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Abstract

We need well-founded means of determining whether software is fit for
use in safety-critical applications. While software in industries such as
aviation has an excellent safety record, the fact that software flaws have
contributed to deaths illustrates the need for justifiably high confidence
in software. It is often argued that software is fit for safety-critical use
because it conforms to a standard for software in safety-critical systems.
But little is known about whether such standards ‘work.’ Reliance upon
a standard without knowing whether it works is an experiment; without
collecting data to assess the standard, this experiment is unplanned. This
paper reports on a workshop intended to explore how standards could
practicably be assessed. Planning the Unplanned Experiment: Assessing
the Efficacy of Standards for Safety Critical Software (AESSCS) was
held on 13 May 2014 in conjunction with the European Dependable
Computing Conference (EDCC). We summarize and elaborate on the
workshop’s discussion of the topic, including both the presented positions
and the dialogue that ensued.

1 Introduction

We need well-founded means of determining whether software is fit for
use in safety-critical applications. While software in industries such as
aviation has an excellent safety record, the fact that software flaws have
contributed to deaths and injuries (e.g., the Therac-25 accidents [1] and
the in-flight upset of an Airbus A330-303 [2]) illustrates the importance
of having justifiably high confidence in safety-critical software. Despite
the dangers of relying on software having properties we can’t guaran-
tee, developers are building ever-more-complex safety-critical software,
sometimes for good reasons. Today, it is often argued that software is
fit for safety-critical use because it conforms to a standard for software
in safety-critical systems such as RTCA DO-178C1 [3] for avionics, ISO
26262 [6] for automotive2, or IEC 61508 [7] for protection and control sys-
tems3. But little is known about whether such standards ‘work.’ (What
it means for a standard to work is also less clear than it could be.) To
rely upon a standard without knowing whether it will work is to con-
duct an experiment; to do so without carefully planning data collection
to assess the standard in practice is to conduct an unplanned experi-

1 RTCA DO-178C [3] is functionally identical to EUROCAE ED-12C [4]. The
same is true of their predecessors, RTCA DO-178B [5] and EUROCAE ED-12B. For
simplicity, we refer only to DO-178B and DO-178C in this paper.

2 ISO 26262 “is intended to be applied to safety-related systems that include one
or more electrical and/or electronic (E/E) systems and that are installed in series
production passenger cars with a maximum gross vehicle mass up to 3,500 kg” [6].

3 IEC 61508 “applies to all types of [electrical, electronic, and programmable elec-
tronic] safety-related systems, including protection systems and control systems” [7].
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ment. This paper reports on a workshop intended to explore how the
community might do better by fostering discussion about how standards
could practicably be assessed. Planning the Unplanned Experiment: As-
sessing the Efficacy of Standards for Safety Critical Software (AESSCS)
was held on 13 May 2014 in Newcastle upon Tyne, UK, as part of the
European Dependable Computing Conference (EDCC). Papers from the
workshop are available online [8–15]. In this paper, we summarize and
elaborate on the workshop’s discussion of the topic, including both the
presented positions and the dialogue that these positions prompted on
the day. The authors of this paper are reporting positions expressed in
the submitted position papers and by participants in discussion at the
workshop. Unless specifically indicated in the text, readers should not
assume that any given person (or that person’s employer) endorses a
given position.

In Section 2, we present the motivation for the workshop. In Sec-
tion 3, we present proposed definitions of what it means for a software
safety standard to ‘work.’ In Section 4, we outline strategies for assessing
standards. In Section 5, we define research questions related to the effi-
cacy of standards for safety-critical software, illustrating the variety and
number of such questions. In Section 6, we relate some of the studies pro-
posed by participants and elaborate on how they might be conducted and
address the research questions presented in earlier sections. In Section 7,
we present observations raised by workshop participants. In Section 8,
we discuss related work. Finally, we conclude in Section 9.

2 Motivation

Standards such as RTCA DO-178C [3], ISO 26262 [6], and IEC 61508 [7]
present rules and guidance for developing and assessing software for use
in safety-critical applications: developers conforming to them must meet
a series of assurance requirements4 related to development process, de-
velopment artifacts (including inspection, review, analysis, and test re-
sults), and software. Assurance requirements are typically expressed at
a high level that admits multiple means of conformance. For example,
ISO 26262 requires developers to conduct unit testing to demonstrate
that software exhibits specified functionality but no unintended behav-
ior (amongst other things) [6, §9.4.3.c–d]. To achieve this, it recom-
mends ‘requirements-based test[ing],’ ‘interface test[ing],’ ‘fault injection
test[ing],’ and ‘resource usage test[ing],’ in some cases requiring develop-
ers to justify a decision not to use some of these techniques.

Most current standards for software for use in safety-critical applica-

4 Assurance requirements—requirements that must be satisfied in order to claim
conformance—are known by different names in different standards. For example,
RTCA DO-178C refers to its assurance requirements as ‘objectives’ [3]. Other stan-
dards’ assurance requirements are sometimes known as ‘clauses.’
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tions are built around variations of a recipe for providing safety assur-
ance for such software. The recipe—implicit in the standards’ assurance
requirements and recommendations—calls for the provision of several
pieces of evidence that are each, by themselves, not a direct assessment
of software’s comprehensive contribution to system safety. Developers
separately assess the highest-level software safety requirements, lower-
level requirements, the software architecture and design, the source code,
execution time, and whether the object code satisfies its requirements
(typically by means of testing at the unit, integration, software, and
system levels).

The standards’ recipe(s) purportedly represent expert consensus on
good development practice. But experts (and their consensus) might be
wrong, a whole might be less than the sum of its parts, and there is
little or no direct evidence that the recipe(s) work. It is critical that
we determine whether or not the recipe(s) work, and, if so, how and
why: we are relying on the recipes to develop and assess software for use
in safety-critical applications. To the degree that we do not know that
these recipes work, our trust in software might be misplaced. Moreover,
even if what we are doing is effective—and it seems to be—if we do not
know how and why the recipe works, the slightest change to practice
risks undermining whatever effect standards now have [9].

Some argue that history shows the standard recipes work [16]. That
is, because we have experienced few software-caused fatalities, the stan-
dards must either cause software to be fit for use or confirm that it is.
But this line of reasoning is weak for several reasons:

• Many applications do not offer enough exposure to make history
statistically significant.

• Correlation is not causation [17]: observing standards conformance
and safe operation together cannot show that one causes the other.
Safe operation might plausibly result from a third factor such as
the care developers lavish on safety-critical systems [18].

• Measuring the correlation is difficult. Multiple versions of multiple
standards have been used, and anecdotes about lenient assessors
suggest differences in how standards are interpreted and applied.

• Standards might work better for the systems and applications of
the past than with some new systems applications (e.g., those fea-
turing more complex microprocessors, more integrated and net-
worked platforms, or more autonomy).

A well-planned, carefully controlled, long-term study might be useful,
but none has been done [19].

Standards reflect the consensus of the committees that wrote them.
The rationales for standards’ recipes are rarely published. Even if they
were, the scientific literature offers little evidence to support the logic
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they would likely contain. For example, there is little evidence that
testing to Modified Condition/Decision Coverage5 confirms correct soft-
ware. Experiments show that code inspections reveal many interesting
defects but miss some; no one knows how many [21]. Some coding stan-
dards limit code complexity [Section 5.4.7] [6], but experts are divided
on whether lower complexity causes lower dangerous failure rates and
the experimental evidence is limited and conflicting [22].

It is tempting to say we should not build software without knowing
how to establish that it is fit for use. However, we continue to do so,
sometimes for good reasons. While it is easier to reason about the safety
of simple hardware, software can implement more complex behavior.
For example, simple hardware cannot automatically brake a car to avoid
hitting a pedestrian. The inability to guarantee that automatic braking
will always work will not keep people from driving cars. Arguably it
should not: fitting imperfect automatic braking systems might result in
fewer deaths and injuries than fitting no automatic braking system. We
do not seek to stop innovation, but rather to increase both safety and
our confidence in safety assessments.

We are relying on standards’ recipes in matters where lives are at
stake. Even when developers use an argument-based standard rather
than a so-called prescriptive standard, they tend to follow the same
recipe [23, 24]. The people who develop and use standards have the
best of intentions. Nevertheless, there is little evidence to either support
or rebut the claims that following a standard’s recipe ensures or confirms
that software is fit for safety-critical use. We urgently need to study both
whether the recipe works and why it does or does not work.

3 What it Means For a Standard to ‘Work’

It was the workshop organizers’ sincere hope that participants would
bring evidence to challenge the key premises of the workshop, namely
that (a) it is crucial that we understand how and why standards work
and that (b) we don’t know as much about this as we ought to. But
all in attendance agreed with these premises and concluded that more
research on this topic is urgently needed. However, discussion revealed
several different definitions of what it might mean for a standard for
software in safety critical applications to ‘work.’

