1,053 research outputs found

    Networking - A Statistical Physics Perspective

    Get PDF
    Efficient networking has a substantial economic and societal impact in a broad range of areas including transportation systems, wired and wireless communications and a range of Internet applications. As transportation and communication networks become increasingly more complex, the ever increasing demand for congestion control, higher traffic capacity, quality of service, robustness and reduced energy consumption require new tools and methods to meet these conflicting requirements. The new methodology should serve for gaining better understanding of the properties of networking systems at the macroscopic level, as well as for the development of new principled optimization and management algorithms at the microscopic level. Methods of statistical physics seem best placed to provide new approaches as they have been developed specifically to deal with non-linear large scale systems. This paper aims at presenting an overview of tools and methods that have been developed within the statistical physics community and that can be readily applied to address the emerging problems in networking. These include diffusion processes, methods from disordered systems and polymer physics, probabilistic inference, which have direct relevance to network routing, file and frequency distribution, the exploration of network structures and vulnerability, and various other practical networking applications.Comment: (Review article) 71 pages, 14 figure

    Towards Efficient File Sharing and Packet Routing in Mobile Opportunistic Networks

    Get PDF
    With the increasing popularity of portable digital devices (e.g., smartphones, laptops, and tablets), mobile opportunistic networks (MONs) [40, 90] consisting of portable devices have attracted much attention recently. MONs are also known as pocket switched networks (PSNs) [52]. MONs can be regarded as a special form of mobile ad hoc networks (MANETs) [7] or delay tolerant networks (DTNs) [35, 56]. In such networks, mobile nodes (devices) move continuously and meet opportunistically. Two mobile nodes can communicate with each other only when they are within the communication range of each other in a peer-to-peer (P2P) manner (i.e., without the need of infrastructures). Therefore, such a network structure can potentially provide file sharing or packet routing services among portable devices without the support of network infrastructures. On the other hand, mobile opportunistic networks often experience frequent network partition, and no end-to-end contemporaneous path can be ensured in the network. These distinctive properties make traditional file sharing or packet routing algorithms in Internet or mobile networks a formidable challenge in MONs. In summary, it is essential and important to achieve efficient file sharing and packet routing algorithms in MONs, which are the key for providing practical and novel services and applications over such networks. In this Dissertation, we develop several methods to resolve the aforementioned challenges. Firstly, we propose two methods to enhance file sharing efficiency in MONs by creating replicas and by leveraging social network properties, respectively. In the first method, we investigate how to create file replicas to optimize file availability for file sharing in MONs. We introduce a new concept of resource for file replication, which considers both node storage and meeting frequency with other nodes. We theoretically study the influence of resource allocation on the average file access delay and derive a resource allocation rule to minimize the average file access delay. We also propose a distributed file replication protocol to realize the deduced optimal file replication rule. In the second method, we leverage social network properties to improve the file searching efficiency in MONs. This method groups common-interest nodes that frequently meet with each other into a community. It takes advantage of node mobility by designating stable nodes, which have the most frequent contact with community members, as community coordinators for intra-community file request forwarding, and highly-mobile nodes that visit other communities frequently as community ambassadors for inter-community file request forwarding. Based on such a community structure, an interest-oriented file searching scheme is proposed to first search local community and then search the community that is most likely to contain the requested file, leading to highly efficient file sharing in MONs. Secondly, we propose two methods to realize efficient packet routing among mobile nodes and among different landmarks in MONs, respectively. The first method utilizes distributed social map to route packets to mobile nodes efficiently with a low-cost in MONs. Each node builds its own social map consisting of nodes it has met and their frequently encountered nodes in a distributed manner. Based on both encountering frequency and social closeness of two linked nodes in the social map, we decide the weight of each link to reflect the packet delivery ability between the two nodes. The social map enables more accurate forwarder selection through a broader view and reduces the cost on information exchange. The second method realizes high-throughput packet routing among different landmarks in MONs. It selects popular places that nodes visit frequently as landmarks and divides the entire MON area into sub-areas represented by landmarks. Nodes transiting between two landmarks relay packets between the two landmarks. The frequency of node transits between two landmarks is measured to represent the forwarding capacity between them, based on which routing tables are built on each landmark to guide packet routing. Finally, packets are routed landmark by landmark to reach their destination landmarks. Extensive analysis and real-trace based experiments are conducted to support the designs in this Dissertation and demonstrate the effectiveness of the proposed methods in comparison with the state-of-art methods. In the future, we plan to further enhance the file sharing and packet routing efficiency by considering more realistic scenarios or including more useful information. We will also investigate the security and privacy issues in the proposed methods

