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ABSTRACT 

Piezoelectrically-driven (piezoactive) systems such as nanopositioning platforms, 

scanning probe microscopes, and nanomechanical cantilever probes are advantageous 

devices enabling molecular-level imaging, manipulation, and characterization in 

disciplines ranging from materials science to physics and biology. Such emerging 

applications require precise modeling, control and manipulation of objects, components 

and subsystems ranging in sizes from few nanometers to micrometers. This dissertation 

presents a comprehensive modeling and control framework for piezoactive micro and 

nano systems utilized in various applications.  

The development of a precise memory-based hysteresis model for feedforward 

tracking as well as a Lyapunov-based robust-adaptive controller for feedback tracking 

control of nanopositioning stages are presented first. Although hysteresis is the most 

degrading factor in feedforward control, it can be effectively compensated through a 

robust feedback control design. Moreover, an adaptive controller can enhance the 

performance of closed-loop system that suffers from parametric uncertainties at high-

frequency operations. Comparisons with the widely-used PID controller demonstrate the 

effectiveness of the proposed controller in tracking of high-frequency trajectories. The 

proposed controller is then implemented in a laser-free Atomic Force Microscopy (AFM) 

setup for high-speed and low-cost imaging of surfaces with micrometer and nanometer 

scale variations. It is demonstrated that the developed AFM is able to produce high-

quality images at scanning frequencies up to 30 Hz, where a PID controller is unable to 

present acceptable results.  
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To improve the control performance of piezoactive nanopositioning stages in tracking 

of time-varying trajectories with frequent stepped discontinuities, which is a common 

problem in SPM systems, a supervisory switching controller is designed and integrated 

with the proposed robust adaptive controller. The controller switches between two control 

modes, one mode tuned for stepped trajectory tracking and the other one tuned for 

continuous trajectory tracking. Switching conditions and compatibility conditions of the 

control inputs in switching instances are derived and analyzed. Experimental 

implementation of the proposed switching controller indicates significant improvements 

of control performance in tracking of time-varying discontinuous trajectories for which 

single-mode controllers yield undesirable results.      

Distributed-parameters modeling and control of rod-type solid-state actuators are then 

studied to enable accurate tracking control of piezoactive positioning systems in a wide 

frequency range including several resonant frequencies of system. Using the extended 

Hamilton’s principle, system partial differential equation of motion and its boundary 

conditions are derived. Standard vibration analysis techniques are utilized to formulate 

the truncated finite-mode state-space representation of the system. A new state-space 

controller is then proposed for asymptotic output tracking control of system. Integration 

of an optimal state-observer and a Lyapunov-based robust controller are presented and 

discussed to improve the practicability of the proposed framework. Simulation results 

demonstrate that distributed-parameters modeling and control is inevitable if ultra-high 

bandwidth tracking is desired. 
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The last part of the dissertation, presents new developments in modeling and system 

identification of piezoelectrically-driven Active Probes as advantageous nanomechanical 

cantilevers in various applications including tapping mode AFM and biosensors. Due to 

the discontinuous cross-section of Active Probes, a general framework is developed and 

presented for multiple-mode vibration analysis of system. Application in precise pico-

gram scale mass detection is then presented using frequency-shift method. This approach 

can benefit the characterization of DNA solutions or other biological species for medical 

applications. 
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CHAPTER ONE 

 

INTRODUCTION AND OVERVIEW 

 

1.1. Introduction 

The discovery of piezoelectricity over a century ago has now enabled the extensive 

growth of state-of-the-art technologies in demanding areas such as molecular and atomic 

level imaging, manipulation and instrumentation. Piezoactive micro and nano systems are 

referred to a class of dynamic systems driven by piezoelectric materials being able to 

generate controlled motions up to several millimeters with micrometer and nanometer 

resolutions. From engineering perspective, an application can only lead to meaningful 

results if a certain level of precision can be acquired from its subsystems. This has 

attracted the attention of numerous research groups and organizations worldwide with the 

interest of piezoactive systems toward multidisciplinary research on the subjects of 

material processing and property enhancement, design improvement and manufacturing, 

and system modeling and precision control. The focus of this work is on the modeling 

and control aspects of piezoactive micro and nano systems which suffer from hysteresis 

and creep nonlinearities in feedforward control, and parametric uncertainties and 

dynamical effects in both feedforward and feedback schemes. In the following sections, 

brief history of piezoelectricity, molecular structure of piezoelectric materials, potential 

applications of piezoactive system and their substantial research challenges are described 

in further detail.    
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1.1.1. History of Piezoelectricity 

Piezoelectricity is referred to phenomenon in particular solid-state materials which 

demonstrate a coupling between their electrical, mechanical, and thermal states generated 

by applying mechanical stress to dielectric crystals. The word "piezo" originates from a 

Greek word meaning for pressure. The first experimental demonstration of a connection 

between the macroscopic piezoelectric phenomenon and the crystallographic structure 

was published in 1880 by Curie brothers, Pierre and Jacques [1]. They discovered that 

when subjected to a mechanical pressure, the crystals become electrically polarized; 

tension and compression generates voltages of opposite polarity, and proportional to the 

applied force. Later, they also verified that an electrical field applied to the crystal would 

lead to a deformation of the material. This effect was referred to as the inverse piezo 

effect.  

In 1893, Kelvin made a significant contribution to piezoelectricity by presenting 

analogy models and laying out some of the basic framework that led to the modern theory 

of piezoelectricity [2]. After this discovery, it took several decades to utilize the 

piezoelectric phenomenon for practical applications. The first commercial applications 

were ultrasonic submarine detectors developed during World War I. After the end of 

World War II, barium titanate oxide (BaTiO3) ceramic was first produced and by the 

early 1950s was well established as a piezoelectric transducer material [3]. In 1954, lead 

zirconate titanate (PbZrTiO3–PbTiO3) or PZT ceramics were developed and replaced the 

barium titanate in all fields of piezoelectric applications. Today, PZT ceramics are the 

most widely used of all ceramic materials because of their excellent properties [4].  
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Much of the work carried out from the 1960s to present has been in developing 

applications for PZT materials (such as in ceramic capacitors). However, research 

continues into the development of new materials with exciting potential as piezoelectrics. 

For example, in 1997 Grupp and Goldman found a giant piezoelectric effect in strontium 

titanate (SrTiO3) at very low temperatures [5], or recently the piezoelectricity in boron 

nitride nanotubes [6, 7]. 

 

1.1.2. Structure of Piezoceramic Materials [8] 

Piezoelectric ceramics are considered as a mass of minute crystals. They have a 

tetragonal shape very close to cubic, and obey the general formula 2+ 4+ 2-
3A B O , in which A 

denotes a large divalent metal ion such as lead or barium, B denotes a tetravalent metal 

ion such as zirconium or titanium, and O denotes oxygen. A piezoelectric ceramic is 

prepared by mixing specific proportions of fine powders of the component metal oxides 

and then, heating up to form a uniform powder. The powder is mixed with an organic 

binder, and then formed into desired shape such as disc, rod, and plate. The elements are 

heated up in a specific temperature for a certain time, during which the particles sinter 

and form a dense crystalline structure. The elements are then cooled, trimmed and shaped 

into their final configuration. 

There is a certain temperature known as the Curie point above which these crystals 

exhibit a simple symmetrical cubic shape as shown in Figure 1.1(a), this structure is 

centrosymmetric and does not contain dipoles because the positive and negative charges 
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site coincide. However, blow the Curie point the crystals take on the tetragonal shape as 

shown in Figure 1.1(b), in which positive and negative charges site no longer coincide. 

Therefore, each unit represents a built-in electric dipole, which is a desirable property of 

the piezoelectric ceramics. Such materials are labeled ferroelectric because of their 

similar electrical behavior in analogy with magnetic behavior of ferromagnetic materials.  

 

Figure 1.1. Piezoelectric crystal elementary cell: (a) Cubic lattice above Curie 

temperature, and (b) tetragonal lattice below Curie temperature [8]. 

The dipoles are not primarily in the same orientation throughout the material. 

Neighboring dipoles align to each other to make regions of local alignment known as 

Weiss domains. These domains are randomly oriented, and primarily, the material does 

not exhibit overall polarization or piezoelectric effect. However, it is possible to make the 

material piezoelectric by exposing it to a strong field at a temperature slightly below the 

Curie point. This will make the dipoles to be aligned in the direction of the applied field. 

Due to the ferroelectric property, dipoles approximately maintain their orientation after 

the electric field is removed. This polling treatment gives the material so-called remanent 

a b
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polarization and permanent deformation. Figure 1.2 depicts the electric diploes before, 

during, and after the polarization.  

 

Figure 1.2. Electric dipoles in Weiss domains: (a) before polarization, (b) during 

polarization, and (c) after polarization. 

1.1.3. Piezoactive Micro and Nanopositioning Stages 

Piezoactive stages typically consist of a stack of many layers of electro-active solid-state 

piezoelectric ceramics, alternatively connected to the positive and negative terminals of a 

voltage source, as shown in Figure 1.3(a). They have very fast response and repeatable 

nanometer and sub-nanometer motion at high frequencies, because their motion is 

derived through solid state crystals. There are no moving parts, and no "stick-slip" effect 

occurs and therefore, they present unlimited resolution in theory, making them 

advantageous tools for micro/nano-scale metrology and manipulation applications. On 

the other hand, piezoactive stages can be designed to move heavy loads up to several 

tons, however, they are very sensitive to pulling forces. In order to reduce such 

sensitivity, they are internally preloaded with spring configuration as shown in Figure 

1.3(b).   

a b c 
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Figure 1.3. Structure of piezoactive positioning stages: (a) piezoelectric ceramics 

separated with metallic electrodes, and (b) stack preloaded with spring.  

A typical piezoactive stack stage is comprised of hundreds of piezoceramic disks with 

thickness on the order of a hundred microns. Piezoactive stages can achieve a strain on 

the order of 1/1000 (0.1%) and the total displacement of the stage is determined as the 

superposition of each individual ceramic layer elongation. For example, a 100 mm long 

stack can expand up to 100 micrometers, by applying the maximum allowable field. 

However, there exist several amplification methods to increase the stage displacement 

range by a factor of 2 to 20. To keep the sub-nanometer resolution, friction-free flexures 

are utilized. Examples of such mechanisms are shown in Figure 1.4. 

 

Figure 1.4. Flexural mechanisms for amplification of piezoelectric actuator displacement 

[8]. 

a b
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1.1.4. Piezoactive Nano Mechanical Cantilever Probes  

Recently, NanoMechanical Cantilevers (NMCs) have been extensively utilized in Atomic 

Force Microscopy (AFM) and ultrasmall mass sensors in various applications from 

biological sciences to chemistry and physics [9-12]. The sensitivity of the NMC resonant 

frequencies to an added mass can be utilized to measure the amount of that mass. In order 

to enhance the sensitivity and resolution of dynamic mode measurement at pico-gram or 

smaller levels, the piezoactive NMCs, the so-called “Active Probes” can be a promising 

alternative for the replacement of commonly used base excited NMC sensors. Since the 

Active Probe is covered by a uniformly distributed piezoelectric layer on the top surface 

(Figure 1.5), the cantilever can be actuated with higher amplitude and uniformity when 

compared to based-excited systems. This results in higher resolution of frequency shifts 

as a result of added tiny mass to the probe. Additionally, it is possible to operate the 

Active Probes in self-sensing mode in order to obtain portable NMC-based mass 

detectors [11]. In this approach, the same piezoelectric patch layer used for probe 

actuation is utilized to detect the resonant frequencies.  

 

Figure 1.5. Piezoactive NMC beam with cross-sectional discontinuity.     
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Nevertheless, NMC Active Probes suffer from the cross-sectional discontinuities due 

to the piezoelectric layer attachment and the cross sectional step the tip zone. This would 

necessitate using discontinuous beam theory in the analysis and modeling such systems. 

 

1.1.5.  Applications of Piezoactive Systems 

Piezoelectric ceramics can be utilized in four general applications: generators, sensors, 

transducers, and actuators. As generators, they covert mechanical impulse or pressure 

into electrical power that could be utilized as spark igniter systems or power harvesting 

applications [13, 14]. As sensors, they convert the mechanical force or movement into a 

proportional electric signal that could be used as acceleration and pressure sensors [15, 

16]. When operated in high frequencies (>10 kHz), piezoelectric ceramics could be 

utilized as sonic and ultrasonic transducers to generate high frequency sounds for 

different testing and measurement applications [17, 18].  

Piezoactive stages with their ultra-fine resolution and fast frequency response are 

utilized in variety of micro and nanopositioning applications. Many emerging 

applications could be found for piezoactive stages in today’s research and technology. 

Based on the Physik Instrumente (PI)® catalog [8], the following various categories for 

piezoelectric actuator applications could be listed; In Life Science, Medicine and Biology 

category they are utilized for scanning microscopy, patch clamping, gene manipulation, 

micromanipulation, cell penetration, and microdispersing. In Semiconductors and 

Microelectronics they are implemented for nanometrology, wafer and mask positioning 

and alignment, critical dimension measurement, microlithography and nanolithography, 
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inspection systems, and vibration cancellation. In Optics and Photonics technologies they 

are used for fiber optic alignment and switching, image stabilization, adaptive optics, 

scanning microscopy, auto-focus systems, interferometry, laser tuning and mirror 

positioning. In Precision Machines and Mechanical Engineering they are employed for 

vibration cancellation, wear correction, needle-valve actuation, micropumps, knife edge 

control in extrusion tools, and micro-engraving systems. 

  

1.1.6. Nonlinearities in Piezoelectric Materials 

Piezoelectric materials suffer from material-level nonlinearities such as hysteresis and 

creep that drastically degrade their performance in precision positioning. Hysteresis is 

referred to a complex input/output multi-loop phenomenon with a memory-dominant 

nature [19-22].  That is, the future value of the output depends not only on the 

instantaneous value of the input but also on the history of its operation, especially the 

extremum values. Hysteresis nonlinearity originates from the material crystalline 

polarization and molecular effects. Figure 1.6 demonstrates a typical hysteresis response 

of a piezoactive stage to an alternating triangular input profile. 

Creep is defined as unwanted changes, generally in logarithmic shape, in the 

displacement of piezoelectric actuator over time. This phenomenon is related to the effect 

of the applied voltage on the remanent polarization of the piezo ceramics. Generally, 

creep is the expression of the slow realignment of the crystal domains in a constant 
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electric field over time [8]. Figure 1.7 demonstrates a creep response of a piezoelectric 

actuator to a step input. 

 

Figure 1.6. Hysteresis response of a piezoactive nanopositioning stage to an arbitrarily 

alternating input. 

 

Figure 1.7. Creep response of a piezoactive nanopositioning stage to a step input. 
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1.1.7. Modeling and Control of Piezoactive Stages 

Modeling of piezoactive systems can be divided into two parts (see Figure 1.8): (i) 

modeling of material-level nonlinearities which mainly include creep and hysteresis 

phenomena, and (ii) modeling the combined dynamics of piezoelectric element and the 

attached mechanical compartments (e.g. flexures). Over time, there has been a continuous 

interest on the modeling and compensation of hysteresis nonlinearity for various dynamic 

systems. This has led to invention of numerous methodologies ranging from classical 

phenomenological methods such as Preisach [23, 24] and Prandtl-Ishlinskii [25, 26] 

operators, to recently developed constitutive methods including the Lining method [27, 

28] and the memory-based frameworks [20-22]. 

 

Figure 1.8. Modeling strategy for piezoactive systems. 

Derivation of dynamic models for piezoactive systems depends on their structural and 

geometrical configurations. For example, piezostack actuators and flexures can be 
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modeled by rod-type structures with appropriate boundary conditions. On the other hand, 

piezopatch actuators can be attached to flexible beams, plates, and shells whose structures 

determine the dynamics of system. In general, the dynamics of piezoactive systems can 

be well described by distributed-parameters representation expressed by partial 

differential equations. However, depending on the frequency of operation, system can be 

safely simplified to lumped-parameters representation. Although a few works have 

adopted distributed-parameters models for piezostack systems [29, 30], many others have 

considered lumped-parameters representation [31-33]. Their justification relies on the 

fact that piezostack systems usually have higher resonant frequencies than the operational 

frequency. Hence, the need for modeling of higher modes is eliminated when working 

below the first resonance. Conversely, piezopatch systems are generally attached to 

flexible structures whose resonant modes may fall within the operational frequencies. 

Thus, a well formulated distributed-parameters representation is required to account for 

the dynamics. Examples of piezopatch systems attached to different flexible structure are 

given in [34-36].    

While piezopatch actuators are widely used for vibration control purposes, piezostack 

actuators are mostly used for precision positioning and trajectory tracking tasks. Tracking 

control of piezoelectric stack actuators have been extensively carried out in both 

feedforward and feedback control schemes.  Most feedforward controllers cascade an 

inverse hysteresis model in series with plant to cancel out the effect of nonlinearity and 

achieve a relatively linear response [21, 24, 27]. There are a few references that have 

accounted for plant dynamics as well as hysteresis nonlinearity in feedforward control 
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scheme [26]. However, for ultra-accurate positioning and tracking of high-frequency 

trajectories, the use of feedback controller is inevitable.  Examples of such techniques 

could include time-optimal motion control [37], proportional-integral control with inverse 

model compensation [38], sliding mode [39, 40], adaptive [41], and neural network-based 

control [42]. 

Although extensive references are available on the modeling and control of 

piezoactive micro and nano systems, with the complexity in the dynamic behavior of 

such systems and the required level of precision and bandwidth, there is need for 

fundamental and innovative research in this area to enhance the present frameworks or 

generate new methodologies that meet the increasing demands of today’s research and 

industry. The next subsection presents the driving motivations of this effort. 

 

1.2. Research Motivation 

With an ongoing growth of demand to piezoactive systems, accurate modeling and 

high-performance control methods play substantial roles on acquiring cutting-edge results 

in various technologies and applications. Along this line, we aim to address important 

issues on precision modeling and control of piezoactive systems. More specifically, the 

objectives of this research are: 

• To compare various modeling and control schemes for specific configurations of 

piezoactive systems such as piezo-flexural nanopositioning stages and Active 

Probes. 
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• To improve accuracy and speed of control processes involving piezoactive 

systems. 

• To develop novel modeling and control frameworks which not only benefit this 

specific area but also could be applied to a broad class of dynamic systems. 

 

1.3. Contributions 

The major contributions of this dissertation could be summarized as: 

• Development of a new memory-based hysteresis modeling and control framework 

for piezoactive micro and nanopositioning systems 

• Development of a Lyapunov-based robust adaptive control strategy for single and 

coupled parallel piezoactive nanopositioning stages 

• Development of a switching controller for high performance tracking control of 

time-varying discontinuous trajectories with application to probe-based imaging 

and nanopositioning 

•  Development of a laser free Atomic Force Microscopy for high-speed imaging of 

micro and nano scale surface topographies 

• Development of a distributed-parameters modeling and state-space control 

frameworks for rod-type solid state actuators 
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• Development of a modeling and vibration analysis framework for Euler-Bernoulli 

beams with cross-sectional discontinuities with application to piezoactive NMC 

Probes 

• Modeling and experimental vibration analysis of NMC Active Probes with 

application to ultrasmall mass detection  

 

1.4. Dissertation Overview 

The rest of the dissertation is organized as follows:  

In Chapter two, modeling and control of hysteresis nonlinearity in piezoactive 

nanopositioning systems is discussed. A modification is proposed for the widely-used 

Prandtl-Ishlinskii hysteresis operator for the enhancement of its accuracy in the 

prediction of nonsymmetrical hysteresis loops. A novel memory-based hysteresis 

modeling framework is then presented for more accurate and computationally efficient 

implementation. Experimental verifications for both frameworks are presented.      

In Chapter three, addition of a lumped-parameters dynamic model to the hysteresis 

nonlinearity is introduced to achieve high-bandwidth feedforward and feedback tracking 

control of piezoactive nanopositioning systems. A model-based feedforward and a 

Lyapunov-based robust adaptive feedback control strategies are presented and 

implemented in the piezoactive nanopositioning systems. Results indicate that hysteresis 

modeling is an essential part of a feedforward control process. However, it has a minor 

impact in the feedback control scheme, where a robust adaptive controller developed 
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based on the system real-time feedback enables achieving a good level of performance in 

the absence of hysteresis model and despite the parametric uncertainties. The application 

of the proposed framework on a non-laser Atomic Force Microscopy (AFM) system is 

presented for low-cost and high-speed imaging of surface topographies with micro and 

nano scale variations. It is shown that the bulky expensive laser utilized in typical AFMs 

can be effectively replaced by piezoresistive-based microcantilevers.  

Chapter four focuses on a special case of interest where tracking control of time-

varying trajectories are desired while frequent stepped discontinuities appear in the 

desired trajectory. It has been shown that when the feedback controller gains are tuned 

for high-performance tracking of continuous trajectories, the presence of the steps could 

generate substantial oscillations in the response. Vice versa, when controller gains are 

tuned for step tracking, the overall performance is decreased in tracking of continuous 

trajectories. Hence, a switching controller is proposed to control the continuous and 

stepped trajectories with separately tuned controllers. Switching conditions and 

continuity laws of control input are presented and discussed. 

Chapter five presents a distributed-parameters modeling and a state-space control 

framework for rod-type solid-state actuators such as piezoelectric, magnetostrictive and 

electrostrictive actuators. Fundamental vibration analysis methods have been utilized to 

derive the distributed-parameters state-space representation of such actuators. A new 

state-space control law is then developed for asymptotic and robust output tracking 

control of actuator under uncertainties and unknown disturbances. Integration of the 

optimal observer is discussed for practical implementation of this framework. It is shown 
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that for ultrahigh bandwidth tracking control of rod-type actuators including piezoactive 

nanopositioning stages, utilization of a distributed-parameters controller is inevitable. 

Finally, Chapter 6 presents modeling and experimental vibration analysis of Active 

Probes with application to ultrasmall mass detection. Using the piezoelectric constitutive 

relations and a new modeling framework proposed for stepped beams, the state-space 

formulation of the present configuration of Active Probes is derived. The proposed model 

is validated on a real probe indicating the strength and accuracy of the proposed 

discontinuous beam modeling framework. Using the Focused Ion Beam (FIB) technique, 

a narrow thin layer is then deposited on the cantilever tip. The developed model along 

with a system identification technique are utilized to estimate to amount of the added 

mass based on the shifts observed in the resonant frequencies of the probe. A mass of in 

the order of a few hundred pico-grams was detected for the deposited layer, as a result.     



CHAPTER TWO 

 

HYSTERESIS MODELING AND COMPENSATION IN PIEZOACTIVE MICRO- 

AND NANO-POSITIONING SYSTEMS 

 

2.1. Introduction 

Piezoactive micro and nanopositioning systems suffer from hysteresis nonlinearity when 

utilized for ultra-high precision positioning, imaging, and manufacturing applications. 

Although numerous research works have been conducted during the past couple of 

decades on the nonlinear modeling, identification and compensation of hysteresis, thus 

far there are no universally accepted rules to describe this phenomenon. Hysteresis is a 

complex input/output multi-loop phenomenon affected by the existence of non-local 

memories [19-22]. That is, the future value of the output depends not only on the 

instantaneous value of the input but also on the history of its operation, especially the 

extremum values.  

Hysteresis models are classified into two conceptually different types. One class 

consists of the constitutive approaches that are inspired from the underlying physics of 

the phenomenon and are derived based on the empirical observations. The second type 

includes phenomenological approaches, which essentially employ mathematical 

structures to describe the phenomenon without considering its underlying physics. 
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Extensive research work has been carried out to develop effective hysteresis models 

using constitutive approaches. For instance, Adriaens et al. [29] used an 

electromechanical model combined with nonlinear first order differential equations to 

describe both hysteresis and the systems dynamics. A generalized Maxwell resistive 

capacitor model was utilized as a lumped-parameters casual representation of hysteresis 

by Goldfarb et al. [43]. However, the constitutive approaches have limited performance 

characteristics as the underlying physics of the hysteresis phenomenon has not been 

completely understood.  

Phenomenological approaches for hysteresis modeling have also been extensively 

developed. The most well-known phenomenological approach, known as Preisach model 

[23, 24], has found widespread acceptance in modeling of hysteresis in piezoactive 

materials. Although Preisach model provides a purely mathematical tool for modeling 

complex hysteresis loops, it does not provide a physical insight into the phenomenon. 

Furthermore, the numerical implementation of Preisach and other phenomenological 

models requires considerable numerical efforts. 

Among the phenomenological method the Prandtl-Ishlinskii (PI) hysteresis operator 

has recently attracted significant attention due to its straightforward and effective 

implementation [25, 26]. PI is a discretized sub-class of Preisach operator which nearly 

presents the same level of accuracy in practice. The structure of PI operator is in such a 

way that a set of weighted backlash operators with different threshold values is 

superposed to predict the multiple-loop hysteresis response. However, similar to other 
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phenomenological models, the conventional PI operator lacks accuracy due to its rigid 

structure. Consequently, several modifications have been proposed to improve this 

methodology [26, 44]. Yet, further improvements are needed for effective 

implementation of the PI operator. 

In this chapter, both phenomenological and constitutive methodologies are 

investigated for possible improvements in the accuracy and the computational efficiency 

of hysteresis phenomenon. First, a new modification is proposed for the conventional PI 

operator to improve its accuracy. It is demonstrated that by interleaving a new parameter 

in the primary backlash operators, the shape of ascending and descending curves can be 

independently tuned leading to improved response. The proposed modification has been 

experimentally validated on a piezoactive nanopositioning stage with hysteretic behavior. 

A new constitutive modeling and feedforward control framework is then presented 

for hysteresis compensation in piezoactive actuators. A set of memory-based hysteresis 

properties are observed using a set of experimental runs. These properties, namely, 

targeting turning points, curve alignment and wiping-out effect, are then applied in an 

exponential and a linear mapping strategy to develop two mathematical frameworks for 

modeling of hysteresis phenomenon. More specifically, the locations of turning points are 

detected and recorded for the prediction of future hysteresis trajectory. An internal 

trajectory is assumed to follow a multiple-segment path via a continuous connection of 

several curves passing through every two consequent turning points. These curves adopt 

their shapes from the reference hysteresis curves with exponential and polynomial 
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configurations. Experimental implementation of the proposed method demonstrates 

significant improvement compared to the PI hysteresis operator. However to maintain the 

level of precision during the operation, a sufficient number of memory units must be 

included to record the turning points. The proposed modeling framework is adopted in an 

inverse model-based control scheme for feedforward compensation of hysteresis 

nonlinearity in piezoactive nanopositioning systems.     

