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1Abstract—In this paper, a hydrostatic tidal turbine (HTT) is 

designed and modelled, which uses more reliable hydrostatic 

transmission to replace existing fixed ratio gearbox transmission. 

The HTT dynamic model is derived by integrating governing 

equations of all the components of the hydraulic machine. A 

nonlinear observer is proposed to predict the turbine torque and 

tidal speeds in real time based on extreme learning machine 

(ELM). A sensor-less double integral sliding mode controller is 

then designed for the HTT to achieve the maximum power 

extraction in the presence of large parametric uncertainties and 

nonlinearities. Simscape design experiments are conducted to 

verify the proposed design, model and control system, which show 

that the proposed control system can efficiently achieve the 

maximum power extraction and has much better performance 

than conventional control. Unlike the existing works on ELM, the 

weights and biases in the ELM are updated online continuously. 

Furthermore, the overall stability of the controlled HTT system 

including the ELM is proved and the selection criteria for ELM 

learning rates is derived. The proposed sensor-less control system 

has prominent advantages in robustness and accuracy, and is also 

easy to implement in practice. 

 
Index Terms—Tidal turbine; Hydrostatic transmission; 

Extreme learning machine; Sensor-less control; Double integral 

sliding control. 

I. INTRODUCTION 

IDAL currents are becoming an increasingly favorable 

alternative to conventional energy sources and have the 

potential to play a valuable role in the future renewable energy 

generations. The potential of sustainable electrical power 

generation from tidal currents provides a promising, clean and 

reliable solution to the huge and ever-increasing demand of 

modern society. The harnessing of tidal energy requires the 

conversion of kinetic energy from free flowing tidal currents 

into a mechanical turbine system which then drives the 

generator to produce electricity. Tidal turbines are in principle 

very similar to wind turbines but work in harsh and deep 

seawater conditions. The main differences are that a tidal 

turbine is much smaller and spins more slowly than a wind 

turbine of equivalent power rating, but generates a much larger 

thrust and predictable power due to the much higher density of 

the seawater (more than 800 times denser than air) and the 

predictable features of tidal currents [1]. In addition, the 

enormous tidal energy generation directly exploits tidal current 

speeds without requiring large civil engineering structures to 

build up a water head like a dam. 

Tidal turbine technology is still in its infancy. Like wind 
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turbines, the horizontal-axis tidal turbines constitute the 

majority of currently available tidal turbines [2]. Recently, the 

interest has been growing in the demonstration projects of tidal 

power. A Seaflow horizontal-axis turbine has been developed 

and installed in North Devon, UK through the marine current 

turbine (MCT) project [3]. It is rated at 300 kW and has a rotor 

speed of 15 rpm and a shaft diameter of 2.1 m. MCT’s second 

project, the Seagen turbine was designed to produce three times 

the power of Seaflow. Each rotor of Seagen turbine drives a 

powertrain consisting of a gearbox and a generator rated at 

around 500 kW. Hammerfest Strøm developed a 300 kW tidal 

current turbine with blades of 15-16 m [4]. This turbine is able 

to operate in both tidal directions by using pitch control. Other 

demonstration projects include the SMD Hydrovision TidEL 

Project (UK) [5], the Lunar Energy Project (UK) [6], the 

HydroHelix Energies Project (France) [7], the free flow turbine 

project developed by Verdant Power Ltd based in the USA and 

Canada [8]. However, all these demonstration turbines are 

equipped with speed-increasing mechanical gearboxes. The 

increased gearbox ratio may require multiple gearbox stages 

that increase complexity and failure rates. The continuous 

operations in harsh and highly turbulent working conditions 

will pose significant challenges with regards to the survivability 

of these gearboxes that have the longest downtime and the 

highest maintenance cost among various tidal turbine failure 

modes [9]. 

As an alternative, hydrostatic power transmission may 

provide a more feasible option for a more reliable tidal power 

production. A hydrostatic tidal turbine (HTT) is constructed by 

replacing the fixed ratio mechanical gearbox with a hydrostatic 

power transmission, like the hydrostatic wind turbine (HWT) 

[10]. The HTT offers fast response and high reliability, and 

allows continuously variable speed operations. It is capable of 

maintaining high overall efficiency. The hydrostatic 

transmission decouples the tidal turbine from the generator, 

protecting the turbine system from dangerous situations like 

over-loading or blade failures. In addition, the HTT allows for 

more modular and flexible layouts. At the moment, there are 

very limited studies on the HTT concept in the literature. In 

[11], the feasibility of applying a hydraulic transmission (based 

on Digital DisplacementTM technology) in a tidal current 

generator was studied. The aim was to investigate the ability of 

the hydraulic system in coping with short-term stream velocity 

variations. Its focus was on the hydraulic transmission while the 

other aspects were not presented in details. The feasibility for 
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using hydraulic transmission in developing special low speed 

directly driven tidal turbines were studied in [12]. In [13], a 

HTT was adopted to stabilize the generator power output and 

optimize power capture. A case study based on a 20 kW 

horizontal axis HTT was undertaken. However, this work does 

not focus on control aspects. 