    Relational Cloud: The Case for a Database Service

    Get PDF
    In this paper, we make the case for â databases as a serviceâ (DaaS), with two target scenarios in mind: (i) consolidation of data management functionality for large organizations and (ii) outsourcing data management to a cloud-based service provider for small/medium organizations. We analyze the many challenges to be faced, and discuss the design of a database service we are building, called Relational Cloud. The system has been designed from scratch and combines many recent advances and novel solutions. The prototype we present exploits multiple dedicated storage engines, provides high-availability via transparent replication, supports automatic workload partitioning and live data migration, and provides serializable distributed transactions. While the system is still under active development, we are able to present promising initial results that showcase the key features of our system. The tests are based on TPC benchmarks and real-world data from epinions.com, and show our partitioning, scalability and balancing capabilities

    Towards Trustworthy, Efficient and Scalable Distributed Wireless Systems

    Get PDF
    Advances in wireless technologies have enabled distributed mobile devices to connect with each other to form distributed wireless systems. Due to the absence of infrastructure, distributed wireless systems require node cooperation in multi-hop routing. However, the openness and decentralized nature of distributed wireless systems where each node labors under a resource constraint introduces three challenges: (1) cooperation incentives that effectively encourage nodes to offer services and thwart the intentions of selfish and malicious nodes, (2) cooperation incentives that are efficient to deploy, use and maintain, and (3) routing to efficiently deliver messages with less overhead and lower delay. While most previous cooperation incentive mechanisms rely on either a reputation system or a price system, neither provides sufficiently effective cooperation incentives nor efficient resource consumption. Also, previous routing algorithms are not sufficiently efficient in terms of routing overhead or delay. In this research, we propose mechanisms to improve the trustworthiness, scalability, and efficiency of the distributed wireless systems. Regarding trustworthiness, we study previous cooperation incentives based on game theory models. We then propose an integrated system that combines a reputation system and a price system to leverage the advantages of both methods to provide trustworthy services. Analytical and simulation results show higher performance for the integrated system compared to the other two systems in terms of the effectiveness of the cooperation incentives and detection of selfish nodes. Regarding scalability in a large-scale system, we propose a hierarchical Account-aided Reputation Management system (ARM) to efficiently and effectively provide cooperation incentives with small overhead. To globally collect all node reputation information to accurately calculate node reputation information and detect abnormal reputation information with low overhead, ARM builds a hierarchical locality-aware Distributed Hash Table (DHT) infrastructure for the efficient and integrated operation of both reputation systems and price systems. Based on the DHT infrastructure, ARM can reduce the reputation management overhead in reputation and price systems. We also design a distributed reputation manager auditing protocol to detect a malicious reputation manager. The experimental results show that ARM can detect the uncooperative nodes that gain fraudulent benefits while still being considered as trustworthy in previous reputation and price systems. Also, it can effectively identify misreported, falsified, and conspiratorial information, providing accurate node reputations that truly reflect node behaviors. Regarding an efficient distributed system, we propose a social network and duration utility-based distributed multi-copy routing protocol for delay tolerant networks based on the ARM system. The routing protocol fully exploits node movement patterns in the social network to increase delivery throughput and decrease delivery delay while generating low overhead. The simulation results show that the proposed routing protocol outperforms the epidemic routing and spray and wait routing in terms of higher message delivery throughput, lower message delivery delay, lower message delivery overhead, and higher packet delivery success rate. The three components proposed in this dissertation research improve the trustworthiness, scalability, and efficiency of distributed wireless systems to meet the requirements of diversified distributed wireless applications

