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Abstract: We consider the dynamics of swarms of scalar Brownian agents subject to local
imitation mechanisms implemented using mutual rank-based interactions. For appropriate
values of the underlying control parameters, the swarm propagates tightly and the distances
separating successive agents are iid exponential random variables. Implicitly, the implementation
of rank-based mutual interactions, requires that agents have infinite interaction ranges. Using the
probabilistic size of the swarm’s support, we analytically estimate the critical interaction range
below that flocked swarms cannot survive. In the second part of the paper, we consider the
interactions between two flocked swarms of Brownian agents with finite interaction ranges. Both
swarms travel with different barycentric velocities, and agents from both swarms indifferently
interact with each other. For appropriate initial configurations, both swarms eventually collide
(i.e., all agents interact). Depending on the values of the control parameters, one of the following
patterns emerges after collision: (i) Both swarms remain essentially flocked, or (ii) the swarms
become ultimately quasi-free and recover their nominal barycentric speeds. We derive a set of
analytical flocking conditions based on the generalized rank-based Brownian motion. An extensive
set of numerical simulations corroborates our analytical findings.

Keywords: rank-based Brownian motions; heterogeneous swarm; hybrid atlas model; interactions
between swarms; leader–follower dynamics; analytical flocking conditions; numerical simulations

1. Introduction

Elementary models of multi-agents swarms often rely on the assumption that all individuals
obey identical dynamical rules. This hypothesis of agents’ homogeneity significantly simplifies the
mathematical modeling and its treatment. In particular, for large swarms, homogeneity enables
analytical discussions based on the mean-field (MF) approach. In the MF approach, the effects of
mutual interactions are aggregated into an external effective force field, driving the dynamic of a
single randomly picked agent, whose behavior reflects the whole society’s evolution. Homogeneity is,
however, rarely encountered in actual situations. A natural question is to then ask how heterogeneity
between agents affects and/or possibly destroys the potential emergence of collective (i.e., flocking)
dynamics. In the presence of heterogeneity, analytical approaches are more difficult as, a priori, the
MF approach cannot be directly employed. In multi-agent swarms, heterogeneity can manifest itself
in many different forms and degrees. It may concern the individual dynamics of each agent and/or
the way agents interact with their fellows. An extreme heterogeneous situation is realized when,
due to its specificities, a single agent is actually leading the entire swarm [1–5]. In this paper, we
focus on comparatively low heterogeneities encountered when only the individual dynamics differ
but not the interacting rules. For this case, a paradigmatic and pioneering example is the Kuramoto
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synchronization of heterogeneous phase oscillators for which the role of heterogeneity can, to a
certain extent, be analytically discussed [6,7]. More recently, models based on rank-based drifted
Brownian motion (RBM) [8], and, in particular, the so-called Hybrid Atlas Model (HAM) [9], offer
another possibility to analytically discuss the heterogeneous swarm dynamics, without relying on
the MF approach. In the sequel, we shall basically use the HAM modeling framework to study a
new type of global heterogeneity. This is achieved when two sub-swarms are forced to mutually
interact. Each sub-swarm, formed by homogeneous agents, is initially tightly flocked and obeys
specific collective dynamics. The global society formed by the union of the two sub-swarms is clearly
heterogeneous. This example depicts a situation where two distinct sub-swarms (agents of each
sub-swarm are different) interact via a local competition mechanism (here, agents systematically
try to catch their leaders in a finite observation range). In this paper, we are able to analytically
characterize the post-collisional outputs. Depending on external control parameters (individual
sub-swarm dynamics, strength of competition), we observe that the post-collisional situation can
either be a single tight swarm or a segregation into the nominal sub-swarm.

The paper is organized as follows: In Section 2, we introduce the microscopic agent’s dynamic
and link it to RBMs. In Section 3, relying on the HAM theory, we derive the flocking conditions
for single swarms composed of scalar agents interacting via imitation. The mutual interactions are
effectively of long-range types (i.e., each agent can observe all leaders independent of their distance).
For a finite number of tightly flocked agents, the (scalar) inter-distance between successive fellows is
a stationary random variable, and, hence, so is the size of the swarm extension. This enables us to
define a characteristic stationary swarm extension. In Section 4, we consider a couple of sub-swarms,
initially well separated on the real line and with different average barycentric speeds. As the
positive barycentric velocity of the leftmost sub-swarm is chosen, larger than the one of the rightmost
sub-swarm, collision is unavoidable. For large but finite observation ranges of the sub-swarm (i.e.,
range larger than the sub-swarm characteristics of each sub-swarm extension derived in Section 3),
we study the asymptotic post-collisional behavior of the whole system. The conditions for either
the emergence of a global flocking swarm or quasi-freedom of the sub-swarms are approximatively
derived. All analytical findings are tested and corroborated by simulation experiments. Concluding
remarks, along with perspectives, are finally presented in Section 5.