Ideally, each standard should define what it means for the standard
to ‘work.’ This is crucial information; it is difficult to see how standards
committee members could decide whether a draft standard is acceptable
without knowing what the standard is meant to do. Some standards do
include statements about the standard’s aims or contributions. But these

5 Modified Condition/Decision Coverage (MC/DC) is a structural test coverage
metric [20]. RTCA DO-178C (and its predecessor, RTCA DO-178B) require software
testing of the most critical software (i.e., level A software) to achieve MC/DC [3,5].
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are not generally testable hypotheses about the effects on safety. Some
are too vague, others are belied by later text of the standard, and others
sidestep important issues. For example, the introduction to ISO 26262
promises that it delivers ‘guidance to help avoid [risks due to failing elec-
trical or electronic components in automobiles] by providing appropriate
requirements and processes’ [25]. But what does it mean to ‘help avoid’
risk? The statement does not promise that risk will be reduced to or
by any specific, testable amount or that the result will satisfy any of
the usual theories of residual risk acceptability [26]. It is perhaps unfair
to expect that it would: ISO 26262 is an industry consensus document
aimed at achieving an approach that will work across a diverse supply
chain. Nevertheless, if we are to determine whether a standard works,
we need a better definition of what it means to work. Must following the
standard always (or with a specified likelihood) result in software that
is fault free or meets a reliability target? Must it do these things in a
cost-effective manner?

Participants in the workshop identified both (a) a crucial distinction
between the goals of software correctness and software’s contribution
to system safety and (b) several distinct definitions of what it might
mean for a standard to ‘work’ in achieving one of those goals. The
definitions can be broadly organized into four categories: (1) bounding
uncertainty in a claim about software behavior or contributions to system
safety, (2) addressing the risk from the most likely and/or consequential
mistakes, (3) promoting developer competence, and (4) giving certifiers a
tool to improve safety. In this section, we will elaborate on the distinction
of safety versus correctness, on each of these potential definitions, and
on the broader issue of cost-effectiveness.

3.1 Safety Versus Correctness

Some standards for software in safety critical applications are focused
on correctness rather than safety. That is, the majority of their assur-
ance requirements are more clearly about whether the software behaves
as specified (and only as specified) rather than how the software’s be-
havior affects system safety. For example, RTCA DO-178C [3] assumes
the existence of software requirements derived from a system-level safety
analysis (e.g., in accordance with SAE ARP4754A [27]). The standard
requires developers to show that software high-level requirements re-
fine the given requirements, including safety requirements, but does not
distinguish between software safety requirements and non-safety-related
software requirements. It specifies a mechanism for specifying a software
development assurance level (and ultimately a concrete development and
assurance plan) from the consequences of software failure, but does not
discuss the human-factors impacts of software human interface design
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choices6. Most of the standard’s assurance requirements are related to
demonstrating that the delivered software meets the given requirements.
Developers demonstrate this by providing evidence for a chain of refine-
ment from the given requirements through low-level requirements and
source code to the delivered object code.

Many other standards include parts describing both system-level
safety analysis and software-level safety activities. For example, ISO
26262-3 defines a mandatory hazard and risk analysis process, while ISO
26262-6 gives software verification and validation requirements [6, 28].
But the focus of ISO 26262 is limited to the safety impact of the failure
of individual electrical and electronic systems. Like RTCA DO-178C,
ISO 26262-6 contains many assurance requirements related to software
correctness. But it contains no requirements related to, for example,
designing a car as a whole in order to achieve adequate safety. The
standard’s assurance requirements would apply to the design and imple-
mentation of an electronic stability control system if the vehicle man-
ufacturer fits one, but does not offer any guidance on whether such a
system should be fitted.

Correctness is certainly helpful in achieving safety, but correctness is
not a sufficient condition for safety. Safety is also impacted by decisions
about what to build as well as how well systems are built. Perhaps more
so: there is some evidence to suggest requirements defects are a bigger
problem than implementation defects [29,30]. While we can name a few
well-published examples of accidents ascribed to software implementa-
tion mistakes, these appear to be few and far between. Problems related
to how computer systems automate tasks (as opposed to how correctly
the software implements the automation as designed) appear, at first
glance, to be at least as big a problem in the aviation domain [31]. New
pilots are not necessarily taught to do things the old-fashioned manual
way, and thus may not be able to cope when automation fails. This
problem will only grow as developers face pressure to automate more
functions (e.g., to reduce crew workload, add capability, or increase fuel
economy), and trends towards assisted and even autonomous driving in
the automotive domain7 suggest that automation accidents on the road
are not far in the future.

6 Even if software engineers in some domains are responsible to some extent for
user interface design, DO-178C relegates consideration of the safety impact of human
interfaces to system safety engineers following separate processes. ARP4754A requires
the specification of ‘operational requirements’ that ‘define the interfaces between the
flight crew and each functional system’ [27, §5.3.1.2.2]. If, while designing software to
satisfy these requirements, software engineers see the need for a requirement that is
‘not directly traceable to higher-level requirements’ or ‘specify behavior beyond that
specified by the system requirements,’ they must submit ‘derived requirements’ to the
safety engineers for consideration [3, §5.1.1.b, §5.2.1.b, glossary].

7 For example, Nissan plans to demonstrate prototype remotely-supervised au-
tonomous taxis within the next two years [32]. Regulators are aware of the difficulties
that such automation might pose and are working to draft suitable policies [33].
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Achieving adequate system safety, as opposed to only achieving soft-
ware that performs as specified, requires making appropriate decisions
about what software should do. Developers and regulators must con-
sider many aspects of what makes software design and implementation
fit for use, including the effects of software design choices on human
performance and security implications.

In some cases, this is an issue of who takes ownership for the cor-
rectness of software requirements. For example, suppose that embedded
aircraft software meets its requirements but operates in a way that cre-
ates additional challenges for aircraft maintainers. The software might
be correct, yet lead to a higher risk of maintenance error—and thus of
an accident—than an alternative design.

In other cases, this is an issue about how computer-based systems
are designed. For example, it might lower software development cost
to implement an avionics function in a system unit that is thematically
unrelated: the target unit might have surplus processing power, or better
access to the key data needed to perform the function in question. But
when the automation fails, human flight crew members might struggle
to understand the error messages they are receiving about a unit that
has no obvious connection with the failure symptoms they are observing.

Building automobile radios with speed-sensitive volume controls in-
creases passenger comfort and might decrease driver distraction by elim-
inating a reason to turn the radio down at traffic lights and up again at
speed. But such integration necessitates a data connection between the
entertainment system and the relevant engine control unit(s). That link
is a potential vector for deliberate attack: the complex and seemingly-
unimportant entertainment system might be an attacker’s means of gain-
ing access to computers that control lighting, braking, and other safety-
relevant functions [34]. While most safety standards address security
concerns only indirectly (if at all)8, the potential for deliberate attack to
compromise safety cannot be ignored.

It might be the case that, despite any new dangers that it introduces,
increased reliance on computer-based automation will reduce deaths and
injuries in some applications. (Autonomous automobiles might prove to

8 For example, RTCA DO-178C does not mention security except to say that sys-
tem requirements allocated to software might include security requirements [3, §2.1].
ISO 26262 makes no mention of security whatsoever [6,25,28,35–41]. IEC 61508:2010
does mention security, but stops short of directing engineers to achieve an appropriate
balance of safety and security (let alone identifying a means for doing so) [42]. The
standard calls for a security threats analysis when safety analysts performing hazard
analysis happen to notice “that malevolent or unauthorized action, constituting a
security threat, as [sic] reasonably foreseeable,” directing readers to ISO/IEC 13335
(withdrawn, not revised) and IEC 62443 for guidance [43,44]. “If security threats have
been identified, a vulnerability analysis needs to be undertaken,” again according to
ISO/IEC 13335 and IEC 62443. But IEC 61508:2010 does not identify the possibil-
ity that safety and security goals might conflict, provide guidance for resolving such
conflicts, or specify how the satisfaction of security requirements should be verified.
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be an example of this.) But a complete safety standard should help
developers to make and regulators to assess such choices about what
software should be relied upon to do. To focus exclusively on correctness
is to focus on one threat to safety to the exclusion of others.

In any case, whether rightly or wrongly, most standards for software
in safety critical applications are focused more on correctness than on
safety. Accordingly, some of the definitions of ‘works’ discussed below
need to be considered in two forms: one related to correctness, the other
to software’s impact on system safety.

3.2 Bounding Uncertainty in Behavior or Safety Claims

A standard for software in safety critical applications might be said to
work if its use reduces and bounds the uncertainty in a behavior or safety
claim of interest. For example, RTCA DO-178C claims to “provid[e] the
aviation community with guidance for determining, in a consistent man-
ner and with an acceptable level of confidence, that the software aspects
of airborne systems comply with airworthiness requirements” [3]. This
definition implicitly acknowledges that it is impossible for conformance
to a standard to entail a behavior or safety claim (unless that claim is
trivially true, in which case the standard is irrelevant). Nevertheless,
reducing or bounding the likelihood that a behavior or safety claim is
false is useful.

