
Clemson University
TigerPrints

All Dissertations Dissertations

8-2014

Towards Efficient File Sharing and Packet Routing
in Mobile Opportunistic Networks
Kang Chen
Clemson University, kangc@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Chen, Kang, "Towards Efficient File Sharing and Packet Routing in Mobile Opportunistic Networks" (2014). All Dissertations. 1315.
https://tigerprints.clemson.edu/all_dissertations/1315

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1315&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/1315?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1315&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Towards Efficient File Sharing and Packet Routing in
Mobile Opportunistic Networks

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Computer Engineering

by

Kang Chen

August 2014

Accepted by:

Dr. Haiying Shen, Committee Chair

Dr. Richard R. Brooks

Dr. Kuang-Ching (KC) Wang

Dr. James Martin

Abstract

With the increasing popularity of portable digital devices (e.g., smartphones, laptops, and

tablets), mobile opportunistic networks (MONs) [40,90] consisting of portable devices have attracted

much attention recently. MONs are also known as pocket switched networks (PSNs) [52]. MONs

can be regarded as a special form of mobile ad hoc networks (MANETs) [7] or delay tolerant

networks (DTNs) [35, 56]. In such networks, mobile nodes (devices) move continuously and meet

opportunistically. Two mobile nodes can communicate with each other only when they are within

the communication range of each other in a peer-to-peer (P2P) manner (i.e., without the need of

infrastructures). Therefore, such a network structure can potentially provide file sharing or packet

routing services among portable devices without the support of network infrastructures. On the

other hand, mobile opportunistic networks often experience frequent network partition, and no end-

to-end contemporaneous path can be ensured in the network. These distinctive properties make

traditional file sharing or packet routing algorithms in Internet or mobile networks a formidable

challenge in MONs. In summary, it is essential and important to achieve efficient file sharing and

packet routing algorithms in MONs, which are the key for providing practical and novel services

and applications over such networks. In this dissertation, we develop several methods to resolve the

aforementioned challenges.

Firstly, we propose two methods to enhance file sharing efficiency in MONs by creating

replicas and by leveraging social network properties, respectively. In the first method, we investigate

how to create file replicas to optimize file availability for file sharing in MONs. We introduce a new

concept of resource for file replication, which considers both node storage and meeting frequency

with other nodes. We theoretically study the influence of resource allocation on the average file

access delay and derive a resource allocation rule to minimize the average file access delay. We also

propose a distributed file replication protocol to realize the deduced optimal file replication rule. In

ii

the second method, we leverage social network properties to improve the file searching efficiency in

MONs. This method groups common-interest nodes that frequently meet with each other into a

community. It takes advantage of node mobility by designating stable nodes, which have the most

frequent contact with community members, as community coordinators for intra-community file

request forwarding, and highly-mobile nodes that visit other communities frequently as community

ambassadors for inter-community file request forwarding. Based on such a community structure, an

interest-oriented file searching scheme is proposed to first search local community and then search

the community that is most likely to contain the requested file, leading to highly efficient file sharing

in MONs.

Secondly, we propose two methods to realize efficient packet routing among mobile nodes

and among different landmarks in MONs, respectively. The first method utilizes distributed social

map to route packets to mobile nodes efficiently with a low-cost in MONs. Each node builds its own

social map consisting of nodes it has met and their frequently encountered nodes in a distributed

manner. Based on both encountering frequency and social closeness of two linked nodes in the social

map, we decide the weight of each link to reflect the packet delivery ability between the two nodes.

The social map enables more accurate forwarder selection through a broader view and reduces the

cost on information exchange. The second method realizes high-throughput packet routing among

different landmarks in MONs. It selects popular places that nodes visit frequently as landmarks and

divides the entire MON area into sub-areas represented by landmarks. Nodes transiting between two

landmarks relay packets between the two landmarks. The frequency of node transits between two

landmarks is measured to represent the forwarding capacity between them, based on which routing

tables are built on each landmark to guide packet routing. Finally, packets are routed landmark by

landmark to reach their destination landmarks.

Extensive analysis and real-trace based experiments are conducted to support the designs in

this dissertation and demonstrate the effectiveness of the proposed methods in comparison with the

state-of-art methods. In the future, we plan to further enhance the file sharing and packet routing

efficiency by considering more realistic scenarios or including more useful information. We will also

investigate the security and privacy issues in the proposed methods.

iii

Acknowledgments

I would like to first thank my advisor Dr. Haiying Shen for her continuous advise, support,

encourage, and help during my PhD study in Clemson, without whom it is impossible for me to

finish my dissertation research productively. The knowledge and spirit learned from her will be my

lifelong treasure and will benefit me in my future career and life.

I am also deeply grateful to my committee members: Dr. Richard R. Brooks, Dr. Kuang-

Ching Wang, and Dr. James Martin. Their professional opinions and encourages have greatly helped

me to finish my dissertation research. I am also inspired by their broad knowledge, outstanding

research, and the dedication to research to pursue my Ph.D. and future career.

My life in Clemson University has been joyful, fruitful, and memorable. I am grateful to all

members in the Pervasive Communication Lab for their help and encourage, as well as the days and

nights we studied and worked together. I have to thank all friends in Clemson, who have provided me

numerous encourage and happiness. Without these labmates and friends, my experience at Clemson

would not be as great as it currently is.

Finally and most importantly, I am always grateful to my parents, Youxin Chen and Manyun

Li, and my brother, Le Chen, for their never-ending support and love.

iv

Table of Contents

Title Page . i

Abstract . ii

Acknowledgments . iv

List of Tables . vii

List of Figures . viii

1 Introduction . 1
1.1 Problem Statement . 2
1.2 Research Approaches . 4
1.3 Contributions . 6
1.4 Dissertation Organization . 7

2 Related Work . 8
2.1 File Sharing in MANETs/MONs . 8
2.2 Packet Routing in MONs . 11

3 Optimal File Replication for Efficient Sharing in MONs 14
3.1 Theoretical Analysis of Globally Optimal File Replication 15
3.2 Distributed File Replication Protocol . 24
3.3 Performance Evaluation in Connected MONs based on the RWP Mobility Model . . 31
3.4 Performance Evaluation in Disconnected MONs based on the Community-based Mo-

bility Model . 42
3.5 Summary . 45

4 Leveraging Social Networks for Efficient File Sharing in MONs 46
4.1 Overview . 46
4.2 Trace File Analysis . 48
4.3 Main Components . 49
4.4 Discussion on Advanced Methods . 60
4.5 Performance Evaluation . 62
4.6 Summary . 74

5 Utilizing Distributed Social Map for Lightweight Packet Routing among Nodes
in MONs . 75
5.1 The Benefits of Social Map on Routing Efficiency . 76
5.2 Social Map Construction . 78
5.3 Social Map Based Routing Algorithm . 86
5.4 Discussion on Scalability and Security . 92

v

5.5 Performance Evaluation . 94
5.6 Summary . 106

6 Exploiting Node Mobility for High-Throughput Packet Routing among Land-
mark in MONs .107
6.1 Network Model and Trace Analysis . 108
6.2 System Design . 112
6.3 Performance Evaluation . 127
6.4 Summary . 139

7 Conclusions and Future Work .141

Bibliography .144

vi

List of Tables

3.1 Notations in analysis. 17
3.2 Simulation parameters. 32
3.3 Experimental results of the trace-driven GENI experiment. 34
3.4 Experimental results of the trace-driven NS-2 experiment. 35

4.1 Average number of shared interested tracks. 49
4.2 Notations in interest extraction . 50
4.3 Efficiency and cost in the experiments on GENI . 66
4.4 Memory usage in the experiments on GENI . 66
4.5 Hit rate improvement with the Haggle trace. 71
4.6 Hit rate improvement with the MIT Reality trace. 71
4.7 Effect of request-completion strategy. 72
4.8 Effect of the detection of coordinator departures. 73

5.1 Characteristics of mobility traces. 77
5.2 Social table . 81
5.3 Better forwarder table (BFT) in node a . 91
5.4 Routing performance with the Haggle trace . 101
5.5 Routing performance with the MIT Reality trace . 101

6.1 Characteristics of mobility traces. 110
6.2 Landmark visiting history table on a node. 115
6.3 Bandwidth table on a node. 118
6.4 Routing table on one node. 119
6.5 Expanded routing table in one node. 127
6.6 Experimental results on dead end prevention. 136
6.7 Experimental results on loop detection and correction. 136
6.8 Experimental results of load balancing on success rate. 137
6.9 Experimental results of load balancing on average delay. 137
6.10 Routing tables in L2, L4, and L6. 139

vii

List of Figures

1.1 Demonstration of request/packet forwarding process in MONs. 2

3.1 Meeting ability distribution. 24
3.2 Replica distribution process. 28
3.3 CDF of the resource allocated to replicas in trace-driven GENI experiment. 34
3.4 CDF of the resource allocated to replicas in trace-driven GENI experiment. 36
3.5 Performance of the file replication protocols with different network sizes. 37
3.6 CDF of the resource allocated to replicas with different network sizes. 38
3.7 Performance of the file replication protocols with different node mobility. 39
3.8 CDF of the resource allocated to replicas with different node mobility. 41
3.9 Performance with different storage sizes. 41
3.10 Performance of the file replication protocols with the Haggle trace. 43
3.11 Performance of the file replication protocols with the MIT Reality trace. 44

4.1 Components of SPOON. 47
4.2 File searching in SPOON. 56
4.3 Average similarity values with different h1 and h2. 65
4.4 Performance in the event-driven experiments with Haggle trace. 67
4.5 Performance in the event-driven experiments with MIT Reality trace. 68
4.6 Total costs with confidence intervals. 70
4.7 Performance with voluntary and abrupt node departures. 73

5.1 The social map of Bob. 76
5.2 A network scenario to show the benefits of social map. 77
5.3 Evolution on the change of friend list and meeting frequency. 80
5.4 Social map update process. 81
5.5 Social map coverage with different Ls. 83
5.6 Part of node h’s social map. 85
5.7 Improvement on social map when L increase. 90
5.8 Performance of each method with the Haggle trace under different packet rates. . . . 96
5.9 Performance of each method with the MIT Reality trace under different packet rates. 96
5.10 Performance of each method with the Haggle trace under different memory sizes. . . 99
5.11 Performance of each method with the MIT Reality trace under different memory sizes. 99
5.12 Performance of each extension with the Haggle trace under different packet rates. . . 103
5.13 Performance of each extension with the MIT Reality trace under different packet rates.104
5.14 Experiment results on average value of L and computation cost. 106

6.1 Visiting distribution of top 5 most visited landmarks. 111
6.2 Bandwidth distribution of transit links. 111
6.3 The transit distribution of top 3 highest bandwidth transit links. 112
6.4 Sub-area division in our campus deployment. 114

viii

6.5 Accuracy of the transit prediction. 116
6.6 Demonstration of the routing table update. 120
6.7 Average routing table coverage and stability. 120
6.8 Demonstration of the routing loop detection and correction. 125
6.9 Demonstration of an overloaded link and solution. 126
6.10 Performance with different memory sizes using the DART trace. 129
6.11 Performance with different memory sizes using the DNET trace. 130
6.12 Performance with different packet rates using the DART trace. 133
6.13 Performance with different packet rates using the DNET trace. 134
6.14 Landmark map and configurations in the real deployment. 138
6.15 Experimental results in real deployment. 138

ix

Chapter 1

Introduction

In the past few years, personal mobile devices such as laptops, PDAs, and smartphones have

been more and more popular. Indeed, the number of smartphone users reached 1 billion by the third

quarter of 2012 and is expected to increase to 2 billion by 2015 [6]. The incredibly rapid growth of

mobile users is leading to a promising future, in which they can form a mobile opportunistic network

(MON) [40,90], which is also known as pocket switched network (PSNs) [52], to freely share files or

forward packets between each other without the support of cellular infrastructures. Such networks

are often shown in the form of mobile ad hoc networks (MANETs) [7] or delay tolerant networks

(DTNs) [35, 56], in which mobile devices, carried by people, are interconnected by opportunistic

encountering. Though communication infrastructures exist commonly nowadays, we focus on ex-

ploring the unused peer-to-peer (P2P) communication among digital devices (e.g., through WiFi and

Bluetooth) for pervasive communication and computing without the constraint of infrastructures.

In such a scenario, mobile devices establish connections for message exchange only when they are

within the communication range of each other, i.e., encountering based communication. As a result,

MONs often experience frequent network partitions, and no end-to-end contemporaneous path can

be ensured in the network.

These distinctive properties make traditional file sharing or packet routing algorithms in

Internet or mobile networks challenging in MONs. As a result, file searching and packet routing

usually are realized in a “store-carry-forward” manner in MONs [56]. Specifically, when a node

receives a file request or a packet, it carries the request/packet while moving in the network until

meeting the destination node or a node that is more suitable to carry the request/packet. Then,

1

source relay node destination

movement

relay node
Figure 1.1: Demonstration of request/packet forwarding process in MONs.

the request/packet is forwarded to the newly met node. Through such a hop-by-hop forwarding

strategy, the request/packet finally reaches the file holder/destination node. Figure 1.1 demonstrates

this process. In the figure, a file request/packet is generated by the “source node”, which forwards

it to its nearby “relay node”. However, the “relay node” fails to find a node that is more suitable

to carry the request/packet from nearby nodes. Then, it carries the request/packet while moving

around until it meets a more suitable “relay node” or the file holder or the destination of the packet.

Then, the “relay node” forwards the request/packet to it.

The file sharing or packet routing process actually utilizes the node mobility in MONs to

make up the lack of end-to-end paths. Therefore, deciding which node is more suitable to carry

the request/packet is the key for efficient file sharing or packet routing in MONs. Ideally, the

request/packet should be carried by the node that is most likely to meet the file holder or the

destination node. Generally, when two nodes meet, they first exchange certain information to

determine which node is more suitable for carrying which request/packet and then forward requests

or packets to the other node accordingly. This is also the basic direction in the state-of-art MON

file sharing/packet routing algorithms [9, 10,14,20,22,25,29,30,36,49,53,61,62,64,65,67,68,71–73,

80,82,92,93].

1.1 Problem Statement

Despite of the aforementioned basic method that enables the relaying of file requests/packets

among nodes in MONs, the limited resources on mobile nodes and the dynamism of node mobility

make highly efficient file sharing or packet routing non-trivial. Therefore, we aim to solve below two

challenges in this dissertation.

Firstly, how to realize efficient file sharing? By file sharing, we refer to the scenario in

which nodes request files from other nodes in the system without a file server. This is because the

2

distributed nature of MONs makes centralized file sharing challenging in MONs. File replication is an

intuitive way to enhance the file availability in MONs. However, previous methods [49,61,71,80,82]

simply consider storage as the resource for replicas and neglect that a node’s frequency to meet other

nodes (meeting ability in short) also influences the availability of its file. Files in a node with higher

meeting ability have higher availability. Then, how to consider node storage and mobility jointly

for replica creation in order to achieve the optimal file availability, i.e., minimum global average

file access delay, requires further investigation. Moreover, nodes in MONs usually belong to certain

social networks and present certain social network properties, which can affect their mobility and

encountering with each other in the network. Therefore, it would be beneficial to leverage social

network properties to improve the file sharing efficiency.

Secondly, how to realize efficient packet routing among both nodes and landmarks? Current

MON packet routing algorithms exploit either previous encountering records [9, 14, 64, 72] or social

network properties [10, 29, 29, 30, 53, 68, 92] to deduce a node’s ability to deliver a packet to its

destination. However, this may lead to two drawbacks: 1) the delivery ability only reflects a node’s

direct encounter probability or 2-hop accumulated relay probability and thereby only provides a local

view on forwarder selection; 2) two encountered nodes need to exchange the information on their

delivery abilities to the destination nodes of all packets carried by them to decide which packets

should be forwarded, which is a non-trivial burden for resource-limited MONs. Therefore, it is

desirable to investigate efficient MON routing algorithms that can overcome both shortcomings. On

the other side, packet routing among different landmarks in MONs can provide potential interesting

applications. For example, data communication (i.e., Internet access) can be realized by relying on

people or vehicles to carry and forward data when they move among rural villages and cities [35].

