16 research outputs found

    Special Agents Can Promote Cooperation in the Population

    Get PDF
    Cooperation is ubiquitous in our real life but everyone would like to maximize her own profits. How does cooperation occur in the group of self-interested agents without centralized control? Furthermore, in a hostile scenario, for example, cooperation is unlikely to emerge. Is there any mechanism to promote cooperation if populations are given and play rules are not allowed to change? In this paper, numerical experiments show that complete population interaction is unfriendly to cooperation in the finite but end-unknown Repeated Prisoner's Dilemma (RPD). Then a mechanism called soft control is proposed to promote cooperation. According to the basic idea of soft control, a number of special agents are introduced to intervene in the evolution of cooperation. They comply with play rules in the original group so that they are always treated as normal agents. For our purpose, these special agents have their own strategies and share knowledge. The capability of the mechanism is studied under different settings. We find that soft control can promote cooperation and is robust to noise. Meanwhile simulation results demonstrate the applicability of the mechanism in other scenarios. Besides, the analytical proof also illustrates the effectiveness of soft control and validates simulation results. As a way of intervention in collective behaviors, soft control provides a possible direction for the study of reciprocal behaviors

    Collision Avoidance Method for Self-Organizing Unmanned Aerial Vehicle Flights

    Get PDF
    This work was supported in part by the National Natural Science Foundation of China, China, under Grant 71601181, in part by the Young Talents Lifting Project, China, under Grant 17JCJQQT048, in part by the Huxiang Young Talents, China, under Grant 2018RS3079, and in part by the Complex Situational Cognitive Technology under Grant 315050202.Autonomous unmanned aerial vehicle (UAV) swarm flights have been investigated widely. In the presence of a high airspace density and increasingly complex flight conditions, collision avoidance between UAV swarms is very important; however, this problem has not been fully addressed, particularly among self-organizing flight clusters. In this paper, we developed a method for avoiding collisions between different types of self-organized UAV clusters in various flight situations. The Reynolds rules were applied to self-organized flights of UAVs and a parameter optimization framework was used to optimize their organization, before developing a collision avoidance solution for UAV swarms. The proposed method can self-organize the flight of each UAV swarm during the overall process and the UAV swarm can continue to fly according to the self-organizing rules in the collision avoidance process. The UAVs in the airspace all make decisions according to their individual type. The UAVs in different UAV swarms can merge in the same space while avoiding collisions, where the UAV's self-organized flight process and collision avoidance process are very closely linked, and the trajectory is smooth to satisfy the actual operational needs. The numerical and experimental tests were conducted to demonstrate the effectiveness of the proposed algorithm. The results confirmed the effectiveness of this approach where self-organized flight cluster collision avoidance was successfully achieved by the UAV swarms

    Flocking algorithm for autonomous flying robots

    Get PDF
    Animal swarms displaying a variety of typical flocking patterns would not exist without underlying safe, optimal and stable dynamics of the individuals. The emergence of these universal patterns can be efficiently reconstructed with agent-based models. If we want to reproduce these patterns with artificial systems, such as autonomous aerial robots, agent-based models can also be used in the control algorithm of the robots. However, finding the proper algorithms and thus understanding the essential characteristics of the emergent collective behaviour of robots requires the thorough and realistic modeling of the robot and the environment as well. In this paper, first, we present an abstract mathematical model of an autonomous flying robot. The model takes into account several realistic features, such as time delay and locality of the communication, inaccuracy of the on-board sensors and inertial effects. We present two decentralized control algorithms. One is based on a simple self-propelled flocking model of animal collective motion, the other is a collective target tracking algorithm. Both algorithms contain a viscous friction-like term, which aligns the velocities of neighbouring agents parallel to each other. We show that this term can be essential for reducing the inherent instabilities of such a noisy and delayed realistic system. We discuss simulation results about the stability of the control algorithms, and perform real experiments to show the applicability of the algorithms on a group of autonomous quadcopters

    Intearcting Brownian Swarms: Some Analytical Results

    Get PDF
    We consider the dynamics of swarms of scalar Brownian agents subject to local imitation mechanisms implemented using mutual rank-based interactions. For appropriate values of the underlying control parameters, the swarm propagates tightly and the distances separating successive agents are iid exponential random variables. Implicitly, the implementation of rank-based mutual interactions, requires that agents have infinite interaction ranges. Using the probabilistic size of the swarm’s support, we analytically estimate the critical interaction range below that flocked swarms cannot survive. In the second part of the paper, we consider the interactions between two flocked swarms of Brownian agents with finite interaction ranges. Both swarms travel with different barycentric velocities, and agents from both swarms indifferently interact with each other. For appropriate initial configurations, both swarms eventually collide (i.e., all agents interact). Depending on the values of the control parameters, one of the following patterns emerges after collision: (i) Both swarms remain essentially flocked, or (ii) the swarms become ultimately quasi-free and recover their nominal barycentric speeds. We derive a set of analytical flocking conditions based on the generalized rank-based Brownian motion. An extensive set of numerical simulations corroborates our analytical findings

    Invisible control of self-organizing agents leaving unknown environments

    Get PDF
    In this paper we are concerned with multiscale modeling, control, and simulation of self-organizing agents leaving an unknown area under limited visibility, with special emphasis on crowds. We first introduce a new microscopic model characterized by an exploration phase and an evacuation phase. The main ingredients of the model are an alignment term, accounting for the herding effect typical of uncertain behavior, and a random walk, accounting for the need to explore the environment under limited visibility. We consider both metrical and topological interactions. Moreover, a few special agents, the leaders, not recognized as such by the crowd, are "hidden" in the crowd with a special controlled dynamics. Next, relying on a Boltzmann approach, we derive a mesoscopic model for a continuum density of followers, coupled with a microscopic description for the leaders' dynamics. Finally, optimal control of the crowd is studied. It is assumed that leaders exploit the herding effect in order to steer the crowd towards the exits and reduce clogging. Locally-optimal behavior of leaders is computed. Numerical simulations show the efficiency of the optimization methods in both microscopic and mesoscopic settings. We also perform a real experiment with people to study the feasibility of the proposed bottom-up crowd control technique.Comment: in SIAM J. Appl. Math, 201

    AD HOC TEAMWORK BEHAVIORS FOR INFLUENCING A FLOCK

    Get PDF
    corecore