This view is nearly equivalent to the view that standards for soft-
ware in safety critical applications are human factors standards meant
to increase the likelihood of spotting any mistake that would compromise
system safety before systems are deployed. If we presume that mistakes
are addressed in a way that improves system safety (or correctness),
however slightly, and if conformance to the standard does not cause de-
velopers to make additional mistakes, then spotting more mistakes would
result in greater confidence in a claimed level of safety (or correctness).

This view is also related to the filter model of safety-critical system
certification [45]. In the filter model, a certification procedure comprises
a filter and a decision procedure. Each assurance requirement or group of
requirements is a filter that is used to identify faults in a system. As in
the Swiss Cheese accident model [46], each filter might catch defects that
other filters in the same standard miss. The overall goal of the filters is
to allow certifiers to determine ‘whether faults remain that would subject
the public to an unacceptable level of operational risk’ [45].

The bounding uncertainty definition of what it means for a software
safety standard to ‘work’ has the virtue of being the most directly rele-
vant to decisions about whether to deploy, continue operating, or improve
software in safety critical applications. However, this definition is some-
times disparaged on the grounds that we cannot, at present, show that
use of a standard has this effect. The present state of knowledge is too
limited to claim that a standard either works or does not work using this
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definition. Some standards might not. However, this definition might be
useful even if it is untestable: it seems to captures an important aspect
of what many speakers mean when they say that a standard ‘works.’

3.3 Addressing the Risk From Specific Mistakes

A standard for software in safety critical applications might be said
to work if its use reduces the incidents of mistakes that are known to
threaten safety. Accident and incident investigations often report ‘lessons
learned’; we might say that a standard ‘works’ if following it makes de-
velopers less likely to make one of a set of mistakes of interest or more
likely to catch such a mistake before it can impact safety. This set might
be drawn from research or even intuition rather than from history alone.
Ideally, the set would be chosen to include the mistakes that give rise the
greatest risk, i.e. those that would occur the most frequently without
intervention or that lead to the most severe or likely accidents.

This definition differs from the previous one in that its focus is not
on the total uncertainty in a safety or correctness claim, but rather on
specific contributions to that uncertainty. Using this definition, we might
say that a standard works even if it is possible for systems to contribute
to an accident in ways that the standard does not address. To the de-
gree that a particular system or its development is like prior systems,
addressing the ways in which those systems went wrong should, in gen-
eral, make the system safer. However, this definition raises the possibility
that a standard might have far less of an effect on safety or correctness
(or confidence in these) if the application or development techniques are
novel. For example, a rule prohibiting most backward branches might
have significantly reduced the incidence of control flow problems when
most embedded software was written in assembly language, but such a
rule is not applicable to software written in most high-level languages.

3.4 Promoting Developer Competence

A standard might be said to work, not because it (only) allows assessors
to detect and filter out unsafe systems, but because it promotes developer
competence. It might promote competence by teaching good practice to
developers, acting as a barrier to the entry of incompetent developers or
organizations, or both.

One function of a standard might be to teach developers how to build
acceptably safe systems. We are not aware of standards committees ex-
plicitly writing a standard as a pedagogic tool and would not recommend
that developers learn how to build critical systems solely by reading stan-
dards, but a standard might (in part) have this effect. Developers using
a standard read it, come to understand its assurance requirements, seek
information about the recommended means of satisfying these, and pos-
sibly create their own concrete development or assurance plan to satisfy
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those assurance requirements. These activities might impart knowledge
and habits that would have a beneficial effect even if conformance were
not required in the future.

A related function might be to serve as a barrier to entry that pre-
cludes the development of safety-critical systems by people who lack the
requisite skills and experience or organizations that do not follow appro-
priate practices. In this view, a standard—or perhaps a compliance en-
forcement regime related to that standard—poses a difficult-to-surmount
barrier to the people whose work might pose the most danger but a man-
ageable hurdle to the people who are likely to produce acceptably safe
systems with or without the standard.

Several workshop participants opined that if you took the standards
away from the best development teams, they would carry on building
acceptably safe software9. Both of these views of what it means for a
standard to work are consistent with that opinion.

One workshop participant observes that standards might work in a
related way, namely by giving developers a way to resist pressure to cut
corners. In that view, a standard doesn’t promote developer competence,
but it gives developers an excuse to practice competently even if budget
pressures result in management suggesting that more expensive safety
techniques could be dispensed with.

3.5 Giving Certifiers a Tool for Improving Safety

A standard might be said to work, not because of what developers read-
ing it learn, but because it gives certifiers10 a tool for improving safety
or blocking the deployment of unsafe systems. In this view, a standard is
simply the necessary foundation of a safety assessment regime11. Devel-

9 One workshop participant opined the opposite, namely that if you took the stan-
dards away from the best development teams, their software would become unsafe.

10 The mechanisms of conformance assessment vary from standard to standard and,
sometimes, jurisdiction to jurisdiction. For example, in the United States of America,
the Federal Aviation Administration allows aircraft developers to submit the life cycle
data specified in RTCA DO-178C [3] to one of its certification offices as a means of
“showing compliance with the applicable airworthiness regulations for the software
aspects of airborne systems and equipment certification” [47]. Developers in the au-
tomotive domain may choose to have a third-party company assess their conformance
to ISO 26262 [25], but we do not know of a domain where independently-certified
conformance to ISO 26262 is mandated by law or regulation. For the purpose of this
definition of what it means for a standard to ‘work,’ a certifier is any organization
that assesses conformance to a standard and can either certify conformance or refuse
to do so. Legislation, regulation, and policy might impact the business importance of
gaining such certification—and thus the efficacy of a standard under this definition—
but the basic idea behind this definition applies to some degree even where standards
conformance is purely voluntary.

11 For example, a standard gives certifiers and developers a common terminology
and framework, both of which are necessary for productive discussions about safety.
The standard also forces developers to give certifiers access to artifacts such as re-
quirements, source code, test results, and traceability information.
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opers are motivated by the possibility that assessors will refuse to certify
compliance with the standard, either because compliance is mandated
by law or regulation or because a mark of compliance is perceived to
add value to the system in question. This motivation might encourage
developers to follow better practices than they otherwise would, thus im-
proving their effective competence. But where it doesn’t, assessors might
agree to certify systems only if developers agree to use a safer design or
better tools or practices.

In this view, it isn’t necessary for a standard’s assurance requirements
to be completely effective as a means of bounding confidence in safety,
filtering out unsafe systems, or teaching developers best practice. The
assurance requirements needn’t necessarily be unambiguous. If assessors
are capable of determining whether a given system is acceptably safe or
whether an alternative would improve safety, the leverage afforded by
the certification regime could allow them to enforce or improve safety.

3.6 Cost-Effectiveness

The definitions of ‘work’ given in Sections 3.2–3.5 focus on the safety-
related effects of standards. But standards also impact the cost of de-
velopment and certification. Decisions about whether to use a standard,
which standard to use, or what assurance requirements to include in a
standard might turn not only on whether a standard works, but whether
it is cost-effective.

While decisions about whether a safety improvement is worth its
cost are unavoidably political, a scientific assessment of standards might
nevertheless produce data that could be useful to those making such
determinations. For example, we might assess the feasibility and cost of
applying a standard and present this information to the relevant decision-
makers alongside any assessment of whether that standard works.

If assessments of standards are to inform decisions about cost-ef-
fectiveness, researchers must plan their studies with the needs of the
relevant decision-makers in mind. This is because it may not be sufficient
in all cases to simply supplement assessments of safety-related effect with
information about cost. For example, consider a study that compares the
effect of two competing standards on confidence in software correctness.
If the study design can answer the question, Which works better?, but not
the question, By how much?, the results would lack information needed
to make a decision based on cost-effectiveness.

4 Assessing Standards

Knowing what it means for a standard for software in safety critical appli-
cations to work would be only the first step in assessing that standard. In
this section, we outline strategies for assessing standards. Answering the
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question of whether or not a standard is effective will likely require mul-
tiple studies; these over-arching strategies define what individual studies
must show and how their results relate to the overall conclusion. We
will turn to the issue of specific study methodologies in Section 6. Here,
we outline four distinct strategies: (1) measuring the effect of using a
standard, (2) assessing the standard in parts by assessing the efficacy of
each assurance requirement, (3) assessing necessary conditions for effi-
cacy, and (4) assessing how well a standard solves the problems of the
past.

4.1 Measuring the Effect of Using a Standard

Suppose that we accept the view that a standard works if it bounds
uncertainty in a claim about system safety or software behavior (see
Section 3.2). We might then try to assess the standard by directly mea-
suring its effect on accident rates, incident rates, or post-release defect
density. For example, we might measure the number of safety-relevant
defects found in software after deployment12 and compare these numbers
across software developed in conformance with different standards or to
different integrity levels of the same standard.

The intuitive appeal of this approach is its directness: rather than
rely on the results of many studies, each of which assesses only one aspect
of what it means to work or one contributing factor to how a standard is
thought to work, we might be able to assess the standard with a single
study. Such directness has the potential to reduce epistemic uncertainty
in a claim about whether a standard works.

