459,090 research outputs found

    Mission Tasking, Path Planning, and System Integration for an Autonomous Surface Vessel

    Get PDF
    This thesis presents the design and development of a fully autonomous surface vessel for use as a research platform for the Office of Naval Research and as a competition entry to the International Maritime RobotX Challenge in 2014 and 2016. The author’s contributions to this include the development of safety systems, power distribution systems, communications software, tasking software, and planning algorithms. The results of these developments include a hardware based safety system, a modular power and health monitoring system, an easy to use autoconfiguring inter-process communications stack, a dynamic tasking engine, and a comparison of two solutions to planning with a kinodynamically constrained vehicle. Several recommendations are made for future work including combining the two planning algorithms and expanding the tasking framework to include multiple vehicles

    Planning the Unplanned Experiment: Assessing the Efficacy of Standards for Safety Critical Software

    Get PDF
    We need well-founded means of determining whether software is t for use in safety-critical applications. While software in industries such as aviation has an excellent safety record, the fact that software aws have contributed to deaths illustrates the need for justi ably high con dence in software. It is often argued that software is t for safety-critical use because it conforms to a standard for software in safety-critical systems. But little is known about whether such standards `work.' Reliance upon a standard without knowing whether it works is an experiment; without collecting data to assess the standard, this experiment is unplanned. This paper reports on a workshop intended to explore how standards could practicably be assessed. Planning the Unplanned Experiment: Assessing the Ecacy of Standards for Safety Critical Software (AESSCS) was held on 13 May 2014 in conjunction with the European Dependable Computing Conference (EDCC). We summarize and elaborate on the workshop's discussion of the topic, including both the presented positions and the dialogue that ensued

    Architecture-driven fault-based testing for software safety

    Get PDF
    Ankara : The Department of Computer Engineering and the Graduate School of Engineering and Science of Bilkent University, 2014.Thesis (Master's) -- Bilkent University, 2014.Includes bibliographical references leaves 159-166.A safety-critical system is defined as a system in which the malfunctioning of software could result in death, injury or damage to environment. To mitigate these serious risks the architecture of safety-critical systems need to be carefully designed and analyzed. A common practice for modeling software architecture is the adoption of architectural perspectives and software architecture viewpoint approaches. Existing approaches tend to be general purpose and do not explicitly focus on safety concern in particular. To provide a complementary and dedicated support for designing safety-critical systems we propose safety perspective and an architecture framework approach for software safety. Once the safety-critical systems are designed it is important to analyze these for fitness before implementation, installation and operation. Hereby, it is important to ensure that the potential faults can be identified and cost-effective solutions are provided to avoid or recover from the failures. In this context, one of the most important issues is to investigate the effectiveness of the applied safety tactics to safety-critical systems. Since the safety-critical systems are complex systems, testing of these systems is challenging and very hard to define proper test suites for these systems. Several fault-based software testing approaches exist that aim to analyze the quality of the test suites. Unfortunately, these approaches do not directly consider safety concern and tend to be general purpose and they doesn’t consider the applied the safety tactics. We propose a fault-based testing approach for analyzing the test suites using the safety tactic and fault knowledge.Gürbüz, Havva GülayM.S

    Controlling Concurrent Change - A Multiview Approach Toward Updatable Vehicle Automation Systems

    Get PDF
    The development of SAE Level 3+ vehicles [{SAE}, 2014] poses new challenges not only for the functional development, but also for design and development processes. Such systems consist of a growing number of interconnected functional, as well as hardware and software components, making safety design increasingly difficult. In order to cope with emergent behavior at the vehicle level, thorough systems engineering becomes a key requirement, which enables traceability between different design viewpoints. Ensuring traceability is a key factor towards an efficient validation and verification of such systems. Formal models can in turn assist in keeping track of how the different viewpoints relate to each other and how the interplay of components affects the overall system behavior. Based on experience from the project Controlling Concurrent Change, this paper presents an approach towards model-based integration and verification of a cause effect chain for a component-based vehicle automation system. It reasons on a cross-layer model of the resulting system, which covers necessary aspects of a design in individual architectural views, e.g. safety and timing. In the synthesis stage of integration, our approach is capable of inserting enforcement mechanisms into the design to ensure adherence to the model. We present a use case description for an environment perception system, starting with a functional architecture, which is the basis for componentization of the cause effect chain. By tying the vehicle architecture to the cross-layer integration model, we are able to map the reasoning done during verification to vehicle behavior