The concept of MONs has also been applied in animal tracking, which collects logged file from

the digital collars attached to zebras in Kenya without infrastructure network [57]. However, few

researches [36,62,65,67,73,93] have been conducted to investigate the location information in node

mobility to realize this function efficiently. Consequently, it is a challenging problem to realize

efficient packet routing among different landmarks in MONs.

3

1.2 Research Approaches

Extensive investigations have been conducted to solve the two problems introduced in Sec-

tion 1.1 in this dissertation. We briefly introduce our solutions in below.

1.2.1 Efficient File Sharing in MONs

1.2.1.1 Optimal File Replication for Efficient File Sharing in MONs

In this method, we consider the basic scenario, in which each node can only access the

requested file when meeting the file holder. Following this setting, we first introduce a new concept

of resource for file replication, which considers both node storage and node meeting ability. We then

theoretically study the influence of resource allocation on the average file access delay. Based on the

analysis result, we derive an optimal file replication rule that allocates resources to each file based

on its popularity and size. We further propose a file replication protocol based on the rule, which

approximates the minimum global file access delay in a fully distributed manner. The detail of this

work will be introduced in Chapter 3.

1.2.1.2 Leveraging Social Networks for Efficient File Sharing in MONs

We then expand the investigation to the scenario in which nodes can actively forward file

requests to reach the file holders. The requested file can also be forwarded among nodes to reach

the requester. In this case, by leveraging nodes’ social network properties on interest and movement

pattern, we propose a Social network based Peer-to-peer (P2P) cOntent-based file sharing system

in mobile Opportunistic Networks (SPOON). SPOON classifies common-interest and frequently-

encountered nodes into social communities. Then, SPOON considers the frequency at which a

node meets different interests rather than different nodes in file searching. SPOON also chooses

stable nodes in a community as coordinators and highly mobile nodes that travel frequently to

foreign communities as ambassadors. Such a structure ensures that a request can be forwarded

to the community of the requested file quickly. SPOON also incorporates additional strategies for

file prefetching, querying-completion and loop-prevention, and node churn consideration to further

enhance file searching efficiency. The detail of this work will be introduced later in Chapter 4.

4

1.2.2 Efficient Packet Routing in MONs

1.2.2.1 Efficient Packet Routing among Nodes in MONs

In order to overcome the shortcomings of current routing algorithms in MONs, we propose

SMART, which utilizes distributed social map for lightweight packet routing among nodes in mobile

opportunistic networks. The design of SMART is inspired by the social network property that the

people a person frequently meets are usually stable. These people also play an important role in

forwarding packets for the person [17]. For example, we often meet the same colleagues, friends,

and family members daily, and we often rely on them to forward messages to others. Consequently,

SMART mainly applies to scenarios in which node carriers belong to certain social structures.

Specifically, in SMART, each node builds a social map to record its surrounding social

network in MONs, which is constructed by learning each encountered node’s most frequently met

nodes (i.e., stable friends). Each link in the social map is associated with a weight based on the

encountering frequency and social closeness of the two connected nodes. The weight is used to

deduce the delivery abilities among nodes. Then, a node can decide whether to forward a packet

to an encountered node by only checking its own social map, which can save the cost. Further, the

social map is not limited to one or two hops and reflects possible long relay paths to provide better

forwarder selection. As a result, packets can be routed to their destinations efficiently with a low

cost. The detail of this work will be introduced later in Chapter 5.

1.2.2.2 Efficient Packet Routing among Landmarks in MONs

In current algorithms, packets are forwarded to gradually through nodes with higher proba-

bility of visiting the destination node or area. However, the number of such nodes usually is limited,

leading to insufficient throughput performance. Therefore, in order to realize efficient packet routing

among different landmarks in MONs, we propose an inter-landmark packet routing algorithm, called

DTN-FLOW, that fully utilizes all node movements in MONs. DTN-FLOW selects popular places

that nodes visit frequently as landmarks and divides the entire DTN area into sub-areas represented

by landmarks. Nodes transiting between landmarks relay packets among landmarks, even though

they rarely visit the destinations of these packets. Specifically, the frequency of node transition

between two landmarks is measured to represent the forwarding capacity between them, based on

which routing tables are built on each landmark to guide packet routing. Each node predicts its

5

transits based on its previous landmark visiting records using the order-k Markov predictor. When

routing a packet, the landmark determines the next hop landmark based on its routing table, and

forwards the packet to the node with the highest probability of transiting to the selected landmark.

Thus, DTN-FLOW fully utilizes all node movements to route packets along landmark based paths

to their destinations. The detail of this work will be introduced later later in Chapter 6.

1.3 Contributions

We summarize the contributions of this dissertation below.

• We investigate how to optimally create replicas in MONs to maximize file availability and

consequently, improve the file sharing efficiency.

(1) We introduce a new concept of available resource for file replication, which considers both

storage and meeting ability. (ICNP’11 [19] and TC’14 [24])

(2) We propose a globally optimal resource allocation rule that can lead to the minimum overall

file access delay under the restriction of limited resources. (ICNP’11 [19] and TC’14 [24])

(3) We design a novel file replication protocol to realize the proposed optimal file replication

rule, which works in a fully distributed way and can be adapted to different MON scenarios.

(ICNP’11 [19] and TC’14 [24])

• We leverage social network properties to enhance file sharing efficiency in MONs.

(1) We propose a method to create interest based community for efficient file sharing in MONs.

(MASS’11 [25] and TMC’12 [26])

(2) We design novel intra-community and inter-community file searching algorithms based on

the interest based community structure. (MASS’11 [25] and TMC’12 [26])

• We propose a social map based routing algorithm for MONs that can provide efficient packet

routing among nodes with a low cost.

(1) We propose a lightweight distributed social map construction algorithm to enable each

node to build its social map and discover its surrounding social network. (ICNP’12 [20] and

TON’13 [21])

(2) We propose a new routing algorithm that has a high efficiency and a low cost based on the

social map. (ICNP’12 [20] and TON’13 [21])

6

• We design a routing algorithms for MONs that can realize high throughput packet routing

among different landmarks in the network.

(1) We propose a landmark based sub-area division algorithm in MONs and model node mo-

bility as the transit among landmarks. (IPDPS’13 [22] and TON’13 [23])

(2) We measure the frequency of node transit between two landmarks as the packet forwarding

capacity between them, based on which routing tables are built on each landmark to guide the

packet forwarding. (IPDPS’13 [22] and TON’13 [23])

(3) We further predict node mobility based on the order-k Markov predictor [86]. We then real-

ize efficient file routing among landmarks based on aforementioned components. (IPDPS’13 [22]

and TON’13 [23])

1.4 Dissertation Organization

The remainder of this thesis is arranged as followings. Chapter 2 presents the related work.

Chapter 3 introduces the proposed method that can realize the optimal file replication for efficient file

sharing in MONs. Chapter 4 presents the proposed method that utilizes social network properties for

efficient file sharing in MONs. Chapter 5 introduces the proposed method that can realize efficient

packet routing among nodes in MONs. Chapter 6 presents the proposed method that can realize

efficient packet routing among landmarks in MONs. Finally, Chapter 7 concludes this dissertation

with discussions on future work.

7

Chapter 2

Related Work

Mobile opportunistic networks have attracted significant interests due to its distinctive

features and the increasing popularity of mobile devices. Extensive investigates have been conducted

on the efficient file sharing and packet routing in the contexts of MONs and mobile ad hoc networks

(MANETs). In this chapter, we summarize related works in this area. We first introduce previous

methods on efficient file sharing in MANETs/MONs. We then present the-state-of-art algorithms

for efficient packet routing in MONs that exploit encountering records, social network properties,

and location information, respectively.

2.1 File Sharing in MANETs/MONs

2.1.1 File Sharing in MANETs

2.1.1.1 Efficient File Replication in MANETs

In [33,45,94], individual or a group of nodes decide the list of files to replicate according to

file querying frequency. Hara [45] proposed three file replication protocols: Static Access Frequency

(SAF), Dynamic Access Frequency and Neighborhood (DAFN), and Dynamic Connectivity based

Grouping (DCG). In SAF, each node replicates its frequently queried files until its available storage

is used up. SAF may lead to many duplicate replicas among neighboring nodes when they have the

same interested files. DAFN eliminates duplicate replicas among neighbors. DCG further reduces

duplicate replicas in a group of nodes with frequent connections by creating replicas for files in

8

the descending order of their group based querying frequencies. Though DAFN and DCG enable

replicas to be shared among neighbors, neighboring nodes may separate from each other due to node

mobility. Also, they incur high traffic load in identifying duplicates or managing groups.

Zhang et al [94] proposed to let each node collect data access statistics from neighbors to

decide the creation or relinquishment of a replica. Duong and Demeure [33] proposed to group

nodes with stable connections and let each node checks its group members’ potential possibility

of requesting a file and their storage status to decide replicate the file or not. Yin and Cao [91]

proposed to cache popular files on the intersection nodes of file retrieval paths. Though it is effective

for popular files, it fails to utilize all storage space on nodes.

Gianuzzi [41] investigated the probability of acquiring a file, which has n replicas in the

network, from the potentially partitioned network. He also studied the file retrieval performance

when erasure coding [28] is employed. Chen [27] discussed how to decide the minimal number of

mobile servers needed to ensure that every data item can be obtained within at most k (k ≥ 1) hops

by any node in the system. Moussaoui et al. [76] proposed two steps of file replication, primary

replication and dynamic replication, to disseminate replicas in the network evenly in order to meet

user needs and prevent data loss in the case of network partition.

2.1.1.2 Flooding-based File Sharing Methods

In flooding-based methods, 7DS [80] is one of the first approaches to port P2P technology to

mobile environments. It exploits the mobility of nodes within a geographic area to disseminate web

content among neighbors. Passive Distributed Indexing (PDI) [71] is a general-purpose distributed

file searching algorithm. It uses local broadcasting for content searching and sets up content indexes

on nodes along the reply path to guide subsequent searching. Klemm et al. [61] proposed a special-

purpose on-demand file searching and transferring algorithm based on an application layer overlay

network. The algorithm transparently aggregates query results from other peers to eliminate redun-

dant routing paths. Anna Hayes et al. [46] extended the Gnutella system to mobile environments

and proposed the use of a set of keywords to represent user interests. However, these flooding-based

methods produce high overhead due to broadcasting.

9

2.1.1.3 Advertisement-based File Sharing Methods

Tchakarov and Vaidya [88] proposed GCLP for efficient content discovery in location-aware

ad hoc networks. It disseminates contents and requests in crossed directions to ensure their encoun-

tering. P2PSI [49] combines both advertisement (push) and discovery (pull) processes. It adopts the

idea of swarm intelligence by regarding shared files as food sources and routing tables as pheromone.

Each file holder regularly broadcasts an advertisement message to inform surrounding nodes about

its files. The discovery process locates the desired file and also leaves pheromone to help subsequent

search requests. Repantis and Kalogeraki [82] proposed a file sharing mechanism in which nodes use

the Bloom filter to build content synopses of their data and adaptively disseminate them to other

nodes to guide queries. Though the advertisement-based methods reduce the overhead of flooding-

based methods, they still generate high overhead for advertising and cannot guarantee the success

of file searching due to node mobility.

2.1.2 File Sharing in MONs

2.1.2.1 Cache/Replication-based File Sharing Methods

Huang et al. [51] proposed a method that considers multiple factors (e.g., node mobility,

file popularity, and file server topology) in creating file replicas in file servers to realize optimal

file availability on content distribution community. Gao et al. [39] proposed cooperative caching in

disruption tolerant networks. It replicas each file to network central locations, which are frequently

visited by nodes in the system, to ensure efficient data access. QCR [81] uses file caching to realize

effective multimedia content dissemination in opportunistic networks. In addition to node mobility

and file popularity, it also considers the impatience of users when creating replicas. Lenders et al. [66]

investigated wireless ad hoc podcasting, in which nodes store contents from their neighbors that are

interested by themselves or nodes they have met. Though these methods improve file availability,

nodes in these methods passively wait for their interested contents rather than actively search files,

which may lead to a long search delay.

2.1.2.2 Social Network-based File Sharing Methods

Social networks have also been utilized in content publishing/dissemination algorithms [11,

29,68,92] in opportunistic networks. MOPS [68] provides content-based sub/pub service by utilizing

10

the long-term neighboring relationship between nodes. It groups nodes with frequent contacts and

selects nodes that connect different groups as brokers, which are responsible for inter-community

communication. Then contents and subscriptions are relayed through brokers to reach different

communities. MOPS only considers node mobility while SPOON is more advantageous by consid-

ering both node interest and mobility as described previously. Moreover, unlike MOPS that only

depends on the meeting of brokers for inter-community search, SPOON enhances the efficiency of

inter-community search by (1) assigning one ambassador for each known foreign community, which

helps to forward a query directly to the destination community, and (2) utilizing stable nodes (co-

ordinator) to receive messages from ambassadors.

The work in [92] is a similar to MOPS. It selects centrality nodes as brokers and builds

them into an overlay, in which brokers use unicast or direct protocols (e.g., WiFi access points) for

communication. Then node publications are first transferred to the broker node responsible for the

node’s community and then propagated to all brokers to find matched subscribers. SocialCast [29]

calculates a node’s utility value on an interest based on the node’s mobility and co-location with the

nodes subscribed to the interest. It publishes contents on an interest to subscribers by forwarding

the contents to nodes with the highest utilities on the interest. ContentPlace [11] defines social

relationship based communities and a set of content caching policies. Specifically, each node calcu-

lates a utility value of published data it has met based on the data’s destination and its connected

communities, and caches the data with the top highest utilities. The work in [38] considers social

contact patterns and interests of mobile users to estimate users’ potential interests in generated files

and thereby realize efficient data dissemination.

2.2 Packet Routing in MONs

2.2.1 Probabilistic Routing Methods

Probabilistic routing methods [9, 14, 64, 72] use nodes’ past encounter records to predict

their future encounter probabilities, which is used to rank the suitability of a node to carry a packet.

PROPHET [72] updates the encountering probability between two nodes when they meet and ages

the probability over time. A packet is always forwarded to nodes with higher probability of meeting

its destination. MaxProp [14], RAPID [9], and MaxContribution [64] extend PROPHET by further

specifying forwarding and storing priorities based on the probability of successful delivery. Packets

11

with higher priorities are forwarded first, and high priority packets replace low priory packets when

a node’s storage is full.

2.2.2 Social Network-based Routing Methods

Considering that people carrying mobile devices usually belong to certain social relation-

ships, social network based routing algorithms [10,29,30,53,68,92] exploits social network properties

in DTNs for packet routing. MOPS [68] is a publish-subscribe system. It groups frequently encoun-

tered nodes into a cluster for efficient intra-community communication and selects nodes having

frequent contacts with foreign communities for inter-community communication. BUBBLE [53]

uses two layers of ranks: global and local. The global ranking is used to forward a packet to the

destination community, and the local ranking helps to find the destination within the community.

SimBet [30] adopts centrality and similarity to rank the suitability of a node to carry a packet.

It is based on the concept that nodes having high centrality and similarity with the destination

node tend to meet it frequently. The event dissemination system in [92] is similar to MOPS. It

groups well-connected nodes into communities and selects nodes with the highest closeness central-

ity as brokers for inter-community dissemination. Costa et al. proposed a social network based

publish-subscribe system [29]. It forwards messages to nodes that meet subscribers of the packet’s

interest category frequently and have high connectivity with other nodes. HiBop [10] defines node

context by jointly considering various information, including personal interests, residence and work,

and forwards packets to the nodes that have frequent encounter records with the context of the

destination.

