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Yuan Luo

VIRTUAL CLUSTER MANAGEMENT FOR ANALYSIS OF
GEOGRAPHICALLY DISTRIBUTED AND IMMOVABLE

DATA

Scenarios exist in the era of Big Data where computational analysis needs to utilize

widely distributed and remote compute clusters, especially when the data sources are

sensitive or extremely large, and thus unable to move. A large dataset in Malaysia could

be ecologically sensitive, for instance, and unable to be moved outside the country

boundaries. Controlling an analysis experiment in this virtual cluster setting can be

difficult on multiple levels: with setup and control, with managing behavior of the virtual

cluster, and with interoperability issues across the compute clusters. Further, datasets can

be distributed among clusters, or even across data centers, so that it becomes critical to

utilize data locality information to optimize the performance of data-intensive jobs.

Finally, datasets are increasingly sensitive and tied to certain administrative boundaries,

though once the data has been processed, the aggregated or statistical result can be shared

across the boundaries.

This dissertation addresses management and control of a widely distributed virtual cluster

having sensitive or otherwise immovable data sets through a controller. The Virtual

Cluster Controller (VCC) gives control back to the researcher. It creates virtual clusters

across multiple cloud platforms. In recognition of sensitive data, it can establish a single

network overlay over widely distributed clusters. We define a novel class of data, notably

immovable data that we call “pinned data”, where the data is treated as a first-class citizen
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instead of being moved to where needed. We draw from our earlier work with a

hierarchical data processing model, Hierarchical MapReduce (HMR), to process

geographically distributed data, some of which are pinned data. The applications

implemented in HMR use extended MapReduce model where computations are expressed

as three functions: Map, Reduce, and GlobalReduce. Further, by facilitating information

sharing among resources, applications, and data, the overall performance is improved.

Experimental results show that the overhead of VCC is minimum. The HMR outperforms

traditional MapReduce model while processing a particular class of applications. The

evaluations also show that information sharing between resources and application through

the VCC shortens the hierarchical data processing time, as well satisfying the constraints

on the pinned data.

Beth Plale, Ph.D.
(Chairperson)

Geoffrey Fox, Ph.D.

Judy Qiu, Ph.D.

Yuqing Wu, Ph.D.

Philip Papadopoulos, Ph.D.
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Chapter 1

Introduction

1.1 Motivation

As new sources of research data become available worldwide, either through their creation

or through enhanced mechanisms for sharing, the scenario in which a researcher wishes

to carry out data analysis on multiple data sets that are widely geographically located will

become commonplace, and because of the sensitive nature of the data, it may have been

repatriated for instance, the computation must occur on a cluster co-located with the data.

Further, if the data is sensitive, additional measures of protection may be needed while the

data travels in the network, requiring establishment of something like an overlay network.

In a scenario like this, the researcher is faced with the difficult task of setting up and uti-

lizing virtual clusters that are located in multiple locations around the world and doing so

for purposes of carrying out a single data analysis investigation. Such a task can quickly

become overwhelming.

Qiu et al. [73] reviews High Performance Computing Enhanced Apache Big Data Stack

HPC-ABDS and summarizes the capabilities in 21 identified architecture layers in Fox et

al. [64]. The summary of these 21 identified architecture layers covers message and data

protocols, distributed coordination, monitoring, infrastructure management, DevOps, in-

1



Chapter 1. Introduction 2

teroperability, cluster and resource management, programming models, and many more.

In the first part of this dissertation, described in Section 1.2.1, we primarily focus on the

DevOps layer and interoperability layer in these 21 arhictecture layers. These DevOps

tools, such as Chef [6], Puppet [17], OpenStack [107], CloudMesh [8] etc, define computer

systems in a variety of languages and automate system deployment, to ease the system

administration tasks and provide cloud infrastructure interoperabitily. Typical interoper-

ability libaraies are Libcloud [14], jClouds [4], DeltaCloud [9], etc. One of the common

standards for interoperability is OASIS TOSCA [25] which focuses on the deployment of

cloud services while workflow standards such as BPEL [23] focuses on business execution.

The motivating application of our work is data sharing, user management of resources,

and performance optimization in the multi-institutional academia cloud, PRAGMA Cloud [128].

The PRAGMA Cloud infrastructure is both heterogeneous and distributed, with resources

from multiple institutes from the Pacific Rim including the United States. The PRAGMA

Cloud is loosely-coupled with differing cloud software, cluster sizes, and hardware archi-

tectures. In order to share datasets internationally among multiple research institutions, the

PRAGMA community firstly pioneered solutions using a grid computing approach for re-

source and data sharing. The PRAGMA experience with grid software can be summarized

as “Real science can be performed on such multi-institution environments, but the activa-

tion barrier is high.” [129] More specifically, resources coordination, interoperable software

deployments, and resource/user policies are significantly complicated because applications

may have different requirements for middleware and resource allocation. To reduce the hu-

man cost of setting up sophisticated environments, the PRAGMA community started with

a demonstration of modifying copies of VM images to run under different hypervisors. The

goal was, and continues to be, to allow researchers to author their own application virtual
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machines (VMs) using their preferred VM platforms and then deploy these VMs as a vir-

tual cluster across different sites - the PRAGMA Cloud. A platform to automatically set up

virtual cluster on demand on multi-cloud environments becomes key to reduce human cost

so that the data sharing barrier can be reduced.

Researchers utilize multiple virtual clusters for analysis, each of which might consist

of a small number of nodes tied to a co-located database. In our scenario, the data is tied

to a location because of protections on the data, and any computation on the data has to

occur co-located with the data. The Hathi Trust Research Center (HTRC) [12] enables

text mining and non-consumptive research of the HathiTrust [11] Library while preventing

intellectual property misuse within the confines of current U.S. copyright law. At the time

of this writing, HathiTrust has 11 million volumes of digital publications. Processing 1

million volumes/books (2 TB large) using n-grams algorithm (implemented in MapReduce)

on 1,024 cores takes about 22 hours, including loading data from Lustre [34] clusters to the

compute resource for processing. The processing requires raw data to be moved from

protected sources to a centralized cluster. To prevent the leak of the raw data, HTRC

uses a restricted configuration approach, data capsule [33], which limits the computation

resource (virtual machines) configurability. The approach has pre-defined stages to follow

to guarantee that raw data cannot be accessed directly by users. The current HTRC data

protection approach is based on the assumption that users are trustworthy. To overcome the

limitation is this assumption, a proper data model needs to be discovered.

MapReduce [52] is de facto the most popular programming paradigm for process-

ing large datasets running on a large number of compute resources. Researchers have

been exploring variant MapReduce extensions and optimization methods to accommodate

their needs. Most MapReduce implementations have been focused on running on tightly-
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coupled homogeneous clusters, where the input data is often pre-placed locally. However,

the homogeneity assumptions does not hold when scaling to multi-cloud environments

such as PRAGMA Cloud. The primary motivations to scale up a data processing model,

e.g. MapReduce, onto multi-cloud environments are driven from the following application

characteristics.

• Compute-Intensive: A researcher may have access to several research clusters in their

lab or university. These clusters often consist of a limited number of nodes, and the

nodes in one cluster may be very different from those in another cluster in terms

of CPU frequency, number of cores, cache size, memory size, and storage capacity.

Commonly, a data processing framework, e.g. MapReduce, is deployed in a single

cluster to run jobs, but any such individual cluster does not provide enough resources

to deliver significant performance gain. For example, researchers at Indiana Uni-

versity have access to resources such as FutureSystems [61] [10], XSEDE [22], and

PlanetLab [49] resources, but each cluster imposes a limit on the maximum number

of nodes that a user can use anytime. Aggregating these isolated virtual clusters into

the appearance of a single virtual cluster gives a powerful platform for seamless data

analysis.

• Data-Intensive: It is increasingly common that data analysis on a single dataset or

multiple datasets are widely dispersed. There are large differences in I/O speeds from

local disk storage to wide area networks. Feeding a large dataset repeatedly to remote

computing resources becomes the bottleneck. Moving computation to data becomes

key to tackling this highly-distributed data issue. Therefore, the computing environ-

ment is no longer tightly-coupled. MapReduce has been deployed over Clouds that

utilize multiple data centers [2] [3] [21] [31] , Grids that federate multiple HPC clus-
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ters [86] [122], and Hybrid of Grids and Clouds [41] [30].

• Data-Sensitive: Collaborative e-Science projects typically require data processing

to be performed on distributed datasets. Owners of data sets also have a range of

concerns that include proper attribution [103], limited distribution of raw data prior

to analysis (Hathi Trust Research Center [12]), and legal requirements to keep data

within administrative boundaries. However, once the data has been processed, the

aggregated or statistical result can be shared across the boundaries. When the data

is highly distributed among multiple institutes (administrative domains), proper data

model and computing paradigms need to be identified to process such workloads.

Our early work to scale up MapReduce to multi-cloud environments is the Hierarchi-

cal MapReduce (HMR) [86] project. HMR gathers computation resources from differ-

ent clusters and runs MapReduce jobs across them. The applications implemented in this

framework adopt a Map-Reduce-GlobalReduce model where computations are expressed

as three functions: Map, Reduce, and GlobalReduce. Both the Map and the Reduce are

executed on local clusters. The GlobalReduce is executed on one of the local clusters, col-

lecting the output from all the local clusters. The initial implementation of HMR was a

joint work at Indiana University with Zhenhua Guo, and was focused on compute-intensive

applications.

1.2 Challenges and Contributions

What are the specific challenges? Controllability for one. This is the researcher’s ability to

easily set up and control the multi-hosted environment in which they will run the analysis.

There could be issues with interoperability as well, as the virtual clusters could be hosted in

developing countries for instance. These issues need to be addressed in a way that preserves
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good performance. Processing sensitive and pinned data that is geographically distributed

raises another challenge to secure proper data processing models. Moreover, although the

transparency of cloud computing enables on-demand virtual resource provisioning without

worrying about the physical infrastructure, it lacks information sharing between resource

providers and applications. Therefore, the actual data locality and job locality cannot be

obtained in the cloud environment without information sharing, which leads to inaccurate

data locality scheduling at the application level.

This dissertation addresses techniques to enhance cloud controllability and interop-

erability, geographically distributed processing of immovable data, specifically in sec-

tion 1.2.1 and section 1.2.2.

1.2.1 Multi-Cloud Controllability and Interoperability

Shared compute resources largely at research institutions, data analytics on a single but

geographically distributed dataset, or multiple datasets that are similar but not part of a

single uniformly handled dataset, and the constraints of sensitive data that effectively pins

a dataset to a physical location is a unique environment is in which research is carried out.

It is a scenario that will likely grow in need as data becomes more available worldwide.

The tools to carry out research in this environment are often created for other similar but

distinctly different environments. In particular, the assumption of heterogeneous, “pinned”

data leads us to create new tools.

Typically, there is a gap between how resource providers manage their resources and

how these resources are actually utilized by applications, a gap that is often filled by man-

ual activity on the part of system administrators. The gap can be filled with a researcher-

oriented controller that provides control over the resources and applications. The controller
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service must be stateful so that resource status and application deployment/execution are

monitored and recorded to enable management, fault tolerance, and application perfor-

mance tuning.

To enable efficient computing on multi-cloud hosted virtual clusters simultaneously,

information known at the resource provider level needs to be shared with the application

and vice versa. This includes for instance, virtual cluster topology and provenance infor-

mation or database location, and could be used to minimize I/O overhead. A resource

allocation mechanism tries to guarantee that the users’ minimum requirements are met by

the provider’s infrastructure. Without expressing application level resource requirements

during the resource allocation stage, it is possible, for instance, that no two nodes are al-

located close enough to minimize I/O overhead in the application. Therefore, the informa-

tion sharing needs to be tridirectional. The current Infrastructure-as-a-Service based cloud

systems are usually unaware of the characteristics of the applications and therefore allocate

resources independently of their application profiles and data characteristics, which can sig-

nificantly impact performance and security for distributed data-intensive and data-sensitive

applications.

Contribution 1:

The first contribution of this dissertation is a virtual cluster controller (VCC) to enhance

cloud controllability and interoperability that can make research in this unique environment

easier to do.

VCC creates virtual clusters across multiple cloud platforms, builds a network over-

lay, and manages the virtual cluster life-cycle in a fault-tolerant manner. VCC extends

HTCondor and leverages VPN technology to enhance user controllability and cloud in-
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teroperability. Virtual machine images composed in different countries can be transfered

across trusted sites via secured channels so that they can be instantiated at multiple places

to form a cross-institutional virtual cluster. A virtual machine instance spinning at one

institution might be migrated to another institution for any workload or administrative rea-

sons. We develop a tri-directional information sharing model to assist resource allocation

and application scheduling. We identify what information to share and how the information

is shared. During the resource allocation phase, application specification and data specifi-

cation will be utilized as key factors to better allocate resources in a matchmaking process.

During the application execution phase, resource information, such as resource topology

and provenance, will be utilized by application schedulers to achieve better performance.

The VCC differs from the works in Chapter 2.1 because it enables tri-directional resource-

application-data information sharing, providing richer information for potential perfor-

mance optimization for data loading, virtual cluster allocation and application scheduling.

The information sharing are based on data locality, resource and application specification,

and virtual cluster topology. With that being said, data is treated as a first class citizen

where it negotiates with resource and application during resource allocation and applica-

tion scheduling phases.

1.2.2 Manage, Access, and Process of Pinned Data

Collaborative e-Science projects typically require data processing to be performed on dis-

tributed datasets. A shortcoming of the current proof-of-principle infrastructure is the lack

of support for controlled sharing of data in its various forms (e.g. flat files, databases,

sensor data, and others). The input datasets could be distributed among clusters or even

across data centers so that it becomes critical to utilize data locality information to opti-
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mize the performance of data-intensive jobs. Furthermore, some datasets are so sensitive

that they cannot be processed out of certain administrative boundaries. Owners of data sets

also have a range of concerns that include proper attribution [103], limited distribution of

raw data prior to analysis [12], and legal requirements to keep data within administrative

boundaries. However, once the data has been processed, the aggregated or statistical result

can be shared across the boundaries. Taking MapReduce as an example, the conventional

MapReduce performs poorly when processing a dataset due to the nature of global data

shuffling when the data is highly distributed among multiple institutions (administrative

domains). Moreover, the conventional MapReduce even fails to process the data with lo-

cality sensitive constraint due to the global data exchange during the shuffling phase. The

challenge is to strike the right balance between ensuring that the data processing carried

out does not violate non-consumptive use, while keeping the data management services as

flexible as possible by not overly limiting the kinds of use.

Contribution 2:

The second contribution of this dissertation is a conceptual definition of pinned data and its

instantiation in Hierarchical MapReduce as Data Processing as a Service.

We define a novel data model, “pinned data” that, describes non-consumptive constraint

of the data that raw data cannot leave a political jurisdiction. The “pinned data” design is

inspired by Object Oriented Programming that data is encapsulated and accessed by method

calls. A package of accessible pinned data is called a suitcase which contains certain data

properties and operations that the suitcase can perform. Encapsulation combines data and

behavior in one suitcase and hides the implementation of the data from the user of the

suitcase. The data in a suitcase is called its content, and the functions and procedures that
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operate on the data are called its methods. A suitcase does not expose data for public

access directly. All communications are via method calls. Whenever a method is applied

to a suitcase, provenance information is recorded.

The pinned data processing model is instantiated in Hierarchical MapReduce. Both

the Map and the Reduce are executed on separate clouds where pinned data constraint

meets. The GlobalReduce is executed on one of the clouds, collecting the aggregated re-

sults from all participant clouds. We enhance the original HMR framework so that different

Map/Reduce functions can be encapsulated in different pinned data suitcases at different

clouds before the GlobalReduce function aggregates data to produce final results. There-

fore, a pinned data suitcase provides “Data-Processing-as-a-Service” capability.

Our solution differs from other solutions in Chapter 2.2 such as data capsules [33] in

that data processing logic in our solution is regulated, and is part of a pinned data suitcase

packaged by data providers which asserts the satisfaction of non-consumptive constraint.

Our solution also differs from a Cloud Terminal [91] solution in that the output of applica-

tion logics in our solution can be retrieved from the data source for further analysis.

1.3 Definition of Terminologies

• VCC: Virtual Cluster Controller.

• HMR: Hierarchical MapReduce.

• PND: Pinned data, or immovable data.

• PDS: Pinned data suitcase.

• HMR+: Enhanced Hierarchical MapReduce for processing pinned data.
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1.4 Dissertation Outline

The remainder of this dissertation is organized as follows. Chapter 2 presents the related

work. Chapter 3 presents Hierarchical MapReduce (HMR) framework and its application.