2. Flocking of Interacting Brownian Agents

We consider a swarm of N Brownian agentsAj, j = 1, 2, · · · , N, diffusing on R. AgentAi follows
the dynamic:

dXi(t) = dU,i(~X(t), t)dt + σdWi(t), Xi(0) = xi,0, (1)

where ~X(t) = (X1(t), X2(t), · · · , XN(t)) and dWi(t) (i = 1, .., N) are independent White Gaussian
Noise (WGN) sources. The set of individual drifts dU,i(~X(t), t) for i = 1, 2, · · · , N are rank-dependent
interactions that are defined as follows:

(i) In real-time, agent Ai counts the (time-dependent) number NU,i(t) of leading fellows located
within an observation interval U, namely the number of Ak for k 6= i that are located in
RU,i(t) with:

RU,i(t) := {x ∈ R | 0 < x− Xi(t) ≤ U}. (2)

(ii) The Ai-rank-based drift in Equation (1) is then determined by:

dU,i(~X(t), t) := α
NU,i(t)

N
, i = 1, 2, · · · , N, (3)

with α ∈ R+ a velocity scale factor.
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According to Equation (1), agent Ai is positively accelerated by its leaders located in RU,i(t)
but ignores the presence of its followers. These types of dynamics generically model imitation
mechanisms; a typical example for the diffusion of innovation is shown in [10].

For very large swarms (i.e., when N → ∞), we may define an agent probability density
ρ(x, t | x0) at position x at time t. Adopting a mean-field (MF) approach, ρ(x, t | x0) obeys a
(nonlinear) Fokker–Planck parabolic partial differential equation (pde):

∂tρ(x, t | x0) = Fρ(x, t | x0),

F (·) := σ2

2 ∂x,x(·)− α∂x

[∫ U
0 ρ(y + x, t | x0)dy (·)

]
.

(4)

For U = ∞, the model can be analytically investigated, and its solution behaves as a flocked
swarm of agents that propagate like a soliton wave [10–12]. Conversely, for small U, a first order
expansion of Equation (4) yields Burgers’ equation, that can be analytically solved via the well known
Hopf–Cole (logarithmic) transformation [11]. In this small U regime, ρ(x, t) exhibits a diffusive
behavior that asymptotically vanishes with time. Qualitatively, when U is very small, the agents
mutual interactions are not strong enough to sustain a cooperative soliton dynamic pattern. By
introducing a decreasing distance-dependent modulation on rank-based drifts, it has been showed
that a bifurcation point, controlled by the distance decay rate, exists that separates both propagating
regimes [10,12].

In general, however, the joint nonlocal and nonlinear characteristics of Equation (4) precludes
direct analytical characterization of this bifurcation point. Alternative approaches then have to be
found. In the present paper, focusing on Equation (1) with N < ∞, we shall use available results
for rank-based Brownian motions [8,9] to approximately estimate the observation range required to
generate a soliton-like propagation.

Rank-Based Brownian Motions (RBMs)

For calculation convenience, we now consider the dynamics of Equation (1) with respect to the
swarm’s barycenter. That is to say, Equation (3) becomes:

dU,i(~X(t), t) := α
NU,i(t)

N − γ,

γ := 1
N ∑N−1

l=0 α l
N = α N−1

2N (average barycentric drift).
(5)

In other words, agents Ai, i = 1, 2, · · · , N counts, in real time, the number of its leaders Ak with
k 6= i. It then updates its drift dU,i(~X(t), t) as given in Equation (5), where γ is the average drift
velocity of the swarm. Since the WGN in Equation (1) achieves unbounded realizations, the ability
for all Ai’s to exactly count the number of their leaders effectively requires an infinite observation
range U.