2.2.3 Location-based Routing Methods

Location based routing methods [36, 62, 65, 67, 73, 93] use previous geographical location to

assist packet routing in DTNs. GeoDTN [73] encodes historical geographical movement information

in a vector to predict the possibility of two nodes becoming neighbors. Then, packets are forwarded

to nodes that are more likely to be a neighbor of the destination node. PGR [62] uses observed node

mobility pattern to predict nodes future movement to forward packets to a certain geographical

destination. GeoOpps [67] exploits the navigation system to calculate the minimal estimated time of

delivery (METD) by considering the closest point of possible routes to the destination, and forwards

12

packets to vehicles that lead to smaller METD. In MobyPoints [65], a node’s meeting probabilities

with all possible locations are encoded in vectors. Then, forwarding decisions are made based on

the similarity score between the vectors of relay node and destination node. In GeoComm [36], the

geo-centrality of each geo-community is calculated based on its contact probabilities with each node.

Such centralities are then exploited to realize efficient packet dissemination in DTNs. In PER [93],

a node’s past transits among landmarks or sojourn on landmarks are summarized to predict its

probability of visiting a landmark within a time limit. Such information is further exploited to

deduce two node’s future contact probability for packet routing. LOUVRE [63] builds landmarks on

road intersections and uses the landmark overlay for routing in vehicle networks. However, LOUVRE

focuses on vehicular networks in which GPS and map are used to determine the connected landmark

and the next landmark the node is moving toward.

13

Chapter 3

Optimal File Replication for

Efficient Sharing in MONs

In this chapter, considering mobile nodes can only communicate with each other when they

meet, i.e., within the communication of each other, in MONs, we consider the scenario in which nodes

rely on the encountering with the file holder to access interested file. In this scenario, file replication

is an efficient way to enhance the file availability for efficient file sharing. On the other hand, a

node’s frequency to meet other nodes (meeting ability in short) also influences the availability of its

files. Files in a node with higher meeting ability have higher availability. Therefore, we introduce

a new concept of resource for file replication, which considers both node storage and node meeting

ability. We then theoretically study how to assign limited resources on nodes for the creation of file

replication so that the global file access delay is minimized. We consider both connected MONs and

disconnected MONs in the analysis. The former has a relatively dense node distribution in an area

while the latter has sparsely distributed nodes that meet each other intermittently. We develop an

optimal file replication rule (OFRR) in MONs following the analysis result. We also propose a novel

distributed file replication protocol, denoted by PCS, to realize the replication rule.

In the following, we first present the modeling of the influence of the resource allocation

on file availability under two representative mobility models in Section 3.1 and then introduce the

design of the PCS file replication protocol in Section 3.2. Sections 3.3 and 3.4 present the perfor-

mance evaluation of the proposed PCS algorithm in connected and disconnected MONs, respectively.

14

Finally, Section 3.5 summarizes this chapter.

3.1 Theoretical Analysis of Globally Optimal File Replica-

tion

3.1.1 Node Movement Models

We consider two types of MONs (i.e., connected MONs and disconnected MONs) for theoret-

ical analysis. The former has a dense node distribution and is similar to the mobile ad hoc networks

(MANETs) [7]. Since the random waypoint model (RWP) [13] is often used for the research on

MANETs [41, 45, 94], we also use it to represent node mobility in connected MONs. The latter

has sparse node distribution and therefore is a typical form of delay tolerant networks (DTNs) [56].

Therefore, we adopt the the community-based mobility model [77] to represent node mobility in

disconnected MONs, which is often used in the research on DTNs [26,29,78]. We leave the analysis

for other mobility models, e.g., those created by Bonn Motion Tool [1], to future work.

3.1.1.1 Random Waypoint Model for Connected MONs

We use the random waypoint model (RWP) [13] to model node mobility in connected MONs.

In RWP, nodes repeatedly move to a randomly selected point at a random speed, which means each

node has roughly similar probability to meet other nodes. However, nodes usually have different

probabilities of meeting nodes in reality, i.e., nodes with faster speed can meet others more frequently.

We hence let each node have a randomly obtained speed, rather than a continuously varying speed

as in the normal RWP model.

3.1.1.2 Community-based Mobility Model for disconnected MONs

We use the community-based mobility model [77] to model node mobility in disconnected

MONs. In this model, the entire test area is split into different sub-areas, denoted by caves. Each

cave holds one community. A node belongs to one or more communities (i.e., home community). The

routines and (or) social relationships of a node tend to decide its mobility pattern. While moving,

15

a node has probability Pin to stay in the home community and probability 1−Pin to visit a foreign

community. A node moves within its home communities for most of the time (i.e., Pin usually is

large). Please refer to [77] for more details of this mobility model.

3.1.1.3 Assumptions and Limitations

With above two mobility models, our analysis relies on two assumptions: 1) the probability

of meeting a certain node is the same for all nodes (RWP model) or all nodes in its home community

(community-based model) and 2) nodes move independently in the network (both models). The

two assumptions may not always hold in real cases, which limits the applicability of the analysis

results. However, the analysis results can provide instructions on file replication because the two

models can represent key characteristics in real scenarios and have been widely used in research

works [26, 29, 41, 45, 78, 94]. We briefly discuss how to expand the analysis to general scenarios

without the two assumptions in Section 3.1.3.3.

3.1.2 Modeling the Replication Optimization Problem

We present the general process to model the expected file access delay with file replication.

Note that in this research, we only consider the scenario in which a file requester relies on the

encountering with the file holder to obtain the file. We let m̂i be the probability that a node’s newly

met node in the coming time interval is node i, which reflects the meeting ability of files on node i.

We also use Xij to denote whether node i owns file j (or its replica). Then, the average number of

time intervals needed to meet a specific file, say file j, can be represented as:

T̂j =
1

N∑
i=1

m̂iXij

(3.1)

Then, the average number of intervals needed to satisfy a request is

T̂ =

F∑
j=1

qj T̂j =

F∑
j=1

qj
N∑
i=1

m̂iXij

, (3.2)

where qj is the probability of requesting file j. With Formula (3.2), we can formulate the global

optimization problem as minimizing T̂ , which can be utilized to deduce the optimal replication rule.

However, the calculation of m̂i may be complex and makes the minimization problem non-

trivial. We will discuss how this is handled with the two common mobility models in Section 3.1.3.

16

3.1.3 Theoretical Analysis

In this section, we theoretically analyze the influence of the file replica distribution on the

Table 3.1: Notations in analysis.

Notation Meaning
qj The prob. of requesting file j in the system
mi The prob. that the next encountered node is node i
pj The prob. of obtaining file j in the next encountered node
N Total number of nodes
Vi Node i’s meeting ability (i.e., frequency of meeting nodes)
Si Storage space of node i

V Average meeting ability of all nodes in the system
F Total number of files in the system
bj Size of file j
Xij Whether node i contains file j or not

Vjk Meeting ability of the kth node that holds file j
nj The number of nodes holding file j or its replicas
Aj Allocated resource for file j for replication

Tj Average number of time intervals needed to meet file j

T Average number of time intervals needed to meet a file
R Total amount of resource in the system

Pj Priority value of file j, Pj =

√
qj/bj

overall file access delay in MONs under the two mobility models following the process introduced in

Section 3.1.2. Please refer to Table 3.1 for the notations in our analysis.

3.1.3.1 Optimal File Replication with the RWP model

In the RWP model, we can assume that the inter-meeting time among nodes follows expo-

nential distribution [15,43]. Then, the probability of meeting a node is independent with the previous

encountered node. Therefore, we define the meeting ability of a node as the average number of

nodes it meets in a unit time and use it to investigate the optimal file replication. Specifically, if a

node is able to meet more nodes, it has higher probability of being encountered by other nodes later

on. We use mi to denote the probability that the next node a file request holder meets is node i.

Then, mi is proportional to node i’s meeting ability (i.e., Vi). That is

mi =
Vi∑N

k=1
Vk

=
Vi

V N
(3.3)

where N denotes the total number of nodes and V denotes the average meeting ability of all nodes.

We use vector (Vj1, Vj2, . . . , Vjnj
) to denote the meeting abilities of a group of nodes holding

file j or its replica, where nj is the number of file j (including replicas) in the system. Then, the

probability that a node obtains its requested file j from its encountering node is the sum of the

17

probabilities of encountering nodes that hold file j or its replica. That is,

pj =

N∑
i=1

miXij =

N∑
i=1

Vi

V N
Xij =

nj∑
k=1

Vjk

V N
(3.4)

where Xij is a zero-one variable that denotes whether node i contains file j (or its replica).

As stated above, a node’s probability of being encountered by other nodes is proportional to

its meeting ability. This indicates that files residing in nodes with higher meeting ability have higher

availability than files in nodes with lower meeting ability. So we take into account both meeting

ability and storage in measuring a node’s resource. When a replica is created on a node, it occupies

the memory on the node. Also, its probability of being met by others is decided by the node’s

meeting ability. This means that the replica naturally consumes both the storage resource and the

meeting ability resource of the node. Therefore, we denote the resource on a node by SiVi, in which

Si denotes node i’s storage space and Vi denotes its meeting ability. Then, the total amount of

resources in the system (R) is:

R =

N∑
i=1

SiVi (3.5)

Thus, the total resources allocated to file j is:

Rj = bj

nj∑
k=1

Vjk (3.6)

where bj is the size of file j. Based on Equation (3.6), Equation (3.4) can be represented as

pj =

bj

nj∑
k=1

Vjk

bjV N
=

Rj

bjV N
(3.7)

Thus, the probability of meeting file j after k (k = 1, 2, 3, · · ·) time intervals (i.e., average inter-

meeting time among nodes) is

(1− pj)k−1pj

and the average number of time intervals needed for a node to meet a node containing file j is

Tj =

∞∑
k=1

k(1− pj)k−1pj =
1

pj
=
bjV N

Rj
(3.8)

We use qj ∈ [0, 1] to denote the probability of generating a request for file j in the system. Then,

the average number of intervals needed to satisfy a request is

T =

F∑
j=1

qjTj =

F∑
j=1

qj
bjV N

Rj
= V N

F∑
j=1

qjbj
Rj

(3.9)

18

We aim to minimize the global file access delay (i.e., T) by file replication. According to

Equation (3.9), T is decided by qj , bj and Rj , and the values of qj and bj are decided by the system.

Thus, the problem of optimal resource allocation is then converted to finding the optimal amount

of resources (Rj) for each file j under the restriction of total available resources in order to achieve

the minimum average access delay.

Suppose Bj = qjbj , with Equations (3.5) and (3.9), the problem of optimal resource alloca-

tion is expressed by

min(T) = min{
F∑

j=1

qjbj
Rj
} = min{

F∑
j=1

Bj

Rj
} (3.10)

subject to:
F∑

j=1

Rj ≤ R.

Equation (3.9) also indicates that each Rj should be as large as possible in order to minimize T .

Therefore, we assume all resources (R) are allocated.

F∑
j=1

Rj = R (3.11)

By applying Formula (3.11), Formula (3.10) is changed to

min(T) = min{B1

R1
+
B2

R2
+ · · ·+ BF

R− (R1 +R2 + · · ·+RF−1)
} (3.12)

Next, we try to find the value of Rj (1 ≤ j ≤ F−1) that satisfies Formula (3.12). Specifically,

we first calculate the first order (necessary) condition by differentiating T on each Rj (1 ≤ j ≤ F−1),

respectively, and find the value of Rj that makes the differentiated formula equal 0. The resultant

formulas after differentiation are

B1

R2
1

− BF

{R − (R1 +R2 + · · ·+RF−1)}2
= 0 (3.13)

· · · · · · · · ·

BF−1

R2
F−1

− BF

{R − (R1 +R2 + · · ·+RF−1)}2
= 0 (3.14)

Combine all above F − 1 equations, we get

B1

R2
1

=
B2

R2
2

=
B3

R2
3

= · · · = BF−1

R2
F−1

=
BF

R2
F

(3.15)

To achieve the minimal average delay, the second order (sufficient) condition should be larger than

0. That is:

−2B1

R3
1

− −2BF

{R − (R1 +R2 + · · ·+RF−1)}3
> 0 (3.16)

19

· · · · · · · · ·

−2BF−1

R3
F−1

− −2BF

{R − (R1 +R2 + · · ·+RF−1)}3
> 0 (3.17)

If Equation (3.15) is true, based on Equation (3.11), Formulas (3.16) and (3.17) can be transformed

to below.

(
1

RF
− 1

R1
)
2B1

R2
1

> 0 (3.18)

· · · · · · · · ·

(
1

RF
− 1

RF−1
)
2BF−1

R2
F−1

> 0 (3.19)

When RF < Rj (j ∈ [1, F−1]), Equations (3.18) and (3.19) (and also the second order condition) are

satisfied. Recall that the above result is obtained when we replace RF withR−(R1+R2+· · ·+RF−1)

in Equation (3.10). If we replace Rk (k ∈ [1, F]) with R − (R1 + · · ·Rk−1 + Rk+1 + · · ·RF), the

second order is also satisfied when Rk < Rj (j ∈ [1, F], j 6= k). In summary, the second order is

satisfied when the resource allocated for one file is less than the resource allocated for any other file.

This condition is always true because there always exists a file with the minimum allocated resource.

Therefore, as long as the first order condition (i.e., Equation (3.15)) is satisfied, the second order

condition is also satisfied.

Then, according to Equation (3.11) and Equation (3.15), we can see that the optimal allo-

cation is

Rj =

√
Bj

F∑
k=1

√
Bk

R (j = 1, 2, 3, · · · , F) (3.20)

This means that the optimal resource allocation is achieved through the square root policy, i.e., the

portion of resource for file j is in direct proportion of the square root of Bj :

Rj ∝
√
Bj ⇒ bj

nj∑
k=1

Vjk ∝
√
bjqj (3.21)

That is
nj∑
k=1

Vjk ∝
√
qj
bj
⇒

nj∑
k=1

Vjk ∝ Pj (3.22)

We call
√
qj/bj the Priority Value (P) of file j as it represents the relative priority in acquiring

resource for the global optimization on file access delay.

Based on Formula (3.22), we derive the Optimal File Replication Rule (OFRR) that gives

the direction for the optimal resource allocation that leads to the minimum average file access delay

20

under the RWP model.

OFRR. In order to achieve the minimum overall file access delay, the sum of the meeting abilities

of replica nodes of file j should be proportional to Pj =
√
qj/bj .

3.1.3.2 Optimal File Replication with the Community-based Mobility Model

In this section, we conduct the analysis under the community-based mobility model. Unless

otherwise specified, we use the same notations in Table 3.1 (which is for the RWP model) but add ′ to

each notation to denote that it is for the community-based mobility model. Recall that in the RWP

model, we can assume that the inter-meeting time among nodes follows exponential distribution.

Based on this assumption, we can calculate the probability that a newly met node is node i (i.e.,

mi), which is used to find the expected time T to satisfy a request and finally deduce the OFRR that

can minimize T . However, under the community-based mobility model, this assumption does not

hold [85]. This makes it difficult to calculate mi, which makes the process of minimizing the overall

delay T ′ a formidable problem. To deal with this problem, rather than considering meeting ability,

we consider each node’s satisfying ability. It is defined as a node’s ability to satisfy requests in the

system (denoted by V ′i) and is calculated based on its capacity to satisfy requests in each community.

We use Nc to denote the number of nodes in community c. Then, community c holds Nc

N

fraction of nodes in the system. Node i’s satisfying ability to community c depends on both the

number of different nodes in c it meets in a unit time period (denoted by Mic) and the number of

requests generated by nodes in c. In this model, since nodes’ file interests are stable during a certain

time period, we assume that each node’s file requesting pattern (i.e., requesting rates for different

files) remains stable in the considered period of time.

