
ARCHITECTURE-DRIVEN FAULT-BASED
TESTING FOR SOFTWARE SAFETY

a thesis

submitted to the department of computer engineering

and the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Havva Gülay Gürbüz

August, 2014

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Bedir Tekinerdoğan(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Can Alkan

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Halit Oğuztüzün

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

ii

ABSTRACT

ARCHITECTURE-DRIVEN FAULT-BASED TESTING
FOR SOFTWARE SAFETY

Havva Gülay Gürbüz

M.S. in Computer Engineering

Supervisor: Asst. Prof. Dr. Bedir Tekinerdoğan

August, 2014

A safety-critical system is defined as a system in which the malfunctioning of

software could result in death, injury or damage to environment. To mitigate

these serious risks the architecture of safety-critical systems need to be carefully

designed and analyzed. A common practice for modeling software architecture

is the adoption of architectural perspectives and software architecture viewpoint

approaches. Existing approaches tend to be general purpose and do not explicitly

focus on safety concern in particular. To provide a complementary and dedicated

support for designing safety-critical systems we propose safety perspective and

an architecture framework approach for software safety.

Once the safety-critical systems are designed it is important to analyze these

for fitness before implementation, installation and operation. Hereby, it is im-

portant to ensure that the potential faults can be identified and cost-effective

solutions are provided to avoid or recover from the failures. In this context,

one of the most important issues is to investigate the effectiveness of the ap-

plied safety tactics to safety-critical systems. Since the safety-critical systems

are complex systems, testing of these systems is challenging and very hard to

define proper test suites for these systems. Several fault-based software testing

approaches exist that aim to analyze the quality of the test suites. Unfortunately,

these approaches do not directly consider safety concern and tend to be general

purpose and they doesn’t consider the applied the safety tactics. We propose a

fault-based testing approach for analyzing the test suites using the safety tactic

and fault knowledge.

Keywords: software safety, safety-critical systems, architectural design, architec-

tural viewpoints, architectural perspectives, fault-based testing.

iii

ÖZET

YAZILIM EMNİYETİ İÇİN MİMARİ-GÜDÜMLÜ
HATA-TABANLI TEST

Havva Gülay Gürbüz

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Bedir Tekinerdoğan

Ağustos, 2014

Emniyet-kritik sistemlerdeki bir aksama ya da işlev bozukluğu ölümlere, insanlar

üzerinde ciddi yaralanmalara ya da çevresel hasarlara neden olabilir. Bu riskleri

ortadan kaldırmak ya da azaltmak için emniyet-kritik sistemler dikkatli bir şekilde

tasarlanmalı ve analiz edilmelidir. Tasarım aşamasında karar alınırken farklı

paydaşlar için mimari görünümlerin ve perspektiflerin modellenmesi, yazılım mi-

mari tasarımında kullanılan yaygın pratiklerden birisidir. Literatürde var olan

yaklaşımlar genel amaçlı olarak kullanılmış ve özel olarak emniyet ilgisi ele

alınmamıştır. Emniyet ilgisini mimari düzeyde adresleyebilmek ve emniyet-kritik

sistemlerin tasarım sürecini desteklemek amacıyla literatürde var olmayan em-

niyet perspektifi ve yazılım emniyeti için mimari çerçeve yaklaşımlarını sunuy-

oruz.

Emniyet-kritik sistemler tasarlandıktan sonra gerçekleştirim, kurulum ve

işletim süreçlerinden önce sistemlerin analiz aşaması gerçekleştirilmelidir. Yapılan

analizle birlikte olası hataların belirlendiği ve belirlenen hataları tolere etmek ya

da ortadan kaldırmak için uygun maliyetli çözümlerin uygulandığından emin ol-

unmalıdır. Emniyet-kritik sistemler karmaşık sistemler olduğu için, bu sistemlerin

testinin gerçekleştirilmesi ve uygun test durumlarının yazılması oldukça zorludur.

Literatürde yazılım mimarisi kalitesini değerlendirmek açısından birçok senaryo-

tabanlı yazılım mimari analizi yaklaşımları sunulmuştur. Fakat bu yaklaşımlar

genel çözümler sunmakta ve emniyet ilgisini doğrudan göz önünde bulundur-

mamaktadır. Bu kapsamda, emniyet-kritik sistemler için oluşturulan test du-

rumlarının uygulanan emniyet taktikleri ve hata bilgileri kullanılarak etkinliğini

değerlendirebilmek için hata-tabanlı test yaklaşımı sunulmaktadır.

Anahtar sözcükler : yazılım emniyeti, emniyet-kritik sistemler, mimari tasarım,

mimari görünümler, mimari perspektifler, hata-tabanlı test.

iv

Acknowledgement

I would like to express my deepest thanks and gratitude to my supervisor Asst.

Prof. Dr. Bedir Tekinerdoğan for his strong support and guidance of my research,

motivation and unsurpassed knowledge. It was a great pleasure for me to have a

chance of working with him.

I am also thankful to Asst. Prof. Dr. Can Alkan and Assoc. Prof. Dr. Halit

Oğuztüzün for kindly accepted to read and review this thesis. Probably most

of this work would not have been possible without the support of Nagehan Pala

Er. I am grateful to Nagehan for her valuable ideas and suggestions. I would

also like to acknowledge the financial support of TÜBİTAK (The Scientific and

Technological Research Council of Turkey) during my research.

I would like to thank Esra Cansızoğlu for her guidance and help on academic

decisions in my career. I am also grateful to my friends Elif Tekin and Kübra Işık

for their endless patience, moral and support. I am also thankful all the people of

the room EA507, especially Fatma Balcı and Elif Dal for their valuable friendship

and understanding.

Last but not least, I would like to thank my family, my mother Beyhan, my

father Ahmet and my twin brother Hasan for being in my life, supporting me in

every way. Without their everlasting love, this thesis would never be completed.

v

Contents

1 Introduction 1

1.1 Software Safety . 1

1.2 Problem Statement . 1

1.3 Contribution . 3

1.4 Outline of The Thesis . 5

2 Background 6

2.1 Software Architecture Design . 6

2.1.1 Software Architecture Views 6

2.1.2 Software Architecture Frameworks 8

2.2 Model-Driven Development . 12

2.2.1 Modeling . 13

2.2.2 Metamodeling . 14

2.2.3 Model Transformations . 16

2.3 Fault-Based Testing . 18

vi

CONTENTS vii

3 Case Study - Avionics Control Computer System 20

4 Systematic Literature Review on Model-Based Testing for

Safety 23

4.1 Background . 24

4.1.1 Model-Based Testing . 24

4.1.2 Systematic Reviews . 27

4.2 Research Method . 27

4.2.1 Review Protocol . 28

4.2.2 Research Questions . 29

4.2.3 Search Strategy . 30

4.2.4 Study Selection Criteria 33

4.2.5 Study Quality Assessment 34

4.2.6 Data Extraction . 35

4.2.7 Data Synthesis . 36

4.3 Results . 37

4.3.1 Overview of the Reviewed Studies 37

4.3.2 Research Methods . 44

4.3.3 Methodological Quality . 45

4.3.4 Systems Investigated . 48

4.3.5 Threads to Validity . 66

CONTENTS viii

4.4 Conclusion . 67

5 Software Safety Perspective 69

5.1 Safety Perspective Definition . 70

5.1.1 Applicability to Views . 71

5.1.2 Concerns . 73

5.1.3 Activities for Appliying Safety Perspective 75

5.1.4 Architectural Tactics . 79

5.1.5 Problems and Pitfalls . 81

5.1.6 Checklist . 83

5.2 Application of the Safety Perspective on Case Study 84

5.2.1 Activities for Safety Perspective 84

5.2.2 Applicability to Views . 92

5.2.3 Checklist and Architectural Tactics 97

5.3 Application of the Safety Perspective on Views and Beyond Approach 99

6 Architecture Framework for Software Safety 104

6.1 Metamodel for Software Safety . 105

6.2 Viewpoint Definition for Software Safety 108

6.2.1 Hazard Viewpoint . 108

6.2.2 Safety Tactic Viewpoint 108

6.2.3 Safety-Critical Viewpoint 110

CONTENTS ix

6.3 Application of the Architecture Framework on Case Study 112

6.3.1 Hazard View . 112

6.3.2 Safety Tactic View . 117

6.3.3 Safety-Critical View . 120

6.4 Tool . 127

7 Fault-Based Testing for Software Safety 128

7.1 DSL for Software Safety . 129

7.1.1 Metamodel . 129

7.1.2 DSL . 130

7.2 Fault-Based Testing Approach . 132

7.3 Tool . 136

7.4 Application of Fault-Based Testing Approach on Case Study . . . 137

7.4.1 Case Study . 138

7.4.2 Application of Fault-Based Testing Approach 141

8 Related Work 154

9 Conclusion 157

A Search String 167

B List of Primary Studies 171

CONTENTS x

C Study Quality Assessment 174

D Data Extraction Form 175

List of Figures

2.1 IEEE conceptual model for architecture description 7

2.2 Kruchten’s 4+1 Framework . 8

2.3 Views & Beyond Architecture Framework 11

2.4 An example four layer OMG architecture 15

2.5 A conceptual model for metamodel concepts 16

2.6 Model transformation process . 17

3.1 Component and connector view of the case study 22

4.1 Process of model-based testing . 26

4.2 Review Protocol . 28

4.3 Year-wise distribution of primary studies 42

4.4 Quality of reporting of the primary studies 45

4.5 Rigor quality of the primary studies 46

4.6 Relevance quality of the primary studies 46

4.7 Credibility of evidence of the primary studies 47

xi

LIST OF FIGURES xii

4.8 Overall quality of the primary studies 47

4.9 Domain distribution of primary studies 48

4.10 Main motivation for adopting model-based testing for software safety 53

4.11 Model-based testing steps . 54

4.12 Requirement Specification Language 55

4.13 Test Case Specification Language 57

4.14 Generated type of test elements 57

4.15 Contribution type . 60

5.1 Appliying the safety perspective 75

5.2 Deployment view for the first version 88

5.3 Deployment view for the second version 89

5.4 Functional view for the first version 92

5.5 Functional view for the second version 93

5.6 Information view for altitude data 94

5.7 Information view for fuel amount data 95

5.8 Context view for our case study 96

5.9 Decomposition style for our case study 101

5.10 Uses style for our case study . 102

5.11 Layered style for our case study 103

6.1 Metamodel for safety . 107

LIST OF FIGURES xiii

6.2 Hazard view for HZ1 . 114

6.3 Hazard view for HZ2 . 115

6.4 Hazard view for HZ5 . 117

6.5 Safety tactic view for our case study 118

6.6 Safety-critical view for our case study 121

6.7 Hazard view for second design alternative - HZ1 123

6.8 Hazard view for second design alternative - HZ2 123

6.9 Safety tactic view for second design alternative 125

6.10 Safety-critical view for second design alternative 126

6.11 Snapshot of the tool for modeling three viewpoints 127

7.1 Metamodel for safety DSL . 129

7.2 Process for proposed fault-based testing approach 132

7.3 Tool for safety DSL . 136

7.4 Tool for fault-based testing . 137

7.5 UML Class diagram for our case study 140

7.6 Hazard view for our case study - Part 1 142

7.7 Hazard view for our case study - Part 2 143

7.8 Safety tactic view for our case study 144

7.9 Safety-critical view for our case study - Part 1 145

7.10 Safety-critical view for our case study - Part 2 146

LIST OF FIGURES xiv

7.11 Implementation details for our case study 146

7.12 Sample generated code for mutant generation 150

7.13 Sample generated code for executing test cases 150

List of Tables

4.1 Overview of search results and study selection 33

4.2 Quality Checklist . 35

4.3 Data Extraction . 36

4.4 Distribution of the studies over Publication Channel 43

4.5 Distribution of studies over Research Method 44

4.6 Identified domains of model-based testing for software safety . . . 49

4.7 Model Specification Language . 56

4.8 Solution Approaches for Generated Types of Test Elements 58

4.9 Definitions for grading the strength of evidence 64

4.10 Average Quality Scores of Experimental Studies 65

5.1 Brief description of the safety perspective 71

5.2 Applicability of safety perspective to Rozanski and Woods’ views 72

5.3 Hazard Severity Levels . 76

5.4 Hazard Probability Level . 77

xv

LIST OF TABLES xvi

5.5 Hazard Risk Index . 78

5.6 Hazard Risk Categorization . 78

5.7 Checklist . 83

5.8 Hazard identification and risk definition for our case study 85

5.9 Safety requirements for the case study 87

5.10 Safety perspective application to views for the case study 92

5.11 Checklist for the case study . 98

5.12 Architectural tactics for the case study 99

5.13 Applicability of the safety perspective on Views & Beyond approach100

5.14 Application of the selected styles on the case study 101

6.1 Hazard Viewpoint . 109

6.2 Safety tactic viewpoint . 110

6.3 Safety-critical viewpoint . 111

6.4 Fault table for the case study . 113

7.1 Results for test cases . 135

7.2 Mutant generation for safety tactics 151

7.3 Results for AltitudeDifferenceCheck-GraphicsMgr 153

7.4 Results for AltitudeDifferenceCheck-Fuel 153

Chapter 1

Introduction

1.1 Software Safety

Currently, an increasing number of systems are controlled by software and rely

on the correct operation of software. In this context, a safety-critical system is

defined as a system in which the malfunctioning of software could result in death,

injury or damage to environment. Software can be considered safe if it does

not produce an output which causes a catastrophic event for the system. Sev-

eral methods, processes and models are developed in order to make the software

safe. System safety engineering is the application of engineering and manage-

ment principles, criteria, and techniques to optimize all aspects of safety within

the constraints of operational effectiveness, time, and cost throughout all phases

of the system life cycle [1] [2].

1.2 Problem Statement

An important concern for designing safety-critical systems is safety since a failure

or malfunction may result in death or serious injury to people, or loss or severe

damage to equipment or environmental harm. It is generally agreed that quality

1

concerns need to be evaluated early on in the life cycle before the implementation

to mitigate risks. For safety-critical systems this seems to be an even more serious

requirement due to the dramatic consequences of potential failures. For coping

with safety several standard and implementation approaches have been defined

but this has not been directly considered at the architecture modeling level.

A common practice for modeling software architecture is the adoption of ar-

chitectural perspectives and software architecture viewpoint approaches. Archi-

tectural perspectives include a collection of activities, tactics and guidelines that

require consideration across a number of the architectural viewpoint approach

which aims to model the architecture for particular stakeholders and concerns.

However, existing approaches tend to be general purpose and do not explicitly fo-

cus on safety concern in particular. For example, component and connector view

[3] could help to determine the system’s components and relationships between

them. However, it doesn’t include the information about whether a component

is safety-critical is not explicit. Safety-critical components implement safety-

critical requirements but the general purpose views do not answer the question

which safety requirements are implemented in which components. Another miss-

ing knowledge is about the tactics and patterns that are applied to handle safety

requirements.

The goal of providing safety concerns in views is two-fold: (1) communicating

the design decisions related with safety concerns through views (2) accomplish-

ing safety analysis of the architecture from views. The first goal, communicating

the design decisions related with safety concerns, is important for safety engi-

neers, system engineers and software engineers. Safety and system engineers

perform hazard identification and provide safety requirements, a subset of which

is allocated to software. Then, the software engineers design and implement

the software according to the safety requirements. Thus, these views would

help bridge the gap between them by communicating safety information from

the safety and system engineers to software engineers. The second goal, accom-

plishing safety analysis of the architecture, supports the safety assessment of the

design. If safety related information can be obtained from the views, the architec-

ture can be properly analyzed. Typically, safety analysis is performed from the

2

early stages of the design and the architecture can be updated after safety anal-

ysis, if deemed necessary. For example, an important guideline is not to include

non-safety-critical software inside safety-critical software. If the safety-critical

and non-safety-critical components can be differentiated, such an analysis can

be performed. After the analysis is accomplished and if there is a safety-critical

component which includes non-safety-critical components, then the architecture

is reshaped.

Once the safety critical systems are designed it is important to analyze these

for fitness before implementation, installation and operation. Hereby, it is im-

portant to ensure that the potential faults can be identified and cost-effective

solutions are provided to avoid or recover from the failures. Since the safety-

critical systems are complex systems, testing of these systems is challenging and

very hard to define proper test suites for these systems. Several fault-based soft-

ware testing approaches exist that aim to analyze the quality of the test suites.

Unfortunately, these approaches do not directly consider safety concern and tend

to be general purpose and they doesn’t consider the applied the safety tactics.

1.3 Contribution

In this work, our main focus is supporting the testing of safety-critical systems.

In this context, we conduct a systematic literature review(SLR) on model-based

testing for software safety to identify, evaluate and interpret the relevant studies

concerning a particular topic area. The SLR provides a roadmap to describe the

current state of model-based testing for software safety. This study helps us to

identify the limitations of proposed solutions for model-based testing for software

safety.

In order to address the design problems mentioned in section 1.2, firstly, we

propose an architectural perspective for safety. The safety perspective includes

a collection of activities, tactics and guidelines to handle safety concerns. The

safety perspective can assist the system and software architects in designing,

3

analyzing and communicating the decisions regarding safety concerns.

Although the safety perspective forces the architects to think about designers

to think about the design decisions regarding the safety at an architectural level,

it doesn’t provide complete architectural modeling of software safety concerns.

In order to solve this problem, we propose an architectural framework for soft-

ware safety. The architecture framework is based on a metamodel that has been

developed after a thorough domain analysis for software safety. The framework

includes three coherent set of viewpoints each of which addresses an important

concern. The framework is not mentioned as a replacement of existing general

purpose frameworks but rather needs to be considered complementary to these.

In order to address analyzing the effectiveness of the applied safety tactics, we

propose a fault-based testing approach for software safety. Fault-based testing

is one of the testing approaches which aims to analyze, evaluate and design test

suites by using fault knowledge. An important aspect in fault-based testing is

mutation analysis which involves modifying a program under test to create vari-

ants of the program. The proposed approach results in the impact analysis of a

test suite on the applied tactics and likewise provides an important insight in the

effectiveness of the safety tactics.

The contributions of this thesis can be summarized as follows:

• Systematic literature review on model-based testing for software safety to

summarize the existing studies and identify the limitations of the existing

studies

• Safety perspective definition to provide tactics and guidelines to handle

safety in architectural level

• Architectural framework definition for software safety to analyze the ar-

chitecture in the early phases of the development life cycle, analyze the

design alternatives, increase the communication between safety engineers

and software developers and communicate the design decisions related with

safety

4

• Fault-based testing approach to analyze the quality of test suites considering

the applied safety tactics knowledge

1.4 Outline of The Thesis

This thesis is organized as follows: Chapter 2 provides a background information

for software architecture design and model-driven software development. Chapter

3 explains the case study to illustrate the proposed approaches in this thesis. The

chapter 4 presents the conducted systematic review to systematically identify,

analyze and describe the state of the art advances in model-based testing for

software safety. In chapter 5, firstly, the safety perspective approach is explained.

Then, application of the proposed safety perspective on the industrial case study

is given. Chapter 6 describes the architecture framework for software safety and

its application on the industrial case study. In chapter 7, the fault-based testing

approach and its application on the case study are presented. Chapter 8 describes

the related work. Finally, chapter 9 presents the conclusion.

5

Chapter 2

Background

2.1 Software Architecture Design

The software architecture of a program or computing system is the structure or

structures of the system, which comprise software elements, the externally visible

properties of those elements, and the relationships among them [3]. When de-

veloping a system, architectural design decisions are quite important. However,

creating architectural descriptions for the systems has some challenges. One of

these challenges is represent the complex structure of the system in an under-

standable way for all stakeholders. In order to solve this problem, architectural

view concept is introduced. In this section, we provide the background for ar-

chitectural views. Then, we present some software architecture frameworks for

modeling the architecture.

2.1.1 Software Architecture Views

A common practice in software architecture design is to model and document dif-

ferent architectural views for describing the architecture according to the stake-

holders concerns. An architectural view is a representation of a set of system

elements and relations associated with them to support a particular concern.

6

Figure 2.1: IEEE conceptual model for architecture description

Having multiple views helps to separate the concerns and as such support the

modeling, understanding, communication and analysis of the software architec-

ture for different stakeholders. There are different studies which define various

views for architecture design. In order to make the idea generic, viewpoint con-

cept is proposed as IEEE standard [4]. Architectural views conform to viewpoints

that represent the conventions for constructing and using a view. The conceptual

model from IEEE 1471 standard describing architectural view and viewpoint con-

cepts are given in Figure 2.1 [4]. As shown in the figure, each architectural view

addresses some stakeholders concerns and each of the stakeholders’ concerns im-

pacts the viewpoint definitions. An architectural framework organizes and struc-

tures the proposed architectural viewpoints. Different architectural frameworks

7

have been proposed in the literature including the Kruchtens 4+1 view model

[5], Siemens Four Views model [6], Rozanski and Wood’s approach [7], and Views

and Beyond approach [3].

2.1.2 Software Architecture Frameworks

Krutchen’s 4+1 Framework

The 4 + 1 View Model [5] proposed by Philippe Krutchen for describing software

architecture. As shown in Figure 2.2, this framework consists of five different

views, each of which addresses a specific set of concerns. The logical view describes

the design’s object model. It is concerned with the functional requirements of the

system. The process view deals with the design’s concurrency and synchronization

aspects of the system. This view addresses oncurrency, distribution, integrators,

performance, and scalability, etc. The physical view depicts the mapping of the

software onto the hardware and shows the system’s distributed aspects. The

development view defines the software’s static organization in the development

environment.

Figure 2.2: Kruchten’s 4+1 Framework

Siemens Four View Framework

Siemens four view framework [6] is developed at Siemens Corporate Research.

It includes four views separate different concerns. The conceptual view defines

8

the major elements in the system and the mapping between functionalities of the

product and these elements by concerning functional requirements of the system.

The module view organizes modules into two orthogonal structures: decompo-

sition and layer. The decomposition structure shows how the system logically

decomposed into subsystems and modules. The layer structure defines the con-

straints and dependencies between this modules. The execution view defines how

modules are mapped to run time elements. The code architecture view focuses on

the organization of the software artefacts. In this approach, several mappings of

the structures are explicitly defined. Conceptual structures are implemented by

module structures, and assigned to execution structures. Module structures can

be located in or implemented by code structures. Code structures can configure

execution structures.

Rozanski and Woods Framework

Rozanski and Woods [7] propose an architecture framework consisting of seven

different viewpoints, namely, Functional, Information, Concurrency, Develop-

ment, Deployment and Operational, and Context viewpoints for supporting the

architecture design . The Functional viewpoint defines the functional elements

of the system, their responsibilities, interfaces and interactions. The Information

viewpoint represents the way that the architecture stores, manipulates, manages

and distributes information. The Concurrency viewpoint illustrates the concur-

rency structure of the system and identifies the parts of the systems which should

execute concurrently, and shows these are coordinated and controlled. The De-

velopment viewpoint describes the architecture that supports the system devel-

opment. The Deployment viewpoint defines the environment into which system

will be deployed. The Operational viewpoint describes how the system will be

operated, managed, and supported. The Context viewpoint describes the rela-

tionships, dependencies, and interactions between the system and its environment

such as external systems, people, and groups.

Rozanski and Woods state that quality concerns are crosscutting on these

viewpoints and as such creating a viewpoint for a given quality concern seems

less appropriate. Instead they propose the concept of architectural perspective,

9

which include a collection of activities, tactics and guidelines that that require

consideration across a number of the architectural views. In order to capture

the system-wide quality concerns, each relevant perspective is applied to some

or all views. In this way, the architectural views provide the description of the

architecture, while the architectural perspectives can help to analyze and modify

the architecture to ensure that system exhibits the desired quality properties.

In [7], Rozanski and Woods define Security, Performance and Scalability,

Availability and Resilience, Evolution, Accessibility, Development Resource, In-

ternationalization, Location, Regulation and Usability perspectives. The Security

perspective describes the ability of the system reliably control, monitor and au-

dit who can perform which activity on which resources, detect and recover from

failures. The Performance and Scalability perspective defines the ability of the

system to be executed in desired performance profile and to handle increased

processing volumes. The Availability and Resilience perspective describes the

ability of the system to be fully or partly operational as and when required and

to effectively handle failures that could affect system availability. The Evolution

perspective defines the ability of the system to be flexible in the face of the in-

evitable change. The Accessibility perspective describes the ability of the system

to be used by disabled people. The Development Resource perspective describes

the ability of the system to be designed, built, deployed, and operated with in

some constraints. The Internationalization perspective defines the ability of the

system to be independent from any particular language or country. The Loca-

tion perspective describes the ability of the system to overcome problems which

are brought by location of its elements. The Regulation perspective describes the

ability of the system to conform to laws, quasi-legal regulations, company policies

and other rules and standards. The Usability perspective defines the interaction

between system and people.

Views and Beyond Framework

Clements et al. propose Views & Beyond framework [3] includes three different

views which of each result in a style. In this approach, they don’t use the term

viewpoint explicitly, they refer it as style. Style is a specialization of element and

10

relation types, together with some constraints [3]. In this framework approach,

they define module style, component & connector style and allocation style. Figure

2.3 shows the styles in Views & Beyond approach.

Figure 2.3: Views & Beyond Architecture Framework

Module style documents a systems principal units of implementation. In this

style, modules are primary elements which are an implementation unit provides

a coherent set of responsibilities. This view has six important styles which are

decomposition, uses, generalization, layered, aspects and data model styles. The

decomposition style is used for decomposing a system into implementation units

which are modules and sub-modules. Additionally, it shows how system respon-

sibilities are divided between modules and submodules. The uses style shows the

dependency between the modules. The generalization style shows the inheritance

between modules to support extension and evolution of the architecture. In ad-

dition, it is used for capturing the commonalities and variations. The layered

style composes groups which are called layers which include modules that offer a

cohesive set of services and it defines the allowed-to-use relation with each other.

For two layers having allowed-to-use relation, any module in the first layer is al-

lowed to use any module in second layer. The aspects style shows aspect modules

that implement crosscutting concerns and how they are bound to other modules

in the system. The data model style defines the structure of data entities and

relationship between them.

Component & connector style documents the systems units of execution. It

expresses runtime behavior of the system by using components and connectors.

Component is one of the principal processing units of the executing system, while

11

connector is the interaction mechanism between the components. This view ad-

dresses four important styles which are call-return, data flow, event-based and

repository styles. The call-return style presents a computational model in which

components provide a set of services may be invoked by other components syn-

chronously. Client-server style, peer-to-peer style, and service-oriented architec-

ture style are the examples styles for the call-return style. The data flow style

shows the flow of data through the system. Pipe-and-filter style is the form of the

data flow style. The event-based style shows which components interact through

asynchronous events or messages. Publish-subscribe style is the example of this

style. The repository style presents the components interact through large collec-

tions of persistent, shared data. Shared data style is the form of the this style. In

addition to these styles, multi-tier style is defined. In this style, the components

are grouped into tier and presented in this concept.

Allocation style documents the relations between a systems software and non-

software resources of the development and execution environments. An environ-

ment can be the hardware, the file systems supporting development or deploy-

ment, or the development organization. This view identifies three different styles

that are deployment, install, and work assignment styles. The deployment style

defines the mapping between the software’s components and connectors and the

hardware platform on which software executes. The install style describes the

mapping between the components in the software architecture and structures

in the file system of the production environment. The work assignment style

describes the mapping between software components and the people, teams or

organizational work units which are responsible of development of those mod-

ules.

