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Abstract

Stability and robustness are two important performance requirements for a dynamic walking
robot. Learning and adaptation can improve stability and robustness. This thesis explores such an
adaptation capability through the use of neural networks.

Three neural network models (BP, CMAC and RBF networks) are studied. The RBF network
is chosen as best, despite its weakness at covering high dimensional input spaces. To overcome
this problem, a self-organizing scheme of data clustering is explored. This system is applied
successfully in a biped walking robot system with a supervised learning mode.

Generalized Virtual Model Control (GVMC) is also proposed in this thesis, which is inspired
by a bio-mechanical model of locomotion, and is an extension of ordinary Virtual Model
Control. Instead of adding virtual impedance components to the biped skeletal system in virtual
Cartesian space, GVMC uses adaptation to approximately reconstruct the dynamics of the biped.

The effectiveness of these approaches is proved both theoretically and experimentally (in
simulation).

Thesis Supervisor: Gill A. Pratt
Title: Assistant Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

There are two main research focuses in legged locomotion: biological research and engineering
research.

In the past, robotics researchers utilized the results of external macro behavior characteristics
measured by biologists and built walking robots such that the desired behavior (for example,
gaits, efficiency etc.) could be achieved. Today, the advances in biology can provide us some
more useful intrinsic models of locomotion with present available technologies. It is time to pay
attention to the intrinsic microscopic models of locomotion and exploit them for engineering use.
For example, in motor control of biped animals, some neural control models may be useful in
today's engineering research.

This thesis emphasizes the dynamics of a bipedal robot, including the essential mechanism,
the structure its dynamics, dynamic control, stability, robustness and adaptation. Before going to
the specific sections, a review of the research in the area of bipedal leg locomotion is helpful to
better understand the approaches in this study. Besides, some important concepts need to be
explained clearly.

1.1 Review of studies in bipedal leg locomotion

Significant advances have occurred over the past two decades in issues related to mechanical
(structure and actuators) design of legged robots, coordination and the control of legs during
locomotion. There have been several driving forces. First, exploring the biological mechanism of
bipedal locomotion has a strong scientific significance. Second, potential applications have been
a driven force. In particular occasions, legged machines are required for transportation or system
mobility where wheeled machines are limited, such as rough, irregular terrain. Third, computer
technologies make on-board computer control of leg locomotion possible today. To replicate
human beings (humanoid robots) or an animal becomes a very exciting research area (Raibert
1986).

1.1.1 Biologically motivated studies of leg locomotion.

Animal locomotion has been studied by neurobiologists, zoologists, orthopedists, bioengineers
and physiologists (not to mention anatomists, sports scientists, dancers and acrobaticians etc.).
The early studies concentrated on macro behavior, such as energetics and gaits (McMahon 1984,
Alexander 1990). Bipeds (in vertebral category) have relatively simpler macro gaits by moving
their two lower limbs either in phase (hopping) or in alternate phase (walking and running),
which are combinations of double support phase, single support phase and swing phase. In the
studies of bipeds, attention was particularly paid at walking/running speed, stride frequency and
oxygen consumption, efficiency etc.

About two decades ago, researchers made significant progress in understanding the features
of neural control of animal locomotion. In the seminal work of Grillner (1976), a spinalized cat
was shown to have adequate reflexive control to walk relatively on a treadmill. Walking patterns
are also generated in such a cat (although altered significantly in magnitude and speed), when all
afferent inputs are cut. This showed that the timing mechanism of the neural circuitry can free-



run, thus mandating the existence of dynamic internal state and feedback with spinal circuits. So
far, the biological researchers have proved that both reactive control and central pattern
generators exist in vertebrates (spinal cord), and the feedback loop that generates the motor
patterns is closed both by internal state variables and by the environment. This implies that the
lower level dynamic control is in charge by the neural circuits in the spinal cord (not in the
brain), but the neural circuits (in spinal cord) are also affected by the inputs from higher-level
control systems.

Researchers in biology propose motor control models for bipedal leg locomotion. With a
proper model, one can predict a human walker's or runner's performance in the sense of
energetics and dynamics. McMahon (1984) proposed a model of the bipedal leg, which was used
to predict a runner's performance on a compliant track accurately. His running model of the leg
is composed of a parallel spring and dash-pot, which was approximately a macro model for the
leg muscles. Morecki's general rheolegical model of isolated muscle (Morecki 1987) captures the
key characteristics of limb muscles, and can be used for dynamics analysis of bipedal walker and
runner as well as the possible application of bipedal robot design. In Morecki's model, spring
and dash-pot are connected in series, like a series elastic link, and the dash-pot (muscle viscosity)
is dependent on the stimulation. In a passive state, a muscle, when unstimulated, and passively
stretched under static/dynamic conditions behaves like a non-linear spring. In an active state, a
muscle behaves as a control force source with an elastic component in series.

In the study of locomotory control, elucidation of locomotor behavior supplies us with an
important clue as to how the motor pattern is generated through the interplay of motor and
sensory systems. It has been generally shown that rhythmic motor patterns are coordinated by
neural circuits referred to as central pattern generators (Grillner 1976, 1985), and the controlled
musculo-skeletal system (body) faithfully responds to the commands of the nervous system in
master-slave manner, but is influenced by functional and environmental constraints (Taga 1991).
This has inspired theoretical studies of motor pattern generators in isolated or distributed neural
networks in the absence of sensory feedback (Miller & Scott 1977). How sensory feedback
interacts with the central pattern generator so as to adapt locomotory system to the environment
is still an open question.

In biology area, there are a few groups that are trying to execute motory adaptation by
means of blending sensory inputs from the periphery with ongoing centrally patterned
activity (Chiel & Beer 1992, Parkins 1997, Taga 1998). On the other hand, based on the
finding in neuro-physiological studies that a hierarchical structure is presented in
locomotion system (Grillner 1975), some researchers initiated their explorations of motor
system adaptation with cerebellum functions. It has been suggested that the whole aspects
of cerebellar function could be explained in terms of adaptive learning control (Yuasa &
Ito 1990). The concern of the cerebellum seems to be the generalized integration and
graceful smoothing of behaviors, which is heavily dependent on sensory input below the
level of consciousness. Ito (1990) proposed a control system model which views the
cerebellum facilitating adaptive control of all kinds of functions - from reflexes to
voluntary movements to mental activity. His adaptive control mechanism would emerge
from the self-organizing capability postulated by Marr (1969), Albus (1971) and Fujita
(1982).

1.1.2 Research progress of bipedal walking in engineering aspects.

While researchers in biology were investigating how motor control and motor pattern generators
work in the leg locomotion biologically, engineers in robotics field were induldged in their



studies on legged machines for travelling on rough terrain where existing wheeled vehicles can
not go. Basically, their aims were disigning and analysing biped locomotion from the viewpoint
of torque control and actuation as well as system implementation. The first walking machine, an
eight-legged kinematically walking machine, was built in 1961 (Morrison 1968). But the first
bipedal walking robot was born in 1974. It was a hydraulic biped that could walk with quasi-
dynamic gait (Kato 1974).

One of the pioneers of bipedal robotics in the early years is Vokobratovic of former
Yugoslavia. Vukobrutovic introduced the concept of "Zero Moment Point Control" in the 1960s
(Vokobratovic 1973), which is widely used recently by the engineers for controlling their bipedal
robots. In 1974, the Wabot (Kato 1974), a hydraulically powered biped, (one of the most
photographed walking robots), was built by Kato's group in Waseda University, Japan. Wabot
has two legs and many other anthropomorphic features such as arms, head-mounted visual
sensors and voice communications. It was statically stable at all time by keeping its center of
mass above one of its large feet. A modified zero moment control approach was utilized. Since
then, there are several bipedal robots that have been built successfully with proper control. In
1983, a group at Osaka University built a biped and developed a method called hierarchical
control structure, which allowed dynamically stable walking (Miyazaki & Arimoto 1983).
Another series of bipeds for dynamic walking experiments was built at University of Tokyo. One
of these, named BIPER-4, has seven electrically powered joints: a hip roll, ankle pitch and knee
joint in each leg and hip pitch joint connecting the two legs (Miura & Shimoyana 1984).
Dynamically stable walking was also achieved for the BIPER-3, which had un-powered ankle
joints and no knee joints. The feet do not contribute to pitch stability but allow the angle of the
leg from the ground plane to be measured. In 1991, Kajita & Tani presented their experimental
results of zero moment control with their biped "Meltran I'I", which had 40 cm height and 4 kg
weight with electric DC motor actuators (Kajita & Tani 1995). Two bipedal walking robots,
Spring Turkey (in 1995) and Flamingo (in 1997) were built in MIT Leg Lab. Both robots can
walk dynamically stable with "Virtual Model Control" (Pratt, J. 1996). Both had electric series-
elastic actuators (Pratt, G. 1995) and the latter had an on board computer control system.
Recently, a humanoid bipedal robot built by Honda Motor Company in Japan (Hirai, Hirose et al
1998, Ozawa 1995) has integrated many existing technologies in control and navigation, such as,
zero moment control, vision guidance etc. The Honda robot can walk up/down stairs stably and
can also perform some simple task with its hands.

To summarize, there are three important issues in the bipedal walking robot study: control,
gaits and actuation. Control has been regarded as the most crucial aspect and has received
considerable attention in the past comparing with the other two issues. Nearly all the walking
machines constructed so far were built for control studies. Many aspects of control are still under
active study. This is particularly true for control of statically unstable locomotion. As for the gait
study, the results from biological research such as motor pattern generator theory etc have not
been applied in the bipedal walking robots although there are a few preliminary investigations in
quadrupeds and hexapods (Todd 1985, Raibert 1986). In bipedal robots, only global discrete
gaits are used successfully. In the existing bipedal robots, both hydraulically and electrically
powered bipedal actuators have been well explored thus far. Elastic components are widely
recognized as necessary components for a biped. The series-elastic actuator (Pratt, G. 1995)
developed in MIT Leg Lab is one of the success achieved in bipedal robots controlled
electrically.



1.1.3 Existing issues in leg locomotion

The following issues have drawn researchers' attentions:

1) Adaptation with central pattern generators;
2) Mixing CPG with feedback sensory information;
3) Intelligently dealing with complex tasks;
4) Hierarchical learning and control;
5) Cerebellum function in dynamic control of locomotion;
6) Robot actuation technique;
7) Robot structure design;
8) Stability and gait adjustment;
9) Robot system robustness;
10) Vision integration and autonomous navigation.

1.2 Dynamic control of bipedal walking robots

Since a biped mechanical system usually has high order and nonlinear, complex dynamics, it is a
very hard task to design controllers for the joint actuators with full consideration of the entire
biped system dynamics. Besides, from a mechanical point of view, a biped robot is inherently
unstable because the center of mass extends beyond the base of support most of the time during
walking.

For such a complex system, usually the control engineers' dilemma is how to make a suitable
trade-off between the simplification of the system model and control precision. In walking
machine design, there are two different approaches to controller design in current use. One
approach is to design effective controllers based on some approximation of the dynamics of the
bipedal mechanical system (McGeer 1990). Another approach, (called model-free control design
in the thesis), aims to make use of the control engineers' experience, intuition and learning
techniques (Pratt 1996, Murakami 1995, Miller 1994, Hu 1998).

One of the common features of the control approaches developed by researchers is that
controllers of bipeds were designed based on approximations of the bipedal mechanical system.
In the early days of 1970s, the simplest model used for the study of some of the characteristics of
human walking is the inverted pendulum model. More complex models with more degrees of
freedom were used mainly after 1980 for a more complete study of human walking (or other
biped animals) as well as for the actual construction of biped robotic systems. For example,
Hemami et al used the inverted pendulum model to investigate the biped stability in 1977
(Golliday & Hemami 1977). For control design, Golliday and Hemami used state feedback to
decouple the high-order system of a biped into independent low-order subsystems. Miyazaki and
Arimoto (1980) used a singular perturbation technique and showed that bipedal locomotion can
be divided into two modes: a fast mode and a slow mode, thus simplifing the controller design.
Furusho and Masubuchi (1987) derived a reduced order model as a dominant subsystem that
approximates the original high-order model very well by applying local feedback control to each
joint of a biped robot. Raibert (1986) used symmetry to analyze his hopping robots controlled by
his "three part control". Miura and Shimoyama (1984) linearized the biped dynamics and
designed stable controllers by means of linear feedback. Kajita and Tani (1995) developed their 6
d.o.f. bipedal robot "Meltran II" using a "Linear Inverted Pendulum Mode" successfully. A
research group of Honda Motor Company designed their control system for a humanoid bipedal
robot using zero moment force control in dealing with the complex dynamics (Ozawa 1995). In



the above research, the dynamics of the biped robots were simplified so as to utilize the existing
modern control theory in the controller design.

On the other hand, the model-free control approach does not incorporate the complex
intrinsic dynamics of the biped robot system in the controller design. Basically, this type of
approach avoids dealing with the complex dynamics directly and, instead, it tries to incorporate
the control engineer's intuition, experience and knowledge into the control system design. Pratt
(1996, 1997) developed virtual model control, by which one can achieve good control capability
for biped walking robots through appropriate choice of virtual components in virtual space. In
addition, other researchers have made good progresses in control of biped robots by means of
learning techniques such as fuzzy logic and neural network control (Miller 1994, Murakami
1995).

In summary, because of the complexity of the system dynamics in walking robots, the
stability and robustness analyses are very difficult to accomplish. In this study, I took the virtual
model control approach and proposed a new control mechanism, adaptive virtual model control,
which can enhance the robustness of the intuition based virtual model control for a walking
robot, especially for a bipedal walking robot. The adaptation mechanism designed in the virtual
space is described in the following sections. Some simulation results are also presented.

1.3 System performance index for biped control systems

Finding a proper performance index function is an important step for learning control scheme.
Stability is an important performance index for bio-mechanical systems like legged robots. In
general, the performance measurements of walking robots are much different from the typical
notions of performance for manipulators, such as command following and disturbance rejection.
The overall performance of a walking robot is usually defined in terms of biological similarity,
efficiency, locomotion, smoothness, and robustness to the environments.

