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For the probe descending and landing safely, a neural network control method based on proportional integral observer (PIO) is
proposed. First, the dynamics equation of the probe under the landing site coordinate system is deduced and the nominal trajectory
meeting the constraints in advance on three axes is preplanned.Then the PIO designed by using LMI technique is employed in the
control law to compensate the effect of the disturbance. At last, the neural network control algorithm is used to guarantee the
double zero control of the probe and ensure the probe can land safely. An illustrative design example is employed to demonstrate
the effectiveness of the proposed control approach.

1. Introduction

The exploration mission to near-earth asteroids (NEAs)
would be one of the most complex tasks in the future deep
space exploration [1, 2].There is surge inNEAsmission activ-
ities, for which various space agencies around the world (e.g.,
NASA, European SpaceAgency, JapanAerospace Exploration
Agency, etc.) were commissioning researches about NEAs to
determine the feasible exploration missions, including the
(1) NEAR probe launched by NASA which can realize the
fly-around to 433 Eros whose shape is like a potato with
a size of 34.4 km × 11.2 km × 11.2 km and which verified
the gravitational field model of 433 Eros and the stability of
frozen orbit around the asteroid [3]; (2) the Hayabusa probe
from JAEA which had successfully achieved to be attached
and sample to the 25143 Itokawa (due to the smaller size
and quality of the Itokawa asteroid, this mission realized the
detection to the asteroid by hovering way [4]); (3) ROSETTA
implemented by ESA which will arrive in the Churyumov-
Gerasimenko comet in 2014 after a decade of interstellar flight
and will make the comprehensive observation of the comet
for a long time [5].

In view of the complex environment around the small
body, together with the long distance between the probe and

the surface of the earth [6], a variety of accurate physical
parameters and motion information of small bodies cannot
be obtained through optical telescopes on the ground or radio
telescopes. In addition, the complex process uncertainty,
large time delay, nonlinearity, and multivariable coupling
always exist in the probe dynamic model, so ground control
for deep space exploration mission has become no longer
appropriate; as a consequence, it puts forward a new challenge
to autonomous navigation, guidance, and control (GNC)
technology of landing softly on a small body. To cope with
these problems, both domestic and foreign scholars have paid
a great deal of attention to the GNC problem of landing small
objects. As is well known, the accurate physical parameters
and motion information of small bodies are the important
premises of the probe softly landing. Misu et al. [6] proposed
an autonomous optical navigation and guidance method,
which extracted visual small features from the images taken
by the navigation camera and tracked them robustly and
accurately. Kawaguchi et al. [7] discussed an autonomous
optical guidance and navigation strategy to approaching
small bodies. Horneman and Kluever [8] presented a termi-
nal area energymanagement (TAEM) guidancemethodology
which employed a trajectory planning algorithm to compute
a feasible path from the current state to the desired approach
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and landing target state rather than relying on a precalculated
one, stored database of neighboring TAEM trajectories. How-
ever, even if the accurate physical parameters and motion
information of small bodies are gained, the controller is
difficult to be designed to make the probe system meet the
key performance indicators of the probe softly landing. In
order to solve this problem, Furfaro et al. [9] presented a
high order sliding mode variable structure control method
to make the probe reach the sliding surface in finite time
and overcame the chattering effect, generally existing in the
common slidingmode control. Crassidis et al. [10] introduced
a variable-structure controller based on a Gibbs vector
parameterization, a modified-Rodrigues parameterization,
and a quaternion parameterization. Blackmore [11] studied
the robust path and feedback control under the condition
of existing uncertainty; through this control method, the
stability of the system is ensured. Meissinger and Greenstadt
[12] proposed a soft landing scheme, which used a feedback
control with a radar altimeter and a three-beam Doppler
radar system to achieve landing spacecraft at Eros’ north
polar regionwith a low-impact velocity. In [13], a novel robust
stability condition was obtained for sliding mode dynamics
by using Lyapunov theory in delta domain. Some other
approaches for analysis and design of sliding mode control
were presented in [14–16]. Apart from the position and the
velocity of the probe, the attitude dynamics analyses also play
an important role in the probe softly landing. Kumar and
Shah [17] set up the general formulation of the spacecraft
equations of motion in an equatorial eccentric orbit using
Lagrangian method and did some analysis on the stability.
Then the control laws for three-axis attitude control of space-
crafts had been developed and a closed-form solution of the
system had been derived. Liang and Li [18] designed a robust
adaptive backstepping sliding mode control law to make the
attitude of the probe stabilized and respond accurately to the
expectation in the presence of disturbances and parametric
uncertainties. Nonetheless, thesemethods of dealing with the
interference all made the inhibition of bounded disturbances
implicit in the above autonomous GNC rather than using
the interference information effectively, so the designed
controller cannot meet the control requirement of the system
when there exists a larger interference in the system.