2.2 Model-Driven Development

Models have been widely used in software engineering to analyze, design and im-

plement the software projects. Models are the abstraction of the systems. UML

models, software process models and design patterns are the example models

12

used in development life cycle of software systems. Initially, models are used for

documentation. Model-Based Software Development(MBSD) approach aims to

develop software by using models. However, this approach separates the models

from the code. With the introducing the Model-Drivien Software Development

(MDSD) paradigm, models are treated as a key abstraction of software develop-

ment process. According to MDSD approach, models are executable and they

can be considered as code.

In this section, we present the background on Model-Driven Software de-

velopment (MDSD). Firsly, we provide a background about modeling. After, we

present the basic information about metamodeling. Finally, we explain the model

transformations.

2.2.1 Modeling

Different definitions have been defined for the concept of model in software engi-

neering. We present some selected definitions from [8] in below:

• A model is an abstraction of a (real or language based) system allowing

predictions or inferences to be made [9].

• Models provide abstractions of a physical system that allow engineers to

reason about that system by ignoring extraneous details while focusing on

the relevant ones [10].

• A model of a system is a description or specification of that system and its

environment for some certain purpose [11].

Mellor et al.[12] provides a classification of models depending on their level of

precision. A model can be considered as a Sketch, as a Blueprint, or as an

Executable. The classification is presented below:

• Model as Sketch: Model as sketch is simple drawing model to communicate

the ideas. It is an informal diagram and doesn’t give much detail of a

13

system.

• Model as Blueprint : Model as blueprint can be considered as document or

design model to describe properties needed to build real thing. It describes

the system in sufficient detail.

• Model as Executable: Model as executable is a software model that can be

compiled and executed. Additionally, it can be automatically translated

into other model or code. It is more precise than sketch and blueprint.

In model-based development approach, models are used as blueprints as defined

by the above categorization of Mellor et al. [12]. In contrast to model-based devel-

opment approach, in model-driven development approach models are considered

as executables.

2.2.2 Metamodeling

Model-driven development is a paradigm which considers the models as key ab-

stractions. In this context, metamodeling has an important role in model-driven

development paradigm. Metamodel is a model which defines the language for

expressing a model. It describes the constructs of a modeling language and their

relationships, as well as constraints and modeling rules. A model is an instance

of metamodel or a model conforms to metamodel. A metamodel conforms to

metametamodel which is the language for defining metamodels. Model driven

development organizes the models in four layer architecture [11] illustrated in

Figure 2.4 . The lowermost layer is M0 describes the real-world objects. The layer

M1, model layer, describes the normal user models. In the M2 layer metamodels

are created. In the topmost layer M3 metametamodels are defined. According

the Figure 2.4, real concrete systems lies on M0. The M1 layer defines the model

of a real system such as models are created in UML. In metamodeling layer M2,

the concepts to define a UML diagram are presented. In metametamodeling layer

M3, the language to define metamodel is presented. According to example given

in the Figure 2.4, Meta-Object Facility(MOF) lies on M3 layer.

14

Figure 2.4: An example four layer OMG architecture

Metamodels are important in both model driven development and software

language engineering approach [13] which is the application of a systematic, disci-

plined, quantifiable approach to the development, use, and maintenance of these

languages. A metamodel should include the following elements [13] [14]:

• Abstract Syntax : It describes the vocabulary of concepts provided by the

language and how may be combined to create models. It consists of a

definition of concepts and the relationships between these concepts.

• Concreate Syntax : It is a realization of the abstract syntax. It can be

represented as visually or textually. A textual syntax enables models to be

described in a structured textual form where as a concrete syntax presents

the models in a diagrammatical form.

• Static Semantics : It defines the well-formedness rules that state how the

concepts may be legally combined.

• Semantics : It describes the meaning of concepts defined in abstract syntax.

Figure 2.5 shows the elements and relationships of the metamodel.

15

Figure 2.5: A conceptual model for metamodel concepts

2.2.3 Model Transformations

In model driven development the notion of the model transformations have an

important role. Model transformation takes as input a model conforming to a

given metamodel and produces as output another model conforming to a given

metamodel. Model transformation provides the following points:

• Generating lower-level models from higher-level models

• Mapping and synchronizing among models at the same level or different

levels of abstraction

• Creating query-based views of a system

• Model evolution tasks such as model refactoring

• Reverse engineering of higher-level models from lower-level models or code

The Figure 2.6 shows the simple scenario of a transformation with one input

(source) model and one output(target) model. Both models conform to their

respective metamodels. The transformation is defined with respect to the meta-

models. The transformation definition is executed by a transformation engine. It

reads the source model and outputs the target model.

16

Figure 2.6: Model transformation process

In general, model transformations categorized in two types as model-to-model

transformations and model-to-text transformations.

Model-to-model transformations

Model-to-model transformation is a key aspect of model-driven development. In

this transformation a source model is transformed into another target model

which is instance of either the source metamodel or another metamodel. Both

source and target are models conform to their respective metamodel. Transforma-

tions are executed by transformation engines.The Eclipse MMT (Model-to-Model

Transformation) [15] project provides a framework for model-to-model transfor-

mation languages. There are three transformation engines that are developed in

the scope of MMT project: ATL [16], QVTo [17], QVTd [18].

Model-to-text transformations

Model-to-text transformation is a special case of model-to-model transformation.

In this transformation target is a text and there is no target metamodel. Model-

to-text transformation is useful for generating both code and noncode artifacts

such as documentations. The Eclipse M2T [19](Model-to-Text transformation)

project provides a framework for generating textual artifacts from models. JET

[20], Accelo [21] and Xpand [22] are the developed projects in the scopse of M2T

project.

17

2.3 Fault-Based Testing

Software testing is one of the most important process in software development

life cycle as testing identifies faults and removal of these faults increases software

quality and reliability. Software testing involves two types of testing which are

black box and white box testing. Black box testing is concerned with input-

output behaviour or functionality of the component, whereas white box testing

deals with the internal program structure by accessing the program code. In both

the cases testing shows that a program satisfies its test data but cannot assure

the quality of test data.

Fault-based testing is one of the testing approaches which aims to analyze,

evaluate and design test suites by using fault knowledge. Mutation testing is the

one of the common forms of fault-based testing. It involves modifying a program

under test to create variants of the program. Variants are created by making

small changes in the program following a pattern. Mutation operators are the

patterns to change program’s code, and each variant of the program is called a

mutant. Basically, there are three kind of mutations: value mutations, decision

mutations, and statement mutations. Value mutation involves the changing the

values of constants or parameters. Decision mutation involves the modifying

conditions to reflect potential errors in the coding of conditions in programs.

Statement mutation involves deleting certain lines to reflect omissions in coding

or swapping the order of lines of code.

Mutation analysis consists of following three steps [23]:

1. Mutant operator selection relevant to faults

2. Mutant generation

3. Distinguishing mutants by executing original program and each generated

mutants with the test cases

After test cases are executed on mutated programs, mutation score is cal-

culated by using number of live mutants and number of killed mutants. If

18

behavior/output of a mutant is differs from the original program, mutant is

killed. Otherwise, mutant is live. Mutation score is calculated by using the

equation(killedmutants ∗ 100)/(livemutants+ killedmutants). Based on the re-

sults the quality of test cases is assessed.

There are some tools for mutation generation. µJava [24] is one of the open

source tools which generates mutants for Java programs. It automatically gen-

erates mutants for both method-level mutation testing and class-level mutation

testing. The method-level mutant operators are explained in [25] and the class-

level mutation operators are explained in [26]. After creating mutants, µJava

allows to execute tests and evaluates the mutation coverage of the tests.

19

Chapter 3

Case Study - Avionics Control

Computer System

In this chapter, we explain the case study Avionics Control Computer System

(ACCS) to illustrate the safety perspective approach in section 5, the architecture

framework approach in section 6, and fault-based testing approach in section 7.

Avionics is one of the domains where safety is a crucial quality attribute. Sev-

eral accidents show that the faults in avionics systems could lead to catastrophic

consequences that cause loss of life. Various cases related with both military

and commercial aviation are summarized in [27]. There are several standards

such as DO-178C (Software Considerations in Airborne Systems and Equipment

Certification) [28] to regulate software development and certification activities

for avionics domain. Especially commercial avionics systems are subject to these

regulations. The Avionics Control Computer System contains several thousands

of requirements. We select a subset of the requirements for our case study. The

capabilities provided by our avionics control computer are summarized below:

• Display aircraft altitude data

Altitude is defined as the height of the aircraft above sea level. Altitude

information is shown to pilots, as well as, also used by other avionics systems

such as ground collision detection system. Pilots depend on the displayed

20

altitude information especially when landing.

• Display aircraft position data

Position is the latitude and longitude coordinates of the aircraft received

from GPS (Global Positioning System). Route management also uses air-

craft position. Aircraft position is generally showed along with the other

points in the route. Pilots can see the deviation from the route and take

actions according to the deviation.

• Display aircraft attitude data

Attitude is defined with the angles of rotation of the aircraft in three di-

mensions, known as roll, pitch and yaw angles. For instance, the symbol,

called as ADI (Attitude Direction Indicator), is used to show roll and pitch

angles of the aircraft.

• Display fuel amount

Fuel amount is the sum of fuel in all fuel tanks. Fuel amount is generally

represented with a bar chart in order to show how much fuel remains in the

aircraft.

• Display radio frequency channel

The radio frequency channel is used to communicate with ground stations.

Figure 3.1 shows the component and connector view [3] of the architecture

design of the case study, using a UML component diagram. Altimeter1Manager

and Altimeter2Manager are the managers of altimeter device 1 and 2, respec-

tively. Each altimeter manager receives the aircrafts altitude data from the

specified altimeter device and provides it to NavigationManager. Gyro1Manager

and Gyro2Manager are the managers of gyroscope device 1 and 2, respectively.

Each gyroscope manager receives the aircrafts attitude data from the speci-

fied gyroscope device and provides it to NavigationManager. Gps1Manager and

Gps2Manager are the managers of GPS device 1 and 2, respectively. Each GPS

manager receives the aircrafts position data from the specified GPS device and

provides it to NavigationManager. Fuel1Manager and Fuel2Manager are the

managers of fuel sensor 1 and 2, respectively. Each fuel manager receives the air-

crafts fuel data from the specified fuel sensor and provides it to PlatformManager.

21

Figure 3.1: Component and connector view of the case study

RadioManager is the manager of radio device. RadioManager receives radio fre-

quency data from the radio device and provides it to CommunicationManager.

NavigationManager reads the aircrafts altitude, attitude and position data from

the specified managers and provides them to graphics managers. PlatformMan-

ager reads fuel data from the fuel managers and provides it to graphics man-

agers. CommunicationManager reads radio frequency data from RadioManager

and provides it to graphics managers. Graphics1Manager and Graphics2Manager

read the aircrafts altitude, attitude, position, fuel and radio frequency data and

show these on the graphics displays.

22

Chapter 4

Systematic Literature Review on

Model-Based Testing for Safety

Testing the software of safety-critical systems is crucial since a failure or mal-

function may result in death or serious injury to people, or loss or severe damage

to equipment or environmental harm. Software testing of safety-critical systems

can be stated as the process of validating and verifying that a system meets the

safety requirements that guided its design and development and likewise satisfies

the needs of stakeholders. Testing usually includes the process of executing a

program or application with the intent of finding software bugs. Software bugs

may result in an error which could in the end cause a failure that could be safety-

critical. An important challenge in testing is the derivation of test cases that can

identify the potential faults. In large scale and complex software systems, testing

can be laborious and time consuming when it is done manually.

Model-based testing (MBT) adopts models of a system under test and/or

its environment for designing and optionally also executing artifacts to perform

software testing or system testing. Using explicit models helps to structure the

process of deriving tests and support the reuse, reproduction and documentation

of test cases. In addition MBT enables the automated production and execution

of test cases, which on its turn reduces the cost and time of testing and increase

23

the quality of test cases [29].

MBT has been applied for testing both functional and nonfunctional prop-

erties. In this chapter we focus on the application of MBT for testing safety

properties. Several approaches have been provided for this in the literature. The

overall objective of this paper is to provide a systematic review to systematically

identify, analyze and describe the state of the art advances in model-based testing

for software safety.

The systematic review is conducted by a multiphase study selection process

using the published literature in major software engineering journals and con-

ference proceedings. We reviewed 462 papers that are discovered using a well-

planned review protocol, and 20 of them were assessed as primary studies related

to our research questions. Based on the analysis of data extraction process, we

discuss the primary trends and approaches and present the identified obstacles.

For researchers, this SLR gives an overview of the reported model-based testing

for software safety with the strength of empirical evidences of the identified ap-

proaches. For the practitioners, this SLR can be considered as a map for finding

and analyzing the studies relevant to their situation.

In this chapter, firstly we provide the preliminaries including background of

model-based testing, software safety and systematic literature review (SLR). Af-

ter, we present the details of SLR method adopted in this study. Finally, we

present the result of the SLR study and the discussion.

4.1 Background

4.1.1 Model-Based Testing

The IEEE Software Engineering Body of Knowledge (SWEBOK 2004) defines

testing as an activity performed for evaluating product quality, and for improv-

ing it, by identifying defects and problems [30]. In contrast to static analysis

24

techniques testing requires the execution of the program with specific input val-

ues to find failures in its behavior. In general, exhaustive testing is not possible or

practical for most real programs due to the large number of possible inputs and

sequences of operations. Because of the large set of possible tests only a selected

set of tests can be executed within feasible time limits. As such, the key challenge

of testing is how to select the tests that are most likely to expose failures in the

system. Moreover, after the execution of each test, it must be decided whether

the observed behaviour of the system was a failure or not. This is called the

oracle problem.

In the traditional test process the design of test cases and the oracles as well

as the execution of the tests are performed manually. This manual process is

time consuming and less tractable for the human tester. MBT relies on models

of a system requirements and behaviour to automate the generation of the test

cases and their execution. A model is usually an abstract, partial presentation of

the desired behaviour of a system under test (SUT). Test cases derived from such

a model are collectively known as an abstract test suite. Based on the abstract

test suite a concrete test suite needs to be derived that is suitable for execution.

Hereby, the elements in the abstract test suite are mapped to specific statements

or method calls in the software to create the concrete test suite. The generated

executable test cases often include an oracle component which assigns a pass/fail

decision to each test. Because test suites are derived from models and not from

source code, model-based testing is usually seen as one form of black-box testing.

The general process for MBT is shown in Figure 4.1 [31]. Based on the Test

Requirements and the Test Plan a Test Model is constructed. The test model is

used to generate test cases that together form the Abstract Test Suite. Because

there are usually an infinite number of possible tests, usually test selection criteria

are adopted to select the proper test cases. For example, different model coverage

criteria, such as all-transitions, can be used to derive the corresponding test cases.

The resulting test cases lack the detail needed by the SUT and as such are not

directly executable. In the third step the abstract test suite is transformed to a

concrete or executable test suite. This is typically done using a transformation

tool, which translates each abstract test case to an executable test case. An

25

Figure 4.1: Process of model-based testing

advantage of the separation between abstract test suite and concrete test suite

is the platform and language independence of the abstract test cases. The same

abstract test case can be reused in different test execution environments. In the

fourth step the concrete test cases are executed on the SUT. A distinction is made

between on-line MBT and off-line MBT. In on-line MBT the concrete test cases

are executed as they are produced. In off-line MBT the test cases are produced

before the execution. The test execution will result in a report that contains the

outcome of the execution of the test cases. In the final, fifth step, these results

are analyzed and if needed corrective actions are taken. Hereby, for each test

that reports a failure, the cause of the failure is determined and the program (or

model) is corrected.

26

4.1.2 Systematic Reviews

A systematic literature review (also referred to as a systematic review) is a means

of identifying, evaluating and interpreting all relevant studies concerning a par-

ticular research question, topic area or phenomenon of interest. The systematic

literature review (SLR) is usually performed to summarize the existing evidence

for a particular topic, identify any gaps in current research to suggest areas for

further investigation and providing framework/background to new research ac-

tivities [32]. The goal of an SLR is a rigorous, trustworthy and auditable method

in order to give a clear, reasonable and unbiased evaluation of a research topic.

The inception of SLR is based on the evidence-based research which was de-

veloped initially in the field of medicine. The success of evidence-based medicine

has triggered many other disciplines to adopt a similar SLR approach, includ-

ing for example psychiatry, nursing, social policy, and education. In a similar

way, evidence-based software engineering is introduced with the guideline for

performing systematic literature reviews in software engineering [33]. The goal of

evidence-based software engineering is to improve the quality of software-intensive

systems, and provide insight to stakeholder groups whether practitioners are using

best practice or not. The aim of an SLR is not just investigate all existing evi-

dence; it is also aim to support the development of evidence-based guidelines for

practitioners. In our study we aimed at identifying and evaluating the evidence

regarding the model-based testing for software safety. Therefore, a systematic

literature review was a suitable research method for our research.

4.2 Research Method

A systematic literature review (SLR) is identification, evaluation and interpreta-

tion of all available research relevant to a particular research questions or topic

area [32]. We conduct the SLR for identifying and evaluating the existing evi-

dence regarding the model-based testing for software safety. For our SLR study,

we follow the guidelines for performing SLRs as proposed by Kitchenham and

27

Charters [32]. The remainder of this section describes our review protocol and

several steps as outlined in the guideline.

4.2.1 Review Protocol

Before the conducting the systematic review firstly we develop a review protocol.

A review protocol defines the methods that will be used to perform a specific

systematic review. The pre-defined protocol reduces the researcher bias. The

adopted review protocol is shown in Figure 4.2.

Figure 4.2: Review Protocol

Firstly, we specified our research questions (discussed in section 3.2) based on

28

the objectives of this systematic review. After this step we defined the search

scope and the search strategy (3.3). The search scope defines the time span and

the venues that we looked at. In the search strategy we devised the search strings

that were formed after performing deductive pilot searches. A good search string

brings the appropriate search results that will come to a successful conclusion in

terms of sensitivity and precision rates. Once the search strategy was defined,

we specified the study selection criteria (section 3.4) that are used to determine

which studies are included in, or excluded from, the systematic review. The se-

lection criteria were piloted on a number of primary studies. We screened the

primary studies at all phases on the basis of inclusion and exclusion criteria. Also,

peer reviews were performed by the authors throughout the study selection pro-

cess. The process followed with quality assessment in which the primary studies

that resulted from the search process were screened based on quality assessment

checklists and procedures (section 3.5). Once the final set of preliminary studies

was defined the data extraction strategy was developed which defines how the

information required from each study is obtained (section 3.6). For this we devel-

oped a data extraction form that was defined after a pilot study. In the final step

the data synthesis process takes place in which we present the extracted data and

associated results.

4.2.2 Research Questions

The most important part of any systematic review is to clearly and explicitly

specify the research questions. Research questions drive the subsequent parts

of the systematic review. Hence, asking the right question is crucial to derive

the relevant findings properly. The more precise the research questions are, the

more accurate the findings will be. In this context, research questions need to be

meaningful and important to both practitioners and researchers. In this paper

we are interested in investigating empirical studies which are done about model-

based testing for software safety. In order to examine the evidence of model-based

testing for software safety, we define the following research questions:

29

• R.Q.1 : In which domains is model-based testing applied?

• R.Q.2 : What are the existing research directions within model-based test-

ing for software safety?

– R.Q.2.1 : What is the motivation for adopting model-based testing

for software safety?

– R.Q.2.2 : What are the proposed solutions in model-based testing for

software safety?

– R.Q.2.3 : What are the research challenges in model-based testing for

software safety?

• R.Q.3 : What is the strength of evidence of the study?

4.2.3 Search Strategy

The aim of the SLR is to find as many primary studies relating to the research

questions as possible using a well-planned search strategy. In this subsection we

describe our search strategy by explaining search scope, adopted search method

and search string.

4.2.3.1 Scope

Our search scope consists of two dimensions which are publication period and

publication venues. In terms of publication period (time), our search scope in-

cludes the papers that were published over the period of 1992 and July 2014. We

search the papers in selected venues which are well-known venues. We use the fol-

lowing search databases: IEEE Xplore, ACM Digital Library, Wiley Inter Science

Journal Finder, ScienceDirect, Springer Link and ISI Web of Knowledge. Our

targeted search items are journal papers, conference papers, workshop papers.

30

4.2.3.2 Search Method

To search the selected databases we used both manual and automatic search. Au-

tomatic search is realized through entering search strings on the search engines of

the electronic data source. Manual search is realized through manually browsing

the conferences, journals or other important sources. The outcome of a search

process can easily lead to a very high number of papers. In this respect, for the

search process it has been pointed out that the relevant studies are selected (high

recall) while the irrelevant ones are ruled out (high precision). Usually depending

on the objectives of an SLR, one of the criteria (recall or precision) can be favored

and used by the investigators. Hereby, a search strategy that focuses on high re-

call only can require too much manual effort of dealing with irrelevant articles

whereas a precise search strategy can unavoidably miss many relevant articles.

To identify the relevant studies as much as possible while reducing the number

of irrelevant ones, Zhang et al. [34] proposed the so-called quasi-gold standard.

Hereby, before defining the search query first a manual survey of publications

is carried out in which the employed search strings are analyzed and elicited.

The resulting search strings are then fed into the search query aiming to find the

optimal set with respect to the recall and precision rates.

We also adopted this approach to reveal better keywords in designating search

strings, and likewise to achieve high recall rate and high precision rate. The

primary studies, which we manually selected in reliance upon our knowledge

of topic, were analyzed in order to elicit better keywords that would optimize

the retrieval of relevant material. The analysis of the articles in the QGS was

carried out by using word frequency and statistical analysis tools. First, the term

frequency, inverse document frequency (TF*IDF) algorithm was operated on the

titles and abstracts of the QGS papers. As stated by Zhang et al. [34], full text

analysis would mislead us into thinking inaccurate keywords as true indicators

because of the titles in the reference section. Also, the keywords of authors were

manually examined to enhance the representative set of words observed. Finally,

a definite set of search strings was obtained.

31

4.2.3.3 Search String

For the automated search we construct a search string after performing a number

of pilot searches to get relevant studies as much as possible. Since each electronic

data sources provide different features, for each data source, we define different

search strings which are semantically equivalent. In order to create more complex

queries we use the OR and AND operators. The following represents the search

string which is defined for IEEE Xplore database:

((”Document Title”:”model based testing” OR ”Document Title”:”model based

software testing” OR

”Document Title”:”model-based testing” OR ”Document Title”:”model-based

software testing” OR

”Document Title”:”model driven testing” OR ”Document Title”:”model driven

software testing” OR

”Document Title”:”model-driven testing” OR ”Document Title”:”model-driven

software testing” OR

”Document Title”:”model based test” OR ”Document Title”:”model based soft-

ware test” OR

”Document Title”:”model-based test” OR ”Document Title”:”model-based soft-

ware test” OR

”Document Title”:”model driven test” OR ”Document Title”:”model driven soft-

ware test” OR

”Document Title”:”model-driven test” OR ”Document Title”:”model-driven soft-

ware test”

) AND (”Document Title”:”safety”))

OR

((”Abstract”:”model based testing” OR ”Abstract”:”model based software test-

ing” OR

”Abstract”:”model-based testing” OR ”Abstract”:”model-based software testing”

OR

”Abstract”:”model driven testing” OR ”Abstract”:”model driven software test-

ing” OR

”Abstract”:”model-driven testing” OR ”Abstract”:”model-driven software test-

ing” OR

32

”Abstract”:”model based test” OR ”Abstract”:”model based software test” OR

”Abstract”:”model-based test” OR ”Abstract”:”model-based software test” OR

”Abstract”:”model driven test” OR ”Abstract”:”model driven software test” OR

”Abstract”:”model-driven test” OR ”Abstract”:”model-driven software test”

) AND (”Abstract”:”safety”))

The search strings for other electronic databases are given in Appendix A . The

result of the overall search process after applying the search queries is given in

the second column of Table 4.1. As shown in the table, we identified in total 462

papers at this stage of the search process. The third column of the table presents

the number of papers where the full texts of papers are available. Since some

studies can be shown in different electronic databases multiple times, we applied

a manual search to find duplicate publications. After applying the last stage of

the search process 20 papers were left.

Source

of Included
Studies After
Applying
Search Query

of Included
Studies After
EC1-EC3
Applied

of Included
Studies After
EC4-EC8
Applied

IEEE Xplore 24 20 9
ACM Digital Library 9 3 0
Wiley Interscience 31 13 0
Science Direct 7 7 5
Springer 361 252 6
ISI Web of Knowledge 30 5 0
Total 462 300 20

Table 4.1: Overview of search results and study selection

4.2.4 Study Selection Criteria

Since the search query strings have a broad scope to ensure that any important

documents are not omitted, the automated search can easily leads to a large

number of documents. In accordance with the SLR guidelines we further applied

two exclusion criteria on the large-sized sample of papers in the first stage. The

33

overall exclusion criteria that we used were as follows:

• EC 1: Papers where the full text is not available

• EC 2: Duplicate publications found in different search sources

• EC 3: Papers are written in different language than English

• EC 4: Papers don’t relate to software safety

• EC5: Papers don’t relate to model-based/model-driven testing

• EC6: Papers don’t explicitly discuss safety

• EC7: Papers which are experience and survey papers

• EC8: Papers don’t validate the proposed study

The exclusion criteria are applied manually. After applying these criteria, 20

papers of the 462 papers are selected.

4.2.5 Study Quality Assessment

In addition to general inclusion/exclusion criteria, we also consider to assess the

quality of primary studies. The main goals of this step are providing more de-

tailed inclusion/exclusion criteria, determining the importance of individual stud-

ies once results are being synthesized, guiding the interpretation of findings and

leading recommendations for further research. In this stage, analysis process

includes qualitative and quantitative studies. We develop a quality assessment

based on quality instruments which are checklist of factors that need to be assess

for each study [32]. The quality checklist is derived by considering the factors

that could bias study results. While developing our quality assessment, we adopt

the summary quality checklist for quantitative studies and qualitative studies

which is proposed on [32]. Table 4.2 presents the quality checklist. Since the

aim is ranking studies according to an overall quality score, we deploy the items

in the quality checklist on a numeric scale. We use the three point scale and

34

assign scores (yes=1, somewhat=0.5, no=0) to the each criterion. The results of

assessment are given in Appendix B. These results are used in order to support

data extraction and data synthesis stages.

No Question
Q1 Are the aims of the study is clearly stated?
Q2 Are the scope and context of the study clearly defined?
Q3 Is the proposed solution clearly explained and validated by an empirical

study?
Q4 Are the variables used in the study likely to be valid and reliable?
Q5 Is the research process documented adequately?
Q6 Are the all study questions answered?
Q7 Are the negative findings presented?
Q8 Are the main findings stated clearly in terms of creditability, validity and

reliability?
Q9 Do the conclusions relate to the aim of the purpose of study?
Q10 Does the report have implications in practice and results in research area

for model-based testing for software safety?

Table 4.2: Quality Checklist

4.2.6 Data Extraction

In order to extract data needed to answer research questions, we read the full-

texts of 20 selected primary studies. We designed a data extraction form to collect

all the information needed to address the review questions and the study quality

criteria. The data extraction form includes standard information such as study

ID, date of extraction, year, authors, repository, publication type and space for

additional notes. In order to collect information directly related to answering

research questions, we added some fields such as targeted domain, motivation for

study, solution approach, constraints/limitations of approach, findings etc. All

related fields to research questions are shown in Table 4.3. We kept a record of

the extracted information in a spreadsheet to support the process of synthesizing

the extracted data.

