but with the new delay consideration.

We briefly describe the updated system model here and the parameters used in this chapter

are listed in Table 6.1. In the new system model, flow group fn is defined as:

fn = (sn, tn, Db(n), Dfe(n), Dsc(n), d
req
n),

where parameters sn, tn, Db(n), Dfe(n) and Dsc(n) are defined in previous chapter. dreqn

indicates the delay requirement of fn. Delay-sensitive flows require a bounded end-to-end

delay for each packet while the delay requirements for non-delay-sensitive flows are set to

∞ since they are insensitive to delay. As shown in the simple example of Fig. 5.1, the new

flow groups f1 and f2 becomes:

f1 = (A,B,Db(1), Dfe(1), Dsc(1), 100ms),

and

f2 = (A,C,Db(2), Dfe(2), Dsc(2),∞).

In this chapter, we also explore the resource allocation problem with routing path selections

to improve the optimization results. A set of pre-generated possible paths p for each flow

group fn are provided as inputs.

83

Our algorithm should select the optimal routing path for fn on Pn, and return the amount

of resource allocated to each group to meet the objective. A feasible solution should satisfy

the following constraints:

• For each flow group fn, the resources assigned to it should not exceed its demands.

• For each data plane link e, the total amount of flows going through it should not

exceed its bandwidth capacity Cb(e).

• For each node v, the total number of flow entries assigned to the flow groups should

not exceed its flow table size Cfe(v).

• For each node v, the total traffic going through its control channel should not exceed

its capacity Csc(v).

• For each fn, the worst-case end-to-end delay dn for each packet does not exceed its

delay requirement dreqn .

6.2.2 Satisfaction Maximization with Bounded Delay

The satisfaction ratio of the flow table demand and control channel link demand Xn and

Yn are defined in the same way as in previous chapter. We target on maximizing the total

overall satisfaction ratio of all flow groups. The constraints can be expressed as:

∑
n≤N

∑
p∈Pn

xpny
p
e · 1 ·Db(n) ≤ Cb(e) ∀e ∈ E (6.1)

∑
n≤N

∑
p∈Pn

xpnz
p
v ·Xn ·Dfe(n) ≤ Cfe(v) ∀v ∈ V (6.2)

∑
n≤N

∑
p∈Pn

xpnz
p
v · Yn ·Dsc(n) ≤ Csc(v) ∀v ∈ V (6.3)

84

∑
p∈Pn

xpn = 1 ∀n ≤ N (6.4)

dn ≤ dreqn ∀n ≤ N (6.5)

Constraint Eq (6.1) - Eq (6.4) are the network capacity constraints as defined in Chapter 5.

Eq (6.5) defines the new delay constraint.

6.2.3 Priority and Fairness Model

Instead of obeying the strict priorities between different traffic types, we offer a soft priority

based on their delay requirements. The delay-sensitive flows will have a higher priority

since they have tightener delay requirements. Once the delay requirements of the delay-

sensitive flows are satisfied, the resources are allocated fairly to all flow groups.

We use the simple max-min fairness described in previous chapter since it is more

flexible than the other two models. This optimization problem can be formulated as a

mathematical problem composing of two sub-problems: the Max-Min problem to calculate

the maximized minimum satisfaction ratio for all flow groups, and the total Satisfaction

Maximization problem. The Max-Min problem is defined as:

maximize α + β

subject to Eq(6.1)− Eq(6.5)

Xn ≥ α ∀n ≤ N

Yn ≥ β ∀n ≤ N,

85

and the Satisfaction Maximization problem is:

maximize
∑
n≤N

Xn +
∑
n≤N

Yn

subject to Eq(6.1)− Eq(6.5)

C1 : Xn ≥ δ · α∗ ∀n ≤ N

C2 : Yn ≥ δ · β∗ ∀n ≤ N,

where α∗ and β∗ are the solution from the first sub-problem, and δ is the fairness relaxation

parameter.

6.3 End-to-End Delay in SDN Networks

In order to calculate the end-to-end delay and derive the delay constraints in SDN, we

first introduce a general queueing model (Section 6.3.1) as shown in Fig. 6.1 and then we

incorporate the system model parameters into it (Section 6.3.2). The parameters used in

the queueing model are listed in Table 6.2.

6.3.1 Queueing Model for SDN

For an SDN switch v, node S0 collects all the incoming messages. External packets from

the data plane arrive at S0 at an average rate of λS . These packets include packets from

directly connected hosts and packets from other switches. S0 also collects the messages

from the controller, which will be elaborated on later. We assume the average service rate

of S0 is µS0. The probability for the data plane packets not being sent to controller, e.g.,

packets from the matched flows, is 1 − β. These packets will be sent to the data plane via

node S with average service rate at µS . The messages need to be sent to the controller,

e.g., packets from the unmatched flows, will be sent to one of the nodes in S1. In real

switch implementation, weighted fair queue can be used to assign different percentages of

the control channel bandwidth to different QoS classes to satisfy their requirements. In this

86

Figure 6.1: Queueing model of SDN.

87

Table 6.2: Notations for queueing model of SDN

S0 Queue node at switch to collect arriving packets
S1 Queue nodes at switch to send packets to controller
S1
1 , S

2
1 , S

3
1 , · · · Individual queue node of S1

S Queue node at switch to send packets to data plane
C0 Queue node at controller to collect arriving packets
C1 Queue nodes at controller to send packets to switch
C1

1 , C
2
1 , C

3
1 , · · · Individual queue node of C1

λS Packet arrival rate to S0 from data plane
λC Packet arrival rate to C
λS1

1
, λS2

1
, λS3

1
, · · · Packet arrival rate to S1

1 , S
2
1 , S

3
1 , · · ·

λC1
1
, λC2

1
, λC3

1
, · · · Packet arrival rate to C1

1 , C
2
1 , C

3
1 , · · ·

µS0 Service rate of S0

µS Service rate of S
µC0 Service rate of C0

µS1
1
, µS2

1
, µS3

1
, · · · Service rate of S1

1 , S
2
1 , S

3
1 , · · ·

µC1
1
, µC2

1
, µC3

1
, · · · Service rate of C1

1 , C
2
1 , C

3
1 , · · ·

β Probability that the data plane packets sent to controller

work, we model it as the multiple queue nodes in S1 with different average service rates

µS1
1
, µS2

1
, µS3

1
, · · ·. The messages will be sent to the assigned queue node in S1 based on

their classes. Let S1 = [S1
1 , S

2
1 , S

3
1 , · · ·] and the corresponding average packet arrival rate

is λS1
1
, λS2

1
, λS3

1
, · · ·. Other switches (e.g., switch w) in the network will operate in the same

way. The packets flow between switch w and the controller is shown as the dashed lines in

Fig. 6.1.

For the SDN controller, node C0 collects all the incoming messages while the nodes

in C1 sends messages back to the corresponding switches. We assume the overall packets

arrival rate from all switches to controller is λC . The average service rate at C0 is µC0.

After being processed at C0, the incoming packets will be sent back to the switch via one

of the nodes inC1, with corresponding arrival rate toC1
1 , C

2
1 , C

3
1 , ··· being λC1

1
, λC2

1
, λC3

1
, ···.

The service rates of nodes in C1 is same as the corresponding nodes in S1 since the link

between switch and controller is full-duplex. All the packets sent back to the switch will

enqueue at S0 and then go to node S.