Due to the technological similarities between HTTs and 

HWTs, the control and optimization methodology acquired 

from HWTs e.g., in [14], [15], may be transferred to accelerate 

the development of HTT technologies. However, there are 

some fundamental differences in the design and operation 

between HWTs and HTTs.  Unlike HWTs, the rotor of a HTT 

runs at low rotational speeds and generates correspondingly 

high levels of torque and power than a HWT with the same rotor 

size because of the significantly higher density of seawater over 

air. In addition, the HTTs are subject to relatively very high 

variations of rotor speed and turbine loads than HWTs of the 

same power rating. Furthermore HTTs are submerged systems 

and they have to withstand harsh submerged conditions, such 

as marine current turbulences and biofouling. All of these pose 

extra challenges in the control techniques of HTTs. 

In order to achieve the maximum power point tracking 

(MPPT) and guarantee high operation efficiency of the tidal 

turbines, there is a need for a highly efficient control design. 

We are not aware of any such literature for HTT. Even in the 

context of the conventional gearbox based tidal turbines, 

relatively few works have focused on the MPPT control of tidal 

turbines. A proportional-integral-derivative (PID) controller 

was designed in [16] to maximize the power output of a 

mechanical gearbox based tidal turbine by varying the rotor 

speed to maintain the optimum tip speed ratio. Whitby et al. 

developed a linear MPPT controller for a pitch and a stall 

regulated horizontal variable-speed tidal turbine [20]. Sliding 

mode control has been proposed in [17] and [18] to increase 

tidal power generation efficiency. Zhou et al. dealt with power 

control strategies for a fixed-pitch direct-drive tidal turbine 

[19]. A flux-weakening strategy and a torque-based control 

with feedback flux-weakening strategy were then investigated 

to realize appropriate power control. However these works did 

not consider system nonlinearities and uncertainties which are 

important for tidal turbines in harsh tidal conditions. 

This paper aims to investigate the design, modelling and 

sensor-less optimal power extraction control for a 150 kW HTT 

under time-varying tidal speed conditions. The HTT is designed 

by coupling a horizontal-axis tidal turbine rotor with a 

hydrostatic transmission that consists of variable displacement 

hydraulic machines. The HTT dynamics is modelled by 

combining the governing equations of the turbine components. 

An extreme learning machine (ELM) based nonlinear observer 

is proposed to achieve sensor-less observations of tidal stream 

speeds and turbine torque. The ELM is a neural network based 

learning algorithm which aims to efficiently deal with both 

single-hidden-layer feedforward networks and multi-hidden-

layer feedforward networks [21]. Different from traditional 

learning algorithms, the ELM not only has better universal 

approximation capability but also has faster learning speed [22]. 

The conventional ELM achieves the learning capability by 

randomly generating weights and biases in hidden neurons. 

Following the design of the ELM based nonlinear observer, 

a double integral sliding controller is constructed to maintain 

the optimal turbine speed and hence to achieve the maximum 

tidal power extraction regardless of large parametric 

uncertainties and external disturbances. Design experiments 

based on Simulink/Simscape are conducted to verify the 

proposed design, modelling and the ELM based double integral 

sliding control algorithm. Significantly different from existing 

works on ELM and tidal turbine controls, the weights and biases 

in the employed ELM are updated online continuously for real-

time power control of the HTT. In addition, this paper not only 

proves the stability of the sensor-less control system including 

the ELM, but also derives the selection criteria for ELM 

learning rates. Furthermore the proposed sensor-less control has 

significant advantages in robustness and accuracy, and is easy 

to implement in practice due to its simplicity and low 

computational burden. 

II. THE HYDROSTATIC TIDAL TURBINE 

As illustrated in Fig. 1, the HTT mainly consists of a turbine 

rotor, a variable displacement hydraulic pump, a high pressure 

accumulator, a variable displacement hydraulic motor, an 

asynchronous squirrel cage induction generator, pump/motor 

displacement control mechanism and control system. The low 

speed and variable displacement hydraulic pump is directly 

driven by the turbine rotor to convert the kinetic input energy 

into pressurized hydraulic fluid, which then drives the high 

speed hydraulic motor through hydraulic pipelines. The 

hydraulic motor is coaxially coupled with the generator which 

produces electric power. 