Robustness for a walking robot implies that its stability should be maintained when
encountering unexpected external disturbances and complex environments. There are two types
of stability for a legged robot. First, the stability of a legged robot requires the stability of
internal structure dynamics in each individual phase under external disturbances, which means
that, in a stance phase, the robot can maintain a proper posture. Second, the robot stability also
requires gait stability (or step to step stability). It means that the robot has persistent smooth
movements in complex environments, which can be achieved by means of appropriate gait
adjustment. In this study, the adaptive VMC is utilized to meet the first requirement for stability.
The second requirement should be achieved through an adaptive gait control approach and it is
not the focus of this study.

1.4 Learning and robustness enhancement in bipedal robots

The performance of current legged robots remains far below even simplest counterparts in the
biological world. This has led to a search by scientists for biologically motivated approaches to
the design and control of legged robots in order to improve their performance and robustness.
Generally there are several key factors that affect the performance of a bipedal robot, such as
system stability, robustness, adaptation and learning. In control engineering, the above factors are
tied to the dynamics, but for a bipedal walking robot, one can refer those factors in different
levels, like dynamics level, skill level and task planning level etc. In this research, only the
dynamics level is addressed



Since a bipedal walking robot has not only structure dynamics, but also neural dynamics (or
gait dynamics, motor dynamics), one needs to explore a broader sense of definitions for stability,
robustness, adaptation and learning. The followings are some preliminary considerations in the
study.

Stability: Stability for a walking robot means that the robot can maintain desired walking
gaits consistently without falling down.

Robustness: Robustness is the capability that a robot can tolerate the disturbances and
maintain the nominal motions.

Adaptation: A robot can make adjustments whenever encountering the variations of
environments.

Learning: In dynamics level, learning means gaining knowledge from the interactions
with the system environments and intending to improve the robot performance.
Learning can be in supervised mode or in unsupervised mode.

So far, the learning approaches used for bipedal walking robots are neural networks, fuzzy
logic and reinforcement learning. In dynamics level, neural networks based learning becomes
more mathematically mature and convenient to conduct dynamics reconstruction or identification
and further adaptation.

1.5 Outline of thesis

This thesis is organized as follows:
Chapter 1 briefly reviews the research on leg locomotion in the past decades.
Chapter 2 describes the biologically motivated models of locomotion.
Chapter 3 presents extensions of virtual model control and the adaptive virtual model control.
Chapter 4 introduces three different types of neural network models (like BP, CMAC, RBF

neural networks) and the corresponding learning algorithms. The comparisons on
their learning capabilities are also illustrated.

Chapter 5 describes the framework of radial basis function (RBF) neural network control of a
bipedal walking robot. A self-organized RBF neural network is developed.

Chapter 6 presents the neural network based adaptive dynamic control design of a bipedal
walking robot. Both the theory and the results are elucidated and discussed.

Chapter 7 summarizes the research of this thesis and proposes future research directions.



Chapter 2

Bio-mechanical Models of Legged Locomotion

Biological researchers study the fundamental basis in neuroscience for animal leg locomotion.
The concept of hierarchical neural control was proposed and proved experimentally. Today it is
known that the central pattern generators in spinal cord can drive the animal legs walk
mechanically and the high level control of cerebellum make it walk better. Many models of
neural pattern generator circuits were proposed to describe the motor control in animal
locomotion. On the other hand, robotics engineers used the available technologies (computer,
power electronics, motors and materials) and tried to build legged robots such that the robots
behaved like animals. Good progress has been made by engineers in robot design, actuators,
global discrete gait and dynamic control etc. However, the researches in biology science and
robotics engineering were moving in parallel for a long time. Only a few researchers tried to
apply the results of biology area into the robotics research, such as in hexapod case (Chiel &
Beer et al 1992). Yet, there is little application of biological findings to biped locomotion.

Establishing a bridge between the biological research and robotics engineering and utilizing
the results from biology science to help engineers better understand the bipeds locomotion may
lead to better robot performance. Legged robots, especially bipeds perform worse than their
biological counterparts. Why shouldn't we learn from the animals? Making use of the results in
biology will help robotics researcher improve the performance of their robots, particularly for
bipedal robots. The biological model inspired control approach may lead to significant
performance improvement in the future comparing with the traditional control approaches
described in the previous chapter. This chapter provides a survey on bio-mechanical model based
control approaches.

2.1 Central pattern generator model

It has been a mystery for a long time how pattern generators work in the motor control of animal
locomotion. Grillner's demonstration (1976) that imposed rhythmic movements of the legs of
spinal cats can entrain central rhythms over a wide range of frequency gave us a crucial clue for
the hierarchical sensory motor control. In a system of legged locomotion, the high level nervous
system and spinal cord rhythmic nervous system control the musculo-skeletal system in a
hierarchical manner. The high level nervous system such as cerebellum is in charge of the
intelligence part of locomotion, e.g., adaptation, learning etc. But the body below the head (i.e.
lower limbs) should move with proper rhythms (patterns) under the pattern generators' driving
and the local sensory feedback as well as impedance control. As a very complex and elegant
locomotory system, human leg locomotion was studied starting with the central pattern generator
about ten years ago. Several neural network circuits for the rhythmic oscillators were proposed
for the bipedal locomotion (Matsuoka 1985, Taga 1991).

2.1.1 Matuoka's model

Among many models of motor pattern generator, one of the simplest neural network models
(circuits), which generate oscillating activity consists of two tonically excited neurons, with the
adaptation (to neuron itself) or self-inhibition effect, linked reciprocally via inhibitory



connections. This model was originally developed by Brown (1914) to account for the alternating
activation of flexor and extensor muscles of a cat's limbs during walking. Based on this,
Matsuoka (1985) did systematic investigation of a series of pattern generator models with
different number of neurons. Matsuoka's model can be mathematically represented by the
following continuous differential equations:

Z ii =-U - w. Y2 - /~Vl + 0 (2-1)

Z 2 = 2 W- Y1 - ,v 2 
+ u0 (2-2)

z ' = -V - y1 (2-3)

z v 2 = -v21 - Y 2  (2-4)

where y, = f (u ) , (2-5)

f(x) = max(0, x) , i = 1,2. (2-6)

In the above model, ui is the state of the ith neuron. Yi is the output of the ith neuron. vi is

the co-state of the ith neuron or a variable representing the degree of adaptation or self-inhibition
effect of the ith neuron. uo is an external input. w is a connecting weight; and z and z' are time

constants. Matsuoka explored oscillator network by linearization and using linear system theory.
It has been found that the time constants z and z' change the frequency of oscillation and the

external input term uo changes the amplitude of the system output. Figure 2-1 shows the typical

responses of a two-neuron central pattern generator.
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(a) Diagram of neural oscillator (b) Responses of neural oscillator

Figure 2-1: Responses of a two-neuron pattern generator.

2.1.2 Taga's model

Taga (1991, 1995) extended Matsuoka's model for the purpose of his complex motor control by
adding new excitation inputs to the oscillator circuit input. His neural rhyth generator is
expressed by the following differential equations:



N

z, • i = -u i + wj yj - fiv + uo + q, (2-7)
i,j=1

Zi, = -Vi + y, (2-8)

Yi = f(ui), i = 1,2,- - -, N. (2-9)

where q, is a sensory feedback from the musculo-skeletal system. It can be the kinematic or

postural sensory information, or some sort of the dynamics information.
Observation: qi can be treated as a high-level nervous system command for system adaptation.

2.2 A bio-mechanical model of locomotion

There are two crucial types of dynamics in human locomotion: musculo-skeletal dynamics and
neural dynamics of central pattern generator (CPG). The former is on the dynamics of the
musculo-skeletal system in response to a given set of neural inputs (Taga 1995). The latter is to
reveal the neural dynamics, i.e. how the basic rhythm of movement is controlled by rhythm-
generating networks (CPG) in the nervous system (Grillner 1985, Taga 1991, Chiel et al 1992). It
is challenging and very important to develop a principle which links the above dynamics
(musculo-skeletal dynamics and neural dynamics). Taga developed an integrative principle of
linkage between neural and musculo-skeletal dynamics and proposed that 'global entrainment'
between the neural and musculo-skeletal systems generates stable and flexible locomotion in an
unpredictable environment. By their computer simulations, Taga demonstrated that the
locomotion of a biped with a simple musculo-skeletal system emerged as a limit cycle which was
stable against mechanical perturbation and environmental changes. Based on their work, they
proposed an integrated biomechanical model of locomotion including dynamics of the human
musculo-skeletal system, neural dynamics of CPG and sensory mechanisms. Using this model, a
stable gait was achieved.

In this section, Taga's biomechanical model is described and analyzed briefly. Then the
significance of this model to the study of biped robots is presented.

2.2.1 Bio-mechanical model of human locomotion

In his simulation study of human locomotion, Taga used the model (Figure 2-2) to reproduce
stable human-like walking. Figure 2-2 shows the basic structure of the proposed model of human
locomotion for the human body including trunk and limbs. In this model, there are two dynamical
systems: a musculo-skeletal system and a neural rhythm generator composed of neural oscillators
(or called central pattern generators, CPGs). The musculo-skeletal system is controlled by the
output signals from the motor command generator module, which combines the outputs from the
neural rhythm generator and the internal impedance controller. The output signals from the
neural system induce body movements by activating muscles in the musculo-skeletal system,
which also interacts with the environments. The current state of the musculo-skeletal system and
the environment is detected and observed by a sensory system and sent to the neural rhythm
generator and the internal impedance controller. The higher center of the neural system (such as
cerebellar and cerebral neural sub-systems) regulates the activity level of the neural rhythm
generator by sending a nonspecific input.

A distributed motor control scheme is suggested in this locomotion model. The basic strategy
for locomotion control is to establish a stable limit cycle (gait state cycle) using global



entrainment (Taga 1995) between the neural and musculo-skeletal systems since both systems
have an oscillatory characteristic. A gait state cycle is described in Figure 2-3.

The mechanical conditions of the limbs change drastically within a gait cycle. This implies
that the control process must also change according to the phase (state) of the gait. It is assumed
that a gait can be represented as a sequence of so called 'global states' and that both the
generation of motor commands and sensing processing are modulated by the global states, so that
dynamic linking between the neural rhythm generator and musculo-skeletal system is established
and maintained. The global states also control the coupling among the neural oscillators, which
enables generation of a complex pattern of activity with appropriate timing. The main functions
of two parallel control modules in this model are the following. The neural rhythm generator
controls rhythmic movements and the internal impedance control aims to adding mechanical
impedance components (e.g. springs and dampers), which maintains the upper body in an upright
posture and prevents limbs in the stance phase from collapsing.

Figure 2-2: Taga's neuro-mechanical model of human locomotion
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Figure 2-3: Diagram of the global gait states in a cycle.

2.2.2 Implementation of the distributed human locomotion model in simulation

The above biped locomotion model was used in the computer simulation to reproduce human-
like walking. During the simulation study, the body is represented by eight segments (refer to
Figure 2-4b), which are two complete three-segment lower limbs (thigh, shank, and foot) and two
segments in the upper body (trunk, pelvis). Each foot is represented by a triangle of appropriate
proportions. The interaction between the foot and the ground is modeled as springs and dampers
acting at the heels and toes. The body model is confined to movement in the saggital plane.

There are seven joints in the body: six in the lower limbs (hip, knee, and ankle for each limb)
and one in upper body (trunk). Correspondingly, the neural rhythm generator consists of seven
neural oscillators (refer to Figure 2-4a), with one neural oscillator for the trunk and a pair of
three neural oscillators for the limbs, each of which induces the action of specific muscles. There
are twenty muscles in total in the body. Therefore, the implementation of locomotory (motor)
control is realized in a decentralized way, i.e. twenty muscle equations plus seven neural
oscillator dynamic equations are simulated with distributed dynamics.

Each neural oscillator controls muscle around a single joint and it receives sensory signals
from the adjacent segments. The active torques at the joints are generated by twenty muscles.
The muscle model is simply assumed as a pure force source which is proportional to the output
of the neural system (i.e. motor command generation module in Figure 2-2). The motor command
generation module is simply realized by summing the signals from impedance controller and the
signals from neural oscillator. The passive torques exerted on joints are expressed by small
viscous torques at each joint and large visco-elastic torques that limits the range of joint flexion
and extension.
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2.2.3 Significance of this model in robotics sense

Understanding and digitally reproducing the biped human locomotion can provide fundamental
support and useful insights for a biped robot design and control. Taga's human locomotion model
described above has integrated nearly all the main features of human walking discovered by
biologists so far, and it demonstrated how a distributed neural oscillator based model could
contribute in human leg locomotion systematically. It presented a way to reproduce leg
locomotion with proper impedance control and CPG control as well as local CPG adaptation.
This can at least help us to better understand the gait control and adaptive adjustment of gait in
dynamic walking robot study. The significance of this model can be summarized as:

1) Hierarchical control structure is useful for future intelligent control system.
2) Internal impedance control can be used not only to interact with environments, but also

to sustain the skeletal structure from collapsing during stance phase.
3) An adaptation mechanism has been embedded in the CPG (in a neural dynamics level).

The dynamics of the neural oscillators are in the format of recurrent neural networks and
have adaptation factors in them. Therefore the robustness for cyclic oscillation pattern is
guaranteed.

4) Stable walking is achieved by combination of the CPG control and impedance control.
5) Entrainment between neural oscillators and mechanical system.

2.3 Control and Adaptation in human leg locomotion modelling

It is possible to apply Taga's human locomotion control model into a bipedal walking robot
system in the future. Particularly, this model has the potential of being extended for the purpose
of adaptation properties, which can be done in hierarchical fashion. Figure 2-5 presents an
extended hierarchical control scheme of human locomotion. There are three control levels in this
scheme: dynamics control level, motor intervention level and motor planing level. In dynamics
control level, there are mainly three types of components, namely CPGs, sensory neurons and
motor neurons. The CPG generates the motor patterns and the sensory neurons receive
information from environment and the muscula-skeletal structure. Then they supply important
signals to the motor neurons that produce muscle forces by combining the motor patterns and
structure dynamics (impedance). This level has direct interface with the muscula-skeletal system
and cerebellum module as well as the cerebral cortex.