As a result of the complex environment in the deep
space around the small bodies and the coupling effect of the
detector itself, it leads to a great deal of uncertainties in the
dynamic model and makes the system include the complex
external disturbance. At present, the main approaches to
process the external disturbances include disturbance decou-
pling, disturbance compensation, and robust control, espe-
cially disturbance compensation. There are many scholars
proposing a variety of stability control strategies based on
the observer aimed at different objects. Chadli and Karimi
[19] dealt with the observer design for Takagi-Sugeno (T-
S) fuzzy models subject to unknown inputs and disturbance
affecting both states and outputs of the system. Chong et al.
[20] designed a robust circle criterion observer and applied it
to neural mass models; Sun et al. [21] proposed a novel speed
observation scheme using artificial neural network (ANN)
inverse method to effectively reject the influence of speed

detection on system stability and precision for a bearingless
inductionmotor. Above all, the observer can inhibit the effect
of disturbance in the system by accurately measuring the
unknown disturbance.

The main advantages of the presented approach are
generalized into two aspects: one is that it combines the
characteristics of the probe dynamic model and the good
estimation performance of observer, to eliminate the effect
of the unknown disturbance and to avoid the chattering of
the control signal caused by the large disturbance.This paper
designs PIO using LMI technique, which can estimate the
system states and unknown input disturbance simultane-
ously.The other is that PID neural network control algorithm
is introduced in the design of the controller. It combines
the advantages of traditional PID controller and learning
memory function of neural networks. So it improves the
convergence rate close to the ideal position on the condition
that the convergence of the system can be ensured and
simultaneously avoids the effect of nonlinear and strong
coupling features of the system in a wide range, compared
with the sliding mode control strategy.

This paper proceeds as follows. In Section 2, the dynamics
equation of the probe is deduced under the landing site coor-
dinate system and the interference outside system is treated
as the known bounded function. In Section 3, firstly, the
nominal trajectories based on the theory of suboptimal fuel
are planned. Then PIO is designed by using LMI technique
to estimate the unknown disturbance. Finally, PID neural
network control algorithm is used to design the controller to
ensure the stability and control performance of the system.
In Section 4, Eros 433 is employed to demonstrate the
effectiveness of the proposed control approach. Conclusions
are presented in Section 5.

2. Small Body and Probe Dynamic Model

In this section, the body-fixed coordinate system of small
body is set up, which is shown in Figure 1. Let the 𝑜

𝑎
−

𝑥
𝑎
𝑦
𝑎
𝑧
𝑎
coordinate system be fixed on small body with the

origin coinciding with the mass center of small body, 𝑥
𝑎
-

axis coinciding with the minimum inertia axis of small body,
𝑧
𝑎
-axis coinciding with the spin axis of small body, and

𝑦
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axes

compose the right-handed coordinate system.The 𝑜
𝑐
−𝑥
𝑐
𝑦
𝑐
𝑧
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coordinate system is fixed on optical navigation camera
(ONC), and the image plane of ONC is defined as 𝑜

𝑐
𝑥
𝑐
𝑦
𝑐
, and

𝑧
𝑐
axis is parallel to the optical axis of ONC and is directed to

the surface.
The dynamic equations of the probe in the fixed-body

coordinate system are given as [22]

�̈� + 2𝜔 × �̇� + 𝜔 × (𝜔 × 𝑅) + �̇� × 𝑅 = 𝑎 + 𝑈
𝑅
+ 𝑓
𝑑
, (1)

where 𝑅, �̇�, �̈�, 𝜔, 𝑎, 𝑈
𝑅
, and 𝑓

𝑑
are the position vector

from the target small body mass center of the spacecraft,
the first and second time derivatives with respect to the
body-fixed rotating frame, the instantaneous rotation vector
of the small body, the control acceleration, the gradient of
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Figure 1: Geometrical relationship of coordinate systems.

the gravitational potential𝑈, and the components of unmod-
eled perturbation accelerations mainly from the solar radia-
tion pressure and the solar gravitation.

Considering the origin of Σ
𝑙 is the vector 𝜌 in the Σ

𝑎,
which is the vector from the target small body mass center
to the landing site, the vector 𝑅 has the following satisfaction
relation in the body-fixed coordinate system Σ

𝑎:

𝑅 = 𝐶
𝑎

𝑙
𝑟 + 𝜌, (2)

where 𝑟 and 𝐶
𝑎

𝑙
are the vector from the landing site to the

probe in the Σ
𝑙 and coordinate transform matrix from the Σ

𝑙

to the Σ
𝑎. The transform matrix is given as follows:

𝐶
𝑎

𝑙
= [

[

cos𝜑 sin 𝜃 − sin𝜑 cos𝜑 cos 𝜃
sin𝜑 sin 𝜃 cos𝜑 sin𝜑 cos 𝜃
− cos 𝜃 0 sin 𝜃

]

]

. (3)