 

2.2. PI Hysteresis Operator 

PI hysteresis operator is a phenomenological method for describing Input/Output (I/O) 

static hysteresis with the effect of memory.  This method employs a combination of 

several rate-independent backlash or linear-play operators as shown in Figure 2.1, with 

the mathematical representation given by:  

, 0( ) [ , ]( ) max{ ( ) ,min{ ( ) , ( )}}

(0) max{ (0) ,min{ (0) , (0)}}
hr w h
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= = − + −
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                   (2.1) 

where x(t) denotes the backlash input, y(t) is the output of the operator, r is the input 

threshold value or the magnitude of the backlash, hw  is the weighting value and T is the 

sampling period. A PI hysteresis operator is then modeled by a linearly weighted 

superposition of several backlash operators with different threshold and weighting values 

as follows:  

,
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Figure 2.1. Primary backlash operator utilized in the PI hysteresis model. 

Figure 2.2 depicts a typical hysteresis response obtained from the superposition of four 

backlash operators with different threshold and weighting values.  

  

Figure 2.2. A sample hysteresis obtained by superposition of four backlash operators with 

different threshold values and weighting values.    
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2.2.1. Modified PI Hysteresis Operator [26] 

Modeling of system using the conventional PI hysteresis operator lacks accuracy due to 

the rigid structure of the primary backlash operator.  For example, PI hysteresis operator 

has the property of symmetry around the center of the loop, while hysteresis response of 

an actual piezoactive system is not symmetric. The other shortfall of this operator is its 

lack of accuracy in adjusting the residual displacement around the origin.  One solution is 

to design and integrate new operators with the PI operator in order to compensate for the 

described deficiencies.  However, this would increase the model complexity, and limit its 

practical implementation [25].  

A modification is proposed in this section to simultaneously compensate the 

symmetry and the residual displacement problems associated with the primary PI 

operator [26].  For this, a new parameter η > 0 is proposed to be interleaved in the 

primary backlash operators of the PI hysteresis model resulting in the following equation:  

, , 0( ) [ , ]( ) max{ ( ) ,min{ ( ) , ( )}}

(0) max{ (0) ,min{ (0) , (0)}}
hr w h

h

y t H x y t w x t r x t r y t T

y w x r x r y
η η

η

= = − + −

= − +
                  (2.3) 

Parameter η alters the threshold of the backlash in the descending state. That is, the 

larger η is chosen, the more delay appears in the descending state.  With proper selection 

of η for every individual backlash operator, the flexibility and accuracy of the model can 

be significantly enhanced. Figure 2.3 demonstrates the response of the modified backlash 

operator with different values of η.  The modified PI hysteresis operator can then be 

written as: 



 24

 
0

( ) max{ ( ) , min{ ( ) , ( )}}
n

i i i i
h

i
y t w x t r x t r y t Tη

=

= − + −∑                                (2.4) 

 

Figure 2.3. Modified backlash with different delay values in the descending state. 

 

2.2.2. Inverse PI Hysteresis Operator 

One of the advantages of the PI hysteresis model is that its inverse is also of PI type, 

however, with different threshold and weighting values. The inverse PI operator could be 

analytically obtained from [25]: 
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Graphically, the inverse model is the reflection of the resultant hysteresis curves about 

the 45o line. 
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2.2.3. Experimental Setup 

The validation of the proposed hysteresis model is investigated by a set of experimental 

tests on a Physik Instrumente P-753.11c PZT-driven nanopositioning stage with high 

resolution capacitive position sensor (see Figure 2.4).  Experimental data interfacing is 

carried out through a Physik Instrumente E-500 chassis for actuator amplifier and 

position servo-controller along with dSPACE® DS1104 data acquisition controller board. 

The position of the nanopositioning stage is reflected by a sub-nanometer resolution 

built-in capacitive sensor.  

 

Figure 2.4.  Experimental setup: the Physik Instrumente P-753.11C nanopositioning stage 

with built-in capacitive position sensor connected to the DS1104 controller board through 

a Physik Instrumente E-500 amplification and acquisition system. 
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2.2.4. Identification of the Hysteresis Model 

The accurate identification of the hysteresis operator between the input voltage and the 

stage displacement is a crucial step in achieving effective control. The objective here is to 

identify the weighting parameters and η values, for a set of backlash operators with 

predefined thresholds, in order to obtain a minimal error between the experimental data 

and the model responses. 26 backlash operators are exploited here to cover the input 

range of 0 to 60 Volts.  Threshold values are chosen in an orderly increasing sequence, 

with fine intervals for the initial and course intervals for the large input values to 

maintain a fair balance between the model accuracy and computational efficiency.  

 

 Figure 2.5. Hysteresis model identification; (a) input signal, (b) experiment and 

identified model responses; hysteresis response of (c) experiment and (d) identified 

model. 
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A least-square optimization technique is utilized here for the error minimization.  The 

identification input is designed in such a way that it covers the entire span of the actuator 

input. Figure 2.5 and Table 2.1 demonstrate the identification results and estimated 

parameter values. For the given input, the maximum and mean-square identification error 

values are obtained as max max/ 0.82%e x =   and  
0

1 ( ) 0.015
T

e t dt m
T

=∫ µ , respectively. 

Table 2.1. Parameter values of the identified hysteresis model. 

i i
hw  ir  iη  i i

hw  ir  iη  
0 0.0824 0 0.35 13 0.0018 16 0.26 
1 0.0178 1 1.04 14 0.0011 18 0.18 
2 0.0071 2 1.74 15 0.0009 20 0.19 
3 0.0048 3 1.87 16 0.0031 22 0.17 
4 0.0041 4 3.13 17 0.0023 24 0.15 
5 0.0025 5 0.97 18 0.0038 26 0.15 
6 0.0012 6 2.27 19 0.0012 28 0.07 
7 0.0022 7 0.69 20 0.0043 30 0.29 
8 0.0010 8 0.75 21 0.0101 35 0.16 
9 0.0007 9 0.51 22 0.0009 40 0.35 

10 0.0011 10 0.54 23 0.0006 45 0.35 
11 0.0003 12 0.31 24 0.0004 50 0.35 
12 0.0033 14 0.49 25 0.0079 55 0.35 

 

To demonstrate the effectiveness of the modified PI model over the conventional 

approach, a representative model for the conventional approach is developed by setting 

iη to zero in Eq. (2.4) and identifying the weighing parameters for the same experiment 

described above. The same number of backlash elements with the same threshold values 

is utilized. For the sake of accuracy, an adjustable offset is added to the operator to locate 

the hysteresis loops as close as possible to the experimental response. Figure 2.6(a) 

depicts the hysteresis response of the conventional PI model to the same input shown in 

Figure 2.5(a). Comparisons of the modeling errors between conventional and modified 

approaches are depicted in Figure 2.6(b). It is clearly observed that the modified PI model 
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demonstrates improved response over the conventional approach. The maximum and 

mean-square error values for the conventional model are obtained as 4.1% and 0.04 µm, 

respectively. 

 
Figure 2.6. (a) Hysteresis response of the conventional PI model, and (b) modeling error 

comparisons for the conventional and modified PI models. 

The threshold and weighting values of the inverse hysteresis model are identified 

using Eq. (2.5).  We remark here that parameter η is the coefficient of the backlash 

threshold in the descending state, and is identical in both direct and inverse models.  The 

parameters of the inverse hysteresis model are listed in Table 2.2. 

Table 2.2. Identified inverse hysteresis model parameters. 

i i
hw  ir  i i

hw  ir  
0 12.13 0 13 -0.11 1.887 
1 -2.16 0.082 14 -0.06 2.148 
2 -0.66 0.183 15 -0.05 2.412 
3 -0.39 0.290 16 -0.17 2.678 
4 -0.31 0.402 17 -0.12 2.950 
5 -0.18 0.518 18 -0.19 3.226 
6 -0.09 0.637 19 -0.06 3.510 
7 -0.15 0.757 20 -0.20 3.796 
8 -0.07 0.880 21 -0.43 4.534 
9 -0.05 1.003 22 -0.04 5.322 

10 -0.07 1.127 23 -0.02 6.114 
11 -0.02 1.378 24 -0.02 6.909 
12 -0.21 1.629 25 -0.29 7.706 
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2.3. Memory-based Hysteresis Modeling [20-22] 

In this subsection, a novel constitutive modeling framework is presented for precise 

compensation of hysteresis in piezoactive systems. The underlying memory-dominant 

properties of hysteresis are identified through several experimental observations. Then, 

two mathematical frameworks are developed and presented to adopt these properties and 

produce systematic models that could be utilized for precision control of piezoactive 

nanopositioning systems.   

 

2.3.1. Memory-based Hysteresis Properties 

The memory-based properties of hysteresis are investigated here by a set of experimental 

tests on the PZT-driven nanopositioning stage depicted in Figure 2.4. In order to study 

the pure hysteresis response and avoid the effects of mechanical compartments such as 

material damping and inertia, the input is designed and implemented at a constant rate. 

Figure 2.7 depicts the hysteresis response of the actuator for a set of triangular input 

signals. Hysteresis curves are encompassed by two so-called “major” or “reference” 

curves. These curves are obtained by raising the input signal from zero to its maximum 

permitted value and then decreasing it to its minimum extreme. As seen from the figure, 

all ascending curves starting from zero follow an identical path on the ascending 

reference curve, and all the descending curves branching from different locations are 

similar in shape and approach a particular point. Therefore, the behavior of hysteresis for 

the first ascending and the first descending input signals can be characterized by 

identifying the configuration of reference curves and the lower converging point. 
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Figure 2.7. Hysteresis response of the Physik Instrumente P-753.11C nanopositioning 

stage to triangular input signals; (a) input profiles and (b) stage response. 

The behavior of hysteresis for the rest of input alternations (other than first two 

alternations) is, however, quite complicated. The clues for prediction of the hysteresis 

path for multiple internal loops can be found by realizing the behavior of the response 

around turning points at which the direction of input changes. Figure 2.8 demonstrates 

the hysteretic response of the PZT-driven actuator to a set of four alternating continuous 

input profiles. Inputs are designed in such a way that the effects of turning points in the 

hysteresis trajectory become visual. To make the graphs and the hysteresis paths more 

comprehensible, the initial, internal turning, and the end points are spotted and marked by 

numbers. Three out of four input signals have four segments: After moving up to Point #2 

the direction of the input changes, where the upper turning point is recorded. Then, the 

input signal descends to Point #3 where the lower turning point is recorded. The input 
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goes up one more time to Point #4, and finally descends to its zero ending point (Point 

#5). Three different locations are considered as Point #4 for the generalization of 

observations around the turning Point #3. A closer look at Figure 2.8(b) clearly 

demonstrates that the hysteresis track, branching from a turning point, approaches the 

previous turning point, in a manner that the configuration of the curve remains similar to 

the related reference curve. For example, tracks that are originated from Points #3 and #4 

in Figure 2.8(b) approach Points #2 and #3, respectively, maintaining their shape similar 

to the ascending and descending reference curves, correspondingly.  

 

Figure 2.8. Hysteresis response to a set of four alternating continuous input profiles; (a) 

input signals and (b) stage response. 
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The direction of hysteresis path slightly changes after intersecting a turning point. 

Hence, the effect of “curve alignment” property is seen from Figure 2.8b, where curves 

approaching Point #3 from three different points marked as #4 merge together after 

passing the turning point, and continue on an identical path. The physical interpretation 

of this hysteresis property is interesting; there is no way for an internal path to break the 

hysteresis bounds and escape from the borders sketched by other hysteresis trails; all 

hysteresis tracks arriving to a turning point unite together and align themselves to the 

previously broken curve associated with that turning point. 

An internal turning point is created when the path of a hysteresis track is broken from 

approaching a target point. Consequently, after curve alignment in a crossed turning 

point, the new trajectory continues the path of previously broken track toward the intact 

target point. The label of “smart” for the piezoelectric materials is better realized when it 

is observed that for any number of untouched internal loops, the location of turning 

points and the path of hysteresis trajectory are recorded in the material memory.     

One of the important properties of hysteresis is the wiping-out effect. Based on this 

property, only the alternating series of dominant internal loops, which are not crossed by 

other hysteresis tracks, are stored in the memory and all other loops are wiped out. Figure 

2.9 demonstrates the wiping-out property when the input signal surpasses a dominant 

extremum. Dominant extrema are the maximum or minimum points that have 

respectively greater or less values than the subsequent values of input signal. It is evident 

that the dominancy property of an extremum is eliminated when it is passed by the 

subsequent signal.  
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Figure 2.9. Wiping-out and curve alignment properties of hysteresis; (a) arbitrarily 

alternating input profile, and (b) the resultant hysteresis response. 

As the input signal alternates up and down to reach Point #7 in Figure 2.9(a), one 

surrounding and two minor loops are generated in the input/output (I/O) hysteretic 

domain as the result of these alternations (see Figure 2.9(b) for the I/O domain). Starting 

from Point #7, the input signal is increased to a point with the same magnitude as the 

extremum #6. At this point, which is marked by a spot in the input domain (Figure 

2.9(a)), the effect of turning Points #6 and #7 and the properties of the crossed minor loop 

are no longer useful for the remaining hysteresis track, and hence, are wiped out. In the 
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I/O domain, hysteresis trajectory aligns and continues the path of previously broken 

rising curve associated with Points #5 and #6 (curve 5-6) towards the target Point #4.  

The second internal loop associated with Points #4 and #5 is wiped out when the 

input value exceeds the extremum #4. Similarly, the trajectory aligns and continues the 

path of the broken curve 3-4. The direction of input changes at Point #8 and trajectory 

targets down toward turning Point #3, since turning Points #5 and #7 have been wiped 

out. Descending input is stopped in the midway at Point #9 and increased to a value equal 

to that of extremum #8. At this point, the third wiping-out effect occurs with the 

trajectory aligning and continuing the path of curve 3-8 up to Point #10, where the 

direction of input changes one more time. The trajectory initiating from turning Point #10 

approaches and hits Point #3 and continues the path of curve 2-3 until the input reaches 

its zero ending value at Point #11. Although the hysteresis path from Point #3 to Point 

#10 (3-4-5-6-7-6-4-8-9-8-10) is an alternating multi-loop trajectory, the hysteresis track 

follows path 3-4-8-10 and stands at the same terminating point, even if the input directly 

increase from Point #3 to Point #10. 

In conclusion, although hysteresis seems to be an unpredictable and chaotic 

phenomenon in piezoelectric materials, by realizing the underlying physics of its intrinsic 

behavior, an intellectual harmony can be observed in the manner this phenomenon 

performs. In the following subsection, an exponential mapping strategy is proposed for 

development of a mathematical modeling framework for this phenomenon. 
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2.3.2. Memory-based Hysteresis Model with Exponential Mapping 

As discussed earlier, hysteresis curves belonging to the same class of ascending or 

descending states are similar in shape with difference being in their slope of convergence. 

An exponential expression is proposed here for fitting a uniform hysteresis curve between 

two arbitrary points 1 1( , )v x  and 2 2( , )v x  in voltage-displacement plane as follows: 

1( )
1 1 2 2 1 1( ) ( , , , , ) (1 )( )v vx v F v v x v x k ae v v xτ− −= = + − +                           (2.6) 

a  and τ   are constant parameters that shape the hysteresis curves, and k represents the 

slope of exponential hysteresis mapping between two initial and ultimate points given by: 

2 1( ) 12 1

2 1

(1 )v vx xk ae
v v

τ− − −−
= +

−
                                          (2.7) 

Parameters a  and τ   are identified for the ascending and the descending reference curves 

and kept unchanged for any other internal curves, while parameter k is calculated for 

every individual curve between two initial and ultimate points. Based on this mapping 

technique, the hysteresis path becomes predictable for any trajectory between known 

initial and target turning points. 

Figure 2.10 demonstrates a typical hysteretic response consisting of n internal loops. 

Lower and upper turning points are labeled by L and U subscripts, while the ascending 

and descending curves are labeled with A and D subscripts, respectively. The numbering 

sequence starts from the smallest internal loop to the largest surrounding loop.  Regarding 

the curve alignment in the turning points, for the ascending curve starting from 
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point 1 1( , )L Lv x  and shown with a dashed configuration and labeled by 0AF  in Figure 2.10, 

the prediction of hysteresis path is expanded to: 

0 1 1 1 1 1 1 ( 1)
1

( ) ( ) ( , , , , ) ( , , ) ( ) ( , , )+
=

= = +∑
n

A A L L U U L U Ai Ui U i
i

x v F v F v v x v x H v v v F v H v v v       (2.8) 

where n is the number of intact internal loops recorded by hysteresis trajectory, and H 

represents the bilateral unit heaviside function expressed as: 

1
( , , )

0
a x b

H x a b
x b or x a
≤ ≤

=  > <
                                        (2.9) 

 
Figure 2.10. Typical input/output (V/X) hysteresis response with n internal loops. 

Equation (2.8) states that hysteresis path is composed of a sequential set of different 

hysteretic curves that are separated by intervals and distinguished by turning points. 

Except for the first segment of the path, the other segments are the continuation of the 

previously broken hysteresis curves. Therefore, the proposed formulation satisfies curve 
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alignment property in turning points. Similarly, for a descending curve starting from 

point 1 1( , )U Uv x , the hysteresis path is expressed as:      

1 1 1 1 1 1 ( 1)
1

( ) ( , , , , ) ( , , ) ( ) ( , , )+
=

= +∑
n

D U U L L L U Di L i Li
i

x v F v v x v x H v v v F v H v v v            (2.10) 

Note that ( 1) ( 1)( , )U n U nv x+ +  and ( 1) ( 1)( , )L n L nv x+ +  are the locations of the upper and lower 

hysteresis extreme points on the reference curves, respectively. 

The implementation of the described formulation requires a number of memory units 

to store the intact turning points. As an advantageous property, the wiping-out effect 

enables the prediction of the hysteresis path with a finite number of memory units even 

for infinite number of input fluctuations. Once the trajectory intersects with a turning 

point, that point is eliminated from the memory. Contrarily, if the trajectory changes its 

direction, the new turning point is recorded in the memory. It is obvious that for an input 

with a known profile, the minimum number of required memory units is identified by 

counting the maximum number of dominant extrema before the wiping-out effect occurs. 

However, for an unknown input profile, a reasonable number of memory units must be 

allocated so that the trajectory of hysteresis could be accurately predicted. If the memory 

capacity is not sufficiently assigned, the trajectory diverges from the actual hysteresis 

response when it surpasses the last stored turning point. Although by increasing the 

capacity of the memory the reliability of the prediction may increase, the computational 

efficiency is degraded. Depending on the application, a reasonable number of memories 

should be assigned so that a reliable and efficient prediction is achieved. 
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To demonstrate the model performance and study the memory-dominant behavior of 

hysteresis, a 10 Volt/sec±  input profile is designed such that the model requires at least 

three memory units for accurate prediction of hysteresis trajectory. The developed model 

is simulated with one, two and three memory unites separately. Parameters a  and τ   are 

identified as 0.37 and -0.019 for the ascending and 0.58 and 0.0074 for the descending 

reference curves, respectively.  

Simulation and experimental results are depicted in Figure 2.11. Model responses 

with one, two and three memory units along with the actual actuator response to the input 

profile shown in Figure 2.11(a) are depicted in Figures 2.11(d), 2.11(c) and 2.11(d), 

respectively. As predicted before, model response with one memory unit diverges from 

the actual hysteresis response after input passes the first dominant extremum, in the same 

manner that the model response with two memory units diverges as the input overtakes 

the second dominant extremum. Model with three or more memory units demonstrates 

perfect performance with the modeling error sliding slightly up and down around the zero 

line.   

Figures 2.11(f) to 2.11(h) demonstrate that model hysteresis response gets closer to 

the actual hysteresis response shown in Figure 2.11(e) as the number of memory units 

increase from one in Figure 2.11(f) to three in Figure 2.11(h), which is the minimum 

required number for the given trajectory here. 
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Figure 2.11. Experimental verification of the memory-based hysteresis model with 

exponential mapping strategy; (a) input signal, experimental and model responses with 

(b) one memory unit, (c) two memory units, and (d) three memory units, (e) actual 

hysteresis response, hysteresis response of the model with (f) one memory unit, (g) two 

memory units, and (h) three memory units. 
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2.3.3. Memory-based Hysteresis Model with Linear Mapping 

In another mathematical representation of the memory-based hysteresis modeling, a 

polynomial-based linear mapping technique can be considered here. For this, the 

approximate functions for the ascending and descending loading curves are identified 

first, and then mapped between the two consequent points such that targeting turning 

points and curve alignment properties are fulfilled.  

Assume that the ascending and the descending loading curves are identified by two 

piecewise continuously differentiable, monotonically increasing functions, fa(v) and fd(v), 

respectively. The rest of internal hysteresis curves adopt their shape from these reference 

curves. Here, as shown in Figure 2.12, a linear mapping strategy relates the displacement 

x to the corresponding ascending or descending reference function fr(v), where index r 

stands for a, for the ascending and d, for the descending reference curves defined above. 

Consequently, for any trajectory starting from point (v1, x1) and approaching point (v2, 

x2), the following linear mapping formulation is obtained: 

12 1 1 2 2( ) ( , , , , ) ( )rx v x v v x v x af v b= = +                                    (2.11) 

where 12 ( )x v  represents the hysteresis trajectory between points (v1, x1) and (v2, x2) when 

input voltage v is varied between v1 to v2; a and b are the parameters calculated by 

substituting points (v1, x1) and (v2, x2) into (2.11) (e.g. 1 1( )rx af v b= + ), and are given by: 

 2 1 1 2 2 1

2 1 2 1

( ) ( ),
( ) ( ) ( ) ( )

r r

r r r r

x x x f v x f va b
f v f v f v f v

− −
= =

− −
                            (2.12) 

Substituting a and b from Eq. (2.12) into Eq. (2.11) yields: 



 41

( )2 1
12 1 1

2 1

( ) ( ) ( )
( ) ( ) r r

r r

x xx v x f v f v
f v f v

−
= + −

−
                                   (2.13) 

 

Figure 2.12.  Linear mapping of a hysteresis curve between two initial and target points. 

The fact that the hysteresis trajectory starting from a turning point targets all the 

previously recorded internal turning points enables the prediction of the response 

utilizing the proposed mapping strategy. Figure 2.13 depicts the hysteresis path 

originating from point (v0, x0).  If the input keeps moving up to the maximum threshold 

point, the trajectory passes through all the internal target points (v1, x1), (v2, x2), … , (vn-1, 

xn-1), and approaches the upper threshold point (vn, xn). The describing equation for this 

path is given by: 

( )
1 1

1
0 ( 1) 1 1

0 0 1

( ) ( , , ) ( ) ( ) ( , , )
( ) ( )

n n
i i

n i i i i i r r i i i
i i r i r i

x xx v x H v v v x f v f v H v v v
f v f v

− −
+

+ + +
= = +

−
= = + −

−∑ ∑    (2.14) 

where 0 ( )nx v  denotes the predicted multiple-segment hysteresis path, and H represents 

the bilateral unit Heaviside function given in Eq. (2.9). 
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Figure 2.13.  A typical multi-segment hysteresis path. 

Equation (2.14) states that hysteresis path is composed of a sequential set of different 

curves that are separated by intervals distinguished by turning points. Except for the first 

segment of the path, the other segments are the continuation of the previously broken 

hysteresis curves. Yet, it is necessary to make certain that the proposed method satisfies 

the curve alignment property. To study this property, a theorem is presented and utilized 

to prove the satisfaction of curve alignment property by the proposed model.  

Consider points (v1, x1), (v0, x0), and (v2, x2), as shown in Figure 2.14, on the hysteresis 

plane that satisfy:  

1 0 2v v v< < and 0 12 0( )x x v=                                         (2.15) 

 

Figure 2.14.  Figure assisting the proof of the curve alignment satisfaction.  
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Theorem: For any arbitrary point ( ,v x ) that satisfies 0 2v v v< <  and 02 ( )x x v= , we 

can write: 

12 ( )x x v=                                                     (2.16) 

Proof: From the conditions of the theorem, for x0  and x  we can write: 

 ( )2 1
0 12 0 1 0 1

2 1

( ) ( ) ( )
( ) ( ) r r

r r

x xx x v x f v f v
f v f v

−
= = + −

−
                              (2.17) 

( )2 0
02 0 0

2 0

( ) ( ) ( )
( ) ( ) r r

r r

x xx x v x f v f v
f v f v

−
= = + −

−
                                (2.18) 

Utilizing Eq. (2.17) we have: 

( )2 1
2 1 0 1

2 12 0

2 0 2 0

0 1 2 0
2 1 2 1

2 1 2 1

2 0 2 0

2 1

2

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) 1 ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) (

 −
− + − −−  =

− −

   − −
− − −   − −   = =

− −

−
=

−

r r
r r

r r r r

r r r r

r r r r

r r r r

r r

x xx x f v f v
f v f vx x

f v f v f v f v

f v f v f v f vx x x x
f v f v f v f v

f v f v f v f v
x x

f v f v1)       

(2.19) 

Substituting Eqs. (2.17) and (2.19) into Eq. (2.18) yields:  

( ) ( )2 1 2 1
1 0 1 0

2 1 2 1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )r r r r

r r r r

x x x xx x f v f v f v f v
f v f v f v f v

− −
= + − + −

− −
          (2.20) 

Simplifying Eq. (2.20) leads to the proof of the theorem as:  

( )2 1
1 1 12

2 1

( ) ( ) ( )
( ) ( ) r r

r r

x xx x f v f v x v
f v f v

−
= + − =

−
                             (2.21) 
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As a result of this theorem, the satisfaction of curve alignment property by the 

proposed linear mapping strategy can be proved. For this, Figure 2.15 which 

demonstrates a typical hysteresis trajectory has been generated through a numerical 

simulation.  It is seen from the figure that the trajectory initiated from Point #3 must align 

to Curve 1-2 at Point #2 and continue its path towards the next target point. It can be 

shown that to guarantee the satisfaction of curve alignment property, the following 

condition must hold: 

24 2 4 14 2 4( ) ( , , ) ( ) ( , , )x v H v v v x v H v v v=                                        (2.22) 

Since point (v2, x2) satisfies the conditions 1 2 4v v v< <  and 2 14 2( )x x v= , for any arbitrary 

point (v, x) that satisfies 2 4v v v< <  and 24 ( )x x v= , it follows that 14 ( )x x v= . Therefore, 

the fulfillment of curve alignment property is guaranteed. 

 

Figure 2.15.  Targeting turning point and curve alignment property. 

The implementation of the proposed model requires two explicitly known ascending and 

descending reference functions. Here, two third order polynomials are utilized for the 
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approximation of ascending and descending reference curves due to their sufficient 

accuracy in capturing the unsaturated region of piezoelectric actuator operation. The 

polynomials representing the ascending and descending hysteresis reference curves are 

expressed as:   

3
2 3

0 1 2 3
0

( ) i
a i

i

f v a v a a v a v a v
=

= = + + +∑                                       (2.23) 

3
2 3

0 1 2 3
0

( ) i
d i

i
f v d v d d v d v d v

=

= = + + +∑                                       (2.24) 

where ai and di are the shaping coefficients that can be identified through a least square 

error minimization or similar algorithms.  