 
Fig. 1 Schematic of the hydrostatic tidal turbine system 

The HTT employs a closed-loop hydrostatic transmission 

system with a high pressure accumulator added. The high 

pressure accumulator functions as a high-pressure and low-flow 

source to eliminate any pressure fluctuations and oil cavitation 

by storing and releasing hydraulic energy from the hydrostatic 

transmission. The control system can be reasonably designed 

and implemented to continuously change the hydrostatic 

transmission ratio by varying the displacements of the hydraulic 

machines, which makes the HTT inherently more compliant 

and flexible than gearbox based tidal turbine.The HTT offers 
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decoupled dynamics, allowing large power spikes due to tidal 

gusts and turbulences to be better mitigated and enabling the 

generator to operate at a constant speed. Therefore, 

conventional generator side frequency converter can be entirely 

dispensed in the HTT. 

The HTT also allows for multiple-input, single-output tidal 

turbine configuration in which the hydraulic power generated 

by multiple individual mechanically coupled turbine rotor and 

hydraulic pumps are combined to drive a central hydraulic 

motor/generator unit through a hydraulic pipeline network, 

allowing for tidal energy collection from multiple turbines. This 

configuration also allows placing the turbine rotors and 

hydraulic pumps vertical at the bottom of a tower in the ocean 

while locating the hydraulic motor/generator unit and additional 

components on ground level (which are easy to maintain). This 

will substantially reduce tower mass, and maintenance costs, 

which stretches the applicability of installing large scale tidal 

turbines. In addition, other advantages of HTTs over 

mechanical gearbox based tidal turbines include higher 

compactness, lighter transmission, faster response, which is 

attractive for large scale tidal power deployment [23]. 

III. HTT DYNAMICS MODELLING 

The HTT dynamic models are derived by integrating the 

governing equations of all the turbine components (Fig. 1). 

A. Hydrodynamics of the Turbine Rotor 

The turbine rotor is featured by its hydrodynamic 

power/torque-speed characteristics. The tidal power captured 

by the turbine rotor is given by 
3 3

 t

t t  t p
2

R v
P T C

 



    (1) 

where tP  and tT  denote the turbine power and torque inputs, 

respectively,   and v  denote seawater density and tidal flow 

speed, respectively, R  and  t  denote the turbine radius and 

rotating speed (also the hydraulic pump speed), respectively, 

pC  and   are the power capture efficiency coefficient and tip 

speed ratio that is a function of tidal stream speed and turbine 

radius. 

 t R

v





  (2) 

The efficiency coefficient 
pC  depends on the turbine pitch 

angle and the tip speed ratio and is a monotonic function of the 

tip speed ratio for the HTT with fixed pitch angle of 0° [24]. 

Thus, 

 p

( 0.1)
0.6966sin 0.0037 3

14.94
C

 


 
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 
 (3) 

In practice, the tidal stream speed is measurable and 

predictable, and is considered to vary between 0 and 3.5 m/s for 

the HTT. The rated tidal speed is designed as 2 m/s and the 

power generation under this speed is 150 kW, which suggests 

the blade radius should be designed as 5 m. The rated turbine 

speed and torque are respectively 3 rad/s and 50 kNm, which 

requires a low-speed and high torque hydraulic motor to be 

coupled with the tidal turbine. 

B. The Hydraulic Pump 

Since the hydraulic pump is connected directly to the turbine 

rotor, the dynamics of the two coupled components is  

 t p Ap Bp fp t t tT D P P C J      (4) 

where 
ApP  and 

BpP  are respectively the inlet and outlet 

pressures of the hydraulic pump, 
fpC  and tJ  are respectively 

the friction coefficient and inertia of the two coupled 

components, 
pD  is the pump displacement which can be 

continuously varied by using a variable displacement servo 

control mechanism. The mechanism requires a small 

electrohydraulic servo for angular positioning and typically 

consists of an electrohydraulic servo-valve, a piston for 

actuation, appropriate electrical feedback devices, and 

electronic error amplifiers [25]. Since the dynamics of servo 

mechanism is relatively faster than the HTT, it is reasonable to 

model the mechanism as a proportional element as  

p 1 pD K    (5) 

where 1K  and 
p  are respectively the constant pump 

displacement gradient and pump control input. 

The pump in–out flowrate 
pQ  is formulated based on 

continuity equations [25] as follows 

 p p t pL Ap BpQ D C P P    (6) 

where 
pLC  is the overall leakage coefficient of the hydraulic 

pump. 