However, there are at least three problems with this approach: (1) ac-
cidents might be too few and far between to yield useful measures, (2) it is
difficult to hold all other things equal in comparison studies, and (3) the
necessary data is difficult to acquire. If the study is ongoing, there might
also be pressure to change policy based on preliminary results, effectively
terminating the study before strong conclusions can be drawn. Suppose
a string of incidents is reported. These might reflect either (a) an effect
that could be used immediately to save lives or (b) statistical chance
and reporting bias [48]. In the former case, it is more important to make
a change in policy or practice than to gather more data, but making
such a change would halt collection of the data that could tell us which
interpretation is correct.

In some industries, our aim is to develop systems that make a defined
category of accidents unlikely over the entire operating lifespan of all

12 If, all other things being equal, fewer defects are discovered in software developed
to standard X than to standard Y , conformance standard X results in lower uncer-
tainty in a safety claim than conformance to standard Y . Note that the phrase ‘all
other things being equal’ is crucial here. Correctness is not the same as safety: many
factors affect the safety impact of each defect. We note that it might be difficult to
adequately hold all other things equal when comparing the effect of two standards in
this way.
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systems of that type13. If we actually achieved that—or very nearly
achieved it—there would be insufficient data in the operational history
of such a system from which to draw a statistically-valid conclusion about
whether such a goal had been met.

A correlation between standard type or level and accident or defect
rates does not conclusively demonstrate a causal link between the two.
However, an observed lack of correlation would demonstrate the absence
of a useful causal effect. But for such a study to be valid, it would have
to control for any other factor that might plausibly affect the measured
outcome. This would be very difficult to do for standards. For example,
we do not know whether differences between industries or application
areas would affect the efficacy of software development, verification, and
validation practices. This makes it difficult to compare, say, aviation
software certified to DO-178B [5] with industrial control software certi-
fied to IEC 61508 [51] or rail software certified to EN 50128 [52]. We
do not know whether advances in software development practices not
discussed by the standards would affect the number or type of defects
introduced by the software. Since such practices change over time, it
might be similarly difficult to compare older aviation software certified
to DO-178B [5] with newer software certified to DO-178C [3].

Any study of post-deployment defect density would require access to
reliable information about all safety-relevant defects discovered in the
specimen software. Such information might be very difficult to obtain
for research purposes. While some organizations that build and maintain
software keep such records, they may not be willing to disclose them
for fear of legal ramifications, loss of prestige or sales, or disclosure of
proprietary information about how their products work.

4.2 Assessing a Standard by Parts

Again supposing that we accept the view that a standard works if it
bounds uncertainty in a claim about system safety or software behavior,
we might try to assess a standard by parts. That is, we might try to
separately assess the effectiveness of each of its assurance requirements
and then infer an assessment of efficacy of the standard as a whole.
(This is analogous to many standards’ recipe for evaluating software’s
contributions to safety, in which many pieces of interrelated evidence are
collected separately.)

13 U.S. regulations require that transport category “airplane systems and associated
components, considered separately and in relation to other systems, must be designed
so that . . . the occurrence of any failure condition which would prevent the continued
safe flight and landing of the airplane is extremely improbable” [49]. The phrase
‘extremely improbable’ is interpreted to mean that extremely improbable events “are
those so unlikely that they are not anticipated to occur during the entire operational
life of all airplanes of one type” [50]. For software-based systems, developers might
choose to conform to RTCA DO-178C [3] as a means of showing conformance with
relevant regulations [47].
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One approach to doing this is to capture and then assess a stan-
dard’s implicit argument [53]. That is, we might read a standard’s over-
all objectives, internal rationale (if any), and assurance requirements
and document the argument connecting satisfaction of the requirements
(as evidence) through the rationale (as intermediate claims and argu-
ment structure) to the conclusion that the objectives are satisfied (e.g.,
software defects do not cause the system to pose unacceptable risk).
(Such an argument has been extracted from the Common Criteria for
Information Technology Security Evaluation [54]. A similar argument
is being constructed for DO-178C [55].) If we could separately evaluate
whether each assurance requirement (or the typical means of satisfying
it) accomplishes what the standard requires it to, we might be able to
assess confidence in the argument’s main claim and thus the efficacy of
the standard. The complete evaluation of a standard by parts would
require many experiments to assess the efficacy of individual techniques.
(Section 6.1 gives an example of one such experiment [11].)

One potential problem with that approach is that it might be difficult
to identify (or obtain agreement on) the standard’s argument. Michael
Holloway observed that SC-205—the committee charged with updating
DO-178B [5] to produce DO-178C [3]—tried but failed to construct such
an argument for the standard they were drafting. John McDermid noted
that some standards, such as the UK Ministry of Defence’s safety man-
agement standard [56], have assurance requirements so broadly defined
and broadly applicable that it would be difficult to draw strong conclu-
sions using this approach.

Another difficulty is that there might not yet be broad agreement
on the premises for such an argument. For example, there are differ-
ing opinions about the efficacy of Modified Condition/Decision Coverage
testing [20] and little empirical data in the public domain. Evaluating a
standard in this way might first require empirical assessment of a great
many safety-related techniques.

A final difficulty is that the value of a whole might not depend solely
on the individual values of its parts [11]. If the efficacy of a technique
depends in part on whether it is deployed in conjunction with other
techniques, then we would need appropriately specific data about its
efficacy in order to evaluate a standard in this way.

4.3 Assessing Necessary Conditions for Efficacy

One general approach to assessing whether a standard works is to identify
ways in which it might not and assess whether it fails to work in each
such way. Stating this approach slightly differently, we might identify
necessary conditions for a standard to work and assess whether each has
been met.

For example, we might suppose that, for a standard to work, its
assurance requirements must be unambiguous. (See Section 7.3.) We
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might then perform an experiment using human subjects to determine
whether assessors interpret objectives in the same way.

At the workshop, Virginie Wiels proposed an abstraction view model
of certification that defines necessary conditions that might be evaluated
in this way [15]. In her model, certification is analogous to verifying soft-
ware by machine checking a formal abstraction of it. For example, we
might determine whether an applicant has met an assurance requirement
of DO-178C as an assessment of an abstract view of the software. If the
abstraction has the required properties, making such conformance deter-
minations effectively assesses whether the software is correct. According
to this model, if a standard is to work, its abstract view of the software
must have three properties: (i) soundness, (ii) tractability, and (iii) pre-
cision. If the abstraction is sound, i.e. “it defines more behaviors than
the actual behaviors of the program,” then when the assurance require-
ments are met, the software is correct. The abstraction is tractable if it
is practicable to determine whether or not the assurance requirements
are met. If the abstraction is too imprecise, checking reveals failure to
meet assurance requirements that do not correspond to ways in which
the software is incorrect.

The virtue of the necessary conditions approach is that it might be
easier to assess whether a specific condition is met than to assess the
overall effect of a standard. For example, it is clear that configuration
consistency is a necessary condition: if we do not know which version
of the source was used to compile a given test binary or the delivered
executable code, any conclusions derived from testing might not apply to
the software that will actually be used in the field. The meaning of con-
figuration consistency is more concrete than that of whether a standard
works and configuration consistency could—at least in principle—be as-
sessed by an auditing process. The disadvantage of this approach is that
it is more useful for revealing problems that need to be addressed than
for showing that a standard works: because we might not know all of
the necessary conditions, we might find that all identified conditions are
satisfied even if the standard in question does not work.

4.4 Assessing How Well a Standard Solves the Problems
of the Past

One other general approach to assessing a standard is to determine how
well it solves the problems of the past. For example, suppose that several
systems in one application area fail (in part) because software failed
to meet a response time deadline. Suppose also that a new version of
the relevant standard has been introduced and that this includes new
assurance requirements meant to improve confidence that deadlines will
be met. In such a case, we might monitor software that conforms to the
new version of the standard and, if fewer overruns are seen in practice,
conclude that it works better than the old version.
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This approach is a variant of assessing the effect (see Section 4.1)
and so will suffer from similar problems, e.g., the observed problems
might be too rare to support statistically strong conclusions or the data
might be difficult to acquire. It has the virtue of focusing on aspects
of what it means for a standard to ‘work’ that experience has shown us
are important. (It might be that some things that we might not know
about a standard simply don’t matter in practice for reasons we do not
yet know.) However, it also has a corresponding limitation: as new
applications are tackled and new development techniques introduced,
software might begin to fail more in one way than another, or even in
ways not seen in the past. This limitation might be more problematic
in domains where practice is changing rapidly than in domains where
practice is more settled.

5 Research Questions

In the submitted papers, authors identified several research questions
related to whether or not a standard could be said to work. In the work-
shop discussions, participants identified several more. In this section, we
present a selection of the most relevant research questions identified.

While these questions are not presented in any well-defined order,
readers should note that many are interrelated. For example, if the
answer to RQ5 or RQ7 is ‘No,’ then many of the other questions might
not be worth answering. If it is not practicable to answer RQ5, it would
very likely be impracticable to answer RQ4.