 

Figure 2.16. Experimental verification of the proposed hysteresis model; (a) input profile, 

(b) experimental time response (solid line) and model time response (dashed line), (c) 

stage hysteresis response, and (d) model hysteresis response. 

a 

c 

b

d
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A 10 Volt/sec±  input profile is designed such that the model requires at least five 

memory units for the accurate prediction of hysteresis trajectory.  The experimental and 

memory-based model responses are demonstrated in Figure 2.16. It is seen that the 

proposed model is able to accurately predict the multiple-path hysteretic response of the 

stage. The maximum and RMS (root-mean-square) error percentages are obtained as 

1.27% and 0.61%, respectively. 

 

2.3.4. Memory Allocation Strategies 

It was demonstrated that precise prediction of hysteresis trajectory requires a number of 

memory units to store the target points in the hysteresis path. In this section, the concept 

of memory-allocation strategy is introduced, and the behavior of the model with saturated 

memory is presented and discussed.   

Two events are important for the memory-allocation process: (i) the time that the 

direction of input changes and a turning point is recorded; and (ii) the time that the 

trajectory hits and passes a target point, which coincides with the curve alignment and 

wiping-out events. Figure 2.17 graphically demonstrates the memory-allocation strategy. 

In this figure, five memory units are included in the model. The circles contain the 

location of different untouched turning points which have been recorded. When the 

direction of the input changes, all memory occupants shift rightward by one step and the 

new turning point is recorded in the memory (see Figure 2.17(a)).  When a target point is 

passed by the hysteresis trajectory, that point is eliminated from the memory unit, and all 

other target points move leftward by one step, to be utilized for the prediction of the 
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future path (see Figure 2.17(b)). It is remarked that the symbols inside the circles (e.g., 

triangle, rectangle, etc.) are used to show the location of different turning points (e.g., vi 

and xi) in the hysteresis history.  

 

Figure 2.17. Memory-allocation strategy; (a) recording and (b) wiping-out turning points. 

It is important to note that the first and the always-available memory occupants (in case 

of sufficient memory units) are the points corresponding to the maximum and the 

minimum input thresholds (in Figure 2.17, this point corresponds to the unit with the 

circle sign inside). Since these points are never passed by the trajectory, they are not 

wiped out. However, if the memory units are not sufficiently included, by recording the 

turning points memory gets saturated, and therefore, further recording leads to loosing the 

untouched targets including these threshold points. To investigate the influence of 

memory saturation on the model response, two cases of interest are discussed next.   

 

Open memory-allocation strategy 

In this strategy, by recording a new turning point (unit corresponding the hexagon sign in 

Figure 2.18(a)), the most distant target (unit corresponding the circle sign) is eliminated, 
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other occupants shift rightward, and the new point is recorded in the memory. Since the 

most distant targets are eliminated, model loses some information of the hysteresis 

history. Yet, trajectory is predictable until model needs the lost targets. Hysteresis 

trajectory diverges from the real path when it hits the last and the only target point. Since 

there are no other targets, hysteresis trajectory loses its correct path and diverges from it. 

Furthermore, the trajectory may break the reference curves and escape from the 

hysteresis borders that could lead to large modeling errors. 

 

Figure 2.18.  Saturated memory function; (a) open and (b) closed memory-allocation 

strategies. 

To demonstrate the performance of the open memory-allocation strategy in the event of 

memory saturation, a simulation study is carried out here. Input profile shown in Figure 

2.19(a) is applied to the hysteresis model with one, two and three memory units. For the 

given input profile, three memory units are required for the prediction of the hysteresis 

path. Therefore, the model with three memory units is considered as the ideal model to 

which the other two are compared. As seen from Figure 2.19, as the number of memory 

units gets closer to the minimum required number, model performance improves. 
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Hysteresis trajectory diverges from the correct trajectory when it passes the first and the 

second dominant extrema for the models with one and two memory units, respectively. 

Although the response is precise for the initial time interval, it diverges from the original 

path after passing the related dominant extremum and does not converge again. The 

straight dashed lines in Figures 2.19(c) and 2.19(d) demonstrate the time when the 

trajectory diverges.    

 

Figure 2.19.  Open memory-allocation performance; (a) input profile, (b) hysteresis with 

full memory units; model responses with (c) one memory unit and (d) two memory units; 

hysteresis responses with (e) one memory unit, and (f) two memory units.   
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Closed memory-allocation strategy 

The objective of developing a closed memory-allocation strategy is to reduce the 

modeling error by bounding the response with the reference curves. In this strategy, if a 

new turning point is made, the memory-allocation strategy does not permit the turning 

point to be recorded.  Therefore, the most distant targets are safely kept in the memory, 

and closer targets are lost (see Figure 2.18(b)).  In contrary to open memory-allocation 

strategy, the diverged trajectory may converge back, as the important targets including 

the upper and the lower threshold points are maintained. 

Figure 2.20 demonstrates performance enhancement of the model through the closed 

memory-allocation strategy. As seen from this figure, models with one and two memory 

units with closed strategy have significantly less error than those with open strategy 

shown in Figure 2.19.  Furthermore, the hysteresis trajectory is always bounded by the 

reference curves, and the modeling error jumps up and down around zero. Compared to 

the open strategy, the trajectory diverges earlier, but may converge back; this happens for 

the case of two memory units as shown in Figure 2.20(b). The dashed lines show the 

location of the trajectory divergence, and the dash-dotted lines show the points where the 

trajectory converges back. For the case with one memory unit, the convergence would 

have been occurred if the trajectory had arrived at the upper or lower threshold points. In 

conclusion, closed memory-allocation strategy presents more stable and effective 

prediction of hysteresis loops compared to the open strategy in the event of memory 

saturation. This can be better realized from Table 2.3, where the RMS error percentages 

for both open and closed strategies are listed. 
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Table 2.3.  RMS error percentages for models with one and two memory units and with 

closed and open memory-allocation strategies.   

RMS error percentages Model error with 
one memory unit 

Model error with 
two memory units 

Open memory-allocation 3.28 % 1.33 % 

Closed memory-allocation 1.04 % 0.23 % 

 

 

Figure 2.20.  Closed memory-allocation performance; model responses with full and (a) 

one memory unit, and (b) two memory units; hysteresis responses with (c) one memory 

unit, and (d) two memory units. 

 

2.3.5. Feedforward Hysteresis Compensation with Exponential Memory-based Mapping 

Feedforward controllers operate based on the inverse plant model to remove the nonlinear 

effect and generate a relatively linear response. Generally, two methods are utilized to 

find the inverse model of hysteresis: (1) analytical approaches that systematically present 

d

ba 
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the inverse model using the identified direct model [44], and (2) numerical methods that 

find the inverse of the hysteresis utilizing numerical techniques [27].   

 
Figure 2.21. Inverse hysteresis response. 

A direct method for obtaining the inverse hysteresis model for the feedforward 

control strategy is proposed here. As seen from Figure 2.21, the inverse hysteresis 

response can be obtained by plotting the input voltage versus the resultant displacement. 

The inverse response is also of hysteretic type with the same intellectual properties. The 

differences are, however, in the characteristics of reference curves and the inversion of 

input/output axes. The inverse hysteresis formulation can be then expressed as:    

1 1
1 1 1 1 1 1 ( 1)

1

( ) ( , , , , ) ( , , ) ( ) ( , , )
n

A L L U U L U Ai Ui U i
i

v x F x x v x v H x x x F x H x x x− −
+

=

= +∑         (2.25) 

1 1
1 1 1 1 1 1 ( 1)

1

( ) ( , , , , ) ( , , ) ( ) ( , , )
n

D U U L L L U Di L i Li
i

v x F x x v x v H x x x F x H x x x− −
+

=

= +∑          (2.26) 

1( )1
1 1 2 2 1 1( , , , , ) (1 )( )x xF x x v x v k a e x x vτ ′− −− ′ ′= + − +                           (2.27) 
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2 1( ) 12 1

2 1

(1 )x xv vk a e
x x

τ ′− − −−′ ′= +
−

                                         (2.28) 

Equations (2.25) and (2.26) represent inverse ascending and descending curves, 

respectively. Equations (2.27) and (2.28) describe the proposed exponential form of the 

hysteresis curves, with a′  and τ ′  being the shaping parameters of the inverse model. 

To demonstrate the effectiveness of the feedforward memory-dominant inverse 

controller, a 1µm/sec±  desired trajectory signal is generated and fed into the controller 

(see Figure 2.22 for the control strategy). This trajectory requires at least four memory 

units. The inverse model parameters a′  and τ ′  are identified as -0.46 and -0.20 for the 

ascending and -0.68 and 0.18 for the descending reference curves, respectively. The 

system responses to the inverse controller with different memory units and the best linear 

controller are depicted in Figure 2.23. The best linear controller is designed by fitting a 

line into the inverse hysteresis response of the nanopositioning stage obtained with the 

best feedforward controller for a specific trajectory. As seen from the figure, the 

controller response is improved as the number of memory units increases to the minimum 

required number. Maximum and mean square tracking errors are listed in Table 2.4 for 

comparison. It is remarkable to note that the inverse controller with one memory unit 

demonstrates even worse performance than the linear controller for this specific 

trajectory. This is due to the fact that system response diverges from the desired 

trajectory after passing the first dominant extremum, which is located in the initial 

interval of the desired trajectory span. However, the hysteresis nonlinearity is reduced 

from 14.1% to 1.0% for the controller with four memory units. 
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Figure 2.22. Feedforward control strategy based on the inverse hysteresis model. 

Table 2.4. Maximum and mean-square tracking error values for linear controller and 

feedforward inverse controller with different memory units. 

Controller type Maximum 
error (%) 

Mean square 
error (µm2sec) 

Proportional controller 7.43 12.32 

Inverse controller with one memory unit 8.66 17.06 

Inverse controller with two memory units 1.90 0.28 

Inverse controller with three memory units 1.27 0.11 

Inverse controller with four or more memory units 1.04 0.07 

 

The proposed controller could also be successfully utilized for rate-varying input signals. 

Although the hysteresis rules derived here are for a constant rate input, as long as the rate 

operating is close to the rate at which the model has been identified, the controller 

exhibits improved performance. Figure 2.24 depicts the trajectory tracking results of the 

system for a multi-frequency sinusoidal desired trajectory (xd(t) = 6 - 0.45cos(1.4πt) - 

1.50cos(0.6πt) - 1.80cos(πt) - 2.25cos(2πt), µm). A feedforward memory-dominant 

inverse controller with sufficient memory units (three units here) is compared with the 

best linear controller. As clearly seen, the hysteresis nonlinearity is reduced from 15.5% 

to 1.6% by the utilization of the proposed inverse controller for this trajectory. 
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Figure 2.23. Inverse feedforward controller results; (a) linear controller response, inverse 

controller response with (b) one memory unit, (c) two memory units, (d) three memory 

units, and (e) four or more memory units, (f) actual hysteresis response for the controller 

with four memory units, (g) inverse hysteresis response of the controller with four 

memory units, and (h) linearized response using the controller with four memory units. 

 

a b
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Figure 2.24. Tracking control of a multi-frequency sinusoidal trajectory; (a) linear 

proportional controller response, (b) memory-base inverse controller response. 

 

Chapter Summary 

Low frequency open-loop tracking control of piezoactive micro and nanopositioning 

systems is limited by the multi-loop history-dependent hysteresis phenomenon associated 

with their applied input voltage and resultant output displacement. Both conventional 

phenomenological and constitutive models lack accuracy either due to the rigidity of the 

frameworks or lack of knowledge on the memory-based properties of hysteresis. In this 

chapter, both phenomenological and constitutive frameworks were targeted for possible 

improvements or development of new modeling frameworks. More specifically, a 

a 

b 
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modification has been applied to the conventional PI hysteresis operator, one of the 

widely-used phenomenological frameworks, to improve its accuracy. Experimental 

comparisons on a PZT-driven nanopositioning stage demonstrated significant 

enhancement in the accuracy of the proposed modified PI model. 

A novel memory-based constitutive modeling framework was then proposed to 

precisely predict the hysteresis phenomenon. The model utilized a set of intelligent 

properties of hysteresis that were experimentally observed and identified. These 

properties were incorporated into a mathematical mapping technique with two different 

linear and exponential configurations. Superior results were obtained using the proposed 

framework in modeling and feedforward control of a piezoactive nanopositioning system. 

The necessary condition for the accuracy of the positioning is for the model to include a 

sufficient number of memory units for recording important data from the history of 

hysteresis trajectory.      

 



CHAPTER THREE 

 

LUMPED-PARAMETERS MODELING AND CONTROL OF PIEZOACTIVE 

MICRO- AND NANO-POSITIONING SYSTEMS 

 

3.1. Introduction 

High frequency control of piezoactive micro- and nano-positioning systems requires a 

comprehensive and detailed model of the system frequency-dependent dynamics. Due to 

distributed-parameters nature, these systems are well described by partial differential 

equations [29].  In practice, however, the working frequencies of piezoactive positioning 

systems barely exceed their first natural frequency. Therefore, their distributed-

parameters dynamics could be safely reduced to a lumped-parameters representation, 

especially when integrated with flexural mechanical compartments. In many references, a 

second order linear time-invariant model has been integrated with a hysteresis operator 

appeared in the input excitation for describing the system hysteretic and frequency-

dependent behavior [26, 38].  

 Typically, hysteresis models have complicated structures due to the multiple-loop 

and memory-dependent behavior of the phenomenon. One way to avoid hysteresis is to 

use charge-driven circuits such that the input charge can be applied in a controlled way. It 

has been shown that the relation between applied charge and displacement is linear in 

piezoelectric materials [45, 46]; however, the need for expensive instrumentation, 

amplification of the measurement noise, and reduction in the system responsiveness are 
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the main drawbacks of charge-driven strategy. Hence, many applications prefer to use 

voltage-driven strategy and compensate hysteresis effect with inverse models. 

Control of piezoactive systems can be divided into feedforward and feedback 

strategies. Feedforward schemes essentially employ an inverse hysteresis model to 

compensate for this phenomenon which is the dominant source of inaccuracy in low-

frequencies [21, 22, 27 and 28]. However, to compensate for the effects of frequency-

dependent dynamics, rate-dependent hysteresis model are proposed [44]. The overall 

uncertainties of the feedforward methods and the presence of external disturbances, 

however, necessitate the use of feedback control, particularly at higher frequencies. Many 

feedback schemes utilize a PID (Proportional-Integral-Derivative) controller to overcome 

the drawbacks of feedforward compensators [23, 28]. Although significant improvements 

are achieved in low frequencies, a continuous increase in tracking error is observed as the 

frequency increases.  

On the other hand, various systematic methods such as robust and adaptive control 

schemes have been developed, most of which require a representative hysteresis model 

[26, 32]. Some robust control schemes, however, do not require a hysteresis model [47, 

48]; although performance is improved compared to classical methods, parametric 

uncertainties have not been taken into account. The fact that a robust controller loses its 

performance to compensate for disturbances originated from parametric uncertainties 

elucidates the need for robust adaptive methods when high performance operations are 

demanded. It is well known that asymptotic robust schemes such as sliding mode control 

are not practical due to the chatter phenomenon [49], but adaptive methods are able to 
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completely eliminate or significantly reduce the effects of uncertainties in the system 

parameters [50]. Few works have addressed robust adaptive scheme together in their 

control design but mainly have focused on the theoretical aspects [51, 52]. The control 

problem becomes even more challenging when the system is subjected to other sources of 

uncertainties such as cross-coupling effect in multiple axes operation. 

In this chapter, a combined hysteretic and dynamic model is proposed for accurate 

modeling of piezoactive positioning systems in a broad frequency range. Through a set of 

experiments it is shown that the model sustains a good level of accuracy compared to the 

pure hysteretic and pure dynamic models. A feedforward control law is then proposed for 

tracking time-varying trajectories at various rates. To improve the precision of operation 

with the advantage of real-time position feedback, a Lyapunov-based robust adaptive 

controller is developed and implemented on a XY parallel piezo-flexural nanopositioning 

stage with cross-coupling effect. It has been demonstrated that the controller forces the 

stage to precisely track low and high-frequency trajectories despite the absence of 

hysteresis model and the presence of parametric uncertainties.      

 

3.2. Lumped-Parameters Modeling of Piezoactive Nanopositioning Systems 

Piezoelectric actuators typically consist of stack of thin layers of electro-active solid-state 

materials, alternatively connected to the positive and negative terminals of a voltage 

source (Figure 3.1-left).  The total displacement of the actuator is determined as the sum 

of the expansions of the individual layers. As stated before, due to the high natural 
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frequency of system, a reduced lumped-parameters representation could effectively cover 

the actual system response in a reasonably broad frequency range.  

 

Figure 3.1. (left) Schematic of a typical piezoelectric stack actuator, and (right) its 

equivalent dynamic model. 

 

3.2.1. Mathematical Model Description  

The proposed model combines a mass-spring-damper trio with a nonlinear hysteresis 

operator appearing in the input excitation to the system (see Figure 3.1-right).  The 

governing equation of motion for such system is then written as: 

{ }2 2( ) 2 ( ) ( ) ( )ξω ω ω+ + =�� �n n nx t x t x t H v t                                   (3.1) 

where x(t) and v(t) represent the actuator displacement and input voltage, respectively; ζ 

and ωn are the damping coefficient and natural frequency of the linear dynamic, 

respectively, and H{v(t)} is a scaled hysteretic relation between the input voltage and the 

excitation force.  
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To evaluate the contribution of the hysteretic and the dynamic models independently, 

three other possible models are considered to be compared with the proposed integrated 

model. The models are given by: 

   1 ( ) ( )=x t av t                                                          (3.2) 

{ }2 ( ) ( )=x t H v t                                                       (3.3) 

2 2
3 3 3( ) 2 ( ) ( ) ( )ξω ω ω+ + =�� �n n nx t x t x t a v t                                      (3.4) 

where x1,(t), x2(t) and x3(t) denote the piezoactive system models responses to the given 

input voltage v(t), respectively. The model given in Eq. (3.2) presents a linear relation 

between the input voltage and the stage displacement, Eq. (3.3) proposes a pure static 

hysteretic relation between the input voltage and the stage displacement, and Eq. (3.4) 

presents a pure dynamic model for the stage without considering its hysteretic behavior.  

Because of high stiffness and thus high natural frequency of piezoactive systems, in 

low-rate and low frequency operations where the velocity and acceleration terms ( )�x t  

and ( )��x t  are small, the effects of first two terms in Eq. (3.1), i.e. inertia and damping 

terms become negligible. Therefore, Eq. (3.1) can be safely reduced to Eq. (3.3), and Eq. 

(3.4) can be accordingly reduced to Eq. (3.2). It is expected that for low-frequency 

operation, Eq. (3.3) can precisely predict the system response if a valid hysteresis model 

is utilized, however, Eqs. (3.2) and (3.4) fail to accurately predict the response. In high-

frequency operation, Eq. (3.3) should fail to precisely predict the system response, as the 

effects of system dynamics have been neglected. Similar to low-frequency operation, Eq. 
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(3.4) lacks the needed precision because the hysteresis effect is ignored, but the response 

accuracy remains insensitive to the variation of input rate and frequency as the dynamics 

is incorporated. The simplest model is the proportional model described by Eq. (3.2), 

which is expected to demonstrate the least levels of accuracy and performance for both 

low and high-rate inputs. 

 

3.2.2. Experimental Verification 

To demonstrate the effectiveness of the proposed modeling framework and observe the 

effects of dynamic and hysteresis models on the accuracy of the response, two low- and 

high-rate ( 10±  and 1000± Volt/sec) triangular inputs with the same profiles are generated 

and implemented on a piezo-flexural nanopositioning system depicted in Figure 3.6. The 

memory-based hysteresis model proposed in Chapter 2 is developed and implemented in 

the system. Figure 3.2 depicts the low-rate experimental comparison of the system 

response with the responses of the models described by Eqs. (3.1) to (3.4). From the 

similarity of the responses of Figures 3.2(a) with 3.2(c), and 3.2(b) with 3.2(d), it can be 

concluded that the effects of system dynamics are negligible for the low-rate operation.  

Figure 3.3 demonstrates the high-rate response of the models compared to that of the 

actual system. It can be clearly understood that only the proposed combined hysteretic 

dynamics model can precisely estimate the actual system response. Other models lack 

accuracy because of ignoring either hysteresis, or dynamics or both of them.  

It is obvious that for higher rate input excitation, the effect of system dynamics 

become more visible, while the effect of hysteresis nonlinearity remains the same. Figure 
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3.4 demonstrates the input/output hysteresis responses of the actual system and proposed 

model for the given low- and high-rate inputs. As seen from the figure, the hysteresis 

loops are expanded as the input rate increases, due to the further induced hysteresis from 

the system damping. It is also seen from the figure that not only the proposed model 

precisely predicts the hysteresis response for the low-rate operations, but also effectively 

incorporates the effects of rate variation. To achieve a more visible assessment of the 

accuracy of the models, the mean-square and maximum error values of each model are 

calculated which are listed in Table 3.1.    

 

 

Figure 3.2: Low-rate response of the piezo-flexural system compared to responses of; (a) 

combined hysteretic and dynamics model, (b) proportional model, (c) pure hysteretic 

model, and (d) pure dynamic model. 

a b

c d
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Figure 3.3: High-rate response of system versus responses of; (a) combined hysteretic 

and dynamic, (b) proportional, (c) pure hysteretic and (d) pure dynamic models. 

 

Figure 3.4: (a) Low-rate experimental, (b) low-rate model, (c) high-rate experimental and 

(d) high-rate model hysteresis responses of the actual and simulated system. 

a b

c d

a b

c d
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Table 3.1. Maximum and mean-square modeling error values for different models in low- 

and high-rate operations. 

Low-rate input High-rate input 

Model type Maximum 
error (%) 

Mean-
square error 

(µm) 

Maximum 
error (%) 

Mean-square 
error(µm) 

Model including hysteresis and dynamics 
Eq. (3.1) 1.24 0.26 1.04 0.21 

Model with only a proportional gain 
Eq. (3.2) 7.75 2.69 11.24 3.76 

Model including only hysteresis nonlinearity 
Eq. (3.3) 1.22 0.26 5.40 1.48 

Model including only dynamics 
Eq. (3.4) 7.73 2.68 8.60 2.84 

 

 

3.3. Feedforward Control of Piezoactive Nanopositioning Systems 

In this subsection, an inverse model-based feedforward controller is introduced and 

experimentally implemented for tracking control of multiple frequency trajectories. For 

this, a perturbation term is added to the system equation of motion to present a more 

actual description of the system dynamics as: 

{ }2 2( ) 2 ( ) ( ) ( ) ( )ξω ω ω+ + = +�� �n n nx t x t x t H v t p t                              (3.5) 

where p(t) is the influence of the parametric uncertainties, unknown terms and the ever-

present unmodeled dynamics. A feedforward control law is proposed next for the system 

described by Eq. (3.5). 

 

3.3.1. Feedforward Controller Derivation  

Consider a feedforward control law given by: 
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1
2

1 2( ) ( ) ( ) ( )ξ
ω ω

−  
= + + 

 
�� �d d d

n n

v t H x t x t x t                                (3.6) 

with xd(t)  being the two-times continuously differentiable desired trajectory. Substituting 

Eq. (3.5) into the system equation of motion, (3.5) results in the following error 

dynamics: 

2( ) 2 ( ) ( ) ( )n ne t e t e t p tξω ω+ + = −�� �                                       (3.7) 

where ( ) ( ) ( )de t x t x t= −  represents the tracking error. It can be interpreted from Eq. (3.7) 

that if the magnitude of the model perturbation p(t) is bounded, the error signal remains 

bounded, and the feedforward controller leads to a uniformly stable tracking. This is due 

to the fact that the coefficients of system error and its first and second time derivatives 

are positive, leading to a stable differential equation for the error dynamics. However, the 

magnitude of the error depends on the model perturbations which appear as a forcing 

disturbance to the second order error dynamics. In low-frequency operation, such 

perturbation essentially originates from the hysteresis model inaccuracy, while in high- 

frequencies the dynamic model inaccuracy adds to the perturbations. An experimental 

test is carried out next to demonstrate the effectiveness of the proposed controller. 

 

3.3.2. Experimental Verification of the Feedforward Controller 

Tracking performance of the controller is examined on the piezoactive nanopositioning 

stage depicted in Figure 2.4 for three different multiple frequency trajectories as shown in 

Figure 3.5. The modified PI hysteresis operator proposed and identified in Chapter 2 is 
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utilized in the controller. In order to evaluate the effectiveness of the proposed strategy, a 

proportional controller, which operates based on a single input/output conversion gain is 

tested and compared with the inverse feedforward controller for the given trajectories. 

The detailed profile of the desired trajectories and the maximum and mean-square values 

of the tracking error are all given in Table 3.2. The practical application of such 

trajectories could include trajectories used in Scanning Probe Microscopes (SPMs) which 

are utilized for topography tracking of uniform and non-uniform surface profiles.  

Experimental results depicted in Figure 3.5 and Table 3.2 clearly indicate that the 

inverse feedforward controller is able to significantly suppress the tracking error 

originated from hysteresis nonlinearity and system dynamics in both low- and high-

frequency operations. The results for the proportional controller demonstrate, however, 

that if the frequency of operation increases, the tracking error increases as well.  This is 

simply due to the fact that the dynamics of the system are ignored in this controller.    

Table 3.2.  Trajectory profiles and tracking error values for feedforward control strategy. 

    Desired trajectory profile (µm) (Exp. run),   Controller Maximum 
error (%) 

Mean-square 
error (µm) 

(a)  Inverse FF 2.34 0.04        4 – [cos(2πt) + cos(6πt) + 
                cos(10πt) + cos(20πt)] (b) Proportional FF 8.03 0.23 

(c)  Inverse FF 2.70 0.06       4 – [cos(20πt) + cos(30πt) + 
               cos(80πt) + cos(100πt)] (d) Proportional FF 10.92 0.27 

(e)  Inverse FF 2.12 0.05       4 – [cos(60πt) + cos(100πt) +  
               cos(140πt) + cos(200πt)] (f) Proportional FF 16.66 0.32 
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Figure 3.5. Multiple frequency feedforward trajectory tracking results for; (a) low-

frequency inverse feedforward, (b)  low-frequency proportional, (c) moderate-frequency 

inverse feedforward, (d) moderate-frequency proportional, (e) high-frequency inverse 

feedforward, and (f) high-frequency proportional control results. 
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3.4. Feedback Control of Piezoactive Nanopositioning Systems 

The feedback availability of the real-time position can serve to significantly improve the 

control performance compared to the feedforward control schemes. Particularly, when the 

parametric uncertainties effectively disturb the system at high-frequencies and 

incorporation of complex hysteresis models is not preferred, the use of position feedback 

becomes inevitable for the precision control purpose. However, the development of an 

effective feedback controller makes the main challenge in this respect.  