In this model, we assume that the service time of each individual queue follows the

88

exponential distribution and each host in the network generates packets according to a

Poisson process. This queueing model can be analyzed as a Kelly network [86], which

is a general multi-class network preserving the Poisson-in-Poisson-out property like Jack-

son’s network [87]. Packets of different QoS classes can be viewed as different types of

customers in the network, and will go to different nodes in S1 and C1. Thus the rout-

ing probabilities of different customer types are different. In addition, among the incoming

packets to S0, all the packets from the control plane will be sent to S while the packets from

the data plane will be sent to S with probability 1 − β. This feature makes the network a

multi-class queueing network. We know that

• The merging of independent Poisson processes is Poisson with a rate equal to the

sum of the individual rates.

• Probabilistic splitting of a Poisson process results in a Poisson process.

• The departure process of an M/M/1 queue is Poisson with a rate equal to the input

rate of the queue.

• In a Kelly network, the departure process of type i customers from queue k forms a

Poisson process.

Combining the aforementioned statements, we can see that the input and output processes

of each queue in the network is a Poisson process.

Therefore, the average waiting time for a matched packet at switch v is:

Thit =TS0 + TS

=
1

µS0 − (1 + β)λS
+

1

µS − λS
,

where TS0 and TS is the waiting time at queue node S0 and S. Meanwhile, assuming the

89

corresponding node in S1 for an unmatched packet is Sn1 , it’s average waiting time is:

Tmiss =
1

µS0 − (1 + β)λS
+

1

µSn
1
− λSn

1

+
1

µC0 − λC
+

1

µCn
1
− λCn

1

+
1

µS0 − (1 + β)λS
+

1

µS − λS

+ Tprop,

where Tprop is the two-way propagation delay between the switch and controller.

6.3.2 Queueing Model with System Model Parameters

Next, we incorporate the system model parameters into the queueing model.

λS

Assuming the packet arrival rate of fn follows a Poisson process with rate λn. The overall

external packets from the data plane arriving at a switch v also follows a Poisson process

with rate

λS =
∑
fn∈fv

λn =
∑
n≤N

∑
p∈Pn

xpnz
p
vλn,

where fv are the flow groups going through switch v.

β

The value of β is dependent on the flow table satisfaction ratio. Assuming the average

length of each flow in flow group fn is M packets, the probability that a packet in fn needs

to be sent to the controller is:

P n
miss =

1 + (1−Xn)(M − 1)

M
.

90

Meanwhile, the probability that the packet does not need to go to the controller is P n
hit =

1 − P n
miss. When Xn = 1 (the flow entry demands of fn is fully satisfied), only the first

packet of a flow needs to go to controller (P n
miss =

1
M

). On the other hand, if Xn = 0 (the

flow entry demands of fn is not satisfied at all), all the packets of fn needs to be sent to

controller (P n
miss = 1). Thus at switch v,

βλS =
∑
fn∈fv

P n
missλn =

∑
n≤N

∑
p∈Pn

P n
missx

p
nz

p
vλn.

λC

The overall packet arrival rate to the controller is the sum of the incoming packets from all

switches:

λC =
∑
v∈V

∑
n≤N

∑
p∈Pn

P n
missx

p
nz

p
vλn

µS

The average processing rate at queue node S depends on the data plane link bandwidth

BW :

µS =
BW

averagePktSize

S1 and C1

Each flow group will get assigned with an individual queue node in S1. Assuming flow

group fn is assigned with queue node Sn1 in S1, its average service rate depends on the

control channel bandwidth allocated to fn, where

µSn
1
=

Dsc(n) ∗ Yn
averagePktSize

.

91

The service rate at C1 of flow group fn, µCn
1

, is equal to µSn
1

since the link between switch

and controller is full-duplex.

λS0
1
, λS1

1
, λS2

1
, · · ·

The flow arrival rate to node Sn1 is

λSn
1
= P n

missλn.

Similarly, the flow arrival rate to Cn
1 , the queue node assigned to fn in C1, is also P n

missλn.

6.3.3 Delay Constraint and Approximation

After the first packet of a flow is received and the connection is setup, the end-to-end

delay of delay-sensitive flows should be bounded by its requirement. This end-to-end delay

constraint is formulated based on the aforementioned queueing model. For the packets

following the first packet in an individual flow of fn, the probability that there is a matched

entry in the switch is at least Xn. Thus the worst-case end-to-end delay for each packet in

this flow includes 1) the propagation delay from host to source switch and from destination

switch to host, 2) the sum of the propagation delay on the passing data plane links, and 3)

the worst case waiting time on the passing switches:

T nE2E = 2Th2s +
∑

e∈E,p∈Pn

xpny
p
eTe

+
∑

v∈V,p∈Pn

xpnz
p
v(XnThit + (1−Xn)Tmiss),

where Th2s is the propagation delay between hosts and switches and Te is the propagation

delay on the data plane link e. The flows in the same flow group have the same value of

worst-case end-to-end delay. Thus we have

dn = T nE2E,

92

and the delay constraint

dn ≤ dreqn ∀n ≤ N

can be formulated.

With the delay constraint formulated, we obtain the exact form of our optimization

problem. However, this delay constraint is nonlinear and requires complex computation

to solve due to the complicated summation terms in both the numerator and denominator.

Considering the fact that the traffic in a DCN is relatively stable on the timescale of a few

seconds up to a few minute [82], to run our algorithm periodically in an online fashion, we

use an approximation form of the delay constraint. The complexity of the constraint exists

in the calculation of Tmiss and Thit. The value of Tmiss and Thit depends on the traffic load

on the controller and each passing switch. Instead of using the exact traffic load, given the

traffic demand matrix and the network topology, the overall load the controller and on each

switch can be estimated and used. This is done with the following steps:

1. Calculate the average value of Xn and Yn can be achieved based on the demands and

capacities of the flow table and control channel resources.

2. Calculate the average value of λS to each switch based on the packet arrival rate of

each flow group and the network topology.

3. Given the processing rates of the queue nodes, calculate the value of Tmiss and Thit

based on the results in step 1) and 2).

4. With Tmiss and Thit calculated, the delay constraint becomes linear and is dependent

on Xn and the length of the selected path.

With the approximated delay constraint, we obtain an approximated form of the optimiza-

tion problem and its exact solution can be obtained in seconds. Our results show that the

exact solution to this approximated problem actually also satisfy the exact delay constraints.

We will elaborate on these steps and the approximation results in next section.

93

6.4 Performance Evaluation

6.4.1 Simulation Setup

The network topology used for performance evaluation is same as the one used in previous

chapter. In this scenario, each edge switch is connected to hundreds of servers and every

edge switch pair has demand in each traffic type. The total demands for the two SDN

resources are set to be larger than the network capacity with the average demand being 250

flow entries and 20 Mbps bandwidth per regular flow group, and 50 flow entries and 4 Mbps

bandwidth per delay-sensitive flow group. The packet arrival rate for each regular flow

group is 600 packets/s while for the delay-sensitive flow group, the number is 200 packets/s.

The delay requirements for the delay-sensitive flow groups are generated randomly in the

range [100, 150] ms, which are typical values for interactive applications, such as video

conferencing. The bandwidth of each data plane link is 10 Gbps and the flow table size is

limited to 2000 entries. We assume the control channel bandwidth is 200 Mbps for the core

switches, and 100 Mbps for the aggregation and edge switches. The values of µS1, µC0 and

the average flow length M are set to be 100K, 110K and 15, respectively, which are in line

with existing literature [59, 88, 6].

The optimization problems are solved using Gurobi 8.0.1 on a 4-core 3.2GHz Intel i5-

6500 processor with 7.7 GB memory and running Linux Mint 17.3. The average running

times is 5.4s. As mentioned before, the traffic in a DCN is relatively stable on the timescale

of a few seconds to a few minutes. Moreover, only the amounts of the three demands

are needed for optimization, and collecting that information will incur only a very small

overhead in the network. Given these conditions, our algorithm can be run periodically by

a centralized processor.