35

Research Questions Data Extracted
RQ1 Targeted domain

RQ2
RQ2.1 Motivation for study, main theme of study
RQ2.2 Requirement specification language, safety model specifica-

tion language, method for generating models from require-
ments, type of generated test elements(test case, test oracle,
test data etc.), solution approach for test element, test se-
lection criteria, test case specification language, method for
test execution

RQ2.3 Constraints/limitation of proposed solution, findings
RQ3 Assessment approach, evidence type (AE, AC, IE, IC)

Table 4.3: Data Extraction

4.2.7 Data Synthesis

Data synthesis is the process of collating and summarizing the extracted data in

a manner suitable for answering the questions that an SLR seeks to answer. At

this stage, we performed a qualitative and quantitative analysis separately on the

data extracted from the reviewed papers. We investigated whether the qualita-

tive results can lead us to explain quantitative results. For example, a primary

study involving an assessment of an automated user assistance technology could

help interpret other solutions quantitatively. However, we also realized that re-

porting protocols differed too much in what we actually collected quantitative

information. The reason behind this is that the papers which are principally

quantitative in nature are also heterogeneous, and the reported data is rather

limited. Hence, a statistical meta-analysis was infeasible and could not be per-

formed in our case. On the other hand, descriptive or qualitative analysis could

be performed smoothly on the reviewed papers.

We made use of tabular representation of the data when feasible, and it en-

abled us to make comparisons across studies. Also, using the quantitative sum-

maries of the results, we inferred the implications for future search, and conse-

quently the existing research directions within model-based software safety.

36

4.3 Results

4.3.1 Overview of the Reviewed Studies

This section presents the overview of the selected 20 studies. Below short sum-

mary of each study is given.

• Study A: In this work, the authors present the requirements in temporal

logic formulas. They generate an automaton model in NuSVM from the c-

source code automatically. They generate the test cases from the automaton

model and requirement specification by using the model checkers SAL and

NuSVM by producing counterexamples. The approach is illustrated using

a case study from automotive domain.

• Study B: In this study, the authors provide an automaton model for safety

properties. The safety model is generated from automaton model. Test

case and test script generation are performed based on the safety model.

They provide a framework for testing process. The proposed approach is

validated by using an industrial case from railway domain.

• Study C: The authors propose a method for model-based testing of AU-

TOSAR multicore RTOS. Firstly, they construct an abstract model to

describe requirements. From this model they generate concrete model in

Promela language with system configuration. Then, from this formal model,

they generate the test cases by model checking. They provide a classifica-

tion tree for test selection. Additionally, they provide a method for bug

analysis. The proposed approach is illustrated using an experiment from

automotive domain.

• Study D: In this study, the authors propose a framework for generating test

cases from a safety model. Firstly, they model the system using FSM (finite

state machine). The FSM models are translated into Promela models. Each

test requirement is formulated as temporal logic expression. In addition to

these models, Markov chain model is used to describe the states of the

37

system. Test case generation is performed by SPIN tool with model check-

ing techniques using the constructed models. They illustrate the proposed

framework on an industrial case from railway domain.

• Study E: In this study, the authors propose a new algorithm for test case

generation to support the testing of onboard systems. Firstly, they produce

the network timed automata model from interaction model of system using

the UPPAAL tool. Then, they generate the test cases from network timed

automata model using the CoVeR model-based testing tool. The proposed

approach is illustrated using a case study from railway domain.

• Study F: In this work, the authors propose a risk based testing method

using the information from FTA. They generate test cases based on the

risk given in FTA. They use the event set notion and transform the event

set into state machine as test model. They mainly focus on generating the

test model from FTA events. The proposed approach is illustrated by using

a automation system.

• Study G: The authors focus on generating test model for the instances in the

system. Firstly, they identify the components and composition operators

in the system. Then, they describe the behavior of components using the

Mealy machines (type of finite state machine) and behavior of composition

operators using -calculus. They define a domain specific language which

uses the components and composition operators to build a system model

from domain description. The proposed approach is illustrated by using a

case study from railway domain.

• Study H: In this paper, the authors focus on the state space explosion prob-

lem in model checking. They propose a multi-object checking approach for

generating scenarios in order to solve state space problem. Firslty, they

define the UML models of the system by using UML-based Railway Inter-

lockings. Then, they propose an approach for generating counterexamples

with multi-object checking. From the UML-based RI models they generate

the counterexamples using the multi-object checking. Based on the coun-

terexamples they generate test cases with multi-object checking method.

38

The approach is illustrated on a case study from railway domain.

• Study I: In this study, the authors propose a model-based test case genera-

tion approach particularly aim feature interaction analysis. Firstly, they de-

fine the functional architecture and behavioral specification to describe sys-

tem specification model. Functional architecture defines the components,

sensors, actuator hardware devices and values such as signals, shared vari-

ables etc. in the system. Behavioral specification describes the behavior of

the system by using the STATEFLOW automata. In order to generate test

cases, the STATEFLOW diagrams are transformed into flow graphs. They

generate the test cases from the flow graphs. The approach is illustrated

by using a case study from automotive domain.

• Study J: In this paper, the authors propose a systematic method for test

case generation based on a preliminary safety analysis report (PSAR). The

report is written in natural language specifies the user’s needs. They con-

vert the PSAR into an explicit system model for scenario-based test case

generation. Then, they design ontology which represents the set of concepts

and their relations with in a domain. They construct the SRP (Standard

Review Plan)-based ontology in XML which will be used to tag PSAR.

Sequence diagram is generated for combining and generating different sce-

nario test cases form the tagged PSAR. The test cases are generated from

the sequence diagrams and their variations. They illustrate the proposed

method using a case study from nuclear domain.

• Study K: In this paper, the authors present an approach for automatic sce-

nario generation from environment behavior models of the system. The

authors define an environmental behavior model rather than system behav-

ior model. The environmental behavior model focuses on the productive

aspects of the behavior. They model the environmental behavior of system

as event trace. Then, they use the AEG tool for generating AEG (attributed

event grammar) model from environment model. The test generator takes

the AEG and derives a random event trace from it and generates a test

drive in C. They illustrate the proposed approach using an experiment from

medical domain.

39

• Study L: In this work, the authors provide an approach for test suite gen-

eration for testing of SPLs. They define their test model as state machines.

For each product in the SPL, they build a test model called as 100% test

model. By combining these models they build a super model called as 150%

test model for SPL. Additionally, they define the test goals for test case se-

lection. Then, they propose an algorithm to generate test cases from the

150% test models using the test goals. They use the Azmun framework as

a test case generator. The proposed method is illustrated on a case study

from automotive domain.

• Study M: In this study, the authors focus on fault detection. They classify

the faults and select most studied classes of faults in the literature. They

use the abstract state machine (ASM) as test model. ASM is the model of

system under test. Based on the ASM and fault class, they generate the test

predicates which describe the test conditions. From the ASM specification

SPIN model checker generates the counterexamples with model checking.

Based on the counterexamples and test predicates the test suite is generated.

They illustrate their approach by using two case studies from automotive

and nuclear domains.

• Study N: In this study, the authors, firstly, define the context model and

scenarios in the system. Context model is a metamodel of the system and

it explains the elements and their relations. The scenarios are presented

in UML sequence diagram of the system. Based on the context model and

UML sequence diagrams, they generate test data. The proposed approach

is illustrated on a case study from robotics domain.

• Study O: In this work, the authors construct the test model as transition

system which includes all possible inputs and corresponding expected out-

puts. And they define a DSL for expressing transition systems. They use

JUMBL tool for test case generation. The proposed approach is illustrated

by using an experiment from robotics domain.

• Study P: In this paper, the authors define the UML class diagrams and

state diagrams to express the requirements. In order to express the rules

40

which define the system behavior, they use the OCL. They generate the

OOAS models from UML diagrams using VIATRA tool. OOAS consists

of a finite set of variables representing the state of system and a finite

set of actions that act upon the variables. They generate the mutants of

the OOAS models. For every OOAS model and its mutants they gener-

ate IOLTS (input/output labeled transition system) as abstract test cases.

IOLTS describe the states and transition relations between these states.

The abstract test cases are converted to EPS (Elektra Periphery Simula-

tor) scripts which present concrete test cases. They illustrate the proposed

method on a case study from railway domain.

• Study Q: In this study, the authors present an approach for generate OOAS

model as test model from UML class and state diagrams. They define a set

of rules for transformation UML diagrams into OOAS model. They imple-

ment a tool for transformation. Additionally they use the Argos tool con-

verts OOAS model to an action system that is the input for their test-case

generator Ulysses. The proposed approach is illustrated by an industrial

case from automotive domain.

• Study R: In this paper, the authors derive the functional model from the

requirement specification in a language called ESTEREL. They also build

verification model in PSL (property specification language). They anno-

tated these models according to defined code coverage metrics and they

produce structural and conformance models. From these models, tests are

generated by esVerify tool by generating counterexamples. The generated

tests are not executable. They are transformed into executable SystemC

tests using the TestSpec generator. The proposed method is illustrated by

using a power state machine.

• Study S: In this paper, the authors propose an approach to transform FBD

(Functional Block Diagram) into timed automata model. Programmable

Logic Controllers widely used in avionics and railway domains. FBD is a

programming language for PCLs. They use a UPPAAL model-checker to

generate test cases from timed automata model. The proposed method is

illustrated using an industrial case from railway domain.

41

• Study T: In this work, the authors, firstly, build the CPN (colored Petri Net)

model based on the system requirement specification. Based on the CPN

model XML file and reachable graph of the CPN model is obtained. They

propose an algorithm APCO (all paths covered optimal) to generate test

cases as XML. From the XML test cases they apply the APCO algorithm

to obtain set of test subsequences. The set of XML test sequences are

generated by using the SPS algorithm (sequence priority selected). The

proposed method is illustrated using an industrial case from railway domain.

Figure 4.3 shows the year-wise distribution of the primary studies.

Figure 4.3: Year-wise distribution of primary studies

We present the overview of the selected primary studies according to publica-

tion channel in Table 4.4. The table includes the publication sources, publication

channels, types of studies and number of studies.

42

Publication Channel
Publication

Source
Type

of

Studies

Electronic Notes in Theoretical Computer

Science

ScienceDirect Conference 3

Information and Software Technology ScienceDirect Article 2

Software Testing, Verification and Validation

Workshops (ICSTW)

IEEE Conference 2

Agent and Multi-Agent Systems Technolo-

gies and Applications

Springer Chapter 1

Autonomous Decentralized Systems

(ISADS)

IEEE Conference 1

Computational Intelligence and Software En-

gineering (CiSE)

IEEE Conference 1

Intelligent Transportation Systems IEEE Conference 1

e & i Elektrotechnik und Informationstech-

nik

Springer Article 1

Formal Methods for Components and Ob-

jects

Springer Chapter 1

High Level Design Validation and Test Work-

shop

IEEE Conference 1

Information Technology and Applications IEEE Conference 1

Intelligent Solutions in Embedded Systems IEEE Conference 1

KI 2010: Advances in Artificial Intelligence Springer Chapter 1

Model Driven Engineering Languages and

Systems

Springer Chapter 1

Software Testing, Verification and Validation

(ICST)

IEEE Conference 1

Tests and Proofs Springer Chapter 1

Table 4.4: Distribution of the studies over Publication Channel

43

According to the table, we can observe that the selected primary studies are

published in highly ranked publication sources such as IEEE, ScienceDirect and

Springer. The journal ”Electronic Notes in Theoretical Computer Science” is one

of the remarkable publication channels that provide rapid publication of confer-

ence proceedings, lecture notes, thematic monographs and similar publications of

interest to the theoretical computer science and mathematics communities. The

other remarkable publication channels are ”Information and Software Technol-

ogy” and ”Software Testing, Verification and Validation Workshops (ICSTW)”.

”Information and Software Technology” focuses on research and experience that

contributes to the improvement of software development practices. ”Software

Testing, Verification and Validation Workshops” focuses on research in all areas

related to software quality.

4.3.2 Research Methods

It is very important to conduct empirical studies with well-defined research

methodologies to ensure the reliability and validity of the findings. Primary stud-

ies are expected to explicitly define and report the used research methodology. In

Table 5 we provide the information about the type of research methods used in

the 20 selected primary studies. There are three types of research methods that

we extracted in the review process. It can be observed that ’case study’ research

method is the dominant method used to evaluate the model-based testing for soft-

ware safety approaches. Also Table 4.5 shows that, in reviewed primary studies,

experiments and short examples are used to analyze and assess their approaches.

Research Method Studies Number Percent

Case Study A, E, F, H, L, N, P, Q, R 9 %45

Experiment C, K, M, O, S, T 6 %30

Short Example B, D, G, I, J 5 %25

Table 4.5: Distribution of studies over Research Method

44

4.3.3 Methodological Quality

In this section, we present the quality of selected primary studies. For this pur-

pose, we try to address methodological quality in terms of relevance, quality of

reporting, rigor and assessment of credibility by using the quality checklist which

is defined in Table 4.2. Therefore, we grouped the first three questions of the

checklist for the quality of reporting, the ninth and tenth questions for the rele-

vance, the fourth, fifth, and sixth questions for rigor, and the seventh and eighth

questions for assessment of credibility of evidence. In Appendix C, we present

the result of quality checklist.

In Figure 4.4, we present the quality of reporting based on the result of first

three questions. The figure shows that 30% of the primary studies are good

according to the quality of reporting.

Figure 4.4: Quality of reporting of the primary studies

In order to the assessment of the primary studies’ quality according to the

trustiness of findings, we assess the rigor of studies. In Figure 4.5 we present

the quality score of rigor of studies based on the result of fourth, fifth, and sixth

questions. According to Figure 4.5 only three primary studies (15%) have poor

quality score. 11 (55%) primary studies are good according to rigor quality score.

Further, 6 papers (30%) of the primary studies are assessed as top quality in

terms of rigor.

45

Figure 4.5: Rigor quality of the primary studies

As another methodological quality measure, we assess the relevance of the

selected primary studies. Figure 4.6 shows the relevance quality scores based on

the evaluation of the ninth and tenth questions. According to the Figure 4.6, 45%

of the primary studies are directly relevant to the model-based software safety

testing and 55% of the primary studies are to some extent relevant to the field.

Figure 4.6: Relevance quality of the primary studies

In order to assess the primary studies in terms of credibility, validity and

reliability of positive and negative findings and major conclusions of the primary

studies, in Figure 4.7, we present the quality score based on results of seventh and

eighth questions. According to our evaluation, there is no primary study that has

full credibility of evidence. Considering the score 1.5 as first-rate, 4 (20%) of the

primary studies are good according to Figure 4.7. The studies having score 1 were

treated as fair and 9 (45%) of the primary studies fall into this category. Seven

46

studies (35%) have poor quality score according to their credibility of evidence.

Figure 4.7: Credibility of evidence of the primary studies

Finally, we summarize by giving the overall methodological quality scores. In

Figure 4.8, total quality of scores is presented in terms of our four criteria: quality

of reporting, relevance, rigor and credibility of evidence. Considering the score 9

and 9.5 as high scores, 4 (20%) of the primary studies have high quality. 9 (45%)

primary studies having scores (7.5, 8.5) have good quality. 7(35%) of the studies

having scores (6, 7) have poor quality.

Figure 4.8: Overall quality of the primary studies

47

4.3.4 Systems Investigated

In this section, we present the results which are extracted from 20 selected primary

studies in order to answer the research questions.

RQ.1: In which domains is model-based testing applied?

In order to answer this research question, we analyzed the targeted domains of the

20 selected primary studies separately. In Table 4.6, we present the categories of

targeted domain that we extracted. There are seven main domains namely, auto-

motive, railway, nuclear, robotics, automation, medical and power consumption.

Figure 4.9 shows the domain distribution of the selected primary studies.

Figure 4.9: Domain distribution of primary studies

As shown in Table 4.6, the category Automotive includes five subcategories

that are car alarm system, cruise control, car door controlling, car application sys-

tem and control system. Study L and Q apply the model-based testing on alarm

systems for cars. Study L performs model-based testing on software product

family of automotive domain. Study M discusses the cruise control system that

automatically controls the speed of a car. In study I, a model-based approach for

48

test case generation approach is described for embedded control systems for cars.

Study A applies the model-based testing on the embedded system application for

cars. Study C discusses the control system in vehicles.

Domain Identified Subcategory Studies

Automotive

Car Alarm System L, Q

Cruise Control M

Car Door Controlling I

Car Application System A

Control System C

Railway

Interlocking System H, P

Control System B, D, G

Onboard System E

Radio Block System T

Battery Control System S

Nuclear Safety Injection System J, M

Robotics
Autonomous Mobile Robots O

Vacuum Cleaner N

Automation Modular Production System F

Medical Infusion Pump K

Power Consumption Power State Machine R

Table 4.6: Identified domains of model-based testing for software safety

In the domain Railway, model-based testing is applied on four different sub-

categories which are railway interlocking system, railway control system, railway

onboard system and train battery control system. Study H and P discuss the

railway interlocking system that prevents trains from colliding and drilling, while

at the same time allowing trains movements. Study B, D and G discuss the

train control system which is an important part of the railway operations man-

agement system. Study E applies the model-based testing on railway onboard

system which is responsible for implementation of over speed protection and safe

distance between trains. Study T applied the model-based testing on battery

49

control systems for trains. Study S discusses the battery control system of train

that manages the power source of the train system.

The domain Robotics includes two subcategories that are autonomous mobile

robots and vacuum cleaner. Study O applies model-based testing on autonomous

mobile robot which behaves like a human and make decisions on their own or

interact with humans. In study N, vacuum cleaner robot is used to verify proposed

model-based testing approach. The robot is able to create a map of its placed

environment, clean the room and avoid collision with living beings.

In the domain Nuclear, study J and M applies model-based testing on safety

injection systems that injects water into the reactor pressure vessel automatically.

In the domain Automation, study F applies the model-based testing on modular

production system. In the domain Medical, study K demonstrates the proposed

solution approach for model-based testing on software which is developed for

infusion pumps. In the final category Power Consumption, study R illustrates

the proposed methodology by using power state machine component which is

used for power management in embedded systems.

As seen in the Table 4.6, the study M appears in two different domains. Since

it includes two different domains, we categorized the study M in both Automotive

and Nuclear domains.

Based on the Table 4.6, approaches for model-based testing for software safety

are applied to different types of domains. Also it can be observed that the Auto-

motive and Railway domains are dominant in the selected primary studies.

RQ.2: What are the existing research directions within model-based

testing for software safety?

With this research question, we aim to identify research directions within model-

based testing for software safety. As defined in section 4.2.2, we divide this

research question into three sub-questions. The first sub-question aims to explain

motivation for adopting model-based testing for software safety, the second sub-

question aims to present existing solution approaches, and the third sub-question

50

aims to report identified research challenges.

RQ.2.1: What is the motivation for adopting model-based testing for

software safety?

Regarding to this research question, we aimed to identify the main reasons for

applying model-based software testing for software safety in the reviewed pri-

mary studies. Based on the result of the data extraction process, we identify the

following reasons:

• reducing cost and development time

Software testing has to be carried out carefully to ensure a test coverage

that can detect the relevant faults. Unfortunately, as we have stated be-

fore, manual testing is often a time consuming process that becomes soon

infeasible with the increasing size and complexity of the software. Also in

case of changes to the software regression testing needs to be carried out

to ensure that no faults have been introduced. Studies C, K, L, P, Q, and

T explicitly describe the reduction of cost and development time as the

reasons for adopting MBT.

• improving the testing coverage

Another main reason is testing coverage which is measurement of software

testing that measures how many lines/blocks/functions of code is tested.

It describes how much of the code which is exercised by running the tests.

As the safety critical systems are growing, it is difficult to achieve high

test coverage and complete testing by using conventional testing methods

such as manual testing and random testing. In study B, C, F, J, M, and R

achieving high testing coverage is discussed.

• improving the testing efficiency and quality

The third main reason is increasing testing efficiency. In study E, L, O,

P, and S increasing testing efficiency is discussed. In the test case gener-

ation process, beside the generation of relevant test cases, redundant and

irrelevant test cases can be generated. Study E indicates that in manual

test case generation, most of the generated test cases can’t be reused and

51

it leads to repeated works when the configuration is changed. Study P

discusses difficulty of quality evaluation of manually generated test cases

regarding efficiency and redundancy. Study O points that when test cases

are generated in unsystematically and in ad-hoc manner, they are described

on a very low technical level of abstraction. Study L discusses the testing

of a software product line. They indicate that testing every single prod-

uct configuration of a software product line individually by using common

testing methods is not acceptable for large software product lines. Addi-

tionally, they points that in order to achieve efficient testing, they should

be able to generate small test suite which covers all test cases in software

product line suitably. Study S focuses on testing of functional block dia-

grams which represent component model of the safety-critical systems. In

this study, program testing of functional block diagrams mostly relies on

manual testing or simulation methods which are inefficient way of testing.

• increasing fault detection

The last main reason is increasing fault detection. In study A, I, M, and R

enhancing fault detection is discussed. Study A indicates that because of

the increasing occurrence of failures in embedded systems in automotive do-

main, number of recalling of cars increases. Therefore, testing is important

to detect faults. Study I points that failures can be discovered by apply-

ing model-based testing. Study M indicates that written test cases can be

used to check the implementation software for faults. The fault detection

capability can be improved by creating suitable test cases. Therefore, by

applying testing process, fault detection can be improved. Study R indi-

cates that designing system-on-a-chip has many challenges. In order to find

faults in design with high potential, test case generation is necessary.

In Figure 4.10, we present the number of studies which include mentioned

four main reasons. As shown in the figure 4.10, one primary study can discuss

more than one main reason. Apart from these main reasons, there are also mi-

nor reasons which are mentioned in reviewed studies. One minor reason is need

for particular set of models for testing. Study G considers the systems which

are build up components connected a network-like structure. It indicates that

52

in these systems, each instance needs its own set of models for testing. Another

minor reason is solving the state space explosion problem in automated verifi-

cation techniques. Study H points that in model checking approach which is an

automated verification technique, when too many objects are taken into account,

state space explosion problem arises.

Figure 4.10: Main motivation for adopting model-based testing for software safety

RQ.2.2: What are the proposed solutions in model-based testing for

software safety?

With respect to this research question, we aimed to present the proposed different

solution approaches in which model-based testing are applied. As described in

Section-2.1, model-based testing consists of five steps that are test model con-

struction, definition of test selection criteria, test case specification, test case

generation, and test execution. Therefore, we give the extracted results in five

subsections in order to explain the proposed solution approaches properly.

While some of the reviewed primary studies have addressed the complete

model-based testing life cycle (described in section 4.1.1), some of them focuses

only on subset of activities. Figure 4.11 presents the number of studies that ad-

dresses particular type of model-based testing steps. All reviewed papers perform

model construction step. Only 3 (15%) of the selected studies define their test

selection criteria. 7 (35%) of the primary studies perform test case specification

53

step. 18 (90%) of the selected studies generate test cases. 13 (65%) of the selected

primary studies execute the generated test scripts.

Figure 4.11: Model-based testing steps

In test model construction step, the models of the system are extracted from

requirements or specification documents. In order to analyze this step, we extract

the information which are existence of safety model, requirement specification

language, model specification language, and used method for model generation

from requirements.

In order to test safety properties of the software, it is quite important to

create safety models from requirements. Only study B, D, and F (15% of the

primary studies) create the specific safety model which describes the safety prop-

erties/functions of the system under test. 85% of the primary studies don’t use

safety model in their studies.

For the requirement specification language, we define two categories: formal

and informal. Five (25%) of the primary studies define the requirements formally.

10 (50%) of the primary studies define the requirements informally. 5 (25%) of the

primary studies don’t specify the requirements. Figure 12 shows the distribution

of number of studies.

54

Figure 4.12: Requirement Specification Language

Model generation from requirements can be performed manually or automat-

ically. In 20 selected studies, we identified that 5 (25%) of the primary studies

generate models from requirements automatically. 15 (75%) of the reviewed pri-

mary studies generate models manually.

For the model specification language, reviewed primary studies used various

different specification languages. In Table 4.7 we present the all extracted meth-

ods from 20 selected primary studies.

In 8 (40%) of primary studies (study B, D, E, F, I, L, M and S) automata

is used as model specification language. Automata are a useful model for vari-

ous different kinds of hardware and software [35]. In study D and F, finite state

machine is used as model specification language. In study E and S, models are

defined as timed automata. In study I, models are described by using StateFlow

which has been adopted from StateChart, allows hierarchical modeling of dis-

crete behaviors consisting of parallel and exclusive decompositions, which makes

it challenging to capture and translate into formal models [36]. In study L, de-

terministic state machine is used to model products in a software product line.

In study M, models are defined as abstract state machine.

In study A, C, G, K, O, R (30% of the primary studies), models are defined

by using domain specific languages which are designed to express statements

55

in particular application domain. In study A, NuSMV language [37] which is

designed for model checking is used to declare models. The verification language

Promela is used in study C as model specification language. Event grammar is

used in study K. Esterel language which is used for the development of complex

systems is used as model specification language in study S. In study G and R, test

models are constructed as a transition system which contains all possible inputs

to the system and usually the corresponding expected outputs.

In 4 (20%) of the primary studies, UML is used to construct models. In study J

and O, UML sequence diagram is used to define test models. UML state diagram

is used as a model specification language in study Q. In study H, UML-based

RI (Railway Interlocking) models are used to define test models. UML-based RI

includes the infrastructure objects and UML to model the system behavior.

In study P and Q, OOAS (Object-Oriented Action System) is used as model

specification language. OOAS is used for formalism of parallel and distributed

systems. Study N defines the models by using Petri Net [38] graphs.

Model Specification Language Number of Studies

Automata 8

DSL (Domain Specific Language) 6

UML Diagrams 3

OOAS (Object-Oriented Action System) 2

Graph 1

Table 4.7: Model Specification Language

For the definition of test selection criteria, most (85%) of the primary studies

are not define the criteria for test selection. Only 3 of the primary studies, study

C, D and L, defines the criteria. In order to define the criteria study C used

Classification Tree, study D used Temporal Logic, and study L defines the test

goals as test selection criteria.

For the test case specification step, most (65%) of the primary studies don’t

56

specify their test case specification language. 6 (30 %) of the reviewed studies

that are study A, J, L, O, R , and S define test cases formally. 1 (5%) of the

primary studies, study D, use an informal language to describe test cases.

Figure 4.13: Test Case Specification Language

For test case generation step, only 2 of the primary studies, study G and Q,

don’t generate test cases. They perform only model construction step. Therefore,

there is no extracted data for test case generation step regarding these studies.

Additionally, study P generates test data and test oracle.

Figure 4.14: Generated type of test elements

57

As understand from the previous paragraph, in some reviewed studies test

data (inputs and outputs), test sequences, test scenarios, test oracles and test

scripts are generated beside of the test cases. In Figure 4.14, we present number

of the studies and the generated type of test elements. The reviewed studies,

except the studies G, Q and P, generate test cases. The studies B, D, F, K, L, M

and O generates test scripts which is a set of instructions in order to test system

functions correctness. The studies A, O, and R generate test data that is the

data which is used for testing of system. The studies C, D, and M generate test

sequence which is the set order of steps and actions comprising a test or test

run. Test oracle is a mechanism that decides whether system has passed or failed

a test. The study O generate test oracle. The studies B and T generate test

scenario that represents the set of actions in order to test the functionality of the

system.

In order to generate types of test elements (test case, test script etc.) reviewed

studies proposes various different type of solution approaches. In Table 4.8 we

present the proposed solution approaches for generating test elements.

