2,404 research outputs found

    Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach

    Full text link

    New developments in mathematical control and information for fuzzy systems

    Get PDF
    Hamid Reza Karimi, Mohammed Chadli and Peng Sh

    DESIGN AND IMPLEMENTATION OF DIGITAL CONTROLLER IN DELTA DOMAIN FOR BUCK CONVERTER

    Get PDF
    This paper presents the design and implementation of a discrete-time controller for a DC-DC Buck converter in the complex delta domain. Whenever any continuous-time system is sampled to get a corresponding discrete-time system with a very high sampling rate, the shift operator parameterized discrete-time system fails to provide meaningful information. There is another discrete-time operator called delta operator. In the delta operator parameterized discrete-time system, the discrete-time results and continuous-time results can be obtained hand to hand, rather than in two special cases at a very high sampling rate. The superior property of the delta operator is capitalized in this paper to design the proposed controller in the discrete domain. The Proportional plus Integral (PI) controller designed in the delta domain is used to maintain the output voltage of the Buck converter at the load end for varying load and varying supply voltage conditions. The controller is designed and implemented using the DS1202 dSPACE board. The output voltage of the Buck converter is scaled to feed to the onboard analogue to digital converter of DS1202. Under the different disturbances, the error between the desired output voltage and the actual output voltage is measured and the delta PI controller is used to manipulate the duty cycle of the converter. The duty cycle of this pulse width modulation (PWM) signal is generated using a DS1202 board and is applied to the gate of the Metal Oxide Semiconductor field-effect transistor (MOSFET) via a suitable driver such that the output voltage of the Buck converter remains at its desired value

    Review of dynamic positioning control in maritime microgrid systems

    Get PDF
    For many offshore activities, including offshore oil and gas exploration and offshore wind farm construction, it is essential to keep the position and heading of the vessel stable. The dynamic positioning system is a progressive technology, which is extensively used in shipping and other maritime structures. To maintain the vessels or platforms from displacement, its thrusters are used automatically to control and stabilize the position and heading of vessels in sea state disturbances. The theory of dynamic positioning has been studied and developed in terms of control techniques to achieve greater accuracy and reduce ship movement caused by environmental disturbance for more than 30 years. This paper reviews the control strategies and architecture of the DPS in marine vessels. In addition, it suggests possible control principles and makes a comparison between the advantages and disadvantages of existing literature. Some details for future research on DP control challenges are discussed in this paper

    Neural Network Control for the Probe Landing Based on Proportional Integral Observer

    Get PDF
    For the probe descending and landing safely, a neural network control method based on proportional integral observer (PIO) is proposed. First, the dynamics equation of the probe under the landing site coordinate system is deduced and the nominal trajectory meeting the constraints in advance on three axes is preplanned. Then the PIO designed by using LMI technique is employed in the control law to compensate the effect of the disturbance. At last, the neural network control algorithm is used to guarantee the double zero control of the probe and ensure the probe can land safely. An illustrative design example is employed to demonstrate the effectiveness of the proposed control approach

    Advantages of Fuzzy Control While Dealing with Complex/ Unknown Model Dynamics: A Quadcopter Example

    Get PDF
    Commonly, complex and uncertain plants cannot be faced through well-known linear approaches. Most of the time, complex controllers are needed to attain expected stability and robustness; however, they usually lack a simple design methodology and their actual implementation is difficult (if not impossible). Fuzzy logic control is an intelligent technique which, on its basis, allows the translation from logic statements to a nonlinear mapping. Although it has been proven to effectively deal with complex plants, many recent studies have moved away from the basic premise of linguistic interpretability. In this work, a simple fuzzy controller is designed in a clear way, privileging design easiness and logical consistency of linguistic operators. It is simulated together to a nonlinear model of a quadcopter with added actuators variability, so the robust operation of the controller is also proven. Uneven gain, bandwidth, and time-delay variations are applied among quadcopter’s motors, so the simulations results enclose those characteristics which could be found in reality. As those variations can be related to actuators’ performance, an analysis can be driven in terms of the features which are not commonly included in mathematical models like power electronics drives or electric machinery. These considerations may shorten the gap between simulation and actual implementation of the fuzzy controller. Briefly, this chapter presents a simple fuzzy controller which deals with a quadcopter plant as a first approach to intelligent control

