55 research outputs found

    Pole -mounted sonar vibration prediction using CMAC neural networks

    Get PDF
    The efficiency and accuracy of pole-mounted sonar systems are severely affected by pole vibration, Traditional signal processing techniques are not appropriate for the pole vibration problem due to the nonlinearity of the pole vibration and the lack of a priori knowledge about the statistics of the data to be processed. A novel approach of predicting the pole-mounted sonar vibration using CMAC neural networks is presented. The feasibility of this approach is studied in theory, evaluated by simulation and verified with a real-time laboratory prototype, Analytical bounds of the learning rate of a CMAC neural network are derived which guarantee convergence of the weight vector in the mean. Both simulation and experimental results indicate the CMAC neural network is an effective tool for this vibration prediction problem

    Improving Software Cost Estimation With Function Points Analysis Using Fuzzy Logic Method

    Get PDF
    Function Points Analysis (FPA) is amongst the most generally used method to assess software cost estimation frameworks. This process speaks to the measurement of an undertaking, application, and function by its relative functional complexity. In general, it has numerous effective applications used in both industry and scholarly research. This is noticed that customized estimate technologies which can confront genuine challenges utilizing on programming building information is normally constrained, loosely gathered and deficient. To enquire these queries composite programming models, blend of information, fuzzy logic and master judgment is proposed. This is trusted that outcomes announced here will animate, renew investigation of fuzzy logic to genuine programming designing issues. In this research paper, we use Function Points and apply some new models to pick up a superior estimation of programming properties. The utilization of ideas and characteristics from the fuzzy set hypothesis to stretch out function points analysis to fuzzy function points analysis. Fuzzy hypothesis tries to construct formal quantitative arrangement equipped for imitating imprecision of the human information. With the function points created by Fuzzy FPA, an estimate value for example, expenses/cost and software development can be more correctly determined

    Error minimising gradients for improving cerebellar model articulation controller performance

    Get PDF
    In motion control applications where the desired trajectory velocity exceeds an actuator’s maximum velocity limitations, large position errors will occur between the desired and actual trajectory responses. In these situations standard control approaches cannot predict the output saturation of the actuator and thus the associated error summation cannot be minimised.An adaptive feedforward control solution such as the Cerebellar Model Articulation Controller (CMAC) is able to provide an inherent level of prediction for these situations, moving the system output in the direction of the excessive desired velocity before actuator saturation occurs. However the pre-empting level of a CMAC is not adaptive, and thus the optimal point in time to start moving the system output in the direction of the excessive desired velocity remains unsolved. While the CMAC can adaptively minimise an actuator’s position error, the minimisation of the summation of error over time created by the divergence of the desired and actual trajectory responses requires an additional adaptive level of control.This thesis presents an improved method of training CMACs to minimise the summation of error over time created when the desired trajectory velocity exceeds the actuator’s maximum velocity limitations. This improved method called the Error Minimising Gradient Controller (EMGC) is able to adaptively modify a CMAC’s training signal so that the CMAC will start to move the output of the system in the direction of the excessive desired velocity with an optimised pre-empting level.The EMGC was originally created to minimise the loss of linguistic information conveyed through an actuated series of concatenated hand sign gestures reproducing deafblind sign language. The EMGC concept however is able to be implemented on any system where the error summation associated with excessive desired velocities needs to be minimised, with the EMGC producing an improved output approximation over using a CMAC alone.In this thesis, the EMGC was tested and benchmarked against a feedforward / feedback combined controller using a CMAC and PID controller. The EMGC was tested on an air-muscle actuator for a variety of situations comprising of a position discontinuity in a continuous desired trajectory. Tested situations included various discontinuity magnitudes together with varying approach and departure gradient profiles.Testing demonstrated that the addition of an EMGC can reduce a situation’s error summation magnitude if the base CMAC controller has not already provided a prior enough pre-empting output in the direction of the situation. The addition of an EMGC to a CMAC produces an improved approximation of reproduced motion trajectories, not only minimising position error for a single sampling instance, but also over time for periodic signals

    UAV Model-based Flight Control with Artificial Neural Networks: A Survey

    Get PDF
    Model-Based Control (MBC) techniques have dominated flight controller designs for Unmanned Aerial Vehicles (UAVs). Despite their success, MBC-based designs rely heavily on the accuracy of the mathematical model of the real plant and they suffer from the explosion of complexity problem. These two challenges may be mitigated by Artificial Neural Networks (ANNs) that have been widely studied due to their unique features and advantages in system identification and controller design. Viewed from this perspective, this survey provides a comprehensive literature review on combined MBC-ANN techniques that are suitable for UAV flight control, i.e., low-level control. The objective is to pave the way and establish a foundation for efficient controller designs with performance guarantees. A reference template is used throughout the survey as a common basis for comparative studies to fairly determine capabilities and limitations of existing research. The end-result offers supported information for advantages, disadvantages and applicability of a family of relevant controllers to UAV prototypes

    Can k-NN imputation improve the performance of C4.5 with small software project data sets? A comparative evaluation

    Get PDF
    Missing data is a widespread problem that can affect the ability to use data to construct effective prediction systems. We investigate a common machine learning technique that can tolerate missing values, namely C4.5, to predict cost using six real world software project databases. We analyze the predictive performance after using the k-NN missing data imputation technique to see if it is better to tolerate missing data or to try to impute missing values and then apply the C4.5 algorithm. For the investigation, we simulated three missingness mechanisms, three missing data patterns, and five missing data percentages. We found that the k-NN imputation can improve the prediction accuracy of C4.5. At the same time, both C4.5 and k-NN are little affected by the missingness mechanism, but that the missing data pattern and the missing data percentage have a strong negative impact upon prediction (or imputation) accuracy particularly if the missing data percentage exceeds 40%

    Learning control of bipedal dynamic walking robots with neural networks

    Get PDF
    Thesis (Elec.E.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (p. 90-94).Stability and robustness are two important performance requirements for a dynamic walking robot. Learning and adaptation can improve stability and robustness. This thesis explores such an adaptation capability through the use of neural networks. Three neural network models (BP, CMAC and RBF networks) are studied. The RBF network is chosen as best, despite its weakness at covering high dimensional input spaces. To overcome this problem, a self-organizing scheme of data clustering is explored. This system is applied successfully in a biped walking robot system with a supervised learning mode. Generalized Virtual Model Control (GVMC) is also proposed in this thesis, which is inspired by a bio-mechanical model of locomotion, and is an extension of ordinary Virtual Model Control. Instead of adding virtual impedance components to the biped skeletal system in virtual Cartesian space, GVMC uses adaptation to approximately reconstruct the dynamics of the biped. The effectiveness of these approaches is proved both theoretically and experimentally (in simulation).by Jianjuen Hu.Elec.E

    Reliability and validity in comparative studies of software prediction models

    Get PDF
    Empirical studies on software prediction models do not converge with respect to the question "which prediction model is best?" The reason for this lack of convergence is poorly understood. In this simulation study, we have examined a frequently used research procedure comprising three main ingredients: a single data sample, an accuracy indicator, and cross validation. Typically, these empirical studies compare a machine learning model with a regression model. In our study, we use simulation and compare a machine learning and a regression model. The results suggest that it is the research procedure itself that is unreliable. This lack of reliability may strongly contribute to the lack of convergence. Our findings thus cast some doubt on the conclusions of any study of competing software prediction models that used this research procedure as a basis of model comparison. Thus, we need to develop more reliable research procedures before we can have confidence in the conclusions of comparative studies of software prediction models
    corecore