Solution Approach Number of Studies

Tool 8

Model checking 3

Not specified 2

Graph Algorithm 3

Algorithm 1

Multi-object checking 1

Model transformation 1

DSL 1

Table 4.8: Solution Approaches for Generated Types of Test Elements

As seen from the Table 4.8, 8 (40%) of the primary studies use existing model-

based testing tools. Study E uses CoVeR tool [39] to generate test cases auto-

matically based on timed automata theory. CoVeR is a model-based testing tool

58

which allows its users to automatically generate test suites from timed automata

specifications of real-time systems. Study K generates test cases and test scripts

by using AEG-based (Attributed Event Grammar based) generator. It is used

for automation of random event trace generation in order to generate desired test

cases and test scripts. Study L uses a model-based testing tool Azmun as test

case generator which is based on the model checker NuSMV [37] to generate test

cases of products in software product line. Study M uses a tool [40]. Study O

uses JUMBL (J Usage Model Builder Library) tool [41] which is a model-based

testing tool for statistical testing in order to generate test cases and test scripts.

Study Q uses VIATRA tool to generate OOAS models from UML diagrams using.

Study R uses TestSpec Generator in order to generate executable test suites from

abstract test suites. Study S uses the UPAAAL tool based on model checking to

generate test cases from models.

The second most used solution approach is model checking. 3 (15%) of the

reviewed primary studies used model checking to generate test elements. Model

checking is a technique used for formal verification of the system automatically.

The main purpose of the model checking is to verify a formal property given as a

logical formula on a system model. Model checkers are formal verification tools

which capable of providing counter examples to violated properties [42]. Study

A used SAL and NuSMV model checkers to generate test case and test data.

SAL (Symbolic Analysis Laboratory) [43] is a framework which is used for model

checking of transition systems. NuSVM [37] is a model checker based on binary

decision diagrams. It is designed to be an open architecture for model checking.

In study C, they aim to find both test cases and execution sequence by using

model checking techniques. Study D uses the SPIN [44] model checker tool in

order to generate test cases and test scripts. SPIN is a general tool for verifying

the correctness of distributed software models automatically.

In three of the reviewed studies, graph theory is used to generate test cases.

In study I, they use path finding algorithm on a graph to generate test case.

Study N uses search based algorithms to generate test data. The study T uses

the all paths covered optimally graph algorithm to generate test cases.

59

Study J defines a new algorithm which generates test cases by extracting

the data from the tagged PSAR (Preliminary Safety Analysis Report). The

extracted data generate the sequence diagram to product test information. Study

H uses a multi-object checking in order to generate test cases. In model checking

techniques, if too many objects are taken into account, state space explosion

problem arises. Therefore they use multi-object checking which outwits the state

space explosion problem by checking one object at a time. Study O generates

test data and test oracles by using model transformations by conforming model

instances to the metamodel. Study G uses a domain specific language (DSL) to

define test models.

Test execution can be done by manually or automatically. For this step, 13

(65%) of the primary studies, study B, C, D, F, K, L, M, N, O, P, R, S, and T

executes tests automatically. Seven of the primary studies doesn’t state explicitly

whether they run their tests or don’t.

With this research question we also extracted information about contribution

provided by the reviewed primary studies. 15 (75%) of the primary studies pro-

pose a method in order to model-based testing for software safety. 4 (20%) of

the primary studies implement a framework, only one of the reviewed primary

studies a tool to test software safety by using model-based techniques.

Figure 4.15: Contribution type

60

RQ.2.3: What are the research challenges in model-based testing for

software safety?

This research question is aimed to reveal the research challenges which are ex-

tracted from primary studies for further advancements. With respect to this

question we identified some research challenges that include problems in reviewed

studies and future research directions.

• Model-based testing for domain specific applications

All reviewed papers discuss model-based testing for particular application

domains such as automotive, railway etc. There seems to be a clear impact

of the specific domain on the model-based testing process. The question

here is whether we could provide a general purpose MBT approach without

considering a particular domain. For this purpose, how the application

domains impact the MBT process should be investigated.

• What is the impact of the context on MBT? How to model context in/for

MBT?

Some of the reviewed papers indicate that existing standard test descrip-

tions don’t support to express changes in the context. For some domains

such as autonomous systems, safety testing has some challenges due to some

reasons: Firstly, the system behavior is highly context-aware. Additionally,

context is complex and its specification could be large. Thirdly, changes

in system behavior and context should be handled to capture the require-

ments. In order to solve these problems, study P defines a context model

and scenario-based behavior specification languages. The context model

captures domain knowledge about context of the system systematically. In

regard to the system behavior, scenario-based behavior specification cap-

tures the behavior of system in case of a test context.

• What are the required metrics for validating/evaluating the MBT elements

including model, test case specification, test case etc.?

As explained before, model-based testing consists of several steps. In each

step, at least one element is produced to complete MBT process. However,

61

after each generation of MBT elements, the quality of the generated ele-

ment should be evaluated. In some reviewed studies, they propose a new

metric or use existing metrics to assess the testing quality. In study O,

they define context related coverage metric and scenario related coverage

metric in order to measure testing coverage. In reviewed studies, there isn’t

stated/proposed metric to evaluate for other types of MBT elements.

• How to compose models for generating test cases in MBT?

Some of the systems are composed of components that connected a network-

like structure. In study G, these systems are discussed. Each instance of

these systems requires its own set of model to generate test cases. How-

ever, creating a test model for each instance could be costly. Therefore,

they propose a component-based solution to generate test models by using

general information. They create test model components from requirement

specification and they translate these models by using the domain-specific

information.

• How to define MBT for software product families?

Software product line (SPL) is an engineering approach for the systematic

software reuse in order to reduce the cost and development time, improve

the software quality. Since every product needs its own configuration in

large SPLs, SPL testing approaches are not able to test efficiently large

SPLs. Additionally, testing each product in SPLs individually is time con-

suming process. For these reasons, in study L propose a new approach for

testing of SLPs. They implement an algorithm which generates a set of test

cases from complete test model that consist of all test models of an SPL as

special cases. They generate test cases which satisfy the required coverage

criteria. After the test case generation, they applied selection criteria on

generated test cases in order to represent all subsets of product features in

the SPL.

• How to apply MBT for testing systemic behavior?

In some reviewed studies, they use behavioral models for test case genera-

tion. Study G focuses only creating proper test models for the embedded

control systems. In order to handle the complexity of these systems, they

62

propose a component-based approach. They identify the candidate com-

ponents which represent the behavior of system. They use Mealy machine

(finite-state automata) in order to describe the behavior of the components.

They define a DSL which describes components and operators to build a

system model as a test model. Study I describes the behavioral models of

system by using Stateflow (finite-state automata) models. In study H, they

used UML sequence diagrams to define their behavioral models.

• How to integrate MBT with other V& V approaches?

The main purpose of the model checking is to verify a formal property

given as a logical formula on a system model. Model checkers are formal

verification tools which have capability of providing counterexamples to

violated properties. In some reviewed studies (study C, D), model checking

is used to interpret both counterexamples to find test cases and the test

cases to find execution sequence. However, study H indicates that model

checking techniques suffer from state space explosion problem when the

system has too many objects. Hence, they propose multi-object checking

approach to handle the state space explosion problem.

• How to define a generic test model to express safety properties/functionalities

of the system?

In reviewed studies, only four of the primary studies have specific safety

model to use it test case generation process. Three of these papers define

their safety properties using automata. One of them defines a DSL in order

to specify safety model. Based on these results, none of the reviewed papers

provide a generic approach to generate test model. However, in [42], the

authors propose a UML profile on architectural level aim to provide a tool

for formal verification and validation techniques such as model checking and

runtime verification.

• How to generalize the safety requirement specification in order to generate

test models?

Based on the data extraction results only four of the primary studies ex-

press the requirements by using formal language. Two of these studies use

temporal logic formulas to indicate the requirements. The other studies

63

use fault tree and UML State Diagrams. As a result, there is no proposed

generic approach to express safety requirements.

RQ.3: What is the strength of evidence of the study?

As we mentioned before, it is important that users of SLR to know how much

confidence they can have in results and findings arising from that SLR. Hence,

third research question is defined to address strength of evidence based on the

selected primary studies. In the literature, there are several systems for grad-

ing the strength of the evidence. In this work, we used the definitions from the

GRADE (Grading of Recommendations Assessment, Development and Evalua-

tion) [29] working group which is developed for grading the quality of evidence and

strength of recommendations. GRADE approach specifies four grades of strength

of evidence which is given in Table 4.9 (adopted from [29]). The strength of evi-

dence is determined by four key elements which are study design, study quality,

consistency and directness.

Grade Definition

High Further research is very unlikely to change our confidence in the

estimate of effect

Moderate Further research is likely to have an important impact on our con-

fidence in the estimate of effect and may change the estimate

Low Further research is very likely to have an important impact on our

confidence in the estimate of effect and is likely to change the esti-

mate

Very Low Any estimate of effect is very uncertain

Table 4.9: Definitions for grading the strength of evidence

Regarding the study design, the GRADE approach gives higher grade to ex-

periments than to observational studies. In this work, 6 (30%) of the selected

primary studies are experimental type. Table 4.10 shows the average quality

scores related to experimental studies. Thus according to GRADE approach, our

64

first categorization of the strength of evidence in this review from the perspective

of study design is low.

Experimental Studies C, K, M, P, T

Number of Studies 6

Mean quality score 8,4

Table 4.10: Average Quality Scores of Experimental Studies

With respect to quality of studies, in general, issues of bias, validity and

reliability are not addressed explicitly. Additionally, none of the selected primary

studies got full score from our study quality assessment criterion. 9(45%) of

the selected primary studies stated their findings clearly in terms of credibility,

validity and reliability. Besides, none of the selected primary studies discuss the

negative findings clearly. Based on these findings, we can conclude that there

are some limitations to the quality of the selected primary studies due to the low

quality scores.

Regarding the consistency which addresses the similarity of estimates of effects

across studies, we realized that there are little differences among articles. Because

of the results of the primary studies are presented both objectively and empir-

ically, we didn’t conduct a sensitivity analysis by excluding studies which have

poor quality. Since the outcomes of reviewed primary studies are not presented in

comparable way and reporting protocols vary from study to study, evaluating the

synthesis of quantitative results will be not feasible. This causes us to perform

the data synthesis in a more qualitative or descriptive way which is not desired.

Based on these findings, we can conclude that in general results have consistency.

Directness refers to the extent to which the people, interventions, and out-

come measures are similar to those of interest. In this context, people refer to

the subject of the study; intervention refers to the applied model-based testing

approaches. With respect to the people, none of the selected primary studies

used human subjects. Regarding the intervention, in the selected primary stud-

ies, various types of model-based testing approaches are used. With respect to

65

the outcome measures, seven (35%) of the primary studies performed in indus-

trial settings. Based on these findings, the total evidence based on directness of

the primary studies is low.

Combining the four key elements of study design, study quality, consistency,

and directness for grading the strength of evidence, we found that the strength of

evidence in a low grade. This means that the estimate of effect that is based on

the body of evidence from current research can be considered uncertain. Further

research is required to gain a reliable estimate of effects of model-based testing

for software safety.

4.3.5 Threads to Validity

One of the main threats to validity of this systematic literature review is the pub-

lication bias. The publication bias indicates the tendency of researchers to more

likely publish positive results. In order to deal with this bias, as recommended in

[31], we developed a research protocol and constructed research questions. After

this we define our search scope and search method clearly. Since we decided to

search papers automatically, we construct our search string according to target

of this systematic literature review. Another important issue is here incomplete-

ness which results in search bias. The risk of this threat highly depends on used

keywords in search string. In order to reduce this risk we used an iterative ap-

proach in keyword list construction process. In order to achieve largest set of

targeted search items, we performed some pilot searches on search engines of se-

lected electronic databases by constructing a keyword list. When the keyword

list was not able to find the targeted studies, new keywords were added to list

or some keywords are deleted from the list. However, it is still possible to miss

some relevant literature papers. One such instance is the existence of gray lit-

erature such as technical reports, MSc and PhD theses, and company journals.

In our case, this literature can be important if the authors report the complete

study and validated it by using a case study. In this review, we did not include

such information. Another risk of the incompleteness is that the searches on elec-

tronic databases are inconsistent in search engines. Those databases have limited

66

capabilities in terms of performing complex search strings. This could lead to

irrelevant studies being selected. Therefore, we defined a selection criteria and

applied inclusion/exclusion procedures on primary studies manually. Thereby,

we tried to reduce the publication bias and search bias as much as possible by

adopting the guidelines and defining criteria.

After the primary studies selected and evaluated, we performed the data ex-

traction in order to derive the review result. In this process, if data extraction

isn’t modeled in a well-defined way, this can be causes data extraction bias. In

order to define the data extraction model, we read a set of randomly selected

papers. Each of them was used to construct initial data extraction form based on

previously defined research questions and we performed pilot data extraction on

randomly selected primary studies. After the pilot data extraction process, we

added some fields to the form in order to capture relevant results. Furthermore,

to eliminate the unnecessary or irrelevant results we removed some fields from the

data extraction form. To reduce the data extraction bias, we applied this several

times and after a number of iterations and discussions we constructed the final

data extraction model.

4.4 Conclusion

In this work, we have presented the methodological details and results of a sys-

tematic literature review on model-based testing for software safety. To the best

of our knowledge, there is no previous systematic literature study has been per-

formed before on this domain. We tried to systematically identify, analyze, and

synthesize the findings of the published literature since 2005. We identified 462

papers from the searching literature, and 20 of them were found as relevant pri-

mary studies to our research questions. Based on this review, we analyze the

current model-based testing approaches for software safety and present the re-

sults to help the researchers and identify the future research directions.

With respect to our research questions, we present the domains in which

67

model-based testing applied. We have reported the reasons to apply model-based

software testing for software safety in reviewed primary studies. Additionally,

we present the existing solution approaches for model-based testing for software

safety area. Finally we identify the research challenges to provide future research

directions.

The existing model-based testing approaches have clear impact on software

safety testing. However, these solution approaches have some limitations. Firstly,

these solutions are based on specific domains. Another limitation is that most

of the studies consider the small part of the system. Therefore, they don’t have

complete model of the system and they couldn’t evaluate their solution properly.

Additionally, most of the proposed solutions have low performance in terms of test

case generation methods. As a result, the main argument is that can we provide

a model-based testing approach which removes or decreases these problems for

software safety.

As a summary, this work can be considered as a roadmap to describe the

current state of model-based testing for software safety. We believe that the

results of our systematic literature review will help to improve the model-based

testing for software safety area and we hope that the extracted results will become

useful in developing new approaches.

68

Chapter 5

Software Safety Perspective

An important concern for designing safety-critical systems is safety since a failure

or malfunction may result in death or serious injury to people, or loss or severe

damage to equipment or environmental harm. It is generally agreed that quality

concerns need to be evaluated early on in the life cycle before the implementation

to mitigate risks. For safety-critical systems this seems to be an even more

serious requirement due to the dramatic consequences of potential failures. For

coping with safety several standard and implementation approaches have been

defined but this has not been directly considered at the architecture modeling

level. Hence, we propose the safety perspective that is dedicated to ensure that

the safety concern is properly addressed in the architecture views.

In this chapter, firstly we explain the proposed safety perspective approach.

Then, we show the application of the proposed approach on the case study de-

scribed in section 3. Finally, we present the application of the safety perspective

on Views & Beyond architecture framework.

69

5.1 Safety Perspective Definition

In order to provide tactics and guidelines to handle safety in architectural level,

the safety perspective is defined based on the following guidelines as defined by

Rozanski and Woods [7] :

• The perspective description in brief in desired quality

• The perspective’s applicability to views to show which views are to be af-

fected by applying the perspective

• The concerns which are addressed by the perspective

• An explanation of activities for applying the perspective to the architectural

design.

• The architectural tactics as possible solutions when the architecture doesn’t

exhibit the desired quality properties the perspective addresses

• Some problems and pitfalls to be aware of and risk-reduction techniques

• Checklist of things to consider when applying and reviewing the perspective

to help make sure correctness, completeness, and accuracy

Based on the above-mentioned guideline, Table 5.1 presents the brief description

of the proposed safety perspective definition. In following subsections we discuss

the each point.

70

Desired

Quality
The ability of the system to provide an information about

safety-related decisions and ability to control and monitor the

hazardous operations in the system

Applicability Any systems which include hazardous or safety-critical oper-

ations

Concerns Failures, Hazards, Risks, Fault Tolerance, Availability, Relia-

bility, Accuracy, Performance

Activities Identify hazards, Define risks, Identify safety requirements,

Design safety model, Assess against safety requirements

Architectural

Tactics
Avoid from failures and hazards, Define failure detection

mechanisms, Mitigate the failure consequences

Problems and

Pitfalls
Describing the fault tolerance, No clear requirements or safety

model, Underestimated safety problems

Table 5.1: Brief description of the safety perspective

5.1.1 Applicability to Views

Table 5.2 shows how the safety perspective affects each of the Rozanski and

Woods’ architectural views as described in section 2.1.2. For all the seven views

the safety perspective seems to be useful and can reshape the corresponding view.

71

View Applicability

Functional

View

The functional view allows determining which of the system’s

functional elements considered as safety critical.The functional

view allows determining which of the system’s functional ele-

ments considered as safety critical.

Information

View

The information view helps to see the safety-critical data in the

system

Concurrency

View

The concurrency view defines which system’s elements executed

concurrently. Safety design may imply isolate or integrate some

elements in runtime. Therefore this will affect the system’s con-

currency structure.

Development

View

Applying this view can help to provide a guideline or constraints

to developers in order to raise awareness for the system’s safety

critical elements.

Deployment

View

The deployment view provides information about the environ-

ment into which the system will be deployed. Therefore, apply-

ing this view can help to determine the required hardware, third-

party software requirements and some constraints for safety.

Operational

View

The operational view helps to understand how the system will

be operated, managed, and supported in runtime environment.

Since safety implementation includes critical and complex opera-

tions, operational view needs to consider safety critical elements

to describe system’s operation properly.

Context

View

The context view provides information about the external en-

tities and shows the interaction between them and the system.

Therefore, applying this view can help to understand which types

of users will use the system and which external systems are nec-

essary in order to make sure the system operates correctly.

Table 5.2: Applicability of safety perspective to Rozanski and Woods’ views

72

5.1.2 Concerns

The basic concerns of safety can be derived from the broad literature on software

safety. We describe these shortly.

Failures

Failure is an event where a system or subsystem doesn’t exhibit the expected

behaviors which are documented in system’s requirement specification. Failures

can be oriented software or hardware [2]. Logical errors which are mostly results

of the developer’s errors in coding phase can cause failures. In addition, a mistake

in the design step of the system development lifecycle brings failure.

Hazards

Hazard is a presence of a potential risk situation that can result or contribute

to mishap [2]. Hence, hazard is a potentially dangerous situation. In order

to make sure the safety of the system, possible hazards in the system should be

identified, controlled and prevented. To give an example, misrouted trains, signal

faults, engine stop and breaking system faults are can be considered as hazards

of safety-critical systems in railway domain [45]. For each identified hazard,

there should be at least one hazard control method for preventing the hazard,

reduce the possibility of hazard occurrence or decrease the impact of the hazard.

To create a proper hazard control method, hazard causes should be identified

rigorously. Hazard control methods use hardware, software or combination of

them to prevent the hazards.

Risks

Risk is combination of the probability of occurrence of loss and the severity of

that loss [1]. The terms hazard and risk can be used interchangeably. However,

there is a difference between them. Hazard is a potential source that can result of

harm, while risk presents the likelihood of the harm if hazard exposes. In order

to conduct risk assessment process, severity and probability of hazard occurrence

should be identified. These values allow hazards to be prioritized and risks to

73

be managed [2]. This provides the basic information required to decide on the

acceptability of design proposals and the steps that are necessary to reduce risks

to acceptable levels.

Fault Tolerance

Fault tolerance is the ability of the system to continue properly in the unwanted

event or failure and maintain a safe operational condition. Depending on the

failure and the failure tolerance mechanism, the system may operate normally or

with reduced functionality. While a failed system is not good, it may still be safe.

Failure tolerance becomes a safety issue when the failures occur in hazard controls.

Since, failures affect all system behavior; creating fault tolerance requires system-

wide approach [2].

Availability

Availability is the degree to which a system is in a specified operable and commit-

table state at the start of a mission. Since the safety-critical systems are generally

real-time systems, the system should be available as much as it can. Failures in

the system reduce the availability of the system. As such, for designing a system

for availability, the hazards and failures should be identified and their causes are

clearly determined. Additionally, the result of the hazard identification and risk

definition should be analyzed and under which failures and hazards the system

going to fall down for availability. Fault tolerance analysis should be conducted

for availability.

Reliability

Reliability is the ability of a system to perform a required function under given

conditions for a given time interval. Reliability does not consider the consequences

of the failures, but only the existence of failures [46]. For establishing the system

reliability, the number of failure/hazard occurrence should be calculated in a

specified amount of time. Designing a system for reliability usually involves fault

tolerance analysis of the system.

74

Accuracy

Accuracy defines the functional correctness of the system that presents a behavior

according to the specifications of the functions it should provide [47]. Since safety-

critical systems include critical operations that must operated correctly from the

safety aspect, accuracy of the system should be handled carefully. Additionally,

fault tolerance is quite related to accuracy of the system.

Performance

Performance is mostly about the response time of a system. For the performance

the questions how quickly the system reacts to user need, how much the system

can capable to accomplish within a specified amount of time should be answered.

The response time of the system should be acceptable level. In architectural level,

performance testing should be planned properly.

5.1.3 Activities for Appliying Safety Perspective

The activity diagram in Figure 5.1 summarizes the process for applying the safety

perspective.

Figure 5.1: Appliying the safety perspective

75

The first step includes the identification of the hazards followed by the defini-

tion of risks. This is followed by identifying and detailing the safety requirements.

After the safety requirements safety models are designed and the safety require-

ments are assessed. In the following sub-sections we describe this process in more

detail.

5.1.3.1 Identify Hazards

In order to identify safety requirements, the potential cause of hazards should

be defined. To identify and classify the hazards preliminary hazard analysis

can be conducted. This process should include the list of all hazards and their

probable causes such as software-based, hardware-based and environment-based.

In addition to the theoretical analysis and brainstorming in development team,

hazard analysis of similar existing systems can be examined to identify hazards.

Moreover, a prototype or model can be used to analyze normal and abnormal

scenarios that may cause hazards. Additionally, a conversation can be carried

out with a domain expert in order to obtain hazard information [48]. For hazard

identification, hazard severity should be defined for each hazard in the system.

Different studies such as [2], [28], [49] propose severity classification for hazards.

Hazard severity levels are defined as shown in Table 5.3 which is adopted from

[49].

Severity Class Definition
Catastrophic Death, system loss or severe environmental damage
Critical Severe injury, severe occupational illness, major system or

environmental damage
Marginal Minor injury, minor occupational illness or minor system or

environmental damage
Negligible Less than minor injury, occupational illness or less than minor

system or environmental damage

Table 5.3: Hazard Severity Levels

76

5.1.3.2 Define Risks

After the hazard identification step, estimation of probability of hazard occur-

rence for each hazard should be carried out in order to define risks. Various

studies such as [2], [49] propose probability levels for hazards. Table 5.4 shows

the occurrence definition for hazard which is adopted from [49]. After deter-

mining severity and likelihood of occurrence of hazards, these findings should be

documented in a proper way. The documentation should include hazard descrip-

tion, hazard cause(s), hazard consequence(s), hazard severity and probability of

hazard occurrence.

Occurrence
Class

Definition

Frequent Likely to occur frequently (More than 10−3)
Probable The event will occur several times in the life of an item. (10−3

to 10−5)
Occasional Likely to occur sometime in the life of an item. (10−5 to 10−7)
Remote Unlikely but possible to occur in the life of an item. (10−7 to

10−9)
Improbable So unlikely, it can be assumed occurrence may not be experi-

enced (Less than 10−9)

Table 5.4: Hazard Probability Level

Based on the hazard severity and hazard occurrence class identification, risks

should be assessed. As proposed in studies [2], [28] and [49] Hazard Risk Index

creation should be carried out to prioritize the hazards and make risks manage-

able. Table 5.5 and 5.6 show an example of hazard risk index and example risk

categorization which are adapted from [49]. After the risk definition, risk as-

sessment should be conducted by methods such as fault tree analysis, event tree

analysis, simulation etc.

77

Severity Class
Possibility of Occurrence Catastrophic Critical Marginal Negligible
Frequent 1 3 7 13
Probable 2 5 9 16
Occasional 4 6 11 18
Remote 8 10 14 19
Improbable 12 15 17 20

Table 5.5: Hazard Risk Index

Risk Assessment Value Risk Category
1-5 High
6-9 Serious
10-17 Medium
18-20 Low

Table 5.6: Hazard Risk Categorization

5.1.3.3 Identify Safety Requirements

After the hazard identification and risk assessment, software safety requirements

should be determined to construct a safety model. Safety requirements can be

identified by using different methods. One of the methods for identifying safety

requirements is preliminary hazard analysis [2]. This method looks into the sys-

tem from the point of view of hazards. The causes of hazards are mapped to

the software, and hazard control features are identified as safety requirements.

Another method is top-down analysis of system requirements and specifications

[2]. In this method system requirements identify system hazards and specify

safety-critical functions in the system. Fault Tree Analysis (FTA) can be carried

out to identify safety-critical functions. These functions can be mapped to safety

requirements. The study [50], proposes a method includes functional hazard anal-

ysis and preliminary system safety analysis to identify the safety requirements.

Functional hazard analysis identifies the hazards and failures. Preliminary system

safety analysis maps failure conditions to safety requirements. Additionally, some

methods combine the several existing techniques to derive safety requirements.

78

5.1.3.4 Design Safety Model

While designing the safety-critical systems, having only generic system’s models

is usually not adequate. There should be also specific safety model in order to

present safety-critical elements or components in the system. The safety model

helps to understand and improve the overall system properly. Safety model can be

derived from safety requirements. Various studies such as [51], [52], [53] propose

an approach to design safety model. One way to create a safety model of the

system is defining an extension mechanism to UML models. UML extension can

be achieved by adding stereotype to UML diagrams. Another approach to design

a safety model is defining a domain-specific language. Another way to express

safety model is using automata.

5.1.3.5 Assess Against Safety Requirements

After designing the system’s safety model, it should be assessed to check whether

it is consistent with identified safety requirements. The assessment can be done

by tracing the checklist which is provided in section 3.6. Additionally, a third

authority can carry out the assessment process. Moreover, some safety cases can

be created and model is assessed through these safety cases. If there is a conflict

between identified safety requirements and safety model, the safety design model

should be reworked and fixed. This process should be continued until no conflict

is found.

5.1.4 Architectural Tactics

Architectural tactics can be considered as possible solutions when the architecture

does not exhibit the required quality properties addressed by the perspective.

Different studies such as [54], [55], [56] have proposed architectural tactics or

patterns for supporting safety design. In [56], Wu and Kelly propose safety tactics

by adopted SEI’s tactic work. In the following we describe important selected

tactics.

79

5.1.4.1 Avoid from Failures and Hazards

An important tactic includes approaches for avoiding from failures and hazards.

One way for doing this is making the system as simple as possible. If the system

has simple and small number of components, the possibility of occurrence of

the failure will be decrease and the system will becomes safer. However, safety-

critical systems are in general complex systems and the application of this tactic

could be challenging. An alternative tactic for avoiding from failures is to apply

redundancy. The simplest form in this category is replication which is copying of

components in order to detect hardware failures. Another technique to avoid from

failures and hazards is N-version programming proposed by Chen and Avizienis

[57]. N-version programming helps to improve software safety. In N-version

programming technique, independent development teams use same specification

to develop multiple versions of the system. In this context, different designs can

be created for each version of the system in order to determine design faults from

safety perspective.