In this subsection, a Lyapunov-based robust adaptive control strategy is developed 

and utilized for precision tracking control of a double axes parallel piezo-flexural 

nanopositioning stage. This system not only suffers from the hysteresis nonlinearity and 

parametric uncertainties associated with its piezoelectric and dynamic structure, it also 

experiences a disturbance-like cross-coupling effect between its two axes when they are 

simultaneously excited.      

 

3.4.1. System Description and Experimental Setup  

Piezo-flexural systems have been developed to respond to the demand for multiple-axis 

micro- and nano-scale motions for a wide range of displacements. They comprise of 

several piezoelectric stack actuators, usually made of PZT connected to a flexural 

mechanism to handle the multiple-axis motion for a single moving stage. A flexure is a 

frictionless mechanism which operates based on the elastic deformation of a solid part 

made of a stiff metal providing maintenance-free and perfectly guided motion without 

any stick-slip effect. 
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A Physik Instrumente P-733.2CL double-axis parallel piezo-flexure stage with high 

resolution capacitive position sensors is considered here for the experiments (see Figure 

3.6). Experimental data interfacing is carried out through the Physik Instrumente E-500 

chassis for PZT amplifier along with DS1103 dSPACE® data acquisition and controller 

board. The sampling frequency of all experiments is set to be 20 kHz, and the stage 

motion is reflected by two built-in capacitive sensors with sub-nanometer resolution.   

 

Figure 3.6. Parallel piezo-flexural system configuration; (a) Physik Instrumente P-

733.2CL double-axis parallel piezo-flexure stage for the experiments, and (b) its 

schematic representation. 

Figure 3.6(b) depicts the schematic configuration of the system. Two piezoelectric 

stacks are preloaded by a wire-cut flexural stage with the ability to push in two 

perpendicular directions and generate a simultaneous double-axis motion. Since both 

actuators move a single stage, the system configuration is called parallel-kinematics. In 

a b
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addition to accurate positioning, this system has the advantage of identical resonant 

frequencies and dynamic behavior in both directions. 

 

3.4.2. The Cross-coupling Effect in Double-axis Motion  

Parallel piezo-flexural systems suffer from a nonlinear cross-coupling phenomenon 

which originates from the asymmetrical arrangement of the actuators. That is, when the 

stage moves in one direction, the actuator in the other direction, which is tightly 

compressed between the moving surface and the stationary part, may rotate and deform 

due to the strong preload and the frictional forces. The piezoelectric stacks, on the other 

hand, may slip on each other due to the generated shear force. The combined rotation, 

compression and slip effects influence the stage motion in other direction. This cross-

coupling becomes even more disruptive at high-frequencies, particularly when it is close 

to the system natural frequency.  

Figure 3.7(a) demonstrates the experimental coupling responses when one axis is 

neutral and the other one is excited with 1 Hz and 50 Hz harmonic inputs. It is observed 

that the couplings in two directions are similar but demonstrate different behavior in 

different frequencies. Comparing the coupling phenomenon with hysteresis, one can view 

their similar nature; however, the main difference can be in their input excitation sources; 

the input of hysteresis is the applied voltage, while coupling originates from the motion 

of other axis. Hence, we propose the following equation representing the coupling 

phenomenon for neutral axis when the other axis is under excitation: 
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{ }2 2( ) 2 ( ) ( ) ( )ξω ω ω+ + =�� �n n nx t x t x t C y t                                   (3.8) 

where x(t) is the neutral axis displacement , y(t) is the moving axis displacement, and 

C{y(t)} is a nonlinear operator representing the coupling phenomenon. It is noticeable 

that about 0.3% of one axis motion is transferred into the other axis through this 

coupling. This may reduce the precision of open-loop and the stability of the closed-loop 

system if not effectively compensated. 

When both axes are under simultaneous excitations, not only the hysteresis influences 

the response, but also the coupling phenomenon disturbs the performance. Figure 3.7(b) 

depicts hysteresis response of axis x for 1 Hz excitation when axis y is excited by 40 Hz 

input excitation. This shows that the motion of high-frequency axis induces a small-

amplitude wave on the hysteresis response of the low-frequency axis. 

     

Figure 3.7. Cross-coupling effect of axis y motion on axis x: (a) when axis x is inactive 

while axis y is excited by 1 Hz and 50 Hz inputs, and (b) coupled hysteresis response of 

axis x in 1 Hz when axis y is excited by 40 Hz input; (similar responses are obtained for 

axis y as a result of axis x motion). 

 

a b
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The governing equations of motion can now be obtained through the superposition of 

the hysteretic excitation and the coupling effect. Hence, the following pair of equations 

are proposed here for the double-axis motion of stage: 

{ } { }( )
{ } { }( )

2 2

2 2

( ) 2 ( ) ( ) ( ) ( ) ( )

( ) 2 ( ) ( ) ( ) ( ) ( )

ξ ω ω ω

ξ ω ω ω

+ + = + +

+ + = + +

�� �

�� �

x nx nx nx x x yx x

y ny ny ny y y xy y

x t x t x t H v t C y t D t

y t y t y t H v t C x t D t
          (3.9) 

where Dx/y(t) represents the influence of the external disturbances on the system, with 

subscripts x and y specifying the parameters, operators, and inputs for the corresponding 

axis. Next, the widely used Proportional-Integral-Derivative (PID) controller is 

implemented for simultaneous tracking control of stage at different frequencies. 

 

3.4.3. PID Controller Implementation  

PID controller is a well-known strategy for precision control of mechanical systems. 

Choosing the proportional and integral control gains with trial and error, Figure 3.8 

depicts tracking results when both axes are forced to simultaneously track desired 

trajectories with different frequencies and nonzero initial values. The desired trajectories 

include 60 µm peak-to-peak sinusoids in 5 Hz and 50 Hz for axis x and axis y, 

respectively. The achieved maximum steady-state tracking error is 1% for axis x and 20% 

for axis y. With further increasing gains for a better performance, system tends to 

instability. Although results indicate excellent steady-state tracking for the low-frequency 

trajectory, its transient response includes large overshoot and undesired oscillations. On 

the other hand, improving overshoot by tuning the gains decreases the steady-state 
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tracking performance. Hence, PID controller lacks a desirable transient response in 

tracking of time-varying trajectories and has low performance in high frequency 

trajectory tracking.  

It is remarked that for the same desired trajectories with zero initial values, about 

0.7% (for axis x) and 8.3% (for axis y) maximum tracking errors can be achieved. Again, 

PID control is unable to track high-frequency trajectories, although, it is excellent for 

low-frequency trajectories with zero initial values.  

 

 

Figure 3.8. PID controller results for simultaneous double-axis motion control; (a) axis 

x 5 Hz tracking control, (b) axis x tracking error, (c) axis y 50 Hz tracking control, and (d) 

axis y tracking error. 

 

a b

c d
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3.4.4. Robust Adaptive Control Development 

Precision tracking control of the double-axis piezo-flexural system presented by 

Eq. (3.9) encounters problems such as parametric uncertainties, external disturbances, 

and ever-present unmodeled dynamics including coupling and hysteresis modeling 

uncertainties. However, a properly designed closed-loop controller can offer a remedy for 

all these problems. This subsection proposes a Lyapunov-based robust adaptive control 

strategy for the precision tracking control of piezo-flexural nanopositioning systems. 

Since both system axes motions are governed by identical equations of motion, for 

the sake of simplicity, the controller is designed for only one axis, and without loss of 

generality, is applied to the second axis as well. For this, let’s select axis x and remove all 

the indices in Eq. (3.9). The following definitions are considered first: 

{ } ( )
{ } ( )

ˆ( ) ( ) ( ) ( )

ˆ( ) ( ) ( ) ( )
ˆ( ) ( ) ( )

+ +

+ +

+

��
��

��

h h

c c

H v t a v t v t v t

C y t b y t y t y t

D t D t D t

                                      (3.10) 

where operators { }( )H v t  and { }( )C y t  are assumed to be divided into linear segments 

with the respective slopes of a and b, known time-varying parts ˆ ( )hv t  and ˆ ( )cy t  

(obtained from approximate models), and bounded uncertain parts ( )�hv t  and ( )�cy t , 

respectively. Similarly, the disturbance is divided into a known part ˆ ( )D t  and a bounded 

uncertain part ( )�D t . The validity of this assumption (dividing hysteresis into a linear part 

and a bounded time-varying part) has been shown in [52] for systems with backlash-like 

hysteresis including piezoelectric systems. Moreover, it has been shown that hysteresis 
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trajectories in piezo-flexural stages are bounded by reference curves, due to the hysteresis 

curve-alignment property [20].   

The equation of motion can then be written as: 

( )
0

2

ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),
1 2 1, , ,ξ
ω ω

+ + = + + + + +

= + = + +

= = = =

�� �
�� � �

h c

h c

n n

mx t cx t kx t v t v t r y t y t D t p t

p t p p t v t ry t D t
bm c k r

a a a a

       (3.11) 

with  p(t) being the overall system perturbations consisting of an average (static) term  p0 

to be relaxed through an adaption law, and a time-varying term ( )�p t  to be compensated 

through a robust control design. Parameters m, c, k and r are the system unknown 

parameters to be included in the adaptive strategy. It is remarked that one is free to take 

only the linear part of the operators and leave ˆ ( )hv t  and ˆ ( )cy t  completely in the 

uncertainty terms ( )�hv t  and ( )�cy t , respectively. However, the less the amplitude of 

system perturbation, the better the tracking performance will be in practice. 

 

Control Derivation 

To simultaneously satisfy tracking control and robustness requirements, the sliding 

hyperplane is selected as: 

( ) ( ) ( )σ= +�s t e t e t                                               (3.12) 
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where 0σ >  is a control gain, and ( ) ( ) ( )= −de t x t x t  with xd(t) being the two times 

continuously differentiable desired trajectory. Taking the time derivative of (3.12) and 

using (3.11) yields: 

( )( )0

( ) ( ) ( )
( ) ( ) ( )

1 ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

σ
σ

σ

= +
= − +

= + + + − − − + − − −

� �� �
�� �� �

�� � � �

d

d h c h

s t e t e t
x t x t e t

x t e t cx t kx t v t v t r y t y t D t p p t
m

(3.13) 

Theorem 3.1: For the system described by (3.11), if the variable structure control is 

given by: 

  
( ) ( )

( )0 1 2

ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
ˆˆ ˆ( ) ( ) ( ) ( ) sgn ( )

σ

η η

= + + + − +

− − − + +

�� � �d c

h h

v t m t x t e t c t x t k t x t r t y t y t

p t v t D t s t s t
               (3.14) 

where 1η  and 2η  are positive control gains, 2( ) η≤�p t  for [0, )t∀ ∈ ∞ , the parameter 

adaptation laws given by: 

( )

0
1

0
2

0
3

0
4

0 0 0
5

1ˆ ˆ( ) (0) ( )( ( ) ( ))

1ˆ ˆ( ) (0) ( ) ( )

1ˆ ˆ( ) (0) ( ) ( )

1ˆ ˆ ˆ( ) (0) ( ) ( ) ( )

1ˆ ˆ( ) (0) ( )

τ τ σ τ τ

τ τ τ

τ τ τ

τ τ τ τ

τ τ

= + +

= +

= +

= − +

= −

∫

∫

∫

∫

∫

�� �

�

t

d

t

t

t

c

t

m t m s x e d
k

c t c s x d
k

k t k s x d
k

r t r s y y d
k

p t p s d
k

                               (3.15) 
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with  k1  to k5 being adaptation gains, and ˆ (0)m  to ˆ (0)p being approximate parameter 

values, then asymptotic stability of the closed-loop system and tracking control of desired 

trajectory are guaranteed in the sense that  e(t) is bounded.  

Proof: Let’s define the following parametric error signals and take their time 

derivatives to obtain: 

0 0 0 0 0

ˆ ˆ( ) ( ); ( ) ( )

ˆ ˆ( ) ( ); ( ) ( )

ˆ ˆ( ) ( ); ( ) ( )

ˆ ˆ( ) ( ); ( ) ( )

ˆ ˆ( ) ( ); ( ) ( )

= − = −

= − = −

= − = −

= − = −

= − = −

��� �
��� �
��� �
��� �

��� �

m t m m t m t m t

c t c c t c t c t

k t k k t k t k t

r t r r t r t r t

p t p p t p t p t

                                   (3.16) 

Now, select the positive definite Lyapunov function as: 

( )2 2 2 2 2 2
1 2 3 4 5 0

1( ) ( ) ( ) ( ) ( ) ( ) ( )
2

= + + + + +�� � � �LV t ms t k m t k c t k k t k r t k p t                    (3.17) 

Taking its time derivative yields: 

1 2 3 4 5 0 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= + + + + +�� �� � � �� � � � � � � � � �LV t ms t s t k m t m t k c t c t k k t k t k r t r t k p t p t
   

(3.18) 

Substituting (3.13), (3.14) and (3.16) into (3.18) results in: 

( )

( )

( )

1 2

3 4

2
0 5 1 2

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ( ) ( ) ( ) ( ) ( )sgn ( ) ( ) ( )

σ

η η

   = + − + −   
   + − − + +   
 − + − − + 

� �� � �� � � �

� �� �

�� �

L d

c

V t m t s t x t e t k m t c t s t x t k c t

k t s t x t k k t r t s t y t y t k r t

p t s t k p t s t s t s t p t s t

             (3.19) 
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Taking time derivatives of adaptation laws given by (3.15) and substituting into (3.19) 

makes the coefficients of the parametric error signals (terms inside the squared brackets) 

zero. Hence: 

( )2 2
1 2 1 2( ) ( ) ( )sgn ( ) ( ) ( ) ( ) ( ) ( ) ( )η η η η= − − + = − − +� � �LV t s t s t s t p t s t s t s t p t s t         (3.20) 

If the condition 2( ) η≤�p t  is applied for all t > 0 then:  

 2
2 1( ) ( ) ( ) or ( ) ( ) 0η η− ≤ ≤ − ≤�� Ls t p t s t V t s t                               (3.21) 

Since the time derivative of proposed Lyapunov function is negative, asymptotic 

convergence of the sliding variable s(t) is achieved, i.e. ( ) 0→s t  as →∞t  according to 

[53]. Moreover, all the adaptation signals are bounded; hence e(t) and ( )�e t  converge to 

zero, as a conclusion from (3.12). 

 

Derivation and Analysis of Soft Switching Mode Control  

Although the proposed adaptive sliding mode controller is robust and asymptotically 

stable, it cannot be effectively implemented in practice due to the chatter phenomenon 

[49]. That is, due to the hard switching of signum function in the control law, resonant 

modes of the system can be excited which may lead to large vibrations or even instability. 

A widely-used remedy for this problem is to replace the hard switching term sgn(s) with 

a softer switching method using the following saturation function: 

/
sat( / )

sgn( )

ε ε
ε

ε

 ≤= 
>

s s
s

s s
                                             (3.22) 
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with ε  being a small positive parameter select to adjust the rate of switching operation. 

The control law (3.14) is then modified to: 

   
( ) ( )

( )0 1 2

ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
ˆˆ ˆ( ) ( ) ( ) ( ) sat ( ) /

σ

η η ε

= + + + − +

− − − + +

�� � �d c

h h

v t m t x t e t c t x t k t x t r t y t y t

p t v t D t s t s t
              (3.23) 

It is remarked that the adaptation laws given by (3.15) are no longer applicable with the 

modified control law. The reason is that control law (3.23) can only guarantee the 

boundedness of the sliding trajectory, not its asymptotic convergence, i.e. ( ) →Ωs t  as 

→∞t , where Ω  is a bounded set. Hence, adaptation integrals in (3.15) can lead to 

unbounded values over time. To eliminate this problem, a projection operator is utilized 

as proposed in [50]. This operator requires the lower and the upper bounds of parameters 

and is introduced as: 

[ ]
max

min

ˆ0 if ( )  and   0
ˆProj 0 if ( )  and  0

otherwise
θ

θ θ

θ θ

 = >
= = <



i

i i
i

t

t                                  (3.24) 

where ˆ( )θ t  represents the adaptation parameter (e.g., ˆ ( )m t , ˆ( )c t , etc.) with minθ  and 

maxθ  being its lower and upper bounds, respectively. Accordingly, the adaptation laws 

are modified to: 
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( )

[ ]

[ ]

( )

[ ]
0

0
1

0
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0
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0
4

0 0 0
5

1ˆ ˆ( ) (0) Proj ( ) ( ) ( )

1ˆ ˆ( ) (0) Proj ( ) ( )

1ˆ ˆ( ) (0) Proj ( ) ( )

1ˆ ˆ ˆ( ) (0) Proj ( ) ( ) ( )

1ˆ ˆ( ) (0) Proj ( )

τ τ σ τ τ

τ τ τ

τ τ τ

τ τ τ τ

τ τ

= + +  

= +

= +

= + − +  

= + −

∫

∫

∫

∫

∫

�� �

�

t

m d

t

c

t

k

t

r c

t

p

m t m s x e d
k

c t c s x d
k

k t k s x d
k

r t r s y y d
k

p t p s d
k

                       (3.25) 

Hence, it is guaranteed that the adaptation parameters remain bounded by the lower and 

upper bounds, provided that they are initially selected within the bounds, i.e. if 

min max
ˆ(0)θ θ θ< < , then min max

ˆ( ) , [0, )θ θ θ< < ∀ ∈ ∞t t . Furthermore, it can be shown that 

the following property holds for the projection operator: 

                 [ ]( ) ( ) ( )Proj ( )θθ χ θ χ≤� �t t t t                                       (3.26) 

Theorem 3.2: For the system described by (3.11), if the soft variable structure control 

given by (3.23) and the adaptation laws given by (3.25) are applied, the closed-loop 

system becomes globally uniformly ultimately bounded, in the sense that the error e(t) is 

bounded. Moreover, the bound of the steady-state error can be explicitly derived as: 

2

1 2

( )
( )
η ε

σ η ε η
≤

+sse t                                               (3.27) 

Proof: The time derivative of the Lyapunov function given in (3.17), after applying 

modified control law (3.23), adaptation laws (3.25), and property (3.26) becomes: 
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( )2
1 2( ) ( ) ( )sat ( ) / ( ) ( )η η ε≤ − − +� �LV t s t s t s t p t s t                              (3.28) 

Assume that the sliding variable starts from outside the boundary layer specified by ε , 

such that its initial value satisfies (0) ε>s . From (3.22), the Lyapunov derivative of the 

modified controller, Eq. (3.28) becomes identical to that of the primary controller, Eq. 

(3.20). Hence, s(t) will be stirred towards zero as a conclusion from Theorem 3.1. 

However, before arriving at the origin, it enters the boundary layer, ( ) ε≤s t , where the 

structure of controller changes due to the switching of saturation function. For s(t) being 

inside the boundary layer, the derivative of the Lyapunov function is given by:  

( )

[ ]( )

2
1 2

2 2
1 2

1 2

( ) ( ) ( )sat ( ) / ( ) ( )

( ) ( ) / ( ) ( )

( ) ( ) / ( ) , ( )

η η ε

η η ε

η η ε ε

≤ − − + =

− − + =

− + ≤

� �

�

�

LV t s t s t s t p t s t

s t s t p t s t

s t p t s t s t

                           (3.29) 

If s(t) stays inside a particular range in the boundary layer such that it satisfies 

( ) ( )1 2( ) ( )ε η ε η ε+ ≤ ≤�p t s t , then it follows that ( ) 0≤�
LV t . Hence, s(t) is further forced 

towards the origin. Once it enters the region where the inequality 

( ) ( )1 2( ) ( ) ε η ε η ε< + <�s t p t  holds, the derivative of the Lyapunov function becomes 

positive, i.e., ( ) 0>�
LV t . This may force s(t) to move outside the region, where it will be 

forced back inside again. Eventually, s(t) will be entrapped inside the region where 

( ) ( )1 2( ) ( ) ε η ε η λ ε< + ≤ <�s t p t , and ( )2 1 2λ η ε η ε η= +  after a finite time 

λτ [ , )λτt∀ ∈ ∞ . Hence, the region ( ) λ ε< <s t  is the zone of convergence or the region 

of attraction for trajectories starting outside the zone.  
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Now, assume that s(t) enters the zone of convergence at λτt =  and the inequality 

( ) λ<s t  holds for [ , )λτt∀ ∈ ∞ . Consequently, a time-varying positive function 1( ) 0>l t  

can be found such that:  

1( ) ( ) ( ) ( )σ λ= + = −�s t e t e t l t                                          (3.30) 

Solving the differential equation (3.30) yields: 

( ) ( ) ( )

( )

1( ) ( ) exp ( ) exp ( )exp

( ) exp ( ) [ , )

λ

λ λ
τ

λ λ λ

λ λτ σ τ σ τ στ τ
σ σ

λ λτ σ τ τ
σ σ

 = + − − − − − 
 

 < + − − − ∀ ∈ ∞ 
 

∫
t

e t e t t l d

e t t

          

(3.31) 

Therefore,  

( ) λ
σ

<sse t                                                        (3.32) 

Likewise, there exists a function 2 ( ) 0>l t , [ , )λτt∀ ∈ ∞ , for ( ) λ<s t  such that: 

2( ) ( ) ( ) ( )σ λ= + = − +�s t e t e t l t                                         (3.33) 

which similarly follows that: 

( )( ) ( ) exp ( ) ; [ , )λ λ λ
λ λτ σ τ τ
σ σ

 > − + + − − ∀ ∈ ∞ 
 

e t e t t
                    

  (3.34) 

And consequently, 

( ) λ
σ

> −sse t                                                        (3.35) 
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Form inequalities (3.32) and (3.35), one can simply conclude: 

2

1 2

( ) where
( )
η ελβ β

σ σ η ε η
≤ = =

+sse t                              (3.36) 

The intersection of regions ( ) λ<s t  and ( ) β<e t  forms a parallelogram in − �e e  plane 

to which the error phase trajectory converges. Figure 3.9 graphically demonstrates the 

function of the proposed soft variable structure controller. The − �e e  plane is divided into 

four regions: region 1, where ( ) ε>s t ; region 2, the boundary layer where ( ) ε<s t ; 

region 3, the convergence zone of s(t) where ( ) λ<s t ; and region 4, the convergence 

zone of e(t) where ( ) β<e t . Starting from an initial point in region 1, the phase 

trajectory moves towards region 2, enters the region and proceeds further inside into 

region 3. It is, however, possible that the trajectory inside region 3 escapes outside due to 

its initial momentum. In this case, the trajectory will be attracted back to region 3, since 

the Lyapunov function derivative is always negative outside this region. The trajectory 

will eventually enter region 4 and get entrapped inside the parallelogram of attraction, as 

depicted in the figure, representing a globally uniformly ultimately bounded response for 

the closed-loop system.  

The appropriate selection of control parameters requires a number of trial and error 

experiments. With the help of explicit derivation of the system ultimate error bound given 

by (3.36), the selected sets of control parameters can be initially checked for performance 

acceptability. This leads to saving a large number of experimental runs. The initially 

verified sets can then be implemented in the actual experiment for selecting the final set. 
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It is remarked that if the constraints on the error bounds are too tight, the probability of 

chattering increases. Final set of control parameters is selected based on a trade-off and 

step-by-step squeezing of the ultimate error bound, while staying away from chatter. Eq. 

(3.36) can also be helpful on performing such a trade-off, since it can present the 

sensitivity of the ultimate error with respect to the control parameters. 

 

Figure 3.9. Soft variable structure control with parallelogram zone of attraction. 

 

Experimental Verification of the Robust Adaptive Controller 

In this subsection, the proposed controller is experimentally implemented for tracking of 

the same sinusoidal trajectories used in the PID controller earlier. Only the linear parts of 

the hysteresis and the coupling nonlinearities are taken into account, and no external 

disturbances affect the system, i.e. ˆ ˆ( ) ( ) 0= =h cv t y t  and ( ) 0=D t . The approximate 

values of the system parameters used for initialization of the adaptation integrals are 

given in Table 3.3. The selected control gains obtained from an experimental trial and 

error procedure are listed in Table 3.4. 
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Table 3.3. Approximate system parameter values. 

System parameters ωn  ζ  a b m c k r 

Approximate values 2700 3 10-6 0.0025 0.14 2200 106 2500 

Units rad sec  - m Volt  - kg.V N  V.s m  V m  V m  

 

Table 3.4. Control parameter values for the experiments. 

Control parameters σ  ε  1η  2η  - 

Values 500 0.01 300 20 - 

Adaptation gains 1k  2k  3k  4k  5k  

Values 20 2×10-9 5×10-14 10-10  2×10-6 

 

 

Figure 3.10.  Axis x tracking control results: (a) trajectory tracking, (b) tracking error, (c) 

sliding variable plot, and (d) phase portrait of error trajectory. 

a b

c d
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Figure 3.11.  Axis y tracking control results: (a) trajectory tracking, (b) tracking error, (c) 

sliding variable plot, and (d) phase portrait of error trajectory.    

Figures 3.10 and 3.11 depict the double-axis tracking control results for axis x, and 

axis y, respectively. Tracking of the desired trajectory, system error response, 

convergence of the sliding variable, s(t), and the error phase portrait are given through 

sub-plots 3.10(a)-(d) for axis x , and sub-plots 3.11(a)-(d) for axis y. It is seen that the 

convergence of the error and the sliding trajectories to the prescribed zones are attained. 

Furthermore, the error phase trajectories converge to the predicted parallelogram formed 

by the control gains. The adaptations of parameters ˆ( )k t  and 0ˆ ( )p t  are depicted in Figure 

3.12. For the other parameters, adaptation signals stay within their lower and upper 

bounds, similarly. However, the plots are omitted in the interest of space saving. It is 

a b

c d
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remarked that the coefficients of the parameter adaptations are obtained experimentally to 

yield a sufficiently high adaptation rate while stay away from instability.  

Maximum and average steady-state tracking error percentages are obtained as 1.67 % 

and 0.83 % for axis x, and 1.71 % and 0.82 % for axis y, respectively. It is seen that the 

controller yields similar tracking performance for both axis in different frequencies. 

However, it is remarked that some portion of performance drop is due to the 

simultaneous double-axis operation; experiments demonstrate that single axis tracking 

yields considerable improvement in performance (around 180 % compared to the double-

axis tracking) with the proposed control method.  

Comparing to the PID controller, transient response in low-frequency tracking and the 

steady-state performance in high frequency tracking have been significantly improved. 

Therefore, the proposed controller is preferred over the PID controller, especially at high 

frequencies. However, if low-frequency tracking with zero initial value is desired or the 

transient properties are not the concern, PID controller is preferred due to its simple 

structure and straightforward implementation.  