It also describes the connection between HMR and PND where the local MapReduce tasks

are part of the PND suitcases. Chapter 4 presents the Virtual Cluster Controlller (VCC)

and addresses the cloud controllability and interoperability challenge by introducing virtual

cluster controller. The chapter defines information sharing schema among resources, appli-

cations, and data. The schemas are used for resource allocation, application job scheduling,

and pinned data definition. Chapter 5 defines pinned data (PND) and an enhanced HMR

framework to process pinned data, where the local MapReduce tasks are part of the PND

suitcases. Chapter 6 concludes the dissertation and lays out future work.



Chapter 2

Related Work

2.1 Multi-Cloud Controllability and Interoperability

Resource Controllability

The solutions to resource management are fragmented. Open source or commercial cloud

platforms, such as Openstack, Eucalyptus [99], OpenNebula [93], Nimbus [75], Microsoft

Azure and Amazon EC2 all provide dedicated VM resources but leave the bulk of the multi-

cloud resource management burden to the programmers. Mesos [70] and YARN [120] pro-

vide resource allocation abstractions so that resources can be shared among different sched-

ulers and applications but expect the scheduler to handle the resource management burden.

On the other hand, conventional batch systems, e.g. PBS [69], SGE [63], LSF [130], pro-

vide inflexible static and pre-configured environments (queues) using policies designed to

serve different types of parallel processing (e. g. MPI). Jobs submitted by different users in

those system are typically queued to be executed and the user has limited control on where

the jobs will be executed.

MapReduce [52] assumes resource allocation has already been performed before start-

ing and also lacks the notion of user-level resource control and guarantee. Although Za-

12
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haria et al. [124] provides a pool (set of slots) for each user to run MapReduce jobs within

a MapReduce cluster, there is still no significant difference compared to conventional batch

systems of user controllability.

Cloud Interoperability

Buyya et al. [40] introduces InterCloud, a federated cloud environment that allows the

sharing of resource from multiple cloud providers. The InterCloud uses a market oriented

approach [38] that facilitates pricing aware application brokering to call cloud coordina-

tors on each cloud data center for resource allocation. Open Cirrus [27] is a heteroge-

neous federated cloud system that provides access to both virtualized resource and physi-

cal resource. OPTIMIS [57] is aimed at optimizing the whole service life cycle, including

service construction, deployment, and operation. It can be used in multi-cloud scenarios

where resources from more than one providers are offered via a cloud broker approach.

RESERVOIR [105] also makes use of broker architecture in order to overcome cloud in-

teroperability issue.

A cloud broker negotiates, monitors, and manages virtual clusters across multiple cloud

providers using a network overlay. A cloud broker can manage resources that span multiple

clouds, bursting resource from a private cloud to a public cloud in a hybrid cloud environ-

ment, enabling users to select resources from a federated cloud. Cloud brokers include

ManageIQ [15], CloudForms [7], Rightscale [18], and Scalr [19]. These brokers typically

integrate a set of tools to provide automation of lifecycle management of resources, and as-

sist users in development of their customized cloud solutions. Open source toolkits, such as

Libcloud [14], jClouds [4], DeltaCloud [9] , JumpGate [13], and PRAGMA Bootstrap [16],

are capable of connecting an external cloud provider to a broker with the appropriate API.
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Apache Whirr [5] is a set of libraries for running cloud services that build on jClouds [4], a

java based abstraction that provides a common interface to a set of cloud providers such as

Amazon EC2, Rackspace, VMWare vCloud, Openstack and CloudStack, etc. MapReduce

applications can be directly deployed using Whirr.

Celesti et al. [43] develop a match-making strategy to select resources on federated

clouds. Keahey et al. [76] introduces Sky Computing that provides end users virtual

clusters interconnected with ViNe [118] across wide-area networks. Cloudmesh [8] pro-

vides Cloud Testbeds as a Service and focuses on the user being able to run repeatable

experiments on different types of infrastructures. Cloudmesh, which emerged from the Fu-

tureSystems project [10], provides a convenient interface for managing user experiments

and tracking usage on the different platforms. VCC differs from CloudMesh in that its

focus is on providing information sharing and matchmaking among resources, applications

and data.

Nimbus Phantom [77] is a multi-cloud, auto-scaling system that manages VM instances

and aggregates monitoring information across different cloud providers. It allows the user

to instrument VMs with a lightweight agent that retrieves information from a broker and

reconfigures the VMs to perform different contextualization tasks, for example, to setup

Torque/PBS schedulers. To the best of our knowledge, it does not provide virtual network

configurability over allocated resources from multiple clouds. Commercial systems such

as Amazon Virtual Private Cloud (Amazon VPC) lets a customer launch AWS resources

in a customer-defined virtual private network (VPN), allowing the option to network in

that customer’s local machines into their Amazon VPC. However, VPC does not provide

resource locality information to customers.

Liu et al. [85] enables cloud operators that use a declarative language to specify opti-
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mization policy goals and constraints given provider objectives and customer SLAs. HT-

Condor’s classad matchmaking framework uses a semi-structured data model that com-

bines schema, data, and query in a simple specification language, and can be utilized in

distributed environment with decentralized resources management.

Resources-Application-Data Cooperative Optimization

Lee et al. [80] built a prototype for topology-aware resource allocation (TARA) that adopts

predication engine to estimate the performance of a given resource allocation and a genetic

algorithm to find an optimized solution in the search space. The predict engine takes an

objective function, an application description, and available resource information to com-

pare and rank different candidates. However, TARA only supports Hadoop-based MapRe-

duce framework. When considering application description, the prediction engine only

takes Hadoop configuration file, job-specific resource requirements such as selectivity (in-

put/output ratio), CPU cycles and overhead, without considering in advance application job

data locality.

Palanisamy et al. [100] proposed Purlieus, a model for provisioning virtual MapReduce

clusters in a locality-aware manner to improve runtime performance of individual jobs and

reduce network traffic. Purlieus uses heuristics specifically developed for either Map-input

heavy jobs, Reduce-input heavy jobs, or both to couple data and VM placement. However,

their optimization strategy does not consider the time cost of loading data from sources.

Similar to Purlieus, Li et al. [82] introduces a cloud resource manager, CAM, that spe-

cially designed to maximize the locality for MapReduce in the cloud. CAM employs a

min-cost flow based approach for data and VM placement to achieve VM closeness and

hotspot avoidance. CAM uses network topology and storage topology information to assist
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data and VM placement and MapReduce job scheduling. The goal of its resource alloca-

tion is to maximize the locality so that MapReduce job execution time can be minimized,

without considering the time cost of data loading. Although CAM couples the resource

allocation and job scheduling process, it only works in the homogeneous environment. The

data placement strategy will be completely changed when considering data loading time

cost in a multi-cloud environment where the system is heterogeneous.

Bu et al. [36] proposed CoTuner, a coordinated auto-configuration framework that co-

configure VM and application, to optimize the system performance using Simplex-based

optimization and reinforcement learning methods. However, they limit their scope within

CPU and memory configuration, without considering network metrics and data locality.

Our work differs from those works by enabling generalized tri-directional resource-

application-data information sharing, making optimization plans for data loading, virtual

cluster allocation and application scheduling, based on data locality, resource and applica-

tion specification, and virtual cluster topology.

2.2 Manage, Access, and Use of Pinned Data

Non-consumptive Data

Data capsules [33] is a mechanism for containing sensitive data within a virtualized envi-

ronment with the goal of minimizing the available channels to leak that data. The Capsule

system has two primary modes of operation: normal mode and secure mode. In normal

mode, the computer behaves the same as it would without the Capsule system. In secure

mode, the primary OS is blocked from sending output to the external network or to devices

that can store data. The data capsules design is well-suited to non-expressive use, in that
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it is able to maintain strong security guarantees on the sensitive data while being highly

permissive to users, who may need to install custom software or perform other actions that

would require the granting of many privileges in a normal environment. Zeng et al. [127]

introduced a cloud framework that enforces non-consumptive constraint by extending the

data capsules.

The basic assumption that these efforts based on, was that the users are trustworthy.

However, users could intentionally deploy algorithms that leak copyrighted data through

the VNC channel. An algorithm could intentionally obscures a final result by encoding

copyrighted text in it. The data capsules solution limits users to running their analysis on a

single VM, which needs extending to accommodate analysis workload that typically uses

distributed data processing paradigm such as MapReduce. Our solution differs from those

data capsules solution that algorithms are regulated, and are part of pinned data suitcase

that packaged by data providers.

Martignoni et al. [91] presented Cloud Terminal, in which the only software running on

the user side is a lightweight secure thin terminal, and most application logic is in remote

servers. A cloud rendering engine on a remote server renders output of the application logic

and send back bitmaps to the thin terminal on the user side for visualization. The Cloud

Terminal simply supplies a secure display and input path to remote software, and therefore,

secures data from malicious access. Although the Cloud Terminal is able to prevents data

from leaking to user hosts, it does not provide a programmatic solution to use the output

data. The bitmaps visualization only works for human-computer interactions. Our solution

differs from the Cloud Terminal that the output of application logics can be retrieved from

the data source for further analysis.
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Geographically Distributed Data Processing in Clouds

Clouds give users a notion of virtually unlimited, on-demand resources for computation

and storage. Attributed to its ease of executing large scale data-driven loosely coupled

parallel applications, MapReduce has become a dominant programming model for running

applications in a cloud. Therefore, we focus on MapReduce in this section.

MapReduce can be run on a single domain or multiple domains. A domain typically

refers to a single cluster or multiple clusters that exist within one administrative bound-

ary. There are several ways to deploy MapReduce over multiple domains, 1) deploy in-

dependent MapReduce clusters at each domain and a global layer to manage MapReduce

jobs [86] [30]; 2) deploy MapReduce onto a virtual cluster aggregated from multiple do-

mains [76] [92] [79]; or 3) deploy MapReduce directly onto multiple domains without

adding virtual network layer [122] [108] [89].

Resources can be allocated for either shared or dedicated use. A group of dedicated

resources can be a set of physical machines, a set of virtual machines provisioned in

Clouds [31], or a set of nodes allocated in batch systems [86]. A group of shared resources

can be a set of Volunteer Computing machines [83] [50] [115], or computing cycles from

batch systems [122] [89].

Elteir et al. [56] classifies MapReduce jobs into recursively reducible jobs and non-

recursively reducible jobs. Recursively reducible MapReduce has no inherent synchro-

nization requirement between the Map and Reduce phases. Such jobs can be processed

in a hierarchical reduction manner. The Hierarchical MapReduce (HMR) model [86] [88]

was inspired by the combiner function from the original MapRedcue model and recursively

reducible jobs discussed in Elteir et al. [56].
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2.3 Background Related Work

MapReduce

MapReduce [52] is de facto the most popular programming paradigm for processing large

datasets running on a large number of compute resources. MapReduce is applied to running

on various types of resources. The Google MapReduce [52] and Hadoop [123] are opti-

mized for running on single homogeneous clusters. Ranger et al. [104] describes Phoenix,

an MapReduce implementation for shared-memory systems. Catanzaro et al. [42] and He

et al. [68] implement MapReduce frameworks for graphics processors. Misco [54] and

Hyrax [90] apply MapReduce model on Mobile Computing environments. Lin et al. [83],

Costa et al. [50], Tang et al. [115] implements MapReduce on Volunteer Computing envi-

ronments. Bicer et al. [30] run MapReduce jobs using a hybrid resources of a local cluster

and Clouds.

Job scheduling is key to maximum system utilization and job turnaround time. Zaharia

et al. [126] point out that heterogeneous environments seriously degrade the MapReduce

job performance. The objective of Map Reduce job scheduling on heterogeneous environ-

ments mainly focuses on either performance [126] [26] [102] or cost [32].

Beside MapReduce itself, several variations of the MapReduce model have been cre-

ated to handle different application scenarios, e.g., Hierarchical MapReduce [86], Iterative

MapReduce [55], etc. Based on the scope of our thesis, which focuses on heterogeneous

environments, we discuss of the original MapReduce and Hierarchical MapReduce below.

The Iterative MapReduce, which involves multiple rounds of data combining and redistri-

bution, is out of our scope.
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Resource Allocation and Job Scheduling

Researchers have put significant effort into submission and optimal scheduling of massive

parallel jobs in clusters, grids [60], and clouds. Conventional job schedulers, such as Con-

dor [84], SGE [63], PBS [69], LSF [130], etc., provide highly optimized resource alloca-

tion, job scheduling, and load balancing within a single cluster environment. Grid brokers

and metaschedulers on the other hand, e.g., Condor-G [62], CSF [53], Nimrod/G [39],

GridWay [71], provide an entry point to multi-cluster grid environments. They enable

transparent job submission to various distributed resource management systems via proto-

cols such as GRAM [51] in Globus [59], hiding issues such as the locality of execution and

availability of resources there.

In grid computing, advance reservations and co-allocation [58] on independently con-

trolled and administered resources are needed to guarantee QoS criteria such as relia-

bility, availability, cost and performance. Clouds ease the advance reservation and co-

allocation process by fully control the resources and provision virtual machines before

running applications. Typically, resource allocation in clouds are policy based [113] [98].

Resource schedulers are often used to apply these policies to the clouds. For instance,

Haizea [111] [112] is a resource lease manager for OpenNebula [93], offering advance

reservation policy of VM placement.

The goals of resource allocation solutions in clouds are different. Some of the solutions

try to optimize energy consumption in clouds [28] [29] [46], or look into virtual network

optimizations that aim to maximize the revenue of the service provider [47] [48]. Some

other work focus on optimizing the application performance by meeting the job deadline at

an acceptable cost [121] [30] [35] [78].

Park et al. [101] dynamically reconfigure VMs that increases or decrease the computing
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capability of each node to enhance locality-aware job scheduling. It increases the comput-

ing resource of a VM where the next task has its data, and remove a idel virtual CPU from

another VM in the same virtual cluster, keeping a constant cost for the user. Chen et al. [44]

looks into MapReduce processing and build a resource-time cost model. The cost model

is used to assist finding optimal amount of resources that can minimize the monetary cost

with job finish time constraint.

From application scheduling view point with respect to data locality, Mohamed et

al. [94] proposed a close-to-files (CF) job-placement algorithm to place job components

on clusters with enough idle processors close to input files. Guo et al. [66] investigated

data locality in MapReduce and propose an algorithm that schedules multiple tasks simul-

taneously rather than one by one to give optimal data locality. Zaharia et al. [125] proposes

delay scheduling for MapReduce that increases system utilization and data locality. Li et

al. [81] proposes a deadline-enabled delay (DLD) scheduling algorithm that optimizes job

delay decisions according to real-time resource availability and resource competition, while

still meeting job deadline constraints. Bu et al. [37] presents an interference and locality-

aware task scheduler for MapReduce in virtual clusters and designs a task performance

prediction model for interference-aware scheduling.

Existing Technologies for Our Work

HTCondor: HTCondor [117] is a high-throughput distributed batch system that provides

job management, scheduling, resource monitoring, resource management, and fault toler-

ance. HTCondor seamlessly combines the computational power of distributed resources

including VMs into one resource for users to leverage for their work. One of HTCondor’s

key features is that it provides a flexible and expressive framework for matching resource
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requests with resources through its ClassAd mechanism. HTCondor integrates grid and

cloud resources using a simple ASCII-based protocol, Grid Ascii Helper Protocol (GAHP)

that handles both synchronous and asynchronous calls. A GAHP server receives ASCII

commands via a socket from HTCondor and then directly interfaces with the individual

grid or cloud services.

VPN: Virtual private networks (VPN) have been widely used for enabling wide-area

access to resources in private organizational networks. Due to the simplicity of config-

uration and management we have integrated IPOP (IP-over-P2P) into VCC. IPOP is an

open-source user-centric software virtual network allowing end users to define and create

their own virtual private networks (VPNs). IPOP creates end-to-end peer-to-peer IP tun-

nels without requiring physical nor virtual routing infrastructure, using peers themselves

as virtual routers and leveraging online social networks to establish VPN overlays among

trusted endpoints.

Drools Rule Engine:

Drools implements and extends the Rete algorithm; Leaps used to be provided but was

retired as it became unmaintained. The Drools Rete implementation is called ReteOO, sig-

nifying that Drools has an enhanced and optimized implementation of the Rete algorithm

for object oriented systems. The Rules are stored in the Production Memory and the facts

that the Inference Engine matches against are kept in the Working Memory. The Agenda

manages the execution order of these conflicting rules using a Conflict Resolution strategy.

The rule engine provides declarative programming capability to ease expression of solu-

tions to difficult problems and consequently have those solutions verified. A rule engine

also provides logic and data separation so that the logic can be much easier to maintain as

there are changes in the future, as the logic is all laid out in rules. It is also very efficient to
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match rule patterns to domain object data when datasets are changed in small portions as

the rule engine can remember past matches.

