44,979 research outputs found

    Soft ranking in clustering

    Get PDF
    Due to the diffusion of large-dimensional data sets (e.g., in DNA microarray or document organization and retrieval applications), there is a growing interest in clustering methods based on a proximity matrix. These have the advantage of being based on a data structure whose size only depends on cardinality, not dimensionality. In this paper, we propose a clustering technique based on fuzzy ranks. The use of ranks helps to overcome several issues of large-dimensional data sets, whereas the fuzzy formulation is useful in encoding the information contained in the smallest entries of the proximity matrix. Comparative experiments are presented, using several standard hierarchical clustering techniques as a reference

    DarkRank: Accelerating Deep Metric Learning via Cross Sample Similarities Transfer

    Full text link
    We have witnessed rapid evolution of deep neural network architecture design in the past years. These latest progresses greatly facilitate the developments in various areas such as computer vision and natural language processing. However, along with the extraordinary performance, these state-of-the-art models also bring in expensive computational cost. Directly deploying these models into applications with real-time requirement is still infeasible. Recently, Hinton etal. have shown that the dark knowledge within a powerful teacher model can significantly help the training of a smaller and faster student network. These knowledge are vastly beneficial to improve the generalization ability of the student model. Inspired by their work, we introduce a new type of knowledge -- cross sample similarities for model compression and acceleration. This knowledge can be naturally derived from deep metric learning model. To transfer them, we bring the "learning to rank" technique into deep metric learning formulation. We test our proposed DarkRank method on various metric learning tasks including pedestrian re-identification, image retrieval and image clustering. The results are quite encouraging. Our method can improve over the baseline method by a large margin. Moreover, it is fully compatible with other existing methods. When combined, the performance can be further boosted

    A nonuniform popularity-similarity optimization (nPSO) model to efficiently generate realistic complex networks with communities

    Get PDF
    The hidden metric space behind complex network topologies is a fervid topic in current network science and the hyperbolic space is one of the most studied, because it seems associated to the structural organization of many real complex systems. The Popularity-Similarity-Optimization (PSO) model simulates how random geometric graphs grow in the hyperbolic space, reproducing strong clustering and scale-free degree distribution, however it misses to reproduce an important feature of real complex networks, which is the community organization. The Geometrical-Preferential-Attachment (GPA) model was recently developed to confer to the PSO also a community structure, which is obtained by forcing different angular regions of the hyperbolic disk to have variable level of attractiveness. However, the number and size of the communities cannot be explicitly controlled in the GPA, which is a clear limitation for real applications. Here, we introduce the nonuniform PSO (nPSO) model that, differently from GPA, forces heterogeneous angular node attractiveness by sampling the angular coordinates from a tailored nonuniform probability distribution, for instance a mixture of Gaussians. The nPSO differs from GPA in other three aspects: it allows to explicitly fix the number and size of communities; it allows to tune their mixing property through the network temperature; it is efficient to generate networks with high clustering. After several tests we propose the nPSO as a valid and efficient model to generate networks with communities in the hyperbolic space, which can be adopted as a realistic benchmark for different tasks such as community detection and link prediction

    Learning Task Relatedness in Multi-Task Learning for Images in Context

    Full text link
    Multimedia applications often require concurrent solutions to multiple tasks. These tasks hold clues to each-others solutions, however as these relations can be complex this remains a rarely utilized property. When task relations are explicitly defined based on domain knowledge multi-task learning (MTL) offers such concurrent solutions, while exploiting relatedness between multiple tasks performed over the same dataset. In most cases however, this relatedness is not explicitly defined and the domain expert knowledge that defines it is not available. To address this issue, we introduce Selective Sharing, a method that learns the inter-task relatedness from secondary latent features while the model trains. Using this insight, we can automatically group tasks and allow them to share knowledge in a mutually beneficial way. We support our method with experiments on 5 datasets in classification, regression, and ranking tasks and compare to strong baselines and state-of-the-art approaches showing a consistent improvement in terms of accuracy and parameter counts. In addition, we perform an activation region analysis showing how Selective Sharing affects the learned representation.Comment: To appear in ICMR 2019 (Oral + Lightning Talk + Poster

    Soft Seeded SSL Graphs for Unsupervised Semantic Similarity-based Retrieval

    Full text link
    Semantic similarity based retrieval is playing an increasingly important role in many IR systems such as modern web search, question-answering, similar document retrieval etc. Improvements in retrieval of semantically similar content are very significant to applications like Quora, Stack Overflow, Siri etc. We propose a novel unsupervised model for semantic similarity based content retrieval, where we construct semantic flow graphs for each query, and introduce the concept of "soft seeding" in graph based semi-supervised learning (SSL) to convert this into an unsupervised model. We demonstrate the effectiveness of our model on an equivalent question retrieval problem on the Stack Exchange QA dataset, where our unsupervised approach significantly outperforms the state-of-the-art unsupervised models, and produces comparable results to the best supervised models. Our research provides a method to tackle semantic similarity based retrieval without any training data, and allows seamless extension to different domain QA communities, as well as to other semantic equivalence tasks.Comment: Published in Proceedings of the 2017 ACM Conference on Information and Knowledge Management (CIKM '17
    • …
    corecore