Then, the number of nodes in a community represents the number of requests for a given file

generated in this community. As a result, a file holder has low ability to satisfy requests from a small

community. Thus, we integrate each community’s fraction of nodes (i.e., Nc

N) into the calculation of

the satisfying ability. Therefore,

V ′i =

C∑
c=1

Mic
Nc

N
(3.23)

where C is the total number of communities.

Given nj nodes that hold file j or its replica, we again use vector (V ′j1, V
′
j2, . . . , V

′
jk, . . . , V

′
inj

)

to denote the satisfying abilities of these nodes. Then, the overall ability of nodes in the system to

21

satisfy requests for file j (denoted by Oj) is the sum of all the satisfying abilities times a redundancy

elimination factor α.

Oj = α

nj∑
k=1

V ′jk (α ∈ [0, 1]) (3.24)

α is added because different holders of file j may meet the same requester for file j in the same

time unit. Since the requester has only one request for file j, only the first meeting satisfies the file

request, and the subsequent meetings do not satisfy a request for file j. In other words, α denotes

the “discount” on the overall satisfying ability considering the fact that the satisfying abilities of

different file holders may overlap.

Then, the number of time intervals (i.e., average inter-meeting time among nodes) needed

to satisfy a request for file j is

T ′j =
1

Oj
=

1

α
nj∑
k=1

V ′jk

(3.25)

Recall that bj denotes the size of file j and qj denotes the probability of initiating a request for file

j from nodes in the system. Similar to Equation (3.6), the total resources (satisfying resource and

storage resource) allocated to file j can be represented by R′j = bj
nj∑
k=1

V ′jk. As a result, the average

number of time intervals needed to satisfy a request in the system is

T ′ =

F∑
j=1

qjT ′j =

F∑
j=1

qj
1

α
nj∑
k=1

V ′jk

=
1

α

F∑
j=1

qjbj
R′j

(3.26)

Then, the problem of optimal resource allocation can be expressed by

min(T ′) = min{
F∑

j=1

qjbj
R′j
} = min{

F∑
j=1

Bj

R′j
} (3.27)

subject to:
F∑

j=1

R′j ≤ R.

We can find that Equation (3.27) is the same as Equation (3.10). Then, we follow the same

process after Equation (3.10) and deduce the OFRR rule in disconnected MONs as

nj∑
k=1

V ′jk ∝
√
qj
bj
⇒

nj∑
k=1

V ′jk ∝ Pj (3.28)

We see that the OFRR under the community-based mobility model (Equation (3.28)) is the

same as the OFRR deduced with the RWP model (Equation (3.22)) except that V ′jk is the satisfying

ability (Equation (3.23)) in the former while is the meeting ability (defined in Table 3.1) in the later.

It is intriguing to find that Equation (3.23) turns to be the same as the definition of Vi in Table 3.1

22

if the number of community is 1. This means that the OFRR expressed by Equation (3.22) is a

special case of the OFRR expressed by Equation (3.28). As a result, our previously deduced

OFRR can be the OFRR for MONs under the two mobility models.

It is interesting to find that the OFRR follows the “square root assignment rule” derived by

Kleinrock [60] for the link capacity assignment in wireless communication to maximize the network

efficiency. It also matches with the findings in [58] that when file servers may be unavailable due to

node dynamism, the wired P2P content distribution system can achieve the maximum file hit rate

when available storage is allocated in proportion to a constant value plus ln(qj/bj) for each file.

3.1.3.3 Extension to General Node Mobility Models

In above two subsections, we deduced the OFRR rule in RWP mobility model and community-

based mobility model following the basic idea in Section 3.1.2. However, above analysis relies on

two assumptions mentioned in Section 3.1.1.3, which may not hold in general node mobility models.

Therefore, it is non-trivial to extend above analysis to general cases directly. Specifically, in certain

mobility models, different nodes may have different visiting preferences or patterns, making different

node’s probabilities of meeting node i in the next encountering (m̂i) lack a general expression.

However, there are some ways to make the analysis in general cases possible. For example,

we can incorporate new factors into m̂i to express each node’s distinct patterns, e.g., active levels

and community identities. These factors usually represent how frequent a node meets others. We

can also first measure the meeting abilities of different nodes in a real scenario and then assign labels

to each node to indicate its rough meeting ability. With these simplifications, m̂i can be expressed

and the analysis can be conducted.

On the other hand, there are possibly fixed nodes in the system, which are naturally sup-

ported in our analysis. This is because we only care a node’s storage and meeting ability regarding

creating file replicas. Though fixed nodes do not move, they can meet other nodes, which means

their meeting abilities can be measured or even formulated. As a result, fixed nodes are regarded

the same as mobile nodes in the system.

3.1.4 Meeting Ability Distribution in Real Traces

We measured the meeting ability distribution from real traces to confirm the necessity of

considering node meeting ability as an important factor in the resource allocation in our design.

23

15

18

21

24

27

30

1 6 11 16 21 26 31

M
ee
tin

g
ab
ili
ty
 (x
10

3)

Node sequence

Dartmout trace

(a) In a connected MON.

0

4

8

12

16

20

1 11 21 31 41 51 61 71 81 91

M
ee
tin

g
ab
ili
ty
 (1

02
)

Node sequence

Mit Reality trace
Haggle trace

(b) In disconnected MONs.

Figure 3.1: Meeting ability distribution.

Specifically, for connected MONs, we used the Dartmouth trace [42], which was obtained through

an outdoor project in Dartmouth College. The trace provides position records of 35 laptop nodes

moving randomly and independently across different sections of an open field. For disconnected

MONs, we used the MIT Reality trace [34] and the Haggle trace [18]. In the former, 97 smart

phones were distributed to students and faculties at MIT. In the latter, 98 iMotes were assigned to

scholars attending the Infocom’06 conference. In both traces, the encountering among participating

nodes was recorded.

For each trace, we measured the meeting abilities of all nodes and ranked them in decreasing

order, as shown in Figure 3.1(a) and Figure 3.1(b). We see that in all three traces, node meeting

ability is distributed in a wide range. This matches with our previous claim that nodes usually

have different meeting abilities. Also, it verifies the necessity of considering node meeting ability as

a resource in file replication. This is because if all nodes have similar meeting ability, replicas on

different nodes have similar probability to meet requesters, and hence there is no need to consider

meeting ability in resource allocation.

3.2 Distributed File Replication Protocol

In this section, we propose a distributed file replication protocol that can approximately

realize the optimal file replication rule (OFRR) with the two mobility models in a distributed

manner. Since the OFRRs in the two mobility models (i.e., Equation (3.22) and Equation (3.28))

have the same form, we present the protocol in this section without indicating the specific mobility

model. We first introduce the challenges to realize the OFRR and our solutions. We then propose

a replication protocol to realize OFRR distributively and analyze the effeciveness of the protocol.

24

3.2.1 Challenges and Solutions to Achieve the OFRR

Challenge 1: resource allocation without a central server. OFRR shows that in

order to realize the globally optimal file access delay, each file’s popularity (qj) and size (bj), and

the system resource (R) information (both node storage size and moving ability) must be known in

order to decide the portion of resource for each file for replica creation. Specifically, suppose there

are F files in the system with b1q1 · · · bF qF and total resource R, the resource allocated to file j (Rj)

should be

Rj = R×
√
bjqj/

F∑
k=1

√
bkqk (3.29)

Then, an intuitive way to achieve this goal is to setup a central server to collect above information,

conduct the resource allocation for each file, and distribute the information to file owners to replicate

their files. However, the nature of the distributed network, node mobility, and transmission range

constraint make the building of such a central server infeasible. For example, since nodes are

constantly moving and have limited communication ranges, it is impossible for each node to update

its information to or receive information from the server timely. Thus, a severe challenge is to enable

a node to distributively figure out the proper portion of resource for each of its files without a central

server.

Even when each node knows
√
bjqj/

∑F

k=1

√
bkqk of each of its files, the total amount of

resources available in the system may change due to node joins and departures, which makes it

difficult for a node to calculate the portion of resource for each of its file (Rj). For example, suppose

there are only two files in the system, say f1 and f2, and the ratio of their allocated resources should

be 4:1. If the total amount of resource R = 40, the amount of resource allocated to f1 is 32. If

R = 60, the amount for f1 should be adjusted to 48. Further, the time-varying file popularity (qj)

makes the problem even more formidable. Therefore, OFRR cannot be simply realized by letting

each node distribute replicas of a file until an absolute amount of resources are occupied.

Solution to Challenge 1: resource competition. OFRR (i.e, Formula (3.22)) requires

that for each file, the sum of its replica nodes’ meeting abilities,
∑nF

k=1 VFk, is proportional to its

priority value P . In other words, OFRR can be shown by

P1/

n1∑
k=1

V1k = P2/

n2∑
k=1

V2k · · · = PF /

nF∑
k=1

VFk (3.30)

where nj (j ∈ [1, 2, · · · , F]) represents the number of replica nodes of file j. Then, we can let each file,

say file j, periodically compete for the resource with its current Pj/
∑nj

k=1
Vjk. In one competition,

25

the file with the highest Pj/
∑nj

k=1
Vjk has the highest probability to win, i.e., creating one replica.

After a file creates a replica, its Pj/
∑nj

k=1
Vjk decreases. The competition stops when all available

resource is allocated. Thus, files with larger Pj/
∑nj

k=1
Vjk win more competitions and receive more

resources and files with smaller Pj/
∑nj

k=1
Vjk only win few competitions and receive less resources.

The competition gradually lets each file receive its deserved portion of resources based on OFRR.

By enabling file owners to distributively compete for resource for their files, we can realize OFRR

without a central server.

Challenge 2: competition for distributed resource. In a MON, available resources

are scattered among different nodes moving around in the network. This poses three problems.

First, different file owners are scattered and can hardly gather together to conduct the resource

competition. Second, after a file is replicated to a number of nodes, it is difficult to collect the

popularity of the replicas to update the P of the file. Third, since the number of nodes met by a file

owner is limited, a single file owner cannot distribute replicas efficiently and quickly. We propose

a work-around for this problem. Specifically, we regard a file and its newly created replica as two

different files, which participate in further competition independently with evenly split priority value,

i.e., P/2. However, this brings another challenge: since replica nodes of a file are scattered in the

network, how to ensure that the overall
∑
Vjk is proportional to the overall P of the file?

Solution to Challenge 2: distributive competition on selective resources. In the

solution to Challenge 1, each file periodically competes for resource with its current Pj/
∑nj

k=1
Vjk.

However, as previously mentioned, it is a challenge to keep the overall P proportional to the overall∑
Vjk while replica holders are scattered. We indirectly resolve this problem by keeping the average

V of the replica nodes of a file close to V . Then, Formula (3.22) can be re-expressed as

nj ∗ V ∝
√
qj
bj
⇒ nj ∝

√
qj
bj
⇒ nj ∝ Pj (3.31)

In such a case, when the number of replicas of each file is proportional to its Pj =
√
qj/bj , OFRR is

satisfied. To attain this goal, we let each node deliberately select a neighbor node to create replicas

for each file so that the average meeting ability of the file’s replica nodes equals or is closest to V .

Considering the diverse node mobility in the network, a node can easily find replica nodes that satisfy

the above requirement during its movement. Then, based on Equation (3.31), each node only needs

to consider the P of each file in the resource competition. Upon winning a competition for a file,

26

a node splits the file’s P evenly between the file and the replica. After this, the popularity of each

file/replica is independently and continuously updated based on the number of requests received for

it in a unit time period.

When a replica is deleted in the competition, we cannot reverse the process of priority split

because it is very difficult to track the holders of the original file in a distributed manner due to node

mobility in MONs. Fortunately, we can use the requesting popularity q to handle this problem. In

this case, the qs (or P s) of other replicas of the file increase since they can receive more requests for

the file as the total amount of requests for the file is fixed, i.e., decided by the overall file popularity.

That is, the sum of the replicas’ P s equals the overall P of the original file j (Pi). The increase of

the priority values of other replicas of the file can be regarded as a reverse of the replica deletion.

As a result, the number of replicas of each file is proportional to the sum of the meeting abilities of

its replica nodes, thereby realizing Formula (3.22).

3.2.2 Design of the File Replication Protocol

The two solutions to handle the challenges in achieving the OFRR described above represent

a maximal approximation to realize the OFRR in a distributed manner. Based on the solutions, we

propose the Priority Competition and Split file replication protocol (PCS). We first introduce how

a node retrieves the parameters needed in PCS and then present the detail of PCS.

In PCS, each node dynamically updates its meeting ability (Vi) and the average meeting

ability of all nodes in the system (V). Such information is exchanged among neighbor nodes. We

explain the detail of this step in Section 3.2.3. Each node also periodically calculates the Pj =
√
qj/bj

of each of its files. The qj is calculated by qj = uj/U , where uj and U are the number of received

requests for the file and the total number of requests generated in a unit of time period, respectively.

Note that U is a pre-defined system parameter.

In the solution to Challenge 2, nodes replicate files distributively and select replicate nodes

to ensure that the average meeting ability of replica nodes of a file the closest to V . That is, Vn′
j
≈V ,

where Vn′
j

is the average meeting ability of the replica nodes of file j and n′j is the number of replica

nodes of file j. Therefore, each node tracks n′j and Vn′
j

for each of its file. After creating a replica,

the node increases n′j by 1 and updates Vn′
j

using the V of the new replica node.

With above information, we introduce the process of the replication of a file in PCS. Based

on OFRR, since a file with a higher P should receive more resources, a node should assign higher

27

File Priority
competition

Replica
creation &

priority split

Success

Try at most K times

Select one neighbor
by the OFRR RULE

Failure

Figure 3.2: Replica distribution process.

priority to its files with higher P to compete for resource with other nodes. Thus, each node orders

all of its files in descending order of their P s and creates replicas for these files in a top-down manner

periodically. Algorithm 1 presents the pseudo-code for the process of PCS between two encountered

nodes. In detail, suppose node i needs to replicate file j, which is on the top of the list. Then,

as shown in Figure 3.2, it keeps trying to replicate file j on nodes it encounters until one replica

is created or K attempts have been made. If file j is replicated, its P is split. Next, the node

fetches the file from the top of the list and repeats the process. If file j fails to be replicated after

K attempts, the node stops launching competition until the next period.

——————————————————————————————
Algorithm 1 Pseudo-code of PCS between node i and k.
——————————————————————————————
i.createReplicasOn(k) //node i tries to create a replica on node k
k.createReplicasOn(i) //node k tries to create a replica on node i
Procedure createReplicasOn (node)

nCount ← 0 //initialize a count
this.orderFilesByP() //order files by priority value
For (each file f in current node) //try to replica each file

If (node.compete4File(f) == true) //competition
node.createAReplica4(f) //create a replica if win

else
nCount ← nCount+1

If nCount ≥ K //try at most K times
Break

end Procedure
Procedure compete4File() //Compete for file j

While (nRemainningMem < j.size())
nSum ← nTotal ← nRandom ← fData ← 0 //initilization
For (each file f (including j) in current node)

nTotal ← nTotal+1/Pf

nRandom ← generateARandomNumber() % nTotal
For (each file f (including j) in current node)

nSum ← nSum+1/Pf

If (nSum >= nRandom)
fData = f Break //pick the file

If (fData = j) //j is the picked file, competition fails
return false

Else //win the competition
select fData

delSelectedFiles() //delete the selected file
return true

end Procedure
——————————————————————————————

28

Following the solution to Challenge 2, a replicating node should keep the average meeting

ability of the replica nodes for file j around V . Node i first checks the meeting abilities of neighbors

and then chooses the neighbor k that does not contain file j and makes Vn′
j

new
= (n′jVn′j +Vk)/(n′j +

1) the closest to V as the replica node candidate. It is possible that Vn′
j

new
is far away from

V . Therefore, we set a deviation range r. If creating a replica in the selected neighbor makes

(Vn′
j

new − V) > r, the node does not replicate file j until it has a different set of neighbors.