C. The Accumulator 

A high-pressure hydraulic accumulator is employed to 

prevent excessive pressure buildup and hence to maintain a 

sufficiently high pressure in the suction ports of the hydraulic 

machines. Assuming 
Ap BpP P , the flowrate 

accQ  of the 

hydraulic accumulator is written as 

Ap acc

1

acc acc

acc Ap acc

Ap

0                                 if 

d
1     if . 

d 

P P

Q P
V P P

t P






 
    
     

    

 (7) 

where 
accV  and 

accP  are respectively the preset volume and 

pressure of the hydraulic accumulator,   is a adiabatic 

coefficient. 

D. The Hydraulic Motor and Pipelines 

The in–out flowrate 
mQ  can also be derived by using 

continuity equations [26] as follows 

   o

m m g mL Am Bm Am Bm

e

V
Q D C P P P P


      (8) 

where AmP  and BmP  are respectively the inlet and outlet 

pressures of the hydraulic motor, mLC  and 
g  are respectively 

the overall leakage coefficient and motor/generator mechanical 

speed, oV  and e  are respectively the overall volume of the 
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hydraulic motor and the effective elastic modulus that is a 

constant 2000 MPa, mD  is the hydraulic motor displacement 

that is continuously controllable by using a similar variable 

displacement servo control mechanism. It is also reasonable to 

assume a proportional element of the control mechanism due to 

its relatively faster dynamics compared with the HTT. Thus, 

m m mD K    (9) 

where 
mK  and 

m  are respectively the constant motor 

displacement gradient and hydraulic motor control input. 

Since the hydraulic motor is rigidly connected to the 

generator and operates at the same angular speed as the 

generator, the input torque exerted on the generator shaft is 

formulated as 

 m Am Bm g g fg g gD P P J C T      (10) 

where 
fgC  and gJ  are friction coefficient and total inertia of the 

hydraulic motor driven generator system, respectively, gT  is 

the reaction torque of the generator. 

The relationship between the hydraulic pump port pressures 

and motor chamber pressures can be approximated as 

Ap Am pipe

Bp Bm pipe

P P P

P P P

 


 

 (11) 

where pipeP  is pressure loss of the pipelines connecting the two 

hydraulic machines. 

Assuming that the in–out flowrate from the hydraulic pump 

is equal to that of the hydraulic motor, p mQ Q , it is reasonable 

to neglect the pipeline pressure drop pipeP  and thus, 

Ap Am Bp Bm,P P P P  . 

E. The Generator Dynamics 

The employed asynchronous induction generator always 

operates around the synchronous speed of 188 rad/s and offer 

several advantages including high robustness and low 

maintenance cost. The generator also has four quadrant active 

and reactive power capabilities, which lead to lower converter 

costs and lower power losses. The generator dynamic model is 

described in the synchronously rotating d/q reference frame 

with the q-axis aligned with the stator voltage and the stator 

resistance is neglected [27]. Therefore, the generator dynamics 

in the d/q reference frame is 

   
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 (12) 

where  r di ,  r qi ,  r du , 
 r qu  denote the d and q-axis rotor currents 

and voltages, respectively, 
  rR  and 

 rL  denote the rotor 

resistance and inductance, respectively, 
 sL , M , 

 s d  and p  

denote stator inductance, mutual inductance, d-axis stator 

magnetic flux and pole pair number, respectively, 
ls  and 

 s  

denote speed slip and synchronous speed of the DFIG, 

respectively, gT  denotes generator electromagnetic torque. 

F. The System Dynamics 

The overall dynamics of the HTT can be obtained by 

combining the above equations from (4) to (10), which can then 

be described by using a transfer function as follows 
2

2 g 1 g 01 g 02 t

g 3 2

3 2 1 0

( ) ( ) ( ) ( )
( )

b T s s b T s s b T s b T s
s

a s a s a s a

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

  
 (13) 

where s  is the Laplace operator, and 
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t o

e

f

2

1

01

p

02

o

pL t mL t g

e

2

fp mL fp pl p

m p

;

;

;

.

J V

C V
C J C J T

C C C C D

D

b

b D

b

b










 

 



  





 



 (15) 

As illustrated from (13) to (15), the HTT dynamics can be 

modelled as high-order ordinary differential transfer function 

with both the turbine and generator torques as inputs, and the 

generator speed as output. Since the effective elastic modulus 

e  is relatively large (2000 MPa) as compared with tJ , gJ  and 

oV , it is reasonable to simplify the transfer function (13) as 

follows 

1 g 01 g 02 t

g 2

2 1 0

( ) ( ) ( )
( )

b T s s b T s b T s
s

a s a s a


 


 
 (16) 

It is obvious from (16) that the hydrostatic transmission 

functions as a second-order low pass filter without any 

integrators. Hence, the HTT dynamics can be reliably smoothed 

and the generator can run at a relatively constant speed 

regardless of fluctuations of the turbine and generator torques. 