By construction, one can verify that the stability conditions:

l

∑
k=1

[
α

k− 1
N
− γ

]
=

α

2N
l · [l − N] < 0 ∀1 ≤ l < N (6)

are verified, meaning that the laggards have a systematic average tendency to catch up with
the leaders.

The rank-based drifts effectively implement a stylized gravity model, where the set of conditions
for Equation (6) ensures the existence of a stationary probability measure for the RBM. This stationary
regime corresponds to a tight propagating swarm that effectively behaves like a soliton propagating
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wave. Moreover, [8,13] established that in this stationary state, the inter-distances between successive
agents are independent, λl-exponentially distributed random variables with:

λl =
α

Nσ2 l · [N − l] , l = 1, 2, · · · , N − 1. (7)

Since the swarm’s stationary size is the sum of (N − 1) independent exponentially distributed r.v.’s,
it defines a hypoexponential probability distributionH(x) with density:

dH(x) =
N−1

∑
l=1

λle−λl x

(
N−1

∏
l=1,k 6=l

λk
λk − λl

)
dx. (8)

Accordingly, the average size of the swarm µS(N) and its corresponding variance σS(N) behave
as follows:

µS(N) =
∫ ∞

0 x dH(x) = ∑N−1
l=1 λ−1

l = Nσ2

α ∑N−1
l=1

1
l(N−l) ≈N→∞

2σ2

α log(N),

σ2
S(N) =

∫ ∞
0 (x− µS)

2dH(x) = ∑N−1
l=1 λ−2

l ≈N→∞
σ4

α2 [
π2

3 + 4 log(N)
N ]→N→∞

σ4π2

3α2 .

(9)

The coefficient of variation cv2
S := σ2

S(N)

µ2
S(N)

, which measures the stochasticity of the swarm’s size,

vanishes in the mean-field limit (N → ∞). Observe that, in the mean-field limit, the agents’ density
ρ(x, t) of the RBM directly coincides with Burgers’ dynamics for U = ∞. This leads to a tight
soliton-like propagation density with infinite support. This is consistent with Equation (9), where
the swarm’s size slowly diverges for N → ∞.

3. Heuristic Characterization of the Observation Threshold Leading to Cooperative Dynamics

Consider the nominal dynamics Equation (1) and now assume finite observation ranges (i.e.,
0 < U < ∞). Due to the unboundedness of the WGN, an exact ranking procedure is therefore not
strictly possible. A non vanishing probability (decreasing with increasing U’s) exists to find outlying
leaders (i.e., located beyond the observation range of some of their followers). While the average
swarm size µS(N) from Equation (9) is valid only when U = ∞, we postulate that it can still be used to
approximately characterize the minimal observation range Uc < ∞ required to sustain a tight swarm.
Indeed, whenever U < Uc, it is highly probable that some agents cannot determine their respective
ranks. These outlying agents will underestimate their instantaneous drifts (from their incomplete
observations), ultimately leading to their escape from the bulk. Outlying agents always escape the
swarm from the rear, leading with time to an effective “evaporation”.

For consistency, the initial conditions Xi(0), to be drawn from a probability measure with
finite support Ω0, namely Xi,0 ∈ Ω0 with Ω0 = [l, r] ⊂ R and length(Ω0) = r − l ≤
µS(N) must be restricted. Let us now define a characteristic relaxation time τrelax = µS(N)

σ2

that corresponds to the time needed by the stochastic processes to diffuse over the interval of
length µS. For observation ranges U > µS and initial conditions Xi,0 ∈ Ω0, all N agents
mutually interact at time t = 0, and, therefore, correctly determine their relative ranks. We
assume that this will remain true with high probability, for times 0 < t < τrelax. In other
words, we expect that the initially tight swarm is likely to remain flocked for t ≤ τrelax,
effectively a meta-stable state. For asymptotic times, however (i.e., t� τrelax), the swarm’s
tightness will be destroyed. Indeed, for any finite U, outliers will ultimately escape the attraction
generated by the bulk of the remaining swarm. Therefore, our heuristic postulates that the
characteristic observation range, separating these two regimes, Uc = µS(N). The actual validity
of these simple heuristics have been tested in several numerical experiments that are reported in
Figures 1 and 2.
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Figure 1. End probability distribution P(x, T) at time T = 200 > τrelax =
µs
σ2 = 13.58