Suppose that the small body rotates around the 𝑧-axis
and rotation velocity 𝜔 is a constant; we can get the final
expression of dynamic models as

�̈� = 𝜔
2

𝑥 + 2𝜔 ̇𝑦 + 𝑈
𝑥
+ 𝑎
𝑐𝑥

+ 𝑓
𝑑𝑥

,

̈𝑦 = 𝜔
2

𝑦 − 2𝜔�̇� + 𝑈
𝑦
+ 𝑎
𝑐𝑦

+ 𝑓
𝑑𝑦

,

�̈� = 𝑈
𝑧
+ 𝑎
𝑐𝑧

+ 𝑓
𝑑𝑧

,

(4)

where 𝑓
𝑑𝑥
, 𝑓
𝑑𝑦
, and 𝑓

𝑑𝑧
are the components of unmodelled

perturbation accelerations mainly from the solar radiation
pressure and the solar gravitation.

Generally, given the small size, irregular shape, and
variable surface properties of small bodies, orbital dynamics

became complicated; thus it is difficult to obtain the grav-
itational field of the small bodies accurately. Considering
that the gravitational potential is related to the distance, the
latitude, and the longitude, it can be expanded into a series of
spherical harmonics and can be expressed as

𝑈 =

𝜇

𝑟

1 + {(

𝑅
𝑎

𝑟

)

2

[

1

2

𝐶
20

(3sin2𝜑 − 1) (

𝑅
𝑎

𝑟

)

2

+ 3𝐶
22
cos2𝜑 cos 2𝜃]} ,

(5)

where 𝜇, 𝑅
𝑎
, 𝜑, 𝜃, and 𝑟 are the product of the gravitational

constant and themass of the target small body, the referenced
radius which is similar to the large equatorial radius, the
latitude and longitude in the same coordinate system whose
origins are at the center of body mass, and the distance from
the mass center of small body to the probe, respectively.

According to the relationship between the rectangular
coordinate and polar coordinate, one obtains

sin𝜑 =

𝑧

𝑟

,

cos2𝜑 =

𝑥
2

+ 𝑦
2

𝑟
2

,

cos 2𝜃 = 1 − 2sin2𝜃 =

𝑥
2

− 𝑦
2

𝑥
2
+ 𝑦
2
.

(6)

Introduce (6) into (5), and one can obtain

𝑈 =

𝜇

𝑟
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(7)

Furthermore, the derivatives of 𝑈 can be computed
explicitly with respect to 𝑥, 𝑦, and 𝑧, respectively, as

𝑈
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(
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2
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3. Guidance Law and Control Law Design

Considering the probe achieves the vertical soft landing
within the expected time 𝜏, this paper presents the nominal
trajectory guidance law based on the theory of suboptimal
fuel, and the nominal trajectories of three-axis direction are
preplanned. Then use neural network control method based
on PIO to track the planned ideal nominal trajectories.

3.1. The Nominal Trajectory Planning. The desired descent
altitude and velocity are planned in order to satisfy the
requirements of soft landing on the surface of small bodies.
The constraint condition is defined as [23]

�̇� (0) = �̇�
0
, 𝑧 (0) = 𝑧

0
,

𝑧 (𝜏) = 𝜌, �̇� (𝜏) = 0,

(9)

where 𝑧
0
and �̇�
0
denote the initial altitude and altitude change

rate, �̇�(0) and 𝑧(0) are the planned altitude and altitude
change rate, and 𝜏 is the descent time. The cubic curve to
satisfy the boundary condition is given by

𝑧
𝑛
(𝑡) = 𝑧

0
+ 𝑧
1
𝑡 + 𝑧
2
𝑡
2

+ 𝑧
3
𝑡
3

, (10)

where 𝑧
0
, 𝑧
1
, 𝑧
2
, and 𝑧

3
are the cubic function coefficients.

Using (9), the coefficients are determined. The descent
curve is given by

𝑧
𝑛
(𝑡) = 𝑧

0
+ �̇�
0
𝑡 −

3𝑧
0
+ 2�̇�
0
𝜏 − 3𝜌

𝜏
2

𝑡
2

+

2𝑧
0
+ �̇�
0
𝜏 − 2𝜌

𝜏
3

𝑡
3

,

(11)

where 𝜌 is the altitude of the landing site.
Next, the time derivatives of (12) are given by

�̇�
𝑛
(𝑡) = �̇�

0
−

6𝑧
0
+ 4�̇�
0
𝜏 − 6𝜌

𝜏
2

𝑡 +

6𝑧
0
+ 3�̇�
0
𝜏 − 6𝜌

𝜏
3

𝑡
2

, (12)

�̈�
𝑛
(𝑡) = −

6𝑧
0
+ 4�̇�
0
𝜏 − 6𝜌

𝜏
2

+

12𝑧
0
+ 6�̇�
0
𝜏 − 12𝜌

𝜏
3

𝑡. (13)

Similarly, the ideal nominal trajectories can be planned
on the other two axis directions.