94

Table 6.3: End-to-end delay comparison [ms]

Average [Xn, Yn] Delay
λReg/λDelay [packets/s]
600/200 300/100

[1, 1]
Ttrad 4.0 4.0
TE2E 4.03 4.03

[0.77, 0.77]
Ttrad 4.0 4.0
TE2E 7.04 6.9

[0.51, 0.51]
Ttrad 4.0 4.0
TE2E 67.6 10.4

6.4.2 End-to-End Delay

We first compare the end-to-end delay calculated by our model, which involves both the

control plane delay and the data plane delay in SDN, against a traditional delay model,

where only the propagation and transmission delays on the data plane links are considered.

The traditional end-to-end delay is formulated as:

T ntrad = 2Th2s +
∑

e∈E,p∈Pn

xpny
p
eTe

+
∑

v∈V,p∈Pn

xpnz
p
v

1

µS − λS
.

We vary the network load in the scenario and calculate the delay on a 3-hop path using

these two models. The results are displayed in Table 6.3. The network load is defined in

terms of the average satisfaction ratios of the two SDN resources and the packet arrival

rates. The traditional model does not consider the processing time at the switch and con-

troller. Besides, since the data plane links are sufficient for packet transmission, the major

component of T ntrad is the propagation delay and it does not vary much with the change of

network load. As the network load increases, the results of the two models diverge, indi-

cating that the control plane delay and the entry lookup time dominate the overall delay

with higher loads. Moreover, even when the network load is light, the traditional model

still cannot precisely capture the end-to-end delay.

After calculating the value of Tmiss and Thit based on the current network load, we

95

Figure 6.2: End-to-end delay with varying Xn

change the value of Xn assigned to a particular delay-sensitive flow and its worst-case

end-to-end delay is shown in Fig. 6.2 (the average [Xn, Yn] is [0.51, 0.51]). The relation

between the end-to-end delay andXn is linear and can be fit into a linear equation perfectly.

The specific expression is dependent on the length of the path and can be used to formulate

the delay constraints. The average value ofXn with this network load is 0.51. However, the

corresponding delay time with 3-hop and 5-hop path is 68ms and 135ms, respectively, and

this might violate the delay requirement of the particular flow. For example, if the delay

requirement is 100ms, the minimum required flow entry satisfaction ratio on a 5-hop path

and 3-hop path is 0.64 and 0.27, respectively. This linear relation between Xn and T nE2E

can be used for the delay constraints.

96

Table 6.4: Algorithm performance

Avg. Sat. Ratio [Xn + Yn] Jain’s Index
Algorithm Reg Delay Overall Reg Delay Overall
Non-Delay 0.83 0.90 0.87 1.0 0.85 0.88

Delay-Aware 0.82 0.95 0.89 0.99 0.85 0.86
Pure Max 0.70 2.0 1.35 0.50 1.0 0.62

6.4.3 Performance Comparison

In this section, We compare the performance of three optimization algorithms: our pro-

posed delay-aware optimization (Delay-aware), the non-delay aware optimization algo-

rithm (Non-delay), which is the same optimization problem without the end-to-end delay

constraints, and the pure maximization algorithm (Pure Max), which ignores both the fair-

ness constraints and delay constraints. The performance of single-resource optimizations

are studied and proved to be less efficient than the joint optimization algorithm in previous

chapter and thus they are not shown here. The simulation setup in this section and follow-

ing sections follows the description in Section 6.4.1. We also tested with different network

loads and the results show a similar trend.

We first compare the average overall satisfaction ratio and Jain’s index (Table 6.4) in

terms of the regular flow groups (Reg), delay-sensitive groups (Delay) and all flow groups

(Overall). Since the Non-delay-aware algorithm treats all flows equally, it achieves better

fairness than the Delay-aware algorithm. While the satisfaction ratio of the Non-delay-

aware algorithm is only slightly below the satisfaction ratio of the delay-aware algorithm,

we will later see that this comes at the cost of missing delay requirements for the delay-

sensitive flows. The Pure Max algorithm ignores the fairness constraints but ends up favor-

ing allocation of the delay-sensitive flows since they have lower SDN resource demands

and therefore are easier to satisfy. All demands of the delay-sensitive flows end up being

satisfied, but some of the regular flows get very low satisfaction ratio. On average among

the Reg flow groups, 40% get 0 satisfaction ratio for the flow table space and 70% get 0

satisfaction ratio for the control channel resource. Our Delay-aware algorithm introduces

97

Figure 6.3: End-to-end delay violation from requirements

a balance between the overall fairness and favoring the delay-sensitive flows. It induces a

reasonably high satisfaction ratio for the delay-sensitive flows to satisfy their delay require-

ments. Once the delay requirements are satisfied, the resources are allocated fairly to the

remaining flows.

Next, we study the delay violation from the requirements of the delay-sensitive flow

groups as shown in Fig. 6.3. The delay violation rate is defined as

max(0, dn − dreqn)

dreqn
× 100%.

The exact worst case end-to-end delays are calculated based on the path selection and

satisfaction ratios returned by the algorithm. Note that Pure Max achieves zero deviation

from the requirements. However, as discussed before, Pure Max is undesirable due to

its unfairness and resource waste. It is also important to note that, although we used the

98

approximated end-to-end delay as constraints in the optimization problem, the exact delay

calculated based on the solution satisfies all delay requirements. Finally, without delay

awareness, the delay-sensitive flow groups do not meet their delay requirements. Nearly

80% of the delay-sensitive groups exceed their delay requirements by more than 35%.

6.4.4 Fairness Relaxation

Finally, the impacts of the fairness relaxation parameter δ are studied. We show the overall

satisfaction ratio and the Jain’s index in terms of the Reg, Delay, and Overall flow groups

in Fig. 6.4. In general, the satisfaction ratio of the overall flows decreases as δ increases,

and at the same time, the Jain’s index of the overall flows increases. Yet the performance

trend of each individual traffic type as δ increases is different. When δ < 0.6, the algorithm

will favor the allocation for the delay-sensitive flows since their demands are lower than the

regular flows. Thus, these delay-sensitive flow groups get a perfect satisfaction ratio of 2.0

while the regular flow groups receive low satisfaction ratios. As the fairness requirement

is tightened, the achieved satisfaction ratio for the delay-sensitive flows decreases to even

the unfairness between the two flow types. Thus the satisfaction ratios of the two traffic

types converge. Regarding the fairness level, Jain’s index for the regular flows increases

with δ as expected. However, Jain’s index for the delay-sensitive flows first decreases then

increases as the fairness constraint tightens. This is because in the decreasing phase, more

and more delay-sensitive flows get less satisfied while the others are still fully satisfied,

which produces an increasing variance and decreasing Jain’s index. When δ = 1, all the

delay-sensitive flows are satisfied based on their delay requirements. In this second phase,

the variance decreases and thus the Jain’s index increases.

6.5 Chapter Summary

In this chapter, we address the delay-guaranteed and fair allocation of resources in software-

defined DCNs. The delay constraints in the novel SDN architecture are formulated using

99

(a) Overall satisfaction ratio

(b) Jain’s endex

Figure 6.4: Fairness relaxation

100

queueing theory. We jointly optimize the allocation of flow table and control channel re-

sources with both delay and fairness constraints. A mechanism to relax the fairness con-

straint is also studied.

101

CHAPTER 7

PRACTICAL CONSIDERATIONS OF RESOURCES ALLOCATION

ALGORITHMS

7.1 Introduction

In Chapter 5 and Chapter 6, we proposed and solved two types of resources allocation prob-

lem to better utilize SDN. Before these algorithms can be implemented in a real network,

some practical issues need to be considered to make sure the algorithms are both scalable

and stable.