We do not claim that it is practicable (or even possible) to answer
all of these questions. In Section 6, we present six proposed studies and
discuss challenges related to each. The listed challenges illustrate the
difficulty of answering research questions like these.

RQ1. Does conformance with a given standard mean that it is acceptably
likely that a system is acceptably safe (for a given kind of applica-
tion)?

This question, while difficult to answer, seems the most straightfor-
ward way of capturing the reasoning behind decisions to accept or
reject a complete system based on conformance verification. ‘Ac-
ceptably safe’ might be defined more concretely in terms of a rate
of dangerous failures or a rate of accidents or incidents.

RQ2. Does conformance with a given standard mean that the software’s
contributions to system hazards and their management are accept-
able?

Some standards (or parts of standards) focus on software only.
Since software in isolation cannot be said to be ‘safe’ or ‘unsafe,’
we must ask instead about software contributions to system safety.
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RQ3. Does conformance with a given standard mean that it is acceptably
likely that the software satisfies its requirements?

Some standards—including DO-178C—focus mainly on software
correctness, excluding from its scope the effect of the given soft-
ware requirements on system safety. (See Section 3.1.) This for-
mulation addresses only the issue of correctness. Note that the
degree to which software satisfies its requirements might be ex-
pressed in several different ways, e.g. in terms of defects per line of
code, reliability, or availability.

RQ4. Does conformance with standard X mean that, all things being
equal, a system is safer (or software more likely to meet its re-
quirements) than if it conformed instead to standard Y or to no
standard at all?

If we can’t determine whether conformance is enough to demon-
strate adequate safety, perhaps we can show that conformance
improves safety relative to plausible alternatives. An answer to
this question might inform a decision about which potentially-
applicable standard to require, use, or meet. An answer to this
question might better inform such decisions if it also answers the
follow-up question By how much? However, it is possible that a
useful answer might be context-specific. For example, systems con-
forming to standard X might be safer under some circumstances
and less safe under others, or provide more protection against some
types of risk and less protection against others.

RQ5. Does conformance with standard X at level Y mean that, all things
being equal, a system is safer (or software more likely to meet its
requirements) than if it conformed at level Z?

If conformance to a standard at a higher integrity level produced
no effect, the extra effort spent would be wasted. To inform cost-
benefit decisions, we might also need to know the magnitude of the
effect.

RQ6. Does the number or distribution of mistakes that developers make
change when a standard (or a new version of a standard) comes
into widespread use?

If conformance to a standard makes developers less likely to make
one of a selected set of mistakes (see Section 3.3), then the intro-
duction of a standard targeting those mistakes should result in a
change in the rates at which those mistakes are made.

RQ7. Can we reliably determine whether a system (and its development
process and development artifacts) conforms to a given standard?

Conformance judgments must be repeatable if conformance is to
cause a large, reliable safety effect. If conformance judgments were
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unrepeatable and yet conformance produced a substantial safety
effect, we might suspect that the effect was due less to filtering
out unsafe systems than to educating developers or encouraging
developers to be more self-consciousness.

RQ8. Do a given standard’s assurance requirements feature vagueness
or other features that might give them multiple plausible interpre-
tations?

This question addresses a necessary condition of a necessary condi-
tion (see Section 4.3) for bounding uncertainty (see Section 3.2): a
standard might bound uncertainty well if conformance judgments
are not reliable, and conformance judgments might be unreliable if
assurance requirements are not clear and unambiguous. The same
question also addresses a necessary condition for a standard to
work as a teaching tool (see Section 3.4): ambiguity might lessen
a standard’s educational benefits.

RQ9. Can we formalize standards’ assurance requirements? Would this
significantly reduce variance in conformance evaluations?

‘Formalization’ might mean many things, but we might hypothesize
that some forms of formalization might make assurance require-
ments less ambiguous and conformance judgments more repeat-
able. As with any proposed enhancement, we might ask whether
formalization in a proposed way has the intended effect and whether
this effect is worth the cost.

RQ10. Does a standard permit innovation? That is, does it allow devel-
opers to use techniques that are not yet widely used in safety-critical
applications yet produce systems that are just as safe?

Computers, software, and software engineering tools and techniques
have changed rapidly. If a standard does not permit innovation
without changes to its assurance requirements and can’t be revised
(and then re-assessed) rapidly enough, developers might be un-
able to take advantage of advances that would lower development
cost, increase confidence in software behavior, or enable the im-
plementation of complex software-based safety features that lower
overall risk. Note that information about the effectiveness of new
tools and techniques is critical to ensuring that their use maintains
safety. However, reliable studies demonstrating the efficacy of a
new technique might lag its introduction by many years—if such
studies are done at all.

RQ11. How do factors such as degree of flexibility or prescriptiveness or
type of submission documentation (e.g., safety case or accomplish-
ment summary) affect acceptance rates and the number of safety-
relevant problems discovered during assessment?
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Assessors’ acceptance rates for similar systems might vary for sev-
eral reasons. For example, a more flexible standard might cause
assessors to see more novel forms of safety evidence, which they
might either be more likely to reject (on the grounds that novel
types of evidence are ‘unproven’) or more likely to accept (because
they do not know the weaknesses of these new forms). The rate
at which assessors discover safety-relevant problems during assess-
ment might also vary for several reasons. For example, different
forms of documentation might be more or less revealing of de-
veloper competence or the safety implications of design decisions.
Understanding the effect of these factors on assessment outcomes
could help to design a standard that facilitates accepting more safe
systems and fewer unsafe systems. Studies to address concrete in-
stances of this research question would have to control for other
factors that might affect the measured property, e.g., whether con-
formance is purely voluntary or an accepted means of compliance
with regulation, whether the assessor is chosen and paid by the
developer or a government agency, etc.

RQ12. Do factors such as the type of submission documentation affect
developers’ understanding of the safety impact of their actions?

Anecdotes from developers who have constructed safety arguments
suggest that the process forced them to think more carefully than
they had done before about the purpose and meaning of the safety-
related development activities they undertook14. If better educa-
tion leads to better safety outcomes, then, all other things being
equal, a form of submission that better educates developers should
lead to better safety outcomes.

RQ13. What sorts of defects does a given design and construction ap-
proach introduce? What sorts of defects does a given verification
and validation approach find?

One way of evaluating the effect of a standard is in terms of the
types of defects that might be introduced during design and de-
velopment and the effectiveness of verification and validation in
detecting these. For example, if two standards permit the use of
a given design and construction approach, and that approach is
known to introduce a certain type of error, then a standard would
be better if it caused the use of a verification and validation ap-
proach that finds those types of errors than if it did not. Answers
to this question are unlikely to produce a total order of how well
standards work, but might be useful for more specific decisions

14 One of the authors, Graydon, has heard this from developers at two separate
organizations he has assisted to develop safety arguments. Similar anecdotes have
been related by other researchers who have worked with industrial developers building
safety arguments for the first time.
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such as whether to allow a proposed alternative means of confor-
mance to an assurance requirement. The question presumes that
it is possible to identify categories of defects that reveal clear dif-
ferences between design, construction, verification, and validation
approaches; this might prove difficult.

RQ14. Are there assurance requirements in a standard that are always
satisfied (without remediation)?

If (nearly) every product and development process is found to meet
a given assurance requirement, we might ask whether it is superflu-
ous. Universal or near universal conformance might be a symptom
of a requirement addressing a problem that does not appear fre-
quently in practice. But there might be another cause or causes
for a high rate of conformance. For example, if conformance with
the assurance requirement is easily and reliably checked, appli-
cants might be in the habit of self-checking before submission to
reduce the time and cost penalty of re-submission. An answer to
this question does not identify assurance requirements that can
be removed, but it might identify assurance requirements that are
worthy of greater scrutiny.

RQ15. How likely is it that each of the various software development and
safety assessment techniques fails to serve the safety purpose it is
meant to serve? (For example, how likely is it that hazard analysis
would fail to identify a hazard?)

In cases where a standard mandates or highly recommends the use
of a given technique, we might ask how effective that technique is.
All things being equal, the more effective the required techniques
are, the more effective the standard should be. Answers to this
question might also inform judgments of whether an alternative
technique might be more effective and the adequacy of a proposed
alternate means of compliance with a given assurance requirement.
However, answers to this question will only be useful if we know
the precise purpose that each technique is meant to serve. Current
standards describe this poorly (or not at all), and consensus about
the purpose might prove illusive.

RQ16. What factors influence the efficacy of each safety technique and
by how much? (For example, will an outstanding code reviewer
find more defects than two mediocre reviewers?)

It is possible that the efficacy of a given safety technique is vari-
able, e.g., that hazard analysis might find a greater proportion
of a system’s hazards if performed by people who have substan-
tial experience with similar systems and applications. If we knew
which factors affected efficacy, we might be able to improve stan-
dards and certification by providing more targeted guidance. A
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more ambitious goal would be to build a model of how measurable
factors impact the efficacy of a safety technique. If such a model
could account for most of the variance observed in efficacy, it would
make judgments of sufficiency more repeatable and facilitate rec-
ommending concrete improvements.