The adaptation in the dynamics control level can be realized by adjusting CPG neural
dynamics, motor force generator in motor neurons and the impedance parameters. In the motor
intervention level, the main component is cerebellum, which interacts with cerebral cortex and
the lower level components (i.e. CPG and motor neurons). The adaptation is realized by direct
motor adjustment command to motor neurons and input command to the CPGs. The third level,
motor planning level contains cerebral cortex (motor cortex and visual system). The adaptation
can be implemented through commanding CPG and cerebellum from the top level. For example,
by using visual feedback, an anticipation locomotion adaptive control can be achieved. As we
know, blind walking can only succeed with simple environments.

Figure 2-6 is a simplified neural network control system paradigm for leg locomotion
control. It has simpler system structure and can be implemented through neural networks in
different levels.
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A neural network control system paradigm for leg locomotion. Three level
adaptive control can be performed in a top-down hierarchical frame with
appropriate neural network models.

Figure 2-6:



Chapter 3

Generalized VMC of a Bipedal Robot:
A Control Approach Inspired by a Bio-
mechanical Locomotion Model

Research on biped locomotion has been making slow progress, mainly because of control
difficulty in pursuing stable biped locomotion as compared with multi-legged locomotion. The
major problem associated with the analysis and control of biped locomotion systems is the high-
order, highly coupled nonlinear complex dynamics due to the multiple degree-of-freedom which
is inherent to the structure and the multiple state walking gait. The complexity makes the
synthesis of a control law difficult to be accomplished by the direct application of modem
control theory. Several control approaches have been proposed for the bipedal walking robots,
which is reviewed in section 1.2. Among those control approaches, virtual model control (VMC)
has many advantages in robot control design because of the simplicity and flexibility for
modifications. The purpose of this chapter is to extend the VMC to a greater mathematics
framework, i.e. a generalized virtual model control (GVMC) framework, and further to find a
way of designing robust control.

3.1 Virtual Model Control

Dynamically walking bipedal robots are difficult to control for several reasons. They are non-
linear, passively unstable, under-actuated, and exhibit varying dynamics depending on which feet
contact the ground. Because of these difficulties, textbook control solutions typically are
difficult to apply. Instead, physical intuition is often used as a tool to develop a controller.

Virtual Model Control (Pratt 1996, 1997, 1998, Chew 1998) is one such technique. Virtual
components are attached between parts of the physical structure of the robot and between the
robot and the environment. Torque is applied to the joints of the robot so as to make the robot
behave as if the virtual components are present. A finite state machine monitors the robot's
configuration and discretely modulates the virtual to physical transformation and the parameters
of the virtual components.

Figure 3-1 shows a diagram of one set of virtual components that can be used to control a
planar bipedal walking robot. These components were used in the control of our 4-DOF walking
robot Spring Turkey (Pratt 1996). Virtual spring-damper components are attached to the robot in
three axes (Z, X, 6 ), and provide height, pitch, and forward velocity control. The "dogtrack
bunny" indicates that a spring-damper mechanism in the X direction is pulled along at the desired
velocity. Due to the constraint of an un-actuated ankle in this robot, the X axis spring-damper
mechanism is attached only when the robot is in its double support phase of walking.



X

Figure 3-1: One implementation of Virtual Model Control
applied to a seven-link bipedal walking robot.

There are three steps to implementing a Virtual Model Controller:

1) Design the controller by choosing virtual components and their attachment points.
2) Design the finite state machine or other method of virtual component modulation.
3) Determine the virtual to physical transformation.

Figure 3-2 shows a state machine that was used in the control of our bipedal robots "Spring
Turkey" and, later, "Spring Flamingo" (which had actuated ankles). The virtual to physical
transformation is based on the robot's Jacobian and some additional constraints (Pratt 1996).



Figure 3-2: Diagram of the global state machine for
a bipedal walking robot.

3.2 Generalized virtual model control (GVMC)

In the study of dynamic biped locomotion, many researchers have been trying to discover
walking characteristics by measuring the human motions during locomotion in a experimental
way and most recently to explore the intrinsic bio-mechanical models of locomotion, including
adaptation of CPG and muscle control mechanism theoretically. On the other hand, bipedal leg
locomotion was also investigated by many engineering oriented groups with target in finding the
control law of biped walking and in deriving the control algorithm of biped locomotion
machines. The performance of current legged robots, however, remains far below even simplest
counterparts in the biological world. This has led to a search for biologically motivated
approaches to the design and control of legged robots in order to improve their performance and
robustness.

To enhance the robustness and other control performance in the original VMC, one needs to
consider the unmodelled (high-order) dynamics in the real mechanical structure and the
imperfect situation of the actuator dynamics as well as the pattern generator dynamics based on
the VMC framework. In order to accomplish the above, we extend the concept of VMC into a
generalized VMC (GVMC) framework in virtual dynamics space (or briefly virtual space). The
GVMC approach was inspired by a bio-mechanical leg locomotion model proposed in Taga's
paper (Taga 1995). Basing on of the GVMC frameworks, robust control design procedure is
developed in this study. Then the implementation process of this approach is also described. At
the end, the effectiveness of the GVMC is shown by the simulation results.

3.2.1 Robot control with inspiration of a biological human locomotion model

As described in section 2.2 and section 2.3, a bio-mechanical human locomotion model
developed by Taga consists of neural dynamics of CPG, musculo-skeletal dynamics and motor
control module. The musculo-skeletal system is controlled by the outputs from the motor



command generation module, which combines the output signals from the neural rhythm
generator and the internal impedance controller. Consequently the system control can be
considered as two parallel control modules: neural rhythm generator (CPG) driven control and
impedance control. The former controls rhythmic movements and propels the system to move
with desired motion patterns, and the latter maintains the upper body in an appropriate upright
posture in stance phase.

By means of the global state variable, the musculo-skeletal dynamics and neural dynamics
are integrated together, and thus an system causality is formed. This means that the neural
dynamics (of CPG) provides part of the driving force and impedance control provides the other
part, and the information of the entire skeletal system dynamics is fed back in terms of the global
state variable. This process is actually a modulation processing.

The strategy proposed in Taga's human locomotion simulation study can be potentially
utilized in robot control system. In this locomotion model, the motor control scheme is in a
distributed control fashion. The basic strategy for locomotion control is to establish a stable limit
cycle (global gait state cycle) using global entrainment variable (Taga 1991, 1995) between the
neural and musculo-skeletal systems since both systems have an oscillatory characteristics.

There are several features of Taga's locomotion model that can be used in locomotion
control for a walking robot:

1) In dynamics level, locomotion control is composed of impedance control and CPG motor
control. The impedance control provides the support for the skeletal structure in the
gravity field, and the CPG signals modulated by a global motor modulator yield the
forces to propel the bipedal walking robot in desired patterns. The modulation is
achieved by means of the global state variable Sg, (i=1,2,...,6).

2) The global state, like a regular state machine is used as a modulator in the locomotion
control.

3) Adaptation can be achieved through CPG, impedance parameter modification and the
motor modulator as well as the higher level commands and interventions.

4) The CPG driven forces are generated in a distributed fashion, then they are integrated
into joint torque signals (in centralized fashion) for joint actuation. Therefore, the
locomotion can be implemented in both decentralized (distributed) way and centralized
way.

5) The strategy can be duplicated in robot control because the bio-mechanical model is
greatly simplified in a biological sense.

From Taga's bio-mechanical model, it can be suggested that three components are crucial for
appropriate biped locomotion control system. They are: a) CPG (distributed or centralized), b)
impedance control, c) motor modulation with global states (gaits). According to the above
insights, a more general sense of virtual model control approach is proposed in the following
section.

3.2.2 Generalized VMC inspired by the bio-mechanical model of locomotion

As an extension of the original VMC (Pratt 1996), the generalized VMC can be defined as
follows. In the case of locomotion control of dynamic walking robots, a virtual dynamic
framework can be assumed and be used for the purpose of designing control system with more
simplification and convenience or more accuracy in model similarity in terms of biological
mechanism. The control is achieved in a well defined virtual dynamic frame (virtual space) and
consequently the force commands are obtained in virtual space. Then the virtual force commands
are transformed (or modulated) into actual joint torque commands in the physical dynamics space
so that the real robot joints can be actuated.



In a generalized VMC, two parts of dynamics control are always essential: structure
dynamics and gait dynamics. In structure dynamics, a proper internal impedance control is
needed so as to hold the robot in an appropriate upright posture and to prevent its limbs in a
stance phase from collapsing. However, to make the robot walk in a desired way, gait dynamics
need to be shaped properly. An additional force command with a modulator is expected to propel
the robot walking in the desired pace.

Based on the above bio-mechanical locomotion model, a general VMC (type I) can be
proposed as follows. Using the virtual musculo-skeletal structure similar to Taga's locomotion
model, determine a proper distributed CPG and the corresponding impedance control. Then use
the global state to modulate the motor generator so that the physical joint torque can be obtained.

Figure 3-3 describes a distributed dynamics based virtual model control approach. In this
control system diagram, the CPG neural networks are distributed in the legs and the body, which
represents the neural dynamics of the spinal cord of animals. The CPG networks are modulated
by the global states (global kinematic feedback from skeletal system), and their outputs are sent
to the motor control generation module so as to generate the active motor forces. Meanwhile the
impedance control is based on the distributed muscle dynamics model. By combining the outputs
from the impedance control module and the motor control generation module, the distributed
virtual force commands are obtained, then by the transformation module, the actual joint toque
commands are determined. This system has kinematic feedback (to the CPG) and the dynamic
feedback (to the impedance control).

Modulation
Global States

CPG-NN Motor Control Environment
Generation

+ Actual
Impedance + Transformation Skeletal

Control

Distributed
Dynamics

Virtual Space Physical Space

Figure 3-3: Virtual model control with distributed neural dynamic control
(Type I model).

3.2.3 Generalized VMC and Centralization

A successful biped walking robot require proper structure dynamics and gait dynamics. To
achieve these, an impedance control and a pattern driven or modulated control are essential.
There are a number of ways to do this in robotics (which may be different from the biological
findings). GVMC type I (Figure 3-3) is one approach. The advantage is that it has the structure
similarity of the biological counterpart and more freedom (space) for adjustment and adaptation.



But the disadvantage is that there are too many parameters to be determined and the principle of
tuning them and designing them is unclear so far. In other words, close form optimization of
those parameters is extremely hard to pursue. In engineering, further simplification is quite
necessary. A centralized approach is a right choice because engineers can avoid dealing with
parameter redundancy.

To enhance the system robustness and accomplish stable walking, we need to consider using
a centralized control approach for suitable biped robot control. There are three requirements to
be met: 1) finding the control which can hold the skeletal system without collapsing; 2)
interacting with the environments and feeding back the information to the control system and
then tuning the control parameters automatically; 3) establishing global walking gait patterns (the
cyclic global states). To do so, we extend the control concept of VMC in the following way.
Namely, we imagine a proximate virtual dynamics model for the skeletal system of real biped
robot in virtual space, and then design the robust control to achieve the above two requirements
(1 & 2) in the virtual space.

Inspired by the above bio-mechanical model of locomotion, a centralized control model
(VMC type II) for biped robot system is proposed as in Figure 3-4.
The considerations are:

1) For simplicity, the above bio-mechanical model should be modified into a centralized
format for practical implementation of a biped robot.

2) In the neural dynamic control system, both neural oscillator and impedance control can
be combined into one control module for convenience.

3) Robustness features have to be added to the control module.
4) CPG is used to modulate the motor command generation in a global (macro) way instead

of a dynamic way.
5) By using one control module (robust impedance control), the robustness over changing

environments (changing terrain) can be well covered by the control.

Generalized Virtual Model Control (Type II)
Figure 3-4 shows the diagram of generalized VMC type II. In this paradigm, the neural
oscillators and impedance control are based on the centralized model in virtual space. The neural
oscillators take feedback form skeletal system in form of global states, and command the macro
CPG (global gait state machine), which modulates the virtual force commands into the actual
joint torque commands for actuating the physical system.
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Figure3-4: Virtual model control with centralized dynamics
(Type II model).

Generalized VMC (Type Ilm)
Figure 3-5 shows a diagram of a generalized VMC, type IH model.

This approach is similar to the centralized control approach type II in Figure 3-4, except that
the CPG neural dynamics is directly combined with the impedance control in the virtual
dynamics space. The macro CPG (state machine) of VMC in type III is exactly the same to that
in type II. But the CPG-NN on top of the macro CPG takes feedback from skeletal system by
means of the global states. The controller with virtual components (i.e. springs, dampers etc) can
be treated as impedance controller. However, there is a difference in concept technically, that is
in the force transformation and Cartesian virtual space control. The virtual impedance control in
VMC is conducted in a virtual Cartesian space and the control signals (or force commands output
from the controller) are to be transformed into actuator torque commands. The force
transformation module functions in the same way as a motor control generation module in the
centralized control approach type II with the modulation of the gait state machine. This leads to a
lot of advantages in control design. One only needs to choose appropriate virtual components
with proper parameters in the virtual Cartesian space to accomplish the VMC design. The key
point is the same as the impedance controller in the bio-mechanical model of locomotion (Figure
2-2). The virtual components can be imagined as if one attached some physical impedance
components, such as springs and dampers, to the biped robot structure, so that the robot skeletal
structure is prevented from collapsing during the stance phase of walking.

It has been shown that VMC can control the biped robot walk stably with success (Pratt
1997, 1998). The issues left over for VMC are: 1) It needs an automatic or intelligent mechanism
of tuning the parameters for the chosen virtual components; 2) The capability of robustness is
under exploration and is to be enhanced.
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Figure 3-5: Virtual model control with centralized dynamics and
global gait.

Generalized VMC (type IV)
Virtual inverted pendulum dynamics based control. In this paradigm, the system structure is the
same as type III. But the virtual dynamics is specified in the formulation of an inverted pendulum
frame. It is worthwhile to explore this framework and make use of the existing research results,
such as Golloday and Hemami's work (1977) and Kajita and Tani's work (1995).