3.2. Control Law Design

3.2.1. Proportional Integral Observer Design. Let

𝑥 (𝑡) = [𝑥, 𝑦, 𝑧, �̇�, ̇𝑦, �̇�]
𝑇

,

𝑢 (𝑡) = [0 0 0 𝑢
𝑥
(𝑡) − 𝑈

𝑥
𝑢
𝑦
(𝑡) − 𝑈

𝑦
𝑢
𝑧
(𝑡) − 𝑈

𝑧
]

𝑇

.

(14)

Convert (4) into nonlinear time-invariant system as

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝑓 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

(15)

where

𝐴 =

[
[
[
[
[
[
[

[

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

𝜔
2

0 0 0 2𝜔 0

0 𝜔
2

0 −2𝜔 0 0

0 0 0 0 0 0

]
]
]
]
]
]
]

]

,

𝐵 =

[
[
[
[
[
[
[

[

0

0

0

𝑏
1

𝑏
2

𝑏
3

]
]
]
]
]
]
]

]

, 𝑓 (𝑡) =

[
[
[
[
[
[
[

[

0

0

0

𝑓
𝑑𝑥

𝑓
𝑑𝑦

𝑓
𝑑𝑧

]
]
]
]
]
]
]

]

, 𝐶 =

[
[
[
[
[
[
[

[

1

1

1

1

1

1

]
]
]
]
]
]
]

]

,

(16)

where𝜔 is the instantaneous rotation vector of the small body
and 𝑓

𝑑𝑥
, 𝑓
𝑑𝑦
, and 𝑓

𝑑𝑧
are the components of unmodelled

perturbation accelerations mainly from the solar radiation
pressure and the solar gravitation.

Next, the PIO is designed as follows [24]:

̇
�̂� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) +

̂
𝑓 (𝑡) + 𝐾

𝑝
(𝑦 (𝑡) − 𝑦 (𝑡)) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

̇
̂
𝑓 (𝑡) = 𝐾

𝐼
(𝑦 (𝑡) − 𝑦 (𝑡)) ,

(17)

where𝐾
𝑝
and𝐾

𝐼
are the observer gainmatrix and the integral

coefficient of estimated unknown disturbance, respectively.
Note the state error and unknown disturbance error as

𝑒 (𝑡) = 𝑥 (𝑡) − 𝑥 (𝑡) ,

𝑒
𝑓
(𝑡) =

̂
𝑓 (𝑡) − 𝑓 (𝑡) ,

(18)

where 𝑥 and ̂
𝑓 are the estimations of the state vector 𝑥 and

the unknown disturbance 𝑓, respectively.
Using (17) and (18) the error dynamics are as follows:

̇𝑒 (𝑡) = (𝐴 − 𝐾
𝑃
𝐶) 𝑒 (𝑡) + 𝑓 (𝑡) −

̂
𝑓 (𝑡) ,

̇𝑒
𝑓

= − (𝐾
𝐼
𝐶 + 𝐾V𝐶 (𝐴 − 𝐾

𝑝
𝐶) 𝑒 (𝑡) − 𝐾V𝐶) 𝑒

𝑓
−

̇
𝑓 (𝑡) .

(19)

The augmented estimator system could be rewritten as

[

̇𝑒 (𝑡)

̇𝑒
𝑓
(𝑡)

] = 𝐴
𝑒𝑓

[

𝑒

𝑒
𝑓

] + 𝐵
𝑒𝑓

̇
𝑓 (𝑡) , (20)

where

𝐴
𝑒𝑓

= [

𝐴 − 𝐾
𝑃
𝐶 1

−𝐾
𝐼
𝐶 − 𝐾V𝐶𝐴 + 𝐾V𝐶𝐾

𝑝
𝐶 0

] ,

𝐵
𝑒𝑓

= [
0

1
] .

(21)
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Lemma 1 (see [25]). Given 𝛾 > 0 and (20), if there exist
symmetric matrixes 𝑃, 𝑄 and two matrices 𝐾

𝑃
, 𝐾
𝐼
of appro-

priate dimension as well as LMI such that

[
[
[

[

𝐴
11

𝐴
12

0

𝐴
𝑇

12
𝐴
22

−𝑄𝑆

0 − (𝑄𝑆)
𝑇

𝛾𝐼
1

]
]
]

]

< 0, (22)

where

𝐴
11

= 𝑃 (𝐴 − 𝐾
𝑝
𝐶) + (𝐴 − 𝐾

𝑝
𝐶)

𝑇

𝑃 + 𝐼
𝑒
,

𝐴
12

= 𝑃 + [𝑄𝑆 (𝐾
𝑖
𝐶 + 𝐾V (𝐴 − 𝐾

𝑝
𝐶))]

𝑇

,

𝐴
22

= −𝑄𝑆 (𝐾V𝐶) − [𝐾
𝑖
𝐹
𝑆
+ 𝐾V𝐶] (𝑄𝑆)

𝑇

+ 𝐼
𝑠

(23)

hold, then system (20) is stable and satisfies corresponding
performance index.