 

Figure 3.12.  Parameters adaptation results: adaptation of (a) ˆ( )k t , and (b) 0ˆ ( )p t . 

a b
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3.4.5. Application in High-Speed Laser-Free AFM  

The proposed robust adaptive controller implemented in xy scanning system is utilized 

here for micro- and nano-scale imaging using a laser-free AFM setup shown in Figure 

3.13. As seen from the figure, the sample to be imaged is mounted on the xy scanning 

stage, while a piezoresistive microcantilever is mounted on the z nanopositioning stage 

for acquiring sample topography. The z-stage is used only for the initial adjustment and 

to bring the cantilever into a desired contact with the sample. During the scanning 

process, the z-stage does not move; hence, the cantilever deflection corresponds to the 

surface topography (see Figure 3.14 for the schematic view of laser-free AFM setup).    

 

Figure 3.13. Piezoresistive cantilever-based laser-free AFM setup. 
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Figure 3.14. Schematic representation of laser-free AFM setup. 

  

Figure 3.15. Piezoresistive microcantilever with Weston bridge circuit. 

A self-sensing microcantilever, PRC-400, is utilized here for imaging purpose. Figure 

3.15(a) depicts the piezoresistive cantilever image under a 100X magnification light 

microscopy consisting of a piezoresistive layer on the base, tip mass and the 

piezoresistive reference lever. The piezoresistive layers on cantilever and reference lever 

are utilized as the resistances in a Wheatstone bridge. Due to the external force on the 

piezoresistive cantilever’s tip, it bends and results in a change of resistance in the 

piezoresistive layer. This change of resistance can be monitored utilizing the output 

a b
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voltage of the Wheatstone bridge. Figure 3.15(b) depicts a schematic of the PRC-400 

self-sensing cantilever, with external Wheatstone bridge and amplifier [54]. Since the 

first resonant frequency of cantilever is around several kHz, in low-frequency operations 

(e.g. below 100 Hz), the cantilever behaves similar to a lumped-parameters system. 

Hence, the relation between the cantilever deflection and output voltage of the 

Wheatstone bridge is realized to be linear (proportional) [54]. Thus, the cantilever 

deflection can be measured by knowing the deflection-to-voltage gain of the 

piezoresistive cantilever.  

 

Figure 3.16. 3D image of an AFM calibration sample with 200 nm steps captured by the 

developed laser-free AFM setup at 10 Hz raster scanning rate. 

Figure 3.16 demonstrates the 3D image of an AFM calibration sample using the 

developed laser-free AFM setup. Trajectories for axes x and y are assigned based on a 

raster scanning procedure; that is, one of the axes tracks a low-rate ramp trajectory, while 

the other is in charge of tracking a high-rate sinusoidal trajectory. For tracking the low-
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rate ramp trajectory, PID controller is used, while the proposed robust adaptive controller 

has been utilized for tracking the harmonic trajectory. It is particularly desired to relate 

the quality of the acquired image to the speed of scanning which is proportional to the 

frequency of harmonic trajectory. Figure 3.17 demonstrates the top view of images at 

frequencies varying from 10 Hz to 60 Hz with 10 Hz increments. It is seen that as the 

frequency increases, more blurred images are obtained. This quality drop could have been 

originated from the increased vibrations of microcantilever due to facing with the steeper 

steps in the surface at higher speeds, and/or the sensitivity reduction of piezoresistive 

layer due to the frequency increase. Nevertheless, acquiring high-quality images at 

frequencies up to 30 Hz could imply to the effectiveness of the proposed control 

framework in increasing the speeds of current AFMs which typically suffer from the low 

speed of their PID controllers.  

 

Figure 3.17. Effects of raster scanning frequency on the image quality of laser-free AFM.   

10 Hz 20 Hz 30 Hz 

60 Hz 50 Hz40 Hz 
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Chapter Summary 

High frequency tracking control of piezoactive micro and nanopositioning systems is not 

only influenced by hysteresis nonlinearity, but also by the excitation of system dynamics. 

Integration of a second order dynamic model, equivalent of a mass-spring-damper trio, 

with a hysteresis operator appearing in the input excitation was shown to accurately 

model the behavior of such systems in a reasonably broad frequency range. A 

feedforward control law, simultaneously accounting for the system dynamics and 

hysteretic effect, was proposed and validated on a piezoactive nanopositioning stage in 

tracking of multiple-frequency harmonic trajectories including both low and high 

frequency components. However, to increase the positioning accuracy despite the 

parametric uncertainties, and eliminate the complexities associated with hysteresis 

modeling, a Lyapunov-based robust adaptive control strategy was proposed. The 

controller demonstrated excellent tracking of low and high-frequency trajectories despite 

the parametric uncertainties and unmodeled hysteresis nonlinearity. Comparisons with 

widely-used PID controller demonstrate further effectiveness of the proposed robust 

adaptive controller, particularly at high-frequency operations. Moreover, implementation 

of the controller in a laser-free AFM setup yields high quality image of surfaces with 

stepped topographies at frequencies up to 30 Hz in raster scanning. This shall indicate the 

direct application of the proposed control algorithm in improving the speed of current 

AFM systems which mostly suffer from the tardiness of their PID controllers.      



CHAPTER FOUR 

 

TRACKING CONTROL OF DISCONTINUOUS TRAJECTORIES WITH 

APPLICATION TO PROBE-BASED IMAGING AND NANOPOSITIONING* 

 

4.1. Introduction 

In a typical Scanning Probe Microscopy (SPM) system, the task of the probe attached to a 

positioning stage is to scan and track the surface of samples with random topography 

variations, preferably at high speeds. Therefore, precision and robustness are key factors 

for achieving high-performance control through piezoelectric systems. In general, 

controllers designed for tracking of time-varying trajectories are tuned for continuously 

differentiable trajectories. Hence, discontinuities and particularly step-like jumps in the 

desired trajectory may lead to significant oscillations of the closed-loop system and even 

instability because of the input saturation. In many applications including SPMs, the 

desired trajectory is not stipulated, and may change suddenly in real-time. Hence, the 

controller must be prepared for such events. One of the most commonly used remedies is 

to pass the desired trajectory through a low-pass filter before applying to the controller. 

This will transform the jumps of desired trajectory into gradual transitions leading to a 

smoother signal. However, a delay is inherently induced in the filtered signal which can 

significantly decrease the control performance in real-time, particularly, at high 

frequencies.  

                                                            
* The contents of this chapter may have come directly or indirectly from our joint publication [55]. 
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In this chapter, a switching controller is proposed for effective tracking control of 

high-frequency trajectories with discontinuities. The controller structure is based on 

switching between two separate control modes: a Lyapunov-based robust adaptive 

tracking controller (proposed in Chapter 3) and a PID step controller. It has been 

demonstrated that the proposed robust adaptive controller presents excellent robustness 

and performance in tracking of continuous trajectories in frequencies up to 300 Hz. 

However, its transient performance for stepped inputs is limited by large oscillations. On 

the other hand, a PID controller can be tuned in such a way that it presents excellent step 

tracking performance with small settling time and overshoot. Nevertheless, the PID 

controller is unable to precisely track medium-range and high-frequency trajectories 

because of its limited bandwidth. The proposed switching controller has been shown to 

offer excellent performance in tracking of high-frequency trajectories with discontinuities 

without the degrading delay effect associated with filtering proposition. It is expected that 

this strategy will significantly improve the speed of nanopositioning systems as well as 

SPMs in imaging applications.  

 

4.2. Problem Statement 

SPM is a powerful tool for atomic level surface imaging and manipulation. The main idea 

in SPM is to bring an atomically sharpened probe close to surface of a sample material 

and scan it to characterize its topography, or manipulate objects in atomic level. The first 

SPM was a Scanning Tunneling Microscope (STM) introduced by Binnig and Rohrer in 

1981 [56].  Figure 4.1 depicts the schematic view of STM and its working principle. 
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Figure 4.1. Schematic of STM and its working principle. 

As illustrated in Figure 4.1, STM utilizes a sharp tip mounted on a piezoelectric stage 

to approach sample’s surface and stop near it in an equilibrium position between the 

attractive and repulsive areas [57]. In this position, electrons tunnel between the STM tip 

and the sample resulting in a current with amplitude being a function of the tip/sample 

distance. Utilizing a piezoelectric scanner, sample is moved in the X-Y directions, and 

due to the variation of sample topography, the distance between STM tip and sample 

surface changes. By acquiring the amplified feedback of the tunneling current and 

employing an appropriate controller, the piezoelectric stage moves up and down in Z 

direction to control the tunneling current at a constant level [58]. Hence, the recorded 

positions of X-Y-Z piezoelectric stages can reveal the surface topography with molecular 

and atomic variations. Other SPMs such as AFM follow similar principles but with 

different interaction mechanisms between sample and surface.  

A typical SPM controller should be able to track different sample topographies, some 

of which are depicted in Figure 4.2. To this end, SPM tip must scan the surface with the 

Z stage following the surface’s point-by-point topography. As seen from Figure 4.2, the 

surface topographies may change suddenly (a), smoothly (b), or both (c). For the 
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piezoelectric actuator, tracking the trajectory of a line of scan in Figure 4.2(a), 4.2(b) and 

4.2(c) is similar to the tracking the trajectories depicted in Figure 4.3(a), 4.3(b) and 

4.3(c), respectively.  

 

Figure 4.2. Common SPM sample topographies: (a) SPM calibration sample [59], (b) 

Positively-charged polymer latex particles adsorbed to mica in water [60], and (c) Crystal 

of satellite tobacco mosaic virus particles [61]. 

 

Figure 4.3. (a) Stepped trajectory, (b) continuous harmonic trajectory, and (c) 

combination of step and harmonic trajectories resembling topographical surfaces of 

samples shown in Figure 4.2. 

As shown in Figures 4.2 and 4.3, SPM samples could contain both rough and smooth 

topography variations which can be represented with stepped and harmonic trajectories 

for the control structure. Hence, the control problem for SPM with fast imaging rate can 

a b c

a b c
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be reduced to robust controller design for piezoelectric actuators that can track combined 

stepped and sinusoidal trajectories in broad frequency ranges. 

As illustrated next, the controller design for tracking of step trajectories in 

piezoelectric actuators is dissimilar to the design for tracking of sinusoidal trajectories. In 

this work, two different control structures are utilized along with an optimal switching 

function that efficiently switches between them to provide concurrent performance in 

tracking stepped and harmonic trajectories. 

 

4.3. PID Controller Versus Robust Adaptive Controller 

The developed Lyapunov-based robust adaptive controller in Chapter 3 is utilized for 

the piezoactive nanopositioning system depicted in Figure 2.4 for tracking a desired chirp 

trajectory. The trajectory is a 1 µm amplitude chirp signal with a linear frequency 

increase from 0 to 300 Hz within 30 seconds. The advantage of chirp trajectory is that it 

demonstrates a continuous variation of closed-loop system performance in a wide 

frequency range. To comparatively assess the effectiveness of the proposed control law, a 

PID controller is implemented as well. With several trial and errors, the gains of both 

controllers are tuned in such a way that they operate near their best performance for the 

applied desired trajectory.  

Figure 4.4 depicts the chirp tracking results, as well as a sample tracking around 

250 Hz.  It is seen that the proposed robust adaptive controller maintains a good level of 

performance for the entire frequency range, especially for higher frequencies. There is a 
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2.5% peak for maximum tracking error at about 25 Hz, while for most of the frequencies 

this value stays below 2%. The PID controller produces a linear increase in error 

amplitude with respect to frequency. Although it presents better performance compared 

to the robust adaptive controller initially, its performance starts to degrade after about 

30 Hz. Tracking with PID controller can lead to 20% maximum error percentage at 

300 Hz, indicating it is less effective than robust adaptive controller in tracking of high-

frequency trajectories.    

 

    

Figure 4.4. Tracking results of 1 µm amplitude chirp trajectory from 0 to 300 Hz: (a) 

error comparison between well-tuned robust adaptive and PID controllers, (b) robust 

adaptive tracking around 250 Hz, and (c) PID tracking around 250 Hz.   

a 

b c
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Since many applications may require tracking of step-like trajectories, a 50 Hz 

rectangular reference signal is applied to assess the performance of these controllers. 

Figure 4.5 depicts the system response using PID and robust adaptive controllers. 

Although both controllers offer stable convergence to the desired trajectory, their 

transient response includes undesirable large oscillations. Hence, the control gains are re-

tuned to present better and faster transient response for stepped trajectory as shown in 

Figure 4.6. However, when these gains are utilized for tracking of the previous chirp 

trajectory, they yield lower tracking performance. This is shown in Figure 4.7, where the 

robust adaptive controller presents about 7% maximum error around 40 Hz while the PID 

controller yields about 75% error at 300 Hz. Tables 4.1 and 4.2 list the control gains 

tuned for stepped and chirp trajectories for robust adaptive and PID controllers, 

respectively. 

   

Figure 4.5. Stepped trajectory tracking using (a) robust adaptive and (b) PID controllers 

tuned for chirp tracking. 

 

ba 
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Figure 4.6. Stepped trajectory tracking using (a) robust adaptive and (b) PID controllers 

tuned for step tracking. 

 

Figure 4.7. Tracking results of 1 µm amplitude chirp trajectory from 0 to 300 Hz for 

robust adaptive and PID controllers tuned for step tracking.  

Table 4.1. Robust adaptive control gains used for tracking of chirp and step trajectories. 

 η1 η2 σ ε k1 k2 k3 k4 

Chirp tracking 800 35 5800 0.007 0.5 106 5×1016 2×106 

Step tracking 4800 30 1450 0.01 0.5 106 1017 5×106 

a b
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Table 4.2. PID control gains used for tracking of chirp and step trajectories. 

 kP kI kD 

Chirp tracking 28×106 11.5×1010 1500 

Step tracking 9×106 2.25×1010 500 

 

In SPM applications, the piezoelectric stage is responsible of tracking surface 

topographies with multiple-frequency components and frequent stepped-like 

discontinuities. Choosing robust adaptive controller for tracking continuously-varying 

trajectories and PID controller for tracking stepped trajectories, two experiments are 

carried out here for tracking a representative harmonic trajectory with stepped 

discontinuities. Figure 4.8 presents the results for both robust adaptive and PID 

controllers, where each one alone, cannot yield excellent results for such trajectories (the 

robust adaptive controller lacks desirable transient response at stepped points, while the 

PID controller yields a poor steady-state tracking performance). 

     

Figure 4.8. Tracking multiple-frequency harmonic trajectory with discontinuities: (a) 

Robust adaptive controller tuned for chirp tracking, and (b) PID controller tuned for step 

tracking. 

a b
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To achieve a high-performance tracking control while having a desirable transient 

response at stepped points, a switching controller is proposed here. The robust adaptive 

controller tuned for chirp tracking will be activated for the continuous trajectories, while 

the PID controller tuned for step trajectories will be in charge of the discontinuities. 

Switching conditions need to be carefully assigned as they play significant roles in the 

stability and performance of tracking in the event of switching from one controller to 

another. It is remarked that one may choose only the robust adaptive controller and tune 

the gains in a trade-off between two control objectives. This way, both step and tracking 

performances are penalized yielding poorer results. The next section presents the 

switching controller design for achieving high-performance trajectory tracking despite 

discontinuities.  

 

4.4. Supervisory Switching Controller Design 

The objective of switching control is to systematically assign different controllers to the 

system in order to achieve desired objectives with conflicting requirements. More 

specifically, we intend to use the robust adaptive controller for tracking of continuous 

trajectories and switch to PID controller in the event of trajectory jumps. Hence, two 

switching conditions need to be specified: (i) the condition for switching to PID 

controller, and (ii) condition for switching back to the robust adaptive controller.       

When a jump occurs in the desired trajectory, the position error e(t) changes 

suddenly, depending on the jump amplitude; however, the time derivative of the position 
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error ( )e t which is approximated by ( )( ) ( )e t e t t t− − ∆ ∆  grows significantly at the jump 

instance because of sudden error change in a small time step t∆ . Hence, it can be a good 

indicator of discontinuity in the desired trajectory for switching to PID controller. That is, 

when ( )e t  becomes greater than a preset threshold, i.e., ( ) > dtre t e , and the robust 

adaptive controller is in charge of tracking, the supervisory control law must switch to 

PID controller and wait until system response converges to the desired trajectory. Once 

the position error e(t) reaches near zero, i.e., ( ) tre t e< , while the PID controller is 

operating, the supervisory control law must switch to the robust adaptive controller again 

to achieve the ideal performance in tracking of the desired trajectory. Since an overshoot-

free PID controller design in utilized, the time derivative of error ( )e t  becomes very 

small when e(t) reaches near zero. Hence, the initial conditions of robust adaptive 

controller at the switching time are trivial, and may only induce small initial oscillations.  

Consequently, the proposed switching control law can be formulated as:     

( ) : ( if ( ) PID & ( ) )or (if ( ) RA & ( ) )
( )

( ) : ( if ( ) PID & ( ) )or (if ( ) RA & ( ) )

 − ∆ ∈ > −∆ ∈ >= 
− ∆ ∈ ≤ −∆ ∈ ≤

PID tr dtr

RA tr dtr

v t v t t e t e v t t e t e
v t

v t v t t e t e v t t e t e
      (4.1) 

where term ( )v t t X− ∆ ∈ means the control input at the previous time step is generated by 

controller X. Eq. (4.1) states that the control strategy must stay the same or switch to 

another strategy if one of the switching conditions holds.  

Switching stability and performance depends on a number of matching conditions at 

the switching instances. Particularly, when a switching occurs, the activated controller 
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starts a new task. Hence, a transformation is needed for the time and position coordinates. 

Figure 4.9 demonstrates switching between two PID and robust adaptive controllers. At 

every switching instance, the time and position are set to zero for the new control task, 

meaning the coordinates are transformed to the switching position. 

 

Figure 4.9. A typical step tracking within tracking of a continuous trajectory (controller 

switches from robust adaptive to PID at the step instance and then switches back to the 

robust adaptive strategy when actuator response reaches the desired trajectory).  

Denoting the ith switching time as tsi, and constructing the ith coordinate system based 

on ti and xi (ti), the following transformations can be given: 

,
( ) ( ) ( )
( ) ( ) ( )

i si si

i i si

di i d si

t t t t t
x t x t x t
x t x t x t

= − <

= −
= −

                                           (4.2) 

which result in: 



 107

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

i i si

di i d si d di i d

i i di i i i i i

i i i i i i

x t x t x t x t
x t x t x t x t x t x t
e t x t x t e t e t e t
s t e t e t e t e t s tσ σ

= − =
= − = ⇒ =
= − = ⇒ =
= + = + =

                             (4.3) 

Moreover, integrators including adaptation and PID integrals after the switching instance 

are reset due to the time transformation. For a general function ( )i if t , this can be written 

as:  

0
( ) ( )i

si

t t

i t
f d f dτ τ τ τ=∫ ∫                                               (4.4) 

Since the coordinates are transformed, the control input must be transformed as well. 

That is:   

( ) ( ) ( ),i i si siv t v t v t t t= − <                                              (4.5) 

Considering the transformation proposed by Eq. (4.2) and the results given by Eqs. (4.3) 

and (4.4), if the ith switching is from robust adaptive controller to PID controller, one can 

write: 

( ) ( ) ( ) ( ) ( ) ( ) ( ),τ τ= + = + + + <∫
si

t

PID si i i si P I D sit
v t v t v t v t k e t k e d k e t t t                 (4.6) 

And, if the ith switching is from PID controller to robust adaptive controller, we have: 

( )
( ) ( )1 2

( ) ( ) ( )
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) ( ) sat ( ) / ,

RA si i i

si i i d i i

i i si ci i si

v t v t v t
v t m t x t e t c t x t

k t x t x t d t s t s t t t

σ

η η ε

= + =

+ + + +

− − + + <

              (4.7) 

where 
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( )

[ ]

( )

[ ]

1

2

3

4

1ˆ ˆ( ) (0) Proj ( ) ( ) ( )

1ˆ ˆ( ) (0) Proj ( ) ( )

1ˆ ˆ( ) (0) Proj ( ) ( ) ( )

1ˆ ˆ( ) (0) Proj ( )

i
si

i
si

i
si

ci
si

t

i i m dt

t

i i ct

t

i i k sit

t

ci i c dt

m t m s x e d
k

c t c s x d
k

k t k s x x t d
k

d t d s d
k

τ τ σ τ τ

τ τ τ

τ τ τ

τ τ

= + +  

= +

= + −  

= + −

∫

∫

∫

∫

                       (4.8) 

Eqs. (4.6)-(4.8) represent the finial forms of control laws for the proposed switching 

strategy. It is remarked that only three changes are made in the control inputs and their 

corresponding signals: (i) resetting the integrals, (ii) recording the control input at the 

switching instance ( )siv t  and adding it to the original control input after switching, and 

finally (iii) transforming the position feedback x(t) to ( ) ( )six t x t− . All other signals 

remain unchanged.  

Figure 4.10 demonstrates a flowchart of the proposed switching control strategy. 

Setting the initial controller to robust adaptive, the condition for stepped trajectory is 

checked; if the answer is positive, the controller switches to PID, and if it is negative, it 

stays on the robust adaptive strategy until a step occurs. If the strategy is on PID control, 

the controller checks whether the actuator response has reached the desired trajectory or 

not; if the answer is positive, it switches back to robust adaptive, otherwise it stays on 

PID control strategy. The controller keeps tracking until a termination command is 

applied by the computer or the operator. In practice, the switching law can be applied 

through Rely and Switch operators in computer-based control environments such as 

Simulink or LabVIEW.  
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It is remarked that the proposed controller is not limited to switching between PID 

and robust adaptive controllers; instead any other control pairs, one tuned for step 

tracking which the other one tuned for continuous trajectory tracking, can be 

implemented using the proposed switching strategy. However, the modifications imposed 

by transformation of coordinates must be carefully applied to the control laws.  

 

Figure 4.10. Flowchart of the proposed switching strategy between robust adaptive and 

PID controllers. 

The multiple-frequency sinusoidal trajectory depicted in Figure 4.8 is given to the 

switching controller to assess its tracking performance. The switching thresholds are set 

to 45 10 sec−= ×dtre m  (corresponding to 25 nm step in 55 10 sec−×  time interval) and 

5tre nm= . Figure 4.11 depicts the tracking results. As seen, the designed switching 



 110

controller is able to smoothly track a trajectory of combined jumps and high-frequency 

sinusoids with excellent performance, when compared to the PID and robust adaptive 

controller responses depicted in Figure 4.8.  

 

Figure 4.11. Tracking multiple-frequency harmonic trajectory with discontinuities using 

the proposed switching control strategy.  

 

Chapter Summary 

A switching control strategy was proposed for piezoelectric nanopositioning systems for 

effective tracking control of time-varying continuous trajectories including step 

discontinuities. A Lyapunov-based robust adaptive controller and a PID controller were 

employed to study the performance of controllers for tracking of chirp and stepped 

trajectories. It was shown that when controllers were tuned for chirp tracking, they 

induced large oscillations for step trajectories. Conversely, when they were tuned for step 
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tracking, they demonstrated low-performance chirp tracking. Moreover, the robust 

adaptive controller offered more effective performance than PID in chirp tracking, but 

less for tracking stepped trajectories. Hence, a switching strategy was proposed to decide 

between the robust adaptive and PID controllers tuned for chirp and step tracking, 

respectively. Switching conditions were derived and the need for coordinate 

transformation at switching instances was discussed in detail. The proposed strategy was 

implemented experimentally and significant improvements were achieved using the 

proposed controller compared to the individual controllers. This strategy is expected to 

effectively improve the speed of scanning probe microscopy systems in nano-scale 

imaging applications. 



CHAPTER FIVE 

 

DISTRIBUTED-PARAMETERS MODELING AND CONTROL OF ROD-TYPE 

SOLID-STATE ACTUATORS* 

 

5.1. Introduction 

Rod-type actuators such as piezoelectric, magnetostrictive, electrostrictive and shape 

memory alloy actuators are distributed-parameters in nature; that is, their equations of 

motion are described by partial differential equations with appropriate boundary 

conditions. However, many works have considered lumped-parameters representation for 

these systems to simplify its analysis and control [26, 31 and 38]. Although such lumped-

parameters model can be valid below the first natural frequency of system, it starts to 

deviate if the operational frequency exceeds the first resonance. Therefore, a distributed-

parameters representation is preferred in higher operational frequencies. Nevertheless, 

only a few references have utilized this representation for their system modeling  (see, for 

example [29, 30]), while they have used approximate methods such as finite element or 

finite difference schemes to solve the equations of motion. 

Tracking control of flexible mechanical systems suffers from lack of a unified 

approach that can be utilized independent of the structure configuration. Although 

various controllers have been proposed for control of flexible systems, they mostly 

concentrate on set-point or quasi-static tracking problems where the effects of high 
                                                            
* The contents of this chapter may have come directly or indirectly from our joint publication [62]. 
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frequency modes are typically ignored [63, 64]. Moreover, the control of multiple-mode 

flexible systems has been widely studied in vibration suppression applications [65-67]. 

Despite these developments, the research is open for flexible structures on tracking time-

varying and high-frequency trajectories.        

In this chapter, the standard vibration analysis methods are utilized to derive the state-

space representation of rod-type solid-state actuators. The forced vibration analysis is 

carried out by including the actuation force, structural damping, and damping of the 

flexure at the boundary. The truncated k-mode state-space representation of system is 

explicitly derived using system parameters and modal properties. To achieve high 

bandwidth tracking control, a new state-space controller is proposed and implemented for 

tracking continuously-varying desired trajectories within a broad frequency range. 

Numerical simulations indicate that for precise control of system with a high bandwidth 

tracking specification, sufficient number of system modes must be included in the 

controller. This necessitates the need for developing distributed-parameters modeling and 

control approaches. Integration of state observers and robustness features to the controller 

are proposed and discussed for enabling practical implementation.  

 

5.2. System Configuration and Modeling 

Figure 5.1 depicts the schematic configuration as well as representative model of a 

typical rod-type solid-state actuator. Having mass per unit length  ρ, stiffness E, damping 

coefficient B, length  L, and cross-sectional area  A, the actuator is modeled as a 

distributed-parameters rod subjected to a compound boundary condition of a mass m, 
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damper c and spring k as shown in Figure 1. Moreover, the actuation force  f (t), which is 

the equivalent of a distributed internal stress, can be applied at the boundary as a 

concentrated load. The present work is aimed at: (i) deriving the modal characteristics of 

actuator including its natural frequencies and mode shapes, (ii) obtaining the state-space 

representation by carrying out the forced vibration analysis, and finally (iii) designing 

control laws for the actuator tip to precisely track desired time-varying trajectories. The 

advantage of the state-space representation is in the unique control framework proposed 

for multiple-mode tracking of distributed-parameters system. 

 

Figure 5.1. Schematic of a solid-state actuator (left) and its representative rod model 

(right). 