Force Transformation with Gait Modulation v.s. Adaptation
This force transformation module in GVMC is a key point to distinguish the types of GVMC
described above. It is used to map the force commands from the virtual space to the physical
actuator space. The gait modulation should be incorporated in the transformation. This module
functions as the motor control generation in the centralized control approaches type II, type III
and type IV. With the gait modulation, we need to derive the mapping transfer relation for each
state (or global state) of the gait state machine. One method of doing so is to use the energy
conservation (i.e. the Jacobian equation) and the dynamics constraints during the corresponding
gait state. But the quality of this approach is a subject to be investigated in the future.

3.3 Robust sliding mode control of a biped robot

3.3.1 Linear virtual dynamics

Automatic tuning of a controller requires a suitable framework or a dynamic model that can
reflect the physical interaction between the environment and the system itself. In this section, our
robust control design is based on the framework of a virtual dynamics model. Figure 3-6 shows
the diagram of a virtual dynamics model based control design (VMC type III). In this diagram,



there is a virtual dynamics space and a physical dynamics space. By utilizing an observation
module, the necessary information is collected from the physical space and formulated into the
properly selected virtual axes of the virtual space, such that the virtual dynamics of the biped
robot can be reconstructed. The virtual control is designed based on the reconstructed virtual
dynamics model. The outputs of the controller are the generalized virtual forces that are
transformed into the physical torque commands for the actuators by means of the dynamics
transformations. The transformations are different in different states, for instance, the single-
support states and the double-support state. In this paradigm, the blocks within a dashed-point
square is actually fixed in our implementation, but it leaves some space for further enhancement
in gait dynamics.

Central Pattern a
Generator

Discretization ......"
.. . . . .. . . .

Figure 3-6: A virtual model control implementation paradigm
with centralized dynamics (Type III).

In general, the control law of a dynamic system can be formulated as,

u = -Kd (c +)+ AuC (3-1)

where the control is composed of a linear feedback control part plus a control action correction
term Auc , A, Kd > 0 , and - is system tracking error. Here we call Auc a learning control term
which will be updated on line in an adaptive control system. How to determine Auc is the focus
of this section. Our approach is to utilize the information observed from physical space and
compute Auc based on the reconstructed virtual model in virtual space.

The formulation of the virtual dynamics is based on the concept of linearization of dynamics,
which says that any nonlinear dynamics equation can be linearized into a locally linear dynamics
equation around an operating point (state) and globally the dynamics can be considered as time-



varying linear dynamics. Therefore, in our design, we use the form of a time-varying linear
virtual dynamics model and put the error model (unmodelled dynamics) into an error bound for a
robustness mechanism to tolerate. For simplicity, in this design, a second order virtual system
model is utilized. It is expected that the controller designed in virtual space should be able to take
care of the unmodelled dynamics. We choose the adaptive sliding control approach with dead
zone to handle this problem.

In our design, the dynamics of the biped legged robot is formulated in z, x, and 6 axis of the
virtual space. The general form of the virtual model in (z, x, and 6 axis) can be written as,

alji+a2 a+a 3 +a 4 + fx(x, ,t,...)+dx = ux (3-2)

S+ b2i + b3z + b4 + fz (z, t,...) + d = uz  (3-3)

c19+c20+ C30 + 4 + fe(0,,t,....)+do =uo (3-4)

where x, z, 6 are the state variables, ux,u ,u o are the control commands and fx(x, i, t,...),

fz(z, ,t,...), fo(0,, t, ... ) are the unmodelled dynamics terms which are unknown functions of

the state variable x, i, z, i, 6, 9 time t, and the variables, d,, d, do are the disturbance

terms. The linear crossover terms are not included here in the above equations, but in a general
case, they should be present.

3.3.2 Adaptive control design

Using the above virtual dynamics formulation and the framework of virtual dynamics model
based control (VMC type II of Figure 3-6), the adaptive controller can be designed in the virtual
space by means of adaptive sliding control theory (Slotine 1991). Since the linear dynamics of z,
x, and 6 axis are in a similar formulation, the general dynamics (3-5) of only one axis is
described in the following section.

al.i + a 2' + a3x + a4 + f(x, i,t,...)+d = u (3-5)

Define the switching variable s(t) as,

s(t) = " + X2 = X- r (3-6)

where 3x = x - xd, Xd is the desired trajectory, A is a strictly positive gain (except = 0 for x

axis dynamics).
Note that ir can be computed from the state (x, i) and the desired trajectory xd,

r = j - s(t) = i d - (x- xd) (3-7)

According to adaptive control theory (Slotine 1991), we can derive the following control law,

u = Yt - KDS (3-8)



Choose the adaptation law as,

a = -rFYTS (3-9)

S, = s - sat(- ) (3-10)

Ix xl< 1

sat(x) = {l els (3-11)
sgn(x) else

where D = , dl + If(x, , t,...) D, D is the upper bound of the disturbance and the
KD

unmodelled dynamics. ^ is estimation of the parameter vector a. F = diag {1 ' 2,4 3 4 1
( i > 0) is the adaptation gain matrix.

Y = [r i x 1] (3-12)

a = [a a a 3 a4  (3-13)

By the above control law and adaptation law, it can be guaranteed that the positive semidefinite
Lyapunov function candidate

. a l 2 1
V = S a +- A '2 (3-14)

2 2

where a = a - a has a negative semidefinite time derivative. Therefore

V -KS2 (3-15)

From the above result, we can prove uniform global stability of the system ( SA -> 0, t - 0o) by

Barbalat's Lemma (Slotine 1991).
The above adaptive control design can be used to design the adaptive control for x, z, 6 axis.

Thus the corresponding controls are the force commands (fx,fz,fo) generated in the virtual
space. Then following the steps in section 3.1, the actuator torques can be obtained by forward
dynamics transformations. Referring to the general form of control law (3-1), in this case
Auc = Y .

The result in equation (3-15) presents good behavior of asymptotically global stability outside
of the sliding boundary layer assuming the given continuous dynamics as in (3-5). In fact, in our
application, the equivalent virtual dynamics in the X-axis is not a continuous function in terms of
the alternate states during bipedal walking. So the performance in X-axis dynamics is not
guaranteed. This is addressed in the conclusions.

It is worthwhile to mention that the above adaptive control scheme has a nice property,
namely robustness, which is achieved by means of boundary layer tolerance. The model error and
disturbance are all formulated into a pre-estimated error bound. Then the boundary layer
thickness is determined based on it. This implies that by adding better identification mechanisms
to the above dynamics framework (Figure 3-6), the performance could be improved further. For
example, we can incorporate some nonlinear identification schemes (such as neural networks) to
the adaptive control system. Combining a nonlinear identification model such as radial base



function neural networks and the above linear time varying model in (3-5), we can derive the
following virtual dynamics equations:

N

aj.i+al+a +a 4 + C igi(*)+e+d =u (3-16)
i=1

In (3-16), we have a mixed model with linear and nonlinear part where e is the model error,
gi (*) is the nonlinear base functions and d is the disturbance term. By using this formulation and

proper identification techniques, such as neural networks, the model error can be reduced. In this
case (not discussed here), the error bound is smaller and the tracking performance further
improved.

3.4 Parameter Adaptation of Linear Virtual Model Controller

When a linear virtual model control approach is assumed, the adaptation is basically done for
parameters Kd (rate control) and KP (position control). Physically, the parameters of virtual

spring components and damping components are adapted. A system description is the same as
described in section 3.3. To derive the adaptation principle, it is assumed that the same nominal
virtual dynamics models as equation (3-5) are used. Similarly to section 3.3, consider only one
general axis in the virtual Cartesian space. Define the same switching variable s(t) as equation
(3-6). If the Lyapunov function is chosen as (3-14), then the control law and the adaptation law
will be in the same form as equations (3-8) and (3-9).
In order to introduce parameter adaptation to the linear virtual components, let

Kd = K d + AKd (3-17)

KP = K* + AKP (3-18)

where K d and K* are the optimal values for the virtual components.

Define vectors a and Y as follows,

a= [a a2 a 3  a4 AKd AKPI (3-19)

Y= Ir x x 1 x x (3-20)

Then the control law becomes,

u = Y .- Kds = Y .^-[(Kd +AKd) +(Kp +AK )X]

e u = Yo o -[KS* + K,] (3-21)

where A = K, /Kd and



Y 0 =[ [, i. x 1] (3-22)

=o =[1 21 a 3 a4 (3-23)

From (3-21), it demonstrates that parameter adaptation of the linear virtual components can
be achieved by introducing new variables as (3-17) and (3-18).

3.5 Simulations and analysis

A planar bipedal walking robot was created in simulation. The simulated biped has a mass of
approximately 8.0 kg and stands 0.80 m tall. Both virtual model control (Pratt 1996) and
Adaptive Virtual Model Control were applied to the biped. During the simulations, external force
disturbances were exerted on the biped in different directions to test the control robustness. We
observed that the adaptive virtual model controller improved the system's robustness. When an
impulse external force was exerted on the robot, the robot was able to maintain stable walking
and recovered its continuous motion. Also, the simulations showed that the biped with AVMC
could better maintain the desired height of center of mass (CM), the desired body pitch as well as
smooth motion in the x-axis. The simulated biped with AVMC can walk indefinitely.

Figure 3-7b shows the simulation results with adaptive VMC, the dynamics of force signals
f, f, fo, and forward velocity in x, and actual position in z, 6 (i.e. height, pitch) in virtual

space. Figure 3-7a shows the planar bipedal robot controlled by the VMC scheme. In Figure 3-7a
& 7b, the responses are robot height (Z), pitch (Theta, 6 ), forward velocity (X-dot), as well as
virtual force commands generated by a controller, such as f, (f-z), fx (f-x) and fo (f-t).
Comparing the results under VMC and AVMC, we can see that AVMC can improve the dynamic
tracking performance of height and pitch, but it can't help much in forward velocity control
because the controller can only function in the double support state. In single support states,
because of the dynamics constraints, the controller of X-axis is disconnected by the dynamics
transformations. This implies that the virtual dynamics in X-axis is not a continuous function.
Therefore the adaptive control can not really achieve a desired performance in the forward speed
control (of X-axis), This could be further improved by a gait control scheme. Figure 3-8 shows
the parameter identification of the virtual linear dynamics model by the adaptation mechanism.

In the test of robustness with external disturbances, we did an external force impact test in
our simulation. Figure 3-9 shows the simulation responses of a bipedal walking robot
experiencing an external force impact (10 Newtons) in the z-direction. Figure 3-10 shows the
stick plot diagram of this walking profile with a force impact. From the above results, it has been
shown that improved robustness can be achieved by means of the adaptive VMC scheme. The
robustness of the biped with changing terrain will be tested in our future research.
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Figure 3-10: Stickplot of a bipedal walking robot experiencing
external force impact (10 Newtons) in z direction.



Chapter 4

Neural Networks and Learning Control

Artificial neural networks can be used as a representation framework for modelling nonlinear
dynamical systems. It is also possible to incorporate these nonlinear models within nonlinear
feedback control structures (or model based control structures). Three different types of neural
networks and their corresponding training algorithms are described in this chapter. These neural
network models are suitable for modelling and control of nonlinear dynamical systems, which is
demonstrated in the following chapters.

4.1 Radial basis function (RBF) neural networks

Recently, there has been a great deal of interest in Radial Basis Functions (RBF) Neural
Networks within the engineering community. RBFs are a traditional and powerful technique for
function interpolation and approximation in multidimensional space (Haykin 1994). A
generalized form of RBF neural networks has found wide applications in areas such as, image
processing, signal processing, control engineering, etc. Due to the properties of rapid training,
network structure simplicity and function locality, the RBF networks have been given many
diverse names, such as Gaussian Potential Functions (Lee & Rhee, 1991), Localized Receptive
Fields (Moody & Darken, 1988), Regularization Networks (Poggio & Girosi, 1989), Locally
Tuned Processing Units (Moody & Darken, 1989), and Gaussian Neural Networks (Sanner &
Slotine, 1991).
One of the important advantages in RBF neural networks is the generality. It has been proven
(Girosi & Poggio, 1990, Hartman & Keeler, 1991) that they are universal approximators, that is,
given a network with enough hidden layer neurons, they can approximate any continuous
function with arbitrary accuracy. This property is also shared by other feedforward multi-layer
perceptrons (addressed in next section).

4.1.1 Neuron model

Similarly to the standard artificial neuron model, a radial basis function neuron (Figure 4-1) has
multiple inputs, one output, a threshold vector 6 (called the center of the base function), and
nonlinear neuron state function h(e), which is defined as a radial function, such as a Gaussian

function.

X 0 5 hh(4'
input output

Figure 4-1: Neuron model for RBF network.



I x - 12)h(x) = exp( - 2) (4-1)

where o is the width or standard deviation of the Gaussian basis function.

4.1.2 Radial basis function neural networks structure

Figure 4-2 shows the structure of a radial basis neural network and its supervised learning (or
training) scheme. This is a three layer neural network structure. The first layer is the input field
for measuring the locality. The second layer net is a hidden layer, where the Gaussian radial
basis functions are distributed in the input field with different centers (threshold vectors). The
third layer net is an output layer (usually v = 0). The training scheme in the RBF neural
networks is in a supervised learning mode traditionally. In this framework shown here the
network is supposed to learn the given data patterns from an unknown system. The training
algorithms used in this research are recursive least mean square (RLMS) approach and general
least mean square (LMS) approach. Comparing the plant output with the neural networks
predication, the difference (or error) vector can be obtained and then fed into the RLMS module
(or LMS module) to compute the weight increment, hence the weights are updated.

w Y-'--

Figure 4-2: Radial basis neural network with supervised learning.

4.1.3 Approximation theory and learning algorithms

Considering n-to-i mapping as described below in Figure 4-3. Assume that the threshold in
output layer is zero.



Figure 4-3: General n-to-1 mapping with RBF network

By using this network structure, one can easily extend to a n-to-m mapping, i.e. multiple input
multiple output cases. Since the output layer is a linear function of { gi }, multiple outputs can

share the same hidden layer and one only needs to add linear components in the network.