Theorem 2. For a given positive constant 𝛾 > 0 and (20),
if there exist symmetric matrixes 𝑃, 𝑄 and two matrices 𝐾

𝑃
,

𝐾
𝐼
of appropriate dimension such that (22) LMI holds, then

system (20) is robust and asymptotically stable and satisfies the
performance index as follows:
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𝑒

𝑒
𝑓
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≤ 𝛾







̂
𝑓







2

+ 𝑉 (0) , (24)

where
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𝑒

𝑒
𝑓
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2

= ∫

𝑡
1

0

[[

𝑒

𝑒
𝑓

] [

𝑒

𝑒
𝑓

]

𝑇

]𝑑𝑡,







̂
𝑓







2

= ∫

𝑡
1

0

(
̂
𝑓

̂
𝑓
𝑇

) 𝑑𝑡.

(25)

𝐼
𝑒
, 𝐼
𝑠
, and 𝐼

1
are unit matrixes with appropriate dimension.

Proof. Choose the Lyapunov candidate as

𝑉 = [

𝑒

𝑒
𝑓

]𝑃
1
[

𝑒

𝑒
𝑓

]

𝑇

; (26)

then taking the derivative of𝑉 with respect to time along the
trajectories of (19), one obtains

�̇� = [

𝑒

𝑒
𝑓

] [𝐴
𝑇

𝑒𝑓
𝑃
1
+ 𝑃
1
𝐴
𝑒𝑓
] [

𝑒

𝑒
𝑓

]

𝑇

+ 2 [

𝑒

𝑒
𝑓

]

𝑇

𝑃
1
𝐵
𝑒𝑓

̂
𝑓. (27)

Now define performance indicators as follows:

𝐽 = ∫

𝑡
1

0

[[

𝑒

𝑒
𝑓

] [

𝑒

𝑒
𝑓

]

𝑇

− 𝛾
̂
𝑓

̂
𝑓
𝑇

]𝑑𝑡. (28)

Then

𝐽 = ∫

𝑡
1

0

[[

𝑒

𝑒
𝑓

] [

𝑒

𝑒
𝑓

]

𝑇

− 𝛾
̂
𝑓

̂
𝑓
𝑇

+ �̇�] 𝑑𝑡 − ∫

𝑡
1

0

�̇�𝑑𝑡

≤ ∫

𝑡
1

0

[[

𝑒

𝑒
𝑓

] [

𝑒

𝑒
𝑓

]

𝑇

− 𝛾
̂
𝑓

̂
𝑓
𝑇

+ �̇�] 𝑑𝑡 + 𝑉 (0)

= ∫

𝑡
1

0

[[

𝑒

𝑒
𝑓

] [𝐴
𝑇

𝑒𝑓
𝑃
1
+ 𝑃
1
𝐴
𝑒𝑓

+ 𝐼] [

𝑒

𝑒
𝑓

]

𝑇

−[

𝑒

𝑒
𝑓

]

𝑇

𝑃
1
𝐵
𝑒𝑓

̇
𝑓 − 𝛾

̂
𝑓

̂
𝑓
𝑇

]𝑑𝑡 + 𝑉 (0)

= ∫

𝑡
1

0

[
[

[

[

[

𝑒

𝑒
𝑓

̂
𝑓

]

]

[

𝐴
𝑇

𝑒𝑓
𝑃
1
+ 𝑃
1
𝐴
𝑒𝑓

+ 𝐼 𝑃
1
𝐵
𝑒𝑓

𝐵
𝑇

𝑒𝑓
𝑃
1

−𝛾𝐼
1

][

[

𝑒

𝑒
𝑓

̂
𝑓

]

]

𝑇

]
]

]

𝑑𝑡

+ 𝑉 (0) .

(29)

If there exists

[

𝐴
𝑇

𝑒𝑓
𝑃
1
+ 𝑃
1
𝐴
𝑒𝑓

+ 𝐼 𝑃
1
𝐵
𝑒𝑓

𝐵
𝑇

𝑒𝑓
𝑃
1

−𝛾𝐼
1

] < 0, (30)

then the 𝐻
∞

tracking performance can be satisfied.
Next, note symmetric positive-definite matrix

𝑃
1
= [

𝑃 0

0 𝑄
] . (31)

Thus

𝑃
1
𝐵
𝑒𝑓

= [

0

−𝑄𝑆
] ,

𝐴
𝑇

𝑒𝑓
𝑃
1
+ 𝑃
1
𝐴
𝑒𝑓

+ 𝐼 = [

[

𝐴
11

𝐴
12

𝐴
𝑇

12
𝐴
22

]