RQ17. Would conformance judgment be more reliable, or standards con-
formance yield a better balance of operational risk and expense, if
standards expressed the degree to which each assurance requirement
was meant to address operational and development risks?

Some assurance requirements seem to target both operational risk
(i.e., risk to humans or the environment that arises from the sys-
tem’s behavior or is meant to be addressed by the system) and
development risk (i.e., the risk that developers will fail to con-
struct an acceptable system). Safety regulators might justifiably
be more concerned with the former than with the latter (although
there is some cause for concern that late discovery of a safety prob-
lem will lead to pressure to make exceptions). Knowing what type
of risk each assurance requirement is meant to address might plau-
sibly help assessors to focus on factors that affect operational risk
while allowing developers to take on the development risk that the
developers and their customers are comfortable assuming.

The number of questions identified is itself striking: there are many
distinct aspects of what it means for a standard to ‘work’ and many
factors that would affect how well it does. Moreover, it is noteworthy that
some questions apply only to some kinds of standards. For example, RQ1
applies only to system-level safety standards, while RQ3 applies only to
standards for software used in the context of a broader safety process that
provides software safety requirements. Where different questions apply
to two standards, it might be difficult for a regulator to use answers
to them to decide which standard to accept as a means of satisfying
applicable legal or regulatory requirements.

6 Proposed Studies

The aim of the AESSCS workshop was to plan the unplanned exper-
iment by soliciting ideas for empirically assessing the efficacy of stan-
dards for safety-critical software. The accepted position papers identify
hypotheses of interest, propose study or experiment strategies, and iden-
tify threats to validity. During the workshop, participants discussed the
proposals, offering suggestions to further refine them. In this section, we
briefly outline the six most concrete research proposals discussed during
the workshop. These six proposals illustrate the difficulty of empirically
assessing the efficacy of standards.
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6.1 What Is The Value of Formalizing Requirements?

Habli and Rae propose a concrete experiment that is part of the general
approach of assessing a standard by parts (see Section 4.2) [11]. They
propose addressing RQ15 and RQ16 in the specific case of formalization
of software requirements. Their proposal begins with the observation
that, in the course re-writing natural-language software requirements in
a formal notation, people have identified requirements errors. While this
might lead us to hypothesize the there would be fewer requirements errors
if a standard required developers to express software requirements in a
formal language, the anecdotes alone cannot support such a hypothesis.
The authors propose rigorous experiments to do so.

Hypotheses. Habli and Rae give a set of alternate hypotheses to
explain the observed ability of requirements formalization to uncover
previously-unknown requirements defects. It might be: (i) that the errors
are revealed by the increased precision of the formal notation, (ii) that
the errors are revealed by the process of re-expressing the requirements
(regardless of the notation used), (iii) that the errors are being discov-
ered because the people doing the formalization are experts, (iv) that
any effort would find errors regardless of method or expertise, (v) that
formal notations enable the use of automatic tools that are finding the
errors, or (vi) some other explanation best explains the observation.

Method. An experiment on human subjects to measure the number of
defects found by participants. Independent variables represent the key
parameters for each alternative explanation: (i) formality of notation
used, (ii) difference between source and target notations, (iii) expertise of
subject, (iv) task duration, and (v) degree to which automated analysis is
enabled. Vary independent variables singly and in combinations; the best
explanation is that associated with the variables that, when manipulated,
produce the biggest gain in number of defects found.

Threats. Habli, Rae, and the other participants identified several po-
tential threats to feasibility and validity:

1. The type or form of requirements might affect the ability of the
formalization process to identify requirements defects (thus mak-
ing the results dependent on the subject requirements used in the
experiment).

2. Some independent variables might have a non-monotonic effect on
the dependent variable.

3. The discovered defect might be the result of systems engineers
asking for the wrong thing instead of the requirement not being
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communicated clearly (in which case having them formalize the
requirement might not help).

Some workshop participants expressed a worry that the results of
such an experiment might not be generally accepted. If the experiment
showed that engineers expressing requirements in a given formal nota-
tion are less likely to introduce errors in those requirements than engi-
neers expressing requirements in natural language, skeptics might ques-
tion whether the effect was worth the cost. If the experiment did not
show that effect, some researchers might move the goalposts and claim
that formality is still valuable because it enables techniques that find
errors in formalized requirements. Such behavior would be consistent
with Kuhn’s description of the way scientific communities prefer to re-
fine models and adjust auxiliary hypotheses rather than discard cherished
beliefs [57]. Such refinement is valuable, and an accumulation of anoma-
lies and inconsistencies through experiment is a necessary pre-condition
if the current models are eventually to be discarded.

6.2 Can Mere Mortals Assess Safety Arguments?

Holloway and Johnson observe that “a common criticism of [argument-
based] standards is that using them will increase substantially the intel-
lectual burden on individuals within regulatory authorities by requiring
unrealistic general levels of competence” [12]. Anecdotes, for example
from the UK Civil Aviation Authority’s transition to safety-case based
submissions, suggest that this might not be a problem in practice, but
anecdotes are no substitute for data from well-constructed studies. Hol-
loway and Johnson propose to determine whether evaluating an argu-
ment about safety requires knowledge and skills (e.g., those a logician or
philosopher might have) that typical safety assessors do not have.

Hypothesis. Safety assessors are incapable of evaluating the adequacy
of a safety argument, particularly one that does not rely on conformance
to a process-based standard [12].

Method. Experimentation in which human subjects—safety assessors—
would evaluate the adequacy of a safety argument.

Threats. Holloway, Johnson, and the other participants identified sev-
eral potential threats to feasibility and validity:

1. It might be difficult to create a specimen system and documenta-
tion that is both realistic and sufficiently simple that (a) ground
truth can be determined and (b) participants can complete the
experiment during the time they are willing to spend as subjects.
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2. The amount of training subjects receive (if any) might affect the
outcome.

3. The presentation of the argument(s) might affect the outcome.

4. Differences between domains (e.g., rail versus aviation) might affect
the outcome.

5. The study itself might be viewed as impugning the competence of
safety assessors, reducing participation and perhaps biasing results.

6. It might be difficult to recruit an appropriate ‘representative sam-
ple’ of assessors. For example, if one recruits readily-available sub-
jects such as students, the results might not generalize to safety
assessors. If one recruits professionals by advertising at a confer-
ence, any self-selection bias in the conference attendees becomes a
bias in the sample. If one cannot recruit enough participants, the
study results might not achieve statistical significance.

Related Studies. One factor that might make it difficult to assess a
safety case is that while more prescriptive standards constrain a devel-
oper’s choice of tools, techniques, and design features, a safety argument
could, in principle, include anything. If assessors are routinely presented
with claims about unfamiliar tools, techniques, or design features, they
might have difficulty assessing those claims. But it is not yet known
that developers do, in practice, create arguments around unfamiliar ev-
idence. We could survey developers or assessors working under both
more argument-centric certification processes and more prescriptive pro-
cesses to determine whether there is an appreciable difference in practice.
We might also survey assessors to find out what they know, what they
would need to know, and what they are comfortable assessing. (See
Section 6.3.)

A related question is whether it is possible for ordinary developers to
write good safety arguments. There is ample evidence that bad safety
arguments exist. While there are very few safety arguments in the pub-
lic domain, some of these are known to contain errors in reasoning [58].
A publicly-available review into the issues surrounding the loss of one
aircraft found the production of the aircraft’s safety case to have been
“a lamentable job from start to finish” [59]. Participants in this work-
shop have seen poor reasoning and writing in safety arguments that are
not publicly available. The existence of bad safety arguments, together
with a general lack of publicly available examples of excellent arguments,
raises the question of whether it is possible for normal developers, work-
ing under normal conditions, to produce a good safety argument. This
question is also worthy of serious study.
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6.3 What Do Safety Assessors Know? What Must They
Know?

Holloway and Johnson observe that it is difficult to design experiments
such as the one proposed in Section 6.2 without an accurate understand-
ing of the current state of practice [12]. They propose a survey to collect
information about the current state of regulatory practice.

Research Question. What do conformance assessors know? What
do they need to know?

Method. Survey assessors. Enquire about education and training, the
skills assessors presently find most useful, knowledge about reasoning and
argumentation, which artifacts assessors subject to the most thorough
auditing, etc.

Threats. Holloway, Johnson, and the workshop participants identified
several potential threats to feasibility and validity:

1. It might be difficult to recruit volunteer participants and a small
response rate would make it difficult to generalize from the data.

2. It is difficult to develop unbiased survey questions.

3. The education, training, skills, and knowledge respondents perceive
as most important might not be the most important.

6.4 Do Higher Levels Yield Lower Uncertainty?

Daniels and McDermid separately observed that if a standard with multi-
ple integrity levels worked, we would expect that it would work better at
higher integrity levels than at lower integrity levels [9,13]. They propose
a range of study techniques that might determine whether this prediction
holds.

Research Question. Does conformance to a higher integrity level re-
duce the likelihood that software will contain safety-relevant defects?