5.1.4.2 Define Failure Detection Mechanisms

If hazards and failures occur, system should be able to handle them. In order to

detect the failures, failure detection mechanisms can be derived from safety re-

quirements. A fault detection mechanism can be a software or hardware function

that can be able to detect a defined set of faults. In the literature, there are some

studies such as [58] which derive failure detection methods from software safety

with model-driven approaches. In these approaches, generally safety requirements

are identified and refined. The possible fault detection mechanisms are created as

a library and using model-driven techniques, a proper fault detection mechanism

is determined which fulfills at least one safety requirement.

80

5.1.4.3 Mitigate the Failure Consequences

At the architecture design level, based on the hazard identification and risk def-

inition, consequences of failures can be predicted and reduced/prevented. There

are several ways for realizing this. Redundancy is one way to reduce impacts of

failure consequences as described in section 5.1.4.1. Replication also can be used

for mitigation the failure consequences. In the design process, these redundant

components should be identified. Another form of redundancy is implementing

independent components to detect the hardware and software failures. In ad-

dition to these tactics, there are some well-known methods which provide the

combination of these tactics. One of these techniques is heartbeat which offers a

mechanism for periodically monitoring the aliveness and arrival rate of indepen-

dent runnables. It is based on receiving a signal or message from a component,

device, subsystem, or system. The signal/message shows the health status of

that system. If the signal/message is received in a pre-defined time interval, this

means that system is working properly. However, if the signal/message is not re-

ceived in an interval, this means there can be a fault in the system. This fault can

lead to catastrophic hazards in safety-critical system. Therefore, some predefined

operations should be carried out in this case. By using the heartbeat method,

failures/hazard can be detected and the impact of the failure consequences can

be reduced.

5.1.5 Problems and Pitfalls

In this section, we provide the potential safety problems and pitfalls as well as

the risk-reduction techniques.

5.1.5.1 Describing the Fault Tolerance

As we have stated before fault tolerance is one of the important approaches for

increasing safety in safety-critical systems. However, even if the system fails it

may still be safe. To cope with safety it is important to explicitly identify the

81

failures that lead to unsafe situations. For this, the following needs to be carried

out:

• Analyze the architectural model especially the functional and deployment

views to define the possible failures in the system

• Review the architecture in several failure scenarios and check what impact

the failures have on system’s safety.

• Ensure that safety design has some configurations when the unexpected

situations occur, the system fails safely

5.1.5.2 No Clear Requirement Description or Safety Model

As in normal systems, the requirements for safety-critical systems are also defined

in the software requirements specifications. Several problems can be based due to

the improper preparation of the SRS. The SRS might be imprecise, incomplete or

ambiguous regarding safety requirements. Because the developed safety models

are based on the defined requirements, these can also be inappropriate regarding

safety. The following steps can be carried out to mitigate these risks:

• Try to transform requirements into clear and consistent representation with

domain experts

• When identifying the requirements use plenty of different examples with

stakeholders

5.1.5.3 Underestimated Safety Problems

While designing the system, some important possible faults could be missed be-

cause of the lack of domain knowledge of the system designers. Since these faults

can lead to failures, safety of the system can decrease. Risk reductions in this

context are the following:

82

• Design the safety model with external domain experts

• Try to analyze the similar systems in order to gain insight about the safety

problems in the similar safety-critical systems

5.1.6 Checklist

In this section, we provide checklist for requirements capture and architecture

definition to consider when applying and reviewing the perspective to help make

sure correctness, completeness, and accuracy. Table 5.7 presents the checklist.

#Item Item Definition
[CH1] Have you identified safety-critical operations in the system?
[CH2] Have you identified possible failures and hazards in the system in-

cluding causes and consequences of them?
[CH3] Have you worked through the hazard severity and occurrence infor-

mation to define the risks in the system?
[CH4] Have you identified availability needs for safety of the system?
[CH5] Have you worked through example scenarios with your stakeholders

so that they understand the planned safety risks the system runs?
[CH6] Have you reviewed your safety requirements with external domain

experts?
[CH7] Have you addressed each hazard and risk in the designed safety

model?
[CH8] Is the design of safety model as simple as possible and highly mod-

ular?
[CH9] Have you identified safe states and fully checked and verified them

for completeness and correctness?
[CH10] Have you produced an integrated overall safety design of the sys-

tem?
[CH11] Have you defined the fault tolerance of the system?
[CH12] Have you applied the results of the safety perspective to all effected

views?
[CH13] Have domain experts reviewed the safety design?

Table 5.7: Checklist

83

5.2 Application of the Safety Perspective on

Case Study

This section explains the application of the proposed safety perspective approach

on the case study Avionics Control Computer System described in section 3.

5.2.1 Activities for Safety Perspective

In this sub-section, we explain how the activities defined in section 5.1.3 are

applied to our case study.

5.2.1.1 Identify Hazards

This activity is performed with domain experts (avionics engineers and pilots),

system engineers and safety engineers. Some of the identified hazards for our

case study are given in Table 5.8 along with possible causes, consequences, and

severity classification. Severity class of the hazards, numbered from HZ1 to HZ4,

is identified as catastrophic since possible consequence of these hazards is aircraft

crash. For instance, if a high altitude is displayed instead of its correct value,

the pilots could assume that the aircraft is high enough not to crash to the

ground especially when landing. This assumption could lead to aircraft crash

that causes deaths, system loss, and in some cases severe environmental damage.

These results make these hazards catastrophic. When the consequence of HZ5 is

considered, its severity class is identified as negligible because this hazard results

in only a communication error with ground station.

5.2.1.2 Define Risks

The probability of occurrence and risk category for each hazard are also given in

Table 5.8. Our design criterion is to design the system such that the probability

84

H
a
za

rd
P

o
ss

ib
le

C
a
u
se

s
C

o
n
se

q
u
e
n
ce

s
S
e
v
e
ri

ty
P

ro
b

a
b
il

it
y

R
is

k

[H
Z

1]
D

is
p
la

y
in

g
w

ro
n
g

al
ti

tu
d
e

d
at

a

L
os

s
of

/E
rr

or
in

al
ti

m
et

er
d
ev

ic
e

L
os

s
of

/E
rr

or
in

co
m

m
u
n
ic

at
io

n
ch

an
n
el

w
it

h
al

ti
m

et
er

d
ev

ic
e

E
rr

or
in

d
is

p
la

y
d
ev

ic
e

A
ir

cr
af

t
cr

as
h

C
at

as
tr

op
h
ic

Im
p
ro

b
ab

le
M

ed
iu

m

[H
Z

2]
D

is
p
la

y
in

g
w

ro
n
g

fu
el

am
ou

n
t

L
os

s
of

/E
rr

or
in

en
gi

n
e

p
ar

am
et

er
s

d
ev

ic
e

L
os

s
of

/E
rr

or
in

co
m

m
u
n
ic

at
io

n
ch

an
n
el

w
it

h
en

gi
n
e

p
ar

am
et

er
s

d
ev

ic
e

E
rr

or
in

d
is

p
la

y
d
ev

ic
e

A
ir

cr
af

t
cr

as
h

C
at

as
tr

op
h
ic

Im
p
ro

b
ab

le
M

ed
iu

m

[H
Z

3]
D

is
p
la

y
in

g
w

ro
n
g

at
ti

tu
d
e

d
at

a

L
os

s
of

/E
rr

or
in

at
ti

tu
d
e

d
ev

ic
e

L
os

s
of

/E
rr

or
in

co
m

m
u
n
ic

at
io

n
ch

an
n
el

w
it

h
at

ti
tu

d
e

d
ev

ic
e

E
rr

or
in

d
is

p
la

y
d
ev

ic
e

A
ir

cr
af

t
cr

as
h

C
at

as
tr

op
h
ic

Im
p
ro

b
ab

le
M

ed
iu

m

[H
Z

4]
D

is
p
la

y
in

g
w

ro
n
g

p
os

it
io

n
d
at

a

L
os

s
of

/E
rr

or
in

p
os

it
io

n
d
ev

ic
e

L
os

s
of

/E
rr

or
in

co
m

m
u
n
ic

at
io

n
ch

an
n
el

w
it

h
p

os
it

io
n

d
ev

ic
e

E
rr

or
in

d
is

p
la

y
d
ev

ic
e

A
ir

cr
af

t
cr

as
h

C
at

as
tr

op
h
ic

Im
p
ro

b
ab

le
M

ed
iu

m

[H
Z

5]
D

is
p
la

y
in

g
w

ro
n
g

ra
d
io

fr
eq

u
en

cy
ch

an
n
el

L
os

s
of

/E
rr

or
in

ra
d
io

d
ev

ic
e

L
os

s
of

/E
rr

or
in

co
m

m
u
n
ic

at
io

n
ch

an
n
el

w
it

h
ra

d
io

d
ev

ic
e

E
rr

or
in

d
is

p
la

y
d
ev

ic
e

C
om

m
u
n
ic

at
io

n
er

ro
r

w
it

h
gr

ou
n
d

st
at

io
n

N
eg

li
gi

b
le

O
cc

as
io

n
al

L
ow

T
ab

le
5.

8:
H

az
ar

d
id

en
ti

fi
ca

ti
on

an
d

ri
sk

d
efi

n
it

io
n

fo
r

ou
r

ca
se

st
u
d
y

85

of occurrence of all catastrophic failures should be improbable. The probability

of the hazards, numbered from HZ1 to HZ4, is defined as improbable because

they are catastrophic hazards. In the following section, safety requirements are

identified in order to make these hazards improbable.

5.2.1.3 Identify Safety Requirements

Safety requirements are identified in this step. To illustrate the remaining activ-

ities we use the hazards HZ1, HZ2, HZ5. Similar activities are performed for the

other hazards. Table 5.9 lists the safety requirements related to HZ1, HZ2, and

HZ5. Similarly various safety requirements can be defined for the other identified

hazards.

5.2.1.4 Design Safety Model

The next activity is to design a safety model which satisfies the identified safety

requirements. This is an iterative process. The models are created first and

then they are checked against safety requirements. The models can be changed

according to these checks. We prefer to show two versions of the architecture

for our case study. The first version is designed without considering the safety

requirements. It is modified after safety requirements are identified, that is, after

safety perspective is applied, which results in the second version. The reasons of

the modifications will be explained in the next section (assessment section).

Figure 5.2 shows the deployment diagram of the first version, which includes

one avionics control computer (AvionicsComputer), one altimeter device (Altime-

ter), one radio device (Radio), one fuel amount device (FuelAmount), and one

display device (GraphicsDisplay). Avionics control computer consists of follow-

ing modules: Communication Manager, Radio Manager, Navigation Manager,

Altitude Manager, Graphics Manager , Platform Manager, and Fuel Manager.

86

Hazard ID Definition

HZ1

SR1 Altitude data shall be received from two independent altime-
ter devices.

SR2 If one of the altitude data cannot be received, the altitude
data received from only one of the altimeter device shall be
displayed and a warning shall be generated.

SR3 If both of the altitude data cannot be received, the altitude
data shall not be displayed and a warning shall be generated.

SR4 If the difference between two altitude values received from two
altimeter devices is more than a given threshold, the altitude
data shall not be displayed and a warning shall be generated.

SR5 Altitude data shall be displayed on two independent display
devices.

HZ2

SR6 Fuel amount data should be recieved from two independent
engine parameters device.

SR7 If one of the fuel amount data cannot be recieved, the fuel
amount data recieved only one of the engine parameters device
shall be displayed and a warning shall be generated.

SR8 If both of the fuel amount data cannot be recieved, the fuel
amount data shall not be displayed and a warning shall be
generated.

SR9 If the difference between two fuel amount vales received from
two altimeter devices is more than a given threshold, the fuel
amout data shall not be displayed and a warning shall be
generated.

SR10 Fuel amount data shall be displayed on two independent dis-
play devices.

HZ3
S11 Radio frequency data shall be received from a radio device.
SR12 Radio frequency data shall be displayed on two display de-

vices.

Table 5.9: Safety requirements for the case study

87

Figure 5.2: Deployment view for the first version

The deployment diagram of the second version, after applying the safety per-

spective, is shown in Figure 5.3. The second version includes two avionics con-

trol computers (AvionicsComputer1 and AvionicsComputer2), two altimeter de-

vices (Altimeter1 and Altimeter2), two radio devices (Radio1 and Radio2), two

fuel amount devices (FuelAmount1 and FuelAmount2), and two display devices

(Graphics1Display and Graphics2Display). Avionics control computer contains

following modules: Communication Manager, Radio Manager, Navigation Man-

ager, Altitude1 Manager, Altitude2 Manager, Platform Manager, Fuel1 Manager,

Fuel2 Manager, Graphics1 Manager, Graphics2 Manager, and Health Monitor.

Altitude1 Manager receives data from the altitude device connected to MIL-

STD-1553 communication channels. Similarly, Altitude2 Manager receives data

from the altitude device on the ARINC-429 communication channels. MIL-STD-

1553 and ARINC-429 are two wildly known communication standards used in

avionics systems. These two managers just receive the data and send it to the

required modules. They do not make any calculations on the data. Navigation

Manager receives the altimeter data from Altitude1 Manager and Altitude2 Man-

ager and makes the necessary checks on the altimeter data. These checks include

the range check and difference check. If the difference between two altimeter val-

ues received from two altimeter devices is more than a given threshold, a warning

data is produced. The HZ1 is related to these elements. The altimeter data

88

Figure 5.3: Deployment view for the second version

89

and warning data are sent to Graphics Managers. Graphics Managers drive two

graphical displays according to the received data. A well-known standard called

DVI is used to drive graphical displays.

Fuel1 Manager receives data from the fuel amount device connected to MIL-

STD-1553 communication channels. Similarly, Fuel2 Manager receives the data

from the fuel amount device connected to ARINC-429 communication channels.

Platform Manager receives the fuel amount data from Fuel1 Manager and Fuel2

Manager and makes the necessary checks on the fuel amount data. These checks

include the range check and difference check. If the difference between two altime-

ter values received from two altimeter devices is more than a given threshold, a

warning data is produced. The HZ2 is related to these elements. The fuel amount

data and warning data are sent to Graphics Managers. Graphics Managers show

the fuel amount data on the two graphical display devices.

Communication Manager and the Radio device are shown on the models in

order to include a non-safety critical feature. The hazard HZ5 is related to these

elements. The severity class of this hazard is identified as negligible, which makes

it a non-safety critical feature. Radio Manager receives the radio frequency data

from the radio device connected to MIL-STD-1553 communcation channel and

sends it to the Communication Manager which also sends the data to the Graphics

Managers. Graphics Managers show the data on the graphical display devices.

SC (Safety Critical) stereotype is defined to tag the safety-critical modules.

The safety-critical modules are tagged with SC in Figure 5.3. SC stereotype

differentiates the safety-critical modules from the rest of the modules.

5.2.1.5 Assess Against Safety Requirements

The last activity is the assessment against requirements. There is only one al-

timeter device, one fuel amout device, and one display device in the first version

of the architecture so the safety requirements SR1, SR5, SR6, SR10, and SR12 are

not satisfied. We adapted the first version and included one additional altimeter

device, one additional fuel amout device, and one additional display device in the

90

second version of the architecture. Therefore the safety requirements SR1, SR5,

SR6, SR10, and SR12 are satisfied.

Redundancy is also accomplished for the avionics control computer in the

second version of the architecture. There are two avionics computers which can

communicate to each other for heartbeat messages (through UDP protocol). They

run according to master/slave paradigm. Only one of the avionics computers can

be master at a given time. If slave avionics computer cannot receive heartbeat

messages, it can become master. Both of them can receive altimeter data and

can display it on graphical display devices but only the master computer does it.

The safety requirements SR2, SR3, SR4, SR7, SR8, and SR9 are also satisfied

in the second version of the architecture. Navigation Manager checks the altitude

data and produces either the altitude data or a warning for altitude. If altitude

data is produced, it is displayed on both graphical devices by Graphics Managers.

If a warning is generated, a warning symbol is displayed on the graphical devices

instead of altitude. For the fuel amount data, Platform Manager checks the

data and produces either the altitude data or a warning for fuel amout data.

If fuel amount data is produced, it is displayed on both graphical devices by

Graphics Managers. If a warning is generated, a warning symbol is displayed on

the graphical devices instead of fuel amount.

Health monitoring is another tactic which is applied in order to increase the

safety of the system. Health monitor checks the status of the modules. If there

is a problem related with a module, it can restart the module. Health monitors

are also used to determine master/slave condition. Heartbeat messages are sent

and received by health monitors.

91

5.2.2 Applicability to Views

This section describes the application of safety perspective to the views for our

case study, which allows us to ensure that the architecture is suitable as far as

safety perspective is concerned. Table 5.10 lists a summary of the application of

safety perspective to the views for our case study.

View Applicability to the case study
Functional Safety-critical modules are determined. (in Figure 5.5)
Information Safety-critical data is determined. (see Figure 5.6 and 5.7)
Concurrency Not applicable
Development Requirement Standard, Coding Standard, Design Decisions,

Reviews and Checklists Common processing required is de-
fined.

Deployment There are two avionics control computers, two altimeter de-
vices, two fuel amount devices and two display devices. (in
Figure 5.3)

Operational Check the correctness of the loaded binaries, SCM and SPCR
processing for safety-critical defects, Maintenance and user
training

Context External devices related with safety-critical features are de-
termined. (see Figure 5.8)

Table 5.10: Safety perspective application to views for the case study

Figure 5.4: Functional view for the first version

As we stated before, designing is an iterative process and we preferred to

show two versions of functional view. The functional view allows determining

92

which of the system’s functional elements considered as safety-critical. Figure

5.4 shows the functional view for the first version of the architecture and Figure

5.5 shows the functional view for the second version of the architecture. These

two diagrams illustrate the modules and the interfaces between these modules.

When we consider the first version and check against safety requirements, we see

that the first version does not satisfy the safety requirements. Therefore, the first

version is modified and the second version is produced. The modifications are

summarized in the following paragraph.

Figure 5.5: Functional view for the second version

The modules that are responsible for the display of the altitude data and fuel

amount data are considered as safety-critical modules. These are Altitude1 Man-

ager, Altitude2 Manager, Fuel1 Manager, Fuel2 Manager, Navigation Manager,

Platfrom Manager, Graphics1 Manager, and Graphics2 Manager. These modules

are tagged with SC stereotype. Health monitoring is applied for safety-critical

93

modules. Health monitor collects data about the status of the safety-critical

modules. Figure 5.5 shows that the identified safety-critical modules communi-

cate with health monitor through specified connections. Communication Manager

is responsible for radio frequency data, so it is not considered as safety-critical

module and it does not communicate with Health Monitor.

The information view helps to see the safety-critical data in the system. Al-

titude data and fuel amount data are safety-critical for our case study. The data

path of the altitude data is shown in Figure 5.6. Similarly the data path of

the fuel amount data is shown in Figure 5.7. Safety-critical data is also tagged

with SC stereotype. All the modules on the data path of altitude data should

be safety-critical modules. The data path diagrams are used to show that all

safety-critical data is processed by only safety-critical modules.

Figure 5.6: Information view for altitude data

94

Figure 5.7: Information view for fuel amount data

The concurrency view defines which system’s elements executed concurrently.

All modules run in a pre-defined and time-shared fashion for our case. There

is no concurrent processing, so concurrency view is not applicable for our case

study.

The development view helps to provide a guideline or constraints to developers

in order to raise awareness for the system’s safety-critical elements. Requirement

standard, coding standard and design decisions are documented and shared with

developers for our case. Developers of the safety-critical software should apply

the defined rules in these documents. Reviews (requirement review, code review,

etc.) and checklists are used for assessment. Common processing required across

modules are also defined. For instance, how health monitoring for a safety-critical

module should be used is documented.

The deployment view provides information about the environment into which

the system will be deployed. Figure 5.3 shows the deployment diagram for the

second version. The diagram can be used to identify safety-critical modules. SC

stereotype is used to tag safety-critical modules.

The operational view helps to understand how the system will be operated,

managed, and supported in runtime environment. A mechanism is developed to

95

Figure 5.8: Context view for our case study

check the correctness of the loaded binaries for our case. The binary loaded to

avionics computers is controlled with a checksum for safe loading. One of the

important aspects of operational view is Software Configuration Management

(SCM) and Software Problem and Change Request (SPCR) processing. We de-

fine both SCM infrastructure and SPCR processing in Software Configuration

Management Plan document. This document explains how defects will be re-

solved and how new releases will be produced. Reported defects are categorized

according to their safety impact. If a defect has severe safety consequences, all

the flights should be stopped and the new version of the software should be loaded

before flight. Another important aspect of operational view is maintenance of the

system and user training. User handbooks and training will be given at the end

of the project.

The context view provides information about the external entities related with

safety-critical features and shows the interactions between them and the system.

The diagram in Figure 5.8 is an example context view especially designed for

altitude display. External devices are tagged with ExternalDevice stereotype

96

and the communication protocols between the external devices and the avionics

control system are given on the connection lines. Both of the avionics computers

receive altitude data and fuel amount data from two different related devices and

send it to the graphical display devices to be shown to the Pilot who is represented

as an Actor.

5.2.3 Checklist and Architectural Tactics

The checklist defined in 5.1.6 for safety perspective is filled in Table 5.11 for our

case study. Some example notes related with the altitude hazard are written in

the last column of the table.

97

CH

Item

Yes

/No

/NA

Notes

[CH1] Yes Displaying altitude data and fuel amount data are identified as

safety-critical operation.

[CH2] Yes Displaying wrong altitude data, fuel amount data and radio fre-

quency data are identified as a hazard (HZ1, HZ2, and HZ5).

[CH3] Yes Severity class of the hazard HZ1 and HZ2 is catastrophic and its

occurrence probability should be improbable.

[CH4] Yes The system is designed with two avionics computer to satisfy high

availability requirement.

[CH5] Yes When an altitude or fuel amount warning is generated, the actions

that should be taken by the operator (pilot) are documented.

[CH6] Yes The safety requirements are identified with avionics engineers and

pilots.

[CH7] Yes The related modules with the hazard HZ1, HZ2 and HZ5 are iden-

tified.

[CH8] Yes The system consists of several modules. The modules are identified

according to high-cohesion low-coupling principle.

[CH9] NA There is no safe state for our case.

[CH10] Yes Safety-critical modules are identified. Redundancy techniques are

applied.

[CH11] Yes The system is designed as redundant in several levels. (two al-

timeter devices, two fuel amount devices, two display devices, two

avionics computers) Health monitoring for safety-critical modules

is applied.

[CH12] Yes Refer to section 5.2.2

[CH13] Yes The safety design is reviewed with avionics engineers and pilots.

Table 5.11: Checklist for the case study

98

Several architectural tactics are utilized for our case study. The first ar-

chitectural technique is redundancy. Several parts of the system are designed

as redundant in order to satisfy both safety requirements and high availability

needs. This technique is applied to avoid from failures and mitigate the failure

consequences. Health monitoring technique is applied for failure detection of the

safety-critical modules. Table 5.12 summarizes the applied tactics. Similar tactics

can be applied for other identified catastrophic hazards. (A. is the Avoidance,

D. is the Detection and M. is the Mitigation)

Tactic A. D. M.

If one of the altimeter devices produces wrong altimeter output this

fault is detected by Navigation Manager and a warning is generated

in order to warn the pilots about altitude data.

X X X

If one of the fuel amount devices produces wrong fuel amount out-

put this fault is detected by Platform Manager and a warning is

generated in order to warn the pilots about fuel amount data.

X X X

If one of the display devices crashes and cannot display desired

data, the other one continue to display it.

X X

If master avionics computer is not available, the slave avionics com-

puter becomes master and starts to operate.

X X

If a safety-critical module fails, this failure is detected by health

monitor. The module is re-started.

X X

Table 5.12: Architectural tactics for the case study

5.3 Application of the Safety Perspective on

Views and Beyond Approach

In this section, we show the application of the proposed safety perspective on

Views & Beyonds approach explained in section 2.1.2. Table 5.13 shows the

safety perspective affects each of the styles in Views & Beyonds approach.

99

Styles Applicability
Decomposition This style allows determining which modules and submodules

of the system should be considered as safety-critical.
Uses This style allows determining dependencies between safety crit-

ical modules and other modules.
Generalization This style can express the inheritance in safety critical modules.
Layered This style groups modules into layers. Therefore it allows de-

termining which layers include safety critical modules. Addi-
tionally, it shows which layers can be able to use these modules
and vice versa.

Aspects This allows determining the aspect modules which are related
with safety-critical modules.

Data Model The safety perspective has less impact on this style.
Call-Return This style allows determining the safety-critical components in

the system and interaction between these components and other
components.

Data Flow This style allows determining the flow of data on safety-critical
operations.

Event-based This style allows determining the interaction of safety-critical
components and other components through asynchronous
events or messages

Repository The safety perspective has less impact on this style.
Deployment This style allows determining the required hardware elements,

third-party software requirements and environmental elements
for safety-critical components.

Install This style allows determining the required software elements to
support production environments or specific permissions and
configuration elements for safety-critical elements.

Work
Assignment

This style allows determining the people, team or organizational
work units which are responsible for development of safety-
critical components.

Table 5.13: Applicability of the safety perspective on Views & Beyond approach

100

In order to illustrate the proposed safety perspective, we select decomposition,

uses, and layered styles from module style, data flow style from component &

connector style, and deployment style from allocation style. Table 5.14 presents

the application of the selected styles from Views & Beyond approach on the case

study used in the previous section.

Style Explanation

Decomposition Safety-critical and non-safety-critical modules are deter-

mined. (see Figure 5.9)

Uses The modules which are used by safety-critical modules are

presented. (see Figure 5.10)

Layered In each layer, safety-critical and non-safety critical modules

are shown. (see Figure 5.11)

Data Flow Safety-critical data and its flow is presented. (see Figure

5.6 and Figure 5.7)

Deployment Two avionics control computers, two altimeter devices, two

fuel amount devices, two graphics devices. (see Figure 5.3)

Table 5.14: Application of the selected styles on the case study

Figure 5.9: Decomposition style for our case study

101

We present the decomposition style of the case study in Figure 5.9. It shows

the non safety-critical modules and safety-critical modules tagged with SC stereo-

type. The decomposition sytle consists of three main modules, namely, Data,

Application and Presentation. Data module includes Fuel1 Manager, Fuel2 Man-

ager, Altitude1 Manager, Altitude2 Manager safety-critical modules and Radio

Manager non-safety-critical module. Application module includes Navigation

Manager, Platform Manager safety-critical modules and Communication Man-

ager non-safety-critical module. Presentation module includes Graphics1 Man-

ager and Graphics2 Manager safety-critical modules.

Figure 5.10: Uses style for our case study

Figure 5.10 shows the uses style for the case study. It presents the relation

between safety-critical and related modules. As seen from Figure 5.10, any of

the module in Presentation module uses the modules in Application module.

Navigation Manager uses Altitude1 Manager and Altitude2 Manager. Platform

Manager uses Fuel1 Manager and Fuel2 Manager. Communication Manager uses

Radio Manager.

Figure 5.11 presents the layered style of the case study. Our case study is

presented in the three layered architecture. The first layer includes the Data

modules. The second layer includes theApplication modules. Similarly, the third

102

layer includes the modules from Presentation module. According to our archi-

tecture design, the third layer is allowed to use second layer and the second layer

is allowed to use first layer.

Figure 5.11: Layered style for our case study

The data flow style shows the flow of safety-critical data. In previous section,

we present the data flow for altitude and fuel manager data in Figure 5.6 and

Figure 5.7 respectively.

The deployment style helps to determine required harware elements, third-

party software elements for safety-critical operations. In previous section, we

present deployment style in Figure 5.3.