]

,

(32)

where 𝐴
11
, 𝐴
12
, and 𝐴

22
are defined as (23); then

∫

𝑡
1

0

[[

𝑒

𝑒
𝑓

] [

𝑒

𝑒
𝑓

]

𝑇

]𝑑𝑡 ≤ ∫

𝑡
1

0

𝛾
̂
𝑓

̂
𝑓
𝑇

𝑑𝑡 + 𝑉 (0) . (33)

Then (24) can be obtained by simplifying (33); thus it is
verified that unknown disturbance observer error 𝑒

𝑓
of PIO

can converge to zero in finite time, as well as the estimated
interference ̂

𝑓(𝑡) converging to actual interference 𝑓(𝑡).

3.2.2. PID Neural Network Structure and Calculation Method.
As it is difficult to acquire the physical parameters andmotion
information of small bodies accurately, there exists a highly
nonlinear dynamic model of the small body. PID neural
network control algorithm not only has the advantages of
conventional PID controller, but also owns parallel structure
and function of learning and memory of neural network and
the ability of multilayer networks to approximate arbitrary
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Figure 2: Multivariable control structure based on a PID neural
network of probe power decline period.

functions. Therefore, the algorithm shows good superiority
and stability performances in the control for the probe.

The PID neural network is introduced as follows.The PID
neural network is a three-forward neural network. Suppose
that the controlled object has three inputs and three outputs,
which is a nonlinear and strong coupling system with three
variables. There exists a three-layer neural network compris-
ing proportional neurons, integral neurons, and derivative
neurons between the input layer and hidden layers. In
addition, connected weights exist between the hidden layer
and output layer. Figure 2 shows a multivariable control
structure based on a PID neural network of probe power
decline period.

(1) PID Neural Network Forward Algorithm. At any sampling
time 𝑘, the forward calculation equations of the PID neural
network are as follows.

(a) The input-output function of input-layer neurons is
𝑥
𝑠𝑖
(𝑘) = 𝑢

𝑠𝑖
(𝑘) , (34)

where 𝑥
𝑠𝑖
, 𝑠 (𝑠 = 1, 2, 3), and 𝑖 (𝑖 = 1, 2) are input values

of input-layer neurons, output values of input-layer neurons,
and the number of the subnet input layers, respectively.

Define the position error in 𝑧-axis orientation as 𝑒; then
𝑒 = 𝑧 (𝑡) − 𝑧

𝑛
(𝑡) , (35)

where 𝑧(𝑡) and 𝑧
𝑛
(𝑡) are the actual position on the 𝑧

𝑎
-

axis at time 𝑡 and the nominal position on the 𝑧
𝑎
-axis at

corresponding time 𝑡, respectively.
Introduce a simple filter 𝑠 as new state variable, and the

input of input layer is defined as follows:
𝑠 = ̇𝑒 + 𝜆𝑒, (36)

where 𝜆 is a positive scalar.

(b) Hidden layer contains nine neurons (three propor-
tional neurons, three integral neurons, and three derivative
neurons); the input values of these neurons can be calculated
as follows:

net
𝑠𝑖
(𝑘) =

2

∑

𝑖=1

𝜔
𝑠𝑖𝑗
𝑥
𝑠𝑖
(𝑘) , 𝑗 = 1, 2, 3, . . . . (37)

For subnetwork 𝑖, the formula of the output of hidden
layer neurons is given by

𝑢
𝑠1

(𝑘) = net
𝑠1

(𝑘) ,

𝑢
𝑠2

(𝑘) = net
𝑠2

(𝑘) + 𝑢
𝑠2

(𝑘 − 1) ,

𝑢
𝑠3

(𝑘) = net
𝑠3

(𝑘) − net
𝑠3

(𝑘 − 1) ,

(38)

where net
𝑠1
(𝑘), 𝑢
𝑠𝑗
(𝑘), 𝜔

𝑠𝑖𝑗
, and 𝑗 are input value of neurons

in the hidden layer, the output value of neurons in the hidden
layer, weight between input layer and hidden layer in each
subnet, and the hidden layer neuron number in the subnet
(𝑗 = 1, 2, 3), respectively.

(c) The input and output of output-layer neurons: the
output of output-layer neurons is the sum of output weights
of all hidden layer neurons as

𝑦
ℎ
(𝑘) =

𝑛

∑

𝑠=1

3

∑

𝑗=1

𝜔
𝑠𝑗ℎ

𝑢
𝑠𝑗
(𝑘) , (39)

where 𝑦
ℎ
(𝑘), 𝜔

𝑠𝑗ℎ
, and 𝑠 are output value of output-layer

neurons, connected weight between hidden layer and output
layer, and sequence number of output-layer neurons (𝑠 =

1, 2, 3), respectively.