Methods. Daniels and McDermid identified several forms of study
that might (partially) answer this question:

1. A historical study of either in-service failures or defects discovered
while the software was in service.

2. Retrospective qualification of existing software to various integrity
levels of a subject standard.

3. Expert review of the standard’s assurance requirements.
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4. An experiment in which subjects (possibly students, preferably
practicing professionals) construct software in conformance with
the subject standard at various integrity levels.

Threats. Daniels, McDermid, and the workshop participants identified
several potential threats to feasibility and validity:

1. Manufacturers might be reluctant to release historical data on the
in-service history of their software (if they have it).

2. Accident and incident reports might not have the detail needed for
a good retrospective study.

3. A subject software-based system that had been qualified to an
existing standard might have already achieved much or all of the
benefit of qualification to the subject standard at lower levels.

4. A subject software-based system that had not been qualified might
differ from modern safety-related software systems in ways that
make the results inapplicable.

5. It is not known whether expert judgment is a valid way to deter-
mine what the effect of applying a standard will be.

6. The performance of student subjects might not be a valid predictor
of the performance of qualified professionals.

7. It might be difficult to recruit a significant number of volunteer
professionals.

8. It might not be possible to determine how many safety-related de-
fects a specimen software system has (particularly without fielding
it for many years).

6.5 What Likelihood of Correctness Does Conformance
Produce?

Rushby, Littlewood, and Strigini propose to model the probability psrv (n)
that software will survive n independent demands without failure as

psrv (n) = pnf + (1− pnf )×
(
1− pF |f

)n
(1)

where pnf is the probability that the software is fault-free and pF |f is the
probability that the software will fail on a given demand if faulty [14,
60]. At present, we do not know either figure but can make worst-case
assumptions for pF |f . The main question is then about pnf .
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Hypothesis. That it is possible to determine, on the basis of confor-
mance to a standard, a value for pnf for a class of systems that makes a
plausible basis for making conservative yet acceptable claims about psrv
for those systems.

Methods. Assessing this hypothesis begins with establishing pnf for a
specimen class of systems. The hypothesis requires (a) a method of esti-
mating pnf on the basis of conformance, (b) that this method and Equa-
tion 1 be acceptable to certifiers/regulators, and (c) that the method
produces values of psrv high enough to be useful. Rushby, Littlewood,
and Strigini propose a preliminary test of feasibility in the form of a
combination of survey and retrospective study. The survey would ask
certifiers what pnf they might assess for each group of DO-178B objec-
tives [14]. An estimate for overall pnf would be calculated based on the
results. Retrospective studies would examine whether systems in the
specimen class have exhibited failures in operation.

Threats to validity. The authors and other participants discussed
several potential threats to feasibility and validity of both the preliminary
test and the method as a whole:

1. Certifiers might not accept the underlying mathematical model.

2. Assessors’ opinions about the implications of a standard’s assur-
ance obligations might not be reliable.

3. Accident reports might not contain all of the details needed for
retrospective assessment.

4. Some failures might go unreported.

5. Whether software is fault free might depend on (possibly unknown)
factors other than conformance to a standard so that the pnf esti-
mated for some class of systems does not apply in another.

6. It might not always be appropriate to make ‘conservative’ assump-
tions: an incorrectly low estimate of reliability might cause system
designers to target the wrong component for safety improvement.

6.6 Can We Measure Software Reliability?

Many standards for software in safety-critical applications (e.g., RTCA
DO-178C [3], IEC 61508-3 [7], and CENELEC 50128 [52]) evaluate soft-
ware indirectly through an assessment recipe: developers and indepen-
dent assessors conduct a variety of reviews, analysis, and tests of both
the final software and the development artifacts from which the software
is derived, and assess the software on the basis of the collective results.
Ashmore proposes assessing an alternative form of software standard in
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which software failure rates are measured directly [8]. If such measure-
ment is practicable, a very simple standard based on direct measurement
might inspire more confidence than those based on a more complicated,
less direct assessment approach.

Hypothesis. That it is possible to directly measure software reliability
in at least some systems of interest.

Method. Demonstration: measure the reliability of software in some
systems of interest.

Threats to validity. The authors and other participants discussed
several potential threats to feasibility and validity:

1. The test hardware might not faithfully replicate the target hard-
ware.

2. The distribution of test cases might not accurately reflect the soft-
ware’s operational distribution.

3. The test oracle must be automated and assumed to be correct.

4. Lack of knowledge about internal state might preclude estimating
the reliability of black box software.

5. The state space needed to model timing aspects might preclude
estimating the reliability of real-time software.

6. If the test hardware and sequencing mechanism require the use of
test stubs to replace I/O routines in the tested code, the results
might not apply to the software as a whole.

7 Observations

During the presentations and the discussions that followed, workshop
participants made a number of insightful observations. In this section,
we recount some of the most interesting of these.

7.1 There is the Standard, and Then There is the Stan-
dard As Applied

It is not possible to read the text of even the most prescriptive standard
and determine exactly what developers that comply to it do. There are
at least two reasons for this: (1) the standards themselves are ambiguous,
and (2) the standards might not be applied exactly as written.
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No so-called ‘prescriptive’ standard is either perfectly unambiguous
or perfectly prescriptive: there is always some flexibility in how devel-
opers interpret and satisfy its assurance requirements. This is often de-
liberate. For example, developers conforming to RTCA DO-178C might
propose “alternative methods of compliance” in their Plan for Software
Aspects of Certification [3]. While the standard does not make a di-
rect statement of the purpose of allowing alternative means, it does note
that “various [other] national and international standards for software
are available” and that developers “may be obliged . . . to comply with
additional standards.”

Moreover, in domains where conformance with a standard is used
to show satisfaction of an applicable law or regulation, regulators have
several options once a standard is finalized. For example, they might
(a) refuse to accept conformance with the standard as a means to show
satisfaction of the relevant regulatory requirements, (b) accept confor-
mance (possibly only when bits of it are interpreted in a specified way),
or (c) accept conformance with selected assurance requirements as par-
tially satisfying a regulatory requirement. For example, FAA Advisory
Circular 20-115C [47] describes how RTCA DO-178C [3] can be used to
show compliance with US airworthiness regulations.

Because standards can be interpreted, means of conformance bar-
gained with regulators, and specific interpretations mandated by regu-
lators, the text of a given standard is not a perfect description of de-
velopment or certification practice using that standard. As a result, the
question of whether or not a standard ‘works’ might have to be asked
and answered in reference to several interpretations or subsets of each
standard.

7.2 The One-Developer Assumption

Standards are typically written as though exactly one organization de-
velops a system or its software, with the notable exception of commercial
off-the-shelf software (COTS). For example, RTCA DO-178C is written
in terms of the “applicant” and notes that “matters concerning the struc-
ture of the applicant’s organization [and] the commercial relationships
between the applicant and its suppliers . . . are beyond the scope of this
document” [3]. But systems and software are sometimes (perhaps often)
created by a network of integrators and suppliers (sometimes organized
into many tiers) and the arrangements between these might affect the
safety of the resulting product.

For example, an integrator might have representatives on suppliers’
safety boards. Such representatives might be able to raise system-level
concerns where these might affect component-level design decisions and
assess the impact of component-level design decisions on system safety.
This arrangement might yield safer systems than alternatives such as
documentation of the assumed scope of applicability and assumed safety
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requirements of a component used out of context [41]. But such oversight
is an expense and some suppliers would prefer greater protection of their
intellectual property.

The reality of products developed by more than one development or-
ganization prompts related research questions about how such arrange-
ments should be structured, managed, and regulated. The existence of
integrator-supplier relationships also means that any assessment of the
efficacy of standards might need to account for the effect of such rela-
tionships.

7.3 Ambiguous Assurance Requirements

Assurance requirements in standards for software in safety-critical ap-
plications often require interpretation [61]. This interpretation raises
several questions: (1) Are there assurance requirements that cannot be
conformed to as written?, (2) Can conformance be determined reliably?,
(3) Is it possible to write assurance requirements that are less open to in-
terpretation?, and (4) Are some assurance requirements more important
than others? Note that question (2) can also be asked in a more specific
form, namely Can conformance be determined reliably based solely on the
conformance evidence demanded by the standard?

Some assurance requirements of current standards would seem to be
impossible for all applicants to conform to exactly as written. For exam-
ple, RTCA DO-178C directs developers to conduct “review and analysis
activities” to “determine the correctness and consistency of the Source
Code, including . . . worst-case execution timing” (Objective 6.3.4.f, em-
phasis ours) [3]. Despite the text, applicants are not strictly expected to
assess worst case execution timing by analysis of high-level source code
(alone): the standard observes that “the compiler . . . , the linker . . . ,
and some hardware features may have an impact on the worst-case exe-
cution timing” and notes that “a combination of reviews, analyses, and
tests may be developed to establish the worst-case execution time” (em-
phasis ours). However, the words ‘correctness’ and ‘establish’ suggest
that applicants should determine the actual worst-case execution time
rather an a sufficiently-accurate estimate or conservative upper bound.
For complex modern processors, this is not always possible [62]. One
workshop participant labeled such assurance requirements ‘pretentious’
and related that incredulous developers had asked him how they could
possibly show that they had conformed. A survey such as that proposed
in Section 6.3 or an analysis of the standards’ texts such as that proposed
in Section 6.4 might help to identify such assurance requirements.