A. Approximation theory (Poggio & Girosi 1989, Hartman & Keeler 1990).
1) The RBF neural network is a universal approximator in that it can approximate

arbitrarily well any multivariate continuous function on a compact subset of R P, given a
sufficiently large number of hidden neurons.

2) Since the approximation scheme is linear in the unknown coefficients, it follows that the
RBF network has the best approximation property. This means that given an unknown
nonlinear function f, there always exists a choice of coefficients that approximates f
better than all other possible choices.

3) The solution computed by the regulation network (Poggio and Girosi, 1989) is optimal.
Optimality here means that the regularization network minimizes a function that
measures how much the solution deviates from its true value as represented by the
training data.

B. Off-line supervised learning algorithm.
In RBF neural networks, output y is a linear combination of the radial basis functions. If the

centers {pi, o i } are known to us, the learning process can be reduced to a linear system problem

for determining the linear weights wi, (i = 1,2,..., N ).

To train the neural networks off-line, we can formulate our task as a least mean square

(LMS) optimization process. Given sample data sets {x', y'}, (i = 1,2,..., S), obtain weights

{ wl , w 2,.. , w, }, which will minimize the approximation error index function (or cost function)

J,
S

j =lX[yi _-512 (4-2)

i=1



2
N -- i -- _j

where 5' = w j exp( 2 ) (4-3)
j=1 a

is the output prediction of the network for the corresponding input vector x'. Here ~u is a

distributed center.
Define H = {-ji 1NxS' (4-4)

- i -iJ
and Hji = exp( 2 ), (4-5)

W = [Wl, w 2  w N ] T , (4-6)

Y =[y y 2... S]T. (4-7)

Applying the LMS optimization method (described in Appendix A), we can obtain the
optimal solution for the weights W * in a least mean square sense.

W* = H #. Y (4-8)

where H # = [HH T ]-' H is the pseudo-inverse of matrix H .

C. On-line supervised learning algorithm RLMS.
The weights W can be tuned recursively. In step k, given the kth sample data set {x[k], y[k]},
the on-line recursive learning algorithm can be implemented as follows,

AW[k] = R[k]h[k] T 8[k] (4-9)

8[k] = y[k]-h[k]T W[k - 1] (4-10)

R[k - 1]h[k]h[k]T R[k - 1]R[k] = 1 - - 1]1 (4-11)
1 + h[k]T R[k - 1]h[k]

hi (x[k])

h[k]= h2(x[k]) (4-12)

LhN(x[k])] Nxl

W[k] = W[k- 1] + AW[k] (4-13)

Initial values: R[0]= g. INXN, where g can be chosen as a big positive number, e.g. 106.

Centers { i } can be selected evenly.



D. On-line supervisory learning algorithm (the Delta rule).

(4-14)

(4-15)F = diag {? 2  ... N }

where 1 > i > 0 , i = 1,2,- - -, N is the learning rate.

4.2 Multi-layer Perceptron and Back Propagation (BP) Algorithm

The multi-layer perceptron trained by the back propagation learning algorithm is one of the most
widely used and very important neural networks models. This model stimulated the interest in
neural networks in the mid-1980s (Rumelhart, Hinton & William 1986). It can be shown that it is
a universal approximator, which means that is can approximate any continuous real valued
functions to any given degree of accuracy (Funahashi 1989, Necht-Neilson 1989). Generally,
multi-layer perceptrons with back propagation are trained in a supervised learning paradigm.

4.2.1 Neuron model in multi-layer perceptron

X 1

X
2

Figure 4-4: Neuron model for multi-layer feedforward networks

n

V = X iW i

i=1

y = f(v)

(4-16)

(4-17)

where f (v) should be nonlinear differentiable function. It can be selected as

function, or called S-shape function. Usually,

f (v) = 1 + e (> 0)

a sigmoidal

AW[k] = -F -h[k] -6[k]

(4-18)
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Figure 4-5: S-shape nonlinear function. (a) figure with solid line A = 1;
(b) figure with dash line, A = 10.

4.2.2 Multi-layer feed forward perceptron structure.

Figure 4-6 shows the general structure of the multi-layer feed forward neural networks. In this
structure, all the signals are feed forward, and the neurons of two adjacent layers are fully
connected with each other in forward direction. To have learning capability, this neural network
must have nonlinear function at each internal neuron. It has been proved that a multi-layer
sigmoidal neural network can represent an arbitrary (measurable) function to an arbitrary
accuracy on a compact data set (Funahashi 1989).

layer 0 layer 1 layer m layer m+ 1

Figure 4-6: General structure of multi-layer feedforward neural networks
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4.2.3 Back propagation (BP) learning algorithm.

This is a supervised learning algorithm. The BP algorithm is derived in Appendix B. It can be
summarized as follows (for a N layer neural network),

AWj = ri i,m  (4-19)

When m = N (in the output layer),

8" = (t - O ) f'(v0) (4-20)

When 1 5 m N - 1 (in the hidden layers),

6 = 2,+ 1Wkj f '(v7) (4-21)
k

where m is a layer number.

The signal flow in this network is in a manner of parallel-distributed information processing. At
first, the input signals go through the network forward, and then the network output is computed.
Comparing the network output with the desired output from the sample data set, the training error
of the network is obtained. Second, the error message propagates from the output layer backward
and go through the hidden layers down to the input layer. Then the errors at all the neurons can
be calculated. Finally, using the weight updating formula to compute the new weights in the
network. In this algorithm, in order to update the weights, the error message has to propagate
backward through the multi-layer network, thus the name of this training algorithm, Back
Propagation Algorithm.

4.2.4 Applications of multi-layer feed forward neural networks with BP algorithm.

There are many successful application examples of BP algorithm, for instance, applications in
dynamic control, pattern recognition, data clustering, signal processing etc. Particularly, in
dynamic control, the BP network is widely used to learn the inverse dynamics or the dynamic
data mapping with off-line unsupervised learning scheme. Literatures can be found in (Wu 1994,
Narendra & Parthasarathy 1990).

4.3 CMAC Neural Networks

The CMAC network, abbreviated for cerebellar model articulation controller, or cerebellar model
arithmetic computer, was developed by Albus (Albus 1975, 1979). It is one of the neural network
models that have drawn a lot of attentions and been widely applied in control areas. Fast training
process, good function approximation and hardware representation are the important
characteristics of this model. Many successful applications can be found in the literatures (Miller
1989, 1990, Handelman 1989, Kraft & Campagna 1989, An 1994, Xu 1994).



4.3.1 CMAC structure

In Figure 4-7, S is the input state space, the sub-vectors s, in it are input vectors of dimension n.

A is an N dimensional memory. Each s in S is mapped to C locations in A. In general, the
theoretical size (number of memory locations) of A is unpractically large, while the memory
requirement for a typical control problem is much smaller. For this reason, the large memory A is
randomly mapped into a smaller memory A', but there are still C locations in A' which
corresponds to each point in S. The values stored at these locations are summed to produce the
CMAC output f(S). As a whole, CMAC acts as an arbitrary function f () such that,

u = f (S) (4-22)

where S is the input to CMAC and u is the output of CMAC. A CMAC module has a number of
characteristics. Because of its input mapping, it has local input generalisation, that is, similar
inputs will produce similar outputs. A large CMAC network can be used and trained in practical
time (on-line). Due to the learning rule used in CMAC, it has a unique global minimum in a least
mean square optimization sense. Finally, CMAC can learn a wide variety of functions.

A A'

Figure 4-7: General diagram of CMAC neural network

4.3.2 Learning algorithm

The training of CMAC can be conducted as follows:
1) Assume that f(.) is a function for CMAC to learn. Then u = f(.) is the desired CMAC

output;
2) Get an input-output training pair u = f(s). Compute the current value (prediction)

a = f(s);



3) If lu - [ , where 4 is an acceptable error-margin (4 > 0), then do nothing. If ]u - [ > U ,

then add to every connection weight that contributed to u the quantity

AW =t (u-a) (4-23)

where IA'I= the number of weights from A' that contributed to u; a is the learning rate,

(0< a <1).

4) Select another input point, repeat the above procedure until all the input points in the sample
data sets have been processed.

4.3.3 Applications in control

There are two schemes basically for using CMAC in control. The first scheme has the
configuration depicted in Figure 4-8 (Albus 1975), which is actually a standard supervised
learning control paradigm (refer to Figure 4-11 of section 4.5). This scheme is for learning a
controller from an expert such as a human or other available controller.

Desired value

CMAC
Learning

d U
: d r CMAC u Y.... Plant v

Neural Network

Figure 4-8: CMAC control paradigm with supervised learning.

Figure 4-8 shows that, in the control system, both the command and feedback signals are
used as inputs to the CMAC controller. The output of the controller is fed directly to the plant.
The desired output of the neural network controller has to be supplied, thus it is in supervised
learning mode. The training of the controller is based on the error between the desired and actual
CMAC controller output. Two stages are needed to make the system work. The first stage is
training the neural controller. When CMAC receives the command and feedback signals, it
produces an output. This output is compared with the desired output. If there are differences
between them, then the weights are adjusted to eliminate the differences. On completion of this
stage, CMAC network has learnt how to produce a suitable output to control the plant according
to the given command and the measured feedback signals. The second stage is control in action.
CMAC network can work well when the required control is close to that with which it has been



trained. Both stages are completed without the need to analyze the dynamics of the plant and to
solve complex equations. However, in the training stage, this scheme requires the desired plant
inputs to be known.

CMAC CLearning
Neural Network

Referenc d  Constant a u Y

Model Control Gains + Plant

Ty
Figure 4-9: CMAC control paradigm with unsupervised learning.

The second control scheme is illustrated in Figure 4-9 (Miller, 1987,1989). In this scheme,
the reference output block produces a desired output at each control cycle. The desired output is
sent to the CMAC module that provides a signal to supplement the control signal from a fixed
gain conventional error feedback controller. At the end of each control cycle, a training step is
executed. The observed plant output during the previous control cycle is used as input to the

CMAC module. The difference between the computed plant input u* and the actual input u is
used to compute the weight adjustment. As CMAC is trained continuously following successive
control cycles, the CMAC function forms an approximation of the plant inverse dynamics over
particular regions of the input space. If the future desired outputs are in regions similar to
previous observed outputs, the CMAC output will be similar to the actual plant input required.
As a result, the output errors will be small and CMAC will take over from the fixed-gain
conventional controller (the original teacher).

From the above description, Scheme 1 is a purely closed-loop control system, because
besides the command variables, the feedback variables are used as inputs to the CMAC module
to be encoded so that any variations in the plant output can cause variations in the input it
receives. In scheme 1, the adjustment of weights is based on the error between the desired
controller output I and the actual controller output u, rather than the error between desired
plant output and actual plant output. As already mentioned, this requires the designer to assign
the desired controller output and will cause problems because usually only the desired plant
output is known to the designer. The training in scheme 1 can be considered to be the
identification of a proper feedback controller. In scheme 2, the CMAC module is used for
learning an inverse dynamics with the assistance of a conventional fixed-gain feedback
controller. After training, the CAMC network will become the principal controller. In this
scheme, control and learning proceed at the same time. The disadvantage of this scheme is that it
requires a fixed-gain controller to be designed for the plant in advance.



4.4 Survey on learning process

Among the many interesting properties of a neural network, learning from its environment is
the most significant ability of a neural network. A neural network can improve its performance
through learning. Such a learning process takes place by means of adjusting its synaptic weights
and thresholds. Ideally, the neural network becomes more knowledgeable about its environment
after each iteration in the learning process.
In the context of neural networks, learning is generally defined as follows:

Learning is a process by which the free parameters of a neural network are adapted through
a continuing process of stimulation by the environment in which the network is embedded. The
type of learning is determined by the manner in which the parameter changes take place.

There are several different types of learning processes that have been studied over the years.
In this section, a brief survey on the learning processes is addressed as follows.

4.4.1 Delta Learning Rule

This is actually a kind of error-correction learning. Assume the neurons in the output layer of a

neural network are linear. Let yd (n) denote the desired response or target response for neuron k

at time n, and the actual response of this neuron be denoted by Yk (n). The error signal is

ek (n) = y (n) - Yk (n). The ultimate purpose of the Delta learning rule is to minimize an error

signal based cost function,

J =- {e(n)} (4-24)

An approximate solution to the above optimization problem can be obtained in a least mean
square sense. According to the delta learning rule, J can be minimized with respect to the
synaptic weights of the network. The adjustment of the synaptic weight wkj at time n is given by,

Awk (n) = jek (n)xj (n) (4-25)

where r is a positive constant that determines the rate of learning and xj (n) is the input from

the previous layer. In other words, the adjustment made to a synaptic weight is proportional to
the product of the error signal and the input signal through the synapse. A unique minimum can
be achieved by this learning rule for the neural networks that have a linear output layer.

4.4.2 Supervised Learning

The essential feature of supervised learning is the availability of an external teacher or
supervisor. In conceptual terms, we may think of the teacher as having knowledge of the
environment that is represented by a set of input-output data or examples. The environment is,
however, unknown to the neural network of interest. Suppose now that the teacher and the neural
network are both exposed to a training vector (or example) drawn from the environment. By
virtue of built-in knowledge, the teacher is able to provide the neural network with a desired or



target response for that training vector. Indeed, the desired response represents the optimum
action to be performed by the neural network. The network parameters are adjusted under the
combined influence between the training vector and the error signal, i.e. the difference between
the actual response of the network and the desired response.

This adjustment is carried out iteratively in a step-by-step fashion with the aim of eventually
making the neural network emulate the teacher in such a way that the emulation is optimized in a
statistical sense. In other words, knowledge of the environment available to the teacher is
transferred to the neural network as fully as possible. When this condition is reached, we may
then dispense with the teacher and let the neural network deal with the environment thereafter
completely by itself. Generally, the supervised learning is virtually formulated in a error-
correction fashion, which is described in the above section. The least-mean-square (LMS)
algorithm and the back-propagation (BP) algorithm are two widely applied supervised learning
algorithms.