The governing equation for the longitudinal (axial) vibrations of the actuator 

subjected to axial force f (t) at the tip is derived using the extended Hamiltonian principal 

given by:  

( )( )2

1

0δ δ− + =∫
t

extt
T V W dt                                               (5.1) 

where T, V and Wext  are, respectively, the kinetic energy, potential energy and the 

external work of rod in the presence of time-varying force  f (t). The longitudinal 

displacement ( , )u x t  is assumed to be varying over the entire length of the actuator.  
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By using the extended Hamilton’s principal and taking several integrations by parts, 

(refer to Appendix A) the governing equation of motion (5.2) and the boundary 

conditions (5.3) for the system are obtained as: 

2 2

2 2

( , ) ( , ) ( , ) 0ρ
   ∂ ∂ ∂ − + =     ∂ ∂ ∂    

u x t u x t u x tEA B
t x t

                              (5.2)                              

2

2

( , ) ( , ) ( , )(0, ) 0, ( , ) ( )
 ∂ ∂ ∂   = + + + =     ∂ ∂ ∂    

u L t u L t u L tu t m EA C ku L t f t
t x t

              (5.3) 

These equations can be approximated with a finite-mode state-space representation as 

discussed in the next sections. 

 

3.3. Modal Analysis of the System 

Modal characterization of system is performed by a standard procedure for free and un-

damped vibration analyses. Setting the damping to zero in Eq. (5.2), the equation of 

motion reduces to: 

2 2

2 2

( , ) ( , )ρ
   ∂ ∂

=   ∂ ∂   

u x t u x tEA
t x

                                           (5.4)     

By assuming that the solution of Eq. (5.4) is separable in time and space domains, the 

longitudinal displacement of rod can be written as: 

( , ) ( ) ( )φ= r ru x t x q t                                                   (5.5)    
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where ( )φr x  is known as the spatial modal function and ( )rq t  is the generalized time-

dependant coordinate. Substituting Eq. (5) into Eq. (4) yields: 

2( ) ( )
( ) ( )

φ ω
ρ φ

  ′′ 
= = −   
  

r r
r

r r

q t xEA
q t x

                                            (5.6)                               

where ωr is a constant parameter representing the natural frequency for the rth  mode of 

actuator. Hence, Eq. (5.6) can be split into time-domain and spatial equations as:   

2( ) ( ) 0ω+ =r r rq t q t                                                     (5.7)  

2( ) ( ) 0φ β φ′′ + =r r rx x                                                     (5.8) 

where 

                              
2

2 ρωβ = r
r EA

                                                           (5.9)                             

The general solution of the equation of motion in the spatial domain can be written as: 

( ) sin cosφ β β= +r r r r rx C x D x                                           (5.10)                               

At the fixed boundary, we have (0) 0φ =r  which results in 0=rD . Hence, modal 

functions are simplified to: 

( ) sinφ β=r r rx C x                                                    (5.11) 

To quantify Cr and  βr , we apply the separation of variables to the free and un-damped 

boundary condition of system at x = L to obtain: 

 ( ) ( ) ( ) ( ) ( ) ( ) 0φ φ φ′+ + =r r r r r rm L q t EA L q t k L q t                                (5.12) 
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By substituting Eq. (5.7) and Eq. (5.11) into Eq. (5.12) and with further simplifications, 

the characteristics equation of system is obtained as:  

  ( ) ( ) ( )2 sin cos 0ρ β β β β − + = r r r rk mEA L EA L                            (5.13)                               

The numerical solution of (5.13) yields infinite solutions for βr  and natural frequencies 

according to Eq. (5.9). For the rth mode shape of system given by: 

( )( ) sinφ ρ ω=r r rx C EA x                                             (5.14)                               

coefficient Cr is calculated using a orthonormality condition with respect to mass (refer to 

Appendix B for detailed derivations) as: 

0
( ) ( ) ( ) ( )ρ φ φ φ φ δ+ =∫

L

r s r s rsx x dx m L L                                     (5.15)     

where δrs  is the Kronecker delta (i.e. 1δ =rs  if =r s  and 0δ =rs  if ≠r s ).                                

Substituting Eq. (5.14) into Eq. (5.15) and simplifying it, the following explicit 

expression is obtained: 

( ) ( )
1
2

2 2

0

sin sinρ ρ ω ρ ω
−

 
= + 
 
∫
L

r r rC EA x dx m EA L                      (5.16) 

Utilizing the derived equations and expressions for system natural frequencies and mode 

shapes, we present, next, the forced motion analysis of system where the effects of 

excitation force and damping are taken back into account to form the state-space 

equations of system. 
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5.4. Forced Motion Analysis 

While the system modal functions and natural frequencies are obtained through the free 

motion analysis, the actual response is affected by the presence of damping and the 

actuation force. Hence, further analysis is required to derive a comprehensive model 

which includes both free and forced responses of system. The widely-used expansion 

theorem [68] is utilized here to solve the problem. Based on this theorem, the longitudinal 

displacement function is assumed to be equal to an infinite series of system modal 

responses as: 

1
( , ) ( ) ( )φ

∞

=

=∑ r r
r

u x t x q t                                               (5.17)                               

By this assumption, the partial differential equation of motion, Eq. (5.2), can be recast as 

an infinite series:  

{ }
1

( ) ( ) ( ) ( ) ( ) ( ) 0ρφ φ φ
∞

=

′′− + =∑ r r r r r r
r

x q t EA x q t B x q t                           (5.18)                             

Multiplying Eq. (5.18) by ( )φs x , taking an integral over the entire length of rod, and 

applying integral by parts, yields: 

{
}

0
1

0 0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 0

ρ φ φ φ φ

φ φ φ φ

∞

=

′− +

′ ′ + =

∑ ∫

∫ ∫

L

r r s r r s
r

L L

r r s r r s

q t x x dx EAq t L L

EAq t x x dx Bq t x x dx
                    (5.19)       

On the other hand, substituting Eq. (5.17) into Eq. (5.3), the boundary condition at x = L 

becomes:  
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{ }
1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )φ φ φ φ
∞

=

′+ + + =∑ r r r r r r r r
r

m L q t EA L q t C L q t k L q t f t              (5.20) 

Substituting ( ) ( )φ′r rEA L q t  from Eq. (5.20) into Eq. (5.19) and rearranging the terms, one 

can obtain: 

   
{

}
0 0

1

0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

ρ φ φ φ φ φ φ φ φ

φ φ φ φ φ

∞

=

   + + +      

 ′ ′+ + =  

∑ ∫ ∫

∫

L L

r s r s r r s r s r
r

L

r s r s r s

x x dx m L L q t B x x dx C L L q t

EA x x dx k L L q t L f t
   (5.21)  

Applying the orthonormality conditions with respect to mass (Eq. 5.15) and stiffness 

(refer to Appendix A for the detailed derivations) given as:                                         

   2

0
( ) ( ) ( ) ( )φ φ φ φ ω δ′ ′ + =∫

L

r s r s r rsEA x x dx k L L                              (5.22) 

Eq. (5.21) is simplified to: 

{ }2

0
1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), 1,2,...δ φ φ φ φ ω δ φ
∞

=

 + + + = =  ∑ ∫
L

rs r r s r s r r rs r s
r

q t B x x dx C L L q t q t L f t r

(5.23)              

which can be rewritten as:  

  { } 2

1
( ) ( ) ( ) ( )ω

∞

=

+ + =∑r rs s r r r
s

q t d q t q t f t                                    (5.24) 

where 

   
0

( ) ( ) ( ) ( ), ( ) ( ) ( )φ φ φ φ φ= + =∫
L

rs r s r s r rd B x x dx C L L f t L f t                      (5.25)                               
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The truncated k-mode description of Eq. (5.24) can be presented in the following matrix 

form: 

( ) ( ) ( )+ + =M D K Fq t q t q t u                                          (5.26)                               

where     

       
[ ] [ ] [ ]2

1 2 1

1 2 1

, , , ( ), ( ),..., ( ) ,

( ), ( ),....., ( ) , ( )

δ ω δ

φ φ φ

× × ××

×

 = = = = 

 = = 

M D K

F

T
rs rs r rs kk k k k kk k

T

k k

d q q t q t q t

L L L u f t
        (5.27) 

Eventually, Eq. (5.26) can be converted into the following state-space representation: 

                   
( ) ( ) ( )
( ) ( )

= +
=

A B
C

x t x t u t
y t x t

                                               (5.28)                               

where 

1 1 1
2 2 2 1 2 1

( )
, , ( )

( )− − −
× × ×

     
= = =     − −     

0 I 0
A B

M K M D M Fk k k k

q t
x t

q t
,                (5.29) 

and considering rod’s displacement at x = L as the system output, i.e. y(t) = u(L, t), the 

output matrix is given by:    

1 2 1 2[ ( ), ( ),..., ( ),0,...,0]φ φ φ ×=C k kL L L ,                                    (5.30) 

according to the truncated k-mode approximation of Eq. (5.17). 
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5.5. Numerical Simulations 

A set of numerical simulations are carried out in this section to assess different aspects of 

the developed modeling framework. The initial simulations investigate the effects of 

boundary mass and spring on the natural frequencies and modal functions of system.  The 

first four natural frequencies are plotted versus different values of spring k, while setting 

m to zero, in Figure 2(a), and versus boundary mass m, while taking k as zero, in Figure 

2(b). Other parameters used for these simulations are taken as: ρ = 6000 kg/m3, d = 0.01 

m (rod diameter), L = 0.1 m, and E = 100 GPa. These values may represent those of a real 

solid-state micro-positioning actuator.  

It can be observed from Figure 5.2 that as the stiffness of the boundary spring 

increases, the natural frequencies of all modes increase exponentially, but eventually 

converge to particular values. This is because of the fact that rod with a hard spring at the 

boundary behaves similarly to that of clamped-clamped rods. Hence, further increase in 

the spring stiffness will not affect the natural frequencies much. A similar phenomenon 

occurs in a reverse way with increasing the values of boundary mass. That is, the natural 

frequencies decrease as the value of boundary mass increases until they get saturated at 

particular values. Interestingly, the natural frequencies of a rod with a hard spring at 

boundary are close to those of the rod with a heavy mass at the boundary with one mode 

ahead. For instance, the first and the second natural frequencies of the rod with a hard 

boundary spring are respectively near the second and the third natural frequencies of a 

rod with a heavy boundary mass.        



 122

        

Figure 5.2. First four natural frequencies of rod versus (a) boundary spring stiffness k and 

(b) boundary mass m. 

To study the behavior of mode shapes with the change in the values of boundary 

spring and mass, the first four modal functions of rod are plotted for four different 

configurations: (C1) m = 0 with high k, (C2) m = 0, with k = 0, (C3) moderate m with 

moderate k, and (C4) high m with high k. The selected parameters for the simulations are 

given in Table 5.1 and the results are depicted in Figure 5.3. The significant changes in 

all of the four modal functions are observed from one configuration to another. By 

carefully observing the modal functions, one can see modal functions of rod with 

boundary configuration C1 (m = 0 with high k) are similar to those of the rod with both 

ends clamped. It can also be seen from the figures that the modal functions of 

configuration C1 follow those of configuration C4 (high m and k) with one mode forward 

(e.g. the first mode shape of C1 is similar to the second mode shape of C4).  

The Bode diagram of configuration C3 (moderate m with moderate k), which seems 

to be a more realistic case, for the first four modes is depicted in Figure 5.4. As expected, 

a uniform multi-modal frequency response is seen from this diagram which could 

indicate the validity of the proposed modeling framework. 

ba
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Figure 5.3. (a) First, (b) second, (c) third, and (d) fourth modal function of rod for four 

different configurations of boundary mass and spring (C1  , C2   , C3 , 

C4  ). 

Table 5.1. Parameters used for numerical simulations to calculate mode shapes. 

Config. m (kg) k (N/m) ω1 (kHz) ω2 (kHz) ω3 (kHz) ω4 (kHz) 

C1  0 1010  20.25 40.5 60.76 81 

C2   0 0 10.21 30.62 51.03 71.44 

C3  0.02 410  7.31 24.09 43.04 62.79 

C4  1 0 1.39 20.5 40.87 61.27 

Other Actuator parameters: 
Rod’s damping coefficient: B = 0.1 (N.sec/ 2m ), 
External damping coefficient: C = 0.05 (N.sec/m), 

  

dc 

ba 
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Figure 5.4. Bode plot of system with four modes and boundary condition of configuration 

C3. 

 

5.6. State-Space Control Development 

The development of a straightforward state-space controller for asymptotic output 

tracking control of linear systems not only can benefit the control of present rod-type 

actuator, but also can be applied to a variety of dynamical systems. In this section, a new 

form of state-space control law is proposed for output tracking control of second order 

single-input single-output (SISO) mechanical systems which is applied for high 

bandwidth tracking control of rod-type solid-state actuators. 

  

5.6.1. State-Space Control Design  

For the actuator tip to follow a two times continuously differentiable desired trajectory, 

yd (t), the tracking error is represented as:                                                         

( ) ( ) ( )= −de t y t y t                                                   (5.31) 
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Taking the time derivative of Eq. (5.31) and using Eq. (5.28) yields: 

( ) ( ) ( )
( ) ( )
( ) ( ) ( )

= − =
− =

− −

C
CA CB

d

d

d

e t y t y t
y t x t
y t x t u t

                                         (5.32)                      

It can be shown that for the present actuator or other flexible structures (e.g. beams, 

plates, shells) with inputs being applied forces and outputs being displacements, the term 

CB is always zero. This implies that first order state-space controller cannot be used for 

tracking of desired trajectories in the form of displacement. Letting CB = 0 and 

differentiating one more time from the tracking error yields:  

2

( ) ( ) ( )

( ) ( ) ( )

= −

= − −

CA

CA CAB
d

d

e t y t x t
y t x t u t

                                     (5.33) 

Similarly, it can be shown that the term CAB in equation Eq. (5.33) becomes nonzero for 

the flexible mechanical structures. Hence, a second order state-space control law 

presented in the next theorem can be utilized to control the actuator displacement. 

Theorem 5.1. For the SISO state-space system given in Eq. (5.28) which satisfies CB = 0 

and 0≠CAB , the following control law leads to asymptotic convergence of the tracking 

error, i.e. 0 as→ →∞e t , provided that all the signals are bounded. 

{ } ( )1 2
1 2 1 2( ) ( ) ( ) ( ) ( ) ; , 0−= − + + >CAB CAdu t y t x t k e t k e t k k                   (5.34) 

Proof: Substituting the control law given by Eq. (5.34) into Eq. (5.33), an equation 

representing the error dynamics of system is obtained, that is: 

1 2( ) ( ) ( ) 0+ + =e t k e t k e t                                               (5.35) 
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Since k1 and k2 are positive constants, Eq. (5.35) represents a stable second-order 

differential equation with the roots of its characteristics equation being located in the left 

side of the complex plane. This indicates that asymptotic convergence of the tracking 

error e(t) is achieved.  

 

5.6.2. State-Space Controller Simulations 

The proposed control law is numerically implemented on the actuator model with 

configuration C3, assuming that the system output and state vectors are measurable in 

real-time. Two sinusoidal reference signals with amplitude of 10 µm at 1 kHz and 50 kHz 

frequencies are considered as the desired trajectories. A phase shift of 60 degrees has 

been applied to achieve a nonzero initial error value and assess the controller transient 

response. The values of k1 and k2 are respectively selected as 70000 and 1.225×109 so that 

a critically damped error dynamics with the natural frequency of 35000 rad/sec (5573 

kHz) is achieved. The sampling rate is set to 100 MHz to maintain the stability of 

numerical integrations. It is remarked that the critically damped error dynamics offers a 

suitable stability and performance because of its fast settling time without overshoot. 

Moreover, higher natural frequency of a critically damped error dynamics results in faster 

settling time; however, this value cannot be increased above a certain threshold in 

practice which is determined by the chatter effect.  

Figure 5.5 depicts the tracking results which demonstrate that the controller is able to 

precisely track both low- and high-frequency trajectories with identical exponential 

convergence rates. There are small amplitude oscillations in the tracking error, 
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particularly at the high-frequency trajectory, due to the ever-present approximation in the 

numerical integrations. While the system output converges to the desired trajectory 

within the first cycle of the low-frequency input, it takes a few cycles to converge to the 

high frequency trajectory. However, this can be modified by increasing the control gains 

to achieve a desirable response. 

     

Figure 5.5. Tracking control results using the proposed state-space control law; (a) 1 kHz 

sinusoidal trajectory tracking and (b) its tracking error, (c) 50 kHz sinusoidal trajectory 

tracking and (d) its tracking error. 

 

5.7. State Observer Design and Integration 

In many real applications, only actuator’s tip displacement (system output) is measurable. 

This limits the implementation of the proposed controller which requires full-state 

a b

c d
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feedback. Hence, the use of state estimators or observers in the feedback loop can be 

considered to effectively overcome this problem. Closed-loop state observers have been 

widely used in feedback control techniques when the direct measurements of states are 

not possible. Yet, the observability of the system must be investigated. Unfortunately, the 

present state-space model for the rod-type actuator does not agree with the observability 

condition, because the rank of observability matrix becomes less than the system order, 

meaning that it is not guaranteed to set the closed-loop observer poles at any desired 

locations. However, noting that the open-loop system is stable (which implies that the 

state vector is detectable) one can set the observer poles close to desired locations by 

optimally tuning the closed-loop observer gains. 

The classical closed-loop observer for a linear system is given by [69]:  

   ( )ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )= + + −A B L Cx t x t u t y t x t                                   (5.36) 

where ˆ( )x t is the observed state vector, and L is the observer gain matrix.  To obtain the 

observer error dynamics, the state observation error is defined as: 

ˆ( ) ( ) ( )= −x t x t x t                                                  (5.37) 

Taking the time derivative of Eq. (5.37) and using Eqs. (5.28) and (5.36) yields: 

( )( ) ( )= −A LCx t x t                                               (5.38) 

Eq. (5.38) is a first order differential equation representing the observer error dynamics. 

The only condition for its asymptotic stability of the observer is for the eigenvalues of 

matrix (A - LC) to be located in the left side of the complex plane. The simplest choice 
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would be setting  L to zero and use an open-loop observer since the eigenvalues of matrix 

A for the present system have negative real parts. However, the possible presence of 

uncertainties and disturbances in the system and the poor transient response of open-loop 

observer because of system low damping necessitate the use of a closed-loop observer. 

The objective is to choose the gain matrix L such that a stable error dynamics is achieved 

with its eigenvalues all pushed toward left and concentrated around the real axis to 

enhance both stability and transient response of observation. It is remarked that the 

observer eigenvalues cannot be moved more leftward than a certain value in practice 

because of the need for smaller sampling time to solve the observer differential equation 

in real-time than that digital signal processing systems could offer.  

A random optimization algorithm is utilized to optimally locate the observer poles 

around the desired locations. The advantage of the random optimization over the 

gradient-based methods is in its seeking for the global extremum of the given objective 

function [70]. Figure 5.6 depicts three different sets of optimal locations of observer 

poles for the desired locations being set to -1000, -20000, and -50000 on the real axis. 

Although the observer poles can be moved leftward leading to more stable configuration, 

they cannot be all located on the real axis to yield a desired transient response. However, 

the poles have been attempted to be squeezed around the real axis through the proposed 

optimization algorithm within the constraints of the problem, most important of which is 

the lack of the observability condition. Nevertheless, desirable steady-state responses are 

expected.           



 130

 

Figure 5.6. Optimal location of the observer poles around -1000, -20000 and -50000 on 

the real axis. 

 

Figure 5.7. Convergence of the state observer errors to zero despite a 20 kHz input 

excitation, for the observer poles located around -50000 on the real axis. 

To assess the performance of the observer in estimating the state-vector, a simulation 

is carried out by setting the observer poles around -50000 on the real-axis and applying 

an initial condition and an input force at 20 kHz on the system. The results are depicted in 
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Figure 5.7, where all the eight state observation errors converge to zero. There are limited 

oscillations at the beginning, but the steady-state responses are all excellent. 

The designed observer can now be integrated with the proposed state-space controller to 

effectively solve the problem associated with the unavailability of state feedback in 

practice. By integrating Eq. (5.34) with Eq. (5.36), the state-space control law with the 

observer integration is given by: 

{ } ( )
( )

1 2
1 2 1 2ˆ( ) ( ) ( ) ( ) ( ) ; , 0

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

−= − + + >

= + + −

CAB CA

A B L C

du t y t x t k e t k e t k k

x t x t u t y t x t
                 (5.39) 

 

Figure 5.8. Integrated state-space controller/observer diagram for practical control of rod-

type actuators. 

Figure 5.8 demonstrates the block diagram of the control structure. As seen, the 

observer receives plant input and output, and feeds the estimated states back to the 

controller.  Using this strategy, the simulations of tracking control for 1 kHz and 50 kHz 

desired trajectories studied in subsection 5.6.2 are repeated here. Results are depicted in 

Figure 5.9, where both transient and steady-state responses are about the same as those of 
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the case when system exact state feedback is utilized. These simulations indicate the 

viability of the proposed controller/observer strategy.   

 

Figure 5.9. Tracking control of (a) 1 kHz and (b) 50 kHz sinusoidal trajectories using the 

combined controller/observer strategy.     

The identical tracking results of state-space controller with exact state feedback 

(Figure 5.5) and with observed state feedback (Figure 5.9) is because of the identical 

initial conditions used for the plant and observer in the simulations. This is due to the fact 

that for most of rod-type solid-state actuators in real applications, the plant is initially at 

rest with zero initial conditions. However, one may also argue that the effects of state 

feedback can be negligible compared to other terms in the control law. To clarify this 

issue, the state observer is disconnected from controller and the simulations are repeated. 

As seen from Figure 5.10, poor tracking results prove the importance of the state observer 

integration in achieving high-performance tracking.     

 

a b
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Figure 5.10. Tracking control of (a) 1 kHz and (b) 50 kHz sinusoidal trajectories without 

using the state feedback. 

 

5.8. Assessment of Controller Bandwidth 

One of the main objectives of this work is to achieve a high bandwidth tracking controller 

for rod-type solid-state actuators for any desired frequency ranges. In the present 

framework and because of the practical limitations, the effects of higher modes are 

neglected. Hence, a truncated model has been proposed based on which the controller is 

formulated. However, a real actuator has infinite number of modes and the truncation 

may lead to considerable tracking errors. In this section, we study how the modes 

truncation affects the controller performance and bandwidth.  

A four-mode rod-type actuator model with configuration C3 is assumed here to 

represent an actual plant. Four different controllers are formed based on one, two, three, 

and four modes approximation of the plant, respectively. It is expected that the 

controllers with higher number of modes offer better tracking bandwidth. A 10 µm 

amplitude desired trajectory is applied to the system with its frequency incrementally 

a b
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changed from 1 to 80 kHz to cover all the plant resonant frequencies. The steady-state 

tracking error amplitude is plotted versus frequency to continuously demonstrate the 

performance of the proposed controller/observer over the frequency range of interest. 

Plant limited-mode approximations as well as their corresponding tracking results are 

depicted in Figure 5.11. It is seen that the controller is able to only subside the tracking 

error for the included modes. For instance, the controller with one mode approximation is 

able to precisely track the desired trajectory only below the second resonance; except for 

the first resonance, tracking error suffers from the unexpected large peaks of the higher 

modes. As the number of included modes in the controller increases, the tracking 

bandwidth increases as well. For the controller with full four modes approximation, the 

tracking error demonstrates smooth and small variations in the entire frequency range. 

Hence, it can be concluded that for a real rod-type actuator with infinite modes, the 

tracking bandwidth of the proposed controller dependents on the number of included 

modes. For any desired bandwidth, accurate tracking can be guaranteed provided that all 

the modes up to the frequency of interest have been included in the controller. 

There are, however, small peaks within the covered frequencies due to the truncation 

of higher modes. These peaks can be flattened by increasing the control gains. This has 

been demonstrated in Figure 5.12, where the error level as well as its small unwanted 

peak at around 20 kHz has been attenuated by choosing larger control gains. In general, 

for a plant with uncertainties, larger control gains lead to lower tracking error amplitude. 

The most limiting factor in practice could be the chatter phenomenon for the controllers 

with very large gain values. 
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Figure 5.11.  Different approximations and tracking control results for a 4-mode plant 

model. (a), (b) 1 mode, (c), (d) 2 modes, (e), (f), 3 modes and (g), (h) 4 (full) modes 

approximations and tracking control results.  

a b

c d

e f

g h
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Figure 5.12. Steady-state tracking error comparisons for two sets of gains for 

controller/observer based on two modes approximation (data with the circle legend 

correspond to the controller with larger gain values). 

 

5.9. Robust Tracking Control 

Uncertainties are unavoidable in practice. The effects of neglected and unmodeled 

dynamics, external disturbances, system nonlinearities, parametric uncertainties and the 

environmental changes would affect the closed-loop system performance. Hence, the 

controller must be made robust with respect to these effects to result is high-performance 

tracking. In this section, a Lyapunov-based robust variable structure control is developed 

for the present state-space system to reduce the degrading effects of uncertainties on the 

system performance. Variable structure (sliding mode) control has been widely used in 

variety of control applications since its invention [71]. Here, its continuous-time state-

space formulation is presented for the proposed rode-like actuator model. 

The modified state-space equations of system by including a disturbance terms is 

given by: 



 137

                           
( ) ( ) ( ) ( )
( ) ( )

= + +
=

A B G
C

x t x t u t d t
y t x t

                                    (5.40)                               

where G2k×1 is the disturbance matrix and d(t) is a bounded time-varying term 

representing the collective effects of disturbances on the system. The objective of robust 

control is to force the system output to track desired trajectories despite the effects of 

unknown disturbances on the system. The first order time derivative of Eq. (5.31) for the 

system described by Eq. (5.40) becomes:  

( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( )

= −
= −

= − − −

C
CA CB CG

d

d

d

e t y t y t
y t x t
y t x t u t d t

                            (5.41)                               

As discussed earlier, term CB becomes zero for the present system. Therefore, the first 

order state-space controller cannot be used for the tracking of actuator tip displacement. It 

can also be shown that the term CG becomes zero in many cases such as the presence of 

parametric uncertainties and external disturbances. However, to develop a more general 

strategy, we assume a nonzero value for this term. The second order time derivative of 

the tracking error represented in Eq. (5.41) is then given by: 

    2( ) ( ) ( ) ( ) ( ) ( )= − − − −CA CAB CAG CGde t y t x t u t d t d t                     (5.42) 

To achieve both robustness and tracking control of system simultaneously, the sliding 

manifold is defined as: 

 ( ) ( ) ( )σ= +s t e t e t                                                 (5.43) 
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with σ being a positive constant representing the slope of the sliding line.  Now, consider 

the following control law: 

{ } ( )( )1 2
1 2 1 2( ) ( ) ( ) ( ) ( ) sgn ( ) ; 0 ,σ η η η η−= − + + + <CAB CAdu t y t x t e t s t s t        (5.44) 

where η1 and η2 are the control gains, and η2 satisfies the robustness condition given by:  

2( ) ( ) η+ ≤CG CAGd t d t                                        (5.45) 

which requires ( )CGd t  to be bounded, meaning either CG is zero or d (t) is one time 

continuously differentiable. 