Provenance: Provenance [109] capture is through Karma [110], a standalone tool that

can be added to existing cyberinfrastructure for purposes of collection and representation

of Open Provenance Model (OPM) [95] provenance data. Karma utilizes a modular ar-

chitecture that permits support for multiple instrumentation plugins that make it usable in

different architectural settings. We implement a improved Karma architecture by asyn-

chronous publishing of provenance through a publish-subscribe system (messaging bus).

The messaging bus acts as a buffer to the Karma server that offers less response time to

applications for provenance ingestions.
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Background Work

In this chapter, we present our early work, Hierarchical MapReduce (HMR) [86], as back-

ground work to this dissertation. HMR gathers computation resources from different clus-

ters and runs MapReduce jobs across them. The applications implemented in this frame-

work adopt a Map-Reduce-GlobalReduce model where computations are expressed as

three functions: Map, Reduce, and GlobalReduce. Both the Map and the Reduce are

executed on local clusters. The GlobalReduce is executed on one of the local clusters,

collecting the output from all the local clusters.

The initial implementation and evaluation of HMR, a joint work with Zhenhua Guo

shown in Section 3.1, Section 3.3.1, and Section 3.4.1, focused on compute-intensive ap-

plications. Subsequent research and development was done solely by Yuan Luo on data-

intensive applications, and the evaluation is presented throughout the rest of the sections in

this chapter.

3.1 Hierarchical MapReduce Framework

Hierarchical MapReduce consists of two layers: a top layer has a global controller that

accepts user submitted MapReduce jobs and distributes them across different local cluster

24
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domains. Upon receiving a user job, the global controller divides the job into sub-jobs

according to the capability of each local cluster. If the input data has not been deployed

onto the cluster already, the global controller also partitions input data proportionally to the

sub-jobs, and sends them to these clusters. After the jobs are all finished on all clusters, the

global controller collects the outputs to perform a final reduction using the GlobalReduce

which is also supplied by the user. The bottom layer consists of multiple local clusters.

Each receive sub-jobs and input data partitions from the global controller, performs local

MapReduce computation and sends results back to the global controller.

A HMR programmer need only supply two Reduces - one “local” Reduce, and one

“global” Reduce - instead of just one for the regular MapReduce. The only requirement is

that the programmer must be sure that the formats of the local Reduce output keys/value

pairs match those of the GlobalReduce input key/value pairs. However, if the job is map-

only, the programmer does not need to supply any Reduce function, and the global con-

troller simply collects the map results from all clusters and places them under a common

directory.

3.1.1 Architecture

A high-level architecture diagram of the HMR is shown in Figure 3.1, consists of a global

controller at the top layer and local MapReduce clusters at the bottom layer. The top layer

consists of a job scheduler, a data manager, and a workload collector. The bottom layer

consists of multiple clusters for running the distributed local MapReduce jobs, where each

cluster has a HMR daemon with a workload reporter and a job manager. The compute

nodes inside each of the cluster are not accessible from the outside.

When a user submits a MapReduce job to the global controller, the job scheduler splits
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the job into a number of sub-jobs and assigns each to a local cluster based on several factors,

including but not limit to the input dataset distribution, the current workload reported by

the workload reporter from each local cluster, as well as the capability of individual nodes

making up each cluster. This is done to achieve load-balance by ensuring that all clusters

will finish their portion of the job in approximately the same time. The global controller

also partitions the input data in proportion to the sub-job sizes if the input data have not

been deployed before-hand. The data manager transfer the user supplied MapReduce jar

and job configuration files with the input data partitions to the clusters. As soon as the

data transfer finishes for a particular cluster, the HMR daemon of that cluster to start the

local MapReduce job. Since data transfer is very expensive, we recommend that users

only use the global controller to transfer data when the size of input data is small and the

time spent for transferring the data is insignificant compared to the computation time. For

large data sets, it would be more efficient and effective to deploy them before-hand, so that

the jobs get the full benefit of parallelization and the overall time does not get dominated

by data transfer. After the local sub-jobs are finished on a local cluster, if the application

requires, the clusters will transfer the output to one of the clusters for global reduction.

Upon receiving all the output data from all local clusters, a GlobalReduce will be invoked

to perform the final reduction task, unless the original job is map-only.

3.1.2 Programming Model

The programming model of the HMR is the Map-Reduce-GlobalReduce model where

computations are expressed as three functions: Map, Reduce, and GlobalReduce. We

use the term “GlobalReduce” to distinguish it from the “local” Reduce, but conceptually

as well as syntactically, a GlobalReduce is just another conventional Reduce. The Map,
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Figure 3.1: Hierarchical MapReduce Architecture.

just as with a conventional Map, takes an input pair and produces a set of intermediate

key/value pairs; likewise, the Reduce, just as with a conventional Reduce, takes an in-

termediate input key and a set of corresponding values produced by the Map task, and

outputs a different set of key/value pairs. Both the Map and the Reduce are executed on

local clusters. TheGlobalReduce is executed on one of the local cluster which is marked as

global controller, using the output from the local clusters. Table 3.1 lists these 3 functions

and also the input and output data types. An extended HMR model is introduced where

different local Map/Reduce functions can be executed, before the GlobalReduce function

aggregates data to produce final results. Note that the formats of the local Reduces output

keys/value pairs must match those of the GlobalReduce input key/value pairs.

Figure 3.2 uses a tree-like structure to show the data flow across Map, Reduce, and

GlobalReduce functions. The leaf rectangle nodes with dotted line represent MapReduce

clusters that execute the Map and Reduce functions, and the root rectangle node with
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Table 3.1: Input and output types of Map, Reduce, and GlobalReduce functions.

Function Name Input Output

Map (ki, vi) [(km, vm)]

Reduce (km, [vm1 , ..., v
m
n ]) [(kr, vr)]

GlobalReduce (kr, [vr1, ..., v
r
n]) vo

Figure 3.2: HMR Data Flow.
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dotted line is a MapReduce cluster on which the GlobalReduce takes place. The arrows

indicate the direction in which the data sets (key/value pairs) flow. When a job is submitted

into the system, the input dataset is partitioned into splits. The splits then are passed to the

leaf nodes where Map tasks are launched. Each Map task consumes an input key/value

pair and produces a set of intermediate key/value pairs. The set of intermediate pairs then

are passed to the Reduce tasks, which are also launched at the same cluster as the Map

tasks. Each Reduce task consumes an intermediate key with a set of corresponding values,

and produces a different set of key/value pairs as output. All the local Reduce results are

sent to one local cluster to perform GlobalReduce task. Each GlobalReduce takes in a

key and a set of corresponding values that were originally produced from the local Reduce

tasks, and computes and produces the final output.

Theoretically, the model can be extended to more than just two hierarchical layers, i.e.

the tree structure in Figure 3.2 can have more depth by adding intermediate Reduce steps

that partially reduce the output from previous Reduce functions.

3.2 HMR Job Scheduling

Application job scheduling is highly customizable and is a layer above the VCC. How-

ever, I illustrate through a Hierarchical MapReduce application, how resource topology

information is used to assist job scheduling in the application layer.

The input dataset for a particular HMR job may be either submitted by the user to

the global controller before execution, or pre-deployed on the local clusters (or sub-VCs

in VCC terminology) and is exposed via application specification/metadata to the user

who runs the MapReduce job. The early work [86] introduces Compute Capacity Aware

Scheduling (CCAS) algorithm, described in section 3.2.1, that optimizes compute-intensive
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jobs, by only considering compute power of each cluster without taking runtime topology

information from resources. The subsequent work [87] introduces Data Location Aware

Scheduling (DLAS) algorithm, described in section 3.2.1, identifies a candidate cluster

for processing a data partition requires the physical residence of the data partition replica,

but did not consider network metrics. In section 3.2.3, we introduces Topology and Data

Location Aware Scheduling (TDLAS) algorithm, which takes virtual cluster topology in-

formation and data location information to schedule jobs.

3.2.1 Compute Capacity Aware Scheduling

The CCAS aims to optimize compute-intensive jobs. Assumptions are made where the

input data of each Map tasks are equal in size and the Map tasks take approximately the

same amount of time to run.

Consider running a MapReduce job on n clusters. Let MapSlotsi be the maximum

number of Map tasks that can be run concurrently on Clusteri; MapOccupiedi be the

number of Map tasks currently running on Clusteri; γi be the number of available slot to

run Map tasks on Clusteri; NumCorei be the total number of CPU Cores on Clusteri,

where i ∈ {1, . . . , n}. And ρi defines the maximum number ofMap tasks per core, so that,

MapSlotsi = ρi ×NumCorei (3.1)

and,

γi =MapSlotsi −MapOccupiedi (3.2)

The weight of each sub-job Wi can be calculated from equation 3.3 where the factor θi is

the computing power of each cluster, e.g., the CPU speed, memory size, storage capacity,
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etc. The actual θi varies depending on the characteristics of the jobs,

Wi =
γi × θi∑n
j=1 γj × θj

(3.3)

Let JobMap be the total number ofMap tasks for a particular job, which can be calculated

from the number of keys in the input to the Map tasks, and JobMapi be the number of

Map tasks to be scheduled to Clusteri, so that

JobMapi = Wi × JobMap (3.4)

Data-wise, let Dsize be the total size of dataset for and SZi be the size of data to be

scheduled to Clusteri, so that

SZi = Wi ×Dsize (3.5)

After splitting a MapReduce job into sub-MapReduce jobs based on equation 3.4, the

dataset is partitioned and staged to the destination clusters accordingly. See Algorithm 1.

Algorithm 1 Compute Capacity Aware Scheduling
Require: Dsize Dataset size, n Clusters

1: function CCAS(γ, θ, n,Dsize)

2: for i in n do

3: Calculate Wi using on equation 3.3.

4: SZi ← Wi ×Dsize

5: end for

6: return SZ . Return the list of size of data to be processed on each cluster

7: end function
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3.2.2 Data Location Aware Scheduling

The DLAS requires of a candidate cluster the physical residence of the data partition. Typ-

ically, with the assistance of a global file system, data partitions can be replicated among

clusters. If more than one candidate cluster is found, the scheduling algorithm maps that

data partition to one of the candidate clusters in a way that all selected clusters have similar

ratio of data over cluster compute capacity, or called, balanced processing time.

Consider a dataset DS = {D1, . . . , Dm} which has been partitioned to m partitions,

residing on n clusters. Each partition has been replicated among Nj clusters, with the data

size defined as SZDj
, where 1 ≤ Nj ≤ n and j ∈ {1, . . . ,m}. A scheduling plan k

contains a list of subset of dataset DS. Let SDSki be a subset of DS for Clusteri, and

∃k((∪ni=1SDS
k
i = DS) ∧ (∩ni=1SDS

k
i = ∅)) (3.6)

The compute capacity of Clusteri is defined as Wi , where i ∈ {1, . . . , n}, so that in

Clusteri, the ratio of data partitions collection over compute capacity in scheduling plan k

is defined as Rk
i , and

Rk
i =

∑
x∈SDSk

i
SZx

Wi

(3.7)

And the total data processing time under a scheduling plan k is defined as,

Tk = ω(maxi∈{1,...,n}R
k
i ) (3.8)

in which ω is a constant value. The following equation finds minimized total processing

time in all K scheduling plans.

Tmin = mink∈KTk (3.9)

If, Tmin = Tk, then plan k is the optimal plan. To make the workload balanced among these
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Algorithm 2 Data Location Aware Scheduling Algorithm
Require: m Data Partitions, n Clusters

1: function PREPAREDATASET(DS) . Dataset DS = {D1, . . . , Dm}

2: Sort DS in decreasing order of partition size . SZDi
≥ SZDi+1

3: for M [i][j] in M do . M is a m× n matrix

4: if Data Partition Di exists on Clusterj then M [i][j]← SZDi

5: elseM [i][j]← 0

6: end if

7: end for

8: return M

9: end function

10: function DLAS(DS, W )

11: M ← PREPAREDATASET(DS)

12: for j in 1 . . . n do . Loop through each cluster

13: Calculate Ej based on equation 3.11.

14: for i in 1 . . .m do . Sum of size of un-planned data partitions in Clusterj

15: Pj ← Pj +M [i][j]

16: end for

17: CLj ← 0 . CLj is the current workload of Clusterj

18: Plan[j]← null . P lan[j] is the name of the cluster to process data partition

Dj

19: end for
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20: for i in 1 . . .m do . Loop through each data partition

21: Sort Clusters{1...x} in increasing order of Px/Wx values.

22: for j in 1 . . . n and M [i][j] 6= 0 and Plan[i] == null do

23: if CLj + SZDj
≤ Ej then Plan[i]← Clusterj ; CLj ← CLj + SZDi

24: end if

25: end for

26: if Plan[i] == null then

27: Clist← List of Clusterx having smallest CLx/Wx value

28: k← x of Clusterx in Clist having smallest P value

29: Plan[i]← Clusterk ; CLk ← CLk + SZDi

30: end if

31: for j in 1 . . . n do

32: Pj ← Pj − SZDi
. Update the size of un-planned data partitions in

Clusterj

33: end for

34: end for

35: return Plan . Return a scheduling plan

36: end function
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clusters, Rk
i values in plan k should be as close as possible. Ideally,

Rk
1 = Rk

2 = · · · = Rk
n (3.10)

so that the expected size of the data to be run on Clusteri are calculated as Ei.

Ei =
Wi∑n
k=1Wk

×
n∑
j=1

SZDj
(3.11)

The DLAS algorithm is an greedy algorithm towards finding an optimal plan. In the

current version of DLAS, a few assumptions are made, 1) the data partitions are relatively

small in comparison to the whole dataset so that no further partitions to be made, because

smaller granularity of data partition leads to better chance of load balance; 2) data replicas

are randomly replaced among clusters; 3) no data transfer activities are allowed.

In Algorithm 2, the data partitions are sorted in decreasing order of size, and an m× n

matrix M is constructed in which M [i][j] denotes the size of data partition Di if exists

on Clusterj . The expected data sizes on each cluster are calculated as Ei. For each data

partition Dj , Sort candidate clusters (which contains replica of Dj) in increasing order of

the total un-planned data size, and assign data partition Dj to first candidate cluster, if

current load on that cluster plus SZDj
is less than E value; otherwise, assign data partition

Dj to the first cluster with least current load. The returned schedule plan contains a list of

data partition and scheduled cluster mappings.

3.2.3 Topology and Data Location Aware Scheduling

The DLAS algorithm does not take into consideration transferring data among clusters, so

it does not perform well under conditions of an imbalanced replica distribution scenario.

Besides, if data partitions are relatively large in proportion to the whole dataset, DLAS
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fails to balance the workload without further partitioning the existing data partitions. A

Topology and Data Location Aware Scheduling (TDLAS) algorithm is briefly introduced,

which takes virtual cluster topology information and data location information to schedule

jobs.

In TDLAS, PRab denotes the processing rate for data on an outside location a to be

processed on V Cb that

PRab =
S

Tab + Tb
(3.12)

where Tab is the time cost of transferring data from a to b, Tb is the time cost of compute

data on b, and S is the data size. Since Tab = S
Bab

+ Lab where Bij and Lij are bandwidth

and latency value from a to b, and Tb = S
CRb

where CRb is the rate to compute data on b,

we can compute PRab

PRab =
S

S
Bab

+ Lab +
S

CRb

(3.13)

To simplify the PRab calculation process, we use T ′ab =
S
Bab

by removing the Lab, which

will be added back in Equation 3.15. Therefore, we compute PR′ab instead of PRab

PR′ab =
S

T ′ab + Tb
=
Bab × CRb

Bab + CRb

(3.14)

Note that the CRb is derived from application history data and its value varies from case to

case. Let PTj be data processing time on resource j. We compute

PTj =
m∑
i=1

PR′ij × Sij +max
i∈M

Lij (3.15)

where Sij is the size of the data on place i that assigned to be processed on resource j.

Therefore, the makespan of the job, T , is the maximum value of the data processing time

on each sub-VC:

PT = max
j∈N

PTj (3.16)
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subject to

max
j∈N

PTj −min
j∈N

PTj < θ (3.17)

where N is the full set of sub-VCs in the provisioned virtual cluster, and θ is a threshold to

balance the workload among in the virtual cluster.

The TDLAS algorithm is briefly described as follows:

1. Calculate PR′ value for each subset of data against all sub-VCs.

2. Assign each subset of data to a sub-VC with maximum PR′ value.

3. If Inequality 3.17 is not satisfied, re-partition data on a sub-VC, V Cj , where PTj =

maxi∈N PTi , distributed partial data to other sub-virtual-clusters with less workload

but smaller PR′ value. Repeat step 3 until inequality 3.17 is satisfied.