    Service Replication in Wireless Mobile Ad Hoc Networks

    Get PDF
    Die vorliegende Arbeit beschäftigt sich mit dem Management von Diensten im mobilen ad-hoc Netzwerken (MANETs). MANETs sind drahtlose Netzverbände mobiler Einheiten die sich dezentral ohne eine übergeordnete Organisation selbst verwalten. Die Netztopologie eines MANET verändert sich dabei dynamisch mit der Bewegung der autonomen Teilnehmer. Sensor Netzwerke, Personal Area Networks und Satelliten Netzwerke sind typische Beispiele für derartige MANETs. Mit der wachsenden Bedeutung der drahtlosen Vernetzung mobiler Geräte haben sich MANETs in den vergangenen Jahren zu einem wichtigen Forschungsgebiet entwickelt. Im Katastrophenmanagement, bei zivilen Rettungsfällen oder in militärischen Szenarien kann ihre infrastrukturlose Selbstorganisation MANETs zum einzig möglichen Kommunikationsmittel machen. Die mobilen Knoten eines MANETs kooperieren um essenzielle Netzwerkdienste wie das Routing und den Datentransport gemeinschaftlich zu gewährleisten. Ressourcen wie die Bandbreite zwischen Knoten, die Rechenleistung der mobilen Geräte und ihre Batterieleistung sind dabei typischerweise stark begrenzt und zudem wechselnd. Das Teilen der verfügbaren Ressourcen ist daher eine Notwendigkeit für das effiziente Funktionieren eines MANETs. Dienstorientierte Architekturen (SOAs) stellen ein geeignetes Paradigma dar, um geteilte Ressourcen zu verwalten. Wenn verfügbare Ressourcen als Dienst aufgefasst werden, lässt sich ihre Nutzung als Dienstabfrage bearbeiten. In diesem Zusammenhang ermöglichen SOAs Abstraktion, Kapselung, lose Koppelung, Auffindbarkeit von Ressourcen und dir für MANETs essenzielle Autonomie. Die Anwendung von SOAs auf MANETs findet daher zunehmend Beachtung in der Forschung

    Towards video streaming in IoT environments: vehicular communication perspective

    Get PDF
    Multimedia oriented Internet of Things (IoT) enables pervasive and real-time communication of video, audio and image data among devices in an immediate surroundings. Today's vehicles have the capability of supporting real time multimedia acquisition. Vehicles with high illuminating infrared cameras and customized sensors can communicate with other on-road devices using dedicated short-range communication (DSRC) and 5G enabled communication technologies. Real time incidence of both urban and highway vehicular traffic environment can be captured and transmitted using vehicle-to-vehicle and vehicle-to-infrastructure communication modes. Video streaming in vehicular IoT (VSV-IoT) environments is in growing stage with several challenges that need to be addressed ranging from limited resources in IoT devices, intermittent connection in vehicular networks, heterogeneous devices, dynamism and scalability in video encoding, bandwidth underutilization in video delivery, and attaining application-precise quality of service in video streaming. In this context, this paper presents a comprehensive review on video streaming in IoT environments focusing on vehicular communication perspective. Specifically, significance of video streaming in vehicular IoT environments is highlighted focusing on integration of vehicular communication with 5G enabled IoT technologies, and smart city oriented application areas for VSV-IoT. A taxonomy is presented for the classification of related literature on video streaming in vehicular network environments. Following the taxonomy, critical review of literature is performed focusing on major functional model, strengths and weaknesses. Metrics for video streaming in vehicular IoT environments are derived and comparatively analyzed in terms of their usage and evaluation capabilities. Open research challenges in VSV-IoT are identified as future directions of research in the area. The survey would benefit both IoT and vehicle industry practitioners and researchers, in terms of augmenting understanding of vehicular video streaming and its IoT related trends and issues