(2) PID Neural Network Learning Algorithm. In this sub-
section, a multivariable probe control system based on the
PID neural network algorithm is regarded as a generalized
network, using the backpropagation (BP) learning algorithm
to minimize the criterion function within the scope of the
requirements. Criterion function is given by [25]

𝐽 = 𝐸 =

𝑛

∑

𝑝=1

𝐸
𝑝
=

1

2

𝑛

∑

𝑝=1

[𝑟
𝑝
(𝑘) − 𝑦

𝑝
(𝑘)]

2

=

1

2

∑

𝑝

𝑒
2

(𝑘) ≤ 𝜀.

(40)

The weight of the PID neural network can be adjusted by
virtue of the gradient method, trained and learned through
𝑘 steps, and then determined depending on the following
equation.

(a) The iterative equation of weight between input layer
and hidden layer is

𝜔
𝑖𝑗
(𝑘 + 1) = 𝜔

𝑖𝑗
(𝑘) − 𝜂

𝜕𝐽

𝜕𝜔
𝑖𝑗

+ 𝜂
1
[𝜔
𝑖𝑗
(𝑘) − 𝜔

𝑖𝑗
(𝑘 + 1)] .

(41)



Mathematical Problems in Engineering 7

(b)The iterative equation of weight between hidden layer
and output layer is

𝜔
𝑗ℎ

(𝑘 + 1) = 𝜔
𝑗ℎ

(𝑘) − 𝜂

𝜕𝐽

𝜕𝜔
𝑗ℎ

+ 𝜂
2
[𝜔
𝑗ℎ

(𝑘) − 𝜔
𝑗ℎ

(𝑘 + 1)] .

(42)

Proof. Choose the Lyapunov candidate as

𝑉 (𝐽, 𝜔) = 𝛼𝐽 +

1

2

𝛽










𝜕𝐽

𝜕𝜔










2

, (43)

where the symbol ‖ ⋅ ‖ signifies the quadratic norm of the
vector and the parameters 𝛼, 𝛽 are strict positive constants
and they are utilized to determine the degree of proportion;
then










𝜕𝐽

𝜕𝜔
𝑙










2

= (

𝜕𝐽

𝜕𝜔
𝑙

)(

𝜕𝐽

𝜕𝜔

)

𝑇

= (

𝜕𝐽

𝜕𝜔

)(

𝜕𝐽

𝜕𝜔
𝑇
) , (44)

where (𝜕𝐽/𝜕𝜔) = (𝜕𝐽/𝜕𝜔
1
, . . . , 𝜕𝐽/𝜕𝜔

𝑙
)

(

𝜕𝐽

𝜕𝜔
𝑇
) = (

𝜕𝐽

𝜕𝜔
1

, . . . ,

𝜕𝐽

𝜕𝜔
𝑙

) . (45)

Clearly, 𝐽 and ‖𝜕𝐽/𝜕𝜔‖
2 are equal to the minimal neigh-

borhood; in addition, the parameters 𝛼 > 0, 𝛽 > 0, so the
function 𝑉(𝐽, 𝜔) is positive definite.

Taking the derivative of 𝑉(𝐽, 𝜔) with respect to time, one
can obtain

�̇� = 𝛼(

𝜕𝐽

𝜕𝜔

�̇� +

𝜕𝐽

𝜕𝑥

�̇� +

𝜕𝐽

𝜕𝑡

)

+ 𝛽

𝜕𝐽

𝜕𝜔

(

𝜕
2

𝐽

𝜕𝑡𝜕𝜔
𝑇

+

𝜕
2

𝐽

𝜕𝜔𝜕𝜔
𝑇
�̇� +

𝜕
2

𝐽

𝜕𝑥𝜕𝜔
𝑇
�̇�)

=

𝜕𝐽

𝜕𝜔

(𝛼𝐼
𝑙
+ 𝛽

𝜕
2

𝐽

𝜕𝜔𝜕𝜔
𝑇
) �̇� + (𝛼

𝜕𝐽

𝜕𝑥

+ 𝛽

𝜕𝐽

𝜕𝜔

𝜕
2

𝐽

𝜕𝑥𝜕𝜔
𝑇
) �̇�

=

𝜕𝐽

𝜕𝜔

(𝛼𝐼
𝑙
+ 𝛽

𝜕
2

𝐽

𝜕𝜔𝜕𝜔
𝑇
) �̇� + 𝛼

𝜕𝐽

𝜕𝑡

+ 𝛽

𝜕𝐽

𝜕𝜔

𝜕
2

𝐽

𝜕𝑡𝜕𝜔
𝑇

=

{
{
{
{

{
{
{
{

{

−𝑢










𝜕𝐽

𝜕𝜔










2

− 𝑉𝐽
2

, if =









𝜕𝐽

𝜕𝜔










̸= 0

𝛼

𝜕𝐽

𝜕𝑡

, if =









𝜕𝐽

𝜕𝜔










= 0.