4.4.3 Unsupervised Learning

In unsupervised learning, or self-organizing learning, there is no external teacher to oversee the
learning process. In other words, there are no specific data sample sets or examples of function
available to be learned by the network. Rather, provision is made for a task-independent measure
of the quality of representation that the network is required to learn, and the free parameters of
the network are optimized with respect to that measure. Once the network has become tuned to
the statistical regularities of the input data, it develops the ability to form internal representations
for encoding features of the input and thereby create new classes automatically (Becker, 1991).
Hebbian learning and competitive learning are two types of unsupervised learning approaches,
which have neurobiological basis (Haykin, 1994).

Unsupervised learning is a good choice for dealing with unknown or partially unknown
system dynamics. In reality, combining the supervised learning and unsupervised learning can
help to utilize the available knowledge or experiences gained so far and explore the further
unknown aspects. One successful example in control engineering is model reference adaptive
control. In model reference adaptive control system, a reference model works as a teacher and the
adaptation mechanism adjusts the control system gains such that the entire system (controller +
plant) behaves as the reference model and the Lyapunov stability is guaranteed in the gain tuning
process.

4.4.4 Reinforcement Learning

Reinforcement learning is the on-line learning of an input-output mapping through a process of
trial and error designed to maximize a scalar performance index function called a reinforcement
signal. The basic reinforcement learning has its original roots in experimental studies of animal
learning in psychology. But in Sutton's reinforcement learning paradigm, the definition of
reinforcement learning has been stated as follows,

If an action taken by a learning system is followed by a satisfactory state of affairs, then the
tendency of the system to produce that particular action is strengthened or reinforced.
Otherwise, the tendency of the system to produce that action is weakened.

One of well-developed reinforcement learning framework is Adaptive Heuristic Critic (Barto
et al 1983, Sutton 1984). Its theory has several artificial intelligence components and is closely
linked with optimal control and dynamic programming techniques in the implementation. The



existing dynamic programming techniques provide the learning process an efficient and powerful
mechanism for sequential-decision making and global optimization of the index function.

Reinforcement learning can be viewed as an unsupervised learning if one considers the index
function as an evaluative feedback component imbedded in the system. Or it can be viewed as a
supervised learning when one treats the index function as an evaluative teacher. But this
approach can deal with both statistically stationary and non-stationary systems.

4.5 Adaptive learning with neural networks

As we noticed, the spatiotemporal nature of learning is exemplified by many of the learning tasks
(e.g., control and identification) discussed in the previous chapters. Moreover, animals ranging
from insects to humans have an inherent capacity to represent the temporal structure of
experience. Such a representation makes it possible for an animal to adapt its behavior to the
temporal structure of an event in its behavioral space (Gallistel 1990). Temporal representation
of experience and adaptation are the key in natural learning.

It is known that both adaptation and learning can be achieved by means of neural networks.
There are different definitions of adaptation in control engineering, cognitive science and
artificial intelligence. Generally, adaptation means that making appropriate adjustments to the
networks such that the overall system can achieve an optimal behavior under unknown and
unexpected situations occurred in the environment. It is often assumed that a nominal network
can make the system work properly during the nominal situations. However, learning can be
classified mainly as supervised learning and unsupervised learning based on the presence of
teacher.

When a neural network operates in a stationary environment (i.e., one with statistical
characteristics that do not change with time), the essential statistics of the environment can in
theory be learned by the network under supervision of a teacher. In particular, the synaptic
weights of the network can be computed by having the network undergo a training session with a
set of data that is representative of the environment. Once the training process is completed, the
network should capture the underlying statistical structure of the environment. Thus the
supervised learning is done. In this case, adaptation is not necessary.

Frequently, however, the environment of interest is non-stationary, which means that the
statistical parameters of the information-bearing signals generated by the environment vary with
time. In the situation of this kind, the traditional methods of supervised learning may prove to be
inadequate, because the supervisor available may not have the sufficient knowledge to capture
the features of the time varying environment. To overcome this shortcoming, the network has to
be able continually to adapt its free parameters to variations in the incoming signals in a real-time
fashion. Thus an adaptive system or an unsupervised learning system is required.

In a time varying or an uncertain environment, a nominal network or any available supervisor
may not be able to make the system work in a satisfactory way. In most cases of this kind, at least
the criterion or the index function for judging the system behaviors should be found and a
general principle of operation like optimization is also available. Based on the chosen criterion or
index, an adaptive mechanism or unsupervised learning method can be developed. Yet, there is
no such a unique theory existing for the development because the nature of the environment is
not unique. The nature of uncertainty in the environment decides the features of the possible
adaptation approaches that can be applied.

Among many successful examples, there are two types of adaptation or unsupervised
learning, or so called adaptive learning. One is Lyapunov stability theory based learning
principle. The other is reinforcement learning method, which is similar to human learning



activity. The former has a lot application in dynamic control systems. Other approaches, such as
neurobiological mechanism based self-organizing learning approaches, have been applied
successfully in pattern recognition and dynamic systems etc, where the Hebbian learning rule and
competitive learning rule are used in the learning process. Important examples of this types of
neural networks are Kohonen's Self-organizing Maps (Kohonen 1997) and Grossberg's Adaptive
Resonance Theory (ART) (Carpenter & Grossberg 1988). For practical applications, combining
the supervised learning and adaptive learning is strongly suggested. Model reference adaptation,
which combines a supervisor (reference model) and an adaptation module, is not only a good
dynamic control approach, but also a good neural network adaptive learning approach. Many
successful application examples are formulated in this framework. In this study, Lyapunov
stability based adaptive learning is focused.

4.6 Learning control of an inverted pendulum model

The inverted pendulum model has been widely used as a benchmark for verifying the feasibility
of many learning control and nonlinear controllers. That is because an inverted pendulum is
essentially a nonlinear and unstable system. A bipedal walking robot can be simplified as an
inverted pendulum based dynamic walking, which was reported in many literatures (Golliday &
Hemani 1977). A dynamic model of an inverted pendulum may be helpful to analyze the gait
stability with respect to a stance length although the biped in single support phase is different
from an inverted pendulum pivoted on a cart.

The following neural network learning control paradigms are standard frameworks that can
be applied similarly in walking robot control systems.

4.6.1 Inverted pendulum model

As derived in Appendix C, the dynamic model can be formulated as follows,

(M +m) + mlcos9 .- mlsin99.2 = f (4-26)

ml2 +ml cosO . -mglsin0 = z (4-27)

m

Figure 4-10: Diagram of an inverted pendulum.



4.6.2 Supervised learning control of the inverted pendulum

In the study of supervised learning control, a linear controller is designed by means of the
linearization of the given nonlinear inverted pendulum model. Then the inverted pendulum
controlled with linear controller is simulated. In order to train the neural networks, the linear
controller is utilized as a teacher or supervisor. The supervised learning control scheme is shown
in Figure 4-11. Two neural networks, CMAC and RBF neural networks, have been tested.
Because of long training time is required, the multi-layer feedforward neural network with back-
propagation algorithm is not applied in this inverted pendulum control.

Figure 4-11: Neural network control paradigm with supervised learning

4.6.3 Unsupervised control of the inverted pendulum

For unsupervised learning control, an adaptation scheme is developed, which will be described in
details in chapter 6. Both CMAC and RBF neural networks can be used for unsupervised
learning control of the given inverted pendulum model, where a linearized inverted pendulum
model is derived and the neural networks are used to take care of the nonlinear dynamics part.
Figure 4-12 shows the unsupervised learning control scheme.

Index

Function

1 Ne; I u Inverted x=[o x]
xII Ai, - Pendulum '

Figure 4-12: Neural network control paradigm with unsupervised learning.



4.6.4 Dynamic simulation of learning control and analysis

Using the model described in section 4.6.1, the simulation has been conducted successfully by
means of leg lab creature library. The parameters of the inverted pendulum are m=0.1 (kg),
M=1.0 (kg), and 1=0.5 (m). Figure 4-13 shows responses of the RBF neural network controller
and the CMAC neural network controller, which are trained with a linear controller (the
supervisor). The RBF network has 100 hidden neurons and its training process takes about 1000
iterations. The CMAC network has 2 k hidden neuron cells and the training only takes about 200
iterations. Both neural networks worked well for the control of the given inverted pendulum
model.

RBF Neural Network Control

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (sec)

(a) RBF neural network control



CMAC Neural Network Control

0 0.2 0.4 0.6 0.8 1
Time (sec)

1.2 1.4 1.6 1.8 2

(b) CMAC neural network control

Figure 4-13: Neural network control for an inverted pendulum model with supervised learning.
(a) RBF neural network control. The solid line is linear control output and the
dashed line is output from the RBF neural network. (b) CMAC neural network
control. The solid line is output of a linear controller and the dashed line is output
from CMAC neural network.

4.7 Comparison of BP, CMAC and RBF neural networks

Multilayer feedforward neural network with back propagation learning, CMAC neural network
and RBF neural network are three neural network models that have been applied in control
systems the most successfully so far. To investigate their capability in learning is very important
for our potential applications of learning control in legged locomotion. There are several factors
to be considered when one chooses a suitable neural network model for his applications, such as,
training time, global optimization in learning, high dimension input field learning, error tolerance
and adaptation capability. In the following, those characteristics of networks are evaluated in
details.

4.7.1 Comparison based on XOR function learning

Table 4-1 shows the 2-D XOR function. The neural network learning setup is described as
follows:

1). BP network: 3 layers, 2 hidden neurons, random initial values.
2). CMAC network: C=2, input variable dimension =3, 25 neuron cells used. zero initial

values.
3). RBF network: 3 hidden neurons with centers (0,0), (1,1), (0.5,0.5), zero initial values.

k
1

; i!



Table 4-1: 2 D XOR function

Input x, Input x 2  Output y

0 0 0
0 1 1
1 0 1
1 1 0

Table 4-2 shows the training time comparison for three neural network models (BP network,
RBF network and CMAC network). The cost function threshold used in training is 0.0002.

Table 4-2: Training time comparison
Type of neural network: Number of iteration: Network size:

BP neural network 25833 3 neurons
CMAC neural network 8 25 neurons
RBF neural network 2 3 neurons

4.7.2 Summary of comparison

Training time
Training time is a very important performance index for choosing neural networks. In some

applications, on-line training is required. Thus the training speed becomes very crucial in those
circumstances. In general, among three types of neural networks, BP, CMAC, RBF neural
networks, back-propagation algorithm trained multi-layer neural networks require vast amount of
training time (refer to Table 4-2). Comparably, the learning process of BP networks is the
slowest. The learning process of RBF neural networks is in the same order of magnitude with
CMAC neural networks. But in general, the CMAC neural network is slightly faster than the
RBF neural networks in training with respect to the same application. The major reason is that
the both CMAC and RBF neural networks have the spatial locality, but the BP networks don't.
Therefore, the BP networks need to make adjustments to all the synaptic weights whenever a
new data set is used in training.

Structure size
Time and space are the two related factors in the world, particularly in neural network

design. People always try to make a good trade off between them. In neural network design, the
network that has fast learning capability, usually has a big spatial structure. Comparing the three
neural networks, BP, CMAC, RBF neural networks, the BP networks have the smallest structure
size, RBF neural networks have a very big structure size, and CMAC neural networks have the
largest spatial structure size (refer to the XOR function learning in 4.7.1).

Global optimization
Achieving the global minimum is a key in the learning process of a neural network. Failure

in this implies that the network is not well trained and thus can not represent the plant that
supplies the sample data sets. CMAC and RBF neural networks can guarantee the global
minimum during the learning process. But the BP networks can reach local minimum in training.
Therefore it is very difficult to apply the BP networks in a complex dynamic system.



Error tolerance
As long as the neural networks are well trained, they usually have certain capability of error

tolerance, which can be proved theoretically by means of interpolating techniques. In general,
CMAC networks have relatively worse error tolerance because of the square wave basis
functions are used in the inherent network structure,

Adaptation capability
Since both RBF and CMAC neural networks have one hidden layer with nonlinear neurons

and a linear output neuron layer, they have the potential to be added with certain adaptation
capability. This will be described in details in chapter 6. However, for the BP networks, the task
becomes extremely hard because of low converging speed and risk in local minimum trap.

The overall comparison is summarized in the table below:

Table 4-3: Property comparison of three networks.
Properties RBF CMAC BP

Training fast fast very slow

Computation fast fast fastest

Network Size big biggest small

Approximation accurate accurate not always
Adaptation yes yes not easy



Chapter 5

Neural Network Control of a Bipedal
Walking Robot

In the previous chapter, three different types of neural networks have been investigated. As we
discovered, RBF neural networks and CMAC neural networks are better than multi-layer neural
networks trained by BP algorithm for a complex dynamic model. So in the application to a
bipedal walking robot control, RBF neural networks and CMAC neural networks are two good
candidates for us.

Space is one fundamental issue of the learning process, and time is the other. For real time
application, better spatial representation obtained by neural networks (like RBF network, CMAC
network) is needed. We can sacrifice the memory space in order to gain the advantages in
learning speed and global optimization over the BP learning algorithm. In this chapter, dealing
with the high dimension applications and dynamics learning with neural networks are the focus.
Since the RBF neural networks and CMAC neural networks share a lot of characteristics, they
are similar in the applications.

5.1 Clustering algorithm for RBF neural networks

As we know, both CMAC and RBF neural networks share many properties: fast training, global
minimization and the locality. However, the complexity and difficulty has been shifted to the
requirement of huge memory space in case of high dimension applications. The locations of the
RBF (Gaussian) and CMAC (square shape) basis functions should be distributed in the entire
input vector field according to the approximation theory. Suppose we have N inputs and we
choose M even distributed Gaussian basis functions for every input variable, then the total

number of required centers is NM, which is an astronomical number. Obviously, selecting the
centers of basis functions in this way is not practical at all. A good way to do it is to use data
clustering algorithms or hashing functions (Miller 1989). The underlining assumption is that, in a
real application, the system dynamics is usually constrained in certain subspace of the input
variable space, we only need to choose a subset of points such that they cover the entire dynamic
space of the system. Data clustering algorithm and hashing are two efficient ways to achieve the
goal. The hashing function approach is an alternative to the clustering method and is not included
in this study.