    Data-centric distribution technology in ARINC-653 systems

    Get PDF
    REACTION 2014. 3rd International Workshop on Real-time and Distributed Computing in Emerging Applications. Rome, Italy. December 2nd, 2014.Standard distribution middleware has recently emerged as a potential solution to interconnect distributed systems in the avionics domain, as it would bring important benefits throughout the software development process. A remaining challenge, however, is reducing the complexity associated with current distribution standards which leads to prohibitive certification costs. To overcome this complexity, this work explores the use of the DDS distribution standard on top of a software platform based on the ARINC-653 specification. Furthermore, it discusses how both technologies can be integrated in order to apply them in mission and safety-critical scenarios.This work has been funded in part by the Spanish Government and FEDER funds under grant number TIN2011-28567-C03-02 (HIPARTES).Publicad

    FoCaLiZe: Inside an F-IDE

    Full text link
    For years, Integrated Development Environments have demonstrated their usefulness in order to ease the development of software. High-level security or safety systems require proofs of compliance to standards, based on analyses such as code review and, increasingly nowadays, formal proofs of conformance to specifications. This implies mixing computational and logical aspects all along the development, which naturally raises the need for a notion of Formal IDE. This paper examines the FoCaLiZe environment and explores the implementation issues raised by the decision to provide a single language to express specification properties, source code and machine-checked proofs while allowing incremental development and code reusability. Such features create strong dependencies between functions, properties and proofs, and impose an particular compilation scheme, which is described here. The compilation results are runnable OCaml code and a checkable Coq term. All these points are illustrated through a running example.Comment: In Proceedings F-IDE 2014, arXiv:1404.578

    Component-based modeling and observer-based verification for railway safety-critical applications

    Get PDF
    1th International Symposium on Formal Aspects of Component Software , Bertinoro, Italie, 10-/09/2014 - 12/09/2015International audienceOne of the challenges that engineers face, during the development process of safety-critical systems, is the verification of safety application models before implementation. Formalization is important in order to verify that the design meets the specified safety requirements. In this paper, we formally describe the set of transformation rules, which are defined for the automatic transformation of safety application source models to timed automata target models. The source models are based on our domain-specific component model, named SARA, dedicated to SAfety-critical RAilway control applications. The target models are then used for the observer-based verification of safety requirements. This method provides an intuitive way of expressing system properties without requiring a significant knowledge of higher order logic and theorem proving, as required in most of existing approaches. An experimentation over a chosen benchmark at rail-road crossing protection application is shown to highlight the proposed approach

    Architecture framework for software safety

    Get PDF
    Currently, an increasing number of systems are controlled by soft- ware and rely on the correct operation of software. In this context, a safety- critical system is defined as a system in which malfunctioning software could result in death, injury or damage to environment. To mitigate these serious risks, the architecture of safety-critical systems needs to be carefully designed and analyzed. A common practice for modeling software architecture is the adoption of software architecture viewpoints to model the architecture for par- ticular stakeholders and concerns. Existing architecture viewpoints tend to be general purpose and do not explicitly focus on safety concerns in particular. To provide a complementary and dedicated support for designing safety critical systems, we propose an architecture framework for software safety. The archi- tecture framework is based on a metamodel that has been developed after a tho- rough domain analysis. The framework includes three coherent viewpoints, each of which addressing an important concern. The application of the view- points is illustrated for an industrial case of safety-critical avionics control computer system. © Springer International Publishing Switzerland 2014
    corecore