Theorem 5.2. For the plant given by Eq. (5.40), the control law (5.44) guarantees the 

asymptotic convergence of sliding trajectory s(t), tracking error e(t), and its time 

derivative ( )e t , i.e., ( ), ( ), ( ) 0 as→ →∞s t e t e t t , in the sense that all signals are 

bounded.  

Proof: Substitution of the control law (5.44) into the second order error dynamics, 

Eq. (5.42), yields: 

( )1 2( ) ( ) ( ) sgn ( ) ( ) ( ) 0σ η η+ + + + + =CAG CGe t e t s t s t d t d t                       (5.46) 

We now define a positive definite Lyapunov function V as: 

21 ( )
2

=V s t                                                      (5.47)  

Its first order time derivative is obtained as: 

( )( ) ( ) ( ) ( ) ( ) ( )σ= = +V t s t s t s t e t e t                                       (5.48)                               
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Substituting the second order time derivative of tracking error from Eq. (5.46) into 

Eq. (5.48) yields: 

( ) ( )
( )

2
1 2

2
1 2

( ) ( ) ( ) sgn ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

η η

η η

= − − − +

= − − − +

CAG CG

CAG CG

V t s t s t s t d t d t s t

s t s t d t d t s t
                  (5.49) 

If the controller gains are chosen in such a way that the robustness condition given by Eq. 

(5.40) is satisfied, then the time derivative of the Lyapunov function given by Eq. (5.49) 

results in:  

2
1( ) ( ) 0η≤ − ≤V t s t                                                    (5.50) 

This ensures the asymptotic convergence of s(t) yielding asymptotic convergence of e(t) 

and ( )e t  as well.  

It is well known that the sliding trajectory s(t) of the sliding mode control has finite-

time convergence property. That is, after a finite time, the sliding trajectory intersects 

with the sliding line corresponding to ( ) ( ) 0σ+ =e t e t , and slides along it towards the 

origin. In the reaching phase, there is a smooth transition of the sliding trajectory toward 

the sliding line; however, in the sliding phase, where the input switches between two 

values with infinite frequency, system suffers from the chatter effect. Chatter has been 

recognized to derive the system to instability in practice and needs to be reduced or 

eliminated. One of the widely-used methods to reduce the chatter is to replace the hard-

switching signum function in the control law with a soft switching saturation function as:     

   { } ( )( )1 2
1 2( ) ( ) ( ) ( ) ( ) sat ( )σ η η ε−= − + + +CAB CAdu t y t x t e t s t s t                 (5.51) 
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where ε > 0 is a small parameter determining the switching rate of the saturation function 

defined as:  

( )
;

sat
sgn( );

ε ε
ε

ε

 <= 
≥

s s
s

s s
                                             (5.52) 

Utilizing the proposed modification, the chatter effect can be eliminated; accordingly, the 

asymptotic convergence property of the controller is degraded as well. However, a 

globally uniformly ultimately bounded response is achieved with the steady-state error 

amplitude being bounded by a combination of control gains given by [72]: 

    2

1 2

( )
( )
η ε

σ η ε η
≤

+sse t                                                  (5.53) 

The smaller the ε is chosen the smaller becomes the error amplitude, and the more likely 

chatter occures in practice. There should be a tradeoff between the chatter and the 

tracking performance to effectively tune this parameter.  

Two simulations are performed here to demonstrate the performance of the proposed 

variable structure controller with both signum and saturation functions. The nominal 

parameters for the controller are perturbed by 5% from the actual plant parameters to 

induce uncertainties in the closed-loops system. Figure 5.13 demonstrates the tracking 

results for a 5 µm amplitude desired trajectory with frequency of 50 kHz. Both controllers 

are able to effectively track the desired trajectory. The control input of the sliding mode 

control with the signum function demonstrates the chatter effect in the sliding phase 

(Figure 5.13-b,) while this effect is not seen in Figure 5.13-d where the saturation 

function is used. Figure 5.14 demonstrates the phase portrait of the controllers, in which 
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both portraits demonstrate similar responses with differences being the small error cycles 

around the origin but removal of the chatter effect using the soft switching controller.               

 

Figure 5.13. Robust tracking control of 50 kHz desired trajectory using sliding mode 

control: (a) tracking and (b) control input; and using soft-switching mode control: (c) 

tracking and (d) control input. 

 

Figure 5.14. Phase portrait comparison of sliding mode and soft switching mode variable 

structure controllers. 

a b

c d
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Chapter Summary 

A state-space representation has been proposed for multiple-mode modeling and high 

bandwidth tracking control of rod-type solid-state actuators. Using the extended 

Hamilton’s principle, partial differential equation of motion and the associated boundary 

conditions were derived. Standard vibration analysis techniques were carried out for the 

modal and forced motion analyses of system to obtain truncated finite-mode state-space 

representation. A novel control law was proposed for asymptotic output tracking of 

system. The control law, however, requires full state feedback which is not available in 

practice. To avoid this problem and ensure practicability of the proposed control 

framework, design and integration of an optimal state-observer was proposed. Numerical 

simulations were provided for trajectories with different frequencies. It was demonstrated 

that the controller/observer pair can effectively suppress the initial tracking error and 

maintain a low amplitude response for its steady-state phase. Moreover, it was shown that 

to achieve a higher control bandwidth, more number of system modes must be included 

in the controller. Eventually, a Lyapunov-based variable structure controller was derived 

for the robust output tracking of state-space system in the presence of bounded 

disturbances. Simulation results indicated effective tracking control of a rod-type actuator 

model with 5% parametric uncertainties. The present framework is expected to attract 

considerable attention in control of rod-type solid-state actuators with moving to next 

generation digital signal processing systems with ultra-high frequency sampling rates. 



CHAPTER SIX 

 

MODELING AND VIBRATION ANALYSIS OF NANOMECHANICAL 

CANTILEVER ACTIVE PROBES FOR ULTRA-SMALL MASS DETECTION* 

 

6.1. Introduction 

Nanomechanical cantilever (NMC) beams with their structural flexibility, sensitivity to 

atomic and molecular forces, and ultra-fast responsiveness have recently attracted 

widespread attention in variety of applications including atomic force and friction 

microscopy [75-78], biomass sensing [79-84], thermal scanning microscopy [85-90], and 

MEMS switches [91, 92]. For instance, in the Atomic Force Microscopy (AFM), the 

NMC oscillates at or near its resonant frequency. The shift in the natural frequency due to 

the tip-sample interaction is used to quantitatively characterize the topography of the 

surface [75 and 93]. In the biosensing applications, the NMC surface is functionalized to 

adsorb desired biological species which induce surface stress on the NMC. In this 

application, the added mass of species is estimated from the shift in the resonant 

frequency of the system away from that of the original NMC [94, 95].  

In recent years, a new generation of NMC beams so-called “Active Probes” have 

been developed for AFM imaging [9, 10] and received great attention due to their unique 

design (see Figure 6.1). Typically, an Active Probe can be used as an actuator, sensor and 

actuator-sensor, simultaneously. When it is used as an actuator, it offers broader actuation 

                                                            
* The contents of this chapter may have come directly or indirectly from our joint publications [73, 74]. 
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bandwidth than that of conventional piezotube [96]. This advantage of Active Probes 

over commonly used bulky piezotube actuators makes them promising candidates to be 

utilized in high speed imaging AFM.  On the other hand, when Active Probes are used for 

sensing, they offer the sensitivity as much magnitude as of optical sensors [10]. This way, 

they can be used as alternative sensors for the bulky laser system in AFM which show 

some disadvantages in terms of laser alignment in the liquid environment, laser expense, 

and space required for the laser operation. Additionally, it has recently been shown that 

utilizing a self-sensing strategy, it is possible to use Active Probes for ultra small tip mass 

and gas detection purpose [97, 98].  

Typically, an Active Probe is covered by a piezoelectric layer on the top surface. This 

layer is utilized as a potential source of actuation, or as an alternative transduction for the 

laser interferometer in the next-generation laser-free AFMs. In typical configuration of 

Active Probe, body of the NMC is designed wider due to the presence of piezoelectric 

layer, while the tip zone is made narrower in order to improve tip deflection 

measurement. Hence, the NMC has two steps in the cross-section; one small step where 

the piezoelectric layer ends, and one larger step where the NMC cross-sectional area 

decreases suddenly. These discontinuities can significantly affect the modal 

characteristics of the system, and consequently the level of measurement precision in 

different scenarios. For example, when piezoelectric layer is used as a sensor, the 

generated voltage can be utilized to detect the vertical deflection of NMC. In this case, 

the magnitude of output voltage is proportional to the slope difference of the deflection at 

two ends of the attached piezoelectric layer [34, 99]. This voltage can be expressed in 
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terms of NMC mode shapes and generalized coordinates. On the other hand, if the 

piezoelectric layer is used as a source of actuation, the modal frequency response of the 

system depends on the mode shapes as well. Along this line of reasoning, developing an 

accurate dynamic model for NMCs with jump discontinuities in cross-section is 

important and can have significant impact on sensing and imaging enhancement of NMC 

Active Probes.  

 

Figure 6.1. Piezoelectrically-driven NMC beam with cross-sectional discontinuity.     

The present study is aimed at acquiring a precise model for modal characterization 

and dynamic analysis of the aforementioned NMC Active Probes with geometrical 

discontinuities. To this end, we have developed a framework for modeling and analysis 

of Euler-Bernoulli beams with cross-sectional discontinuities. The entire length of NMC 

is divided into three uniform segments consisting of a composite beam with the 

piezoelectric layer and two segments of simple beams with different cross-sectional 

areas. The governing equation of motion is consequently divided into three partial 

differential equations with two sets of continuity conditions applied to the points of 

discontinuity. The eigenvalue problem associated with the cantilever configuration is 
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then solved to obtain NMC mode shapes and natural frequencies. The induced 

electromechanical stress in the piezoelectric layer is replaced with a concentrated 

moment at the free end of attachment. Moreover, applying the expansion theorem and 

method of assumed modes, the governing equations reduce to ordinary differential 

equations to arrive at the state-space representation of the system. Results from the 

proposed model are compared with those obtained from experiment and commonly used 

theory for the uniform beams. It is clearly demonstrated that the proposed model provides 

good agreement with the experimental results. Furthermore, it is shown that assuming 

uniform geometry and configuration for the dynamic analysis of the current NMC Active 

Probes is not a valid strategy since it creates significant error in measurements.  

 

6.2. Experimental Setup and Procedure 

In this section, a commercial NMC Active Probe, the DMASP manufactured by Veeco 

Instruments Inc., is used to study the dynamic response of the probe. For this purpose, an 

experimental set-up is built using a state-of-the-art microsystem analyzer, the MSA-400 

manufactured by Polytec Inc. MSA-400 employs the laser Doppler vibrometry and 

stroboscopic video microscopy to measure the 3D dynamic response of MEMS and 

NEMS (see Figure 6.2). It features picometer displacement resolution for out-of-plane 

measurement, as well as measures frequencies as high as 20 MHz.  

The NMC, shown in Figure 6.3(a), is covered by a piezoelectric layer containing a 

stack of 0.25 mµ Ti/Au, 3.5 mµ ZnO, and 0.25 mµ Ti/Au. The Ti/Au layers on the top 
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and beneath ZnO layer act as electrodes which, along with the silicon cantilever, 

construct a bimorph actuator. As the input voltage is applied to the pads at the fixed end 

of the beam, the expansion and contraction of the ZnO layer results in the transversal 

vibration of the NMC. 

The NMC assembled on a chip is mounted on a XYZ stage to be adjusted within the 

laser light focus for measuring beam motion (Figure 6.3(b)). Using an optical 

microscope, the desired points on the surface of NMC are precisely chosen to be scanned. 

When the electrical signals are applied to the system, the laser Doppler vibrometer 

measures the beam velocity at any given points through collecting and processing of 

backscattered laser light. In this study, a 10 Volt AC chirp signal with 500 kHz 

bandwidth is applied to the piezoelectric layer as the source of excitation.  

     

Figure 6.2. Experimental setup for NMC characterization under Micro System Analyzer 

(MSA-400) at Clemson University SSNEMS Laboratory.  
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Figure 6.3. (a) Comparison of the Veeco DMASP NMC beam size with a US penny, (b) 

XYZ microstage for adjusting laser light reflecting form NMC tip. 

Figure 6.4 demonstrates modal frequency response of the NMC. As seen, the first 

three resonant frequencies of the probe are located within the applied frequency 

bandwidth with the values of 52.3, 203.0, and 382.5 kHz, respectively. Furthermore, the 

corresponding mode shapes of Active Probe are obtained by exciting the system in its 

resonant frequencies as depicted in Figure 6.5.  

In the following section, a dynamic model is developed for the NMC Active Probe 

taking into account system discontinuities for precise modal analysis. Results will be 

compared with those obtained from a uniform beam theory for the validation of the 

proposed modeling framework.  

a 

b 
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Figure 6.4. Modal frequency response of NMC Active Probes tip transversal vibration. 

  

 

Figure 6.5.  3D motion of NMC at; (a) first, (b) second, and (c) third resonant frequency 

(only motion of the right most portion of the NMC shown in girds has been measured and 

animated experimentally). 

a b

c 
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6.3. Development of a Dynamic Model for NMC Active Probes 

Consider a piezoelectrically-driven discontinuous NMC beam with its geometrical 

parameters depicted in Figure 6.6. The piezoelectric layer is assumed to be a mechanical 

part of the structure which can induce an electromechanical stress as a result of the 

applied voltage. This stress can then be replaced with an equivalent moment for the 

forced vibration analysis of the system. In this respect, the piezoelectric constitutive 

equations, assuming one dimensional deformation for the piezoelectric layer, can be 

expressed as [34]:     

31
( )

= −p p
x p x p

p

v tE E d
t

σ ε                                                  (6.1) 

where p
xσ , p

xε  and pE  are the induced stress, mechanical strain, and the Young’s 

modulus of the piezoelectric layer, respectively; 31d  is the coefficient of the converse 

piezoelectric effect, pt  is the piezoelectric layer thickness depicted in Figure 6.6, and 

( )v t  is the applied voltage. Eq. (6.1) demonstrates that the corresponding induced stress 

can be divided into a passive and an active term. The passive term (the first term in the 

right hand side of Eq. 6.1) is treated as the internal energy of layer, while the active term 

(the second expression) is the source of electromechanical excitation which is considered 

as the external energy. Taking the active part of Eq. (6.1), the equivalent cross-sectional 

electromechanical moment acting at distance x from the clamped end of the NMC can be 

expressed as [34]: 
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( ) ( )/2

31 1/2

1( , ) ( ) ( ), 0
2

+
= − = − = + < <∫ ∫

p b

b

t tp p
p x x p p p b pa at

M x t ydA w ydy w E d t t v t x lσ σ   (6.2)                               

where ( ) 31 ( )= −p
x p pa

E d v t tσ  is the active induced stress. Eq. (6.2) can be extended to 

the entire length of the cantilever by multiplying a Heaviside function as follows: 

 31 0
1( , ) ( ) ( ) ( ) ( ) ( ), 0
2

= + = < <p p p b p pM x t w E d t t v t S x M t S x x L                  (6.3) 

with 1( ) 1 ( )S x H x l= − −  and ( )H x  being the unit Heaviside (Step) function.  

 

Figure 6.6.  Schematic representation of NMC with an attached piezoelectric layer on its 

top surface. 

Eq. (6.3) implies that the cross-sectional moment induced by the piezoelectric excitation 

can be replaced by a concentrate external moment ( 0 ( )pM t ) acting at the free end of 

piezoelectric layer, as demonstrated in Figure 6.7. Once the electromechanical excitation 

is pulled out from the mechanical structure, the problem is reduced to carry out the 

vibration analysis of a discontinuous beam under an external concentrate moment applied 

at the free end of the piezoelectric layer.  
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Figure 6.7.  Equivalent electromechanical moment due to piezoelectric excitation (top), 

and uniform distribution of internal moment along the NMC length (bottom). 

For the current configuration of Active Probe with the high length to thickness ratio 

(around 100) and small transversal deflection, assuming the Euler-Bernoulli conditions 

can be a valid strategy. The governing equation of motion for the beam with variable 

parameters under the distributed cross-sectional moment, ( , )pM x t , is given by:  

22 2 2

2 2 2 2

( , )
( ) ( ) ( ) ( ) pM x tw w wE x I x c x m x

x x t t x
∂ ∂ ∂ ∂ ∂

+ + = ∂ ∂ ∂ ∂ ∂ 
                      (6.4) 

where c(x), m(x), E(x), and I(x) are variable damping coefficient, mass per unit length, 

stiffness and moment of inertia, respectively. More especially, for the present Active 

Probe we have: 

( ) ( )
( )
( )

1 11

1 1 22

2 23

, 0

( ) ( ) ,

,

 = + < ≤
= = < ≤
 = < ≤

b p b

b b

b b

EI E I I x l

E x I x EI E I l x l

EI E I l x L

                                  (6.5) 

where: 
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and  

1 1 1

2 1 1 2
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, 0

( ) ,
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b b b

b b b

m w t w t x l
m x m w t l x l

m w t l x L

ρ ρ

ρ
ρ
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
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                                     (6.7) 

where ny y=  is the neutral axis of the beam on the composite portion, bE  is the Young’s 

modulus of the beam, and bρ  and pρ  are the density of the beam and piezoelectric layer, 

respectively. Moreover, from the experimental frequency response (shown in Figure 6.4), 

it is observed that the system is lightly damped. Hence, the distribution of damping can 

be safely assumed to be uniform in the entire length of the cantilever.  

Following the modeling framework presented in Appendix (B) for the beams with 

multiple cross-sectional discontinuities, the system can be presented in the standard state-

space form. For this, the characteristics matrix J for the present configuration of Active 

Probe can be formed using Eqs. (B.27)-(B.31) as follows: 
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(6.8) 

Varying parameter β  with small steps over a desired range, and finding the zeros of 

determinant of J, leads to determination of the natural frequencies of the beam using Eq. 

(B.33). The coefficients of the mode shapes can be obtained through Eqs. (B.32) and 

(B.34). The (r)th mode shape of the beam can be written as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 1 1 1 1 1 1
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To derive the equations of motion, the elements of Eq. (B.46) must be calculated first. 

Let’s assume that the damping coefficient of the beam remains constant for the entire 

length of beam (i.e. c(x) = c).  Consequently, this yields:  

1 2

0 1 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2 3 3

0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )φ φ φ φ φ φ φ φ
  = = + + 
  

∫ ∫ ∫ ∫
Nl l l L

r s r s r s r s
rs

l l l

c c x x x dx c x x dx x x dx x x dx    

(6.10) 

Moreover, the input of the NMC Active Probe can be obtained from:   

2
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∂
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                                        (6.11) 

Substituting Eq. (6.3) into Eq. (6.11) yields: 
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For the second distributional derivative of the Heaviside function we have:   
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where ( )⋅δ  represents the Dirac delta function. Substituting Eq. (6.13) into Eq. (6.12) 

yields: 
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1 31
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= = +r r r r
p p b p

df t f v t f l w E d t t
dx

φ                  (6.14) 
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Thus, the equation of motion and its state-space representation can be formed based on 

Eqs. (B.43)-(B.48). Once the system is represented in state-space, the frequency response 

of the system can be plotted to demonstrate the behavior of system within a desired 

frequency range. Here, the displacement of microcantilever tip at x = L is taken as the 

system output:  

( ) ( ) (1) (2) ( )
1 2

1
( ) ( , ) ( ) ( ) [ ( ), ( ),..., ( ),0,...,0] ( )φ φ φ φ ×

=

= = =∑Y X
k

r r k
k

r
t w L t L q t L L L t       (6.15) 

The standard form of the state-space representation of the system can then be written as: 

   X = AX + Bu
Y = CX

                                                (6.16) 

where  

(1) (2) ( )
1 2[ ( ), ( ),..., ( ),0,..., 0]φ φ φ ×=C k

kL L L                               (6.17) 

The frequency response of the system can now be plotted using beam’s transfer function 

obtained through the Laplace transformation of its state-space model as follows: 

1( )( ) ( )
( )

C A BY sG s sI
U s

−= = −                                         (6.18) 

6.4. Experimental Verification 

To compare the experimental mode shapes and natural frequencies with those obtained 

from the proposed model, exact values of system parameters are required. Although some 

of the parameters are given in the product catalogue, and some others can be measured 

through precision measurement devices such as our MSA-400, the presence of 
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uncertainties associated with the parameters may drastically degrade model accuracy. 

Therefore, a system identification procedure is carried out here to fine-tune the parameter 

values for precise comparison with the experimentally obtained data.  

The objective of system identification here is to minimize a constructed error function 

between the model and the actual system mode shapes and natural frequencies, 

simultaneously. The optimization variables comprise of NMC parameters and a set of 

scaling factors. In this regard, a number of points are selected along the NMC for 

comparison of the mode shapes. The error function utilized for the system identification 

calculates the percentage of the average weighted error between the measured and 

evaluated natural frequencies and mode shapes at each selected point for a finite number 

of modes as follows:    

( )
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( )

1 1 1max

( ) ( )1 1 1 100
( )

r Tr E E TK P K
r j j r r

r E E
r j rr j r

w x x
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µ ω= = =

  − − = + − ×      
∑ ∑ ∑          (6.19) 

where K is the number of modes, P represents the number of selected points on the NMC 

length, 0 1W< <  is the weighing factor space, ( ) ( )r T
jxφ  stands for the rth theoretical 

mode shape evaluated at point jx , ( )
max ( )r E

jw x  indicates the experimental amplitude of 

point jx  at rth resonant frequency, and rµ  is an scaling optimization variable used to 

match rth experimental resonant amplitude with the corresponding theoretical mode 

shape. Other optimization variables including parameters associated with NMC property 

and geometry (as listed in Table 6.1) are constrained within a limited range around the 

approximate values. The upper and lower bounds for the variables are selected in 
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accordance with best guesses on the maximum possible amount of uncertainties in the 

approximate values.  

To demonstrate the expected improvements through the proposed modeling 

framework, both uniform and discontinuous beam models are considered for the system 

identification. Optimization is carried out by selecting the first three modes of the system 

( 3K = ), choosing 16 points on the cantilever length ( 16P = ), and setting the weighing 

factor 0.5W =  to equate the importance between the mode shapes and the resonant 

frequencies. A random optimization algorithm is then implemented for the parameters 

estimation using MATLAB programming software. Random optimization is a class of 

heuristic algorithms which usually converges to the global solution within the search 

domain [70]. It is expected that the optimization does not converge to a desirable 

tolerance for the uniform beam model due to large discontinuities of the actual system. 

Table 6.1 demonstrates the initial (approximate) values of optimization variables, 

their imposed upper and lower bounds, and optimal values for the uniform and 

discontinuous NMC models, respectively. Figure 6.8 depicts the first three mode shapes 

of the actual NMC beam along with those of the theoretical models. As seen from Figure 

8, the mode shapes of the proposed discontinuous model match with the experimental 

data vary closely when compared to those of the uniform model. Furthermore, the modal 

frequency responses show more accurate estimation of the system natural frequencies 

using the discontinuous beam theory (see Figure 6.9). Since the uniform beam 

assumption fails to accurately model the actual response of the NMC Active Probe for a 
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multiple-mode operation, the discontinuous beam assumptions must be taken into 

account for the sake of modeling precision. 

 
 

 

a

b 



 160

 

Figure 6.8. Active Probe experimental and theoretical modal comparisons for both 

uniform and discontinuous beam models: (a)1st , (b) 2nd, and (c) 3rd mode shapes.  

 

Figure 6.9. Active probe frequency response comparisons (solid line: proposed model, 

dashed line: uniform model, the circled line: actual response obtained experimentally). 

c 
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Table 6.1. Independent physical and numerical parameters used in system identification; 

approximate parameter values, upper and lower bounds, and the optimal solution for 

uniform and discontinuous NMC beam models. 

 Uniform beam 
 model 

Proposed discontinuous beam 
model 

Parameters Lower 
bound 

Upper 
bound 

Initial 
value 

Optimal 
solution 

Lower 
bound 

Upper 
bound 

Initial 
value 

Optimal 
solution 

( )L mµ  485 487 486 486.7 485 487 486 485.9 

1( )L mµ  - - - - 315 330 325 315.0 

2 ( )L mµ  - - - - 350 370 360 350.0 

( )( )11 3
1 1( ) .m EI kg N m

−−  5000 15000 10000 5294.1 5000 15000 10000 7914.5 

( )( )11 3
2 2( ) .m EI kg N m

−−  - - - - 10000 30000 20000 23130.4 

( )( )11 3
3 3( ) .m EI kg N m

−−  - - - - 10000 30000 20000 13461.5 

1
2 1( ) ( )EI EI −  - - - - 0.05 0.5 0.25 0.1966 

1
3 2( ) ( )EI EI −  - - - - 0.05 0.5 0.25 0.2260 

( )1
1 mµ µ −  0.2 1 0.5 0.279 0.2 1 0.5 0.455 

( )1
2 mµ µ −  5 20 10 12.967 5 20 10 6.595 

( )1
3 mµ µ −  5 20 10 8.5364 5 20 10 10.029 

 

6.5. Application in Ultra Small Mass Detection 

The objective of this section is to employ Active Probes for end-loaded (tip) mass 

detection purposes. To this end, using focused ion beam deposition technique, a small 

mass in the order of pico-gram is added at the tip of probe. To detect the amount of added 

mass, this study undertakes the frequency analysis of the system obtained from 

experiment and theory. Then, the amount of added mass is detected by relating the 

experimental resonant frequency shifts of system to the amount of added mass.  
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Small amount of material at defined position and geometry can be deposited by 

means of focused ion beam (see Figure 6.10), [100]. Here, a FIB (FEI Nova 600, 

Netherlands) that allows imaging the deposited structures by scanning electron 

microscopy is utilized. Furthermore, the deposited material can be analyzed by energy-

dispersive X-ray spectroscopy (EDX). The NMC cantilever was mounted onto a FIB 

holder and was grounded by conductive tape to prevent charging of the cantilever during 

focused ion beam deposition. The FIB chamber was evacuated to a pressure of 10-5 mbar. 

For the deposition of material on the cantilever, the chemical vapor gas injection needle 

was placed close to the desired area (CVD injection needle). Then, the precursor gas 

(Methylcyclopentadienyl[Trimethyl]Platinum) was released in the chamber. The 

precursor gas is decomposed under the Ga+-ion beam (30 kV, 0.5 nA) on the surface 

leading to the formation of a material mainly composed of Pt and C (red area in Figure 

6.11(b)). EDX revealed a content of 69 % Pt, 15 C, 10 % Ga and 6 % Si. A deposition 

area of 50 µm by 2 µm was selected. By controlling the ion exposure time (310 seconds), 

500 nm thick elements were fabricated on the cantilever. Afterwards, the deposited 

element was imaged by the integrated SEM as shown in Figure 6.11. 