103

Chapter 6

Architecture Framework for

Software Safety

Designing appropriate software architecture of a safety-critical system is impor-

tant to meet the requirements for the communication, coordination and control

of the safety-critical concerns. A common practice in the software architecture

design community is to model and document different architectural views for de-

scribing the architecture according to the stakeholders concerns.Having multiple

views helps to separate the concerns and as such support the modeling, under-

standing, communication and analysis of the software architecture for different

stakeholders.

For modeling the software architecture of safety-critical systems we can con-

sider the approaches of both the safety engineering domain and the software

architecture modeling domain. From the safety engineering perspective we can

observe that many useful models such as fault trees and failure modes and ef-

fect analysis have been identified. In addition several guidelines and patterns

have been proposed to support the architecture design of safety critical systems.

Unfortunately, the safety engineering domain does not provide explicit modeling

abstractions for modeling the architecture of safety-critical systems. On the other

hand existing software architecture frameworks tend to be general purpose and do

104

not directly focus on safety concerns in particular. However, if safety is an impor-

tant concern then it is important to provide explicit abstraction mechanisms at

the architecture design level to reason about to communicate and analyze the ar-

chitectural design decisions from an explicit safety perspective. In particular this

is crucial for safety-critical systems which have indeed demanding requirements.

In this chapter we propose an architecture framework for modeling the ar-

chitecture for software safety in order to address the safety concern explicitly

and assist the architects. Firstly, we present the metamodel for software safety.

The metamodel is developed after a through domain analysis. Next, we explain

the architecture framework based on this metamodel. The framework includes

three coherent set of viewpoints each of which addresses an important concern.

The framework is not mentioned as a replacement of existing general purpose

frameworks but rather needs to be considered complementary to these. Then, we

illustrate the application of the viewpoints for an industrial case on safety-critical

avionics control computer system explained in section 3.

6.1 Metamodel for Software Safety

In this section we provide a metamodel for software safety to represent the safety-

related concepts. The metamodel as shown in Figure 6.1 has been derived after

a thorough domain analysis to safety design concepts and considering existing

previous studies such as [59] [60] [61]. The metamodel consists of three parts. The

bottom part of the metamodel includes the concepts which are related to hazards

in the system. A Hazard describes the presence of a potential risk situation

that can result or contribute to mishap. A Hazard causes some Consequences.

Safety Requirements are derived from identified Hazards. We define FTA Node,

Operator and Fault to conduct Fault Tree Analysis which is a well-known method.

Fault Tree Analysis [62] aims to analyze a design for possible faults which lead

to hazard in the system using Boolean logic. FTA Nodes, Faults and Operators

are the elements of a Fault Tree. Faults are the leaf nodes of the Fault Tree.

Operator is used to conduct Boolean logic. Operator can be AND or OR. A

105

Hazard is caused by one or more FTA Nodes.

The middle part of the metamodel includes the concepts which are related

to applied safety tactics in the design. As explained in section 5.1.4, we have

identified the well-known safety tactics as fault avoidance, fault detection and

fault tolerance. Fault avoidance tactic aims to prevent faults from occurring in

the system. When a fault is occurred, fault is detected by applying fault detection

tactics. Fault tolerance is the ability of the system to continue properly when the

fault is occurred and maintain a safe operational condition. Therefore, applied

Safety Tactic can be Fault Avoidance Tactic, Fault Detection Tactic or Fault

Tolerance Tactic in order to deal with faults.

The top part of the metamodel includes the concepts which present elements in

the architecture design. These elements are Monitoring Element, Safety-Critical

Element and Non-Safety Critical Element where Architectural Element is super-

class of them. An Architectural Element can reads data from another Archi-

tectural Element, writes data to another Architectural Element, and commands

to another Architectural Element. Monitoring Element monitors one or more

Safety-Critical Elements by checking the status of them. If there is a problem in

a Safety-Critical Element it can react by stopping/starting/restarting/initializing

the related Safety-Critical Element. Safety-Critical Element presents the element

which includes safety-critical operations. One Safety-Critical Element can be el-

ement of another Safety-Critical Element. Safety-Critical Elements can report

occurred faults to other Safety-Critical Elements. A Safety-Critical Element has

States to describe its condition. Safe State is one type of the State. If a Fault is

detected which can lead to a Hazard and there is a Safe State which can prevent

from this Hazard, the Safety-Critical Element can switch its state to that Safe

State. Safety-Critical Elements shouldn’t include the elements which doesn’t have

safety-critical operations. Therefore, Non-Safety-Critical Element is defined to

represent the elements which don’t include safety-critical operations. One Non-

Safety-Critical Element can be element of another Non-Safety-Critical Element.

A Monitoring Element or Safety-Critical Element implements the Safety Tactics

in order to ensure the safety of the system. A Safety-Critical Element can imple-

ment one or more Safety Requirements in order to provide desired functionality.

106

Figure 6.1: Metamodel for safety

107

6.2 Viewpoint Definition for Software Safety

Based on the metamodel as discussed in the previous section we derive and explain

the viewpoints defined for software safety. We have identified three coherent

set of viewpoints that together form the safety architecture framework: Hazard

Viewpoint, Safety Tactics Viewpoint and Safety-Critical Viewpoint.

6.2.1 Hazard Viewpoint

Table 6.1 shows the Hazard Viewpoint. It aims to support the hazard identifica-

tion process and shows each hazard along with the fault trees which can cause

the hazard, the derived safety requirements and the possible consequences of the

hazard.

6.2.2 Safety Tactic Viewpoint

Table 6.2 presents the safety tactics viewpoint that models the tactics and their

rela-tions to cope with the identified hazards. In general we can distinguish

among fault avoidance, fault detection and fault tolerance tactics. In the meta-

model definition, we define avoids, detects and tolerates relationship from Safety

Tactic element to Fault. However, one Fault can be handled by different Safety

Tactics, we define an attribute handledFaults in Safety Tactic element instead

of presenting each handled faults as an element and constructing relationships

between Safety Tactics and Faults. This approach improves the readability of

the view and shows traceability between Faults and Safety Tactics.

108

Section Description

Overview This viewpoint describes the identified hazards, their possible

causes and consequences, derived safety requirements from these

hazards and possible faults in the system.

Concerns

•Which safety requirements are derived from which hazards?

•Which faults can cause which hazards?

•What are the possible consequences of the identified hazards?

Stakeholders Software Architect, Safety Engineer

Constraints

•One or more safety requirements can be derived from a hazard.

•A hazard can cause one or more consequences.

•A hazard can be caused by one or more FTA Nodes.

Elements

Relationships

Table 6.1: Hazard Viewpoint

109

Section Description

Overview This viewpoint describes the safety tactics implemented in the

system. Also it shows the faults handled by the safety tactics.

Concerns
•What are the appliedsafety tactics?

•Which faults are handled by which safety tactics?

Stakeholders Software Architect, Safety Engineer, Software Developer

Constraints A safety tactic can extend different safety tactics.

Elements

Relationships

Table 6.2: Safety tactic viewpoint

6.2.3 Safety-Critical Viewpoint

In Table 6.3 we explain the safety-critical viewpoint. In metamodel definition, we

define implements relationship from Monitoring Element and Safety-Critical El-

ement to Safety Tactic. One Safety Tactic can be implemented by different Mon-

itoring Elements or Safety-Critical Elements. Therefore, we define an attribute

implementedTactics in both Monitoring Element and Safety-Critical Element in-

stead of showing Safety Tactics as an element in this viewpoint. This modifica-

tion is also done for implements relationship between Safety-Critical Element and

Safety Requirement. This relation is shown as an attribute implementedSReqs in

Safety-Critical Element.

110

Section Description
Overview This viewpoint shows the safety-critical elements, monitoring el-

ements, non-safety-critical elements and relations between them.
It presents also the implemented safety tactics by related safety-
critical elements and monitoring elements.,Additionally it shows
the implemented safety requirements by related safety-critical ele-
ments.

Concerns

•What are the safety-critical elements and relations between them?
•What are the monitoring elements and relations between monitor-
ing and safety-critical elements?
•What are the implemented safety tactics and safety requirements
by safety-critical elements and monitoring elements?
•What are the non-safety-critical elements and relations between
them?

Stakeholders Software Architect, Safety Engineer, Software Developer

Constraints

•A safety-critical element can read data from one or more safety-
critical elements.
•A safety-critical element can write data to one or more safety-
critical elements.
•A safety-critical element can command one or more safety-critical
elements.
•A safety-critical element can report fault to one or more safety-
critical elements.
•A monitoring element can monitor one or more safety-critical
elements.
•A monitoring element can react (stop/start/init/restart) one or
more safety-critical elements.

Elements

Relationships

Table 6.3: Safety-critical viewpoint

111

6.3 Application of the Architecture Framework

on Case Study

In this section, we present the application of the framework approach to the case

study Avionics Control Computer System described in section 3. The following

subsections illustrate the application of defined viewpoints on the case study.

6.3.1 Hazard View

In section 5.2.1.1, we have conducted hazard identification (see Table 5.8) for our

case study. In order to illustrate the framework approach, we use HZ1 (Displaying

wrong altitude data), HZ2 (Displaying wrong fuel amount data) and HZ5 (Dis-

playing wrong radio frequency data). Table 6.4 shows the faults related to HZ1,

HZ2, and HZ5. The faults are numbered from F1 to F32. The Figure 6.2, Figure

6.3, and Figure 6.4 show the hazard views for HZ1, HZ2, and H5 respectively.

The hazard view answers the following questions for our case study.

• Which safety requirements are derived from which hazards?

• What are the possible consequences of the identified hazards?

• Which faults can cause which hazards?

112

Fault Description
[F1] Loss of altimeter device 1
[F2] Loss of communication with altimeter device 1
[F3] Loss of altimeter device 2
[F4] Loss of communication with altimeter device 2
[F5] Error in altimeter device 1
[F6] Error in communication with altimeter device 1
[F7] Error in altimeter device 2
[F8] Error in communication with altimeter device 2
[F9] Altimeter1 Manager fails
[F10] Altimeter2 Manager fails
[F11] Navigation Manager fails
[F12] Loss of fuel device 1
[F13] Loss of communication with fuel device 1
[F14] Loss of fuel device 2
[F15] Loss of communication with fuel device 2
[F16] Error in fuel device 1
[F17] Error in communication with fuel device 1
[F18] Error in fuel device 2
[F19] Error in communication with fuel device 2
[F20] Fuel1 Manager fails
[F21] Fuel2 Manager fails
[F22] Platform Manager fails
[F23] Loss of radio device
[F24] Loss of communication with radio device
[F25] Error in radio device
[F26] Error in communication with radio device
[F27] Radio Manager fails
[F28] Communication Manager fails
[F29] Error in display device 1
[F30] Error in display device 2
[F31] Graphics1 Manager fails
[F32] Graphics2 Manager fails

Table 6.4: Fault table for the case study

113

Figure 6.2: Hazard view for HZ1

For HZ1 we present the answers of these questions below:

• Which safety requirements are derived from which hazards?

The safety requirements S1-S5 are derived from HZ1 are displayed in Figure

6.2. These requirements are defined in Table 5.8.

• What are the possible consequences of the identified hazards?

As shown in Figure 6.2, aircraft crash is the possible consequence of the

HZ1.

• Which faults can cause which hazards?

The faults which can cause HZ1 are shown as the leaf nodes of a fault tree

generated by using Fault Tree Analysis which is a well-known method [62].

The faults F1-F11 and F29-F32 are related to HZ1. Their definitions are

given in Table 6.4. The names of the FTA Nodes are numerated from N1 to

N9. N1 and N2 indicate ”Loss of Altimeter1 ” and ”Loss of Altimeter2 ”. N3

and N4 represent ”Error in Altimeter1 ” and ”Error in Altimeter2 ”. Wrong

114

altimeter data can be displayed when one of the followings occur: when al-

timeter1 is lost and there is an error in altimeter2 (N5), when altimeter2

is lost and there is an error in altimeter1 (N6), when there is an error in

both altimeters (N7) and the difference between them is not greater than

the threshold, when there is an error in display device 1 and the Graph-

ics2 Manager fails (N8), when there is an error in display device 2 and the

Graphics1 Manager fails (N9), when the Navigation Manager fails.

Figure 6.3: Hazard view for HZ2

115

For HZ2 we show the answers of these questions below:

• Which safety requirements are derived from which hazards?

The safety requirements S6-S10 are derived from HZ2 are displayed in Fig-

ure 6.3. These requirements are defined in Table 5.8.

• What are the possible consequences of the identified hazards?

As shown in Figure 6.3, aircraft crash is the possible consequence of the

HZ2.

• Which faults can cause which hazards?

The faults which can cause HZ2 are shown as the leaf nodes of a fault

tree generated by using Fault Tree Analysis. The faults F12-F22 and F29-

F32 are related to HZ2. Their definitions are given in Table 6.4. The

names of the FTA Nodes are numerated from N10 to N18. N10 and N11

indicate ”Loss of Fuel Amount 1 ” and ”Loss of Fuel Amount 2 ”. N12 and

N13 represent ”Error in Fuel Amount 1 ” and ”Error in Fuel Amount 2 ”.

Wrong fuel amount data can be displayed when one of the followings occur:

when fuel amount 1 is lost and there is an error in fuel amount 2 (N14),

when fuel amount 2 is lost and there is an error in fuel amount 1(N15),

when there is an error in both fuel amount devices (N16) and the difference

between them is not greater than the threshold, when there is an error in

display device 1 and the Graphics2 Manager fails (N17), when there is an

error in display device 2 and the Graphics1 Manager fails (N18), when the

Platfom Manager fails.

For HZ5 we present the answers of these questions below:

• Which safety requirements are derived from which hazards?

The safety requirements S11 and S12 are derived from HZ5 are displayed

in Figure 6.4. These requirements are defined in Table 5.8.

• What are the possible consequences of the identified hazards?

As shown in Figure 6.4, communication error with ground station is the

possible consequence of the HZ5.

116

Figure 6.4: Hazard view for HZ5

• Which faults can cause which hazards?

The faults which can cause HZ5 are shown as the leaf nodes of a fault tree

generated by using Fault Tree Analysis. The faults F23-F32 are related to

HZ5. Their definitions are given in Table 6.4. Wrong radio frequency data

can be displayed when one of the followings occur: when radio frequency

is lost or there is an error in radio frequency device or there is an error

in display device 1 and the Graphics2 Manager fails or there is an error

in display device 2 or the Graphics1 Manager fails or the Communication

Manager fails.

6.3.2 Safety Tactic View

Safety tactics view shows the tactics implemented in the architecture along with

the handled faults. This view answers the question ”Which tactics are applied to

handle which faults?”. The Figure 6.5 shows the applied tactics to handle the

faults related to hazards HZ1, HZ2, and HZ5.

117

Figure 6.5: Safety tactic view for our case study

The tactics named as T1, T2, T3, T7, T8, T9, T13, and T14 are generated

from fault tolerance tactic. T1 is a redundancy tactic for altitude data. Altitude

data is received from two different altimeter devices. By applying the tactic T1,

the faults from F1 to F8 are handled. Similarly T7 is a redundancy tactic handles

the faults F12-F19 for fuel amount data. Fuel amount is received from two dif-

ferent fuel devices. T2 is a warning tactic for altitude data. An altitude warning

118

is generated when there is a difference between two altitude values received from

two different altimeters, or when altitude data is received from only one of the

altimeters, or when altitude data cannot be received from both altimeters (dif-

ferent warnings are generated to distinguish these cases). By applying the tactic

T2, the faults from F1 to F8 are handled. Similarly T8 is a warning tactic for

fuel amount data. A fuel amount warning is generated when there is a difference

between two fuel amount values received from two different fuel devices, or when

fuel amount data is received from only one of the fuel devices, or when fuel amount

data cannot be received from both fuel devices (different warnings are generated

to distinguish these cases). By applying the tactic T8, the faults F12-F19 are

handled. T3 is a recovery tactic for Navigation Manager. When navigation man-

ager fails, it is recovered. The tactic T3 is applied to handle faults F9, F10 and

F11. Similarly, the tactic T9 is a recovery tactic for Platform Manager. It is

appled to handle faults F20,F21,F22 by recovering the Platform Manager. T13

is a redundancy tactic for displaying the data. Altitude data and fuel amount

data are displayed on two different displays. The tactic T13 is applied to handle

faults F29 and F30. T14 is a recovery tactic for graphics managers. When one

of the graphics managers fails, it is recovered. The tactic T14 handles the faults

F31 and F32.

The tactics named as T4, T5, T6, T10, T11, T12, T15 are fault detection

tactics. T4 is a comparison tactic and it compares the altitude values received

from two different altimeter devices and detects if there is a difference. The

tactic T4 is applied to handle faults from F5 to F8. Similarly the tactic T10

is a comparison tactic which compares the fuel amount data received from two

different fuel devices and detects if there is a difference. This tactic is applied to

handle faults F16-F19. T5 is a comparison tactic and it compares the received

altitude value with its minimum and maximum values in order to detect out of

range altitude value. By applying the tactic T5, the faults from F5 to F8 are

handled. Similarly, the tactic T11 is a comparison tactic which compares the

received fuel amount value with its minimum and maximum values to detect out

of range fuel amount value. This tactic is applied to handle faults F16-F19.

T6 is a monitoring tactic which monitors the navigation managers failure.

119

The tactic T6 is applied to handle faults F9, F10 and F11. T12 is a monitoring

tactic monitors the platform manager’s failure. This tactic is applied to handle

the faults F20, F21, F22. T15 is a monitoring tactic which monitors the graphics

managers failures. The tactic T15 handles the faults F31 and F32.

6.3.3 Safety-Critical View

The safety-critical view for our case study is shown in Figure 6.6. The Figure 6.6

shows the related modules to HZ1, HZ2, and HZ5.

The Altitude1 Manager and Altitude2 Manager are the managers of the al-

timeter devices and the Graphics1 Manager and Graphics2 Manager are the man-

agers of the graphics devices. Navigation Manager reads the altitude data from

Altitude1 Manager and Altitude2 Manager. Graphics1 Manager and Graphics2

Manager read the altitude data from Navigation Manager. If a warning should

be generated Navigation Manager notifies the Graphics1 Manager and Graph-

ics2 Manager through commands relation. If a fault is occurred in Altimeter1

Manager and Altimeter2 Manager, they report the occurred fault to Navigation

Manager through reportsFault relation.

The Fuel1 Manager and Fuel2 Manager are the managers of the fuel de-

vices and. Platform Manager reads the fuel amount data from Fuel1 Manager

and Fuel2 Manager. Graphics1 Manager and Graphics2 Manager read the fuel

amount data from Platform Manager. If a warning should be generated Platform

Manager notifies the Graphics1 Manager and Graphics2 Manager through com-

mands relation. If a fault is occurred in Fuel1 Manager and Fuel2 Manager, they

report the occurred fault to Platform Manager through reportsFault relation.

Manager Monitor monitors Altimeter1 Manager, Altimeter2 Manager, Nav-

igation Manager, Fuel1 Manager, Fuel2 Manager, and Platform Manager. It

detects the failure when one of these managers fails and recovers from failures

by stopping/starting/initializing the failed modules. Similarly, Graphics Mon-

itor monitors the Graphics1 Manager and Graphics2 Manager. It detects the

120

failure when one of these managers fails and recovers from failures by stop-

ping/starting/initializing the failed modules.

Figure 6.6: Safety-critical view for our case study

As it can be observed from Figure 6.6, Navigation Manager and Platform

Manager cause single-point of failure which can also be inferred from the fault

tree shown in the hazard views in Figure 6.2 and Figure 6.3. So, another de-

sign alternative is developed to solve this problem. Since, changing this view

affects hazard and safety tactic views, we update these views for second design

alternative.

121

In the second design alternative;

• redundancy technique is also applied to Navigation Manager and Platform

Manager by defining two Navigation Managers and two Platform Managers

• Manager Monitor is removed and two new monitor called Navigation Mon-

itor and Platform Monitor are defined, Navigation Monitor controls only

Navigation Managers and Platform Monitor controls only Platform Man-

agers

• two new monitor called Altitude Monitor and Fuel Monitor is added to

control Altitude Managers and Fuel Managers

In order to update hazard views, firstly we update fault table given in Table

6.4. The fault F11 is changed as ”Navigation1 Manager fails”, the fault F22 is

changed as ”Platform1 Manager fails”. In addition to this, we define two new

faults F33 as ”Navigation2 Manager fails” and F34 ”Platform2 Manager fails”.

The updated fault table is given in Table. The updated hazard views are given

in Figure 6.7 for HZ1, Figure 6.8 for HZ2. Since the HZ5 is not affected by the

new design alternative, hazard view for HZ5 is not changed.

As shown in Figure 6.7 , we add FTA Node N19 to represent ”Navigation

Managers fail”. If both of the Navigation1 Manager and Navigation2 Manager

fails, wrong altitude data can be represented.

As shown in Figure 6.8, we add FTA Node N20 to represent ”Platform Man-

agers fail”. If both of the Platform1 Manager and Platform2 Manager fails,

wrong fuel amount data can be represented.

122

Figure 6.7: Hazard view for second design alternative - HZ1

Figure 6.8: Hazard view for second design alternative - HZ2

123

The Figure 6.9 shows the safety tactic view for second design alternative.

There are two new tactics implemented by Altitude Monitor, which are called as

HealthCheckForAltitude (T16) and RecoverAltitude (T17). Similarly, there are

two new tactics implemented by Fuel Monitor, which are called HealthCheckFor-

Fuel (T18) and Recover Fuel (T19).

The Figure 6.10 presents the safety-critical view for second design alternative.

By applying redundancy tactic for Navigation Manager and Platform Manager,

the single-point of failure problem is solved. This design increases the safety of

the system. However, addition of the new monitor and manager also increases

the relations (function calls) between the related modules and this impacts the

performance of the system.

124

Figure 6.9: Safety tactic view for second design alternative

125

F
ig

u
re

6.
10

:
S
af

et
y
-c

ri
ti

ca
l

v
ie

w
fo

r
se

co
n
d

d
es

ig
n

al
te

rn
at

iv
e

126

6.4 Tool

In this section we discuss the tool that we have developed in the Eclipse environ-

ment to model the defined viewpoints as views. We use EuGENia [63] and GMF

[64] tools which are packaged in Epsilon project [65]. GMF (Graphical Modeling

Framework) tools are used to define visual concrete syntax based on Ecore meta-

model. They also provide generative components to generate diagram editors in

Eclipse environment. Firstly, we define our metamodel as an Ecore metamodel.

We use specific annotations in order to define graphical notations of each element

in our metamodel by using GMF. We use this annotated Ecore metamodel as

the abstract syntax definition while defining the visual concrete syntax of the

corresponding viewpoints. EuGENia tool generates the needed models from this

annotated Ecore metamodel for GMF diagram editor generation. Lastly, the edi-

tor defined for three different viewpoints is exported as plug-in to Eclipse. Figure

6.11 shows a sample screenshot from the tool. The tool provides a user interface

with four different panes to construct views.

Figure 6.11: Snapshot of the tool for modeling three viewpoints

127

Chapter 7

Fault-Based Testing for Software

Safety

Software safety can be addressed at different levels in the software development

life cycle. Addressing safety concerns early on at the software architecture design

level is important to guide the subsequent life cycle activities to ensure that the

eventual software is reliable. Once the safety critical systems are designed it is

important to analyze these systems for fitness before implementation, installation

and operation. Hereby, it is important to ensure that the potential faults can be

identified and cost-effective solutions are provided to avoid or recover from the

failures. Since the safety-critical systems are complex systems, testing of these

systems is challenging and very hard to define proper test suites for these systems.

As explained in section 5.1.4 the software safety tactics are quite important

for ensuring the safety of the system. While constructing the test suites, the

safety tactic knowledge can be used to build strong test cases. Several fault-

based software testing approaches exist that aim to analyze the quality of the

test suites. Unfortunately, these approaches tend to be general purpose and they

doesn’t consider the applied the safety tactics.

In this section we adopt a fault-based testing approach for analyzing the

strength of defined test suites by using the safety tactic and fault knowledge.

128

To apply fault-based testing for analyzing the test suites, firstly, we first present

a metamodel and a domain specific language that models different safety views

and the relation to the code. Then, we explain the fault-based testing process.

Finally, the proposed approach is illustrated using an industrial case study.

7.1 DSL for Software Safety

In this section we present the metamodel and domain specific language developed

to express safety concerns in safety-critical systems.

7.1.1 Metamodel

In section 6.1, we have derived the metamodel after a thorough domain analysis to

express safety design concepts. To support fault-based testing we have enhanced

the earlier metamodel and added the Implementation Detail concept. The general

metamodel is shown in Figure 7.1.

Figure 7.1: Metamodel for safety DSL

Implementation Detail is defined to use in fault-based testing process for mu-

tant generation and test case run steps. As presented in Figure 7.1, Implemen-

tation Detail consists of Implementation Relations which can be Module-Class

129

Relation or Class-Test Case Relation. Module-Class Relation describes which

Architectural Elements defined in Safety-Critical View consists of which classes

in the program code. Class-Test Case Relation defines which classes in the pro-

gram code should be tested with which test cases. For the Safety View part of

the metamodel detailed information can be found in section 6.1.

7.1.2 DSL

Based on the safety metamodel, we provide a domain specific language (DSL) to

represent the concepts in safety domain. The grammar of defined DSL in EBNF

form is presented below.

SafetyDSL = {SafetyView} ImplementationDetail;

SafetyView = HazardView | SafetyTacticView | SafetyCriticalView;

HazardView = ’Hazard View’ STRING ’{ Elements {’ {HazardElement} ’}’
’Relations {’ {HazardRelation} ’}’ ’}’ ;

HazardElement = Hazard | SafetyRequirement | Consequence | Fault | FaultTree;

Hazard = ’hazard’ HazardID ’;’ ;

SafetyRequirement = ’safetyRequirement’ SReqID ’;’ [’{’{SafetyRequirement}’}’];
Consequence = ’consequence’ ConsequenceID ’;’ ;

Fault = ’fault’ FaultID ’;’ ;

FaultTree = ’faultTree’ FaultTreeID FaultTreeNode ’;’ ;

FaultTreeNode = FaultID | ANDNode | ORNode ;

ANDNode = FaultTreeNode ’AND’ FaultTreeNode ;

ORNode = FaultTreeNode ’OR’ FaultTreeNode

HazardRelation = DerivedFrom | Causes | CausedBy ;

DerivedFrom = SReqID {’,’ SReqID} ’derivedFrom’ HazardID ’;’ ;

Causes = HazardID ’causes’ ConsequenceID {’,’ ConsequenceID} ’;’ ;

CausedBy = HazardID ’causedBy’ FaultTreeID ’;’ ;

SafetyTacticView = ’SafetyTacticView’ STRING ’{’ {SafetyTactic} ’}’ ;

SafetyTactic = (’faultAvoidance’ | ’faultDetection’ | ’faultTolerance’) STacticID

’{’ ’type=’ STRING ’avoidedFaults=’ (FaultID) {’,’ FaultID} ’}’ ’;’ ;

SafetyCriticalView = ’Safety-CriticalView’ name=ID ’{’

130

’Elements {’{ArchitecturalElement} ’}’
’Relations {’{SafetyCriticalRelation} ’}’ ’}’ ;

ArchitecturalElement = SafetyCritical | NonSafetyCritical | Monitor ;

SafetyCritical = ’safety-critical’ SCModuleID ’{’
’criticalityLevel=’ (’A’ | ’B’ | ’C’ | ’D’) ’;’

’implementedSafetyRequirements=’ SReqID {’,’ SReqID} ’;’

[’implementedTactics=’ STacticID {’,’ STacticID} ’;’]

[’sub-elements=’{SCModuleID} {’,’ SCModuleID} ’;’]

[’hasState’ StateID {’,’ StateID}] ’}’ ’;’ ;

NonSafetyCritical = ’non-safety-critical’ NSCModuleID (’{’{NSCModuleID}’}’|’;’);
Monitor = ’monitor’ MonitorID

[’{’ ’implementedTactics=’ SCTacticID {’,’ SCTacticID} ’}’] ’;’ ;

State = (’state’ | ’safeState’) StateID ’;’ ;

SafetyCriticalRelation = ArchElementToArchElement

| MonitorToArchitecturalElement | ReportsFault ;

ArchitecuralElementID = (SCModuleID | NSCModuleID | MonitorID);

ArchElementToArchElement = ArchitecturalElementID

(’reads’ | ’writes’ | ’commands’)

ArchitecturalElementID {’,’ ArchitecturalElementID} ’;’ ;

MonitorToArchitecturalElement = MonitorID

(’stops’ | ’starts’ | ’inits’ | ’restarts’ | ’monitors’)

SCModuleID {’;’ SCModuleID} ’;’ ;

ReportsFault = SCModuleID ’reportsFault’ SCModuleID {’,’ SCModuleID} ’;’ ;

ImplementationDetail = ’ImplementationRelations {’
’Module-Class Relation {’ {ModuleClassRelation} ’};’
’Class-TestCase Relation{’ {ClassTestCaseRelation} ’};’ ’}’ ;

ModuleClassRelation = ArchitecturalElementID ’composesOf=’ ’{’ClassDef{’,’ClassDef}’}”;’;

ClassTestCaseRelation = ClassDef ’testWith=’

’{’ QualifiedName {’,’ QualifiedName} ’}’ ’;’ ;

ClassDef = QualifiedName ;

Qualified Name = STRING { ’.’ STRING } ; HazardID = STRING;

SReqID = STRING; ConsequenceID = STRING;

FaultID = STRING; FaultTreeID = STRING;

131

SCModuleID = STRING; NSCModuleID = STRING;

MonitorID = STRING; StateID = STRING;

7.2 Fault-Based Testing Approach

Figure 7.2 shows the process for our fault-based testing approach. In the follow-

ing, we explain each step in detail.