As stated before, the optimization problem is NP-hard, which means the problem can-

not be solved in polynomial time. The network topology used in previous chapters is a

common-size private DCN. Although the running times required for this topology are rea-

sonable, we want to test the complexity of the optimization problem as the network scale

increases. Moreover, in order to reduce the complexity of the problem, we allow the num-

ber of flow entries assigned to a flow group, XnDfe(n), to be fractional when solving the

problem and round it to its nearest integer when deploying the network. We assume that

this rounding step will not affect the performance of the algorithm significantly. However,

this assumption needs to be verified. Finally, the algorithm takes traffic demands as inputs

and these demands can be obtained from measured statistical traffic characteristics over

time or the total amount of resources purchased by the users. Yet the real-time traffic de-

mands when the network is in operation might diverge from the inputs to the algorithm. We

want to study how sensitive the algorithm performance is in terms of the real-time demands

if they are different from the inputs.

In this chapter, we study some practical issues before the resources allocation algo-

rithms can be implemented in real world. The practical considerations include algorithm

102

complexity analysis, the rounding effects, and the sensitivity study. The algorithms fo-

cused in this work include both the non-delay-aware case (Chapter 5) and delay-aware case

(Chapter 6) with the simple max-min fairness enforced.

7.2 Practical Considerations

7.2.1 Complexity Analysis

In this section, we scale up the network size and measure both the problem size and the

running time. We keep the fat-tree topology since it is one of the most commonly used

DCN topologies and increase the total number of switches in the network. More number

of switches will incur more number of flow groups in the network. In the simulation,

we assume that each edge switch has two flow groups to every other edge switch. For

example, in a DCN with 50 switches (10 core switches, 20 aggregation switches, and 20

edge switches), the total number of flow groups is 20×19×2 = 760. The overall demands

of the two resources are set to be larger than the network capabilities. The number of

candidate paths, k, also increases with the number of switches to make full use of different

paths.

We first examine the number of non-zero variables involved in the optimization prob-

lems after the presolve step. Presolve refers to a set of problem reductions that are applied

before the branch-and-bound step. These reductions are intended to reduce the size of the

problem and to tighten its formulation. This kind of tightening is critical to the solution of

an integer program, and makes presolve an important step in the way to get the solution.

Therefore, the number of non-zero variables after the presolve step can represent the size

of the optimization problem in a more accurate way. Both the non-delay aware algorithm

and the delay-aware algorithm are categorized into their two sub-problems: the max-min

sub-problem and the satisfaction ratio maximization sub-problem as described in previous

chapters. As shown in Fig. 7.1a, the number of non-zero variables increases quadratically

with an increasing number of switches in the network. We also display the polynomial-fit

103

(a) Problem size

(b) Running time

Figure 7.1: Complexity analysis

104

trendline with order 2 for the max-min sub-problem of the non-delay-aware algorithm. It

fits well with the data. The other three trendlines are not displayed to keep the plot concise

and clean, but they all fit well with their corresponding data. The R-square values for these

trendlines are 0.999, which indicate perfect fitness. There are some other observations.

First, the delay-aware algorithm induces more non-zero variables than the non-delay-aware

algorithm due to the extra delay constraints. This fact will induce a longer running time

for the delay-aware algorithm. Besides, the max-min step induces slightly more non-zero

variables than the maximization step.

Next, we measure the running time of both algorithms. All the experiments are carried

on a 4-core 3.2GHz Intel i5-6500 processor with 7.7 GB memory. The results are obtained

from 8 random simulation runs and are shown in Fig. 7.1b. The running time increases

exponentially with the increasing network size. The exponential trendlines fit well with

the data, with R-square values being 0.99 and 0.997 for the non-delay-aware algorithm and

delay-aware algorithm. The delay-aware algorithm induces longer running time than the

non-delay-aware one due to its bigger problem size as shown previously. When there are

50 switches (includes 20 edge switches, 20 aggregation switches, and 10 core switches)

in the network, if each edge switches is connected to 50 servers, there are 1000 servers in

the network in total, which is bigger than most university DCNs and private DCNs. The

running times for this scenario are 32.9s and 134.5s for the non-delay-aware algorithm and

the delay-aware algorithm, respectively. Considering the fact that the traffic in a DCN is

relatively stable in a timescale of a few minute [82], the algorithms still can be run in an

online fashion in most DCNs.

7.2.2 Rounding Effects

In order to reduce computation complexity, we assume that allowing the value ofXnDfe(n)

to be fractional when solving the optimization problem, and rounding it to its nearest integer

when deploying the network will not affect the performance significantly. In theory, since

105

Figure 7.2: Satisfaction ratio variation from theoretical values [%]

the value of Dfe(n) in our problem is at the level of hundreds and the flow table capacity

is at the level of thousands, this assumption is valid. We still want to study the actual

effects of this rounding step in implementation. The simulation scenario in this section

and next section follows the description in Section 6.4.1, where the average demand being

250 flow entries and 20 Mbps bandwidth per regular flow group, and 50 flow entries and

4 Mbps bandwidth per delay-sensitive flow group. We also tested with different resource

demands/network load and the results show a similar trend.

We first examine the variation between the actual flow table satisfaction ratio achieved

in real implementation and the flow table satisfaction ratio calculated from the optimization

problem. The satisfaction ratio variation is defined as:

actual flow table sat ratio− calculated flow table sat ratio

calculated flow table sat ratio
× 100%.

We display the satisfaction ratio variation for each flow group of the two algorithms in

Fig. 7.2. The results for the regular flow groups are shown on the left side of the y-axis

and the results for the delay-sensitive flows are shown on the right side of the y-axis. The

performance of the two algorithms follow a similar trend and both achieve very small vari-

106

Table 7.1: Performance variation after rounding

Satisfaction Ratio Jain’s Index
Calculated Actual Calculated Actual

Non-delay-aware
Algorithm 0.8667 0.8671 0.8769 0.8766

Delay-aware
Algorithm 0.8867 0.8863 0.8638 0.8637

ation. The actual achieved satisfaction ratio is only [-4%, 4%] diverges from the calculated

values for both algorithms. The absolute difference in satisfaction ratio is less than 0.02 for

the two algorithms. Another observation is that the delay-sensitive flows are more sensitive

to the rounding step. While the variation rates for the regular flows are between -0.45% to

0.45%, the values for the delay-sensitive flows are between -4% to 4%. This is due to the

fact that the delay-sensitive flows have smaller flow entry demands and rounding the result

to the nearest integer would have a bigger impact on them than on flows with larger de-

mands. But overall, the variation rates for the delay-sensitive flows are still very minimal.

Finally, we display the calculated satisfaction ratio and Jain’s index before the rounding

step, and the actual satisfaction ratio and Jain’s index for implementation after the round-

ing step in Table 7.1. The average satisfaction ratio and Jain’s index of all flow groups are

only slightly affected by this rounding step.

Next, we check if this rounding step will cause flow table over-allocation problem.

In average, after rounding the number of flow entries assigned to each flow group to its

nearest integer, the flow tables at 15%-25% of the switches are over-allocated only by

0.05%-0.25% for both algorithms, which corresponds to 1-5 entries. Other flow tables are

not over-allocated. In this case, we can calculate the over-allocation amount and randomly

reduce the number of flow entries allocated to some low-priority flows to make sure no

over-allocation will happen in real implementation. Other rounding mechanisms, such as

rounding the number of flow entries down to an integer, will avoid the over-allocation

problem, but it will cause under-allocation of the resource.

Based on the results discussed above, we come to the conclusion that solving the prob-

107

lem with fractional numbers forXnDfe(n) and then rounding it during implementation has

minimal effects on the actual performance.