12 of swarms of
N = 500 agents, with respect to U. Here, all agents initially start at x0 = −15. (a): tight swarm for
U = 3Uc = 3µS (red) and “diffusive evaporating” swarm for U = Uc

3 (blue). (b): tight swarm for
U = 2Uc (red) and “diffusive evaporating” swarm for U = Uc

2 (blue). The respective observation
ranges U are depicted at the top of each figure.
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Figure 2. End probability distribution P(x, T) at time T = τrelax = 13.58 of a swarm of N = 500
agents, initially starting at x0 = −15. The observation range U = Uc = µS is depicted at the top of
the figure. Notice that the evaporation (i.e., destruction of swarm tightness) does not start before the
relaxation time τrelax.

4. Interactions between Collinear Colliding Swarms

In this section, we investigate the mutual interactions between two initially distinct swarms
S1 and S2 composed of A1,k, k = 1, 2, · · · , N1 respectively A2,j, j = 1, 2, · · · , N2 agents driven
by rank-based interactions. Initially, we let all agents from S1 be randomly positioned with
X0,1 ∈ [l1, r1] := Ω1; similarly, for S2, we assume that X0,2 ∈ [l2, r2] := Ω2. Assume non-overlapping
supports Ω1

⋂
Ω2 = ∅ with r1 < l2 (interval Ω1 is located on the left of Ω2) and finite observation

ranges U such that U < l2− r1). Accordingly, at time t = 0, agents from S1 do not interact with agents
from S2 and vice versa. We further assume that initially the swarm Sk with k = 1, 2 has an average
barycentric drift velocity dk > 0 and that d1 > d2. This implies that the S1-agents will, on average,
catch and ultimately overcome their S2-fellows. Therefore, for large times, the S1-agents exhibit
a net tendency to become S2-leaders. Qualitatively, after a S1-S2 collision, the following dynamic
features occur:

(i) S1-agents become leaders and thus are less influenced by (or possibly almost independent from)
S2-agents. This implies that, with time, S1-agents will exhibit a net tendency to recover their
nominal drifts (i.e., the drifts realized before the collision).
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(ii) S2-agents feel the presence of their leaders from S1 and, therefore, have a net tendency to
increase their drifts.

Therefore, depending on the values of the population sizes N1 and N2 and drifts d1 and d2, two
alternative situations emerge:

(a) Mutual capture of swarms. After collision, S1 and S2 aggregate into a global tight swarm
Sglob. The average barycentric drift dglob of Sglob is larger than d2. Thus, in this case, mutual
interactions generate an increase in the average velocity of the global population.

(b) Quasi-asymptotic freedom of swarms. After collision, and for asymptotic times, the swarms
S1 and S2 evolve almost without interactions (quasi-free swarm evolutions). In the quasi-free
regime, S1 and S2 recover their respective initial individual barycentric velocities d1 and d2.

In the sequel, the implementation of the velocity condition d1 > d2 is realized by considering two
distinctive rank-based dynamics: (i) The Hybrid-Atlas model (HAM) introduced by T. Ichiba et al. [9]
and (ii) a new modified HAM model (MHAM). For both cases, we analytically estimate the threshold
values of the relevant control parameters that lead to either outcome (a) or (b).

4.1. Colliding Swarms Driven by Hybrid Atlas Models

In this first situation, we assume that the swarms S1 and S2 are populated by slightly different
types of agents. Agents S1 and S2 share a common rank-based drift, given in Equation (1), but we
endow the S1s with an extra systematic constant drift Γ1 > 0:

dU,i(~X(t), t) = α
NU,i(t)

N
+ 1{i≤N1}Γ1, (10)

with N = N1 + N2.
This ensures that S1-agents, on average, initially travel faster than S2-agents, and, therefore,

d1 > d2. Since the initial S1-support Ω1 is located on the left of Ω2, a S1-S2-collision is unavoidable.
At this point, we emphasize that when U = ∞, the global heterogeneous society Sglob = S1 ∪ S2,
when subject to the dynamics given by Equation (1), is a special case of HAM dynamics [9]. In [9],
the authors derive the set of combinatorial stability conditions that ensure the existence of a tight
swarm stationary state. Heuristically speaking, one has to explicitly verify that, in all possible ranking
configurations, the agents S1 and S2 are systematically driven by attractive drifts directed toward the
barycenter of Sglob.