In the case that (Vn′
j

new − V) ≤ r, if the selected neighbor’s available storage is larger than

the size of file j (Sj), it creates a replica for file j directly. Otherwise, a competition is launched

among the replica of file j and replicas already in the neighbor node based on their P s. The priority

value of the new replica is set to half of the original file’s P . According to the solution to Challenge 1,

the probability that a replica wins the resource competition is proportional to its P , i.e., a replica’s

probability of being selected to be removed is inversely proportional to its P . Then, suppose there

are d replicas in competition, we let each replica be responsible for a range that equals its 1/P in

space [0,
∑d

k=1 1/Pk]. The neighbor node randomly chooses a number in [0,
∑d

k=1 1/Pk], and the

replica whose range owns the number is selected to be removed. The neighbor node repeats above

process until available storage is no less than the size of file j.

If file j is among the selected files, it fails the competition and will not be replicated in the

neighbor node. Otherwise, all selected files are removed and file j is replicated. If file j fails, node i

will launch another attempt for file j until the maximum number of attempts (K) is reached. The

setting of K attempts is to ensure that each file can compete with a sufficient subset of replicas in

the system. If node i fails to create a replica for file j after K attempts, then replicas in node i whose

P s are smaller than that of file j are unlikely to win a competition. Thus, at this moment, node i

stops replicating files until next round. Finally, all available resources in the system are allocated to

replicas according to their P s, thereby realizing the OFRR.

According to the Solution to Challenge 2, we regard file j’s replica as a “different” file in

PCS. Therefore, if node i successfully creates a replica for file j, it splits the file’s priority value P

evenly between file j and the new replica. Thus, each file’s priority is P/2. After the splitting, the

two copies of file j involve in further resource competition independently. Note that we do not split

file in the PCS algorithm but just split the priority value of a file when a replica of the file is created.

The replication for a file stops when the communication session of the two involved nodes

ends. Then, each node continues the replication process for its files after excluding the disconnected

29

node from the neighbor node list. Since file popularity, P s, and available system resources change as

time goes on, each node periodically executes PCS to dynamically handle these time-varying factors.

Each node also periodically calculates the popularity of its files (qj) to reflect the changes on file

popularity (due to the change of node requesting pattern) in different time periods. The periodical

file popularity update can automatically handle file dynamism.

3.2.3 How to Collect Meeting Ability Information

To save communication cost, the values of Vi and V of each node are piggybacked into its

beacon messages. Since Vi and V are only several bytes, the piggybacking only slightly increases the

size of the beacon message. In connected MONs, a node’s meeting ability (Vi) is simply measured as

the frequency it meets other nodes. In disconnected MONs, a node needs to know the distribution

of different communities to calculate its satisfying ability (Equation (3.23)). We then let each node

piggyback its community ID and the community information it knows in the beacon message. We

also let each node use the average meeting ability of all so far encountered nodes as that for all nodes

in the system. As nodes meet more and more nodes, the calculated value can generally represent

the average meeting ability of all nodes.

3.2.4 Analysis of the Effectiveness of PCS

In this section, we briefly prove the effectiveness of PCS. We refer to the process in which

a node tries to copy a file to its neighbors as one round of replica distribution.

Recall that when a replica is created for a file with P , the two copies will replicate files with

priority P/2 in the next round. This means that the creation of replicas will not increase the overall

P of the file. Also, after each round, the priority value of each file or replica is updated based on the

received requests for the file. Then, though some replicas may be deleted in the competition, the

total amount of requests for the file remains stable, making the sum of the Ps of all replicas and the

original file roughly equal to the overall priority value of the file. Then, we can regard the replicas

of a file as an entity that competes for available resource in the system with accumulated priority

P in each round. Therefore, in each round of replica distribution, based on our design of PCS, the

overall probability of creating a replica for an original file j, denoted by Psj , is proportional to its

30

overall Pj . That is:

Psj ∝ Pj (3.32)

Then, suppose total M rounds of competition are conducted, the expected number of replicas,

denoted by nj , for file j is

nj = MPsj ⇒ nj ∝ Pj (3.33)

Therefore, we conclude that the PCS algorithm can realize Equation (3.31), in which the number of

replicas of each file is proportional to its P , thereby realizing the OFRR.

3.3 Performance Evaluation in Connected MONs based on

the RWP Mobility Model

To evaluate the performance of PCS in connected MONs, we conducted experiments on

both the GENI Orbit testbed [3, 4] and the NS-2 simulator [5]. The GENI testbed consists of 400

nodes equipped with wireless cards. We used the Dartmouth real-world trace [42], which provides the

mobility trace of 35 laptops moving in an open field, to drive node mobility in both experiments. In

order to validate the adaptability of PCS, we used two routing protocols in the experiments. We first

used the StaticWait protocol [87] in the GENI experiment, in which each request stays on the source

node waiting for the destination. We then used a probabilistic routing protocol (PROPHET [72]),

in which a node routes requests to the neighbor with the highest meeting ability. We set a larger

TTL for Static Wait since it needs more time to find a file holder. In addition to above tests, we

also conducted simulation on the NS-2 with different network sizes and node mobility synthesized

by the modified RWP model to evaluate our protocol under different scenarios.

We evaluated the performance of PCS in connected MONs in comparison with several

MANET replication algorithms: SAF [45], DCG [45], PDRS [33] and CACHE [91]. The details of

these protocols can be found in Section 2.1.1.1. To better validate our analysis, we also compared

PCS with Random, which places replicas on nodes randomly, and OPTM, which is a centralized

protocol that calculates the ideal replica distribution based on our derived optimal replication rule.

OPTM represents the best performance that can be obtained by the OFRR.

Table 3.2 shows the parameters used in experiments, unless otherwise specified. The pa-

rameters are determined by referring to the settings in [74,91] and the real traces. According to the

31

works in [44,91], we determined the file size and storage space on each node. As the work in [58], the

probability of originating requests for different files in each node follows a Zipf distribution and the

Zipf parameter was set to 0.7. Initially, files were evenly distributed to each node and no replicas

exist in the system. In the synthesized mobility, the speed of a node is randomly chosen from the

range of [s/2, 3s/2], in which s is the configured average node movement speed. Since the real trace

does not indicate the communication range of each node, we set the communication range to 60m

in the GENI experiment and 100m in the tests with the NS-2 to show the influence of different

transmission ranges on the performance. We evaluated the performance of PCS with K = 3.

We used the following metrics in the experiments:

• Hit Rate. It is the percent of requests successfully resolved by either original files or replicas.

• Average delay. This is the average delay of all requests. To make the comparison fair, we

included all requests in the calculation. For unresolved requests, we set their delays as the

TTL.

• Replication cost. This is the total number of messages generated in creating replicates.

• Cumulative Distribution Function (CDF) of the proportion of replicas. This is the CDF of the

proportion of replicas of each file. This metric reflects the amount of resources allocated to

each file for replication.

Table 3.2: Simulation parameters.

Real trace Synthesized mobility
Environment Parameters GENI / NS-2 NS-2
Simulation area 600m× 300m 1000m× 1000m
Node Parameters
Number of nodes 35 60
Communication range 60m / 100m 250m
Average movement speed - 6m/s
The size of a file (kb) 1− 10 1− 10
Number of files in each node 10 10
Storage space for replicas (kb) 50 50

Request Parameters
Initialization period 500s / 800s 200s
Querying period 1500s / 1200s 600s
TTL of each request 1000s / 200s 200s
Total time for each test 3000s / 3000s 1000s

32

3.3.1 Performance in the GENI experiments with the Real Trace

3.3.1.1 Hit Rate and Average Delay

Table 3.3 shows the results of each protocol in the trace-driven experiments on GENI. We see

that the hit rates in different replication protocols follow Random<CACHE <SAF<PDRS<DCG<

PCS<OPTM and the average delays follow a reverse order: Random>CACHE>SAF> PDRS>DCG

>PCS>OPTM. We see that OPTM and PCS lead to higher hit rate and lower average delay than

others. This is attributed to the guidance of OFRR, which aims to minimize the average querying

delay by considering both storage and meeting ability as resource to enhance overall file availability.

PCS generates slightly lower hit rate and around 20% higher average delay than OPTM. This is

because OPTM has the knowledge of all information needed in OFRR beforehand, while PCS has

to create replicas in a fully distributed manner.

On the contrary, other protocols only replicate files locally, thereby creating redundant

replicas and failing to achieve high file availability under node mobility. Random has the worst

performance on hit rate and average delay. This is because Random only randomly creates replicas

for files and fails to assign more resources to popular files, which are queried more frequently by

nodes. CACHE only utilizes the storage on intersection nodes, which indicates that it fails to fully

utilize storage space on all nodes. Therefore, it cannot create as many replicas as other protocols and

exhibits a low hit rate and a high delay. In SAF, each node replicates its frequently queried files until

its memory is filled up. Then, almost all resources are allocated to popular files. Therefore, SAF

cannot optimize access delay globally. In PDRS, a node replicates files interested by its neighbors

that have less storage resource than itself. However, as the replicas are not shared in the whole

group, PDRS only renders a slightly performance improvement over SAF. DCG further improves

SAF and PDRS by conducting the file replication on a group level. It eliminates duplicate replicas

among group members and uses released memory for other replicas, thereby generating higher hit

rate and smaller average delay than SAF and PDRS.

We find that the 1st percentiles of the delays of all protocols are 0.01. This is because

some requests are immediately satisfied by direct neighbors. The 99th percentiles of the delays of

the protocols approximately follow the relationship on average delay. Above results justify that

PCS enhances the file searching efficiency by its global optimization of file availability. The fact that

Random leads to worse performance than all methods that give priority to popular files when creating

33

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 35 70 105 140 175 210 245 280 315

CD
F
of
 th

e
pr
op

or
tio

n
of
 re

pl
ic
as

File sequence in decreasing order of popularity

PCS DCG
SAF CACHE
OPTM PDRS
Random

PCS

DCG

OPTM

SAF

PDRS
CACHE Random

Figure 3.3: CDF of the resource allocated to replicas in trace-driven GENI experiment.

replicas also justify that a resource allocation strategy is necessary for file availability optimization.

Table 3.3: Experimental results of the trace-driven GENI experiment.

Protocol Hit rate Average / 1% / 99% delay (s) Replication cost
Random 0.840139 263.176 / 0.01 / 991.9843 13387
CACHE 0.842454 260.469 / 0.01 / 994.2487 0
SAF 0.857341 259.1768 / 0.01 / 997.1095 0
PDRS 0.863074 256.1983 / 0.01 / 991.2384 175140
DCG 0.878559 251.3287 / 0.01 / 993.3947 67549
PCS 0.898823 240.7031 / 0.01 / 990.4522 28983
OPTM 0.910370 195.1776 / 0.01 / 990.1296 14542

3.3.1.2 Replication Cost

From the Table 3.3, we find that the replication costs of different protocols follow PDRS>DCG

>PCS>OPTM≈ Random>SAF=CACHE=0. PDRS shows the highest replication cost because it

needs to broadcast each new file to all nodes in the system. DCG incurs moderate replication cost

because group members need to exchange information to reduce duplicate replicas. PCS has a low

replication cost because each node only tries at most K times to create a new replica for each file

it holds. OPTM and Random have a very low cost since nodes only need to communicate with the

central server for replica list. SAF and CACHE have no replication cost since they do not need to

exchange information among nodes for file replication. However, SAF generates a lot of redundant

replicas, and Random and CACHE have a low performance, as shown in previous subsection.

3.3.1.3 Replica Distribution

Figure 3.3 shows the CDF of the proportion of resources allocated to each file for replica

creation in different protocols. From the figure, we find that PCS exhibits the closest similarity to

OPTM while other protocols follow: DCG≈Random�CACHE≈PDRS�SAF, where � means closer

similarity to OPTM. Combining the results on average delay, we find an interesting phenomenon:

34

except CACHE and Random, the protocol with closer similarity to OPTM has lower average delay.

This proves the correctness of our theoretical analysis and the resultant OFRR rule expressed in

Formula (3.22). CACHE has a low performance because it does not utilize all storage space, though

it exhibits similarity with PDRS. Random creates replicas for each file randomly without considering

their popularity, leading to a low performance since popular files are not replicated with priority.

We also observe that the CDFs of the proportion of resource allocated to replicas of DCG, CACHE,

PDRS and SAF increases to 0.9 quickly. This is because they allocate most resources to popular

files, resulting in a lot of replicas for these files. Though these protocols can reduce the delay of

requests for popular files, they cannot reduce the delay for unpopular files. PCS is superior over

these protocols because it can globally reduce the average access delay of all files.

Table 3.4: Experimental results of the trace-driven NS-2 experiment.

Protocol Hit rate Average / 1% / 99% delay (s) Replication cost
Random 0.828652 67.9564 / 0.00175637 / 193.259 4695
CACHE 0.830038 64.6417 / 0.00172859 / 191.703 0
SAF 0.837664 62.1525 / 0.00172887 / 190.896 0
PDRS 0.842982 61.0969 / 0.00172652 / 191.279 246454
DCG 0.848559 59.0611 / 0.00172883 / 189.270 14510
PCS 0.868749 50.2859 / 0.00172885 / 188.550 9846
OPTM 0.878677 41.2282 / 0.00172874 / 188.428 4721

3.3.2 Performance in the NS-2 Experiment with the Real Trace

3.3.2.1 Hit Rate and Average Delay

Table 3.4 shows the results of each protocol in the trace-driven experiments on NS-2. We see

the hit rates and average delays of the seven protocols follow the same relationship as in Table 3.3

due to the same reasons. We find that the average delays of the seven protocols are much less than

those in the GENI experiment. This is caused by two reasons. First, the trace-driven simulation

adopts the PROPHET for file searching, which can locate files more quickly than the StaticWait

searching protocol used in the GENI experiment. Second, the communication range of two nodes

(100m) in the simulation is larger than that in the GENI experiment (60m), leading to shorter

searching delay since a node can reach more neighbors. The hit rates of the seven protocols are

lower than those in the GENI experiment. This is because the trace-driven simulation used a much

smaller TTL. The relative performance between different protocols in the simulation matches with

that in the GENI experiment, which further proves the effectiveness of PCS.

35

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 35 70 105 140 175 210 245 280 315

CD
F
of
 th

e
pr
op

or
tio

n
of
 re

pl
ic
as

File sequence in decreasing order of popularity

PCS DCG
SAF CACHE
OPTM PDRS
Random

PCS

DCG

Random

SAF
PDRS

CACHE

OPTM

Figure 3.4: CDF of the resource allocated to replicas in trace-driven GENI experiment.

3.3.2.2 Replication Cost

From Table 3.4, we find that the replication costs of different protocols follow PDRS>DCG>

PCS>OPTM ≈Random>SAF=CACHE=0. This matches with the results in Table 3.3 and the

reasons are the same.

3.3.2.3 Replica Distribution

Figure 3.4 shows the CDF of the proportion of resource allocated to replicas of each file in

the seven protocols. From the figure, we find similar trend as that in Figure 3.3. That is, except

CACHE and Random, the protocol with closer similarity to OPTM has smaller average delay. This

further proves the correctness of our analysis through the trace-driven simulation.

3.3.3 Performance in the NS-2 Experiment with Different Network Sizes

We examined the performance of PCS when the total number of nodes varied from 20 to

110 in the NS-2 simulator. In this test, node mobility traces were synthesized following the RWP

mobility mode with different number of nodes, and the average node speed was set to 8 m/s. Other

settings are the same as introduced in the beginning of Section 4.5.

3.3.3.1 Hit Rate

Figure 3.5(a) plots the hit rates of the seven replication protocols. We see the same rela-

tionship between different protocols as found in Table 3.3 and Table 3.4 with the same reasons. The

reasons are also supported by the fact that the average delays of the seven protocols present reverse

order of the hit rate, as shown in Figure 3.5(b).