7.2.3 Sensitivity Study

Even though the real-time traffic might be different from the inputs, the allocation to each

flow group still follows the solution to the optimization problem. Thus finally, in order

to test the performance variation when the real traffic demands are varied from the input

demand matrices, we conduct a sensitivity study on the demand matrices. As mentioned

in the previous section, the simulation scenario follows the one in Section 6.4.1. After

obtaining the optimization solution, we set the actual traffic demands to be deviated from

the input demand matrices by a random variation rate. The variation rate is defined as:

actual demand− input demand
input demand

× 100%.

We define a maximum deviation rate and set the random variation rates in the range of

[- maximum deviation rate, + maximum deviation rate]. Higher maximum deviation rate

indicates larger possible deviations of the actual traffic from the inputs. We tested the

algorithms’ performance when the maximum deviation rate ranges from 0% to 10%. When

the maximum deviation rate exceeds 10%, the traffic in DCN is considered as not “stable”

and the algorithms need to run again with the new traffic demands.

We examine the average satisfaction ratio of all flow groups and the Jain’s Index as

shown in Fig. 7.3. With an increasing maximum deviation rate, both the average satisfac-

tion ratio and the Jain’s fairness index stay around the same value. The average value of the

satisfaction ratios stays because the real-time demands are randomly distributed and can be

both higher and lower than the inputs. The corresponding actual satisfaction ratios can be

higher or lower than the calculated value, and thus the average will not change significantly

in this case. As for the Jain’s fairness index, a maximum deviation rate less than 10% will

108

(a) Satisfaction ratio

(b) Jain’s index

Figure 7.3: Algorithm performance with different maximum deviation rates

109

Figure 7.4: Violation from delay constraints with different maximum deviation rates

not cause a very big change in the standard deviation among the satisfaction ratios and

thus the fairness index does not vary much. We verify this assumption by increasing the

maximum deviation rate to 20%, 30%, and up to 50%. The fairness index experiences an

obvious decrease when the maximum deviation rate is large. As stated previously, when

the maximum traffic variation is larger than 10%, we consider the traffic as not “stable”

and will re-run the algorithm with the new traffic demands. Therefore, the algorithms can

provide a stable performance even with varying traffic demands.

Next, we take a look at the delay violation rate with the delay-aware algorithm for the

delay-sensitive flows. The delay violation rate is defined as:

max(0, dn − dreqn)

dreqn
× 100%.

We can see from Fig. 7.4, when the maximum deviation rate is 0%, which means the

real-time traffic is the same as the input, the delay requirements of all flow groups are

satisfied. With different maximum deviation rates, there are still around 60% - 80% of the

110

flow groups satisfying their delay constraints. As the maximum deviation rate increases,

the worst-case delay deviation increases. The worst-case deviation for 3%, 6% and 10%

maximum deviation rates are 4%, 6%, and 14%, respectively. The delay requirements are

set in the range between 100ms to 150ms and the actual delay violation is only 4-15ms.

7.3 Chapter Summary

In this chapter, we study some practical issues for our algorithms to be implemented in real

world, namely the algorithm complexity and running time, the rounding effects, and its

sensitivity to varying traffic demands. It helps us analyze our algorithms comprehensively.

The simulation results show that our algorithms are scalable and can perform stably in a

regular-size DCN with varying traffic demands.

111

CHAPTER 8

CONCLUSIONS

8.1 Conclusions

With the dramatically increasing usage of cloud computing and data center, the traditional

network architecture fails to satisfy the emerging requirements. People are turning to SDN

for help. However, the unique architecture of SDN brings new challenges to its DCN

implementation. As the focus of this dissertation, one of the major challenges is to cope

with the new resource constraints brought by the SDN architecture. That is the capacity of

the switch-to-controller link, which limits the message exchanges rate between the switch

and controller, and the size of the flow table, which restricts the number of flow entries

supports by the SDN switch.

In this dissertation, we aimed to optimize network resource allocation for the software-

defined DCN in views of the new resource limitations. The contributions in each chapter

are summarized as follows:

• In Chapter 3, we developed a queueing model for SDN switches. It considers mul-

tiple connections between switches and controller, different interactions between

switch and controller, and a limited buffer space at the switch. Validation results are

provided to confirm both our mathematical solution and the validity of our model in

a real network. The model can provide performance evaluation, including the packet

loss rate, the flow setup delay, and the average number of packets in switch, in sec-

onds for realistic DCN traffic loads, which is much faster than the simulation tools.

The model can be used to determine the appropriate number of switch-to-controller

connections based on the network requirements.

• In Chapter 4, we proposed a lightweight admission control mechanism to determine

112

if a new flow should be admitted to the network. It makes decisions considering the

flow table capacity. This mechanism is implemented at the controller level to follow

the basic SDN principle (separation of the control functions and the data components)

and take advantage of the flow statistics obtained by other controller functionalities.

Simulations are carried out using ns-3 with a canonical DCN topology. The data

plane performance is studied to evaluate the improvement brought by the algorithm

and the control plane performance is studied to evaluate the algorithm overheads. The

proposed mechanism is shown to improve the network performance compared with

the default flow table management mechanism while generating tolerable overheads.

• In Chapter 5, we considered a specific problem for allocations of the two aforemen-

tioned SDN resources to achieve high satisfaction while maintaining fairness, which

can operate in a common-size DCN. We first provided the mathematical formulation

of a maximum satisfaction ratio problem with fairness constraints in the software-

defined DCN setting. We proposed to aggregate individual flows in the network into

flow groups to decrease the load to the flow table and reduce the computation com-

plexity. There are three fairness models considered in this chapter, namely the simple

max-min model which requires to maximize the minimum achieved satisfaction ra-

tio, the classical max-min model which means an attempt to increase the allocation of

any participant necessarily results in the decrease in the allocation of some other par-

ticipants with an equal or smaller allocation, and the equal share model where each

flow group get the same amount of allocation. The fairness models can be relaxed

based on the network requirements using a relaxation parameter δ.

• In Chapter 6, we extended the optimization problem studied in Chapter 5 by con-

sidering the delay constraints of each flow. SDN can be leveraged to improve the

QoS provisioning for various network applications. Two major types of applications

are considered, namely the delay-sensitive applications and the non-delay-sensitive

113

applications. The end-to-end delay in SDN is derived using queueing theory in view

of its novel architecture. We first formulated the exact mathematical problem, then

proposed an alternative approximated problem which simplifies the delay constraints

to tackle the formulated problem. The alternating approximated problem reduces the

complexity of the problem significantly and produces results that actually satisfy the

constraints of the original actual problem.

• In Chapter 7, we studied the performance of our proposed algorithm in practical situ-

ations. The considerations include the problem size and running time as the network

topology scales up, the switch overflow rates and satisfaction ratio variation due to

rounding the flow entry allocation to an integer for implementation, and the algorithm

performance when the real-time traffic diverges from the inputs in the algorithms.

The theoretical analysis and simulation results provided in this dissertation lay out the

foundation of efficient resources allocation in software-defined DCN.

8.2 Future Work

Throughout this dissertation, we focus on optimizing the resource allocations in software-

defined DCN. Future research are encouraged in this area. First, the solutions in this dis-

sertation offer a starting point to tackle the challenge, not a set of final solutions.

• In Chapter 3, the analysis and equation derivation is detailed for the single-switch

case to let the readers understand the model easily. Further exploration of the multiple-

switch network needs to be conducted. Besides, different scheduling algorithms for

the multiple switch-to-controller connections can be studied to improve performance.

• In Chapter 4, to improve the performance of the admission control mechanism, intel-

ligent algorithms, such as machine learning techniques, can be studied and utilized

to select the algorithm parameters. Implementing the algorithm in data center with

multiple controllers can also be explored.