For U < ∞, the hypotheses in [9] are not strictly realized (since the perfect ranking determination
would indeed require U = ∞). Along the same lines as in Section 3, we assume that for large
enough but finite U, the agents’ ranking in Sglob during collision remains approximately unaffected.
Accordingly, the HAM tightness conditions also remain approximately valid in Sglob, during
collision. The average barycentric drift of Sglob, during collision and when S1 is ahead of S2, reads:

γHAM =
1
N

(
N1

∑
i=1

(α
i− 1

N
+ Γ1) +

N

∑
i=N1+1

α
i− 1

N

)
=

(−1 + N)α + 2N1Γ1

2N
. (11)

Therefore, the recentered rank-based drift dU,l(~X(t), t) of agent Al from Sglob, in this
configuration, becomes:

dU,i(~X(t), t) = α
NU,i(t)

N
+ 1{i≤N1}Γ1 − γHAM, l = 1, 2, · · · , N − 1. (12)
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According to [9], the set of combinatorial tightness stability conditions for HAM dynamics,
under any permutation p ∈ ΣN of the N = N1 + N2 agents read as:

l

∑
k=1

[
α

k− 1
N

+ 1{p(k)≤N1}Γ1 − γHAM

]
!
< 0,

for l = 1, 2, · · · , N − 1,
∀p ∈ ΣN ,

(13)

where
!
< expresses the necessary condition.

To check the validity of Equation (13), it is sufficient to focus on the most critical agent
configuration. This configuration is realized when all faster agents take the ranks 1, ..., N1 (i.e., when
S1 is ahead of S2). This corresponds to the choice l = N1 in Equation (13), under the permutation
p = (1, 2, ..., N), where:

N1−1

∑
j=0

[
α

j
N

+ Γ1

]
= −N1N2(α− 2Γ1)

2N
. (14)

To ensure that this sum is negative, one must finally have:

Γ1 <
α

2
. (15)

Remark that the condition in Equation (15) does not depend on the individual swarm sizes N1

and N2, with our specific choice of agent drifts Equation (10).

4.2. Colliding Swarms Driven by Modified Hybrid Atlas (MHAM) Dynamics

Here, we assume that the N1 agents from S1 follow the dynamics of Equation (1), with α = α̃1 > 0
and similarly, S2 is subject to the same dynamics but with α = α̃2 < α̃1. From now on and without
loss of generality, we focus only on the α̃2 = 1 and α̃1 = ρ. As before, we initially configure the system
so that swarm S1 and S2 do not interact at time t = 0 (i.e., X0,1 = [l1, r1] = Ω1, X0,2 = [l2, r2] = Ω2,
Ω1 ∩Ω2 = ∅ and the common observation range U is such that U > l2 − r1). When ρ > 1, we have
d1 > d2 and we look for a critical ratio ρc under which a tight swarm survives a S1-S2 collision. To
this aim, let us consider a “post-colliding” configuration realized when S1 is completely ahead of S2.
In term of stability, this configuration is the most critical: S1-agents can only escape from S2 via this
configuration. Therefore, the Sglob tightness has to be checked under this specific configuration.

Accordingly, whenever the stability conditions from [9] are verified under this critical
configuration, they will also be verified under any other configuration. Therefore, the tightness of
Sglob only depends on this critical configuration. Formally, we now rewrite Equation (5) for Sglob and
verify whether the stability requirements given by [9] are fulfilled for this critical case. In this case,
the recentered dynamics read:

dU,k(~X(t), t) =


ρ

NU,k(t)
N − γMHAM for k ≤ N1,

NU,k(t)
N − γMHAM otherwise.

γMHAM = ρ
N ∑N1

k=1
k−1

N + 1
N ∑N

k=N1+1
k−1

N = ρN1(N1−1)+N2(2N1+N2−1)
2 N2 .