3.3 Hierarchical MapReduce Applications

3.3.1 Compute-Intensive Applications

AutoDock [97] is a suite of automated docking tools for predicting the bound conforma-

tions of flexible ligands to macromolecular targets. It is designed to predict how small

molecules of substrates or drug candidates bind to a receptor of known 3D structure.

Running AutoDock requires several pre-docking steps, e.g., ligand and receptor prepa-

ration, and grid map calculations (AutoGrid), before the actual docking process can take

place. There are desktop GUI tools for processing the individual AutoDock steps, such as

AutoDockTools (ADT) [97] and BDT [119], but they do not have the capability to effi-

ciently process thousands to millions of docking processes. Ultimately, the goal of a dock-

ing experiment is to illustrate the docked result in the context of macromolecule, explaining
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Table 3.2: AutoDock HMR input fields and descriptions.

Field Description

ligand name Name of the ligand

autodock exe Path to AutoDock executable

input files Input files of AutoDock

output dir Output directory of AutoDock

autodock parameters AutoDock parameters

summarize exe Path to summarize script

summarize parameters Summarize script parameters

the docking in terms of the overall energy landscape. Each AutoDock calculation results in

a docking log file containing information about the best docked ligand conformation found

from each of the docking runs specified in the docking parameter file (dpf). The results can

then be summarized interactively using the desktop tools such as AutoDockTools or with

a python script. A typical AutoDock based virtual screening consists of a large number

of docking processes from multiple targeted ligands that takes a large amount of time to

finish. However, the docking processes are data independent, so if several CPU cores are

available, these processes can be carried out in parallel to shorten the overall makespan of

multiple AutoDock runs.

We apply the Hierarchical MapReduce programming model to running multiple AutoDock

instances to support the feasibility of our approach. The key/value pairs of the input of the

Map tasks are ligand names and the location of ligand files. We designed a simple input

file format for AutoDock MapReduce jobs. Each input record, which contains the 7 fields

shown in Table 3.2, corresponds to a Map task.

The Map, Reduce, and GlobalReduce functions are implemented as follows:
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1) Map: The Map task takes a ligand to run the AutoDock binary executable against a

shared receptor, and then runs a Python script summarize result4.py to output the

lowest energy result using a constant intermediate key.

2) Reduce: The Reduce task takes all the values corresponding to the constant interme-

diate key and sorts the values by the energy from low to high, and outputs the sorted

results to a file using a local Reduce intermediate key.

3) GlobalReduce: The GlobalReduce finally takes all the values of the local reducer

intermediate key, sorts and combines them into a single file by the energy from low

to high.

3.3.2 Data-Intensive Applications

A HMR version of grep is written as a data-intensive application. The Map, Reduce, and

GlobalReduce functions are implemented as follows:

1) Map: The Map function captures the matching lines of a regular expression input.

2) Reduce: The Reduce function outputs all the matching lines from local Hadoop

execution.

3) GlobalReduce: The GlobalReduce function collects all the output from local Hadoop

execution and combines them into a single output file.

The total execution time varies with respect to different data distribution and different reg-

ular expression input.

For the compute-intensive applications such as AutoDock, the compute capacity aware

scheduling algorithm (CCAS) works well. CCAS is further discussed in Chapter 3.2.1. It
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will not necessarily be the case when an application has larger data sets that data movement

becomes significant. As an alternative to transferring data explicitly from site to site, we

explore using a shared file system to share datasets among MapReduce clusters. In this

section, we discuss the implementation of using a distributed file system called Gfarm [116]

on top of the Hadoop clusters to support data location aware scheduling algorithm (DLAS).

DLAS is further discussed in Chapter 3.2.2.

Gfarm is a global distributed file system that federates local file systems on compute

nodes to maximize distributed file I/O bandwidth, and allows the storage of multiple file

replicas in different locations to enhance parallel I/O, to avoid read access concentration of

hot files, and for fault tolerance.

Since data transfer can be expensive, if using architecture in Figure 3.1, we recommend

that users only use the global controller to transfer data when the size of input data is small

and the time spent for transferring the data is insignificant compared to the computation

time. For large data sets, it would be more efficient to deploy them before-hand, so that the

jobs get the full benefit of parallelization and the overall time does not become dominated

by data transfer. More efficiently, when using a shared file system, the large date sets do not

even need to move across clusters. Instead of transferring data between the user site and

MapReduce clusters upon making scheduling decisions, the new modification has Gfarm

file system deployed at head nodes of MapReduce clusters. In this particular setting, a

Gfarm metadata server sits on a clusterś head node, and Gfarm I/O servers and Gfarm client

sit on every head node of clusters. The system will take advantage of the data locality when

making scheduling decisions.

Figure 3.3 describes the steps of a HMR execution with Gfarm settings. The blue box

steps are executed on the Global Controller and the yellow box steps are executed on local
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Figure 3.3: HMR Execution Steps.

Hadoop clusters. When a HMR job is launched, the framework first looks up the location

of the input dateset in Gfarm. A DLAS scheduling decision is made based on the input data

locality afterwards. The sub-MapReduce jobs are then submitted to local clusters. On local

clusters, input dataset is imported from Gfarm to HDFS before MapReduce execution,

so that the data set can be distributed over the compute nodes of a cluster. When local

MapReduce execution is complete, the output dataset is exported from HDFS to Gfarm file

system. The Global Controller then imports the local output dataset from Gfarm to HDFS

on the Global Controller node before performing GlobalReduce execution. The output of

GlobalReduce then is exported from HDFS to Gfarm and before the end of HMR execution.

3.4 HMR Framework Evaluation

3.4.1 Evaluation of AutoDock HMR

The HMR is evaluated using the AutoDock application. HMR is written in Java and Shell

scripts and fully uses the Hadoop system. ssh and scp scripts are used to manage the data

stage-in and stage-out. On the local clusters side, the workload reporter is a component

that exposes Hadoop cluster load information accessed by global job scheduler.

Our evaluation was carried out on the IU Quarry cluster and two clusters, Hotel and
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Table 3.3: Cluster Node Specifications.

Cluster CPU CPU/Node Cache size Memory OS Nodes Alloc

Hotel Intel Xeon 2.93GHz 8 8192KB 24GB Linux 2.6.18 SMP 21

Alamo Intel Xeon 2.67GHz 8 8192KB 12GB Linux 2.6.18 SMP 21

Quarry Intel Xeon 2.0GHz 8 6144KB 16GB Linux 2.6.18 SMP 21

Alamo, in FutureGrid, see Table 3.3 for specifications. IU Quarry is a classic HPC cluster

with several login nodes that are publicly accessible from outside. After a user logs in,

he/she can do various job-related tasks, including job submission, job status query and

job cancellation. The computation nodes however, cannot be accessed from outside. Two

distributed file systems (e.g., Lustre [34], GPFS [106]) are mounted to each computation

node for storing input data accessed by the jobs. FutureGrid partitions the physical cluster

into several parts, each of which provides a different testbed such as Eucalyptus, Nimbus,

and HPC.

To deploy Hadoop to traditional HPC clusters, the built-in job scheduler (PBS) is used

to allocate nodes. Although PBS has no knowledge of data locality when allocating nodes,

it is still suitable for compute-intensive jobs in which data transfer cost is insignificant.

To balance maintainability and performance, the Hadoop program is installed in a shared

directory while storing data in a local directory, because the Hadoop program (Java jar files,

etc.) is loaded only once by Hadoop daemons whereas the HDFS data is accessed multiple

times. 21 nodes for each cluster are allocated, within which one node is a dedicated master

node (HDFS namenode and MapReduce jobtracker) and other nodes are data nodes and

task trackers.

Considering that AutoDock is a CPU-intensive application, ρi is set to 1 per Section 3.3

so that the maximum number of Map tasks on each node is equal to the number of cores
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Figure 3.4: Local cluster MapReduce execution time based on different number of Map

tasks.

on the node. The version of AutoDock is 4.2 which is the latest stable version. The global

controller does not care about low-level execution details because our local job managers

hide the complexity.

During the experiments, 6,000 ligands and 1 receptor are used. One of the most im-

portant configuration parameters is ga num evals - number of evaluations. The larger its

value is, the higher the probability that better results may be obtained. Based on prior ex-

periences, the ga num evals is typically set from 2,500,000 to 5,000,000. We configure it

to 2,500,000.

Test Case 1

The first test case is a base test case not involving the Global Controller. It is used to

determine how each local Hadoop cluster performs under different numbers of Map tasks.

The AutoDock application is executed in the Hadoop to process 100, 500, 1000, 1500 and

2000 ligand/receptor pairs in each of the three clusters.

As is shown in Figure 3.4, the total execution time vs. the number ofMap tasks on each
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Figure 3.5: (a) Two-way data movement cost of γ-weighted partitioned datasets: local

MapReduce inputs and outputs; (b) Local MapReduce turnaround time of γ-weighted

datasets, including data movement cost.

cluster is close to linear, regardless of the startup overhead of the MapReduce jobs. The

total execution time of the jobs running on the Quarry cluster is approximately 50% slower

than running on Alamo and Hotel. The main reason is that nodes of the Quarry cluster have

slower CPUs compared with that of Alamo and Hotel.

Test Case 2

The second test case shows the performance of executing MapReduce jobs with γ-weighted

partitioned datasets on different clusters, which is based on the following parameters setup.

For equation (4) from section 3.3, we set θi = C, where C is a constant, and i ∈ {1, . . . , n}

for our three clusters. The calculation shows ρ1 = ρ2 = ρ3 = 160, given no MapReduce

jobs are running beforehand. Therefore, the weight of Map tasks distribution on each

cluster is Wi =
1
3
. We then equally partition the dataset (apart from shared dataset) into

3 pieces, stage the data together with the jar executable and job configuration file to local

clusters for execution in parallel. After the local MapReduce execution, the output files

will be staged back to the global controller for the final reduce.
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Figure 3.6: (a) Two-way data movement cost of γθ-weighted partitioned datasets: local

MapReduce inputs and outputs; (b) Local MapReduce turnaround time of γθ-weighted

datasets, including data movement cost.

Figure 3.5(a) shows the data movement cost during stage-in and stage-out. The input

dataset of AutoDock contains 1 receptor and 6000 ligands. The receptor is described as a set

of approximately 20 gridmap files totaling 35MB in size, and the 6000 ligands are stored

in 6000 separate directories, each of which is approximately 5-6 KB large. In addition,

the executable jar and job configuration file together has a total of 300KB in size. For

each cluster, the global controller creates a 14MB tarball containing 1 receptor file set,

2000 ligands directories, the executable jar, and job configuration files, all compressed,

and transfers it to the destination cluster, where the tarball is decompressed. This is called

global-to-local procedure “data stage-in”. Similarly, when the local MapReduce jobs finish,

the output files together with control files (typically 300-500KB in size) are compressed

into a tarball and transferred back to the global controller. This is called local-to-global

procedure “data stage-out”. As can be seen from Figure 4, the data stage-in procedure

takes 13.88 to 17.3 seconds to finish, while the data stage-out procedure takes 2.28 to

2.52 seconds to finish. The Alamo cluster takes a little longer to transfer the data but

the difference is insignificant compare to the relatively long duration of local MapReduce
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executions.

The time it takes to run 2000Map tasks on each of the local MapReduce clusters varies

due to the different specification of the clusters. The local MapReduce execution makespan,

including data movement costs (both data stage-in and stage-out) is shown in Figure 3.5(b).

The Hotel and Alamo clusters take similar amount of time to finish their jobs, but the

Quarry cluster takes approximately 3,000 additional seconds to finish, about 50% more

than Hotel and Alamo. The GlobalReduce task is only invoked after all the local results

are ready in the global controller, and it takes only 16 seconds to finish. Thus, the relatively

poor performance on Quarry becomes the bottleneck on the current job distribution.

Test Case 3

The third test case evaluates the performance of executing MapReduce jobs with γθ-weighted

partitioned datasets on different clusters, which is based on the following setup. From test

cases 1 and 2, we observe that although all clusters are assigned the same number of com-

pute nodes and cores to process the same amount of data, they take significantly different

amount of time to finish. Among the three clusters, Quarry is much slower than Alamo and

Hotel. The specifications of the cores on Quarry, Alamo and Hotel are Intel Xeon E5335

2GHz, Intel Xeon X5550 2.67GHz, and IntelXeon X5570 2.93GHz, respectively. The in-

verse ratio of CPU frequency and that of processing time match roughly. The hypothesis

is that the difference in processing time is mainly due to the different core frequencies,

therefore, it is not enough to merely factor in the number of cores for load balancing, and

the computation capabilities of each core are also important. Next, the scheduling policy

is refined to add CPU frequency as a factor to set θi . Here we set θ1 = 2.93 for Hotel,

θ2 = 2.67 for Alamo, and θ3 = 2 for Quarry. As is for test case 2, ρ values are calculated
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where ρ1 = ρ2 = ρ3 = 160, given no MapReduce jobs are running beforehand. Thus,

the weights are Weight1 = 0.3860, Weight2 = 0.3505, and Weight3 = 0.2635 for Ho-

tel, Alamo, and Quarry respectively. The dataset is also partitioned according to the new

weight, which is 2316 Map tasks on Hotel, 2103 on Alamo, and 1581 on Quarry.

Figure 3.6(a) shows the data movement cost in the weighted partition scenario. The

variation in the size of the tarball for different number of ligand sets is quite small, smaller

than 2MB. As one can see from the graph, the data stage-in procedure takes 12.34 to 17.64

seconds to finish, while the data stage-out procedure takes 2.2 to 2.6 seconds to finish.

Alamo takes a little bit longer to transfer the data but the difference is also insignificant

given the relatively long duration of local MapReduce executions as in the previous test

case.

With weighted partition, the local MapReduce execution makespan, including data

movement costs (both data stage-in and stage-out) are shown in Figure 3.6(b). All three

clusters take similar amount of time to finish the local MapReduce jobs. We can see that

our refined scheduler configuration improves performance by balancing workload among

clusters. In the final stage, the global reduction combines partial results from local reduces

and sorts the results. The average GlobalReduce time taken after processing 6000 Map

tasks (ligand/receptor docking) is 16 seconds.

3.4.2 Gfarm Over Hadoop Clusters

Preliminary Tests

We demonstrate the execution on PRAGMA [128] testbed using ”grep” application and

give preliminary experimental results. Two virtual clusters (pragma-f0 and pragma-f1)
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were provisioned, each of which contains a virtual front node and 3 virtual compute nodes.

All the virtual nodes are provisioned with 1 core of CPU, 1GB memory, and 80GB storage.

Both of the virtual clusters are deployed as local Hadoop clusters and one of the virtual

clusters (pragma-f0) is deployed as Global Controller. Gfarm Metadata server is deployed

also on pragma-f0 cluster. Both pragma-f0 and pragma-f1 are installed with Gfarm I/O

server (Data Nodes), and Gfarm client.

The total execution time varies with respect to different file distribution and different

regular expression input. In our preliminary test, the input data set contains 10 files. We

generate each of the file with the size of 20MB, 40MB, 60MB, 80MB, 100MB large. Those

10 files were evenly distributed between the two clusters. The total execution time increases

linearly from 210 seconds to 243 seconds when the size of input increases.
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Virtual Cluster Controller

In this chapter, we introduce a virtual cluster management solution, virtual cluster con-

troller (VCC), a building block for geographically distributed data processing. VCC creates

virtual clusters across multiple cloud platforms, builds a network overlay, and manages the

virtual cluster life-cycle in a fault-tolerant manner. VCC extends HTCondor and leverages

VPN technology to enhance user controllability and cloud interoperability. A standalone

matchmaker is in place to matchmake resources, applications, and data. Virtual machine

images composed in different countries can be transfered across trusted sites via secured

channels so that they can be instantiated at multiple places to form a cross-institutional

virtual cluster. A virtual machine instance spinning at one institution might be migrated to

another institution for whatever workload or administrative reasons.

The virtual cluster controller (VCC) is positioned as the middle layer of the cloud

stack. This chapter introduces the design and implementation of VCC and its application

in PRAGMA.

49
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4.1 Architecture

VCC is architected to layer on top of cloud providers and beneath the application. The

layers are defined as follows.

Application: a program or a group of programs that utilize cloud resources to per-

form specialized tasks. Applications typically differ from each other in terms of resource

requirements, communication patterns, and data localities.

Controller: VCC enables allocation of cloud resources from multiple providers with

minimum system administrator assistance. This includes transferring VM images to the re-

mote resources, booting the VMs, building the network overlay, and monitoring and man-

aging the the resources with minimal effort from the user. A resource allocation algorithm

in VCC takes into account resource and application specifications as input data and gener-

ates a resource allocation plan aimed at optimizing execution of a user’s applications. The

resource allocation model is further discussed in Section 4.3.