114

• In Chapter 5 and 6, only one path is selected for each flow group, multi-path selection

algorithm can be used to further improve the algorithm performance. Besides, the

coping mechanism for a link/node failure should also be studied. Furthermore, a

smart mechanism to determine if the algorithm should be run again using the new

traffic demands as time goes by for the online implementation is recommended.

Second, the study is limited in scope. Other directions in this area should be investigated

to tackle the challenge jointly. Possible directions include enabling multi-tenant resource

allocation, network resource utilization monitoring, hardware improvements, etc.

8.3 Publications

As part of the research conducted in this dissertation, we have written several documents

that are either published, submitted, or in progress as follows:

• C. Zhang and D. Blough, “Resources allocation optimization in software-defined

data center networks ,” to be submitted.

• C. Zhang and D. Blough, “Delay-guaranteed fair allocation of resources in software-

defined data center networks ,” submitted to IEEE CCNC 2020.

• C. Zhang and D. Blough, “High satisfaction and fair allocation of resources in

software-defined data center networks,” to appear in IEEE ICC 2019.

• C. Zhang, H. Yang, G. F. Riley, and D. Blough, “Queueing analysis of auxiliary-

connection-enabled switches for software-defined networks,” In 2019 International

Conference on Computing, Networking and Communications (ICNC) (pp. 497-502).

IEEE.

• C. Zhang, H. Yang, and G. F. Riley, “Admission control in software-defined data-

center network in view of flow table capacity,” in IEEE INFOCOM 2018-IEEE Con-

115

ference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE,

2018.

• H. Yang, C. Zhang, and G. Riley, “Support multiple auxiliary TCP/UDP connections

in SDN simulations based on ns-3,” in Proceedings of the Workshop on ns-3. ACM,

2017, pp. 24-30.

• J. Ivey, H. Yang, C. Zhang, and G. Riley, “Comparing a scalable SDN simulation

framework built on ns-3 and DCE with existing SDN simulators and emulators,”

in Proceedings of the 2016 annual ACM Conference on SIGSIM Principles of Ad-

vanced Discrete Simulation. ACM, 2016, pp. 153-164.

116

REFERENCES

[1] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Baner-
jee, “Devoflow: Scaling flow management for high-performance networks,” ACM
SIGCOMM Computer Communication Review, vol. 41, no. 4, pp. 254–265, 2011.

[2] G. Lu, C. Guo, Y. Li, Z. Zhou, T. Yuan, H. Wu, Y. Xiong, R. Gao, and Y. Zhang,
“Serverswitch: A programmable and high performance platform for data center net-
works.,” in Nsdi, vol. 11, 2011, pp. 2–2.

[3] NoviSwitch 2116 High Performance OpenFlow Switch, https://noviflow.
com/wp-content/uploads/NoviSwitch-2116-Datasheet.pdf,
2018.

[4] TCAM - a Deeper Look and the impact of IPv6, https://etherealmind.
com/tcam-detail-review/.

[5] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Infinite cacheflow in software-
defined networks,” in Proceedings of the third workshop on Hot topics in software
defined networking, ACM, 2014, pp. 175–180.

[6] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of data cen-
ters in the wild,” in Proc. of ACM IMC, 2010, pp. 267–280.

[7] The Open Networking Foundation, OpenFlow Switch Specification (version 1.5.1),
2015.

[8] A. Bianco, P. Giaccone, A. Mahmood, M. Ullio, and V. Vercellone, “Evaluating the
SDN control traffic in large ISP networks,” in Communications (ICC), IEEE Int’l
Conf. on, IEEE, 2015, pp. 5248–5253.

[9] H. Huang, S. Guo, W. Liang, K. Li, B. Ye, and W. Zhuang, “Near-optimal routing
protection for in-band software-defined heterogeneous networks,” IEEE Journal on
Selected Areas in Communications, vol. 34, no. 11, pp. 2918–2934, 2016.

[10] ns-3 a discrete-event network simulator ns-3.16, https://www.nsnam.org/
docs/release/3.16/doxygen/index.html.

[11] Cisco Systems Inc., Cisco Global Cloud Index: Forecast and Methodology, 2016-
2021 White Paper, 2018.

[12] “Networking in the Era of Virtualization,” Nicira, Tech. Rep., 2012.

117

https://noviflow.com/wp-content/uploads/NoviSwitch-2116-Datasheet.pdf
https://noviflow.com/wp-content/uploads/NoviSwitch-2116-Datasheet.pdf
https://etherealmind.com/tcam-detail-review/
https://etherealmind.com/tcam-detail-review/
https://www.nsnam.org/docs/release/3.16/doxygen/index.html
https://www.nsnam.org/docs/release/3.16/doxygen/index.html

[13] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G.
Desai, B. Felderman, P. Germano, et al., “Jupiter rising: A decade of clos topologies
and centralized control in google’s datacenter network,” ACM SIGCOMM computer
communication review, vol. 45, no. 4, pp. 183–197, 2015.

[14] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and R. Watten-
hofer, “Achieving high utilization with software-driven WAN,” in ACM SIGCOMM
Computer Communication Review, ACM, vol. 43, 2013, pp. 15–26.

[15] N. Communications, Ntt communications launches world’s largest sd-wan footprint
covering over 190 countries with industry’s most comprehensive end-to-end sd-wan
service portfolio, Website, https://www.ntt.com/en/about-us/press-
releases/news/article/2017/0620.html, 2017.

[16] Open Networking Foundation, https://www.opennetworking.org/.

[17] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: An intellectual history
of programmable networks,” ACM SIGCOMM Computer Communication Review,
vol. 44, no. 2, pp. 87–98, 2014.

[18] D. S. Alexander, W. A. Arbaugh, M. W. Hicks, P. Kakkar, A. D. Keromytis, J. T.
Moore, C. A. Gunter, S. M. Nettles, and J. M. Smith, “The switchware active net-
work architecture,” IEEE network, vol. 12, no. 3, pp. 29–36, 1998.

[19] K. L. Calvert, S. Bhattacharjee, E. Zegura, and J. Sterbenz, “Directions in active
networks,” IEEE Communications Magazine, vol. 36, no. 10, pp. 72–78, 1998.

[20] Internet Engineering Task Force, https://www.ietf.org/.

[21] T. Lakshman, T Nandagopal, R Ramjee, K Sabnani, and T Woo, “The softrouter
architecture,” in Proc. ACM SIGCOMM Workshop on Hot Topics in Networking,
Citeseer, vol. 2004, 2004.

[22] L. Yang, R. Dantu, T. Anderson, and R. Gopal, “Forwarding and control element
separation (forces) framework,” Tech. Rep., 2004.

[23] A. Farrel, J.-P. Vasseur, and J. Ash, “A path computation element (pce)-based archi-
tecture,” Tech. Rep., 2006.

[24] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S.
Shenker, and J. Turner, “Openflow: Enabling innovation in campus networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69–74, 2008.

[25] Nox resources, Website, https://github.com/noxrepo/nox, 2019.

118

https://www.ntt.com/en/about-us/press-releases/news/article/2017/0620.html
https://www.ntt.com/en/about-us/press-releases/news/article/2017/0620.html
https://www.opennetworking.org/
https://www.ietf.org/
https://github.com/noxrepo/nox

[26] The Open Networking Foundation, OpenFlow Switch Specification (version 1.3.0),
2012.

[27] D. S. Marcon, F. M. Mazzola, and M. P. Barcellos, “Achieving minimum bandwidth
guarantees and work-conservation in large-scale, sdn-based datacenter networks,”
Computer Networks, vol. 127, pp. 109–125, 2017.

[28] H. Owens and A. Durresi, “Explicit routing in software-defined networking (ersdn):
Addressing controller scalability,” in 2014 17th International Conference on Network-
Based Information Systems, IEEE, 2014, pp. 128–134.