5.1.1 Advantage of clustering

As with the RBF neural networks, a very large training set may create an unnecessary heavy
computational load on the system. But some form of clustering is desirable to replace all training
vectors in a cluster with a single vector. Once a cluster of input training vectors is identified, its
central vector is found by averaging all vectors in the cluster. This central vector then represents
for the training vectors in the cluster.

In high dimensional input vector spaces, the volume of the space rises exponentially with the
dimensionality. If a cluster center is defined where no input vectors are nearby, the output of that
hidden layer neuron will be essentially zero for all input vectors. Equation (4-9) and (4-14) show



that no training will occur in this case. Thus, clustering is most useful where there is an excess of
training data forming dense clusters.

5.1.2 Clustering algorithms

All of the basis function networks mentioned in this chapter may benefit by clustering the
training vectors when there is a large amount of training data. In a dynamic control system or in
signal processing applications, the amount of training data can be virtually unlimited. But it is
believed that most data patterns are generally fixed. So if we can identify those data patterns by
clusters and only use the central points of the clusters as the centers of basis functions, then the
size (memory need) of the network and the computation load of the network are reduced.

Clustering algorithm I: Suppose there are N sample data sets and the maximum radius of clusters
is R (or called threshold of clustering). The algorithm is summarized as follows:

a) Take a point as a center of first cluster.
b) For each unclassified point, compute the distances between the point and all the centers of

clusters. If all of the distances are greater than the radius R, take the point as a center of
new class. Otherwise, the point will be assigned to the cluster whose center is closest to
the point.

c) The algorithm is terminated when all points are classified.
This algorithm has limitations, such as that the result is dependent on the chosen maximum

radius and the order of pattern vectors to be processed. However, it constitutes a quick, simple
way to establish some rough properties of a given set of data.

Clustering algorithm II: Maximum-distance algorithm (Wu 1994). This is a simple heuristic
procedure based on Euclidean distance. Rather than forming new clusters during the
classification process, this algorithm consists of two phases. The first phase determines all
possible clusters and the second phase performs classification. The procedure of the algorithm is
described as follows.

a) Take the first point as the first cluster center, and denote it by z,.

b) Find the sample that is the farthest from z,, and take it as the center of the second cluster

Zz • Take the distance between zI and z2 as the standard distance D,.

c) Compute the distance from each remaining point to cluster centers Z, Z2, ... , find
pointswith the minimum distance to these cluster centers. Then find the largest of the
minimum distances for all these points. If the ratio of this maxima over standard distance
D, is greater than a threshold T, the corresponding point is taken as another cluster

center. This process terminates when no new cluster center can be found.
d) Assign each sample point to the nearest cluster as represented by their centers.

Clustering algorithm III: (K-means clustering algorithm) (Wu, 1994)
a) Choose K initial cluster centers ,z2 , ... ,zk .

b) Distribute the samples among the K clusters using minimum distance criterion.
c) Take the centroid of each cluster as a new center of that cluster.
d) Compare the new centers with the previous ones. If the change is below a threshold,

terminate the algorithm, and go back to b) otherwise.



In the above two intuitive algorithms (I & II), cluster centers are determined randomly
because the order of pattern processing and the threshold are all chosen randomly. Considering
the fact that randomly chosen cluster centers are usually not exactly the right ones, then the
clusters obtained usually cannot reflect the nature of the pattern data. K-mean algorithm
dynamics updates cluster centers for each iteration as new samples have been assigned to
clusters, until the cluster centers reach a stable state.

It is also worth to note that by the cluster center updating procedure, the center moves to the
dense part of the cluster so that the intra-cluster distance is minimized. If the number of clusters
is correct, the algorithm will eventually converge to a correct solution. But the behavior of the K-
mean algorithm is influenced by the number of clusters specified, and the choice of initial cluster
centers. An improved approach, adaptive K-means can be used in this regard (Moody and
Darken, 1989).

5.2 Self-organizing RBF neural networks

With a proper clustering algorithm, one can design the RBF neural network structure and thus
train the neural network efficiently in high dimension applications. The trained network will
behave well with the inputs in the sample data sets. In fact, generalization and adaptation
becomes very important in practical applications. Since the data sets were obtained from the
given system within a period of time. The sample data can probably represent the major behavior
of the system, but not the complete system behaviors. So, if a network trained with the collected
sample data sets can do well in real applications in normal cases (similar situations as the
sampling time), the trained network is considered having proper capability of generalization. If
not, then on-line training is an option for developing the generalization capability.
There are three steps for training a network:

1) Supervised off-line training: set up the structure of network, train the network with the
sample data sets available.

2) Supervised on-line training: develop network generalization capability.
3) Unsupervised learning for environment adaptation and robustness enhancement.

A self-organizing neural network is an ideal network that has been pre-trained with the
sample data sets and behaves well in the normal situations, and has the potential in adaptation
and structure modification. RBF neural network can be designed into such a format because of its
locality property. In a real time application, if new data which does not belong to the training
data sets shows up, it is easy to modify the network structure such that the global behavior being
improved. Adaptation is used to deal with the disturbances and environment changes.
Figure 5-1 is a picture of a self-organizing RBF neural network paradigm.
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Figure 5-1: Self-organizing RBF neural network structure.

Structure modification: detect the irregular dynamics by observing the neuron outputs,
gi (.), when 0 < gi (.) / (threshold, 0 < /3 1), V i [1,..., N], then a new center needs to

be added.
Adaptation (unsupervised learning): take a performance measurement index to supervise the
neural network and do the weights adjustments when necessary. A Lyapunov stability theory
based adaptation scheme is developed in next chapter.

5.3 Application to dynamic bipedal walking control

For the bipedal walking control, the sample data sets are collected from a virtual model control
module which can propel the biped walking successfully. There are two RBF neural networks
used to control the leg locomotion. The dual neural network model training approach is actually
based on the belief that the coupling between the left leg joints and the right leg joints is week. It
is appropriate to use two separate neural networks for identifying the extrinsic dynamics with
virtual model control. Figure 5-2 shows the general structure of RBF neural network locomotion
control with supervised learning, which is used for both left leg joint control and right leg joint
control. In the simulation of RBF neural network control of a bipedal walking robot, the input
variables are modified slightly. Considering the decoupling requirement, the global state variable
(of the state machine) is used as an input signal for the neural networks of left leg and right leg.
Therefore each neural network control model has seven inputs and three outputs.

Inputs: State machine state, hip angular position, hip angular velocity, knee angular position,
knee angular velocity, ankle angular position, ankle angular velocity.

Outputs: hip joint torque, knee joint torque and ankle joint torque.



Figure 5-2: RBF neural network locomotion control with supervised learning.

5.4 Simulation and analysis

The following are the simulation results of RBF neural network control of a bipedal walking
robot with supervised learning. The training data sets are shown in Appendix D. By using the
training data sets, the two RBF neural networks were trained off-line. Then their capabilities of
data prediction were tested by setting the networks as observers and using VMC (the supervisor)
as an actual controller in the simulation. The comparison of VMC outputs and the network
outputs are shown in Figure 5-3. One can clearly see that the prediction is accurate. However,
because of the limited number of data sample points were used for training the networks, the
neural network control could not do well. When untrained data points appeared in operation, the
network could not make proper adjustments, then the overall control performance was not as
good as the case with VMC. But the on-line training neural network control can control the
walking robot as well as the VMC, which demonstrated that the on-line training algorithm and
the network structure self-organizing algorithm are both correct. Figure 5-4 shows the data
outputs from neural networks and the corresponding VMC. They are very close dynamically.
Figure 5-5 is the stick diagram of the on-line simulation with neural network control.
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(a) Prediction of ankle joint torque
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Figure 5-3: Dynamic prediction with neural network control trained off-line.
Solid line figures are signals of VMC, and dashed line figures are signals
from RBF neural networks.
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Figure 5-4: Dynamic responses of neural network control with on-line learning.
Solid line figures are signals of VMC, and dashed line figures are signals
from RBF neural networks.

Figure 5-5: Stick diagram of a walking robot with neural network control
(on-line learning)



Chapter 6

Adaptive Learning Control with RBF
Neural Networks

In this chapter, the neural networks based adaptive learning mechanisms are studied and they are
applied to enhance the robustness of virtual model control (VMC), which has been described in
chapter 3. Using the framework of VMC (Type III), a neural network adaptive control (NNAC)
approach is proposed, which combines and extends some recent insights in VMC, neural
networks and adaptive system theory. The NNAC assumes a linear dynamics structure and uses a
radial basis function neural network to identify the unmodelled dynamics. The RBF network can
be parameterized in a Lyapunov stability based adaptation framework (Sanner & Slotine, 1991),
and it is organized by means of the clustering method for the high dimension case. The residual
unmodelled dynamics and external disturbances are accommodated by a dead zone robustness
adjustment mechanism.

6.1 Dynamics representation in virtual space and neural
network identification

Neural networks, such as RBF and CMAC neural networks, can be used to learn the
deterministic nonlinear dynamics and the uncertain dynamics of a system and its environment
variations. For the deterministic nonlinear dynamics identification, a supervised learning
algorithm can provide a good solution. But for the uncertainty of dynamics in a system and the
varying environments, adaptive learning is required. Frequently the traditional adaptation
approaches can not do the job well, where the nonlinear and uncertain dynamics appears in the
system operations. In such a case, neural network based adaptive learning is a good choice. In
this study, only RBF neural network has been considered. The CMAC neural network can be
applied similarly.

In order to have a learning system working efficiently, it is important to represent (or
formulate) the system dynamics in a proper way and to assign suitable computation load to the
adaptation learning mechanism. As described in chapter 3, virtual model control (VMC) is a
feasible and convenient approach for biped locomotion control. So, in this study, the goal is to
develop a neural network based adaptive learning control approach for the bipedal walking robot,
such that the system performance (such as robustness and stability) can be further improved. In
the following dynamics formulation, the virtual dynamics concept (described in section 3.2) is
assumed.

To enhance the adaptation capability and robustness to the control system, we ought to
include the interactive information between the robot and its environment. Two types of
information can be available to our controller design, namely, the kinetic information of the
center of robot mass and measured information from the physical joints. Any mal-functions of a
biped robot is developed during a dynamic process of its physical joints. So, the information
from the physical joints can be effectively used to aid the controller design.

The strategy described in Figure 3-6 can utilize the observed information and the measured
information to achieve a robust controller design in virtual space, in which the real dynamics is
imagined and decomposed into a Cartesian dynamic system.



In the virtual Cartesian space, the virtual dynamics can be considered as linear dynamics plus
some nonlinear dynamics including physical joint dynamics coupling and the state of the finite
state machine etc. The linear dynamics is based on the observed information in the virtual space,
such as position, velocity of the center of mass. Generally, the linear dynamics (in one axis X, it
is the same for Z, and 6 axis) is expressed as

aoi + ai + a2x + a3 = u (6-1)

To capture the complex nonlinear dynamics of the real biped, a three-layer RBF neural
network can be used.

N

f(X) = f(, x,,z, ,O) = f (4a, qa, 4k,qk,1h,qh, S)= Cgi(X, i) (6-2)
i=1

X = [4aqa, 4kqk,4hqh,S] (6-3)

gi = e a (6-4)

where g, is the nonlinear radial basis function of node i, 4i is the basis function center of node

i, and X is the input vector, in which qa,, qk, qh indicate the angular position of the ankle

joints, the knee joints and the hip joints respectively, and s means state variable of the state
machine.

The desired dynamics can be specified based on the walking pattern and required
performance. In a simple case, we can specify the desired dynamics in virtual space as,

6
d = 0, Zd = C1 , Xd = C 2  (6-5)

where c, and c2 are constants. In the above case, the desired trajectory was assumed as constant

body height, zero pitch angle and constant forward velocity. In real world, animals don't use this
type of desired trajectory, instead the desired trajectories of animals are determined basing on
effort minimization and comfort maximization, which are hard to quantify and thus are very
difficult to be formulated in a training process.

In summary, the virtual dynamics is represented as,

N

ao0 + al+ a2 x+a 3 + _ Ci,gi(X,) + d += u, (6-6)
i=1

where d is the disturbance and E is truncation error of the approximation with the finite neural
network to the actual nonlinear dynamics. In equation (6-6), the unmodelled nonlinear dynamics
is represented by means of a RBF neural network. When the coefficients of the network are
determined by means of the adaptive learning algorithm, the dynamics will be identified
consequently and will be used by the controller automatically. Thus the system performance is
improved.



6.2 Adaptive learning control with RBF neural networks

Constructing the RBF neural network effectively so as to achieve good approximation of the
target nonlinear dynamics is crucial for implementing this RBF neural network control. One
strategy (Sanner & Slotine 1992) is to define a nominal sub-space D, in which the RBF neural

network is designed with even distributed basis functions. The adaptive control is a combination
of linear control, sliding control and neural network control. The sliding control only works
outside the sub-space Dn and it always drive the dynamics into Dn. Within Dn the neural

network control takes over from the sliding control.
In our approach, we use a global dynamics formulation with RBF neural network (refer to

equation (6-6)) and a self-organizing structure. In the control system, since we have seven input
variables to the RBF neural network, high dimension becomes a serious barrier in implementing
the RBF neural network. However from our observations, we found out that the robot dynamics
is always continuous and confined in a sub-space of the dynamics, such as the working space.
Therefore, we can use a clustering algorithm to determine the nominal centers for basis functions
in the global space. To take into account the irregular cases, a self-organizing auxiliary network
can be added based on the on-line detection of the dynamics states (refer to section 5.2). In this
approach, the adaptive RBF neural network control is designed globally in the entire working
space.
From (6-6) we can represent the dynamics as

a0 + fA (i, x,...) + d + E = u (6-7)
N

fA (i, x,...) = ai +a2 3 + Cigi(X,i )  (6-8)
i=1

Choosing the switching (or sliding) surface as,

s = x + ~x, (6-9)

where 3 =x-xd; A > O; x

is the state variable in one virtual axis ( X, Z, 6 ); xd is the desired trajectory in one virtual axis.