IV. MAXIMUM POWER EXTRACTION CONTROL 

When the tidal speed is below rated, the HTT seeks to 

maximize the tidal power generation by maintaining the tip 

speed ratio at the optimal value opt . As shown in (2) and (4), 

it is possible to achieve this target by controlling the hydraulic 

pump displacement to keep the speed t  at the optimal value 

topt . However, the HTT dynamics is essentially nonlinear and 
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partially unknown due to parametric uncertainties and 

nonlinearities. For instance, the turbine torque input tT  is 

generally unknown and uncertain due to the unknown time-

varying tidal stream speed. The dynamic model of the HTT is 

also highly nonlinear and uncertain due to the uncertain 

leakage, varying oil temperature, variations in control volumes 

and frictions that cannot be modeled accurately. In addition, 

there are also un-modeled HTT dynamics and unknown 

external disturbances. Therefore, in order to achieve the 

maximum tidal power extraction in the presence of large 

parametric uncertainties and nonlinearities, a nonlinear 

observer is proposed herein to observe the turbine torque and 

tidal speeds in real time based on ELM. Consequently, a double 

integral sliding mode controller is developed to maintain the 

optimal turbine speed since the sliding mode control approach 

is highly efficient and robust in addressing large disturbances 

and parameter variations of complex nonlinear systems [28]. 

A. ELM Based Nonlinear Observer 

A 3-input and 1-output ELM is designed to observe the 

turbine torque. By multiplying both sides of (4) with t  and 

using (1), the following equations are derived 

  2

t t p Ap Bp t fp t t t t

2

p fp t t t t

t

t

T D P P C J

P C J
T

    

  



   

 
 

 (17) 

where pP  is the hydraulic pump power that is calculable based 

on the product of the pump flowrate and system pressure, pC  

and   can be viewed as nonlinear functions of the turbine 

speed t  under certain tidal speed. 

As shown in (17), it is natural to approximate the turbine 

torque from the hydraulic pump power pP , pump speed t , and 

speed variations t  by using a 3-input and 1-output ELM. The 

ELM based observer can achieve sensor-less observations 

without using expensive physical sensors for measuring tidal 

stream speeds and turbine torque, thus labelled as "sensor-less" 

observer. The speed and power of the hydraulic pump are 

readily measurable with built-in sensors, which are cheaply 

available as opposed to measurements of the tidal current speed 

and torque. 

As shown in Fig. 2, the employed ELM has a 3-node input 

layer, an L-node single hidden-layer and a one-node output 

layer. Considering N data samples (x, y) with input 

 
TT 3

1 2 3 p t t, , , , Nx x x P       x  and output 1 Ny , the 

ELM is mathematically represented as 
Ty  β H  (18) 

where β  is the output weight vector, H  is the output sigmoid 

function matrix [29]. 
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where 
1 3

i

ω  and ib  are respectively hidden-layer weights 

and biases, and  , ,i i ih b x  is the sigmoid function. 

In particular, the turbine torque can be approximated as 
*T

tT  β H  (20) 

where   is an approximation error, *T
β is the optimal constant 

output weight vector. 

Given the derived turbine torque in (20), the tidal stream 

speed is obtained based on (1) and (2). Thus, 
1 1

4 4

t t t

2 2

p p

2 2T y
v

R C R C

 

 

   
    
   
   

. (21) 

 
Fig. 2 The structure of the employed ELM 

B. Control Design 

By substituting (20) and (5) into (4) and rearranging the 

resulting equation, one obtains 

 *T

1 p Ap Bp fp t

t

t

K P P C

J

   


      

β H

 (22) 

where   is lumped  uncertainties/uncertain nonlinearities due 

to other external disturbances, un-modeled friction forces, and 

other un-modelled dynamics, and 
max  , where 

max  is the 

maximum value of  . 

By defining the turbine speed tracking error topt t e    , a 

double integral sliding surface is defined as 

i p d  d  d k e t kz e t k e    (23) 

where  ik , pk and dk  are constant control coefficients. 

Based on (5) and the sliding surface in (23), the pump control 

command is designed as 

 

 

p i d

fp d t t d topt

t t

p

1 A Bd p p

 d sig n( )k e k e t z k

C k

J J y

K P

J k

k P



 


  
 
   

 
 

 





 (24) 
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where   is a positive control gain to be specified latter. 

Instead of using traditional ELM that employs gradient-

based learning method and randomly generates hidden-layer 

weights and biases [30], [31], the weights and biases in this 

ELM (18) are updated online continuously as follows 

 

 

1 1

2

3

, ,

1, 2,...,

i i i i i i

i i i

i i i

b z z

z i L

z

   


  


 

β η H x η β

ω η ω

b η b

 (25) 

where 
1 2 3, , L Lη η η  are constant diagonal learning rate 

matrices. 