Cloud provider: Cloud provider is a self-contained system that provisions VM in-

stances on physical resources on behalf of a user. A user can often have access to multiple

cloud providers. A network overlay can then be used to integrate VMs on different physi-

cal machines and geographic locations so that they appear like they are on the same private

network. This eases the management burden to the user as their VMs then appear as nodes

within the same cluster. The network overlay details are discussed in Section 4.1.1.

Virtual Cluster Controller

App App...

Cloud Providers

Figure 4.1: Resource management system for hybrid cloud infrastructures.
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4.1.1 VCC Design

VCC has four main components: Resource Registry, Resource Allocator, and Allocation

Manager, and Runtime Information Manager. Each component is further described below.

• Resource Registry (RR): A resource registry is a cache that contains resource specifi-

cations (RS). The RS in RR are frequently updated with the latest status from cloud

providers. More formally, the resource availability (RS.avail) values inRR are even-

tually consistent with the actual resource availability, i.e., an out-of-date RS.avail

value will cause a VCC provision request to fail, forcing a refresh of status data and

corresponding update to RS.avail.

• Resource Allocator (RA): A resource allocator provisions resources utilizing the re-

source allocation module described in the previous section.

• Allocation Manager (AM ): An allocation manager starts, stops, monitors, and han-

dles fault tolerance of the allocated resources.

• Runtime Information Manager (RIM ): An runtime information manager collects

virtual cluster topology information and provenance information. The information is

accessible by Resource Allocator and Applications.

4.1.2 VCC Implementation

The implementation of VCC leverages existing tools as described further. In summary,

VCC extends the resource management and fault tolerant capabilities of HTCondor [117]

via implementing a pluggable interface. VCC, shown in Fig. 4.2, through existing tools,

manages and configures various resources such as PRAGMA Bootstrap [16] and IPOP [74].

Access is through an easy-to-use Web interface.
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Figure 4.2: Virtual Cluster Controller Architecture

PRAGMA Bootstrap

PRAGMA Bootstrap is a set of scripts used to instantiate virtual clusters in PRAGMA

Cloud. The PRAGMA Bootstrap scripts 1) prepare both a front end and a compute node

image selected by the user; 2) verify resources availabilities such as public IP, private IPs,

MAC addresses, and computing resources; and 3) transfer and boot VMs. The PRAGMA

Bootstrap currently supports cloud platforms such as Rocks [20] and OpenNebula [96].

Virtual cluster images can be located in a local physical machine, http repository, or Cloud-

Front [1] repository.

HTCondor Extension

VCC’s three main components are implemented as follows:

• Resource Registry (RR): The resource registry is implemented using customized

HTCondor ClassAds and cron job scripts.

• Resource Allocator (RA): The resource allocator is implemented using a stand-alone

matchmaker.
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Figure 4.3: Architecture of VCC-HTCondor Pool

• Allocation Manager (AM ): The allocation manager is HTCondor with a VCC exten-

sion called VCC-HTCondor.

HTCondor can start and control VMs from its virtual machine universe. The stock VM

GAHP code, condor vm gahp, uses Xen/KVM/VMWare to start and control VMs under

HTCondor’s Startd. The VCC extension to HTCondor is a new VM GAHP server based on

modified HTCondor source code for condor schedd, condor startd, and condor starter

daemons, and condor vm gahp that allows for the invocation of wrapper scripts. Wrapper

scripts were then written to invoke external tools such as PRAGMA Bootstrap and IPOP.
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Figure 4.4: VCC Enabled PRAGMA Cloud

Figure 4.3 shows the architecture of VCC-HTCondor and the modified HTCondor dae-

mon layout when a job submitted from Machine 1 is running. The blue daemons have been

modified slightly but function just like the stock HTCondor daemons. The green module,

VCC tools, refers to the wrapper script that then invokes PRAGMA Bootstrap and IPOP

commands to build a virtual cluster.

The procedure of configuring IPOP to build the network overlay is part of the VCC tools

that is invoked during the HTCondor job execution. Before PRAGMA Boostrap starts up a

virtual cluster, the front end and compute VM images are mounted to the physical machine

and the network is configured on the fly. We enhanced the PRAGMA Bootstrap code so
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that the IPOP code, configuration files, and startup script are also installed then. Then

when PRAGMA Bootstrap transfers and boots the images, IPOP will be started to create

the network overlay among all VM instances.

Runtime Information Manager

The fourth component of VCC, runtime information manager (RIM), is implemented as a

persistent service. The RIM builds and updates virtual cluster topology information, col-

lects lineage of virtual machines that belongs to a virtual cluster, and makes this information

accessible via web services interface.

4.1.3 PRAGMA Cloud

Fig. 4.4 gives a comprehensive picture of the PRAGMA Cloud powered by a VCC. The

VCC controls VMs running on physical clusters from multiple organizations. The frontend

nodes are marked in blue and are running a cloud management tool, e.g., Rocks, OpenNeb-

ula, and have a VCC slave and PRAGMA Bootstrap installed. The unclaimed resources

and allocated resources are marked in gray and green respectively. The allocated resource

are VMs that have been composed together as virtual clusters. All VMs in a virtual cluster

are linked with a IPOP virtual network. Historical logs for the resource allocation pro-

cedures and runtime resource information for application scheduling are hosted at VCC

master node.

4.2 Specifications of Cloud Resources, Applications and Data

The introduction posited that resource-application-data information sharing needed to be

tridirectional to be most effective. The sharing depends on the kind of information known
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to the virtual cluster controller about resources, applications, and data. Before we jump

into pinned data, cloud resource-application-data cooperative optimization in the following

chapters, we identify what information to share and how the information is shared.

4.2.1 Deployment vs Execution

Cloud computing becomes more valuable when the semi-automatic creation and manage-

ment of application layer services is ported across different cloud implementation environ-

ments to achieve cloud interoperablity.

TOSCA [25] specification provides a language to describe service topology and orches-

tration processes. TOSCA includes topology and orchestration specification using node

type and relationship type, and plan as workflow. Types define reusable entities and their

properties, and templates form the cloud service’s topology using these types, which are

then instantiated as instances of the described cloud service. A topology template con-

sists of a set of node templates and relationship templates that together define the topology

model of a service as a directed graph. Plans defined in a service template describe the

creation and termination of service instances.The specification relies on existing languages

such as BPMN [24] or BPEL [23]. BPEL is a markup language for composing a set of

discrete services into an end-to-end workflow. BPEL defines a model and a grammar for

describing the behavior of a business process based on interactions among the process and

its peers. To this end, TOSCA focuses on the deployment of cloud services and BPEL

focuses on business execution. The union of TOSCA and BPEL covers the entire service

deployment and execution space.

VCC vs BPEL:

VCC mainly focuses on virtual cluster deployment. The primary goal of VCC is to
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deploy virtual clusters, and start/stop/suspend them. The service template (TOSCA plan)

is a fixed template that embedded in the VCC Allocation Manager. Instead of using existing

workflow specification language, such as BPEL, to describe the virtual cluster creation and

termination, VCC coded the virtual cluster management process using C++ and python/perl

scripts. Since the virtual cluster creation and termination workflows steps does not change

frequently (if not at all), the coding/scripting solution is acceptable.

VCC vs TOSCA:

Inspired by TOSCAs node type specification, we add interface and properties as the

attributes of the specifications. Interface in one node is defined so that another node type

can access; properties are defined so that VCC can matchmaking resource, application, and

data. To this end, our specifications become TOSCA-like specification.

4.2.2 Resource, Application and Data Specifications

Specification of the kinds of information collected for the resources, applications, and data

are important considerations. Inspired by TOSCAs node type specification, we add “in-

terface” and “properties” as attributes of specifications. “Interface” in one node is defined

so that another node type can access; “properties” are defined so that VCC can match-

making resource, application, and data. To this end, our specifications become subset of

TOSCA specification, where TOSCA has extra “capability” and “requirements” associated

with its node type, and relationship type. (The relationship in our framework is defined by

applications.)

Resource Specification(RS). The resource specification, maintained and periodically

updated by VCC, is described in Table 4.1.

Application Specification(AS). The application specification, provided by each appli-
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cation, is described in Table 4.2.

Data Specification(DS). The data specification is described in Table 4.3.

Table 4.1: Resource Specification

Fields Description

Interface API of accessing resource (for VCC)

Properties

Cluster

configuration

(RS.conf ) 1) number of nodes per cluster; 2) CPU speed;

3) number of cores per node; 4) memory size; 5) disk size;

6) operating system; 7) hypervisor; 8) cloud platform; and

9) inner-cloud network bandwidth.

Inter-cluster

network

metrics

(RS.network) contains end-to-end network bandwidth

and latency values between the frontend nodes of every

two clusters.

Availability

of each

cluster

(RS.avail) the remaining capacity of the cluster for re-

source allocation.

4.2.3 Runtime Information for Provisioned Resource

Provided to the application at runtime is information about the provisioned resource, in-

cluding its topology and virtual machine provenance traces. In this section we only cover

resource topology information as shown in Fig. 4.5 and including physical placement of

each VM and network metrics.
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Table 4.2: Application Specification

Fields Description

Interface API of accessing applications (for users/agents, not for

VCC)

Properties

Resource

requirements

(AS.req) 1) number of nodes; 2) CPU speed; 3) number

of cores per node; 4) memory size; 5) disk size; 6) hyper-

visor; 7) minimum network bandwidth.

Application

characteristics

The application characteristics (AS.α) is instantiated by a

vector, α = (α1, α2, α3, ...). The value of α is given by

the application user, based on historical application execu-

tion experiments, where α1(0 ≤ α1 ≤ 1) describes Com-

pute Intensive; α2(0 ≤ α2 ≤ 1) describes Data Intensive;

α3(0 ≤ α3 ≤ 1) describes I/O Intensive.

A larger value in α indicates a higher intensity of that cor-

responding application characteristic and the most dom-

inant characteristic of an application is the element with

the largest value. The α vector can be further extended if

more application characteristics are required.
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Table 4.3: Data Specification

Fields Description

Interface API to access data (for applications, not for VCC)

Properties

Metadata

(excludes

locality)

Size, ownership, etc.

Data

Source

Data source (DS.source) is described by an array of of

handlers of protocol and access point.

Access

constraints

Data access constraints (DS.constraints) are primarily

used to ensure proper handling of licensing and/or security

of sensitive data (e.g., locations of a rare species of plant)

on restricted resources. The constraints are instantiated by

allow/deny lists.
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V C1:{vm1, ..., vmnc1}

V C2:{vm1, ..., vmnc2}

V C3:{vm1, ..., vmnc3}

V C4:{vm1, ..., vmnc4}

X14

X12

X13

X11

X21

X24

X23

X22
X32

X34

X31

X33

X43

X42

X41

X44

Figure 4.5: Runtime topology information of a virtual cluster. V Ck is a subset of a virtual

cluster on the physical cluster k.Xij represents network bandwidth (Bij) and latency (Lij)

measured from V Ci to V Cj .
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For the physical placement of each VM, the provisioned resource, known as a virtual

cluster V C, consists of multiple virtual machines. These virtual machines are grouped as

sub-VCs (V Ck) by the physical placement on different physical clusters, where k is the

physical cluster ID. Each virtual machine in a virtual cluster is identified by its unique IP

from VPN setup.

For the network metrics, X = {B,L}, where Xij represents network bandwidth (Bij)

and latency (Lij) measured from V Ci to V Cj .

4.3 VCC Resource Allocation: A Matchmaking Process

4.3.1 Application Aware Resource Allocation

To facilitate optimal resource allocation, the VCC needs to consider resource, application

and data. A resource allocation module in VCC takes resource, application and data speci-

fications as input and generates a resource allocation plan, shown in Fig. 4.6.

VCC Matchmaker

(Rule based)

Resource

Specification

Application

Specification

Data

Specification

Allocated

Resource

Figure 4.6: Resource Allocation Model

The default application-aware resource allocation (AARA) algorithm in VCC, given in



Chapter 4. Virtual Cluster Controller 63

Algorithm 3, shows how resource, application and data specifications are utilized in the re-

source allocation process. For data-intensive or I/O intensive workloads, only applications

that are sensitive to data locality and network bandwidth are considered. Network latency

sensitive applications are not considered in this algorithm. First, GetCandidateList loops

through the set of candidate resources (RS) based on the resource requirements and ap-

plication constrains (AS). The candidate resource list is then sorted based on the α value.

If element values in α are equal, no list sorting is performed. However, if the dominant

characteristic is compute intensive, the list will be sorted in descending order based on

the computing power of each physical cluster using the SortByCP procedure. Other-

wise, if the dominant characteristic is data intensive, the resources listed in DS.source

are selected first, followed by the AppendList procedure that adds resources with higher

bandwidth to any of the resources in DS.source. If the dominant characteristic is I/O in-

tensive, the resource is sorted with higher inbound or outbound network bandwidth. The

allocation plan will then be executed using the AllocationP lan procedure, which provi-

sions resources from the weighted candidates according to the data distribution which is

provided by DS.source.

4.3.2 VCC Matchmaker

VCC Matchmaker is a stand-alone service that continuously reads all the preferences and

constraints and candidate entities, matches and sorts candidate entities that satisfy the pref-

erences and constraints.

VCC Matchmaker is used in the VCC to dynamically determine the resource allocation

plan for applications and data services. The matchmaker takes as input the preferences and

constraints of resource specifications, application specifications and data specifications, as
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Algorithm 3 Application-Aware Resource Allocation Algorithm
Require: Resource Specification RS, Application Specification AS, Data Specification

DS

1: procedure RESOURCE-ALLOCATION(RS,AS,DS)

2: CandidateList=GETCANDIDATELIST(RS,AS,DS);

3: if Max(α) = α1 then

4: CandidateList=SORTBYCP(CandidateList);

5: else if Max(α) = α2 then

6: CandidateList=DS.source;

7: CandidateList=APPENDLIST(CandidateList, RS.network);

8: else if Max(α) = α3 then

9: CandidateList=SORTBYBW(CandidateList, RS.network);

10: end if

11: ALLOCATIONPLAN(CandidateList,DS.source);

12: end procedure
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well as rules to find the optimum resource allocation plan.

Architecture

The matchmaker is designed in client/server model, which communicates over a messaging

bus or a web service. The Matchmaker server has two main components, see Figure 4.7.

• Matchmaker engine: The main functionality is to take JSON input, and output possi-

ble matches. The rule files and JSON schemas are flexible. A rule jar file consists of

a rule file, schema related code that are automatically generated, and help functions.

• Matchmaker driver: It is configurable to either info mode, or broker mode. The

driver takes input from clients, invokes matchmaker engine, and reformat output from

matchmaker engine, and send results back to clients based on communication pat-

terns.

These two components are independent of each other. New communication patterns

can be implemented by only change the matchmaker driver.

Matchmaker Engine

The matchmaker engine leverages Drools rule engine to make matchmaking decisions.

We also implemented a plugin mechanism that allows new rules and optionally associated

helper java classes to be added. VCC Matchmaker has no hardcoded keywords of any

kind, nor does it restrict to use a particular JSON schema. It generates on-the-fly POJO

classes source code based on user input JSON files, compile to customized jar file along

with user defined rules and associated helper java classes, and instantiate POJOs (based

on JSON files) without a pre-defined schema. However, if a JSON schema is pre-defined,

the matchmaker can generate POJO code and compile jar files offline, and only instantiate
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Figure 4.7: Matchmaker Architecture
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POJO objects (based on JSON files) at runtime, making matchmaking process much faster.

See matchmaker engine flowcharts in Figure 4.8.

Figure 4.8: Matchmaker Engine flowchart

Matchmaker Driver

The matchmaker driver takes input from users and invokes the matchmaker engine, and

reformat output from matchmaker engine, and send results to users based on different com-

munication patterns.

Rule Jar

A rule jar consists of user defined rules and optionally associated helper methods. A match-

maker rule is essentially a Drools rule which is as simple as shown in Table 4.4

LHS, operates on JavaBean (POJO) objects, is the conditional parts of the rule, which

follows a certain syntax. RHS is basically a block that allows dialect specific semantic code

to be executed, including java code.
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Table 4.4: A basic Drools rule

rule ”name”

when

Left Hand Side(LHS)

then

Right Hand Side(RHS)

end

The Drools rules adopt “when-then” logic. In matchmaker engine, each rule invokes

one or more of the Java methods, shown in Figure 4.5, in the “then” statement to update

the candidate list. The logic behind this rule invocation process is that the initial candidate

list is always a full list. By applying rules, the candidate list will be updated to a subset of

the full candidate list. Therefore, the order of rules will have no impact to the final result so

that it ease the burden of rule creation/verification. New rules can be added independently,

without looking back to the existing rules.

The helper methods in a rule jar file can optionally contain external queries that a JSON

document may refer. The implementation of the queries vary based on different scenarios

and they can be added later.