36

0.875

0.895

0.915

0.935

20 30 40 50 60 70 80 90 100 110

Hi
t r
at
e

Number of nodes

PCS DCG SAF
CACHE OPTM PDRS
Random

(a) Hit rate.

16

21

26

31

36

41

20 30 40 50 60 70 80 90 100 110

Av
er
ag
e
de

la
y
(s
)

Number of nodes

PCS DCG SAF
CACHE OPTM PDRS
Random

(b) Average delay.

0

0.5

1

20 30 40 50 60 70 80 90 100 1101%
 D
el
ay
 (s
)

Number of nodes

PCS DCG SAF
CACHE OPTM PDRS
Random

165

175

185

195

99
%
 D
el
ay
 (s
)

(c) The 1% & 99% delays.

5.0E+02

5.0E+03

5.0E+04

5.0E+05

5.0E+06

20 30 40 50 60 70 80 90 100 110

Re
pl
ic
at
io
n
co
st

Number of nodes

PCS DCG SAF
CACHE OPTM PDRS
Random

(d) Replication cost.

Figure 3.5: Performance of the file replication protocols with different network sizes.

3.3.3.2 Average Delay

Figure 3.5(b) shows the average request delays of the seven protocols. We observe the same

results as that found in Table 3.3 and Table 3.4. Specifically, with different network sizes, PCS has

10%-15% less average delay than DCG, PDRS, SAF, CACHE, and Random and around 15% - 20%

higher average delay than OPTM. Such results are consistent with aforementioned conclusions for

the same reasons. The results in Figure 3.5(a) and Figure 3.5(b) confirm the validity of our analysis

and the effectiveness of PCS in different network sizes.

More nodes in the network enables a node to have more neighbors and hence more options

to forward requests to the file holders. It is interesting to see that in the figures, the hit rate and

average delay of each protocol generally remain stable as the number of nodes increases. This is

because the number of files is proportional to the number of nodes. More nodes does not increase

the average storage space for replicas of each file. Therefore, the probability that a request forwarder

meets a file holder remains approximately the same.

Figure 3.5(c) plots the 1st and 99th percentiles of the delays of the seven protocols. The

relationship between the 99th percentiles delays of the seven protocols is in line with that in the

average delays in Figure 3.5(b), Table 3.3, and Table 3.4 for the same reasons. The result confirms

that PCS is effective in reducing the average querying delay in networks with different sizes.

37

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100 120 140 160 180

CD
F
of
 th

e
pr
op

or
tio

n
of
 re

pl
ica

s

File sequence in decreasing order of popularity

PCS DCG
SAF CACHE
OPTM PDRS
Random

PCS

DCG

OPTM

SAF

PDRS
CACHE Random

(a) Network size = 20 nodes.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 110 220 330 440 550 660 770 880 990

CD
F
of
 th

e
pr
op

or
tio

n
of
 re

pl
ica

s

File sequence in decreasing order of popularity

PCS DCG
SAF CACHE
OPTM PDRS
Random

PCS

DCG

OPTM

SAF

PDRS

CACHE

Random

(b) Network size = 110 nodes.

Figure 3.6: CDF of the resource allocated to replicas with different network sizes.

3.3.3.3 Replication Cost

Figure 3.5(d) illustrates the replication cost of each protocol. The replication costs of SAF

and CACHE are not shown since they equal 0. We find that PDRS generates high replication cost,

DCG shows moderate replication cost, and PCS, OPTM, and Random produce low replication cost.

The result is consistent with those in Table 3.3 and Table 3.4 because of the same reasons. We

also observe that the replication costs of PDRS, DCG, PCS, OPTM, and Random grow as the

number of nodes in the system increases. This is because as the number of nodes increases, PDRS

generates more messages during the broadcasting process for newly generated files, DCG produces

more exchange messages between group members, PCS has more neighbors and more replication

trials, and the central server in OPTM and Random needs to communicate with more nodes.

3.3.3.4 Replica Distribution

Figures 3.6(a) and 3.6(b) show the CDF of the proportion of resource allocated to replicas in

each protocol when the number of nodes is 20 and 110, respectively. From the figures, we find that all

protocols exhibit similar relationship as Figures 3.3 and 3.4. That is, except CACHE and Random,

PCS shows the closest similarity to OPTM and others follow: DCG�PDRS�SAF. The results again

confirm the correctness of our theoretical analysis with results from different network sizes. We find

that Figures 3.6(a) and 3.6(b) show similar results, which demonstrates the correctness of OFRR

in different network sizes. Combining above results, we conclude that OFRR can help shorten the

average querying delay and PCS can realize it effectively in networks with different sizes.

38

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.5 3 4.5 6 7.5 9

Hi
t r
at
e

Average speed (m/s)

PCS DCG

SAF CACHE

OPTM PDRS

Random

(a) Hit rate.

20

30

40

50

60

70

80

1.5 3 4.5 6 7.5 9

Av
er
ag
e
de

la
y
(s
)

Average speed (m/s)

PCS DCG
SAF CACHE
OPTM PDRS
Random

(b) Average delay.

0.0

0.5

1.0

1.5 3 4.5 6 7.5 9

1%
 D
el
ay
 (s
)

Average speed (m/s)

PCS DCG SAF
CACHE OPTM PDRS
Random

150

170

190

99
%
 D
el
ay
 (s
)

(c) The 1% & 99% delays.

5.0E+02

5.0E+03

5.0E+04

5.0E+05

1.5 3 4.5 6 7.5 9

Re
pl
ic
at
io
n
co
st

Average speed (m/s)

PCS DCG SAF
CACHE OPTM PDRS
Random

(d) Replication cost.

Figure 3.7: Performance of the file replication protocols with different node mobility.

3.3.4 Performance with Different Node Mobilities

We examined the performance of PCS when the average speed varied from 1.5 m/s to 9

m/s in the NS-2 simulator. In this test, node mobility traces were synthesized following the RWP

mobility mode with different average speed, and the number of nodes was set to a medium value of

60. Other settings are the same as introduced in the beginning of Section 4.5.

3.3.4.1 Hit Rate

Figure 3.7(a) shows the hit rates of the seven protocols. We find the same relationship on hit

rates as those found in Table 3.3, Table 3.4, and Figure 3.5(a) with the same reasons. We also find

that, for all protocols, the hit rate is low when nodes move slowly and is satisfactory (i.e., >90%)

when the average speed is larger than 7.5 m/s. This is because nodes need longer time to encounter

requested files when they move slowly, leading to more dropped requests due to TTL expiration.

3.3.4.2 Average Delay

Figure 3.7(b) shows the average querying delays of the seven protocols. We observe that

PCS shows the closest result to OPTM, and it reduces the average delay of SAF, DCG, PDRS,

CACHE, and Random by about 10%-15%. Again, the result is consistent with those in Table 3.3,

Table 3.4 and Figure 3.5(b) due to the same reasons. The result also shows that the change of

39

node movement speed does not affect the relative performance among different protocols. This is

because, as shown in Equation (3.31), the effectiveness of replication protocol with the same network

size and node mobility distribution is only determined by the resource allocation for file replicas.

These results confirm the effectiveness of the PCS with different node mobility.

We also observe that the average delays of all protocols decrease as node movement speed

increases. When nodes move faster, the average time needed for two nodes to meet is shortened,

leading to shorter average delay. The result implies that the movement speed of a node affects

the number of nodes it can encounter in a unit period and hence the availability of its files, which

justifies the necessity of considering node meeting ability as a kind of resource in file replication.

Figure 3.7(c) depicts the 1st and 99th percentiles of the delays of the seven replication

protocols. Similar to the results in previous experiments, the 1st percentiles of delays of all protocols

are nearly 0 and the 99th percentiles of the delays of these protocols present the same relationship

as in Table 3.3 and Table 3.4 for the same reasons. When the average speed is slow (i.e., 1.5 m/s

and 3 m/s), the 99th percentiles of the delays of all protocols equal the TTL (200s) since we use the

TTL as the delay of dropped requests. When nodes move slowly, they need longer time to encounter

requested files.

3.3.4.3 Replication Cost

From Figure 3.7(d), we find that PRDS presents the highest replication cost, DCG has

moderate replication cost, and PCS, OPTM, and Random generate low replication cost. We did not

plot the protocols with 0 cost. The relationship of the seven protocols on replication cost remains the

same as in Table 3.3, Table 3.4, and Figure 3.5(d) because of the same reasons. We also find that the

replication costs of PRDS, PCS and DCG remain stable when the node movement speed increases,

while that of OPTM and Random increase. Since the DCG exchanges information between group

members for replication and PRDS broadcasts messages through the network for newly created files,

their replication costs are only decided by the number of nodes in the system. For PCS, the number

of replica distribution attempts is not related to node mobility. Therefore, their replication costs

remain stable when the node movement speed increases. In OPTM and Random, high mobility

means more opportunities to meet the central server, leading to most communications and hence

higher communication cost.

40

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 70 140 210 280 350 420 490 560

CD
F
of
 th

e
pr
op

or
tio

n
of
 re

pl
ica

s

File sequence in decreasing order of popularity

PCS DCG
SAF CACHE
OPTM PDRS
Random

PCS

DCG

Random
PDRS

SAF

CACHE

OPTM

(a) Average speed = 1.5 m/s.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 70 140 210 280 350 420 490 560

CD
F
of
 th

e
pr
op

or
tio

n
of
 re

pl
ica

s

File sequence in decreasing order of popularity

PCS DCG
SAF CACHE
OPTM PDRS
Random

PCS

DCG

OPTM

PDRS
SAF

CACHE

Random

(b) Average speed = 9 m/s.

Figure 3.8: CDF of the resource allocated to replicas with different node mobility.

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

20 30 40 50 60 70 80 90 100 110

Hi
t r
at
e

Storage size

PCS DCG SAF
CACHE OPTM PDRS
Random

(a) Hit rate.

20

40

60

80

100

20 30 40 50 60 70 80 90 100 110

Av
er
ag
e
de

la
y
(s
)

Storage size

PCS DCG SAF
CACHE OPTM PDRS
Random

(b) Average delay.

Figure 3.9: Performance with different storage sizes.

3.3.4.4 Replica Distribution

Figures 3.8(a) and 3.8(b) show the CDF of the proportion of resource allocated to replicas

of each file in each protocol when the average movement speed of nodes is 1.5 m/s and 9 m/s,

respectively. We find that all protocols generate similar results as those in Figures 3.6(a) and 3.6(b)

for the same reasons. The results again verify the correctness of our analysis and the effectiveness

of PCS on following OFRR with various node mobility.

3.3.5 Performance with Different Storage Sizes

We also tested the performance of different replication protocols when the storage for replicas

in each node increases from 20 to 110 on the NS-2 simulator. Figure 3.9 shows the hit rates and

average delays of the seven protocols in the tests with the Dartmouth trace. We see that as the

storage size increases, the hit rates of all protocols increase and their average delays decrease. This is

because the number of replicas of each file increases when there is more storage space on each node,

leading to higher hit rate and lower average delay. We also find that the performance relationship

between the seven protocols in the test matches with those in Table 3.3 and Table 3.4 due to the

same reasons. Such results further confirm the effectiveness of OFRR and PCS with different storage

41

resource limits.

3.4 Performance Evaluation in Disconnected MONs based

on the Community-based Mobility Model

In order to evaluate the performance of PCS in disconnected MONs, we conducted event-

driven experiments with the MIT Reality project trace [34] and the Haggle project trace [18]. The

MIT Reality trace lasts about 2.56 million seconds (Ms), while the Haggle project trace lasts about

0.34 Ms. Both traces represent typical MONs scenarios. We used the StaticWaiting routing proto-

col [87] in this test.

We evaluated the performance of PCS in comparison with DCG [45], CACHE-DTN [39],

OPTM, and Random. CACHE-DTN caches each file on the central node of each network center

location (NCL). If a central node is full, its replicas are stored in its neighbor nodes according to

their popularities. A more popular replica is stored closer to the central node. The experiment

settings and metrics are the same as in Section 3.3 unless otherwise specified in below. The total

number of requests was set to 6000 ∗ Rp, and Rp is the request rate and was varied in the range of

[2, 6]. In the experiment with the Haggle trace and the MIT Reality trace, requests were generated

evenly in the time period of [0.3Ms, 2.3Ms] and [0.05Ms, 0.25Ms], and the TTL of each request was

set to 0.3Ms and 0.04Ms, respectively.

3.4.1 Hit Rate

Figure 3.10(a) and Figure 3.11(a) plot the hit rates of the five methods with the Haggle

trace and the MIT Reality trace, respectively. We see that in both scenarios, the hit rates follow

OPTM>PCS>CACHE-DTN>DCG>Random. OPTM and PCS achieve higher hit rate than other

methods because they follow the deduced OFRR. However, since PCS realizes OFRR in a distributed

way, it presents slightly inferior performance compared to OPTM. CACHE-DTN considers the in-

termittent connection properties of MONs and replicates each file to every NCL, leading to high

date accessibility, though not optimal. DCG only considers temporary connected group for data

replication, which is not stable in MONs. Therefore, it has a low hit rate. Random assigns resources

to files randomly, which means it cannot create more replicas for popular files, leading to the lowest

42

0.63

0.66

0.69

0.72

0.75

0.78

0.81

0.84

2 3 4 5 6

Hi
t r
at
e

Query rate

PCS DCG
CACHE‐DTN OPTM
Random

(a) Hit rate.

16

20

24

28

32

2 3 4 5 6

Av
er
ag
e
de

la
y
(x
10

3 s
)

Query rate

PCS DCG
CACHE‐DTN OPTM
Random

(b) Average delay.

8.0E+05

2.8E+06

4.8E+06

6.8E+06

8.8E+06

2 3 4 5 6

Re
pl
ic
at
io
n
co
st

Query rate

PCS DCG
CACHE‐DTN OPTM
Random

(c) Replication cost.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 110 220 330 440 550 660 770 880

CD
F
of
 th

e
pr
op

or
tio

n
of
 re

pl
ica

s

File sequence in decreasing order of popularity

PCS DCG
CACHE‐DTN OPTM
Random

(d) CDF of allocated resources.

Figure 3.10: Performance of the file replication protocols with the Haggle trace.

hit rate. Such a result proves the effectiveness of the proposed PCS on improving the overall file

availability and the correctness of our derived OFRR for MONs.

We also see that the hit rates of different methods fluctuate slightly when the request rate

increases. This is because the hit rate is not affected by the request rate. Even when the number

of request increases, the file availability remains on the same level and leads to similar hit rates, as

shown in the two figures.

3.4.2 Average Delay

Figure 3.10(b) and Figure 3.11(b) demonstrate the average delays of the five methods with

the Haggle trace and the MIT Reality trace, respectively. We find that in tests with both traces,

the average delays follow OPTM<PCS<CACHE-DTN<DCG<Random, which is in reverse order of

the relationship between the five methods on hit rate as shown in Figure 3.10(a) and Figure 3.11(a).

This is because the average delay is reversely related to the overall data availability. As explained in

above section, OPTM and PCS have high data availability since they follow OFRR; CACHE-DTN

presents higher data availability than DCG because CACHE-DTN distributes every file to different

NCLs while DCG only shares data among frequently encountered neighbor nodes; and all files in

Random receive equal amount of resources for replicas. Such results further validate the proposed

OFRR and PCS in disconnected MONs.

43

0.40

0.44

0.48

0.52

0.56

0.60

0.64

0.68

2 3 4 5 6

Hi
t r
at
e

Query rate

PCS DCG
CACHE‐DTN OPTM
Random

(a) Hit rate.

22

25

28

31

34

37

2 3 4 5 6

Av
er
ag
e
de

la
y
(x
10

4 s
)

Query rate

PCS DCG
CACHE‐DTN OPTM
Random

(b) Average delay.