Figure 7.2: Process for proposed fault-based testing approach

Build Safety Model

The first step is constructing safety model using the safety grammar defined in

132

the previous section. The safety model can be defined using the tool which is ex-

plained in the next section. In order to build the safety model, hazard view, safety

tactic view, and safety-critical view should be defined using the safety DSL. Haz-

ard view describes the identified hazards, their possible causes and consequences,

derived safety requirements from these hazards and possible faults in the system.

Safety tactic view describes the implemented safety tactics and the faults handled

by these safety tactics. Safety-critical view describes the safety-critical elements,

monitoring elements, non-safety-critical elements, and relations between them.

It also presents the safety tactics implemented by related safety-critical elements

and monitoring elements. Additionally, it shows the implemented safety require-

ments by related safety-critical elements. In addition to these views, implemen-

tation details should be defined for the mutant generation and test case execution

steps.

Select Mutation Operators

After creating the safety model, mutation operators should be selected to generate

mutations. Mutant generation step is performed by using µJava [24] which is an

open source project for generating mutants for both method-level and class-level

mutations. In [25] and [26], the authors provide a set of mutation operators

and their explanations for class-level and method-level mutations. The proper

mutation operators can be selected by using the mentioned guidelines.

Generate Code for Mutant Generation

The next step is code generation from the defined safety model with using the

selected mutation operators. Code generation is performed using the code gener-

ator which is provided in the tool. For the code generation,

• fault information from hazard view model definition,

• tactic and handled faults information from safety-tactic view model defini-

tion,

• safety-critical module and implemented tactics from safety-critical view

133

model definition

• module, class, and test class information are extracted to determine the

module, its implementation classes and test classes

information are extracted from the defined safety model. For each tactic in the

system, a code is generated using the mentioned information in Java. It is a

skeleton code that includes the necessary code to generate mutants and run test

cases by calling related methods from µJava. Additionally, it involves a code part

to present results by generating report after test case run.

Generate Mutants

After the code generation step, mutants are generated using µJava. In order to

generate mutants corresponding selected mutant operators, the generated skele-

ton code is run with original program code. For each selected mutant operator,

related code is changed in the original program code by µJava and mutants are

generated.

Run Test Cases

After the mutant generation step, existing test cases are run on mutated program

codes to assess the quality of test cases. Test cases are run by executing the code

generated in skeleton code.

Generate Reports

The last step is report generation. Test case execution results are presented in

an excel file that includes the related faults, tactics, modules, class name, test

case name, mutation operator, and information which indicates the test case

fails/passes. Additionally, mutation score is calculated by using the information

of live mutants and killed mutants.

Results When we run the test suites on the original code and mutated code,

there could be 4 different cases for the results. The table 7.1 shows the cases.

134

Original Code Mutated Code Result

Pass Fail Expected

Pass Pass Shouldn’t happen

Fail Fail Possible

Fail Pass Rare

Table 7.1: Results for test cases

pass-fail case: If the original code is clean and it is implemented to exhibit

the expected safety tactic behavior, the test suite passes when it is executed on

the original code. Since the mutated code is generated by making some changes in

the original code, it includes some faults related to selected mutation operators.

Therefore, we expect that when we run the test suite on the mutated code, the

test suite should fail.

pass-pass case: As we explained in the pass-fail case, if the original code is

clean, when we execute the test suite it should pass on the original code and it

should fail on the mutated code. pass-pass case shouldn’t happen.

fail-fail case: If the original code doesn’t implemented to exhibit the ex-

pected safety tactic behavior, the test suite should fail, when we run it on the

original code. Since the mutated code includes some fault because of the muta-

tion, it is possible to fail on the mutated code.

fail-pass case: If the original code doesn’t implemented to exhibit the ex-

pected safety tactic behavior, the test suite should fail, when we run on the

original code. However, when we apply the mutation and generate the mutated

code from the original program, some faulty part of the original program could

be corrected on the mutated code and the test suite can deal with the faults.

Therefore, when we execute the test suite on the mutated code it can pass in rare

cases.

135

7.3 Tool

In this section, we discuss the tool that we have developed in the Eclipse envi-

ronment to define safety DSL and the tool to apply fault-based testing process.

We have define the grammar of safety DSL using Xtext [66] a language develop-

ment framework provided as an Eclipse plug-in, and the corresponding generator

creates the parser and runnable language artifacts. From these artifacts, the full-

featured Eclipse text editor is generated. Figure 7.3 shows the snapshot from

Eclipse text editor for our case study.

Figure 7.3: Tool for safety DSL

As mentioned before, for the mutant generation and test case execution steps

an existing open source project µJava implemented in Java is used. µJava pro-

vides the class-level and method-level operators for mutant generation. Addi-

tionally, it enables to execute predefined test cases on mutated program code. In

order to generate mutants, execute test cases and generate report from results of

execution of test cases a tool is implemented by taking advantage of Java library.

An example screenshot from implemented tool is shown in Figure 7.4.

136

Figure 7.4: Tool for fault-based testing

7.4 Application of Fault-Based Testing Ap-

proach on Case Study

In this section, we explain the application of fault-based testing approach and

present the results by using an industrial case study described in section 3. Firstly,

we give the information for implementation of the case study Avionics Control

Computer System. Then, we explain the application of each step of fault-based

testing approach presented in Figure 7.2.

137

7.4.1 Case Study

We apply the fault-based testing approach on the case study Avionics Control

Computer System explained in section 3. We implement the case study in Java

environment. The Figure 7.5 shows the UML class diagram of our case study. In

the following we provide the brief description of implemented classes for our case

study.

• common package includes:

– Altitude class which holds altitude data

– Fuel class which holds fuel amount data

– Radio class which holds radio frequency data

– Partition is a abstract class which is extended by Altitude1Mgr, Al-

titude2Mgr, NavigationManager, Fuel1Mgr, Fuel2Mgr, PlatformMgr,

RadioMgr, CommunicationMgr, and GraphicsMgr classes. This class

includes the methods to initialize, stop and run the mentioned manager

classes.

• protocol package includes:

– M1553Protocol is a abstract class which is extended by M1553ProtocolAltitude

and M1553ProtocolFuel classes.

– A429Protocol is a abstract class which is extended by A429ProtocolAltitude

and A429ProtocolFuel classes.

– M1553ProtocolAltitude class is defined for the altitude device which is

connected to MIL-STD-1553 channel used widely in avionics system

to receive data.

– M1553ProtocolFuel class is defined for the fuel device which is con-

nected to MIL-STD-1553 channel used widely in avionics system to

receive data.

– M1553ProtocolRadio class is defined for the radio device which is con-

nected to MIL-STD-1553 channel used widely in avionics system to

receive data.

138

– A429ProtocolAltitude class is defined for the altitude device which is

connected to ARINC-429 channel used widely in avionics system to

receive data.

– A429ProtocolFuel class is defined for the fuel device which is connected

to ARINC-429 channel used widely in avionics system to receive data.

• altitude device package includes:

– Altitude1Mgr is the device manager of altitude 1 device. This class uses

M1553ProtocolAltitude class to communicate with altitude 1 device.

– Altitude2Mgr is the device manager of altitude 2 device. This class uses

A429ProtocolAltitude class to communicate with altitude 2 device.

• navigation package includes:

NavigationMgr reads the altitude data from Altitude1Mgr and Alti-

tude2Mgr. It compares the altitudes, (1) if the difference between two

altitude values is within the defined boundaries, it produces an altitude

value, (2) if the difference between two altitude values is outside the de-

fined boundaries, it produces an altitude warning.

• fuel device package includes:

– Fuel1Mgr is the device manager of fuel 1 device. This class uses

M1553ProtocolFuel class to communicate with fuel 1 device.

– Fuel2Mgr is the device manager of fuel 2 device. This class uses

A429ProtocolFuel class to communicate with fuel 2 device.

• platform package includes:

PlatformMgr reads the fuel data from Fuel1Mgr and Fuel2Mgr. It com-

pares the two fuel data, (1) if the difference between two fuel values is

within the defined boundaries, it produces a fuel value, (2) if the difference

between two fuel values is outside the defined boundaries, it produces a fuel

warning.

139

F
ig

u
re

7.
5:

U
M

L
C

la
ss

d
ia

gr
am

fo
r

ou
r

ca
se

st
u
d
y

140

• radio device package includes:

RadioMgr is the device manager of radio frequency device. This class uses

M1553ProtocolRadio class to communicate with radio device.

• communication package includes:

CommunicationManager reads the radio frequency from RadioMgr and it

provides the radio frequency to GraphicsMgr.

• graphics package includes:

GraphicsMgr reads altitude data from two NavigationMgr objects. It first

checks whether there is an altitude warning. If there is no altitude warning,

then it displays the altitude data. Similarly, it reads fuel amount from two

PlatformMgr objects. It controls whether a fuel warning is produced. If

there is no fuel warning, then it displays the fuel amout data. It also reads

the radio frequency data from CommunicatonMgr object and it displays

the received data.

• monitor package includes:

– GraphicsMonitor monitors and recovers the GrahpicsMgr if it fails.

– Manager monitor monitors the Altitude1Mgr, Altitude2Mgr, Navi-

gationMgr, Fuel1Mgr, Fuel2Mgr, and PlatformMgr. If any of these

managers fails, the Manager monitor recovers it.

7.4.2 Application of Fault-Based Testing Approach

Build Safety Model

Firstly, we construct a safety model by using safety DSL explained in section

7.1.2. We define hazard view, safety tactic view, and safety-critical view for

the case study described in section 3. Additionally, we define the implementation

relations for the mutant generation and test case run steps. Figure 7.6 and Figure

7.7 present the concrete syntax of the hazard view for the case study. Figure 7.8

presents the concrete syntax of the safety tactic view for the case study. Figure

7.9 and Figure 7.10 show the concrete syntax of safety-critical view of the case

141

study. Figure 7.11 shows the implementation details given by using the safety

DSL.

Figure 7.6: Hazard view for our case study - Part 1

142

Figure 7.7: Hazard view for our case study - Part 2

143

Figure 7.8: Safety tactic view for our case study

144

Figure 7.9: Safety-critical view for our case study - Part 1

145

Figure 7.10: Safety-critical view for our case study - Part 2

Figure 7.11: Implementation details for our case study

146

Select Mutation Operators

We select the proper mutation operators according to the applied safety tac-

tic implementations. When deciding which operators to be selected, we use the

guidelines [25] and [26] provided by µJava. In these guidelines, the authors pro-

vide a set of mutation operators with their descriptions.

In the following, we present the selected mutation operators for each applied

safety tactic.

• AltitudeDataWarning tactic: This tactic generates an altitude warning

when there is a difference between two altitude values received from two

different altitude devices, when altitude data is received from only one of

the altimeters, or when altitude data cannot be received from both altime-

ters. Therefore, the implementation of this tactic includes comparison (&&

- And Operator and ||- OR Operator) and subtraction operations. In order

to generate mutants of these operators, we select COI, ROR, AORB, COR,

and LOI operators from [25] and [26]. COI (Conditional Operator Insertion)

inserts the unary conditional operators to the original code. Since the only

one unary operator is ”!” in Java, this mutation inserts the ”!” operator.

ROR (Relational Operator Replacement) replaces the relational operators

(<, >, <=, >=, ==, and !=) with other relational operators and the en-

tire predicate with true/false. AORB (Arithmetic Operator Replacement)

replaces the basic binary arithmetic operators (+, -, * , /, %) with other

binary arithmetic operators. COR (Conditional Operator Replacement) re-

places the binary conditional operators (&& , ||, & , |, ˆ) with other binary

conditional operators. LOI (Logical Operator Insertion) inserts the unary

logical operators (& , |, ˆ) to the original code.

• AltitudeDifferenceCheck tactic: This tactic compares the altitude values re-

ceived from two different altitude devices and detects if there is a difference.

Implementation of this tactic is similar to AltitudeDataWarning tactic. It

includes comparison (&& - And Operator and ||- OR Operator) and sub-

traction operations. Therefore, we select COI, ROR, AORB, COR, and

LOI operators.

147

• AltitudeRangeCheck tactic: This tactic compares the received altitude value

with its minimum and maximum values in order to detect the out of range

altitude value. Since it includes some comparison operations, we select COI,

LOI, and ROR.

• HealthCheckForGraphics tactic: This tactic is a monitoring tactic that mon-

itors the graphics managers’ failures. Implementation of this tactic includes

some comparison operations. We select COI and ROR operators for muta-

tion. When implementing this tactic, one of the important issue is setting

the Graphics Managers correctly. In order to analyze this issue, we select

PRV, JTI, and JTD operators. PRV(Reference assignment with other com-

patible type) changes operands of a reference assignment to be assigned to

the objects of subclasses. JTI (Java This keyword Insertion) inserts the key-

word this. JTD (Java This keyword Deletion) deletes the uses of keyword

this.

• HealthCheckForPlatform tactic: This tactic is a monitoring tactic which

monitors the platform managers’ failures. Implementation of this tactic

similar to HealthCheckForGraphics tactic. Therefore, we select COI, ROR,

PRV, JTI, and JTD operators as mutation operators.

• HealthCheckForNavigation tactic: This tactic is a monitoring tactic which

monitors the navigation managers’ failures. Implementation of this tac-

tic similar to HealthCheckForGraphics tactic and HealthCheckForPlatform

tactic. Therefore, we select COI, ROR, PRV, JTI, and JTD operators as

mutation operators.

• RecoverGraphics tactic: This tactic is a recovery tactic for graph-

ics manager. When the graphics manager fails, it recovers by stop-

ping/initializing/restarting the manager. Since the managers are extended

from Partition, calling of correct managers’ recovering operations is impor-

tant. In order to analyze this, we select PCI mutation operation. PCI (Type

cast operator insertion) changes the original type of an object reference to

the parent or child of the original declared type.

148

• RecoverNavigation tactic: This tactic is recovery tactic for navigation man-

ager. When the navigation manager fails, it recovers the manager. Since

the implementation of this tactic is similar to RecoverGraphics tactic, we

select PCI operator for mutation.

• RecoverPlatform tactic: This tactic is a recovery tactic for platform man-

ager. When the platform manager fails, it recovers the manager. Since

the implementation of this tactic is similar to RecoverGraphics tactic and

RecoverNavigation tactic, we select PCI operator for mutation.

• Redundant Altitude, Redundant Fuel, Redundant Display tactics : These

tactics are the redundancy tactics. In the implementation, there should

be two altitude managers, two fuel managers, and two graphics managers.

As shown in implementation details, we define two altitude managers, two

fuel managers, and two graphics managers. Hence, there is no mutation

generation for these tactics.

Generate Code for Mutant Generation

The next step is code generation to generate mutants and run test cases. The code

is generated by the tool developed within Xtext framework. The skeleton code is

generated using the constructed safety model and the selected mutant operators

information. The code includes the necessary Java code for mutant generation

and execution of test cases. Since we aim to analyze the applied safety tactics,

the code is generated for each safety tactic.

The sample code part is shown in Figure 7.12. This code includes the mu-

tant generation code for the AltitudeRangeCheck safety tactic for the module

Altitude1Manager.

149

Figure 7.12: Sample generated code for mutant generation

As shown in Figure 7.12, the mutation operators are provided with two string

list which are class ops and traditional ops. class ops is the list for class-level

mutation operators, while traditional ops is the list for method-level mutation

operators. The implementation classes are provided as a string list with file list.

These lists are given as parameters to generateMutants method in order to gen-

erate mutants.

Figure 7.13: Sample generated code for executing test cases

The Figure 7.13 shows the example code part to execute test cases and gener-

ate report. The example shows the generated code for for the AltitudeRangeCheck

safety tactic for the module Altitude1Manager. As shown in the Figure 7.13, the

150

class name and its test case class(es) are given as parameter to runTestCases

method. runTestCases method runs the test cases and returns the test results.

Test results are given as a parameter to generateExcelReport for generating the

report.

Generate Mutants

The generated code is used to generate mutants. An example code is presented

in Figure 7.12. We generate the mutants for our case study by executing the

generated code. In Table 7.2, we present the number of generated mutants for

each safety tactic and related module pair.

Safety Tactic Module # of mutants

AltitudeDataWarning Graphics1Manager 10

AltitudeDataWarning Graphics2Manager 10

AltitudeDataWarning NavigationManager 60

AltitudeDifferenceCheck NavigationManager 60

AltitudeRangeCheck Altitude1Manager 28

AltitudeRangeCheck Altitude2Manager 28

FuelDataWarning Graphics1Manager 10

FuelDataWarning Graphics2Manager 10

FuelDataWarning PlatformManager 24

FuelDifferenceCheck PlatformManager 24

FuelRangeCheck Fuel1Manager 28

FuelRangeCheck Fuel2Manager 28

HealthCheckForGraphics GraphicsMonitor 10

HealthCheckForNavigation ManagerMonitor 2

HealthCheckForPlatform ManagerMonitor 2

RecoverGraphics GraphicsMonitor 21

RecoverNavigation ManagerMonitor 21

RecoverPlatform ManagerMonitor 21

Table 7.2: Mutant generation for safety tactics

151

Run the Test Cases

The next step is executing the test cases on generated mutant codes. Test cases

are implemented by considering the behavior of the applied safety tactics. Test

case execution is performed by running the generated code. An example code to

run test cases is shown in Figure 7.13.

Generate Reports

The last step is report generation. After the test cases are generated, the test

results are provided to related code part explained above. The report includes the

name of the classes under test, name of the test case classes, mutation operators,

name of the test cases, and test results (fail/pass).

Results

As explained before, there are four different cases for the results: pass-fail, pass-

pass, fail-pass, and fail-fail. For the sake of simplicity, we present the results for

the tactics AltitudeDataWarning and FuelRangeCheck.

The table 7.3 shows the example results for the AltitudeDataWarning tactic

for the mutation operator ROR (Relational Operator Replacement). We have

implemented this warning according to its specification. Therefore, the test cases

pass on the original code.

The table 7.4 shows the example results for the FuelRangeCheck tactic for

the mutation operator COI (Conditional Operator Insertion). This tactic isn’t

implemented. Hence, the system doesn’t exhibit the expected behaviour of Fu-

elRangeCheck tactic. As shown in the table, some of the test cases fail on the

original code, since the system doesn’t include the implementation of the Fuel-

RangeCheck tactic.

152

Test Case
Original
Code

Mutation Operator
Mutated
Code

errorInDevice1Test pass ROR pass
errorInDevice2Test pass ROR pass
errorInDevice1And2Test pass ROR pass
lossOfDevice1Test pass ROR pass
lossOfDevice2Test pass ROR pass
lossOfDevice1And2Test pass ROR pass
displayAltitudeTest1 pass ROR fail
displayAltitudeTest2 pass ROR fail
displayAltitudeTest3 pass ROR pass
displayAltitudeTest4 pass ROR fail
displayAltitudeTest5 pass ROR fail
displayAltitudeTest6 pass ROR pass
displayAltitudeTest7 pass ROR fail

Table 7.3: Results for AltitudeDifferenceCheck-GraphicsMgr

Test Case
Original
Code

Mutation Operator
Mutated
Code

errorInDeviceTest1 fail COI fail
errorInDeviceTest2 fail COI pass
lossOfDeviceTest fail COI pass
fuelTest1 pass COI fail
fuelTest2 pass COI fail
fuelTest3 pass COI fail
zeroizeTest pass COI fail

Table 7.4: Results for AltitudeDifferenceCheck-Fuel

153

Chapter 8

Related Work

Safety concern has not been explicitly addressed using a dedicated architecture

perspective before. However, there is plenty of work related to safety engineering.

In [67] and [54] several architectural patterns are proposed to support soft-

ware safety design. Gawand et al. [54] propose a framework for specification of

architectural patterns to support safety and fault tolerance. They provide four

types of patterns. One of the patterns is Control-Monitor pattern. They aim

to improve fault detection by using redundancy by using this pattern. Another

pattern is Triple Modular Redundancy pattern which is used to enhance safety

of the system where there is no fail-safe state. The other pattern is Reflective

State pattern which separates the application into two parts as base-level and

meta-level to separate control and safety aspect from the application logic. The

last pattern is Fault Tolerance Redundancy pattern which improves the fault tol-

erance of the system while implementing the redundancy for safety. Armoush et

al. [67] propose Recovery Block with Backup Voting pattern which improves the

fault tolerance of the system.

There are some techniques for analyzing the design from safety aspect. One

of the techniques is Fault Tree Analysis (FTA) which is proposed by Leveson

and Harvey [62]. FTA aims to analyze a design for possible faults which lead to

failures in the system. FTA is conducted by using logic gates. Another technique

154

is Failure Modes and Effects Analysis (FMEA) [68]. FMEA aims to identify po-

tential design weakness in system. It involves reviewing as many components,

assemblies, and subsystems as possible to identify failure modes and causes and

effects of such failures. The other technique is Failure Modes, Effects, and Criti-

cality Analysis (FMCEA) [68] which is an extension of FMEA. FMCEA includes

failure criticality assessment, while FMEA doesn’t. Criticality is assessed by both

considering the probability of failure modes and severity of their consequences.

There are several standards on software safety that provide a guideline for

software safety plan and design. RTCA DO-178C [28], MIL-STD-882D [49], IEC

61508 [69], NASA-STD-8719.13C [70] are some examples of the safety standards.

These standards basically define the required levels of safety but no do directly

consider the explicit design of safety-critical systems.

In order to represent the architecture of a software system formally, Architec-

ture Description Languages (ADL) are proposed. There are some ADLs which

supports the safety design and analysis. One of the ADLs is EAST-ADL2 [71]

which supports for safety analysis of safety-critical systems in automotive soft-

ware development. Another ADL is SCS-SADL [72] which helps to design of

hardware-in-loop simulation of safety-critical systems.

Architecture Evaluation process aims to analyze the software architecture de-

sign with respect to the stakeholder concerns. To compare the architectural

evaluation approaches a number of frameworks have been proposed. The Soft-

ware Architecture Review and Assessment (SARA) report, for example, provides

a conceptual framework for conducting architectural reviews [3]. The evalua-

tion frameworks usually compare the methods based on the criteria of context

and goals of the method, required content for applying the method, the pro-

cess adopted in the method, and the validation of the method. Although these

approaches are useful they tend to be general purpose. The safety perspective

that we have provided is dedicated for analyzing and design for safety concern in

particular.

In [73] and [74] the authors consider the explicit modeling of viewpoint for

155

quality concerns. Hereby, each quality concern such as adaptability and recov-

erability require a different decomposition of the architecture. To define the

required decompositions for the quality concerns architectural elements and re-

lations are defined accordingly. The study [73] on local recoverability has shown

that this approach is also largely applicable. We consider this work complemen-

tary to the architectural perspectives approach. It seems that both alternative

approaches seem to have merits.

Various studies [59] [60] [61] propose a metamodel for safety. Douglas [59]

provides a UML profiling for safety analysis including profiling for FTA (Fault

Tree Analysis) diagrams. Taguchi [60] provides a metamodel which includes safety

concepts expressed in ISO/FDIS 26262 standard [75] from scratch. In [61], they

define a metamodel includes safety concepts extracted from the airworthiness

standard, RTCA DO-178B [76], by extending UML.

In the literature, some studies propose fault-based testing approach to test

safety-critical systems. In [77], they define a test case generation approach based

on the model mutation for the safety requirements in the system. Firstly, they

define the fault model by describing mutation operators and UML models of the

system. They describe an approach for transforming UML model using the fault

model to OOAS(Object-Oriented Action Systems). After then, they generate

mutations of OOAS models and use these models for test case generation process.

The another study [78] applies mutation testing on nuclear reactor. In this work,

they propose a test case generation approach to test nuclear reactor. Then, they

apply the mutation testing by mutating the original source code. With this

approach, they aim to calculate the degree of test adequacy of the generated test

cases.

156

Chapter 9

Conclusion

An increasing number of systems tend to be safety-critical. Designing these sys-

tems by explicitly considering safety is important to mitigate the risks that could

to dramatic failures. We have observed that designing a safety-critical system

requires to show design decisions related to safety concerns explicitly at the archi-

tectural level. Existing viewpoints approaches and perspective approaches tend

to be general purpose and deliberately do not directly focus on the architectural

modeling of software safety concerns. However, in particular for safety-critical

systems it is crucial to represent these concerns early on at the architecture de-

sign level. For this purpose, we have provided a safety perspective that can be

used for supporting the architectural design of safety-critical systems. The need

for this was derived from a real industrial project in which we had to design a

safety critical system. The safety perspective appeared to be really practical, es-

pecially since it forced the designers to think about the design decisions regarding

the safety. The safety perspective was not only useful as a guidance tool for assist-

ing the safety engineer and the architect, but it also helped in the early analysis

of the architecture. In our future work we aim to apply the safety perspective

for several other domains. Another issue that we would like to consider is the

trade-off analysis using the safety perspective with the perspectives as defined for

other quality concerns.

157

Although safety perspective provides tactics and guidelines for handling the

safety concern at the architectural level, it doesn’t provide complete architec-

tural modeling of software safety concerns. In order to solve this problem, we

have introduced the architecture framework for software safety to address the

safety concerns explicitly. The framework includes three coherent set of view-

points each of which addresses an important concern. The application of the

viewpoints is illustrated for an industrial case on safety-critical avionics control

computer system. Using the viewpoints we could (1) analyze the architecture in

the early phases of the development life cycle, (2) analyze the design alternatives,

(3) increase the communication between safety engineers and software developers

and (4) communicate the design decisions related with safety. We have shown

how the architecture framework can be used for a real the design of a safety

critical system in the avionics domain. As a future work, we will define metrics

and develop tools to analyze several design alternatives for safety-critical systems

based on the proposed viewpoints.