4.4 VCC Framework Evaluation

We evaluate 1) overhead of VCC as captured by overhead during the resource provisioning

phase; 2) overhead of using VPN when running applications; and 3) performance com-

parison of four combinations of resource allocation algorithms and application scheduling

algorithms, showing the benefit of resource-application-data information sharing. Experi-

mental results are provided using the first release of VCC and a data-intensive HMR appli-
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Table 4.5: RHS Java Methods that operate on candidate list

Method Method Description

restrict Restrict candidate list to a given list.

notAllowed Remove selected candidates from the candidate list.

preferred Tag ”preferred” to a list of candidates.

setWeight Set weight to a candidate.

addWeight Add weight to a candidate.

reduceWeight Reduce weight to a candidate.

cation. In this evaluation we are not focusing on conveying the usefulness of multi-cloud

nor delivering the comparison of virtual cluster deployment time consumption between

single-cloud and multi-cloud.

4.4.1 Testbed

Table 4.6: Clusters Node Specifications.

Cluster Nodes CPU Cores Memory Ethernet OS VMM Cloud Platform

SDSC 4 AMD Opteron 2216 2.4GHz 4 8GB BCM95721 1000Base-T 2.6.32-431.11.2.el6 KVM Rocks 6.1.1

IU 4 AMD Opteron 8216 2.4GHz 8 16GB BCM5708 1000Base-T 2.6.32-431.11.2.el6 KVM Rocks 6.1.1

VCC is deployed to the PRAGMA Cloud, described in Section 4.1.3, and select two

clusters: one at Indiana University (IU) and the other at the San Diego Supercomputer

Center (SDSC). Both clusters run Rocks [20] version 6.1.1 with the KVM roll installed

and PRAGMA Bootstrap to provision the VMs. The detailed specifications of the clusters

are given in Table 4.6.
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4.4.2 VCC Overhead Evaluation

Without VCC, VMs can be created directly with the individual cloud infrastructures. In

addition to the VM image transfers and VM booting performed by PRAGMA Bootstrap,

VCC has the additional steps of submitting jobs and calculating resource allocation plans

in VCC-HTCondor, and setting up the IPOP network in PRAGMA Bootstrap. The time

cost of performing these extra steps is considered the VCC overhead and is defined in

equation 4.1, where Tα is the total execution time of creating a virtual cluster using VCC,

while Tβ is the total execution time of transferring and instantiating multiple VMs without

using VCC.

Overhead(V CC) = Tα − Tβ (4.1)

The Overhead(V CC) is break down into two pieces, shown in equation 4.2, where

TV CC−HTCondor is the time between submission of the virtual cluster job and the invo-

cation of PRAGMA bootstrap and TIPOP is the execution time of deploying and configure

IPOP using PRAGMA Bootstrap. It also includes the Matchmaker overhead. Other steps

in PRAGMA Bootstrap, including VM transferring and booting are also performed in non-

VCC scenarios and therefore are not part of VCC overhead.

Overhead(V CC) = TV CC−HTCondor + TIPOP (4.2)

A number of virtual clusters are created, ranging between 2 to 24 VMs from the two dif-

ferent physical clusters and measured the VCC overhead. The default resource allocation

strategy is, without breaking the application constraints, to allocate as many VMs as pos-

sible from a single cluster, before allocating from another one. As shown in Fig. 4.9 and

Fig. 4.10, there is stair-step effect when allocating more than 14 VMs. When creating vir-

tual clusters with less than 14 VMs, the VMs are all allocated from the SDSC cluster which
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is local to the VCC master node. When allocating more than 14 VMs, the dominant factor

of the VCC-HTCondor overhead is invoking HTCondor jobs from the frontend node of the

IU cluster.

There are the following two solutions to enable IPOP VMs:

• IPOP is installed and configured in an ad-hoc fashion. VCC downloads and copies

over the IPOP package to the VM image and configures it. The IPOP ingestion and

configuration overhead is shown in show in Fig. 4.10.

• IPOP is pre-installed inside the VM so only configuration is performed when the

image is mounted to the local file systems. The IPOP configuration overhead is shown

in Fig. 4.9.

The two IPOP enabling solutions have significant overhead differences since copying

the IPOP package (1 MB) over the network is time-consuming. However, the total overhead

introduced by VCC is less than 46 seconds in either IPOP enabling cases. This overhead

is negligible in comparison to the VM image transfers performed by PRAGMA bootstrap,

which can take tens of minutes to hours depending on the image size.

4.4.3 Network Overhead Evaluation

The network overhead refers to the bandwidth and latency overhead when IPOP’s VPN is

enabled. The next subsections discuss the tri-directional network bandwidth and round-trip

time measurements between IU and SDSC without and with IPOP.

TCP/UDP Test without IPOP

The TCP/UDP bandwidth tests are performed using the Bandwidth Test Controller (BWCTL) [67]

tool and the tests results are shown in Fig. 4.11.
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Figure 4.9: VCC overhead with ad-hoc IPOP installation

Figure 4.10: VCC overhead with IPOP pre-installed
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Figure 4.11: TCP/UDP Bandwidth and RTT Tests

Figure 4.12: TCP/UDP Bandwidth and RTT Tests over IPOP
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The TCP bandwidth from IU to SDSC on physical machines measured on average at

174Mb/s and 232Mb/s from SDSC to IU. The TCP bandwidth from IU to SDSC measured

on VMs was on average at153Mb/s and 190Mb/s from SDSC to IU.

The UDP bandwidth from IU to SDSC on physical machines measured on average at

507Mb/s and 534Mb/s from SDSC to IU. The UDP bandwidth from IU to SDSC measured

on VMs was on average at 317Mb/s, and 438Mb/s vice versa.

TCP/UDP Test with IPOP

IPOP encapsulates TCP packets over UDP. As shown in Fig. 4.12 when IPOP is en-

abled, the TCP bandwidth measured on VMs from IU to SDSC decreased to an average

of 45.4Mb/s and 42.9Mb/s from SDSC to IU. The UDP bandwidth measured on VMs

from IU to SDSC decreased to an average of 48.8Mb/s and 43.8Mb/s from SDSC to IU.

This decrease is caused by 1) per-packet encapsulation overhead (14% overhead has been

measured by [114]), 2) kernel/user and user/kernel crossing (memory copies, system call

handling, and O/S scheduling policies), and 3) user-level processing. By default, IPOP

encrypts messages. When disabling this encryption feature in IPOP, the TCP bandwidth

measured from IU to SDSC increased to 69.1Mb/s and 63.4Mb/s from SDSC to IU. The

UDP bandwidth measured on VMs from IU to SDSC increased to 98.1Mb/s and 98.3Mb/s

from SDSC to IU.

RTT Test with/without IPOP

The round-trip times between IU and SDSC as shown in Fig. 4.11 and Fig. 4.12 were

relatively stable: 67.1-67.4ms without IPOP, 68.3-68.4ms with encryption enabled IPOP,

and 67.7-67.8ms with encryption enabled IPOP.



Chapter 4. Virtual Cluster Controller 75

We consider the IPOP integration as proof-of-concept for building wide-area private

networks over VCC-enabled environments. Although there is overhead of using IPOP, we

still benefit from the minimum amount of configuration effort that IPOP introduces while

sustaining these virtual private networks.

4.5 Information Sharing Evaluation

The effectiveness of resource-application-data information sharing can be shown through

evaluating 4 combinations of one of resource allocation algorithms and one application

scheduling algorithms listed as: 1) First Available Resource Allocation (FARA): allocate

all virtual machines from the first available cloud providers; In this experiment, the SDSC

resource is considered to be available first. 2) Application Aware Resource Allocation

(AARA); 3) Compute Capacity Aware Scheduling (CCAS) [86] that was briefly introduced

in Chapter 3; 4) Topology and Data Location Aware Scheduling (TDLAS): described in

Chapter 3. Experiments are carried out for each of the combinations, where the resource-

application-data information sharing characteristics are listed in Table 4.7.

Table 4.7: Resource-Application-Data Information Sharing Characteristics

CCAS TDLAS

FARA No Sharing
Unidirectional Sharing

(Resource-to-Application)

AARA
Unidirectional Sharing

Tridirectional Sharing
(Application-to-Resource)

A HMR version of grep is written as a data-intensive application. The Map function

captures the matching lines of a regular expression input. The Reduce function outputs all
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Table 4.8: Compute Rate (CR) of a sub-virtual-cluster under different number of virtual

machines

1 VM 2 VMs 3 VMs 4 VMs

IU 3.6MB/s 5.3MB/s 6.7MB/s 7.9MB/s

SDSC 3.1MB/s 4.8MB/s 6.0MB/s 7.1MB/s

Table 4.9: Data Distribution Scenarios & Resource Allocation Results

Scenario

Data Distribution VM Distribution (# of VMs)

FARA AARA

IU SDSC IU SDSC IU SDSC

1 0% 100% 0 4 0 4

2 25% 75% 0 4 1 3

3 50% 50% 0 4 2 2

4 75% 25% 0 4 3 1

5 100% 0% 0 4 4 0
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the matching lines from each sub-VC MapReduce execution. The GlobalReduce function

collects all the output from all sub-VC MapReduce execution and combines them into a

single output file. The total execution time varies with respect to different data distribution

and different regular expression input. Delay code is added to the Map function so that

the Map tasks run significantly longer than loading data and initiating the MapReduce job.

Therefore a negative correlation can be guaranteed between the number of nodes and the

job execution time.

In order to get the compute rate CRi of each sub-VC, V Ci, I allocated one, two, and

three virtual machines on each of the physical cluster respectively and ran the HMR grep

application against 1-5 GB dataset multiple times throughout a week-long period. Each

virtual machine was configured with 1 core of CPU, 1 GB memory, and 80 GB of disk

space. For this specific application, the CRi values listed in Table 4.8 are affected by two

factors:1) loading data to HDFS, and 2) MapReduce execution.

In the experiments, the input data set contains 100 text files, each of which is 100MB

large. The dataset is placed to IU and SDSC physical clusters using different data distri-

bution scenarios, and allocate virtual machines from IU and SDSC clusters using FARA

and AARA algorithms, shown in Table 4.9. To take advantage of the CR values, the same

virtual machine configuration is applied. Data transfer is carried out through rsync. Trans-

ferring data within the same institute (disk-to-disk data transfer over LAN) has average

speed of 35MB/s, which is significantly faster than transferring data between nodes that

belong to different institutes (disk-to-disk transfer over WAN).

Leaving the LAN data transfer speed as it is, but manipulating the WAN data transfer

speed, Fig. 4.13, 4.14 and 4.15 show the job execution time under WAN data transfer

speed of 3MB/s, 5MB/s and 7MB/s respectively. The tests in each figure use 5 data distri-
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bution scenarios described in Table 4.9. The tri-directional information sharing approach,

implemented in AARA+TDLAS combination, achieved shortest job execution time. The

runner-up combination, AARA+CCAS, which uses application aware resource allocation

but without data locality consideration at runtime, performance slightly slower than the tri-

directional information sharing approach. Other two solutions that did not consider appli-

cation specification (data locality) during resource allocation phase (early phase), perform

much worse than the ones that optimize resource allocation.

While data distributions could affect the performance of these algorithms combina-

tions, AARA+TDLAS shows relatively stable performance in the tests. The tri-directional

information sharing approach performs much better in comparison to other algorithm com-

binations, using different data transfer speed ratio of LAN over WAN. Fig. 4.16 shows the

average speedup of tri-directional information sharing approach (AARA+TDLAS) over

other approaches. The WAN data transfer speed is set to 7MB/s, 5MB/s and 3MB/s respec-

tively so that the data transfer speed ratio (R) of LAN over WAN, as indicated in x-axis, are

valued 5, 7, and 11.7. As R (network heterogeneity) increases, the speedup values remain

above 1.

4.6 Summary

VCC creates virtual clusters by allocating virtual machines from multiple cloud platforms,

builds a network overlay, and manages the virtual cluster life-cycle in a fault-tolerant man-

ner. The resource allocation strategy is optimized by taking into consideration resource

specifications and application requirements and characteristics; an application scheduling

algorithm is developed that takes into consideration the resource topology and data loca-

tion. VCC extends HTCondor and integrates IPOP. Evaluation of the overhead of VCC dur-
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Figure 4.13: Data-Intensive HMR application execution time using 4 algorithms combina-

tions under different data distribution. The data transfer speed between IU and SDSC is

3MB/s.

Figure 4.14: Data-Intensive HMR application execution time using 4 algorithms combina-

tions under different data distribution. The data transfer speed between IU and SDSC is

5MB/s.
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Figure 4.15: Data-Intensive HMR application execution time using 4 algorithms combina-

tions under different data distribution. The data transfer speed between IU and SDSC is

7MB/s.

Figure 4.16: Speedup of AARA+TDLAS algorithms combination over other algorithms

combinations. The x-axis indicates the data transfer speed ratio of LAN over WAN.
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ing cluster startup and overhead of IPOP when running applications shows reasonable la-

tencies.The evaluations also show that tridirectional information sharing among resources,

applications, and data shortens the application execution time significantly.

The VCC controller strengths are in interoperability, scalability, and applicability.With

respect to interoperability, VCC enhances cloud interoperability by federating cloud re-

sources through a unified layer, PRAGMA Bootstrap. The VPN setup also adds value to

enhance the interoperability among virtual machines. With respect to scalability, to each

cloud provider, only one HTCondor compute node (VCC slave) needs to be deployed. The

resource capacity of a VCC-enabled Cloud is not limited by VCC, but all the underlying

cloud providers that provide resources. However, the virtual machine states are managed

by VCC through HTCondor job management. HTCondor is reported to handle pools of

tens of thousands of execution slots and job queues of hundreds of thousands of jobs. Fi-

nally, with respect to applicability, although the implementation of VCC is specialized for

PRAGMA community that heavily uses Rocks and OpenNebula, the design principle can

be adopted to tools that are used by larger community. The PRAGMA Bootstrap can be

replaced by tools such as Libcloud, jClouds, DeltaCloud, JumpGate, and ManageIQ, with

extensions to set up network overlays. VCC-HTCondor can also be replaced by other open

source CMPs as a platform to develop the information sharing approach.



Chapter 5

Manage, Access, and Use of Pinned Data

In this chapter, we first define a novel data model, “pinned data” that, describes non-

consumptive constraint of the data that raw data cannot leave a political jurisdiction. The

“pinned data” design is inspired by Object Oriented Programming that data is encapsulated

and accessed by method calls. A package of accessible pinned data is called a suitcase,

with certain data properties and operations that the suitcase can perform. Encapsulation

combines data and behavior in one suitcase and hides the implementation of the data from

the user of the suitcase. The data in a suitcase are called its content fields, and the functions

and procedures that operate on the data are called its methods. A suitcase does not expose

data for public access directly. All communications are via method calls. With that being

said, data is treated as a first class citizen where it negotiates with resource and application

during resource allocation and application scheduling phases.

We enhance HMR framework to HMR+ to support PND processing. In HMR+, dif-

ferent Map/Reduce functions can be encapsulated in different pinned data suitcases at dif-

ferent clouds, before the GlobalReduce function aggregates data to produce final results.

Therefore, a pinned data suitcase provides “Data-Processing-as-a-Service” capability.

We evaluated 1) PDS creation overhead for both internal/external data model; 2) the

82
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system performance under increasing workloads for PDS method access; 3) HMR+ perfor-

mance using two test applications, AutoDock HMR and Grep, under different percentages

of pinned data.

5.1 Introduction

A shortcoming of the current proof-of-principle infrastructure is the lack of support for

controlled sharing of data in its variety of forms (e.g. flat files, databases, sensor data,

and others). Owners of data sets also have a range of concerns that include proper attri-

bution [103], limited distribution of raw data prior to analysis [12], and legal requirements

to keep data within administrative boundaries. The challenge is to strike the right balance

between ensuring that the data processing carried out does not violate non-consumptive use

while keeping the data management services as flexible as possible by not overly limiting

the kinds of use. Therefore, we define a novel data model, notibly “pinned data” (defined

in Definition 5.1) that describes the non-consumptive constraint of the data that raw data

cannot leave a political jurisdiction. Data and its processing are given equal importance in

the pinned data model.

5.2 Pinned Data Model

5.2.1 Pinned Data (PND)

Definition 5.1. Pinned data (PND) is a data model describing non-consumptive constraint

that data for social/political/legal reasons cannot leave a political jurisdiction. Data itself

exists in varies forms, e.g., files systems, RDBMs, noSQL, etc, depending on different ap-

plication scenarios.
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We define three (3) states, shown in Definition 5.2, where data can be. In state Rest,

non-consumptive constraint is not violated. In state Movement, the non-consumptive con-

straint could be violdated depending on the destination of the data movement. In state

Computatoin, the non-consumptive contraint could be preserved if the output data does not

violate any non-consumptive constraint so that it can be moved freely.