8.0E+05

2.8E+06

4.8E+06

6.8E+06

2 3 4 5 6

Re
pl
ic
at
io
n
co
st

Query rate

PCS DCG
CACHE‐DTN OPTM
Random

(c) Replication cost.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 110 220 330 440 550 660 770

CD
F
of
 th

e
pr
op

or
tio

n
of
 re

pl
ica

s

File sequence in decreasing order of popularity

PCS DCG
CACHE‐DTN OPTM
Random

(d) CDF of allocated resources.

Figure 3.11: Performance of the file replication protocols with the MIT Reality trace.

3.4.3 Replication Cost

Figure 3.10(c) and Figure 3.11(c) show the replication costs of the five methods with the

Haggle trace and the MIT Reality trace, respectively. OPTM and Random have the lowest repli-

cation cost while the costs of other three methods follow PCS<CACHE-DTN<DCG. In OPTM

and Random, nodes only need to contact the central server for replica list, leading to the lowest

cost. DCG generates the highest replication cost since group members need to exchange a large

amount of information to remove duplicate replicas. CACHE-DTN forwards each file to every NCL,

leading to moderate replication cost. In PCS, a node tries at most K times to create a replica for

each of its files, producing much lower replication cost than CACHE-DTN and DCG. Such a result

demonstrates the high energy-efficiency of PCS. Combining all above results, we conclude that PCS

has the highest overall file availability and efficiency compared to existing methods, and OFRR is

effective in guiding optimal file replication in disconnected MONs.

3.4.4 Replica Distribution

Figures 3.10(d) and 3.11(d) show the CDF of the proportion of resources allocated to

replicas in each protocol in the tests with the Haggle trace and the MIT Reality trace, respectively.

We see in both figures, PCS present very close similarity to OPTM and the other two follow CACHE-

DTN�PCS. Random also present close similarity to OPTM on the CDF curve. However, the

44

difference between PCS and Random is that PCS assigns priority for popular files while Random

gives even priority to all files. Since popular files are queried more frequently, Random still leads to a

low performance. For other three methods that favor popular files, we find that the closer similarity

with OPTM a protocol has, the better overall performance it has. Such a result also matches with

what we observed in the tests for connected MONs. This proves the correctness of our theoretical

analysis and the resultant OFRR rule for disconnected MONs.

3.5 Summary

In this chapter, we investigate the problem of how to allocate limited resources for file

replication for the purpose of globally optimal file access efficiency in MONs. Unlike previous pro-

tocols that only consider storage as resources, we also consider file holder’s ability to meet nodes as

available resources since it also affects the availability of files on the node. We first theoretically an-

alyze the influence of replica distribution on the average access delay under the constrained available

resources with two representing mobility models, and then derive an optimal file replication rule that

can allocate resources to file replicas for minimal average access delay. Finally, we design the Priority

Competition and Split replication protocol (PCS) that can realize the optimal file replication rule in

a fully distributed manner. Extensive experiments on both GENI testbed, NS-2, and event-driven

simulator with real traces and synthesized mobility confirm both the correctness of our theoretical

analysis and the effectiveness of PCS in MONs.

45

Chapter 4

Leveraging Social Networks for

Efficient File Sharing in MONs

In this chapter, we expand the investigation to the scenario in which file requests can be

actively forwarded among nodes to search for interested files. In this work, considering people in

the same interest based social group tend to gather, we exploit social network properties to actively

forward file requests to reach the file holders and forward the located file to its requester quickly,

thereby realizing effective file sharing in MONs.

In the following, we first present the overview of the proposed SPOON system in Section 4.1.

We then conduct trace analysis to verify social network properties in a real MON in Section 4.2.

After this, we introduce the major components of SPOON in Section 4.3. We further present some

discussions for more efficient file sharing in Section 4.4. In Section 4.5, the performance of SPOON

is evaluated in comparison with other systems. Finally, Section 4.6 summarizes this chapter.

4.1 Overview

Recently, social networks are exploited to facilitate content dissemination/publishing in

MONs [11,29,68,92]. These methods exploit the below property to improve the efficiency of message

forwarding and content distribution.

• (P1) nodes (i.e., people) usually exhibit certain movement patterns (e.g., local gathering,

46

Interest
Extraction

Exploiting Node
Stability/Mobility

Community
Construction

Interest
Oriented Routing

Social network based P2P cOntent-based file sharing in mobile ad hOc Networks (SPOON)

Figure 4.1: Components of SPOON.

diverse centralities, and skewed visiting preferences).

However, these methods are mainly designed for the dissemination of contents to subscribers and

are not specifically designed for file sharing. They also fail to consider other properties of social

networks revealed by recent studies to facilitate file sharing:

• (P2) Users usually have a few file interests that they visit frequently [37] and a user’s file visit

pattern follows a power-law distribution [55].

• (P3) Users with common interests tend to meet with each other more often than with oth-

ers [75].

By leveraging these properties, we propose a Social network based P2P cOntent-based file

sharing algorithm in mobile Opportunistic Networks (SPOON). SPOON has four main components,

as shown in Figure 4.1.

(1) Based on P2, we propose an interest extraction algorithm to derive a node’s interests from its

files. The interest facilitates file requesting in content-based file sharing and other components

of SPOON.

(2) We refer to a collective of nodes that share common interests and meet frequently as a commu-

nity. According to P3, a node has high probability to find interested file in its community. If

this fails, based on P1, the node can rely on nodes that frequently travel to other communities

for file sharing. Thus, we propose the community construction algorithm to build communities

to enable efficient file sharing.

(3) According to P1, we propose a node role assignment algorithm that takes advantage of node

mobility for efficient file sharing. The algorithm designates a stable node that has the tight-

est connections with others in its community as the community coordinator to guide intra-

community file sharing. For each known foreign community, nodes that frequently travel to it

are designated as the community ambassadors for inter-community file sharing.

47

(4) We propose an interest-oriented file searching and retrieval scheme that utilizes an interest-

oriented routing algorithm (IRA) and above three components. Based on P3, IRA selects

request carrier by considering the probability of meeting keywords of interests rather than

the probability of meeting nodes. The file searching scheme has two phases: intra- and inter-

community searching. In the former, a node first requests nearby nodes, then relies on coordi-

nator to search the entire home community. If it fails, the inter-community searching uses an

ambassador to send the file request to a matched foreign community. A discovered file is sent

back through the previous searching path or IRA if the path breaks.

SPOON is novel in that it leverages social network properties of both node interest and

movement pattern. First, it classifies common-interest and frequently-encountered nodes into social

communities. Second, it considers the frequency at which a node meets different interests rather than

different nodes in file searching. Third, it chooses stable nodes in a community as coordinators and

highly mobile nodes that travel frequently to foreign communities as ambassadors. Such a structure

ensures that a request can be forwarded to the community of the requested file quickly.

4.2 Trace File Analysis

In order to validate the correlation between node interests and their contact frequencies, we

analyzed the trace from the Haggle project [18], which contains the encountering records among 98

mobile devices carried by scholars attending the Infocom’06 conference. Some participants completed

questionnaires to indicate the conference tracks that they are interested in.

We use Tt to denote the time length of the trace, and define the total meeting time of two

nodes as the sum of the time length of each encountering. By regarding a community as a group of

nodes in which each node has total meeting time larger than Tt/4 with at least half of all nodes in

the community, we detected 8 communities from the trace. We then calculated each node’s average

number of shared interested tracks with other members in its own community Ci (0 ≤ i < 8), and

with nodes in all other communities, respectively. Finally, the average values of all nodes in each

community are calculated and shown in Table 4.1.

From the table, we see that for each community, nodes have higher average number of shared

interested tracks with same community nodes than with nodes from other communities. Note that

we used a relatively loose community creation requirement that each node only needs to have a

48

high contact frequency with half of nodes in a community. With a stricter requirement and a more

sophisticated clustering method, nodes in the same community would share more interested tracks.

Above results justify the previously mentioned social network properties and support the basis for

SPOON that nodes with common interests tend to meet frequently.

Table 4.1: Average number of shared interested tracks.

Community Ci Ave. # of shared interests Ave. # of shared interests
with nodes in Ci with nodes not in Ci

1 1.50 0.99
2 0.83 0.69
3 1.17 0.79
4 1 0.39
5 1.93 0.94
6 0.33 0.21
7 1.1 0.71
8 1 0.33

4.3 Main Components

A P2P file sharing system usually consists of 1) a method to represent contents, 2) a node

management structure and 3) a file searching method based on 1) and 2). Accordingly, SPOON has

four components to realize the three functions: 1) interest extraction, 2) community construction,

3) node role assignment, and 4) interest-oriented file searching and retrieval. We then present each

component of SPOON.

4.3.1 Interest Extraction

Without loss of generality, we assume that node contents can be classified to different

interest categories. It was found that users usually have a few file categories that they request for

files frequently in a file sharing system. Specifically, for the majority of users, 80% of their shared

files fall into only 20% of total file categories [37]. Like other file sharing systems [16,54], we consider

that a node’s stored files can reflect its file interests. Thus, SPOON derives the interests of a node

from its files. Table 4.2 lists the notations used in this section.

To derive its interests, a node infers keywords from each of its files using the document

clustering technique [84]. Specifically, a node derives a file vector for each of its files from its

metadata. For file fi, we denote its file vector by vi = (t1, wit1 ; t2, wit2 ; t3, wit3 ; ...; tm, witm), in

which tk and wik (1 ≤ k ≤ m) denote a keyword and its weight that represents the importance

49

Table 4.2: Notations in interest extraction

Notation Meaning
fi and Gu the i-th file and u-th interest group in a node

witk and w̄utk the weight of keyword tk in fi and in Gu

fui the i-th file in Gu

vi the file vector of fi
v̄u the group vector of Gu

ṽN the node vector of node N

of the keyword in describing the file. We adopt the method in the text retrieval literature [12] to

calculate the weight of a keyword, say tk, in a file, say fi, with below formula.

witk = 1 + log(ntk), (4.1)

where ntk refers to the number of occurrences of keyword tk. Suppose there are m keywords in

the file, we further normalize the weights by:

witk = witk/
∑

m
q=1witq . (4.2)

Then, in order to calculate the similarity of two file vectors, say v1=(t1, w1t1 ; t2, w1t2 , t4, w1t4)

and v2=(t1, w2t1 ; t3, w2t3 ; t5, w2t5), we first generate their common vector, which consists of their

common keywords and corresponding weights in their own vectors. For example, the common

vector of v1 and v2 is (t1, w1t1) from v1 and (t1, w2t1) from v2. We then use the following formula

to calculate the similarity between v1 and v2:

sim(v1, v2) =

∑m′

k=1 w1k
∗ w2k√∑m′

k=1 w
2
1k
∗
√∑m′

k=1 w
2
2k

(4.3)

where m′ is the total number of common keywords and w1k
and w2k

represent the weights of the

kth common keyword of the two vectors, respectively.

After retrieving the file vector of each of its files, a node classifies its files to derive its interest

groups. It creates a file similarity matrix A = sim(vr, vs) (1≤r & s≤m̃), where m̃ is the number

of files the node has. Since the similarities among files are known, we use the AGNES method [59]

to cluster the files into interest groups in a hierarchical manner. Each file form an individual group

50

initially. Then, two most similar file groups are merged in each step. This process repeats until

the similarity between any two groups is below a threshold. The similarity between two groups is

calculated based on their interest vectors introduced below. Consequently, a file is classified to only

one interest group and there is no overlap among groups.

Each group has a number of files. Suppose there are g files in interest group Gu, denoted

by (fu1, fu2, . . . , fug). The average weight of a keyword, say tk, in the group is calculated by

w̄utk =
∑g

i=1 w
fui

tk
/g, where wfui

tk
denotes the weight of tk in fui. We also pre-define a threshold for

the average weight, denoted by Tw̄. We form an interest vector with keywords having weights larger

than Tw̄ and use it to represent interest group Gu :

v̄u = (t1, w̄ut1 ; t2, w̄ut2 ; t3, w̄ut3 ; ...; tn′ , w̄tun′). (4.4)

where n′ is the total number of keywords in v̄u. Thus, each node has a number of interest vectors

to represent its interests. The weight of Gu, denoted by W (Gu), is the portion of the group’s files

in all files of the node. We then generate a node vector (ṽN) to describe a node’s interests. The

keywords of ṽN is the keyword union of all interest group vectors, and the weight of each keyword

is the sum of its weights in different interest groups it belongs to normalized by the weights of these

groups.

4.3.2 Community Construction

Social network theory reveals that people with the same interest tend to meet frequently [75].

By exploiting this property, SPOON classifies nodes with common interests and frequent contacts

into a community to facilitates interest based file searching, as introduced latter in Section 4.3.4.

Nodes with multiple interests belong to multiple communities. The community construction can

easily be conducted in a centralized manner by letting a central node collect node interests and

contact frequencies from all nodes. However, considering that the proposed system is for MONs, in

which timely information collection and distribution is non-trivial, we further propose a decentralized

method to ensure the adaptivity of SPOON in real environment.

When two nodes, say N1 and N2, meet, they consider two cases for community creation:

(1) they do not belong to any communities, and (2) at least one of them is already a member of

a community. In the first case, they calculate the similarity between each pair of their interest

51

vectors using Formula (4.3). A pair of interest groups, say Gi and Gj with interest vectors v̄i and

v̄j , is called matched interest group when W (Gi)W (Gj)sim(v̄i, v̄j) ≥ TG, where TG is a predefined

threshold. The purpose of taking into account the weight of each interest group is to eliminate the

noise of interest groups with a small number of files and achieve better interest clustering. If N1

and N2 have at least one pair of matched interest group, and their contact frequency, F (N1, N2), is

higher than the top h1% highest encountering frequencies in either node, the two nodes form a new

community. The keywords in their matched interest groups and corresponding weights constitute

the community vector (vC) of the community.

In the second case, suppose N2 is already a member of community C, N1 then calculates

W (Gi)sim(v̄i, vC) for each of its interest groups, say Gi, to decide whether it should join in commu-

nity C. If the similarity value for one interest group is larger than TG, and N1’s contact frequency

with community C is higher than the top h2% of N1’s contact frequencies with all nodes it has met,

N1 is granted the membership to community C. The contact frequency with community C refers

to the accumulated contact frequency with nodes in C. It is updated upon each encountering with

a node in C. This means that Ni contacts members in community C frequently enough to guar-

antee connections. N1 then copies the community vector and other community information from

N2. Also, when a node meets the community coordinator, it reports its files to the coordinator to

update its file index and community vector. The coordinator then forwards the updated community

information to community members when meets them.

With above community construction method, nodes with common interests and frequent

contacts gradually form a community. However, nodes that appear later have more stringent com-

munity acceptance requirement. Its contact frequency to the community needs to be higher than

that of more nodes, and its interest vector is compared with a longer community vector. Also, nodes

in a group admit new members distributively. As a result, nodes in a group may not have very sim-

ilar interests or high contact frequencies. We propose two solutions to alleviate this problem. First,

we set an initial period for newly joined nodes to enable them to accumulate contact frequencies

with others. Then, when a node starts to join in communities, its meeting frequencies with others

are relatively stable, which provides more accurate measurement for determining the communities

to join in. Second, we use group member pruning. Existing community members can have a second

round voting to confirm the eligibility of new community members. Specifically, if N2 in community

C finds a node, say N1, satisfies the requirements of C, it awards N1 a potential membership for C.

52

Then, other community members in C further checks N1’s eligibility to join in C. That is, every

time when N1 meets an existing member of C, say N3, N3 checks whether they have at least one

pair of matched interest group and whether their contact frequency is higher than the top h1% of

N1’s highest contact frequencies. If yes, N3 approves the membership of N1. When an existing

community member of C notices that N1 receives the grants from half of the community members,

it grants N1 the group membership.

Another issue is that node contact frequencies and interests may change over time. Since the

community construction algorithm is continuous running, a node can detect that it fails to satisfy

the requirement of current community. It then withdraws from the current community, notifies

connected nodes in it, and search for a new community to join in.