(16)

From [9], the stability conditions for Sglob read:

l

∑
k=1

[
(1 + 1{k≤N1}(ρ− 1)) · k− 1

N
− γMHAM

]
!
< 0, ∀1 ≤ l ≤ N − 1. (17)
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The most critical condition is realized for l = N1 (this condition tests whether the distance
between S1 and S2 remains stationary). It reads:

N1

∑
k=1

[
ρ

k− 1
N
− γMHAM

]
=

N1N2(N2 − 1− N1(ρ− 2) + ρ)

2N2

!
< 0, (18)

implying that the critical threshold ρc finally reads:

ρc = 1 +
N

N1 − 1
. (19)

Notice that for N1 = 1, ρc cannot possibly exist (i.e., ρc = ∞). The first agent has no drift, since it
never observes any leader. Therefore, a society of one leader cannot possibly drive a swarm. Instead
a single leader always remains flocked with S2. For N1 = N2, Figure 3 shows the critical value ρc.
When N → ∞, ρc asymptotically converges toward ρc = 3. Figure 4 shows the behavior of ρc as a
function of the proportion N1

N (faster agents in Sglob), for N → ∞ agents. For N → ∞ and N1
N → 1,

ρc → 2.
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Figure 3. Value of the critical threshold ρc, with regard to the swarm size N of the HAM, when
N1 = N2. The asymptotic value N → ∞ of ρc = 3 is depicted in red.
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Figure 4. Value of the critical threshold ρc, with regard to the proportion N1/N of fast agents in the
HAM, when N → ∞.

4.3. Numerical Simulations

We consider two different cases, both with N1 = N2 = 250 agents. In both simulations, the
society S1 starts with all agents located at x0,1 = −15, while agents from S2 start at x0,2 = +15. The
common observation range U is selected large enough (U > max(µS,1, µS,2)), and σ = 1. For the
experiments, we vary ρ, in order to compare i) a case in which both societies remain flocked together
with ii) a case leading to the quasi-freedom behavior.

Figure 5 shows one realization in which ρ < ρc, allowing both societies to remain flocked. The
left plot shows the final distribution of agents from both societies, as S1 leads S2. In the right plot
of Figure 5, we show the average barycentric speeds of both societies. Notice how S1 is initially
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accelerated as its agents interact with those from S2. Later, when S1 has overcome S2, agents from S2

get an extra drift due to interactions with S1. This finally enables both societies to evolve at the same
average barycentric speed (and therefore to remain flocked).

In Figure 6, we show the same scenario, for one realization with ρ > ρc (quasi-freedom regime).
In the right plot, we still notice the initial drift gained by S1 as its agents interact with those from S2.
Once S1 has overcome S2, agents from S2 get an extra drift, that is not large enough to keep both
societies flocked together. The extra drift gained by S2 finally vanishes, once S1 exits the observation
range of the agents from S2. Finally, S1 and S2 recover their nominal speeds.
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Figure 5. Final distributions P1,2(x, T) and average barycentric speeds v1,2(t) for one realization, in
which both societies that start at x0,{1,2} = ∓15 achieve flocking. Here, ρ = 2.5 < ρc, U = 20 > Uc =

5.4, σ = 1 and N1 = N2 = 250 agents. (a): distribution of the agents from S1 (blue) and S2 (red), at
ending time T = 100. (b): average barycentric speed of each society, with respect to time.
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Figure 6. Final distributions P1,2(x, T) and average barycentric speeds v1,2(t) for one realization, in
which both societies that start at x0,{1,2} = ∓15 do not achieve flocking. Here, ρ = 6 > ρc, U = 20 >

Uc = 2.26, σ = 1 and N1 = N2 = 250 agents. (a): distribution of the agents from S1 (blue) and S2

(red), at ending time T = 100. (b): average barycentric speed of each society, with respect to time.

5. Conclusions and Perspectives

Tightly flocked swarms of agents are externally perceived as plastic (i.e., deformable)
macroscopic bodies with dynamics resulting from the compromise between the individual
evolutions, and the nature and range of the mutual interactions. Having macroscopic bodies at
hand, basic physics naturally suggests the questions: (i) how such do solid bodies mutually interact;
(ii) what emerges after collisions, and (iii) what type of information can we get from studying the
results of the collisions? The discussion of collisions presents some similarities with the physics of
solitons’ interactions where the underlying nonlinearities precludes the superposition principle to
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be be invoked. We show here that the rank-based Brownian dynamics is one possible approach to
explore, in a partly analytical way, some of the challenging questions related to swarm interactions.
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