Definition 5.2. Data States:

• Rest: data is stored without being moved and computed.

• Movement: Data is in the process of being copied or moved.

• Computation: Data is being consumed by a process.

The handling of “pinned data” is inspired by Object Oriented Programming that data

is encapsulated and accessed by method calls. Modeling pinned data by using object-

oriented techniques offers to use the power of data encapsulation. We use an object ori-

ented approach to represent different pinned data types and encapsulate the details of data

processing and representation.

5.2.2 Pinned Data Suitcase (PDS)

Definition 5.3. A pinned data suitcase is a data capsule that consists of the combination

of data (or data access point), data properties, and data processing logic. The data in a

suitcase is called its content, and the functions and procedures that operate on the data are

called its methods.

A package of accessible pinned data is called a suitcase, defined in Definition 5.3, with

certain data properties and operations that the suitcase can perform. Encapsulation com-

bines data and behavior in one suitcase and hides the implementation of the data from the
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user of the suitcase. The data in a suitcase is called its content, and the functions and pro-

cedures that operate on the data are called its methods. Access the pinned data and the

pinned data processing logic is provided by well-defined interfaces. A suitcase does not

expose data for public access directly. All communications are via method calls. When-

ever a method is applied to a suitcase, provenance information is recorded. With that being

said, data is treated as a first class citizen where it negotiates with resource and application

during resource allocation and application scheduling phases.

Pinned Data Suitcase Specification

For each pinned data suitcase (PDS), there exists a specification to describe metadata, pro-

cessing logic, and PDS restrictions, with respect to non-consumptive. A pinned data suit-

case specification, shown in Table 5.1, inherits the general data specification described in

Chapter 4.2. A PDS specification consists of multiple methods and properties. There are

multiple properties associated with the pinned data itself, such as size, ownership, data

source, and access contraints. Each method has a name, description, ACL, and a handler.

The reason to have separate ACLs for different methods is that not all methods satisfy

non-consumptive contraints.

Pinned Data Suitcase Management

A PDS is packaged into a virtual machine or a virtual cluster. At minimum, a PDS has a

specification, and methods that are implemented into executables, eg. jar files if using Java.

The methods are accessible by users/applications outside the PND site. When we introduce

data source in the specification, we did not mention if the data was actually co-located with

the methods. We do not mandate a PDS to have actual data. A handler can point data to
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Table 5.1: Pinned Data Suitcase Specification

Fields Description

Interface

Name Name of Method i.

Description Description of the method.

(Methods)* ACL Access control: allow IP list, and deny IP list.

Handler Access point of this method.

Properties

Metadata Size, ownership, etc.

Data

Source

Data source is described by a handler that consists of pro-

tocol and access point.

Access

constraints

Data access constraints are primarily used to ensure proper

handling of licensing and/or security of sensitive data (e.g.,

locations of a rare species of plant) on restricted resources.

The constraints are instantiated by allow/deny lists.

* The interface field contains multiple methods, each of which has attributes of name, description, ACL, and handler.
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Figure 5.1: Pinned Data Suitcase with Local Data

a external location, provided the link between the PDS and the data source is secure. This

leads to two (2) configurations of a PDS, introduced below:

• PDS with data: Data is bundled into a PDS. PDS is running at a PND site so that no

data is been transferred. See Figure 5.1.

• PDS without data: Data is remotely accessible by PDS methods. The link between

the PDS and the data source is restricted within the PND site. See Figure 5.2.

PDS has two cluster types: transient and persistent. Each can be useful, depending on

the task and system configuration.

• Transient PDS: Transient PDS are clusters that shut down when the job or the steps

(series of jobs) are complete. In contrast, a persistent PDS continues to run after data

processing is complete. If a PDS cluster will be idle for the majority of the time, it

is best to use transient clusters. For example, if you have a batch-processing job that
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Figure 5.2: Pinned Data Suitcase with External Data

pulls data from pinned data storage and processes the data once a day, it is more cost

effective to use transient clusters to process data and shut down the nodes upon job

completion. In summary, consider transient clusters in one or more of the following

situations:

1. The total number of hours to PDS creation and data processing per day is less

than 24 so that users benefit from shutting down PDS cluster when it is not being

used.

2. Data is not bundled into a PDS.

• Persistent PDS: As the name implies, a persistent PDS continues to run after the data

processing job is complete. Similar to transient PDS, a persistent PDS has its own

cost and benefits. Consider persistent PDS for one or more of the following situations:

1. Pinned data is frequently processed at a PDS where it is beneficial to keep the
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cluster running after the previous job.

2. Pinned data processing tasks have an input-output dependency on one another.

Although it is possible to share data between two independent PDS, it may be

beneficial to store the result of the previous job on a PDS’s internal storage for

the next task to process.

3. In some cases output data needs to be preserved for a while before sending it out

to clients.

Both transient and persistent PDSs share a foundamental root that a template or an

instance of PDS never leaves its PND site, and VCC has no direct access to them. However,

the control level of virtual cluster specifications differs.

• VCC controlled PDS provisioning: Per VCC request, PND creates a virtual cluster

as a PDS that is deployed at PND site. The virtual cluster templated is created by the

PND site. VCC controls the resource requirement.

• PND site controlled PDS provisioning: Pinned data as a service. A virtual cluster is

created at a PND site that serves as a data service cluster. The virtual cluster template

is created by the PND site. Virtual cluster scales up and down independently of VCC.

PDS is managed by a PND service running at a PND site. The procedure to create and

run a PDS, shown in Figure 5.3, is described as follows:

1. Create a virtual cluster (VC) based on resource requirements provided by either the

VCC or a PND site.

2. If PDS is configured with data bundled in the virtual cluster, import data from external

storage to local file systems.

3. Deploy methods. Methods are typically built into jar files.
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Figure 5.3: Create a Pinned Data Suitcase (PDS) and run it.

Figure 5.4: Access Pinned Data Suitcase (PDS) via Messaging Bus and Web Service.

4. Ingest PDS specifications into the virtual cluster.

5. Run the VC, which automatically starts a server listening for data access requests.



Chapter 5. Manage, Access, and Use of Pinned Data 91

5.2.3 Access Pinned Data

Access pinned data and the pinned data processing logic is provided by well-defined inter-

faces. A suitcase does not expose data for public access directly. All communications are

via method calls. Therefore, we create services that takes remote data access request and

invoke PDS methods. The methods are written in a way that the output of each method

does not violate non-consumptive constraints. The methods are authored and examed by

personnel at the PND site. Figure 5.4 shows the communication methods between clients

and a pinned data suitcase. In the frontnode of a PDS cluster, there exists a PDS server that

takes remote call requests via either a messaging bus or a web service interface and invokes

corresponding methods. A PDS method could be a MapReduce application, which will be

further described in the next section. A PDS server handles all in-and-out PDS traffic.

5.3 Pinned Data Processing with HMR+

5.3.1 HMR+ Architecture

When the input dataset is pinned, or partially pinned, the local Map and Reduce functions

can only be executed on the pinned site with respect to the pinned portion of data, pro-

vided additional restriction that local Reduce output does not violate the non-consumptive

constraints. This is achieved by encapsulate local Map and Reduce functions as PDS

methods. A slightly modification to the original HMR framework is needed to allow data

to feed from PDS methods (local Map / Reduce) output to GlobalReduce. We discussed

in Section 5.2.3 that PDS methods are exposed by remote calls.

An enhanced HMR (HMR+) architecture diagram is shown in Figure 5.5. In compari-

son with the regular HMR architecture shown in Figure 3.1, HMR+ add a new PDS daemon
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Figure 5.5: Enhanced Hierarchical MapReduce Architecture with Pinned Data Support
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to communicate with pinned data suitcases (PDSs). PDSs bundled in MapReduce clusters

that run local Map and Reduce tasks but only to expose local MapReduce output via PDS

service API. The PDS daemon is co-located with global controller. The reason to keep PDS

daemons away from PDSs is that PDSs can only be accessible via remote calls that solely

serve for PDS methods. The PDS daemon invokes PDS methods via remote calls and the

output is collected by data manager in HMR global controller.

The input dataset consists of two data types: pinned data and unpinned data. When a

user submits a MapReduce job to the global controller, the job scheduler firstly dispatches

pinned data processing tasks to PDSs, where each PDS provides estimated processing time

based on historical data. The job scheduler then splits the unpinned data processing job into

a number of sub-jobs and assigns each to a local cluster based on several factors, including

but not limit to the current workload reported by the workload reporter from each local

cluster, the capability of individual nodes making up each cluster. This is done to achieve

load-balance by ensuring that all clusters will finish their portion of the job to process

unpinned data in approximately the same time, if not less than the maximum execution time

of pinned data processing on each PDS. The global controller also partitions the movable

data if the input data have not been deployed before-hand. The data manager transfer the

user supplied MapReduce jar and job configuration files with the input data partitions to the

MapReduce clusters for processing unpinned data. As soon as the data transfer finishes for

a particular cluster, the HMR daemon of that cluster to start the local MapReduce job. The

jobs on PDSs are controlled by a special HMR daemon that deployed at global controller

node. After the local sub-jobs are finished on a local cluster, if the application requires, the

clusters will transfer the output to one of the clusters for global reduction. Upon receiving

all the output data from all local clusters, a GlobalReduce will be invoked to perform the
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final reduction task, unless the original job is map-only.

5.3.2 Pinned-Data Applications

The distinction between pinned-data applications and regular compute-intensive or data-

intensive applications are not in applications themselves, but the datasets characteristics

that applications use. For instance, HathiTrust has 11 million volumes of digital publica-

tions. Processing 1 million volumes/books (2 TB large) using n-grams algorithm (imple-

mented in MapReduce) on 1024 cores takes about 22 hours, including loading data from

Lustre clusters to the compute resource for processing. The processing requires raw data to

be moved from protected sources to a centralized cluster and pinned to that centralized clus-

ter. With that being said, the compute-intensive AutoDock application and data-intensive

Grep application can be categorized as pinned-data application, given that partial or entire

input dataset is immovable. We reuse these two applications and pack them into a sample

pinned-data suitcase.

5.4 Pinned Data Evaluation

To understand the performance of the PDS, we investigated the following three aspects.

• PDS creation overhead for both internal/external data model discussed in Figure 5.1

and Figure 5.2. The PDS creation is an onetime operation and therefore its overhead

negligible if PDS is configured as “persistent”. However, if the PDS is configured as

“transient”, the overhead of PDS creation is considerably important.

• PDS runtime performance under increasing workloads for PDS method access. The

PDS framework is independent of its application, where PDS methods can be de-

ployed by pinned data owners. We capture the overhead of running PDS server over
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direct data processing methods.

• HMR+ performance using two test applications: AutoDock HMR, and Grep, under

different percentage of pinned data. We test these two application only to demonstrate

the pinned data processing over HMR+ in general. Other applications such as HTRC

has similar characteristics, of which the actual performance behaviors can be learnt

from these sample applications.

5.4.1 Experimental Setup

We wrote all our code in Java, using J2SE version 7. Both experiment use the PDS verson

1.0. For PDS server, the default value for the maximum number of threads allowed to

invoke PDS methods is set to 20. We use HDFS for data storage both in internal PDS

storage and external data source.

We selected three physical clusters in the PRAGMA Cloud for all the experiments in

this Chapter: one at Indiana University (IU), one at the San Diego Supercomputer Center

(SDSC), and another one at Chinese Academy of sciences’ Computer Network Information

Center (CNIC),. The detailed specifications of the clusters are given in Table 5.2.

Table 5.2: PDS Testbed: Clusters Node Specifications.

Cluster Nodes CPU Cores Memory Ethernet OS VMM Cloud Platform

SDSC 4 AMD Opteron 2216 2.4GHz 4 8GB BCM95721 1000Base-T 2.6.32-431.11.2.el6 KVM Rocks 6.1.1

IU 4 AMD Opteron 8216 2.4GHz 8 16GB BCM5708 1000Base-T 2.6.32-431.11.2.el6 KVM Rocks 6.1.1

CNIC 1 Intel Xeon E5620 2.4GHz 16 96GB Broadcom NetXtremeII 5709 2.6.18-238.19.1.el5 XEN Rocks 5.4.3
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5.4.2 PDS Creation Evaluation

PDS is a specialized virtual cluster in which the frontnode is a PDS Server that responsible

for accepting incoming data processing requests and invoke corresponding PDS methods.

In addition to conventional virtual cluster provisioning, PDS creation has extra steps of 1)

setting up a PDS Server; 2) deploying PDS methods; and 3) optionally ingest dataset. The

time cost of performing these extra steps is considered as PDS creation overhead and is

defined in equation 5.1, where Tα is the total execution time of creating a PDS instance,

while Tβ is the total time of creating a conventional virtual cluster that forms the PDS. In

this experiment, we assume that the conventional virtual cluster is a MapReduce cluster

which has Hadoop framework pre-installed.

OverheadPDS−Creation = Tα − Tβ (5.1)

The Overhead(PDS Creation) breaks down into two pieces, if data is not bundled,

shown in equation 5.2, where TPDS Server is the execution time of deploying and configure

PDS server, and TPDS Server is the execution time of deploying and configure PDS methods.

OverheadPDS−Creation = TDeploy−PDS−Server + TDeploy−Methods (5.2)

The Overhead(PDS Creation) can also break down into three pieces, if data is to be

bundled, shown in equation 5.3, where TPDS Server is the execution time of deploying and

configure PDS server, TPDS Server is the execution time of deploying and configure PDS

methods, and TBundle−Data is the execution time of transferring data from external source

into the file system of PDS.

OverheadPDS−Creation = TDeploy−PDS−Server + TDeploy−Methods + TBundle−Data (5.3)



Chapter 5. Manage, Access, and Use of Pinned Data 97

Figure 5.6: PDS Creation Overhead (without data bundle).

The PDS server code is 2.3MB large. The PDS method tested in this experiment is an

MapReduce application, grep, which is 1.6MB large. Figure 5.6 shows the overhead of

creating PDS cluster when the number of nodes increases from 2 to 8. The total overhead of

PDS server and PDS method ingest and configuration is approximately 9.6 to 12.6 seconds.

Then we keep the virtual cluster size at 4, but transfer data from external source to

the HDFS in the virtual cluster. We tested the data size from 0GB to 10GB with 1GB

intervals. Figure 5.7 shows that when the data size increases, the bundle time also increases.

The bundle time becomes the dominate factor in the total overhead, as is described by the

percentage in the total overhead.
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Figure 5.7: PDS Data Bundle Overhead.

5.4.3 PDS Server Evaluation

To evaluate PDS server in Figure 5.4, we designed two experiments (Experiment-1 and

Experiment-2) that test PDS server with two communication approaches that PDS supports:

1) a publish-subscribe messaging system; and 2) a web service based system.

In Experiment-1, we use RabbitMQ server version RabbitMQ 3.5.1 and Erlang version

R16B03-1 as the messaging setup. In Experiment-2, we use Apache Tomcat version 8.0.24

and Apache Axis2 version 1.6.3 as web service container. In Experiment-1, we run Rab-

bitMQ server on a virtual machine at IU, which is configured with 2 core of CPU, 4 GB

RAM, and 80 GB of disk space. In either Experiment-1 and Experiment-2, the PDS virtual

cluster frontnode, where PDS server is located, is configured with 2 core of CPU, 4 GB

RAM, and 80 GB of disk space.
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We conduct this evaluation when the PDS methods call is communicating via Rab-

bitMQ. We place the client at IU, and PDS cluster at IU, SDSC and CNIC respectively. We

measure the overhead of PDS runtime and show this under increasing workloads.

We investigate how well the PDS server performs when increasing the data processing

request rate. While the request rate can be arbitrarily manipulated, the requests will be

queued in the messaging bus, waiting for the PDS server to pick up. Due to the resource

capacity of a PDS cluster, the PDS server will not pick up request from the queue instantly.

The PDS server will wait for PDS to free resources that has been used for previous data pro-

cessing jobs. Therefore, we exclude the time that a jobs spends in the queue, as the queue

time has nothing to do with the PDS overhead but the size of the cluster. The overhead of

PDS runtime is formalized in Equation 5.4.

OverheadPDS−Runtime = Tr − Tq (5.4)

where Tr is round-trip time between a client and PDS, which excludes the job execution

time; and Tq is the time that a job spends in the queue. We created a PDS method that

has small execution time (around 500 millisecond), and configure PDS server thread to 40.