Figure 6.12 depicts the first three resonant frequencies of Active Probe before and 

after mass deposition. It is remarked that a different probe from the one shown in Figure 

6.1 has been utilized but with the same configuration. It is seen that these frequencies 

before mass deposition are 54.257, 222.812, and 380.742 kHz; while after mass 

deposition they change to 54.218, 220.781, and 380.078 kHz with the maximum shift of 

2.031 kHz at the second resonant frequency. Moreover, the sharp peaks in Figure 6.12 
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indicate that the system is lightly damped, and hence the natural frequencies of the 

system can be safely considered equal to its resonant frequencies.  

 

Figure 6.10. Combination of focused ion beam and scanning electron microscopy for the 

deposition of defined mass on nanomechanical cantilever samples. 

 

Figure 6.11. Before (a) and after (b) SEM images of Active Probe cantilevers with tip 

mass added. 

Utilizing the proposed NMC cantilever modeling framework, a modification is 

applied to the system formulation to take into account the effect of tip mass. It can be 

Added Mass

a b
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shown that the orthonormality condition used for obtaining system mode shape 

coefficients (given by Eq. (B.41)) is modified to:  

0

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
Nl

r s r s
e rs

l

m x x x dx m L Lφ φ φ φ δ+ =∫                             (6.20)  

And, the characteristics matrix (given by 6.8) is modified to: 

1 1 1 1 2 1 2 1

1 1 1 1 2 2 1 2 2 1
2 2

1 1 1 1 1 1 1 1 2 2 1 2 2 1

1 1 1 1 1 1 1
12 12

0 1 0 1 0 0
1 0 1 0 0 0

sin cos sinh cosh sin cos
cos sin cosh sinh cos sin

sin cos sinh cosh sin cos

cos sin cosh sin

l l l l l l
l l l l l l

l l l l l l

l l l

β β β β α β α β
β β β β α α β α α β

γ β γ β γ β γ β α α β α α β

γ β γ β γ β γ
×

− −
− −

− −

−
=J

3 3
1 2 2 1 2 2 1

2 2 2 2

2 2 2 2 2 2
2 2

2 2 2 2 2 2 2 2
3 3

2 2 2 2 2 2 2 2

h cos sin
0 0 0 0 sin cos
0 0 0 0 cos sin

0 0 0 0 sin cos

0 0 0 0 cos sin
0 0 0 0 0 0
0 0 0 0 0 0

l l l
l l

l l

l l

l l

β α α β α α β
α β α β

α α β α α β

γ α α β γ α α β

γ α α β γ α α β









 −


 −
 − −

 −




 

2 1 2 1

2 2 1 2 2 1
2 2
2 2 1 2 2 1
3 3
2 2 1 2 2 1

2 2 2 2 3 2 3 2 3 2 3 2

2 2 2 2 2

0 0 0 0 0 0
0 0 0 0 0 0

sinh cosh 0 0 0 0
cosh sinh 0 0 0 0

sinh cosh 0 0 0 0

cosh sinh 0 0 0 0
sinh cosh sin cos sinh cosh

cosh sinh

l l
l l

l l

l l
l l l l l l

l

α β α β
α α β α α β

α α β α α β

α α β α α β
α β α β α β α β α β α β

α α β α α β

− −
− −

− −

− −
− − − −

2 3 3 2 3 3 2 3 3 2 3 3 2
2 2 2 2 2 2

2 2 2 2 2 2 2 2 3 3 2 3 3 2 3 2 2 3 3 2
3 3 3 3 3 3

2 2 2 2 2 2 2 2 3 3 2 3 3 2 3 3 2 3 3 2

cos sin cosh sinh

sinh cosh sin cos sinh cosh

cosh sinh cos sin cosh sinh

l l l l l

l l l l l l

l l l l l l

α α β α α β α α β α α β

γ α α β γ α α β α α β α α β α α β α α β

γ α α β γ α α β α α β α α β α α β α α β

− − −

− −

− − −

3 3 3 3

3 1 3 2 3 3 3 4

0 0 sin cos sinh cosh
0 0 cos sin cosh sinh

L L L L
L M L M L M L M

α β α β α β α β
α β α β α β α β













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


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(6.21) 
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where 1M , 2M , 3M  and 4M  are the boundary conditions associated with the tip mass at 

the free end of the probe given by 

1 3 3 2 3 3
3 3

3 3 3 4 3 3
3 3

sin , cos

sinh , cosh

e e

e e

m m  M L   M L
m m

m mM L  M L
m m

βα α β βα α β

βα α β βα α β

= =

= =
                           (6.22) 

 

Figure 6.12. Experimental resonant frequency of Active Probes before and after mass 

deposition. 

Having the system with the identified parameters, the shift in the resonant frequencies 

obtained from theory and experiment can then be utilized to detect the amount of deposit 

mass. In this respect, the added tip mass can be stated by the gradual increase of the tip 

mass in the identification procedure such that the theoretical shifts in the resonant 

frequencies could meet those of experiment. procedure such that the theoretical shifts in 

the resonant frequencies could meet those of experiment. In an alternative approach, the 
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aforementioned system parameters including an unstated tip mass plus added mass are 

identified after mass deposition. The added tip mass can then be detected by the gradual 

decrease of the unstated mass in the identification procedure such that the theoretical 

shifts in the resonant frequencies could match those of experiment. In this approach, the 

amount of deposited mass at the end of probe is equal to removal mass in identification 

procedure.  

 

Figure 6.13. Sensitivity of each mode to the added mass.  

It is seen that in the second mode of NMC Active Probe, free end of the probe 

displays much sensitive motion compared to that of its main body. However, in the first 

and third modes, this sensitivity decreases. Moreover the added mass generates more 

resonance shift in the second mode compared to the first and the third mode (Figure 6.13 

depicts a simulation study of the sensitivity of different modes to the added mass). Hence, 
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the second mode is more reliable to be utilized for estimating the amount of added mass. 

By means of these considerations and based on the aforementioned procedure, for the 

2.031 kHz shift in the second resonant frequency, the amount of added tip mass is 

estimated to be 310 pico-gram.  

 

Chapter Summary 

Active probes were introduced as advantageous devices for ultra small mass detection 

due to their embedded piezoelectric actuation capability. A precise vibration model was 

developed for modal analysis of Active Probe considering the intentional jumped 

discontinuities associated with the piezoelectric layer and sudden change of cross-section 

at the tip zone. It was shown that the actual modal displacements of probe had good 

consistency with those obtained from proposed model. Using focus ion beam technique, 

an ultra small mass in the order of a few hundred pico-grams was deposited at the free 

end of Active Probe. A frequency analysis was carried out to measure the amount of the 

added mass on the probe. It was demonstrated that the second mode is the most sensitive 

mode to the added mass with its larger frequency shift compared to the other modes. 

 



CHAPTER SEVEN 

 

CONCLUSIONS AND FUTURE WORKS 

 

7.1. Conclusions 

Piezoactive systems from the modeling, dynamic analysis and control perspectives were 

studied in this dissertation. It was shown that hysteresis is the most degrading 

phenomenon in low-rate feedforward control of piezoactive systems. A novel modeling 

framework based on the memory-dominant properties of hysteresis was proposed to 

achieve an accurate and computationally efficient methodology compared to the widely-

used classical methods such as Preisach and Prandtl-Ishlinskii operators. At high-

frequency operations, however, the disturbing effects of system dynamics becomes larger, 

and hence, reduces the control performance if not thoughtfully taken into account. 

Despite the distributed-parameters nature of piezoactive stages and due to their relatively 

high resonances, a lumped-parameters model can accurately predict the dynamic 

behavior of system in a wide frequency range. It was shown that a feedforward controller 

consisting of both hysteresis and dynamic compensators can effectively control the 

system in tracking of low and high frequency trajectories. 

In practice, system parametric uncertainties and unmodeled dynamics necessitates the 

use of feedback strategies. Along this line, a Lypunov-based robust adaptive controller 

was proposed to accurately track desired trajectories despite the ever-present 

uncertainties and disturbances. Moreover, the controller demonstrated robust tracking 
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performance with respect to the hysteresis effect; that is, without including any complex 

hysteresis model, highly accurate tracking results were achieved. Implementation of the 

proposed controller on a laser-free AFM setup was then investigated. It was shown that 

the frequency of raster scanning can be increased up to 30 Hz, where a PID controller 

yields significant errors. Hence, the proposed robust adaptive controller can be 

effectively utilized in high-speed SPM systems. 

To track time-varying trajectories with frequent stepped discontinuities, a supervisory 

controller was developed. It was shown that two separate control modes are required for 

high-performance tracking of such trajectories. The supervisory controller switches 

between the controllers, one of which tuned for stepped trajectory tracking while the 

other one tuned for continuous trajectory tracking. Switching conditions and control input 

compatibility conditions at the switching instances which play important roles in 

effective and stable switching were derived and analyzed. Such a compound controller 

can be utilized in closed-loop SPM systems in imaging of surfaces with both smooth and 

jumped topographies.   

To achieve precise ultra-high frequency tracking control of piezoactive 

nanopositioning systems, distributed-parameters modeling and control was shown to be 

inevitable. Taking a rod-like configuration for the stack piezoactive stages, the partial 

differential equation of motion and boundary conditions were obtained using the 

extended Hamilton’s principle. Standard vibration analysis was carried out to derive the 

truncated finite-mode state-space representation of system. A new state-space controller 

was then proposed for asymptotic output tracking control of system. Integration of an 
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optimal state-observer and a Lyapunov-based robust strategy were proposed to improve 

the practicability of the state-space controller. Simulation results demonstrated that 

distributed-parameters modeling and control is inevitable for ultra-high bandwidth 

tracking control of system. 

Development of a state-space modeling framework for piezoelectrically-driven 

Nanomehcnical Cantilever (NMC) Active Probes with cross-sectional discontinuities was 

carried out at the last part of this dissertation utilizing the standard vibration analysis 

methods associated with the Euler-Bernoulli beams with stepped discontinuities. It was 

shown that modeling cross-sectional jumps is an essential factor for acquiring accurate 

results in a broad frequency range. The proposed framework was successfully utilized in 

a pico-gram scale mass detection application using the frequency-shift method. It was 

shown that the second mode of the current configuration of Active Probe is the most 

sensitive mode for ultra-small mass detection application since it demonstrates the largest 

shift in the frequency due to the added tip mass. This approach can benefit the 

measurement of gas densities and characterization of chemicals and biological species in 

various applications. 

 

7.2. Future Works 

Several directions are open for future investigations including: 

• Generalization of memory-based hysteresis modeling framework for other smart 

materials and systems such as magnetostrictive actuators and shape memory alloys 
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• Experimental implementation of proposed distributed-parameters modeling and 

control framework in actual rod-type solid-state actuators for high-bandwidth 

tracking control 

• Implementation of the supervisory switching controller for closed-loop control of 

AFM for constant force imaging of soft materials and samples 

• Utilization of Active Probes for mass detection of biological species 
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APPENDIX A 

 

Derivation of Equation of Motion and Orthonormality Conditions for Rod-Type 

Solid-State Actuators* 

  

 

A.1. Derivation of Equation of Motion using Hamilton’s Principle 

The partial deferential equation of motion representing the longitudinal vibrations of the 

actuator is derived here. The kinetic energy of the actuator having length L, mass per unit 

length ρ and the boundary mass m is given by: 

2 2

0

1 ( , ) 1 ( , )
2 2

ρ ∂ ∂   = +   ∂ ∂   ∫
L u x t u L tT dx m

t t
                                    (A.1)                               

The potential energy of the actuator with fixed stiffness E and cross-sectional area A is 

given by: 

2
2

0

1 ( , ) 1 ( , )
2 2

∂ = + ∂ ∫
L u x tV EA dx ku L t

x
                                       (A.2)                               

The external work done by the excitation force f (t), the uniformly distributed damping 

force, and the damping force in the boundary are represented as:  

( ) ( )
0

( ) ( , ) ( , ) ( , ) ( , ) ( , )δ δ δ δ= − ∂ ∂ − ∂ ∂∫
L

extW f t u L t B u x t t u x t dx C u L t t u L t            (A.3)                            

                                                            
* The contents of this chapter may have come directly or indirectly from our joint publication [62]. 
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The extended Hamiltonian principle to find the equation of motion of system states: 

( )( )2

1

0δ δ− + =∫
t

extt
T V W dt                                                (A.4) 

Substituting the kinetic energy, potential energy, and the external work, applying 

variation principle and rearranging all the terms, Eq. (A.4) becomes:  

2

1

2

1

2 2

2 20

2

2

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( ) ( , ) 0

ρ δ

δ

    ∂ ∂ ∂   − + − +      ∂ ∂ ∂     
  ∂ ∂ ∂    − − − − + =      ∂ ∂ ∂      

∫ ∫

∫

L t

t

t

t

u x t u x t u x tEA B u x t dxdt
t x t

u L t u L t u L tm EA C ku L t f t u L t dt
t x t

    (A.5) 

Since the integral of Hamiltonian from t1 to t2 must be zero, the integrant must vanish. 

Hence, Eq. (A.5) is recast as: 

2 2

2 2

2

2

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( ) ( , ) 0

ρ δ

δ

    ∂ ∂ ∂  − + − +      ∂ ∂ ∂      
  ∂ ∂ ∂    − − − − + =      ∂ ∂ ∂      

u x t u x t u x tEA B u x t
t x t

u L t u L t u L tm EA C ku L t f t u L t
t x t

          (A.6)         

Since ( , )δu x t and ( , )δu L t  can take any arbitrary values, for Eq. (A.6) to hold we must 

have: 

2 2

2 2

( , ) ( , ) ( , ) 0ρ
   ∂ ∂ ∂ − + =     ∂ ∂ ∂    

u x t u x t u x tEA B
t x t

                             (A.7)                         

and  

2

2

( , ) ( , ) ( , ) ( , ) ( )
 ∂ ∂ ∂   + + + =     ∂ ∂ ∂    

u L t u L t u L tm EA C ku L t f t
t x t

                      (A.8) 
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Eq. (A.7) and Eq. (A.8), respectively, represent the equation of motion for system and 

boundary condition at x = L. 

 

A.2. Derivation of Orthonormality Conditions 

Applying separation of variable to un-damped free boundary condition of system yields: 

( ) ( ) ( ) ( ) ( ) ( ) 0φ φ φ′+ + =r r r r r rm L q t EA L q t k L q t                                  (A.9)                               

Substituting Eq. (5.7) and rearranging the terms, Eq. (A.9) yields:  

2( ) ( ); ( )φ γ φ γ ω′ = = −r r r r rL L m k EA                                        (A.10) 

The equation of motion in the spatial domain for rth and sth mode of the actuator can be 

represented as: 

2 2( ) ( ), ( ) ( )φ β φ φ β φ′′ ′′= − = −r r r s s sx x x x                                         (A.11) 

Multiplying the first equation in (A.11) by ( )φs x  and the second equation by ( )φr x , 

integrating over the rod length and performing integral by parts, it follows that:                                  

2

0 0
( ) ( ) ( ) ( ) ( ) ( )φ φ φ φ β φ φ′ ′ ′− = −∫ ∫

L L

r s r s r r sL L x x dx x x dx                             (A.12) 

2

0 0
( ) ( ) ( ) ( ) ( ) ( )φ φ φ φ β φ φ′ ′ ′− = −∫ ∫

L L

s r s r s s rL L x x dx x x dx                             (A.13)                               

Subtracting Eq. (A.12) from Eq. (A.13) and using Eq. (A.10) yields: 

{ }2 2

0
( ) ( ) ( ) ( ) ( ) 0β β ρ φ φ φ φ− + =∫

L

r s r s r sx x dx m L L                                (A.14)                               
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Since β β≠r s (or ω ω≠r s ) for two different modes (i.e. ≠r s ), 2 2 0β β− ≠r s  and hence, 

Eq. (A.14) results in: 

0
( ) ( ) ( ) ( )ρ φ φ φ φ δ+ =∫

L

r s r s rsx x dx m L L                                     (A.15)                               

Eq. (A.15) represents the orthonormality condition for the longitudinal vibrations of the 

actuator with respect to mass. 

In order to obtain the orthogonality condition with respect to stiffness, we substitute 

Eq. (A.10) into Eq. (A.12), use Eq. (A.15) and rearrange the required terms to get: 

            2

0
( ) ( ) ( ) ( )φ φ φ φ ω δ′ ′ + =∫

L

r s r s r rsEA x x dx k L L                                 (A.16) 

Eq. (A.16) represents the orthogonality condition of mode shapes with respect to 

stiffness. 

 



APPENDIX B 

 

Modeling and Vibration Analysis of Stepped Euler-Bernoulli Beams with 

Application to Piezoelectric Active Probes* 

 

Consider an initially straight non-uniform Euler Bernoulli beam of length L, with variable 

cross section A = A(x), variable stiffness E = E(x), and variable moment of inertia I = 

I(x). Let ],0[ Lx∈  and ),0[ ∞∈t  be the spatial and time variables, respectively. The 

governing equation for transverse vibration of beam with variable mass per unit length 

m(x) and damping coefficient of c(x) subjected to a vertical time varying distributed load 

P(x,t) is a fourth-order partial differential equation expressed as: 

2 2 2

2 2 2

( , ) ( , ) ( , )( ) ( ) ( ) ( ) ( , )w x t w x t w x tE x I x c x m x P x t
x x t t
 ∂ ∂ ∂ ∂

+ + = ∂ ∂ ∂ ∂ 
                (B.1) 

with w(x,t) being the beam transversal displacement. In order to obtain natural 

frequencies and eigenfunctions (mode shapes) of this system, the eigenvalue problem 

associated with the transversal vibration of beam is obtained by applying free and un-

damped conditions to Eq. (B.1) as follows: 

2 2 2

2 2 2

( , ) ( , )( ) ( ) ( )w x t w x tE x I x m x
x x t
∂ ∂ ∂ 

= − ∂ ∂ ∂ 
                                 (B.2) 

Let’s assume that the solution of Eq. (B.2) is separable in time and space domains, 

                                                            
* The contents of this chapter may have come directly or indirectly from our joint publication [101]. 
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( , ) ( ) ( )w x t x q tφ=                                                    (B.3) 

where ( )xφ  denotes the spatial shape function and q(t) represents the generalized time-

dependent coordinate. Substituting Eq. (B.3) into Eq. (B.2), the eigenvalue equation can 

be written in the following form of separated time and space equations: 

( )
2 2

2
2 2

( )( ) ( ) / ( ) ( ) ( ) / ( )d d xE x I x m x x q t q t
dx dx

φ φ ω
 

= − = 
 

��                          (B.4) 

where ω is a constant parameter. The mode shapes are obtained by solving the spatial 

part of Eq. (B.4) written as:  

 
2 2

2
2 2

( )( ) ( ) ( ) ( )d d xE x I x m x x
dx dx

φ ω φ 
= 

 
                                    (B.5) 

For a beam with parametric discontinuities (e.g., jump in the moment of inertia or mass 

distribution), Eq. (B.5) cannot be solved using conventional approaches. An alternative 

method is to partition the beam into uniform segments between any two successive 

stepped points and apply the continuity conditions at these points. Therefore, the non-

uniform beam is converted to a set of uniform segments constrained through the 

continuity conditions.  

B.1. Modal analysis of stepped Euler Bernoulli beam  

Figure B.1 illustrates a straight Euler Bernoulli beam with arbitrary boundary conditions 

and N jumped discontinuities in its spatial span. The beam considered in this study has a 
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uniform cross-section at each segment. Hence, Eq. (B.5) can be divided into N uniform 

equations expressed as:                    

4
2

-1 04
( )( ) ( ) ; 1,2,3,..., ; 0,    =n

n n n n n
d xEI m x l x l n N l

dx
φ ω φ= < < =                 (B.6)  

where ( )n xφ , (EI)n , and mn  are mode shapes, flexural stiffness, and mass per unit length 

of beam at the nth segment, respectively†. Let, 

n

n
n EI

m
)(

24 ωβ =                                                   (B.7) 

 

Figure B.1.  EB beam configuration with N jumped discontinuities.  

Eq. (B.6) can be rewritten in a more recognizable form  

4
4

4
( ) ( ) 0n

n n
d x x

dx
φ β φ− =                                               (B.8) 

with the following general solution 

xDxCxBxAx nnnnnnnnn ββββφ coshsinhcossin)( +++=                  (B.9) 

                                                            
†  ( )n denotes the mode shape or parameter value for the nth cross-section, while ( )(r) , which will be used 
later in the paper, denotes the mode shape or parameter value of the rth mode; though, ωr  which represents 
the rth natural frequency is an exception.  



 180

where An, Bn, Cn, and Dn are the constants of integration determined by suitable boundary 

and continuity conditions. It is to be noted that any conventional boundary conditions can 

be applied to the beam; however, without the loss of generality, the clamped-free 

conditions are chosen here for the boundaries. Applying the clamped condition at x = 0  

requires‡: 

0
)0(

)0( 1
1 ==

dx
dφ

φ                                                  (B.10) 

Substituting Eq. (B.10) into Eq. (B.9) yields:  

B1+D1=0  and   A1+C1=0                                             (B.11) 

On the other hand, the continuity conditions for displacement, slope, bending moment, 

and shear force of beam at discontinuity locations are given by: 

)()( 1 nnnn ll += φφ                                                    (B.12) 
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Indeed, these conditions are applied at the boundaries of adjacent segments to satisfy the 

continuity and equilibrium conditions immediately before and after stepped points. 

Applying conditions (B.12)-(B.15) to Eq. (B.9) results in: 
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               (B.16) 
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where 
1)(

)(

+
=

n

n
n EI

EI
γ . 

Finally, the free boundary condition at x = L  requires: 

0
)()(

3

3

2

2
==

dx

ld

dx

ld NNNN φφ                                          (B.20) 

Substituting Eq. (B.20) into Eq. (B.9) yields: 

0)coshsinhcossin(2 =++−− NNNNNNNNNNNNN lDlClBlA βββββ       (B.21) 

0)sinhcoshsincos(3 =+++− NNNNNNNNNNNNN lDlClBlA βββββ       (B.22) 
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Note that nβ ’s are functions of beam natural frequency with an explicit expression given 

in Eq. (B.7). Since the natural frequency is independent of segments indices and is 

considered for the entire length of beam, nβ ’s of different segments can be interrelated in 

terms of a single parameter β  using Eq. (B.7):   

 =n nβ βα                                                        (B.23) 

where 

1/ 4

1

1

( )
( )

 
=  
 

n
n

n

m EI
m EI

α                                                  (B.24) 

Note that 1 1=α , and thus 1=β β .                                                      

Eqs. (B.11), (B.21), and (B.22), derived from boundary conditions, together with Eqs. 

(B.16)-(B.19), obtained from the continuity conditions, will form the characteristics 

matrix equation as: 

4 4 4 1N× N N× =J P 0                                                    (B.25) 

where J is the characteristics matrix and P is the vector of mode shape coefficients 

T
1 4N[ ]1 1 1 1 2 2 2 2 N N N NA  B  C D  A  B  C D   A  B  C D ×=P "                          (B.26) 

Matrix J is constructed based on three sets of equations. The first two rows and last two 

rows represent the boundary conditions at x = 0 and x = L, respectively, and the middle 

part of matrix demonstrates the continuity conditions at the singularity points. Matrix J 

can be divided into three parts as:      
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where 
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represents the clamed boundary condition at x = 0 given by Eq. (B.11), 
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includes the continuity conditions given by Eqs. (B.16)-(B.19) at (N-1) points of 

discontinuity with  
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(B.30) 

and 
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represents the free boundary condition at x = L given by Eqs. (B.21) and (B.22). 

In order to obtain a non-trivial solution for Eq. (B.25) and find the natural frequencies 

and mode shapes, the determinant of matrix J must be set to zero, 

[ ]det ( ) 0J β =                                                       (B.32) 

Since this matrix is a function of only parameter ( )0,β ∈ ∞ , its determinant can be 

numerically evaluated for its zero values by continuously varying parameter β  with a 

reasonably small step size within a range of interest starting from, but excluding, zero. 

The values of β  which satisfy Eq. (B.32) lead to calculation of natural frequencies using 

a modified version of Eq. (B.7) as follows:   

( ) ( )4 42 ( ) ( )1

1

( )( )r r n
r n

n

EIEI
m m

ω β β= =                                       (B.33) 

where ( )rβ s are solutions for Eq. (B.32) and rω  is the corresponding rth natural 

frequency. Since the determinant of matrix J has been set to zero for the selected values 

of β , the mode shape coefficients A1 to DN are linearly dependent. In order to obtain 

unique solution for these coefficients, orthogonality between mode shapes can be 

utilized. For the conventional boundary conditions considered here, this condition is 

stated as: 
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where rsδ  is the Kronecker delta, and ( ) ( )r xφ  is the rth mode shape of beam expressed as: 
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 (B.35) 

 
The obtained mode shapes and natural frequencies are used to derive the equation of 

motion for a beam under distributed dynamic excitation as will be discussed next. 

 

B.2. Forced motion analysis of stepped Euler Bernoulli beam  

Using expansion theorem for the beam vibration analysis, the expression for the 

transverse displacement becomes:  
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1
( , ) ( ) ( )r r

r
w x t x q tφ

∞

=

=∑                                              (B.36) 

where ( ) ( )rq t  is the generalized time-dependent coordinate for the rth mode. Substituting 

Eq. (B.36) into partial differential equation of motion, Eq. (B.1), yields: 
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To safely take the term E(x)I(x) out of the bracket for the beam with multiple 

discontinuities, Eq. (B.37) is multiplied by sth mode shape ( ) ( )s xφ  and integrated over the 

beam length:     

0

0
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Recall Eq. (B.6) which can be modified to 

4 ( )
2 ( )

4

( )( ) ( )
r

rn
n r n n

d xEI m x
dx
φ ω φ=                                           (B.39) 

Using Eq. (B.39) and dividing the spatial integral into N uniform segments, one can 

write: 
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(B.40) 

Applying beam orthogonality conditions given by: 

0 0
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r s r s
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m x x x dx E x I x x x dxφ φ δ φ φ ω δ= =∫ ∫                (B.41) 

and using Eq. (B.40), Eq. (B.38) can be recast as:  
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which can be simplified to 
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where  
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The truncated k-mode description of the beam Eq. (B.43) can now be presented in the 

following matrix form: 

 + + =Mq Cq Kq F�� �                                                (B.45) 

where  
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           (B.46) 

From the systems and control standpoint, Eq. (B.45) can be presented in the standard 

state-space form. This not only facilitates the control design procedure for the system, but 

also helps to characterize various properties of system, including stability, controllability 

and observability. The state-space representation of Eq. (B.45) is given by: 

X = AX + Bu�                                                     (B.47) 

where  
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