C. Stability Analysis 

By utilizing the control command in (24) and the updation 

law in (25), the closed-loop control system will converge to the 

sliding surface z in finite time. In order to verify this, a positive 

definite Lyapunov function candidate is defined as 

d2 T 1 T 1 T 1

1 2 3

t

1 1 1
( ) tr( )

2 2 2 2
V t z

J

k      β η β ω η ω b η b  (26) 

where * * * 1, , L      β β β ω ω ω b b b  are the 

corresponding estimation errors of the weights and biases, *
ω  

and *
b  are the optimal constant output weight vector, hidden-

layer weight and bias vectors, respectively, tr( )  denotes the 

matrix trace of  . For brevity,  , ,i ibH x  is denoted as H . 

Thus, by substituting (24) into the time derivative of (26) and 

using (22), one obtains 

 d T T 1

1

t t

d

t

1 1

3

d

T T

2

sign( )( )

tr( )

V t z
J J

k

J

k k
z   

 

 
    






 




β H β η β

ω η ω b η b

 (27) 

Substituting (25) into (27) yields 

 
t

d T T T

t

d( ) tr( )sign( )V t
k k

zz z z z
J J

 
 
       
 

β β ω ω b b  (28) 

By using the property of vector norm [32], one obtains 

 

 

2 2
T T * *

max

2

2 2

max max max

2 2
T T * *

max

2

2 2

max max max

1 1 1

2 4 4

1 1 1

2 4 4

b

b b b



  

      



      
  

      

  
      

 

β β β β β β β β β β

β

b b b b b b b b b b

b

 (29) 

Similarly, due to the property of matrix Frobenius norm [32], 

one obtains 

     2T T * *

F FF

2
2 2 2

max max max maxF F F

tr tr

1 1 1

2 4 4
   

   

 
       

 

ω ω ω ω ω ω ω ω

ω ω ω

 (30) 

where 
max max max, ,b   are the maximum values of the norms of 

the corresponding vectors, 
F

ω  denotes the Frobenius norm of 

ω . 

Substituting (29)-(30) into (28) yields 
2 2 2

max max mad

t

d x

t

( )
4 4

b
V

k k
zt

J J

   


  
   





  . (31) 

If the control gain   is selected to satisfy the following 

inequality 
2 2 2

max max max max

t t

d d

4 4

k

J J

k b  


 
   (32) 

then, ( ) 0V t  . Since V(t) is non-increasing and upper bounded, 

the designed controller and updation law lead to the closed-loop 

stable dynamics in which the turbine speed asymptotically 

converges to the optimal value topt  in finite time based on the 

Barbalat's lemma [33]. 

D. Selection of Learning Rates 

In order to guarantee the convergence of the ELM, the 

learning rate matrices 
1 2 3, ,η η η  needs to be properly selected. 

Hence, a quadratic performance index  J k  is defined at time 

k in the discrete time domain to determine the learning rates. 

   21

2
J k z k . (33) 

The time variation of J (k) is 

           2 2 21 1
1 2

2 2
J k z k z k z k z k z k             

. (34) 

The variations of sliding surface  z k  can be expressed in 

variations of the weights and biases as follows 

 
   z z z

z k
  

      
  

β ω b
β ω b

. (35) 

Substituting (25) into (35) gives 

         

 

1 2 3

T

z z z
z k z k z k z k

z k

  
     

  

 

η β H η ω η b
β ω b

P ηQ

 (36) 

where    
T

T

1 2 3, , , diag , , , , ,
z z z   

          
P η η η η Q β H ω b

β ω b

. 

Substituting (36) into (34) gives 

        
2

2 T 2 T1
2sign

2
J k z z k z k    

  
P ηQ P ηQ . (37) 

To guarantee the convergence of the ELM, we have 

  0J k  , which requires that the following conditions hold: 

 

 

 

1 2 3

1 2 3

1 2 3

2 0,  if ( ) 0

,  if ( ) 0

0 2,  if ( ) 0

z z z
z k

z z z
z k

z z z
z k

   
      

  
   

   
  

   
     
  

η β H η ω η b
β ω b

η β H η ω η b
β ω b

η β H η ω η b
β ω b

 (38) 

As observed in (38), the learning rates can be chosen properly 

to satisfy the conditions in (38) and to ensure the convergence 

of the ELM. In practice, since the conditions in (38) may be 

highly affected by the level of model uncertainty, the learning 

rates have to be carefully chosen to make a practical 

compromise between transient response speed and convergence 

of the ELM. When considering the model uncertainty, 

relatively smaller learning rates can be chosen to compensate 

for the effects of model uncertainty and simultaneously satisfy 

the stability conditions in (38). However, the online learning 

speed and updating process of the weights and biases in (25) 

will become very slow if the learning rates are chosen too small. 