According to the adaptive control developed in (Sanner & Slotine 1991, 1992), the control
law can be designed in the following format,

S= uad +Upd = Y - Kds , (6-10)

where Y =[i9r,,,x,1, g 2,82 ...,gN], (6-11)

a= [ao,aI,a2aa 3, C C 2,...,C9 ]T , (6-12)

xr = jd + (x-xd). (6-13)

Here & is the estimate of vector a. The control is composed of uad = YM, and u pd = - K d * ,

Kd > 0. Actually upd = -Kd (X + x) is in the same form of a PD controller and an Spring-

damper impedance controller like what was used in VMC system (Pratt 1996). Besides, uad is



the learning control part in this system since a will be updated on-line based on the system
dynamics and interaction with the environments.

When the approximation error 6 is small and the disturbance is ignorable, the adaptation
(unsupervised learning) algorithm can be derived as,

Adaptation law: a = -FYs, (6-14)
which satisfy

1V = -Kds 2 < 0. (6-15)

The Lyapunov function candidate is

V = la os 2 +I -1a (6-16)

where =diag o 0 1 2 3 61 62 ... 6N}, (6-17)

i > 0, 6 > 0, (i =0,1,2,3, j = 1,2,...,N ),

a = a -a. (6-18)

Therefore the asymptotic and uniform global stability of the system can be achieved. (Slotine
& Li, 1991)

6.3 Robustness with dead zone

Robustness is one of the system performance measurements. In reality, there are always some
disturbances coupled into the system dynamics, which can affect the system behavior. Besides,
for the dynamics identification with a finite size of neural network, there exists certain network
approximation error with respect to the actual dynamics. Those effects should be considered for
the system robustness enhancement.

Assuming the truncation error of the finite network approximation E and the system

disturbance d can be bounded as e + Idl E. Then to tolerate the above bounded error term, a

boundary layer with thickness a, can be introduced. Consequently a new sliding variable with
dead zone s, is defined as follows,

sA = s - sat( ) (6-19)

sat(x) x, I (6-20)sgn(x), else (6-20)

By using the Lyapunov function candidate,

V = aoss +aFJr- la (6-21)



where F=diag { o y 1 2 3 61 62 ... 6'N, i > 0, 6 >0,(i=0,1,2,3,

j = 1,2,..., N ), a = a - a.

Combining the equations (6-7)-(6-13), (6-19)-(6-21), and using the following adaptation law,
we can derive,

1V = -Kds! <0 (6-22)

Adaptation law: a = -YTsA . (6-23)

Therefore, the asymptotic and uniform global stability of this system can be achieved
(s - 0, t 4- oo) by Barbalat's Lemma (Slotine & Li 1991). This also implies that the system

trajectory error will be confined in the chosen boundary layer. Hence the robustness is enhanced.

6.4 Simulations and analysis

A dynamic simulation was designed based on the "Creature Library" and implemented by
Computer C. The motion of biped robot was confined in a sagittal plane and was controlled to
walk on the flat ground with some mild rough terrain on it. It walked stably and robustly in MIT
Leg Lab in the simulation. This robot model has height 0.8 meters, leg length 0.5 m, foot length
0.1 m, and body weight 8 kg. There are six joint actuators for hip, knee and ankle in each leg.
There are two RBF neural networks, which were implemented in parallel and used to capture the
nonlinear structure dynamics of the left leg and right leg during walking. The size of each
network is N=200 in our simulation. The simulation has shown that the adaptive control
algorithm with RBF neural network worked correctly and the system robustness was enhanced
through the simulation tests.

Figure 6-1 shows that the dynamics of the robot when it encountered disturbances. Figure 6-
2 shows the stick plot of stable walking.
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At t=4 seconds, the stiffness of the ground was significantly reduced.

Figure 6-1:



Figure 6-2: Stick diagram of the bipedal walking robot simulation data from Figure 6-lb
when controlled by the Adaptive Virtual Model Controller with RBF Neural
Networks.



Chapter 7

Conclusions and Future Work

7.1 Conclusions and discussions

7.1.1 Conclusions

1) Neural networks. Three neural network models have been studied and analyzed. It is
suggested that RBF neural networks and CMAC neural networks are suitable for applications
in bipedal locomotion control because of the fast learning and locality features. The on-line
learning algorithms and adaptive learning algorithms have been developed successfully.

2) Generalized virtual model control. Based on Taga's bio-mechanical neural control model,
several different types of virtual control schemes are proposed. Among them, a centralized
global gait driven virtual model control has been chosen for further developing robust and
adaptive controller because of the structure simplicity.

3) Self-organizing neural networks. A self-organizing scheme has been developed for adjusting
the neural network structure when untrained data appears in the learning process.

4) Robust control of biped walking robots. A nonlinear sliding mode based adaptive virtual
model control approach has been proposed to enhance the robustness of the control system
for a bipedal walking robot. When adaptation is added to the virtual components, the
controller responds to time varying parameters and external disturbances. It also adapts to
unmodelled dynamics, resulting in more accurate height and pitch trajectory tracking.

5) Adaptive learning control of bipedal robots. The robustness of a bipedal walking algorithm
can be enhanced by the use of a general virtual model based adaptive learning control
approach with neural networks. The learning and adaptation was implemented with a Radial
Basis Function Neural Network Adaptive Controller. With the adaptive learning controller,
a simulated bipedal walking robot maintained pitch and height tracking after the ground
stiffness decreased significantly.

7.1.2 Discussions

1) Although robustness was enhanced in terms of height and pitch tracking, the adaptive
controller does not guarantee the long-term stability of the walking gait. However, by
ensuring more robust, consistent behavior of the height and pitch during each of the walking
phases and at each of the state machine transitions, the robustness of the algorithm as a whole
can be increased.

2) As is understood in bio-mechanical models (in Chapter 3), bipedal locomotion is composed of
skeletal (structure) dynamics and gait dynamics. This thesis only deals with the former part,
i.e. the structure dynamics. This is why the forward speed control can not be further improved
significantly where a fixed gait state machine is used. To enhance the overall performance,
gait adaptation should be considered in the future.



3) Without vision feedback, blind walking can only success under simple uncertain
environments. There are some limits on blind walking control and adaptation. Robustness
has been tested only with disturbances and texture changing in this study.

7.2 Future work

1) Because of the limitations with a fixed gait state machine, CPG driven neuro-mechanical
locomotion control approaches (VMC type I, II) have been proposed. The CPG neural model
used in this study has a good adaptation and stability in neuro-dynamics and thus in walking
gaits. So it is suggested to investigate CPG control approaches in the future and explore the
intrinsic mechanism and causality in biped locomotion control.

2) Adaptation is an important issue, which has been never studied completely so far. Under the
paradigm in Figure 2-5 and Figure 2-6, adaptation components can be added in three
different levels, such as, dynamics control level, motor intervention level and motor planning
level. In fact, animals (including human being) have different adaptation or learning skills in
different levels. In our study of locomotion control, it is wise to start with the above three
levels of adaptation in our further research.

3) 3-D robot control study is something with the more complexity and of course it is the
ultimate goal in the biped locomotion control. From 2-D control to 3-D is not as simple as an
easy extension. There is something unknown to be explored further. So the 3-D locomotion
control should be treated as a serious challenging task in the research.

4) The success of simulation in biped walking can be extended into studying the malfunction of
human being in leg locomotion (by simulation). A direct application is in orthotics or
prosthetics study.



Appendix A

Least Mean Square Algorithm

Given a system as shown in Figure 4-2. Assume the system model,

N

^[n] = _cixi[n], (A-l)
i=1

x[n] = [x1 [n],x 2[n],. -,XN[n]] T  (A-2)

Sy[1] = cx [1] + c 2 2 [1] + CNXN [1]

y[2] = clx, [2] + C2 X 2 [2]+ - + cxN[2] (A-3)

y[S] = cx[S] c 2 x 2 [S] + + cxN[S]

This becomes an over-determined equation when S>N.
Least Mean Square (LMS) solution for the above system:
Define the cost function as,

S
J = - [y[n] - ^[n]] 2  (A-4)

n=1

find {ci }, such that

N

5[n] = ci*x,[n] (A-5)
i=1

minimizes the above cost function J.
Express equation (A-3) into a matrix form

Y=H .W (A-6)

where H =[X',X 2 ', ,XS]NxS

X = [x,[i],x 2[i],',XN [i]]r , i= 1,2,-, S

Y = [y[1], y[2],- - , y[n]] ,

W =[ClC2,...,CN]
T



The optimal solution to (A-4) and (A-5) is

W* = (HHT )- ' HY = H#Y (A-7)

where H # = (HH T )-1 H is the pseudo-inverse of matrix H.



Appendix B

Derivation of Back Propagation Algorithm for
Multi-layer Feed forward Neural Networks

Figure B-i is a general diagram for a multi-layer feed forward neural network. Suppose that the
network has N+I layers (including the input layer). Figure B-1 shows notations and labels.

m-i
V

m
V.

m+1
V,

ii O **

unit i

layer (m- 1)

unitj

layer m

Y =-e t

el+
unit k

layer (m+ 1) layer N

Figure B-1: General feedforward multi-layer neural network.

Notations:

v = > state of unitj in layer m;

i" -= input to a unit in layer m from unit i of layer m-l;

07 * output from unitj in layer m;

Wi= = weight of the connection from unit i (layer m-1) to unitj in layer m;

m =YWjM. mV. = 7vW.*"

i=l

OJ = f(v7)= i*

im = Of (

1
f(v) =

1+e - v

d
f'(v) = - f (v) = (1- f(v)), f(v)

dv

(B-l)

(B-2)

(B-3)

(B-4)

(B-5)



Problem statement:
Given a set of training samples, obtain a learning rule for connecting weights in all the layers so
that the total error E can be decreased in the steepest direction for such sample presentation.

E = (t -O )
le S

where S, = {1,2,.- - , S }, S is the total number of samples.

Find AW7: (Assume 3f '(v))

Recall the steepest descent LMS rule,

AW = -pVE

(B-6)

(B-7)

aE
AW z -

aE
= -r * iav ,

Define - 5m
aE

avmJ

aE av-
-r av7 aw;Sji

(B-8)

aE aom

a07 aVM

aE
= f'(v m )

ao m

-AWJ7 = 17 m'7im

Computing 65m:
1) For the final layer (output layer, m=N):

-N )2 , N
-- a [2 (tl oN)]f(Vj)

=-(tj - O )f '(v )

AW N ,N iN N .iN
jN = r (t - )i = j .i

(Widrow-Hopf Rule)

(B-9)

(B-10)

5 = (t -O O )f '(v ) (B-11)



2) For the hidden layers (1 m N - 1):

m+l = Wkm+ O (B-12)Vk

aE aE DO7

Sav" aOm avm-m -

aE avm+
=- m+l "f'(v7)

k aVk ao m

: 7 = (  .k W m + k f'(v7) (B-13)
k

aE
where = -Sm+ (B-14)

avm+l k

and k W m+ (B-15)
m 

"j

3) Summary:

Back propagation algorithm (steepest descent) is summarized as follows,

AW; = ? im (B-16)

When m = N (in the output layer),

J = (t( - f '(v) (B-17)

When 1 m 5 N -1 (in the hidden layers),

65 = M+1W f'(vm) (B-18)

k

where m is a layer number.

Figure B-2 shows the signal path of this back propagation algorithm.



Parallel Distributed Data Processing

FigureB-2: Signal flow in back-propagation learning algorithm.

The signal flow in this network is in a manner of parallel-distributed information processing.
At first, the input signals go through the network forward, and then the network output is

computed. Comparing the network output with the desired output from the sample data set, the
training error of the network is obtained. Then in next step, the error message propagates from

the output layer backward and go through the hidden layers down to the input layer. Then the

errors at all the neurons can be calculated. Finally, using the weight updating formula (B-16) to

compute the new weights in the network. In this learning algorithm, the error message has to

propagate backward through the multi-layer network, thus the weights are updated consequently.
Therefore, this learning algorithm was named as Back Propagation Algorithm, which is very

powerful in small size of multi-layer feed forward neural networks.



Appendix C

Dynamic model of an inverted pendulum

For a model as shown in Figure 4-10, assume the pendulum rod is massless. Its dynamic model
can be derived by means of Lagrangian approach.
Chosen the following generalized variables, 1 = x, 42= 6. Then the corresponding

generalized force are 61 
= f and = z.

Kinetic co-energy T* is

T* = 1M 2 + 2mv2

= Mi 2 +- m[L 2 + (1) 2 + 2*(10) cos 0]

= -(M +m)+ml6 2 +mlcosO.8* (C-l)

Potential energy V is

V = mgl cos6 (C-2)

Therefore the Lagrangian L equals

L= T* -V = I(M +m)iC + mlO2 + mcosO..--mglcosO (C-3)

So the Lagrangian equations are

d aL aL
- ( )- - = f (C-4)
dt ax ax

d aL aL
( ) -- = T (C-5)- ) -5dta6 a6

= -= (M + m)i+ mlcosO . 8 (C-6)

axL m1 20+mlcosO * (C-7)

Finally, from the above Lagrangian equations, we get the dynamics equations of an inverted
pendulum,

(M +m) + mlcosO9--mlsinO.82 = f (C-8)

m129 + ml cosO i- mgl sin 0 = " (C-9)



Appendix D

Input and output data for training the RBF
neural network controller

There are two RBF neural networks are used for the locomotion control of left leg joints and
right leg joints. The inputs for each network are state machine variable, three joint positions and
three corresponding joint velocities. The data is shown in the following figures (Figure D-1 and
Figure D-2).
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Figure D-1: Input signals for off-line training of RBF neural networks. In (a) and (b), solid line
figures are signals of the left leg, and dashed line figures are signals of the right leg.
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(a) Output signals (torques of left leg joints) for off-line training.
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(b) Output signals (torques of right leg joints) for off-line training.

Output signals of the VMC module for off-line training of neural networks.
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