Once the safety critical systems are designed it is important to analyze these

for fitness before implementation, installation and operation. For this purpose, we

have provided an approach for fault-based testing for analyzing the effectiveness

of safety tactics. The metamodel and the realized DSL formed an important

input to model the faults, the tactics and to support fault-based testing. We

have applied the approach and the tool for an industrial case study. Since this

approach focuses on the safety tactics and fault knowledge while designing the

test suites, it enables to testers to define more strong test suites for testing of the

safety-critical systems. Additionally, it provides the analysis of quality of test

cases by using the safety tactics. As a future work, we aim to model the safety

tactics in detailed way. In our approach, we determine the mutation operators

manually. By using the constructed safety DSL and safety tactic model, the

selection of mutation operators can be automatized. Also the test oracle (test

suites, test data, test scripts etc.) can be generated automatically by using these

models.

158

Bibliography

[1] N. G. Leveson, Safeware: System Safety and Computers. New York, NY,

USA: ACM, 1995.

[2] [NASATechnicalStandard], NASA Software Safety Guidebook, March 2004.

(NASA-GB-8719.13).

[3] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, and R. Little,

Documenting Software Architectures: Views and Beyond. Pearson Educa-

tion, 2002.

[4] [ISO/IEC42010:2007], Recommended practice for architectural description

of software-intensive systems (ISO/IEC 42010)., July 2005. (identical to

ANSI/IEEE Std14712000).

[5] P. Kruchten, “The 4+1 view model of architecture,” IEEE Softw., vol. 12,

pp. 42–50, Nov. 1995.

[6] C. Hofmeister, R. Nord, and D. Soni, Applied Software Architecture. Boston,

MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2000.

[7] N. Rozanski and E. Woods, Software Systems Architecture: Working With

Stakeholders Using Viewpoints and Perspectives. Addison-Wesley Profes-

sional, 2005.

[8] P.-A. Muller, F. Fondement, and B. Baudry, “Modeling modeling,” in Model

Driven Engineering Languages and Systems (A. Schrr and B. Selic, eds.),

vol. 5795 of Lecture Notes in Computer Science, pp. 2–16, Springer Berlin

Heidelberg, 2009.

159

[9] T. Kuehne, “Matters of (meta-) modeling,” Software and System Modeling,

vol. 5, no. 4, pp. 369–385, 2006.

[10] A. Brown, “Model driven architecture: principles and practice,” SoSyM,

vol. 3, no. 3, pp. 314–327, 2004.

[11] “ OMG (Object Management Group) Model Driven Architecture.” http:

//www.omg.org/mda/.

[12] S. J. Mellor, S. Kendall, A. Uhl, and D. Weise, MDA Distilled. Redwood

City, CA, USA: Addison Wesley Longman Publishing Co., Inc., 2004.

[13] A. Kleppe, Software Language Engineering: Creating Domain-Specific Lan-

guages Using Metamodels. Addison-Wesley Professional, 1 ed., 2008.

[14] T. Stahl, M. Voelter, and K. Czarnecki, Model-Driven Software Development:

Technology, Engineering, Management. John Wiley & Sons, 2006.

[15] “Eclipse - Model-to-Model Transformation (MMT).” http://www.eclipse.

org/mmt/.

[16] “ATL - Transformation Language.” http://www.eclipse.org/atl/.

[17] “Eclipse - OperationalQVT.” http://www.eclipse.org/mmt/?project=

qvto.

[18] “Eclipse - Declarative QVT.” http://www.eclipse.org/mmt/?project=

qvtd.

[19] “Eclipse - Model-to-Text Transformation.” http://www.eclipse.org/

modeling/m2t/.

[20] “Eclipse - JET.” http://www.eclipse.org/modeling/m2t/.

[21] “Eclipse - Accelo.” http://wiki.eclipse.org/accelo.

[22] “Eclipse - Xpand.” http://wiki.eclipse.org/Xpand.

[23] M. Young and M. Pezze, Software Testing and Analysis: Process, Principles

and Techniques. John Wiley & Sons, 2005.

160

[24] “µJava - Mutation System for Java Programs.” http://cs.gmu.edu/

~offutt/mujava/.

[25] Y. S. Ma, Y. R. Kwon, and J. Offutt, “Inter-class mutation operators for

java,” in Proceedings of the 13th International Symposium on Software Reli-

ability Engineering, ISSRE ’02, (Washington, DC, USA), pp. 352–363, IEEE

Computer Society, 2002.

[26] J. Offutt, Y. S. Ma, and Y. R. Kwon, “The class-level mutants of mujava,” in

Proceedings of the 2006 International Workshop on Automation of Software

Test, AST ’06, (New York, NY, USA), pp. 78–84, ACM, 2006.

[27] P. G. Neumann, “Illustrative risks to the public in the use of computer sys-

tems and related technology,” SIGSOFT Softw. Eng. Notes, vol. 17, pp. 23–

32, Jan. 1992.

[28] [RTCADO-178CStandard], Software Considerations in Airbone Systems and

Equipment Certification, May 2012.

[29] D. Atkins, D. Best, P. A. Briss, M. Eccles, Y. Falck-Ytter, S. Flottorp,

G. H. Guyatt, R. T. Harbour, M. C. Haugh, D. Henry, S. Hill, R. Jaeschke,

G. Leng, A. Liberati, N. Magrini, J. Mason, P. Middleton, J. Mrukowicz,

D. O’Connell, A. D. Oxman, B. Phillips, H. J. Schünemann, T. T.-T. Edejer,

H. Varonen, G. E. Vist, J. W. Williams, and S. Zaza, “Grading quality of

evidence and strength of recommendations.,” BMJ (Clinical research ed.),

vol. 328, p. 1490, 2004.

[30] P. Bourque and R. Dupuis, “Guide to the software engineering body of

knowledge 2004 version,” Guide to the Software Engineering Body of Knowl-

edge, 2004. SWEBOK, pp. –, 2004.

[31] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based

testing approaches,” Software Testing Verification and Reliability, vol. 22,

pp. 297–312, 2012.

[32] B. Kitchenham and S. Charters, “Guidelines for performing Systematic Lit-

erature Reviews in Software Engineering,” Engineering, vol. 2, p. 1051, 2007.

161

[33] B. Kitchenham, O. Pearlbrereton, D. Budgen, M. Turner, J. Bailey, and

S. Linkman, “Systematic literature reviews in software engineering A sys-

tematic literature review,” Information and Software Technology, vol. 51,

pp. 7–15, 2009.

[34] H. Zhang, M. A. Babar, and P. Tell, “Identifying relevant studies in software

engineering,” Information and Software Technology, vol. 53, pp. 625–637,

2011.

[35] J. E. Hopcroft, R. Motwani, and J. D. Ullman, “Introduction to automata

theory, languages, and computation, 2nd edition,” 2001.

[36] M. Li and R. Kumar, “Stateflow to extended finite automata translation,” in

Proceedings - International Computer Software and Applications Conference,

pp. 1–6, 2011.

[37] “NuSVM Language.” http://nusmv.fbk.eu/.

[38] C. Petri, Kommunikation mit Automaten. PhD thesis, Institut für instru-

mentelle Mathematik, Bonn, 1962.

[39] A. Hessel and P. Pettersson, “COVERA Real-time Test Case Generation

Tool,” in 19th IFIP International Conference on Testing of Communicating

Systems and 7th International Workshop on Formal Approaches to Testing

of Software, 2007.

[40] “ATGT - Tool.” http://cs.unibg.it/gargatini/projects/atgt/.

[41] S. Prowell, “JUMBL: a tool for model-based statistical testing,” 36th Annual

Hawaii International Conference on System Sciences, 2003. Proceedings of

the, 2003.

[42] F. Thomas, J. Delatour, F. Terrier, and S. Gérard, “Toward a framework

for explicit platform-based transformations,” in Proceedings - 11th IEEE

Symposium on Object/Component/Service-Oriented Real-Time Distributed

Computing, ISORC 2008, pp. 211–218, 2008.

[43] “SAL Framework.” http://sal.csl.sri.com/.

162

[44] “Spin - Formal Verification.” http://spinroot.com/spin/whatispin.htm.

[45] B. Ning and C. A. Brebbia, Computers in Railways XII: Computer System

Design and Operation in Railways and Other Transit Systems. WIT Press,

1st ed., 2010.

[46] J. D. Lawrence, “Software safety hazard analysis,” 1995.

[47] [ISO/IEC25010:2011], Systems and software Quality Requirements and Eval-

uation (SQuaRE), Systems and software engineering, 2011.

[48] L. Gowen, J. Collofello, and F. Calliss, “Preliminary hazard analysis for

safety-critical software systems,” in Computers and Communications, 1992.

Conference Proceedings., Eleventh Annual International Phoenix Conference

on, pp. 501–508, April 1992.

[49] [MIL-STD-882D], Standard Practice for System Safety, Department of De-

fense, 2000.

[50] A. Joshi, M. P. Heimdahl, S. P. Miller, and M. W. Whalen, “Model-based

safety analysis,” 2006.

[51] A. Pataricza, I. Majzik, G. Huszerl, and G. Varnai, UML-based design and

formal analysis of a safety-critical railway control software module, May

2003.

[52] G. Yu and Z. wei Xu, “Model-based safety test automation of safety-critical

software,” in Computational Intelligence and Software Engineering (CiSE),

2010 International Conference on, pp. 1–3, Dec 2010.

[53] M. Wasilewski, W. Hasselbring, and D. Nowotka, “Defining requirements

on domain-specific languages in model-driven software engineering of safety-

critical systems,” in Software Engineering 2013 Workshopband (S. Wagner

and H. Lichter, eds.), Lecture Notes in Informatics, (Bonn), pp. 467–482,

Köllen Druck+Verlag GmbH, 2013.

[54] H. Gawand, R. Mundada, and S. P, Design Patterns to Implement Safety

and Fault Tolerance, March 2011.

163

[55] S. P. Kumar, P. S. Ramaiah, and V. Khanaa, “Architectural patterns to

design software safety based safety-critical systems,” in Proceedings of the

2011 International Conference on Communication, Computing & Secu-

rity, ICCCS ’11, (New York, NY, USA), pp. 620–623, ACM, 2011.

[56] W. Wu and T. Kelly, “Safety tactics for software architecture design,” in

Computer Software and Applications Conference, 2004. COMPSAC 2004.

Proceedings of the 28th Annual International, pp. 368–375 vol.1, Sept 2004.

[57] L. Chen and A. Avizienis, “N-version programminc: A fault-tolerance ap-

proach to rellablllty of software operatlon,” in Fault-Tolerant Computing,

1995, Highlights from Twenty-Five Years., Twenty-Fifth International Sym-

posium on, pp. 113–, Jun 1995.

[58] D. Sojer, C. Buckl, and A. Knoll, “Deriving fault-detection mechanisms from

safety requirements,” Computer Science - Research and Development, pp. 1–

14, 2011.

[59] B. P. Douglass, Analyze System Safety using UML within the IBM Rational

Rhapsody Environment, 2009.

[60] K. Taguchi, Metamodeling Approach to Safety Standard for Consumer De-

vices, 2011.

[61] G. Zoughbi, L. Briand, and Y. Labiche, “Modeling safety and airworthiness

(rtca do-178b) information: Conceptual model and uml profile,” Softw. Syst.

Model., vol. 10, pp. 337–367, July 2011.

[62] N. G. Leveson and P. R. Harvey, “Analyzing software safety,” IEEE Trans.

Softw. Eng., vol. 9, pp. 569–579, Sept. 1983.

[63] “EuGeNia.” http://www.eclipse.org/epsilon/doc/eugenia/.

[64] “Eclipse Graphical Modeling Framework (GMF).” http://www.eclipse.

org/modeling/gmp/.

[65] “ Eclipse Epsilon Project.” http://www.eclipse.org/epsilon.

164

[66] “Eclipse - Xtext Language Development Framework.” http://www.

eclipse.org/Xtext/.

[67] A. Armoush, F. Salewski, and S. Kowalewski, “Recovery block with backup

voting: A new pattern with extended representation for safety critical em-

bedded systems,” in Information Technology, 2008. ICIT ’08. International

Conference on, pp. 232–237, Dec 2008.

[68] M. Rausand and A. Høyland, System Reliability Theory: Models, Statistical

Methods and Applications, Second Edition. Wiley-Interscience, 2003.

[69] [IS/IEC61508], Functional Safety of Electrical /Electronic/ Programmable

Electronic Safety-Related Systems. International Electrotechnical Commis-

sion, 1998.

[70] [NASA-STD-8719.13C], NASA Software Safety Standard, July 2013.

[71] P. Cuenot, P. Frey, R. Johansson, H. Lönn, Y. Papadopoulos, M.-O. Reiser,

A. Sandberg, D. Servat, R. T. Kolagari, M. Törngren, and M. Weber, “The

east-adl architecture description language for automotive embedded soft-

ware,” in Proceedings of the 2007 International Dagstuhl Conference on

Model-based Engineering of Embedded Real-time Systems, MBEERTS’07,

(Berlin, Heidelberg), pp. 297–307, Springer-Verlag, 2010.

[72] Y. Zhu, Z. Xu, and M. Mei, “A simulation architecture description language

for hardware-in-loop simulation of safety critical systems,” Journal of The-

oretical and Applied Information Technology, vol. 46, December 2012.

[73] H. Sözer, B. Tekinerdoan, and M. Akşit, “Optimizing decomposition of soft-

ware architecture for local recovery,” Software Quality Journal, vol. 21, no. 2,

pp. 203–240, 2013.

[74] B. Tekinerdogan and H. Sözer, “Defining architectural viewpoints for quality

concerns,” in Software Architecture (I. Crnkovic, V. Gruhn, and M. Book,

eds.), vol. 6903 of Lecture Notes in Computer Science, pp. 26–34, Springer

Berlin Heidelberg, 2011.

[75] [ISO26262-1:2011], Functional Safety of Road Vehicles, 2011.

165

[76] [RTCADO-178BStandard], Software Considerations in Airborne Systems

and Equipment Certification, 1992.

[77] W. Herzner, R. Schlick, H. Brandl, and J. Wiessalla, “Towards fault-based

generation of test cases for dependable embedded software.”

[78] P. A. Babu, C. S. Kumar, N. Murali, and T. Jayakumar, “An intuitive

approach to determine test adequacy in safety-critical software,” SIGSOFT

Softw. Eng. Notes, vol. 37, pp. 1–10, Sept. 2012.

166

Appendix A

Search String

•IEEE Explore Search String

((”Document Title”:”model based testing” OR ”Document Title”:”model based

software testing” OR

”Document Title”:”model-based testing” OR ”Document Title”:”model-based

software testing” OR

”Document Title”:”model driven testing” OR ”Document Title”:”model driven

software testing” OR

”Document Title”:”model-driven testing” OR ”Document Title”:”model-driven

software testing” OR

”Document Title”:”model based test” OR ”Document Title”:”model based soft-

ware test” OR

”Document Title”:”model-based test” OR ”Document Title”:”model-based soft-

ware test” OR

”Document Title”:”model driven test” OR ”Document Title”:”model driven soft-

ware test” OR

”Document Title”:”model-driven test” OR ”Document Title”:”model-driven soft-

ware test”

) AND (”Document Title”:”safety”))

OR

((”Abstract”:”model based testing” OR ”Abstract”:”model based software test-

ing” OR

167

”Abstract”:”model-based testing” OR ”Abstract”:”model-based software testing”

OR

”Abstract”:”model driven testing” OR ”Abstract”:”model driven software test-

ing” OR

”Abstract”:”model-driven testing” OR ”Abstract”:”model-driven software test-

ing” OR

”Abstract”:”model based test” OR ”Abstract”:”model based software test” OR

”Abstract”:”model-based test” OR ”Abstract”:”model-based software test” OR

”Abstract”:”model driven test” OR ”Abstract”:”model driven software test” OR

”Abstract”:”model-driven test” OR ”Abstract”:”model-driven software test”

) AND (”Abstract”:”safety”))

•ACM Digital Library

((Title:”model based testing” OR Title:”model based software testing” OR

Title:”model-based testing” OR Title:”model-based software testing” OR

Title:”model driven testing” OR Title:”model driven software testing” OR

Title:”model-driven testing” OR Title:”model-driven software testing” OR

Title:”model based test” OR Title:”model based software test” OR

Title:”model-based test” OR Title:”model-based software test” OR

Title:”model driven test” OR Title:”model driven software test” OR

Title:”model-driven test” OR Title:”model-driven software test”) AND Ti-

tle:”safety”)

OR

((Abstract:”model based testing” OR Abstract:”model based software test-

ing” OR

Abstract:”model-based testing” OR Abstract:”model-based software test-

ing” OR

Abstract:”model driven testing” OR Abstract:”model driven software test-

ing” OR

Abstract:”model-driven testing” OR Abstract:”model-driven software test-

ing” OR

Abstract:”model based test” OR Abstract:”model based software test” OR

168

Abstract:”model-based test” OR Abstract:”model-based software test” OR

Abstract:”model driven test” OR Abstract:”model driven software test” OR

Abstract:”model-driven test” OR Abstract:”model-driven software test”)

AND Abstract:”safety”)

•Wiley Interscience

(”model based testing” OR ”model based software testing” OR ”model-based

testing” OR ”model-based software testing” OR ”model driven testing” OR

”model driven software testing” OR ”model-driven testing” OR ”model-

driven software testing” OR ”model based test” OR ”model based software

test” OR ”model-based test” OR ”model-based software test” OR ”model

driven test” OR ”model driven software test” OR ”model-driven test” OR

”model-driven software test”)AND ”software” AND ”safety”

•Science Direct

TITLE-ABSTR-KEY ((”model based testing” OR ”model based software

testing” OR ”model-based testing” OR ”model-based software testing” OR

”model driven testing” OR ”model driven software testing” OR ”model-

driven testing” OR ”model-driven software testing” OR ”model based test”

OR ”model based software test” OR ”model-based test” OR ”model-based

software test” OR ”model driven test” OR ”model driven software test” OR

”model-driven test” OR ”model-driven software test”) AND ”safety”)

•Springer

(”model based testing” OR ”model based software testing” OR ”model-based

testing” OR ”model-based software testing” OR ”model driven testing” OR

”model driven software testing” OR ”model-driven testing” OR ”model-

driven software testing” OR ”model based test” OR ”model based software

test” OR ”model-based test” OR ”model-based software test” OR ”model

169

driven test” OR ”model driven software test” OR ”model-driven test” OR

”model-driven software test”) AND ”safety”

•ISI Web of Knowledge

((TI=”model based testing” OR TI=”model based software testing” OR

TI=”model-based testing” OR TI=”model-based software testing” OR

TI=”model driven testing” OR TI=”model driven software testing” OR

TI=”model-driven testing” OR TI=”model-driven software testing” OR

TI=”model based test” OR TI=”model based software test” OR

TI=”model-based test” OR TI=”model-based software test” OR

TI=”model driven test” OR TI=”model driven software test” OR

TI=”model-driven test” OR TI=”model-driven software test”) AND

TI=”safety”) OR

((TS=”model based testing” OR TS=”model based software testing” OR

TS=”model-based testing” OR TS=”model-based software testing” OR

TS=”model driven testing” OR TS=”model driven software testing” OR

TS=”model-driven testing” OR TS=”model-driven software testing” OR

TS=”model based test” OR TS=”model based software test” OR

TS=”model-based test” OR TS=”model-based software test” OR

TS=”model driven test” OR TS=”model driven software test” OR

TS=”model-driven test” OR TS=”model-driven software test”) AND

TS=”safety”)

170

Appendix B

List of Primary Studies

A. Kandl, S., Kirner R., Puschner P. Development of a framework for au-

tomated systematic testing of safety-critical embedded systems. Interna-

tional Workshop on Intelligent Solutions in Embedded Systems 2006. 1-13.

DOI=10.1109/WISES.2006.329116

B. Yu G., Xu Z. W. Model-Based Safety Test Automation of Safety-Critical

Software. International Conference on Computational Intelligence and Software

Engineering (CiSE) 2010. 1-3. DOI = 10.1109/CISE.2010.5676883

C. Fang L., Kitamura T., Do T., Ohsaki H. Formal Model-Based Test for

AUTOSAR Multicore RTOS. IEEE Fifth International Conference on Soft-

ware Testing, Verification and Validation (ICST) 2012. 251-259. DOI =

10.1109/ICST.2012.105

D. Yu G., Xu Z. W., Du J. W. An Approach for automated safety testing of

safety-critical software system based on safety requirements. International Fo-

rum on Information Technology and Applications (IFITA ’09) 2009.3. 166-169.

DOI= 10.1109/IFITA.2009.18

E. Lv J., Li K., Wei G., Tang T., Li C., Zhao W. Model-based test cases generation

for Onboard system. IEEE Eleventh International Symposium on Autonomous

Decentralized Systems (ISADS) 2013. 1-6. DOI= 10.1109/ISADS.2013.6513433

F. Kloos J., Hussain T., Eschbach R. Risk-based testing of safety-critical embed-

ded systems driven by fault tree analysis. IEEE Fourth International Conference

171

on Software Testing, Verification and Validation Workshops (ICSTW) 2011. 26-

33. DOI = 10.1109/ICSTW.2011.90

G. Kloos J., Eschbach R. A systematic approach to construct compositional be-

haviour models for network-structured safety-critical systems. Electronic Notes in

Theoretical Computer Science, 263. 145-160. DOI = 10.1016/j.entcs.2010.05.00

H. Kollmann M., Hon, Y. Generating Scenarios by Multi-Object Checking.

Electronic Notes in Theoretical Computer Science, 190 (2), 61-72. DOI =

10.1016/j.entcs.2007.08.006

I. Lochau M., Goltz U. Feature Interaction Aware Test Case Generation for Em-

bedded Control Systems. Electronic Notes in Theoretical Computer Science, 264

(3), 37-52. DOI = 10.1016/j.entcs.2010.12.013

J. Tseng W., Fan C. Systematic Scenario Test Case Generation for Nuclear

Safety Systems. Information and Software Technology. 55 (2), 344-356. DOI

= 10.1016/j.infsof.2012.08.016

K. Auguston M., Michael J., Shing M. Environment Behavior Models for Au-

tomation of Testing and Assessment of System Safety. Information and Software

Technology. 48 (10). 971-980. DOI = 10.1016/j.infsof.2006.03.005

L. Cichos H., Oster S., Lochau M., Schrr A. Model-Based Coverage-Driven Test

Suite Generation for Software Product Lines. Proceedings of the 14th inter-

national conference on Model driven engineering languages and systems, 6981.

425-439. DOI = 10.1007/978-3-642-24485-8 31

M. Gargantini A. Using Model Checking to Generate Fault Detecting Tests. Tests

and Proofs, 4454. 189-206. DOI = 10.1007/978-3-540-73770-4 11.

N. Micskei Z., Szatmri Z., Olh J., Majzik, I. A Concept for Testing Robustness

and Safety of the Context-Aware Behaviour of Autonomous System. Agent and

Multi-Agent Systems. Technologies and Applications, 7327. 504-513. DOI =

10.1007/978-3-642-30947-2 55

O. Proetzsch M., Zimmermann F., Eschbach R., Kloos J., Karsten, B. A System-

atic Testing Approach for Autonomous Mobile Robots Using Domain-Specific

Languages. KI 2010: Advances in Artificial Intelligence, 6359. 317-324. DOI =

10.1007/978-3-642-16111-7 36

P. Herzner W., Schlick R., Schtz W., Brandl H., Krenn W. Towards generation

172

of efficient test cases from UML/OCL models for complex safety-critical sys-

tems. e & i Elektrotechnik und Informationstechnik, 127 (6). 181-186. DOI =

10.1007/s00502-010-0741-2

Q. Krenn W., Schlick R., Aichernig B. Mapping UML to Labeled Transition Sys-

tems for Test-Case Generation. Formal Methods for Components and Objects.

6286. 186-207. DOI = 10.1007/978-3-642-17071-3 10

R. Mathaikutty D. A., Ahuja S., Dingankar A., Shukla S. Model-driven

test generation for system level validation.IEEE International on High Level

Design Validation and Test Workshop (HLVDT 2007). 83-90. DOI =

10.1109/HLDVT.2007.4392792

S. Enoiu E. P., Sundmark D., Pettersson P. Model-based test suite generation for

function block diagrams using the UPPAAL model checker. IEEE Sixth Inter-

national Conference on Software Testing, Verification and Validation Workshops

(ICSTW) 2013. 158-167. DOI = 10.1109/ICSTW.2013.27

T. Zheng W., Liang C., Wang R., Kong W., Automated Test Approach

Based on All Paths Covered Optimal Algorithm and Sequence Priority Selected

Algorithm. IEEE Transactions on Intelligent Transportation Systems, DOI:

10.1109/TITS.2014.2320552

173

Appendix C

Study Quality Assessment

Quality of
Reporting

Rigor Credit Relevance

Primary
Study

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Total

A 1 1 0,5 1 1 1 0,5 0,5 1 1 8,5
B 1 1 0,5 0,5 0,5 0,5 0 0,5 1 0,5 6
C 1 1 1 1 1 1 0,5 1 1 1 9,5
D 1 1 0,5 0,5 0,5 0,5 0,5 0,5 1 0,5 6,5
E 1 1 0,5 1 0,5 1 0 0,5 1 0,5 7
F 1 1 0,5 1 1 1 0 0,5 1 0,5 7,5
G 1 1 0,5 0,5 1 1 0,5 0,5 1 0,5 7,5
H 1 1 0,5 1 0,5 1 0 1 1 0,5 7,5
I 1 1 0,5 0,5 1 1 0 0,5 1 0,5 7
J 1 1 0,5 1 1 1 0,5 1 1 1 9
K 1 1 1 1 0,5 1 0,5 1 1 1 9
L 1 1 0,5 0,5 1 1 0,5 1 1 0,5 8
M 1 1 0,5 1 1 1 0,5 1 1 0,5 8,5
N 1 1 1 1 0,5 1 0,5 0,5 1 1 8,5
O 1 1 0,5 1 1 0,5 0 0,5 1 0,5 7
P 1 1 1 0,5 1 1 0,5 1 1 1 9
Q 1 1 0,5 1 0,5 1 0 0,5 1 1 7,5
R 1 1 0,5 1 1 1 0 1 1 0,5 8
S 1 1 1 1 1 1 0 1 1 1 9
T 1 1 1 1 1 1 0 1 1 1 9

174

Appendix D

Data Extraction Form

175

Publications Related to This Thesis

1. H. G. Gurbuz, B. Tekinerdogan, N. Pala Er. Safety Perspective for Sup-

porting Architectural Design of Safety-Critical Systems, in Proc. of the 8th

European Conference on Software Architecture (ECSA 2014), LNCS 8627,

pp. 365-373, 2014

2. H. G. Gurbuz, N. Pala Er, B. Tekinerdogan. Architecture Framework for

Software Safety, to be published in Proc. of the 8th System Analysis and

Modelling Conference (SAM 2014), Valencia, Spain, September 29-30, 2014

3. H. G. Gurbuz, N. Pala Er, B. Tekinerdogan. Application of Safety Per-

spective to the Views and Beyond Approach, to be published in Proc. of

the 8th Turkish Software Engineering Conference (UYMS 2014), Güzelyurt,

KKTC, 8-10 September, 2014.

4. H. G. Gurbuz, B. Tekinerdogan. Systematic Literature Review on Model-

Based Testing for Software Safety, to be submitted

176