[29] A. Hari, T. Lakshman, and G. Wilfong, “Path switching: Reduced-state flow han-
dling in sdn using path information,” in Proceedings of the 11th ACM Conference
on Emerging Networking Experiments and Technologies, ACM, 2015, p. 36.

[30] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani, R. Ahmed, and
R. Boutaba, “Dynamic controller provisioning in software defined networks,” in
Network and Service Management (CNSM), 2013 9th International Conference on,
IEEE, 2013, pp. 18–25.

[31] B. Heller, R. Sherwood, and N. McKeown, “The controller placement problem,” in
Proceedings of the first workshop on Hot topics in software defined networks, ACM,
2012, pp. 7–12.

[32] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “On reliability-optimized con-
troller placement for software-defined networks,” China Communications, vol. 11,
no. 2, pp. 38–54, 2014.

[33] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel, and M. Hoff-
mann, “Heuristic approaches to the controller placement problem in large scale sdn
networks,” IEEE Transactions on Network and Service Management, vol. 12, no. 1,
pp. 4–17, 2015.

[34] L. F. Müller, R. R. Oliveira, M. C. Luizelli, L. P. Gaspary, and M. P. Barcellos, “Sur-
vivor: An enhanced controller placement strategy for improving sdn survivability,”
in Global Communications Conference (GLOBECOM), 2014 IEEE, IEEE, 2014,
pp. 1909–1915.

[35] B. Y. Yoon, Method and apparatus for network failure restoration, US Patent App.
14/600,892, 2015.

[36] A. Basta, A. Blenk, H. B. Hassine, and W. Kellerer, “Towards a dynamic sdn virtu-
alization layer: Control path migration protocol,” in 2015 11th International Confer-
ence on Network and Service Management (CNSM), IEEE, 2015, pp. 354–359.

119

[37] Floodlight project, Website, https://groups.io/g/floodlight, 2019.

[38] Opendaylight, Website, https://www.opendaylight.org/, 2019.

[39] H. Yang, C. Zhang, and G. Riley, “Support multiple auxiliary tcp/udp connections
in sdn simulations based on ns-3,” in Proceedings of the Workshop on ns-3, ACM,
2017, pp. 24–30.

[40] L. J. Chaves, I. C. Garcia, and E. R. M. Madeira, “Ofswitch13: Enhancing ns-3 with
openflow 1.3 support,” in Proceedings of the Workshop on ns-3, ACM, 2016, pp. 33–
40.

[41] M. Kuźniar, P. Perešı́ni, and D. Kostić, “What you need to know about sdn flow
tables,” in Passive and Active Measurement, Springer, 2015, pp. 347–359.

[42] A. Vishnoi, R. Poddar, V. Mann, and S. Bhattacharya, “Effective switch memory
management in openflow networks,” in Proceedings of the 8th ACM International
Conference on Distributed Event-Based Systems, ACM, 2014, pp. 177–188.

[43] H. Zhu, H. Fan, X. Luo, and Y. Jin, “Intelligent timeout master: Dynamic timeout for
sdn-based data centers,” in Integrated Network Management (IM), 2015 IFIP/IEEE
International Symposium on, IEEE, 2015, pp. 734–737.

[44] H. Liang, P. Hong, J. Li, and D. Ni, “Effective idle timeout value for instant mes-
saging in software defined networks,” in Communication Workshop (ICCW), 2015
IEEE International Conference on, IEEE, 2015, pp. 352–356.

[45] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wan-
derer, J. Zhou, M. Zhu, et al., “B4: Experience with a globally-deployed software
defined WAN,” ACM SIGCOMM Computer Communication Review, vol. 43, no. 4,
pp. 3–14, 2013.

[46] A. Mimidis, C. Caba, and J. Soler, “Dynamic aggregation of traffic flows in sdn:
Applied to backhaul networks,” in 2016 IEEE NetSoft Conference and Workshops
(NetSoft), IEEE, 2016, pp. 136–140.

[47] A. V. Akella and K. Xiong, “Quality of service (qos)-guaranteed network resource
allocation via software defined networking (sdn),” in Dependable, Autonomic and
Secure Computing (DASC), 2014 IEEE 12th International Conference on, IEEE,
2014, pp. 7–13.

[48] W. Hong, K. Wang, and Y.-H. Hsu, “Application-aware resource allocation for sdn-
based cloud datacenters,” in Cloud Computing and Big Data (CloudCom-Asia), 2013
International Conference on, IEEE, 2013, pp. 106–110.

120

https://groups.io/g/floodlight
https://www.opendaylight.org/

[49] A. Ghosh, S. Ha, E. Crabbe, and J. Rexford, “Scalable multi-class traffic manage-
ment in data center backbone networks,” IEEE JSAC, vol. 31, no. 12, pp. 2673–2684,
2013.

[50] S. Namal, I. Ahmad, A. Gurtov, and M. Ylianttila, “Sdn based inter-technology load
balancing leveraged by flow admission control,” in Future Networks and Services
(SDN4FNS), 2013 IEEE SDN for, IEEE, 2013, pp. 1–5.

[51] S. Kang and W. Yoon, “Sdn-based resource allocation for heterogeneous lte and wlan
multi-radio networks,” The Journal of Supercomputing, vol. 72, no. 4, pp. 1342–
1362, 2016.

[52] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “On the effect of forwarding table
size on SDN network utilization,” in INFOCOM, 2014 Proceedings IEEE, IEEE,
2014, pp. 1734–1742.

[53] M. Huang, W. Liang, Z. Xu, W. Xu, S. Guo, and Y. Xu, “Dynamic routing for net-
work throughput maximization in software-defined networks,” in Computer Commu-
nications, IEEE INFOCOM 2016-The 35th Annual IEEE International Conference
on, IEEE, 2016, pp. 1–9.

[54] G. Zhao, L. Huang, Z. Yu, H. Xu, and P. Wang, “On the effect of flow table size and
controller capacity on SDN network throughput,” in Communications (ICC), IEEE
Int’l Conf. on, IEEE, 2017, pp. 1–6.

[55] J. Zhang, D. Zeng, L. Gu, H. Yao, and Y. Fan, “On rule placement for multi-path
routing in software-defined networks,” in International Conference on Collaborative
Computing: Networking, Applications and Worksharing, Springer, 2015, pp. 59–71.

[56] T. Feng, J. Bi, and K. Wang, “Joint allocation and scheduling of network resource
for multiple control applications in sdn,” in 2014 IEEE network operations and man-
agement symposium (NOMS), IEEE, 2014, pp. 1–7.

[57] J. M. Wang, Y. Wang, X. Dai, and B. Bensaou, “SDN-based multi-class QOS guaran-
tee in inter-data center communications,” IEEE Transactions on Cloud Computing,
2015.

[58] Z. Guo, R. Liu, Y. Xu, A. Gushchin, A. Walid, and H. J. Chao, “Star: Preventing
flow-table overflow in software-defined networks,” Computer Networks, vol. 125,
pp. 15–25, 2017.

[59] S. Azodolmolky, R. Nejabati, M. Pazouki, P. Wieder, R. Yahyapour, and D. Sime-
onidou, “An analytical model for software defined networking: A network calculus-
based approach,” in Global Communications Conference (GLOBECOM), 2013 IEEE,
IEEE, 2013, pp. 1397–1402.

121

[60] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia, “Modeling
and performance evaluation of an openflow architecture,” in Proceedings of the 23rd
international teletraffic congress, International Teletraffic Congress, 2011, pp. 1–7.

[61] K. Sood, S. Yu, and Y. Xiang, “Performance analysis of software-defined network
switch using M/Geo/1 model,” IEEE Communications Letters, vol. 20, no. 12,
pp. 2522–2525, 2016.