We might suppose that, if assessors cannot reliably determine whether
or not a standard has been conformed with, that standard cannot be ef-
fective. Fusani and Lami noted this and proposed addressing it with
“a quality requirement for standards” [10, 63]. Making conformance as-
sessment more reliable might be desirable for many reasons, including
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making development and certification costs more predictable for develop-
ers. However, knowing whether or not conformance assessment is reliable
might not tell us whether a standard works. Suppose that we take ‘work’
to mean that a system that conforms is very unlikely to be unsafe or in-
correct (see Section 3.2). Variation in conformance judgment might mark
the difference between false negatives (safe/correct but not conforming)
and true positives (safe/correct and conforming). This might be true if,
for example, causal factors such as developer expertise, diligence, and
organizational safety culture are stronger causes of safety or correctness
than conformance with the standard’s assurance requirements.

If there is significant variance in conformance assessments, we might
ask whether it is possible to reduce that variance, and, if so, how.
Fusani and Lami have proposed some means to do this, as have oth-
ers [10, 63–66]. However, two factors might make this difficult. First,
precise specification of what must be done might harm innovation. (See
Section 7.1.) Second, some flexibility in interpretation might be needed
to gain the consensus of a diverse standardization committee.

Finally, it might be the case that not all assurance requirements are
equally important. In part, this is a matter of differences between appli-
cations. For example, in an application where deadlines are generous or
missing them has little safety impact, assurance requirements related to
execution time might be less important than in applications where dead-
lines are tighter and the consequences of missing them more dire. But
this might also be a matter of assurance requirements targeting a mix
of operational risk and development risk. For example, RTCA DO-178C
requires developers to review and/or analyze high-level software require-
ments to ensure that “requirements do not conflict with each other”
(Objective 6.3.1.b) [3]. If we could determine whether software met its
high-level requirements with perfect confidence, this assurance require-
ment would serve only to save developers from constructing a system
only to find that it did not satisfy a requirement and required expensive
rework. But because no current evidence of requirements satisfaction is
perfect, this assurance requirement also addresses operational risk. The
varying balance of operational risk and development risk as motivation
for assurance requirements raises RQ17.

In any case, participants agreed that current standards left room for
interpretation. This highlights the important distinction between assess-
ing a standard as applied and assessing the same standard as written.

7.4 Can Software Behavior at the System Level Always
Be Anticipated?

During the workshop, several participants raised the issue of growing
software complexity. Decades ago, software-related accidents made clear
the difficulty of accurately predicting the safety-related behavior of soft-
ware and the wisdom of implementing safety features in easily-assessed
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hardware where practicable [1]. Avoiding software complexity might not
always yield lower risk: complex software has enabled safety advances
that would not be possible with simple hardware15. But the recipe ap-
proach used by most system-level safety standard requires human beings
to understand the potential safety implications of software behavior in
order to generate sufficient software safety requirements16. The growing
complexity of software raises a question: Is it always possible for human
beings to anticipate all relevant potential effects of software behavior at
the system level?

No workshop participant sketched a study meant to address this ques-
tion. However, given the trend towards ever more software in safety-
related products [68], this question needs to be addressed.

7.5 The Problem of Data Confidentiality

Assessing what works and what doesn’t in safety practice sometimes
requires studying details about the practices of developers and regula-
tors and the products they build and regulate. For example, the studies
sketched in Section 6.3, Section 6.4, and Section 6.5 require such in-
formation. Despite the importance of answering these questions, this
information might be difficult to obtain because the people who have it
regard it as confidential.

Development organizations might be reluctant to share information
with researchers for many reasons, including: (1) fear that the revealed
information might prove embarrassing, (2) concern that details revealed
could be used in a lawsuit, and (3) reluctance to give competitors in-
formation that would convey a competitive advantage. Disclosure agree-
ments might go some way toward addressing these concerns, but it might
be difficult to anonymize data sufficiently well to allay them. For exam-
ple, a researcher might eliminate proper names from a paper, but if he
or she is known to have worked with a specific company in the past,
readers might suspect that the anonymized details are from that com-
pany. Aggregating data from many individuals has helped to preserve
anonymity in other research areas (e.g., in health research), but in some
safety-related application domains there are so few participating organi-
zations that this measure might prove insufficient. No general solution
to this problem was raised during the workshop.

15 For example, there are far fewer controlled flight into terrain (CFIT) accidents
since commercial aircraft were equipped with enhanced ground proximity warning
systems (EGPWS) [67].

16 It isn’t strictly necessary for human beings to be able to predict the exact behavior
of a system containing software. If developers anticipate the possibility of a behavior
and determine that the behavior is undesirable, the system can be engineered to
preclude it.
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8 Related Work

The issues of whether standards for software in safety critical systems
work and how to improve them have been a topic of discussion in the
relevant literature for many years (e.g., [64–66, 69]). There have been
studies into the efficacy of such standards (e.g., [70]). There are papers
in the relevant literature raising research questions about the role of stan-
dards in achieving safety and sketching studies to answer those questions
(e.g., [18]). There are even standards for standards (e.g., [71, 72]).

As far as we know, however, AESSCS 2014 was the first workshop
exclusively dedicated to the question of how to rigorously assess whether
such standards work. Many of the ideas brought to the workshop will
have been introduced elsewhere, perhaps by people other than the work-
shop participants. The value of the workshop—and of this paper—is
in bringing those ideas together to begin to assemble a coherent set of
research questions and to sketch studies that might address those ques-
tions.

9 Conclusions

The Planning the Unplanned Experiment: Assessing the Efficacy of Stan-
dards for Safety Critical Software workshop, held in conjunction with the
European Dependable Computing Conference (EDCC) in May 2014, at-
tracted 23 participants and 7 position papers. Participants discussed
what it means for such standards to work, identified research ques-
tions related to such standards, proposed studies and experiments to
address these, and identified threats to the validity of those studies and
experiments and challenges to their success. Participants broadly agreed
that the scientific literature lacks the well-founded empirical results that
should underpin excisions about how to regulate safety. Some partici-
pants expressed a desire to proceed with some of the work discussed at
the workshop.

One conclusion that can be drawn from the position papers and the
workshop discussion is that there are several different definitions of what
it might mean for a software safety standard to ‘work.’ The difference
in scope between standards that cover safety at a system level (e.g., ISO
26262 [25]) and that focus almost exclusively on software correctness
(e.g., RTCA DO-178C [3]) is, perhaps, well known. But participants also
discussed definitions focused on bounding uncertainty in safety or cor-
rectness claims, addressing the risk from the most likely or consequential
mistakes, promoting developer competence, and giving certifiers a tool
with which to improve safety.

Another conclusion is that there might be several different approaches
to assessing standards. For example, one might measure the effect of con-
forming to the standard (e.g., on dangerous failure rates or safety-related

33



defect density). One might assess a standard by parts, identifying what
each assurance requirement is meant to demonstrate and how well the
techniques used to satisfy that requirement accomplish that goal. One
might instead assess conditions thought to be necessary for the standard
to work, reasoning that if such conditions are absent then the standard
needs improvement. One might even focus on how well a standard ad-
dresses the problems of the past.

Perhaps as a result of these realities, participants identified many
distinct research questions at many different levels of abstraction.

Participants sketched and discussed several proposals for research to
address those research questions. While participants generally agreed
that the results would be useful, participants also agreed that most of
the proposed research would be very challenging to conduct.

Research into the efficacy of standards for software in safety critical
systems could be challenging for several reasons. Experiments involv-
ing human subjects face the difficulty of recruiting a sufficient number
of representative subjects. Students are easier to recruit, but results
obtained from students might not generalize to practicing profession-
als. Practicing professionals are, almost by definition, busy people with
many demands on their time. Historical studies are limited by the qual-
ity and quantity of the available data. Accident and incident reports
might not contain the necessary detail, and successful safety engineer-
ing leads to accident and incident rates so low as to be difficult to draw
statistically-valid conclusions from. And the most detailed and useful in-
formation is likely to be the property of for-profit software development
corporations that might be reluctant to share it. Participants deemed
the studies most likely to directly inform policy decisions—those that
directly correlate conformance and risk—so difficult as to be unlikely to
be successful. Nevertheless, an empirical assessment need not be perfect
to be useful. For example, experiments using student volunteer subjects,
while not definitive, might serve to distinguish standards that require re-
vision from standards that are plausibly effective and thus worthy of a
more definitive (and expensive) evaluation.

Workshop participants generally agreed that, given the importance of
the topic, it would be worthwhile to go forward with some of the proposed
studies. The proposals by Holloway and Johnson to assess whether safety
assessors have the knowledge and skill necessary to assess safety cases
were deemed particularly relevant given the current interest in safety
cases as a basis for making acceptance decisions.
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