(46)

Above all, considering the function 𝑉 is positive definite
and another function �̇� the BP learning algorithm, it is
certified that the BP learning algorithm has the internality of
making the error converge to the minimum.

4. Simulation Results

(a) According to Theorem 2, PIO parameters can be derived
by using the LMI toolbox as follows:

𝐾
𝑝
=

[
[
[
[
[
[
[

[

1.8820 −11.2121 4.9258 −11.2727 −14.7548 5.8773

0.5521 9.5623 4.9258 3.7746 0.2464 −7.3346

−12.3470 3.2246 9.2758 25.0864 4.9084 28.9035

5.2324 −12.3869 9.2758 −6.9024 −3.7824 −2.9357

3.4196 24.1648 −4.9735 13.9340 5.9835 12.3925

−5.2015 2.9738 7.1748 1.3869 9.0247 −8.0924

]
]
]
]
]
]
]

]

,

𝐾
𝐼
= [4.3778 12.9673 −1.3782 9.0357 −14.7893 1.5044] .

(47)

The initial values of proportional neurons, integral neu-
rons, and three derivative neurons are implemented as fol-
lows:

𝜔
𝑠1𝑗

= 0.1,

𝜔
𝑠2𝑗

= −0.1,

𝜔
𝑠3𝑗

= 0.2.

(48)

The initial values of connected weight between hidden
layer and output layer are defined, respectively, as follows:

𝜔
𝑠𝑗1

= 0.4,

𝜔
𝑠𝑗2

= −0.5,

𝜔
𝑠𝑗3

= 0.8.

(49)

Table 1

Parameters Real world Simulation parameters
𝜇 4.749𝐸 − 04 4.800𝐸 − 04

Spin period (h) 10.54 10.55
𝑅
0
(km) 1.150 1.148

Gravitational coefficients
𝐶
20

−0.113 −0.110
𝐶
22

0.0396 0.0397
Initial position (m) [400, 400, 11000]
Initial velocity (m/s) [−0.9, 1.2, −1]
Terminal site [100, 100, 8000]

(b)The asteroid Eros 433 is taken as the target small body
for simulation to verify the feasibility of the presented control
scheme. The parameters of the small body are gained from
[26] and are shown in Table 1.
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Neural network control based on PI observer
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Figure 3: Landing trajectory curve of the probe.

In this paper, compared with the perturbation uncertain-
ties proposed in [27], the larger perturbation uncertainties are
chosen as follows:

𝑓
𝑑𝑥

= 150 sin (2𝑡) ,

𝑓
𝑑𝑦

= 160 sin (1.5𝑡) ,

𝑓
𝑑𝑧

= 140 sin (3𝑡) .

(50)

From Figure 3, it can be seen that the actual trajectory
of probe exhibits evident chattering in the system suffering a
larger disturbance. Inherent robustness of the sliding mode
control algorithm is not sufficient to guarantee the actual
trajectory to track the desired trajectory. On this occasion,
the neural network control algorithm based on PIO in this
paper is utilized to compensate the unknown disturbance and
eliminate the chattering problem of trajectory. Meanwhile, it
can track the required ideal location quickly.

Figures 4, 5, 6, 7, 8, and 9 show the error curves between
ideal location and actual locations and the velocity curves as
a function of time on the three axis directions. For the system
exhibiting large initial error and perturbation uncertainties,
on the condition that the convergence of the system can be
ensured, compared with the sliding mode control algorithm
[27] the neural network control algorithm based on PIO can
improve the convergence rate of the actual position error and
the actual velocity; namely, the actual trajectory can fast and
accurately track the planned trajectory on the condition that
there exist parameter, feedback state error, and external larger
disturbance in the system. Thereby it can satisfy the probe
to land smoothly on the surface of small body and avoid the
occurrence of the probe crashing due to the excessive landing
speed.
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Figure 4: Position error component (𝑥-axis) as function of time.
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Figure 5: Position error component (𝑦-axis) as function of time.

5. Conclusion

This paper has presented a neural network control algorithm
based on PIO. In view of the power descent section of soft
landing on small bodies, the system dynamic models of the
small bodies under the body-fixed coordinate system are
given with ignoring the attitude control. The solar radiation
pressure and the third-body’s gravity are treated as the
perturbation, which is viewed as a bounded function. The
nominal trajectories meeting the constraints on the threeaxes
are preplanned. The simulation results show that the neural
network control algorithm based on PIO can ensure fast and
accurate response to parameter uncertainty, feedback state
error, and external disturbances. Moreover, for the system
exhibiting larger interference, it can overcome the inherent
chattering problem of sliding mode control algorithm and
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Figure 6: Position error component (𝑧-axis) as function of time.
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Figure 7: Velocity component (𝑥-axis) as function of time.

make the position error and the velocity error converge to the
small finite value, realizing the aim to softly land.
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