The results is shown in Figure 5.8. As the job request rate increases, the time of roundtrip

between a client and PDS server only increases slightly when the request rate is below 100

request per second, due to the multi-threading feature and short job execution feature in

PDS; when the rate exceeds 100, the roundtrip time increase dramatically because the PDS

server consumes requests from the job queue at a significant low rate due to the limit of

computation resource in a PDS cluster. The time a job spends in the queue also increases

because the size of the queue increases as the request rate increases. Therefore, the PDS

overhead is relatively small, which is under still under 2 seconds when the request rate hits
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200 requests per second. The PDS overhead is small even under the condition of large

average job execution time, because PDS server will reach a stable low dequeue rate to

keep the PDS cluster from overloading.

Figure 5.8: PDS Runtime Overhead

We evaluate how small a PDS overhead is in comparison to its methods encapsulated,

such as a MapReduce job. Figure 5.9 shows the execution time of 4683 MapReduce ex-

periments that we recorded in the past few years in temporal order. These MapReduce

jobs were executed on machines at Indiana University, San Diego Supercomputer Center,

Jilin University in China, Computer Network Information Center at Chinese Academy of

sciences. Resource allocation for each job varies, from single-node machine up to 20-node

cluster. The applications also vary. We tested applications bundled in the Hadoop pack-

age, eg., Word Count, Grep, Terasort; we also tested applications such as AutoDock and
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Figure 5.9: 12-month MapReduce Job Execution Time (sorted by date)

Figure 5.10: 12-month MapReduce Job Execution Time (sorted by execution time)

Figure 5.11: 12-month MapReduce Job Execution Time Distribution
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BLAST. The size of input dataset also varies, from 1MB to 50GB. In these 4683 jobs,

the shortest job finished in 38 seconds, and the longest job finished in 3194 seconds. Fig-

ure 5.10 sorts the job ID by job execution time, and Figure 5.11 gives frequency distribution

of job execution time. The workload suggests that the average job execution time is 687

seconds, which produces a number of 1/687 job completion per second.

Experiments show that PDS server can receive tens to hundreds of requests per second

for PDS method calls. Data processing methods such as MapReduce applications typi-

cally are long-run applications and has less than 1/687 job completion per second. Once

the requests are received and methods are invoked, the bottleneck shifts to the methods.

Therefore, the performance of PDS server will service the pinned data processing well.

5.4.4 Pinned Data on HMR+ Evaluation

We use the same applications that we used for original HMR evaluation. The trick is

to control the size percentage of pinned data over the entire dataset. We create a PDS

cluster at IU, with and without data; and a MapReduce cluster each at SDSC and CNIC.

We allocated at each physical cluster, a 4-node virtual cluster for the PDS cluster and

MapReduce clusters. Each node in each cluster has the same specification of 2-core CPU,

4GB RAM, and 80 GB of disk.

AutoDock in HMR+

The details of the original AutoDock HMR was described in Chapter 3.3.1. Considering

that AutoDock is a CPU-intensive application, ρi is set to 1 per Chapter 3.2.1 so that the

maximum number of Map tasks on each node is equal to the number of cores on the node.

The version of AutoDock is 4.2 which is the latest stable version. The global controller
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does not care about low-level execution details because our local job managers hide the

complexity.

During the experiments, 1 shared receptor and 500 ligands are used, which means the

job can generate 500 Map tasks. One of the most important configuration parameters is

ga num evals - number of evaluations. The larger its value is, the higher the probability

that better results may be obtained. Based on Chapter 3.3.1, the ga num evals is typically

set from 2,500,000 to 5,000,000. We configure it to 2,500,000.

We distribute the receptor to each virtual cluster. We then set the pinned data (ligands)

percentage to 0%, 20%, 40%, 60%, 80%, and 100% respectively, and distribute unpinned

data processing tasks to SDSC and CNIC virtual clusters, according to task distribution

algorithm used in Test Case 3 of Chapter 3.4.1. When the PDS cluster at IU is created

with dataset bundled, it cannot process data outside of the PDS. However, if the PDS is

created without dataset, it accepts both pinned and unpinned data from external sources.

Figure 5.12 shows the AutoDock execution on HMR+ where the PDS cluster is bundled

with dataset. Figure 5.13 shows the AutoDock execution on HMR+ where the PDS cluster

can process external dataset. The result indicates that the higher percentage of pinned data

results in less flexibility of job scheduling in both data source scenarios.

Grep in HMR+

The input data consists of 100 text files, each of which is 100MB large, all located at IU.

We uses two PDS models in this evaluation: 1) PDS with dataset bundled in; and 2) PDS

without dataset. We set the pinned data percentage to 0%, 20%, 40%, 60%, 80%, and 100%

of the 10GB dataset respectively on the following three test cases:

Test Case 1: PDS with dataset bundled. The PDS can only process pinned data that is
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Figure 5.12: Evaluation of AutoDock with Pinned Data on HMR+: PDS with Bundled

Dataset

Figure 5.13: Evaluation of AutoDock with Pinned Data on HMR+: PDS with External

Data Sources
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encapsulated in the suitcase located at IU. The unpinned portion of the dataset needs to be

processed on SDSC and CNIC clusters. Figure 5.14 shows the results of this test case. The

IU cluster only processes pinned data. There is no data loading from pinned data source to

HDFS, because the pinned data is already in the HDFS on the PDS cluster. The rest of the

unpinned data sits at IU but outside the PDS. The unpinned data needs to be loaded onto

HDFS of the SDSC cluster and CNIC cluster, remotely from IU before processing using

MapReduce. When the pinned data percentage increases, IU’s PDS takes for workload,

therefore, reduces the workload of the clusters at SDSC and CNIC. The total job execution

time is summed based on two variables: 1) the maximum sum of data transfer (in and out)

and processing time at each cluster, and 2) the GlobalReduce execution time. As we can

see in the graph, the optimal value of the total execution time is around 404 seconds at

80% of pinned data. The percentage is higher than the previous AutoDock case, which is

around 20% to 40%. The reason for getting this high percentage is because the all the data

is located at IU, where the locality is more importance in this data-intensive application.

Test Case 2: PDS without dataset bundled. PDS can only process pinned data that is

co-located at IU. The unpinned portion of the dataset also needs to be processed on SDSC

and CNIC clusters. The difference between this test case and the previous one is that, it

takes PDS fairly large amount of time to load the pinned data from external data sources

onto HDFS, in comparison to no pinned data loading for test case 1. Figure 5.15 shows

the results of this test case, which has two takeaways: 1) the minimum value of total job

execution time increases from Test Case 1’s 404 seconds to 542 seconds due to the extra

cost of loading pinned data into PDS; and 2) the percentage of pinned data on which the

optimal execution time was based, shift from Test Case 1’s 80%, to 60%, also due to the

extra cost of loading data at IU, which put the workloads at IU still compelling but less
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favorable than that of in Test Case 1.

Test Case 3: PDS without dataset bundled. PDS is able to 2) load pinned data from

external IU sources, and 2) load unpinned data anywhere accessible. When the percentage

of pinned data is low, the PDS can load unpinned data and process it. When the percentage

of pinned data hits 40%, the workload at IU reaches an even value that all three clusters

can roughly finish at the same time. When the percentage of pinned data goes beyond 40%,

the workload at IU exceeds the workloads at SDSC and CNIC, therefore increases the total

execution time of the HMR+ job.

Pinned Data on HMR+ Evaluation Summary

From both AutoDock and Grep applications, we see the more data is pinned, the less flex-

ible jobs the HMR+ can schedule. The job execution time will reach an optimal number

when the percentage of pinned data increases, and becomes less optimal once the percent-

age goes beyond a certain number. To receive performance gain when pinned data percent-

age is high, the PDS virtual cluster will need to scale up to accommodate the increasing

workload.

5.5 Summary

In this chapter, we first define a novel data model, “pinned data” that, describes non-

consumptive constraint of the data that raw data cannot leave a political jurisdiction. The

“pinned data” design is inspired by Object Oriented Programming that data is encapsulated

and accessed by method calls. A package of accessible pinned data is called a suitcase,

with certain data properties and operations that the suitcase can perform. Encapsulation

combines data and behavior in one suitcase and hides the implementation of the data from
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Figure 5.14: Evaluation of grep with pinned data on HMR+: PDS with bundled dataset

Figure 5.15: Evaluation of grep with pinned data on HMR+: PDS without bundled dataset,

PDS is limited to process external pinned dataset only.
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Figure 5.16: Evaluation of grep with pinned data on HMR+: PDS without bundled dataset,

PDS is able to process any external dataset.

the user of the suitcase.

We enhance HMR framework to HMR+ to support PND processing. In HMR+, dif-

ferent Map/Reduce functions can be encapsulated in different pinned data suitcases in dif-

ferent clouds before the GlobalReduce function aggregates data to produce final results.

Therefore, a pinned data suitecase provides “Data-Processing-as-a-Service” capability.

We evaluated 1) PDS creation overhead for both internal/external data model; 2) the

system performance under increasing workloads for PDS method access; 3) HMR+ perfor-

mance using two test applications, AutoDock HMR and Grep, under different percentages

of pinned data.

The pinned data model and its suitcase framework are demonstrated to process geo-

graphically distributed and immovable data with minimum runtime framework overhead
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while complying to all constrants these data and applications provide.



Chapter 6

Conclusion and Future Work

6.1 Summary

This dissertation addresses techniques to enhance cloud controllability and interoperability,

and geographically distributed processing of immovable data, each summarized below.

This dissertation presents a Virtual Cluster Controller (VCC) to enhance the cloud con-

trollability and interoperability. It creates virtual clusters across multiple cloud platforms.

In recognition of sensitive data, VCC can establish a single network overlay over widely

distributed clusters. Further, by facilitating information sharing among resources, applica-

tions, and data, the overall performance is improved. Experimental results show that the

overhead of VCC is minimum. The HMR outperforms the traditional MapReduce model

while processing a particular class of applications. The evaluations also show that informa-

tion sharing between resources and application through the VCC shortens the hierarchical

data processing time.

This dissertation defines a novel class of data, notably immovable data that we call

“pinned data”, where the data is treated as a first-class citizen instead of being moved

to where needed. We draw from our earlier work with a hierarchical data processing

model, Hierarchical MapReduce (HMR), to process geographically distributed data, some

110
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of which is pinned data. The applications implemented in HMR use extended the MapRe-

duce model where computations are expressed as three functions: Map, Reduce, and

GlobalReduce. We enhance HMR framework to HMR+ to support PND processing. In

HMR+, different Map/Reduce functions can be encapsulate in different pinned data suit-

case at different clouds, before the GlobalReduce function aggregates data to produce final

results. Therefore, a pinned data suitcase provides “Data-Processing-as-a-Service” capa-

bility. Evaluation shows that the overhead of creating PDS mainly contributes to virtual

cluster provisioning cost and optional data packing cost; the overhead of running a PDS

server is negligible in comparison to data processing costs.

6.2 Conclusion

The PRAGMA community experience shows that there are significant large barriers to set

up and control the multi-hosted environment in which data can be shared and analyzed.

Although researchers can do real science on such multi-institution environments, the hu-

man cost becomes a disincentive to share data in the first place. We have learned from the

use of VCC that the barrier can be significantly reduced by automating the virtual cluster

management process. Researchers will be largely encouraged to share and use their data

worldwide.

The pinned data model provides a programmatic solution of using geographically dis-

tributed and immovable data. We consider the pinned data model as an early step to stan-

dardize computational accesses to copyright data, of which users are untrusted. The pinned

data suitcase instantiated in Hierarchical MapReduce provides a framework for developers

to develop and deploy new data processing applications to suit their needs.
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6.3 Future Work

The future work of this dissertation includes:

• Enhance Virtual Cluster Controller by adding a provenance collection mechanism.

The provenance will help record how a virtual cluster can be instantiated. In a

loosely coupled architecture, a standalone provenance service receives notifications

(e.g., “data sent”) about activity within VCC. Events originate in VCC and can be ex-

posed through notifications generated directly by an adapter deployed at VCC. This

is different from our previous solutions [72] [65] where events are exposed through

statements written to application log files which can be parsed by a specialized adap-

tor to generate provenance notifications which are sent to the standalone provenance

service asynchronously. The provenance service correlates, organizes, and stores the

notifications into provenance sequences. Provenance graphs are formed and visual-

ized [45] when queries are issued to the service.

• Enhance the pinned data suitcase by adding provenance collection mechanism. The

pinned data suitcase is a great start point of recording data revisions. Since access of

pinned data is solely done through method calls in PDS, the PDS can be instrumented

for provenance collection. This will help tracking the use of pinned data.

• Broaden the use of pinned data applications. Applications with immovable data are

everywhere, from health data to K-12 student records, especially for large corporation

that operates globally. The pinned data model can be used to prevent an employee

from accessing sensitive data that he or she has no clearance to, but still obtains non-

consumptive results from the computation. The potential of applying the pinned data

model to everyday applications are endless.
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ing mapreduce and virtualization on distributed resources for bioinformatics ap-

plications. In Proceedings of the 2008 Fourth IEEE International Conference on

eScience, ESCIENCE ’08, pages 222–229, Washington, DC, USA, 2008. IEEE

Computer Society.

[93] Dejan Milojicic, Ignacio M. Llorente, and Ruben S. Montero. Opennebula: A cloud

management tool. IEEE Internet Computing, 15(2):11–14, 2011.



Bibliography 126

[94] H.H. Mohamed and D.H.J. Epema. An evaluation of the close-to-files processor and

data co-allocation policy in multiclusters. In Cluster Computing, 2004 IEEE Int.

Conf. on, pages 287–298, Sept 2004.

[95] Luc Moreau, Ben Clifford, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul Groth,

Natalia Kwasnikowska, Simon Miles, Paolo Missier, Jim Myers, Beth Plale, Yogesh

Simmhan, Eric Stephan, and Jan Van den Bussche. The open provenance model core

specification (v1.1). Future Generation Computer Systems, 27(6):743 – 756, 2011.

[96] Rafael Moreno-Vozmediano, Ruben S. Montero, and Ignacio M. Llorente. Iaas cloud

architecture: From virtualized datacenters to federated cloud infrastructures. Com-

puter, 45(12):65–72, 2012.

[97] Garrett M. Morris, Ruth Huey, William Lindstrom, Michel F. Sanner, Richard K.

Belew, David S. Goodsell, and Arthur J. Olson. Autodock4 and autodocktools4:

Automated docking with selective receptor flexibility. Journal of Computational

Chemistry, 30(16):2785–2791, 2009.

[98] Amit Nathani, Sanjay Chaudhary, and Gaurav Somani. Policy based resource allo-

cation in iaas cloud. Future Generation Computer Systems, 28(1):94 – 103, 2012.

[99] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil So-

man, Lamia Youseff, and Dmitrii Zagorodnov. The eucalyptus open-source cloud-

computing system. In Proc. of the 2009 9th IEEE/ACM Int. Symp. on Cluster Com-

puting and the Grid, CCGRID ’09, pages 124–131, Washington, DC, USA, 2009.

IEEE Computer Society.



Bibliography 127

[100] Balaji Palanisamy, Aameek Singh, Ling Liu, and Bhushan Jain. Purlieus: Locality-

aware resource allocation for mapreduce in a cloud. In Proc. of 2011 Int. Conf. for

High Performance Computing, Networking, Storage and Analysis, SC ’11, pages

58:1–58:11, New York, NY, USA, 2011. ACM.

[101] Jongse Park, Daewoo Lee, Bokyeong Kim, Jaehyuk Huh, and Seungryoul Maeng.

Locality-aware dynamic vm reconfiguration on mapreduce clouds. In Proc. of the

21st Int. Symp. on High-Performance Parallel and Distributed Computing, HPDC

’12, pages 27–36, New York, NY, USA, 2012. ACM.

[102] Jorda Polo, David Carrera, Yolanda Becerra, Vicenc Beltran, Jordi Torres, and Ed-

uard Ayguade. Performance management of accelerated mapreduce workloads in

heterogeneous clusters. In Proceedings of the 2010 39th International Conference

on Parallel Processing, ICPP ’10, pages 653–662, Washington, DC, USA, 2010.

IEEE Computer Society.

[103] John Porter, Peter Arzberger, Hans-Werner Braun, Pablo Bryant, Stuart Gage, Todd

Hansen, Paul Hanson, Chau-Chin Lin, Fang-Pang Lin, Timothy Kratz, William

Michener, Sedra Shapiro, and Thomas Williams. Wireless sensor networks for ecol-

ogy. BioScience, 55(7):561–572, 2005.

[104] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Chris-

tos Kozyrakis. Evaluating mapreduce for multi-core and multiprocessor systems.

In Proceedings of the 2007 IEEE 13th International Symposium on High Perfor-

mance Computer Architecture, HPCA ’07, pages 13–24, Washington, DC, USA,

2007. IEEE Computer Society.



Bibliography 128

[105] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M. Llorente, R. Mon-
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