Therefore, the learning rates can be iteratively tuned to increase 

the learning speed and prevent the overall system instability 
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until satisfactory results are obtained. 

Significantly different from recent literature on neural 

network based controls that only consider selections of learning 

rates and neglect the overall system stability [34], [35], this 

section not only proves the stability of the overall system 

including the ELM, but also gives the selection criteria for 

learning rates. 

V. VALIDATIONS AND DISCUSSIONS 

The simulation validations of the proposed HTT were 

conducted by using the credible Simulink/Simscape. 

A. Design Experiments 

As shown in Fig. 3, the 150 kW HTT Simscape models have 

been built to conduct the design experiments. The models 

mainly include a tidal turbine rotor module, ELM, double 

sliding control, hydrostatic modules and an asynchronous 

induction generator module. 

The tidal turbine rotor module is used to calculate the tidal 

turbine torque inputs and the optimal turbine speed based on 

(1)-(3) and by using rotor radius of 5 m and the optimal tip 

speed ratio opt  of 8. 

The optimal turbine speed is designed as 

opt

 topt

v

R


   (39) 

The generated turbine torque is set as input for the hydraulic 

pump via a torque source converter, and the pump speed and its 

optimal values are fed back into the turbine controller to 

generate necessary control actions for regulating the pump 

displacement. The rated operating speed and torque of the 

hydraulic pump are respectively 3 rad/s and 50 kNm under the 

tidal stream speed of 2 m/s. Therefore, the rated displacement 

of the hydraulic pump is calculated as 150 kW/50 MPa/3 rad/s 

=0.001 m3/rad. The hydrostatic modules were designed based 

on Fig. 1 and include other models such as a replenishing 

supply, check valves, and a pressure relief valve, pipeline 

dynamics, flowrate and hydraulic pressure sensors. The setting 

pressure is kept at 50 MPa by an accumulator. The hydrostatic 

modules are used to couple the hydraulic motor with the 

hydraulic pump through necessary pipelines with length of 10 

m. Since the hydraulic motor is directly connected with the 

generator and operates around 189 rad/s, the maximum 

displacement of the hydraulic motor can be calculated as 150 

kW/50 MPa/189 rad/s = 1.6× 10-5 m3/rad. The maximum 

pump/motor strokes are 0.005 m and the turbine/generator 

inertias are set to be 600 kgm2. The generator is driven by the 

hydraulic power that is calculated by using the measured 

hydraulic pressure and flowrate in the hydrostatic modules. The 

generator torque and speed are fed back to the hydraulic motor 

through torque source and angular velocity source so that the 

hydraulic motor is synchronized with the generator. The 

generator is modeled by using a WYE-delta starting circuit and 

runs at the synchronous speed of 189 rad/s, the rated voltage of 

440 V, and the rated frequency of 60 Hz. The generator power 

is optimally captured by torque control through varying the 

displacement of the hydraulic motor. 

Since the generator speed is relatively constant, the optimal 

torque input for the generator control is derived based on (16). 

 2

g 2 1 0 02 topt

gopt

1 01

5
2

topt  popt  topt3

 opt2

a s a s a b T
T

b s b

R
T C








   
 








 (40) 

Based on (40), the optimal power control for the hydraulic 

motor/generator is readily achievable with (40) as reference 

using a generator side PID controller due to the simple first 

order hydraulic motor dynamics in (10). 

The ELM parameters are calculated and updated online based 

on (25), and the updated ELM parameters are used as inputs for 

the ELM module to calculate the turbine torque by using the 

ELM model in (18). The calculated turbine torque is then fed 

back into the double sliding turbine controller module to 

calculate the control signals for the hydraulic pump and 

estimate the inflow tidal stream speed online by using (21). The 

proposed turbine controller and ELM model are designed by 

using MATLAB functions based on the equations in section IV. 

The proposed controller has also been compared with a 

conventional PID controller. The key control parameters are 

p 3.787k   , 3

i 1.8 10k    , 
d 1k  , 31.2 10   , 4

1 m 5 10 m/VK K    , 

L=10. 

In order to design the PID controller for comparisons, the 

model blocks are linearized and a linear analysis is conducted 

to obtain a linear model in MATLAB. Then, the proportional, 

integral and derivative parameters of the PID controller are 

derived based on the linear model by using Ziegler-Nichols 

tuning method [36]. 

The ELM training process was conducted by using 106 

training samples of realistic tidal pattern before the online 

implementation of the HTT and controllers. The training of 

ELM consists of the random mapping and the parameters 

solving stages. The random mapping stage is used to construct 

the hidden layer with 10 mapping neurons and randomly 

generated biases and input weights between -1 and 1, where the 

mapping is conducted through the sigmoid function. The output 

weights between hidden neurons and the output nodes, can be 

obtained through solving the equation T 1 T( ) β HH H y , which 

can be readily solved by using the MATLAB function pinv. The 

obtained ELM parameters are set as the initial values for the 

online update laws in (25). 

The implementation of the HTT also considers the model 

nonlinearities and uncertainties due to the uncertainties of the 

damping/friction coefficients, the inertias, and the variations of 

hydraulic flowrates, and the nonlinearity of the turbine torque 

and other un-modeled or unknown dynamics. The model 

uncertainty also includes the mismatch between the HTT model 

derived in section III and the Simscape model whose source 

codes are not explicitly obtainable. All of these uncertainties are 

lumped into the uncertain term   in (22), which can be readily 

addressed by using the designed controller in (24). 
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Fig. 3 The Simscape models of the HTT 

 

B. Results and Discussions 

As shown in Fig. 4, the real-world tidal speed varies from 1 

m/s to 2 m/s with 5% turbulence intensity, which represents the 

realistic normal tidal stream conditions. Since the rated tidal 

speed of the HTT is designed as 2 m/s, the tidal speed sequence 

in this figure represents the HTT operating conditions when 

tidal speed is below the rated value. Fig. 4 also shows the tidal 

speed observer based on ELM and (21) approximates the actual 

speed very well demonstrating its high effectiveness. 

 
Fig. 4 The tidal turbine speeds 

As shown in Fig. 5, the observed turbine torque from the ELM 

agrees well the actual torque generated from actual tidal speed, 

and thus validates the efficiency of the ELM in observing high-

frequency torque fluctuations. As seen from Figs. 4 and 5, 

sensor-less optimal power control of the HTT is readily 

achievable without tidal speed and torque sensors. 

 
Fig. 5 The tidal turbine torques 

As shown in Fig. 6, tidal turbine speed is better maintained at 

the optimal values by using the proposed controller, whereas 

the speed fluctuates significantly when using the conventional 

controller, particularly between 5.5 s and 10 s when large tidal 

torque inputs occur. Hence, the proposed controller offer better 

tracking performance than conventional control. 

 
Fig. 6 The tidal turbine speeds 

As illustrated in Figs. 7 and 8, the proposed control can better 

maintain the rated generator speed of 188 rad/s and capture 

much more generator power due to its intelligent control nature. 

Thus, the proposed control has much higher  effectiveness than 

the PID control. 
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Fig. 7 The generator speeds 

 
Fig. 8 The generator powers 

Figs. 9-11 describe the transient behaviors of the ELM 

parameters including the hidden-layer weights 
10 3ω , the 

biases 
10 1b  and the output weights 10 1β . Since the 

ELM parameters b  and β  are all vectors, we use their mean 

values to represent their dynamic behaviors. For the matrix of 

the hidden-layer weights 
10 3ω , we use three mean values 

1 2 3, ,    of the corresponding three columns of ω  to describe 

the transient behavior of the output weights. A close view to 

these transient behaviors demonstrates that all the ELM 

parameters converge to their optimal values quickly and 

accurately regardless of the model uncertainty and nonlinearity. 

The accurate convergence can be readily achieved around 0.1 s, 

which verifies the fast response of the online parameter update 

laws in section IV-B. Moreover, the convergent values of the 

ELM parameters can be maintained highly stable despite some 

very slight drifts due to the variations of the double integral 

sliding surface z in (23), which further demonstrates the 

stability of the overall system. 

 
Fig. 9 The time evolution of the hidden-layer weights 

 
Fig. 10 The time evolution of the biases 

 
Fig. 11 The time evolution of the output weights 

VI. CONCLUSION 

This paper has presented the design, modelling and sensor-

less optimal tidal power extraction control of a 150 kW HTT. 

The modelling of the HTT takes into account system 

nonlinearities and parametric uncertainties associated with 

hydrostatic dynamics. An ELM based nonlinear observer has 

been designed to achieve sensor-less observations of tidal 

stream speeds and turbine torque. Based on the observed 

parameters, a double integral sliding controller has been 

proposed for the optimal tidal power extraction. The proposed 

design, modelling and control of the HTT have been validated 

by simulations using the credible Simulink/Simscape, which 

showed that the proposed control systems achieved much better 

performance than PID control. The design experiments have 

provided an in-depth insight into the HTT performance 

evaluations. Further work will focus on the deployment of the 

sensor-less optimal power control to other experimental 

platforms including hardware-in-the-loop  systems. 
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