[62] Y. Goto, H. Masuyama, B. Ng, W. K. Seah, and Y. Takahashi, “Queueing analysis of
software defined network with realistic openflow–based switch model,” in Modeling,
Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS),
2016 IEEE 24th International Symposium on, IEEE, 2016, pp. 301–306.

[63] B. Xiong, K. Yang, J. Zhao, W. Li, and K. Li, “Performance evaluation of openflow-
based software-defined networks based on queueing model,” Computer Networks,
vol. 102, pp. 172–185, 2016.

[64] K. Mahmood, A. Chilwan, O. Østerbø, and M. Jarschel, “Modelling of openflow-
based software-defined networks: The multiple node case,” IET Networks, vol. 4,
no. 5, pp. 278–284, 2015.

[65] OvS: Open vSwitch - Implementation Details, http://docs.openvswitch.
org/en/latest/faq/design/.

[66] G. Bolch, S. Greiner, H. De Meer, and K. S. Trivedi, Queueing networks and Markov
chains: modeling and performance evaluation with computer science applications.
John Wiley & Sons, 2006.

[67] G. Latouche, V Ramaswami, and V. Kulkarni, “Introduction to matrix analytic meth-
ods in stochastic modeling,” Journal of Applied Mathematics and Stochastic Analy-
sis, vol. 12, no. 4, pp. 435–436, 1999.

[68] D. John, “Little. a proof for the queuing formula: L= λw,” Operations research,
vol. 9, no. 3, pp. 383–387, 1961.

[69] P. Geraint, K. Vince, Lieke19, L. Sam, caipirginka, T. G. Badger, Nikoleta, C. Alex,
and J. Adam, Ciw: V1.1.5, 2018.

[70] L. Massoulie and J. W. Roberts, “Bandwidth sharing and admission control for elas-
tic traffic,” Telecommunication systems, vol. 15, no. 1-2, pp. 185–201, 2000.

[71] A. Kamath, O. Palmon, and S. Plotkin, “Routing and admission control in gen-
eral topology networks with poisson arrivals,” Journal of Algorithms, vol. 27, no. 2,
pp. 236–258, 1998.

122

http://docs.openvswitch.org/en/latest/faq/design/
http://docs.openvswitch.org/en/latest/faq/design/

[72] J. Huang, Y. He, Q. Duan, Q. Yang, and W. Wang, “Admission control with flow
aggregation for qos provisioning in software-defined network,” in Global Communi-
cations Conference (GLOBECOM), 2014 IEEE, IEEE, 2014, pp. 1182–1186.

[73] J. Leguay, L. Maggi, M. Draief, S. Paris, and S. Chouvardas, “Admission control
with online algorithms in sdn,” in Network Operations and Management Symposium
(NOMS), 2016 IEEE/IFIP, IEEE, 2016, pp. 718–721.

[74] S. Qiao, C. Hu, X. Guan, and J. Zou, “Taming the flow table overflow in openflow
switch,” in Proceedings of the 2016 conference on ACM SIGCOMM 2016 Confer-
ence, ACM, 2016, pp. 591–592.

[75] B. Yuan, D. Zou, S. Yu, H. Jin, W. Qiang, and J. Shen, “Defending against flow table
overloading attack in software-defined networks,” IEEE Transactions on Services
Computing, 2016.

[76] X. Jia, Y. Jiang, Z. Guo, and Z. Wu, “Reducing and balancing flow table entries in
software-defined networks,” in Local Computer Networks (LCN), 2016 IEEE 41st
Conference on, IEEE, 2016, pp. 575–578.

[77] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood, “On con-
troller performance in software-defined networks.,” Hot-ICE, vol. 12, pp. 1–6, 2012.

[78] R. Jain, The Art of Computer Systems Performance Analysis: Techniques for Experi-
mental Eesign, Measurement, Simulation, and Modeling. John Wiley & Sons, 1990.

[79] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center net-
work architecture,” in ACM SIGCOMM Computer Communication Review, ACM,
vol. 38, 2008, pp. 63–74.

[80] C. Zhang, H. Yang, G. F. Riley, and D. M. Blough, “Queueing analysis of auxiliary-
connection-enabled switches for software-defined networks,” in IEEE ICNC, 2019,
pp. 497–502.

[81] Gurobi Optimization, LLC, Gurobi optimizer reference manual, 2018.

[82] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the social net-
work’s (datacenter) network,” in ACM SIGCOMM Computer Communication Re-
view, ACM, vol. 45, 2015, pp. 123–137.

[83] M. Karakus and A. Durresi, “Quality of service in software defined networking: A
survey,” Elsevier JNCA, vol. 80, pp. 200–218, 2017.

[84] T. Zhang and B. Liu, “Exposing end-to-end delay in software-defined networking,”
International Journal of Reconfigurable Computing, vol. 2019, 2019.

123

[85] C. Zhang and D. Blough, “High satisfaction and fair allocation of resources in
software-defined data center networks,” in IEEE ICC, 2019.

[86] F. P. Kelly, “Networks of queues with customers of different types,” Journal of ap-
plied probability, vol. 12, no. 3, pp. 542–554, 1975.

[87] J. R. Jackson, “Networks of waiting lines,” Operations research, vol. 5, no. 4, pp. 518–
521, 1957.

[88] D. Erickson, “The beacon openflow controller,” in Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking, ACM, 2013,
pp. 13–18.

124

	Title Page
	Acknowledgments
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation and Research Objectives
	Contributions and Scope
	Organization of the Dissertation

	Background and Related Work
	Cloud Computing and Data Center Network
	SDN and OpenFlow Protocol
	SDN
	OpenFlow Protocol

	Resource Constraints of Software-defined DCN
	Switch-to-Controller Link
	Flow Table

	Resource Allocation Optimization in SDN
	Chapter Summary

	Queueing Analysis of Auxiliary-Connection-Enabled Switches
	Introduction
	Analytical Model
	Queueing Model
	Model Analysis
	Performance Analysis
	Multiple-Switch Network

	Validation through Simulation
	Network Performance Evaluation
	Number of Packets in Controller
	Varying Packet Arrival Rate
	Varying 1-
	Varying Switch Buffer Space

	Chapter Summary

	Admission Control in View of Flow Table Capacity
	Introduction
	Flow Table Overloading in SDN
	Flow Table Capacity
	Existing Flow Table Management

	Admission Control in Software-defined DCN
	Simulation Setup
	Data center Topology
	SDN Implementation

	Results and Discussions
	Data Plane Performance
	Control Plane Performance

	Chapter Summary

	High Satisfaction and Fair Allocation of Resources
	Introduction
	System Model
	Satisfaction Maximization and Fairness
	Satisfaction Maximization
	Fairness Models

	Performance Evaluation
	Simulation Setup
	Running Time
	Comparison of Algorithms
	Comparison of Fairness Models
	Fairness Relaxation

	Chapter Summary

	Delay-Guaranteed Fair Allocation of Resources
	Introduction
	Delay-Guaranteed Fair Resources Allocation
	System Model
	Satisfaction Maximization with Bounded Delay
	Priority and Fairness Model

	End-to-End Delay in SDN Networks
	Queueing Model for SDN
	Queueing Model with System Model Parameters
	Delay Constraint and Approximation

	Performance Evaluation
	Simulation Setup
	End-to-End Delay
	Performance Comparison
	Fairness Relaxation

	Chapter Summary

	Practical Considerations of Resources Allocation Algorithms
	Introduction
	Practical Considerations
	Complexity Analysis
	Rounding Effects
	Sensitivity Study

	Chapter Summary

	Conclusions
	Conclusions
	Future Work
	Publications

	References