    Virtual Cluster Management for Analysis of Geographically Distributed and Immovable Data

    Get PDF
    Thesis (Ph.D.) - Indiana University, Informatics and Computing, 2015Scenarios exist in the era of Big Data where computational analysis needs to utilize widely distributed and remote compute clusters, especially when the data sources are sensitive or extremely large, and thus unable to move. A large dataset in Malaysia could be ecologically sensitive, for instance, and unable to be moved outside the country boundaries. Controlling an analysis experiment in this virtual cluster setting can be difficult on multiple levels: with setup and control, with managing behavior of the virtual cluster, and with interoperability issues across the compute clusters. Further, datasets can be distributed among clusters, or even across data centers, so that it becomes critical to utilize data locality information to optimize the performance of data-intensive jobs. Finally, datasets are increasingly sensitive and tied to certain administrative boundaries, though once the data has been processed, the aggregated or statistical result can be shared across the boundaries. This dissertation addresses management and control of a widely distributed virtual cluster having sensitive or otherwise immovable data sets through a controller. The Virtual Cluster Controller (VCC) gives control back to the researcher. It creates virtual clusters across multiple cloud platforms. In recognition of sensitive data, it can establish a single network overlay over widely distributed clusters. We define a novel class of data, notably immovable data that we call "pinned data", where the data is treated as a first-class citizen instead of being moved to where needed. We draw from our earlier work with a hierarchical data processing model, Hierarchical MapReduce (HMR), to process geographically distributed data, some of which are pinned data. The applications implemented in HMR use extended MapReduce model where computations are expressed as three functions: Map, Reduce, and GlobalReduce. Further, by facilitating information sharing among resources, applications, and data, the overall performance is improved. Experimental results show that the overhead of VCC is minimum. The HMR outperforms traditional MapReduce model while processing a particular class of applications. The evaluations also show that information sharing between resources and application through the VCC shortens the hierarchical data processing time, as well satisfying the constraints on the pinned data

    PiCasso: enabling information-centric multi-tenancy at the edge of community mesh networks

    Get PDF
    © 2019 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Edge computing is radically shaping the way Internet services are run by enabling computations to be available close to the users - thus mitigating the latency and performance challenges faced in today’s Internet infrastructure. Emerging markets, rural and remote communities are further away from the cloud and edge computing has indeed become an essential panacea. Many solutions have been recently proposed to facilitate efficient service delivery in edge data centers. However, we argue that those solutions cannot fully support the operations in Community Mesh Networks (CMNs) since the network connection may be less reliable and exhibit variable performance. In this paper, we propose to leverage lightweight virtualisation, Information-Centric Networking (ICN), and service deployment algorithms to overcome these limitations. The proposal is implemented in the PiCasso system, which utilises in-network caching and name based routing of ICN, combined with our HANET (HArdware and NETwork Resources) service deployment heuristic, to optimise the forwarding path of service delivery in a network zone. We analyse the data collected from the Guifi.net Sants network zone, to develop a smart heuristic for the service deployment in that zone. Through a real deployment in Guifi.net, we show that HANET improves the response time up to 53% and 28.7% for stateless and stateful services respectively. PiCasso achieves 43% traffic reduction on service delivery in our real deployment, compared to the traditional host-centric communication. The overall effect of our ICN platform is that most content and service delivery requests can be satisfied very close to the client device, many times just one hop away, decoupling QoS from intra-network traffic and origin server load.Peer ReviewedPostprint (author's final draft

    Resource Efficient Urban Delay/disruptive Tolerant Networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore