1,765 research outputs found

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Platforms and Protocols for the Internet of Things

    Get PDF
    Building a general architecture for the Internet of Things (IoT) is a very complex task, exacerbated by the extremely large variety of devices, link layer technologies, and services that may be involved in such a system. In this paper, we identify the main blocks of a generic IoT architecture, describing their features and requirements, and analyze the most common approaches proposed in the literature for each block. In particular, we compare three of the most important communication technologies for IoT purposes, i.e., REST, MQTT, and AMQP, and we also analyze three IoT platforms: openHAB, Sentilo, and Parse. The analysis will prove the importance of adopting an integrated approach that jointly addresses several issues and is able to flexibly accommodate the requirements of the various elements of the system. We also discuss a use case which illustrates the design challenges and the choices to make when selecting which protocols and technologies to use

    Integrated Satellite-terrestrial networks for IoT: LoRaWAN as a Flying Gateway

    Get PDF
    When the Internet of Things (IoT) was introduced, it causes an immense change in human life. Recently, different IoT emerging use cases, which will involve an even higher number of connected devices aimed at collecting and sending data with different purposes and over different application scenarios, such as smart city, smart factory, and smart agriculture. In some cases, the terrestrial infrastructure is not enough to guarantee the typical performance indicators due to its design and intrinsic limitations. Coverage is an example, where the terrestrial infrastructure is not able to cover certain areas such as remote and rural areas. Flying technologies, such as communication satellites and Unmanned Aerial Vehicles (UAVs), can contribute to overcome the limitations of the terrestrial infrastructure, offering wider coverage, higher resilience and availability, and improving user\u2019s Quality of Experience (QoE). IoT can benefit from the UAVs and satellite integration in many ways, also beyond the coverage extension and the increase of the available bandwidth that these objects can offer. This thesis proposes the integration of both IoT and UAVs to guarantee the increased coverage in hard to reach and out of coverage areas. Its core focus addresses the development of the IoT flying gateway and data mule and testing both approaches to show their feasibility. The first approach for the integration of IoT and UAV results in the implementing of LoRa flying gateway with the aim of increasing the IoT communication protocols\u2019 coverage area to reach remote and rural areas. This flying gateway examines the feasibility for extending the coverage in a remote area and transmitting the data to the IoT cloud in real-time. Moreover, it considers the presence of a satellite between the gateway and the final destination for areas with no Internet connectivity and communication means such as WiFi, Ethernet, 4G, or LTE. The experimental results have shown that deploying a LoRa gateway on board a flying drone is an ideal option for the extension of the IoT network coverage in rural and remote areas. The second approach for the integration of the aforementioned technologies is the deployment of IoT data mule concept for LoRa networks. The difference here is the storage of the data on board of the gateway and not transmitting the data to the IoT cloud in real time. The aim of this approach is to receive the data from the LoRa sensors installed in a remote area, store them in the gateway up until this flying gateway is connected to the Internet. The experimental results have shown the feasibility of our flying data mule in terms of signal quality, data delivery, power consumption and gateway status. The third approach considers the security aspect in LoRa networks. The possible physical attacks that can be performed on any LoRa device can be performed once its location is revealed. Position estimation was carried out using one of the LoRa signal features: RSSI. The values of RSSI are fed to the Trilateration localization algorithm to estimate the device\u2019s position. Different outdoor tests were done with and without the drone, and the results have shown that RSSI is a low cost option for position estimation that can result in a slight error due to different environmental conditions that affect the signal quality. In conclusion, by adopting both IoT technology and UAV, this thesis advances the development of flying LoRa gateway and LoRa data mule for the aim of increasing the coverage of LoRa networks to reach rural and remote areas. Moreover, this research could be considered as the first step towards the development of high quality and performance LoRa flying gateway to be tested and used in massive LoRa IoT networks in rural and remote areas

    Aproximação inteligente baseada no design de sistemas integrados para aplicativos de telemedicina

    Get PDF
    Introduction: The present research was conducted at Sikha ‘O’ Anusandan (deemed to be University) in 2017. Telemedicine application in the field of medicine creates a new age. Accordingly, it requires technology to be compatible. Easy access and fast processing are the major focuses in different applications. In this paper, an approach has been considered to diagnose heart diseases. Methods: The model is designed using fuzzy logic in which the rule-based principle is applied to satisfy the objective. The model is developed keeping a view over the multi-agent system. The diagnosis of the patient is performed using Fuzzy Inference System (fis). Results: The pathological test results will help to form the rules of the model and can work for the diagnosis in a convenient way. Furthermore, the results of detection are communicated through Internet and sms for monitoring and post care purpose of supporting IoT application. Conclusion: The simulated result shows its performance can be helpful to physicians as well as patients from remote places. Originality: The model is proposed for disease detection and monitoring patients on remote locations. Also, distributed agents are proposed to act on a common platform using Internet for the benefit of society. This will save time for physicians and travelling costs for the patient. Limitations: The research results can be practically implemented in new medical equipment for hospitals with earlier equipment.Introducción: la presente investigación se realizó en Sikha ‘O’ Anusandan (la cual se considera una universidad) en 2017. La aplicación de la telemedicina en el campo de la medicina genera una nueva era. En consecuencia, requiere que la tecnología sea compatible. Las características principales que se demandan de dichas aplicaciones son el fácil acceso y el procesamiento rápido. Este estudio se aproxima a la telemedicina para el caso de diagnosis de enfermedades cardíacas. Métodos: el modelo se diseña mediante una lógica difusa en la que se aplica el principio basado en reglas para satisfacer el objetivo. El modelo se desarrolla teniendo en cuenta el sistema de agentes múltiples. El diagnóstico del paciente se realiza con el sistema de inferencia difusa (fis). Resultados: los resultados de la prueba patológica ayudarán a formar las reglas del modelo y pueden aportar para el diagnóstico de manera conveniente. Además, los resultados de la detección se comunican a través de Internet y sms para fines de seguimiento y cuidado posterior de la aplicación IoT. Conclusión: el resultado simulado muestra que su desempeño puede ser útil tanto para médicos como para pacientes en lugares remotos. Originalidad: se propone el modelo para detectar enfermedades y monitorear pacientes situados en locaciones remotas. Además, se propone que agentes distribuidos en una zona actúen sobre una plataforma común utilizando internet para el beneficio de la sociedad, esto ahorrará tiempo a los médicos y costos de traslado o transporte del paciente. Limitaciones: los resultados de la investigación se pueden implementar de forma práctica en nuevos equipos médicos para hospitales con equipos ya existentes.Introdução: a presente pesquisa foi realizada na Universidade de Sikha ‘O’ Anusandan, em 2017. O aplicativo de telemedicina no campo da medicina gera uma nova era. Em consequência, requer que a tecnologia seja compatível. O acesso fácil e o processamento rápido são as principais características esperadas dos diferentes aplicativos. Neste estudo foi considerada uma aproximação para diagnosticar as doenças cardíacas.Métodos: o design do modelo é feito através de uma lógica difusa, na qual o princípio baseado em regras para satisfazer o objetivo é utilizado. O modelo é desenvolvido tendo em conta o sistema de agentes múltiplos. O diagnóstico do paciente é realizado utilizando o sistema de inferência difusa (fis).Resultados: os resultados do exame patológico ajudarão a formar as regras do modelo e podem contribuir para o diagnóstico de forma conveniente. Além disso, os resultados do exame são comunicados, por internet e sms, para fins de seguimento e cuidado posterior do aplicativo IoT.Conclusão: o resultado simulado mostra que seu desempenho pode ser útil tanto para médicos quanto para pacientes em lugares remotos.Originalidade: é proposto o modelo para detectar doenças e monitorar pacientes situados em lugares remotos. Além disso, é proposto que agentes distribuídos em determinadas zonas utilizem uma plataforma comum, fazendo uso da internet para beneficiar a sociedade, o que economizará tempo para os médicos e custos de traslado e/ou transporte do paciente.Limitações: os resultados da pesquisa podem ser inseridos de forma prática em novas equipes médicas para hospitais com equipes já existentes

    Health Care Equity Through Intelligent Edge Computing and Augmented Reality/Virtual Reality: A Systematic Review

    Get PDF
    Intellectual capital is a scarce resource in the healthcare industry. Making the most of this resource is the first step toward achieving a completely intelligent healthcare system. However, most existing centralized and deep learning-based systems are unable to adapt to the growing volume of global health records and face application issues. To balance the scarcity of healthcare resources, the emerging trend of IoMT (Internet of Medical Things) and edge computing will be very practical and cost-effective. A full examination of the transformational role of intelligent edge computing in the IoMT era to attain health care equity is offered in this research. Intelligent edge computing-aided distribution and collaborative information management is a possible approach for a long-term digital healthcare system. Furthermore, IEC (Intelligent Edge Computing) encourages digital health data to be processed only at the edge, minimizing the amount of information exchanged with central servers/the internet. This significantly increases the privacy of digital health data. Another critical component of a sustainable healthcare system is affordability in digital healthcare. Affordability in digital healthcare is another key component of a sustainable healthcare system. Despite its importance, it has received little attention due to its complexity. In isolated and rural areas where expensive equipment is unavailable, IEC with AR / VR, also known as edge device shadow, can play a significant role in the inexpensive data collection process. Healthcare equity becomes a reality by combining intelligent edge device shadows and edge computing

    Survey on Security Issues and Protective Measures in Different Layers of Internet of Things (IoT)

    Get PDF
    In general perspective, Internet of things is defined as a network of physical objects by connecting” things to things” through the sensors, actuators and processors, to communicate and exchange data and information among each other along with other related devices and systems spread over different locations, without human-to-human or human-to-computer interactions. This survey summarises all the security threats along with privacy issues that may be confronted by the end users in Internet of Things (IoT). The majority of survey is to gather information about the current security requirements for IoT, the further scope and the challenges in IoT and the measures to prevent attacks upon the IoT systems

    Real Time Performance Testing of LoRa-LPWAN Based Environmental Monitoring UAV System

    Get PDF
    Aerial drones are emerging in industrial and environmental monitoring as they are effective tools that are able to reach far and isolated areas. However, the regularity communication developments have not grown as fast as the technology needs. Either due to the lack of communication coverage or power inefficiency. As a result, some other solution should be proposed such as the internet of things. Internet of Things technology has a great potential of becoming a leading industry since it makes objects able to communicate with each other. IOT/M2M (Internet of Things/Machine-to-machine) communication could be used in a wide range of applications such as environmental surveillance and monitoring systems. These systems could be fixed ends or moving ends like an Unmanned Ariel vehicle (UAV). In this case, LoRa/LPWAN (Long Range Communication) / (Low Power Wide Area Network) is selected to be the best candidate, since it provides a wide coverage area and power efficient systems. This thesis develops and tests a communication scheme prototype for environmental UAV monitoring system using LoRa-LPWAN. Also, a functional testbed for testing the prototype is proposed as well. The prototype was tested in different environmental sites such as line-of-sight and non-line-of-sight environments. The developed scheme performs successfully in harsh environments and its readings were fully documented throughout this thesis

    Software Platforms for Smart Cities: Concepts, Requirements, Challenges, and a Unified Reference Architecture

    Full text link
    Making cities smarter help improve city services and increase citizens' quality of life. Information and communication technologies (ICT) are fundamental for progressing towards smarter city environments. Smart City software platforms potentially support the development and integration of Smart City applications. However, the ICT community must overcome current significant technological and scientific challenges before these platforms can be widely used. This paper surveys the state-of-the-art in software platforms for Smart Cities. We analyzed 23 projects with respect to the most used enabling technologies, as well as functional and non-functional requirements, classifying them into four categories: Cyber-Physical Systems, Internet of Things, Big Data, and Cloud Computing. Based on these results, we derived a reference architecture to guide the development of next-generation software platforms for Smart Cities. Finally, we enumerated the most frequently cited open research challenges, and discussed future opportunities. This survey gives important references for helping application developers, city managers, system operators, end-users, and Smart City researchers to make project, investment, and research decisions.Comment: Accepted for publication in ACM Computing Survey

    Digitising the Industry Internet of Things Connecting the Physical, Digital and VirtualWorlds

    Get PDF
    This book provides an overview of the current Internet of Things (IoT) landscape, ranging from the research, innovation and development priorities to enabling technologies in a global context. A successful deployment of IoT technologies requires integration on all layers, be it cognitive and semantic aspects, middleware components, services, edge devices/machines and infrastructures. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC - Internet of Things European Research Cluster from research to technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster and the IoT European Platform Initiative (IoT-EPI) and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in the next years. The IoT is bridging the physical world with virtual world and requires sound information processing capabilities for the "digital shadows" of these real things. The research and innovation in nanoelectronics, semiconductor, sensors/actuators, communication, analytics technologies, cyber-physical systems, software, swarm intelligent and deep learning systems are essential for the successful deployment of IoT applications. The emergence of IoT platforms with multiple functionalities enables rapid development and lower costs by offering standardised components that can be shared across multiple solutions in many industry verticals. The IoT applications will gradually move from vertical, single purpose solutions to multi-purpose and collaborative applications interacting across industry verticals, organisations and people, being one of the essential paradigms of the digital economy. Many of those applications still have to be identified and involvement of end-users including the creative sector in this innovation is crucial. The IoT applications and deployments as integrated building blocks of the new digital economy are part of the accompanying IoT policy framework to address issues of horizontal nature and common interest (i.e. privacy, end-to-end security, user acceptance, societal, ethical aspects and legal issues) for providing trusted IoT solutions in a coordinated and consolidated manner across the IoT activities and pilots. In this, context IoT ecosystems offer solutions beyond a platform and solve important technical challenges in the different verticals and across verticals. These IoT technology ecosystems are instrumental for the deployment of large pilots and can easily be connected to or build upon the core IoT solutions for different applications in order to expand the system of use and allow new and even unanticipated IoT end uses. Technical topics discussed in the book include: • Introduction• Digitising industry and IoT as key enabler in the new era of Digital Economy• IoT Strategic Research and Innovation Agenda• IoT in the digital industrial context: Digital Single Market• Integration of heterogeneous systems and bridging the virtual, digital and physical worlds• Federated IoT platforms and interoperability• Evolution from intelligent devices to connected systems of systems by adding new layers of cognitive behaviour, artificial intelligence and user interfaces.• Innovation through IoT ecosystems• Trust-based IoT end-to-end security, privacy framework• User acceptance, societal, ethical aspects and legal issues• Internet of Things Application
    corecore