    Modeling and Control of Piezoactive Micro and Nano Systems

    Get PDF
    Piezoelectrically-driven (piezoactive) systems such as nanopositioning platforms, scanning probe microscopes, and nanomechanical cantilever probes are advantageous devices enabling molecular-level imaging, manipulation, and characterization in disciplines ranging from materials science to physics and biology. Such emerging applications require precise modeling, control and manipulation of objects, components and subsystems ranging in sizes from few nanometers to micrometers. This dissertation presents a comprehensive modeling and control framework for piezoactive micro and nano systems utilized in various applications. The development of a precise memory-based hysteresis model for feedforward tracking as well as a Lyapunov-based robust-adaptive controller for feedback tracking control of nanopositioning stages are presented first. Although hysteresis is the most degrading factor in feedforward control, it can be effectively compensated through a robust feedback control design. Moreover, an adaptive controller can enhance the performance of closed-loop system that suffers from parametric uncertainties at high-frequency operations. Comparisons with the widely-used PID controller demonstrate the effectiveness of the proposed controller in tracking of high-frequency trajectories. The proposed controller is then implemented in a laser-free Atomic Force Microscopy (AFM) setup for high-speed and low-cost imaging of surfaces with micrometer and nanometer scale variations. It is demonstrated that the developed AFM is able to produce high-quality images at scanning frequencies up to 30 Hz, where a PID controller is unable to present acceptable results. To improve the control performance of piezoactive nanopositioning stages in tracking of time-varying trajectories with frequent stepped discontinuities, which is a common problem in SPM systems, a supervisory switching controller is designed and integrated with the proposed robust adaptive controller. The controller switches between two control modes, one mode tuned for stepped trajectory tracking and the other one tuned for continuous trajectory tracking. Switching conditions and compatibility conditions of the control inputs in switching instances are derived and analyzed. Experimental implementation of the proposed switching controller indicates significant improvements of control performance in tracking of time-varying discontinuous trajectories for which single-mode controllers yield undesirable results. Distributed-parameters modeling and control of rod-type solid-state actuators are then studied to enable accurate tracking control of piezoactive positioning systems in a wide frequency range including several resonant frequencies of system. Using the extended Hamilton\u27s principle, system partial differential equation of motion and its boundary conditions are derived. Standard vibration analysis techniques are utilized to formulate the truncated finite-mode state-space representation of the system. A new state-space controller is then proposed for asymptotic output tracking control of system. Integration of an optimal state-observer and a Lyapunov-based robust controller are presented and discussed to improve the practicability of the proposed framework. Simulation results demonstrate that distributed-parameters modeling and control is inevitable if ultra-high bandwidth tracking is desired. The last part of the dissertation, discusses new developments in modeling and system identification of piezoelectrically-driven Active Probes as advantageous nanomechanical cantilevers in various applications including tapping mode AFM and biomass sensors. Due to the discontinuous cross-section of Active Probes, a general framework is developed and presented for multiple-mode vibration analysis of system. Application in the precise pico-gram scale mass detection is then presented using frequency-shift method. This approach can benefit the characterization of DNA solutions or other biological species for medical applications

    Sensor-less maximum power extraction control of a hydrostatic tidal turbine based on adaptive extreme learning machine

    Get PDF
    In this paper, a hydrostatic tidal turbine (HTT) is designed and modelled, which uses more reliable hydrostatic transmission to replace existing fixed ratio gearbox transmission. The HTT dynamic model is derived by integrating governing equations of all the components of the hydraulic machine. A nonlinear observer is proposed to predict the turbine torque and tidal speeds in real time based on extreme learning machine (ELM). A sensor-less double integral sliding mode controller is then designed for the HTT to achieve the maximum power extraction in the presence of large parametric uncertainties and nonlinearities. Simscape design experiments are conducted to verify the proposed design, model and control system, which show that the proposed control system can efficiently achieve the maximum power extraction and has much better performance than conventional control. Unlike the existing works on ELM, the weights and biases in the ELM are updated online continuously. Furthermore, the overall stability of the controlled HTT system including the ELM is proved and the selection criteria for ELM learning rates is derived. The proposed sensor-less control system has prominent advantages in robustness and accuracy, and is also easy to implement in practice

    Design of Sliding Mode PID Controller with Improved reaching laws for Nonlinear Systems

    Full text link
    In this thesis, advanced design technique in sliding mode control (SMC) is presented with focus on PID (Proportional-Integral-Derivative) type Sliding surfaces based Sliding mode control with improved power rate exponential reaching law for Non-linear systems using Modified Particle Swarm Optimization (MPSO). To handle large non-linearities directly, sliding mode controller based on PID-type sliding surface has been designed in this work, where Integral term ensures fast finite convergence time. The controller parameter for various modified structures can be estimated using Modified PSO, which is used as an offline optimization technique. Various reaching law were implemented leading to the proposed improved exponential power rate reaching law, which also improves the finite convergence time. To implement the proposed algorithm, nonlinear mathematical model has to be decrypted without linearizing, and used for the simulation purposes. Their performance is studied using simulations to prove the proposed behavior. The problem of chattering has been overcome by using boundary method and also second order sliding mode method. PI-type sliding surface based second order sliding mode controller with PD surface based SMC compensation is also proposed and implemented. The proposed algorithms have been analyzed using Lyapunov stability criteria. The robustness of the method is provided using simulation results including disturbance and 10% variation in system parameters. Finally process control based hardware is implemented (conical tank system)
    corecore