The values of the thresholds used in the community construction process (TG, h1, h2) are

determined by many factors such as number of nodes, number of interests, and types of applica-

tions. Generally, TG decides the interest tightness among nodes in each community. A larger TG

leads to higher similarity between interests of nodes in one community, but also generates more

communities. Therefore, TG should be configured based on application scenario. If the application

has clear file categories (i.e., course file sharing), we can set a large TG to gather files in the same

category. Otherwise, a medium TG should be set to balance the interest closeness and the number

of communities. h1 and h2 determines the tightness of a community. The smaller h1 and h2 are, the

tighter the community is. Therefore, we set them to 30 by default in experiment to ensure frequent

contact among community members.

4.3.3 Node Role Assignment

A previous study has shown that in a social network consisting of mobile users, only a

part of nodes have high degrees [92]. We can often find an important or popular person who

coordinates members in a community in our daily life. For example, the college dean coordinates

different departments in the college, and the department head connects to faculty members in the

department. Thus, we take advantage of different types of node mobility for file sharing.

We define community coordinator and ambassador nodes in the view of social network. A

community coordinator is an important and popular node in the community. It keeps indexes of

all files in its community. Each community has one ambassador for each known foreign community,

which serves as the bridge to the community. The coordinator in a community maintains the vC of

53

foreign communities and corresponding ambassadors in order to map requests to ambassadors for

inter-community searching. The number of ambassadors and coordinators can be adjusted based

on the network size and workload in order to avoid overloading these nodes. Since ambassadors

and coordinators take more responsibility, we can also adopt role rotation and extra incentives for

fairness consideration.

4.3.3.1 Community Coordinator Node Selection

We define a stable node that has tight contact frequency with other community members as

the community coordinator. In network analysis, centrality is often used to determine the relative

importance of a vertex within the network. We then adopt the improved degree centrality [30],

which assigns weight to each link based on the contact frequency, for coordinator selection since it

reflects the tightness of a node with other community members. In the initial phase of coordinator

discovery, each node, say node Ni, in a community collects contact information from its neighbors

in the same community and then calculates its degree centrality by

D(pi) =

N∑
j=1,j 6=i

wij , (4.5)

where wij is the link weight between Ni and Nj and N is the number of neighbors in the same

community. In order to reflect the property that the coordinator has the most connections with

all community members, wij equals 1 if the contact frequency between Ni and Nj is larger than a

threshold and 0 otherwise. Though such a method cannot ensure its connection to every commu-

nity member, it ensures that the coordinator has the tightest overall connection to all community

members.

Each node periodically checks its degree centrality and broadcasts such information to all

community members. If a node receives no larger centrality score than its own centrality for three

consecutive periods, it claims itself as the potential coordinator. The potential coordinator would

confirm its status as the coordinator when meets the previous one. If it is confirmed, it then

requests the community information from the old coordinator. Also, when the new coordinator

meets community members, they exchange information for group vector update and ambassador

selection, as well as file request routing.

54

4.3.3.2 Community Ambassador Node Selection

An ambassador is used to bridge the coordinator in its home community and a foreign

community. We use the product of a node’s contact frequency with its coordinator and that with

the foreign community for ambassador selection. Each node i calculates its utility value for foreign

community k by

Uik = F (Ni, Ck) ∗ F (Ni, Nc) (4.6)

where Ck represents foreign community k, Nc is the coordinator in its home community, and F (·)

denotes the meeting frequency. Each node reports its utility values for foreign communities it

has met to the coordinator in its home community. Then, the community coordinator chooses

one ambassador for each known foreign community. Also, the node that has the highest overall

contact frequency with all foreign communities is selected as the default ambassador. In case that

a request fails to find a matched ambassador, the default ambassador can carry the request and

seek for potential forwarders in foreign community. If an ambassador loses the connection with

the coordinator for a certain period of time, a new ambassador that satisfies above requirements is

selected. This arrangement facilitates interest-oriented file searching by enabling a coordinator to

send file requests to matched foreign communities quickly.

In above design, ambassadors are the key to connect different communities efficiently. Co-

ordinators achieves balance between the centralized and distributed searching by checking whether

a community can satisfy a request quickly, which is important in MONs. Also, though broadcast is

used in coordinator selection, the cost is limited because 1) it is only among community members,

and 2) we can set a long inter-broadcast period since nodes usually have stable degree centrality.

To select ambassadors, each node just reports its utility values to the coordinator, which can be

piggybacked on the beacon messages. Therefore, this step does not incur significant extra costs.

4.3.4 Interest-oriented File Searching and Retrieval

In social networks, people usually have a few file interests [37] and their file visit patterns

generally follow a certain distribution [55]. Also, people with the same interest tend to contact

each other frequently [75]. Thus, interests can be a good guidance for file searching. Considering

the relation among node movement pattern [50], individuals’ common interests, and their contact

frequencies, we can route file requests to file holders based on nodes’ frequencies of meeting different

55

DR

Community C1

Data Holder
Requester

Community C2

A1
A1

A2

A2

C1

C2

Figure 4.2: File searching in SPOON.

interests.

Then, the interest-oriented file searching scheme has two steps: intra-community and inter-

community searching. A node first searches files in its home community. If the coordinator finds

that the home community cannot satisfy a request, it launches the inter-community searching and

forwards the request to an ambassador that will travel to the foreign community that matches the

request’s interest. A request is deleted when its TTL (Time To Live) expires. During the search, a

node sends a message to another node using the interest-oriented routing algorithm (IRA), in which

a message is always forwarded to the node that is likely to hold or to meet the requested keywords.

The retrieved file is routed along the search path or through IRA if the path expires.

4.3.4.1 Interest-oriented Routing Algorithm

In SPOON, every node maintains a history vector that records its frequency of encountering

interest keywords. The history vector is in the form of vH = (t0, wh0; t1, wh1; t2, wh2; ...; tn, whn),

where whi is the aggregated times of encountering keyword ti. whi decays periodically as time passes

by whi = γwhi(γ < 1). When two nodes meet, they exchange their node vectors and update history

vectors. The history vector is used to evaluate the probability of meeting the requested content.

The destination of a request is represented by a vector vdest = (t0, w0; t1, w1; t2, w2; ...; tn, wn).

In IRA, a node uses the fitness score F to evaluate its neighbors’ probabilities to be or to meet the

file holder. The fitness F of neighbor i is measured by F = αsim(vdest, ṽi) + (1−α)sim(vdest, vHi),

where ṽi and vHi are the node vector and history vector of node i, respectively. The factor of

sim(vdest, ṽi) aims to find the node sharing the most similar interests with the destination, and

the factor of sim(vdest, vHi) aims to find a node that is very likely to meet the destination in its

movement. α is used to control the weight of these two factors. In IRA, when a node receives a

56

message, if its neighbor with the highest F has higher F than itself, it forwards the message to the

neighbor. This process repeats until the message arrives at the destination. Coordinators do not use

IRA but send messages to its community members when meeting them because they usually have

tight connections with all community members.

4.3.4.2 Intra-Community File Searching and Retrieval

The file request message is represented by a request vector represented as:

vQ = (t0, w0; t1, w1; t2, w2; ...; tn, wn). (4.7)

Each request is associated with a counter (count) indicating the number of hops it can travel. The

count is decremented by 1 after each forwarding. Since the request is initiated by users, term weights

in vQ are constant values. In the intra-community searching, the destination that a request is sent

to is represented by a combination of the vQ and the node vector of the requester’s community

coordinator (vNC
), represented by:

vdest = λvQ + (1− λ)vNC
, (4.8)

In the first step, the requester calculates the similarity between the request vector and the community

vector of the community it belongs to. If Sim(vQ, vC) < Ts, the request is sent to the coordinator of

the community directly (i.e., λ equals 0). Otherwise, λ equals 1 when the counter (count) is larger

than 0 and 0 otherwise. This means that a requester first searches nearby nodes within count hops,

and then resorts to its community coordinator. Specifically, the requester sends out a request to top

π neighbors with the highest F . Having π > 1 copies of a request can enhance the efficiency of file

searching. We call this strategy multi-copy forwarding. In order to limit the number of copies for

each request, we set π = min{k|
∏k

i=0 Fi > β}, where Fi is the fitness of neighbor i and β is the

minimum delivery guarantee factor. The hop counter of a request is decreased by one after each

forwarding. If the file is not found when count = 0, it is forwarded to the community coordinator

(λ = 0). When a node receives multiple copies of the same requests, it only processes the first one.

When node Nj receives a request, if vdest = vQ and sim(vdest, vNj
) reaches the similarity

threshold specified by the file requester, it first tries to send the satisfied files back to the requester

57

along the original path. If a forwarder on the path is not available due to node mobility, IRA is

used to forward the file. Otherwise, Nj uses IRA to further forward the request. If vdest = vNc

and Nj is not the coordinator Nc, Nj uses IRA to forward the request to Nc. After Nc receives the

request, it checks its file indexes. If the indexes have files satisfying the request, the coordinator

sends the request to the file holder when meeting it, which then sends the file back to the requester.

Otherwise, Nc initiates the inter-community file searching. Algorithm 1 shows the pseudocode of

the intra-community searching algorithm.

——————————————————————————————
Algorithm 1:Pseudo-code of intra-community file searching for
request Q conducted by node Ni.
——————————————————————————————
Procedure intraSearchForQ ()

if a neighbor nb of Ni matches request Q then
Ni.sendQeuryTo(Q, nb)

else if Q.src = Ni then
if Sim(vQ, vC) < Ts then

Q.vdest ← vNC

Ni.sendThroughIRATo(Q, NC)
else

Q.vdest ← vQ
Ni.rankNbByFitness()
overallF ← 0
for each neighbor nb of node Ni do

overallF gets overallF + F (Q,nb)
Ni.sendQeuryTo(Q, nb)
if overallF > β then

break
else

if Q.hops < MaxHopthen
Q.vdest ← vQ
Ni.rankNbByFitNess()
nb ← the neighbor with maximal fitness
Ni.sendQeuryTo(Q, nb)

else
Q.vdest ← vNC

Ni.sendThroughIRATo(Q, NC)
——————————————————————————————

4.3.4.3 Inter-Community File Searching and Retrieval

In the inter-community searching algorithm, a coordinator maps a request to the foreign

community that is most likely to contain the requested file. Similar to the intra-community search

58

step, the coordinator also uses the multi-copy forwarding strategy, i.e., it sends out a request to Ω am-

bassadors having the highest similarity with the request in order to enhance the efficiency of the for-

warding. We limit the number of copies for each request by letting Ω = min{k|
∏k

i=0 sim(vQ, vC) >

α}, where α is the minimum delivery guarantee factor. Ambassadors then forward the request to

the corresponding foreign communities.

Upon receiving the request, the coordinator in the foreign community checks its file indexes

to see if its community has the file. If not, the coordinator repeats the inter-community file searching

by looking up its ambassadors to check for further forwarding opportunities. If the file exists, the

coordinator asks for the file from the file holder when meeting it and sends the file back to the

requester’s community through the corresponding ambassador. The coordinator of the requester’s

community will further forward the file to the requester.

Figure 4.2 depicts the process of file searching, in which a requester (node R) in community

C1 generates a file request. Since its neighbors within count hops don’t have the file, the request is

then forwarded to the community coordinator NC1. NC1 checks the community file indexes but still

can’t find the file. It then asks the community ambassador NA1 to forward the request to the foreign

community matching the requested file. Using the same way as NC1, the community coordinator

NC2 finds the file and sends it back to the requester’s community via ambassador NA2. The file is

first sent to NC1, and then forwarded to the requester. Algorithm 2 shows the pseudocode of the

inter-community searching algorithm.

4.3.5 Information Exchange among Nodes

We summarize the information exchanged among nodes in SPOON. In the community con-

struction phase, two encountered nodes exchange their interest vectors and community vectors, if

any, for community construction. In the role assignment phase, nodes broadcast their degree cen-

trality within their communities for coordinator selection. When the coordinator is selected, the

coordinator ID is also broadcasted to all nodes in the community. Then, each node reports its

contact frequencies with foreign communities to the coordinator for ambassador selection. Besides,

when a node meets a coordinator of its community, the node also sends its updated node vector

to the coordinator to update the community vector and retrieves the updated community vector

from the coordinator. When an ambassador meets the coordinator of its community, it reports the

community vectors of foreign communities to the coordinator. After above information exchange,

59

——————————————————————————————
Algorithm 2:Pseudocode of inter-community file searching for
request Q conducted by node Ni.
——————————————————————————————
Procedure interSearchForQ ()

if Ni is a coordinator then
bContain ← Ni.checkContainFile(Q)
if bContain

Ni.sendQeuryToDes(Q)
else

Ni.rankAmByMatch()
overallS ← 0
for each ambassador NA of Ni’s community do

n.sendQeuryTo(q, NA)
overallS ← overallS + Sim(q.VQ, NA.VC)
if overallS > α

break
if Ni is an ambassador then

when Ni meets another node Nj

if Nj .homeCommunity = Ni.foreighCommunity then
Ni.sendQeuryTo(Q, Nj)
Nj .sendThroughIRATo(Q, NC)

——————————————————————————————

two encountered nodes exchange their node vectors and history vectors for packet routing. Each

node checks packets in it sequentially to decide which packets should be forwarded to the other node

based on the file searching algorithm introduced in Section 4.3.4. Further, when network turns to be

stable, the frequency of information exchange for community construction and node role assignment

can be reduced to save costs.

4.4 Discussion on Advanced Methods

We further present some advanced schemes than can help improve the file sharing efficiency

in this section.

4.4.1 Intelligent File Prefetching

Ambassadors in SPOON can meet nodes holding different files since they usually travel

between different communities frequently. Taking advantage of this feature, an ambassador can

intelligently prefetch popular files outside its home community. Recall that a request in a local

60

community for a file residing in a remote community are forwarded through the coordinator of the

local community. Thus, each coordinator keeps a track of the frequency of local requests for remote

files and provides the information of popular remote files to each ambassador in its community upon

encountering it. When a community ambassador finds that its foreign community neighbors have

popular remote files that are frequently requested by its home community members, it stores the

files on its memory. The prefetched files can directly serve potential requests in the ambassador’s

home community, thus reducing the file searching delay.

4.4.2 Request-Completion and Loop-Prevention

Given a file request, there may exist a number of matching files in the system. A node can

associate a parameter Smax with its request to specify the number of files that it wishes to find. A

challenge we need to handle is to ensure that the file searching process stops when Smax matching

files are discovered when multi-copy forwarding is used. To solve this problem, we let a request

carry Smax when it is generated. When a request finds a file that matches the request and is not

discovered before, it decreases its S by 1. Also, if this request is replicated to another node, S is

evenly split to the two nodes. A request stops searching files when its S equals 0.

When a request needs to find more than one file, it is likely that IRA would forward a request

to the same node repeatedly. To avoid this phenomenon, SPOON incorporates two strategies. First,

the request holder inserts its ID to the request before forwarding the request to the next node.

Second, a node records the requests it has received within a certain period of time. The former

method avoids sending a request to nodes it has visited before while the latter method prevents

sending different replicas of the same request to the same node. Specifically, when a node, say Ni,

needs to forward a request to a newly met node Nj based on IRA, Ni checks whether the request’s

record of traversed nodes contains Nj . If yes, Ni does not forward the request to Nj . Also, when

a node receives a request, if the request exists in its record of received requests, the node sends

the request back to the sender. These two strategies effectively avoid searching loops by simply

preventing a node from forwarding the same request to nodes that have received the request before.

61

4.4.3 Node Churn Consideration

In SPOON, when a node joins in the system, it first finds the communities it belongs to

and learns the IDs of community coordinators, and then reports its files and utility values to the

community coordinator when encountering it. This enables the coordinator to maintain updated

information of the community members.

A node may leave the system voluntarily when users manually stop the SPOON application

on their devices. In this case, a leaving node informs its community coordinator about its departure

through IRA. If the leaving node is an ambassador, the coordinator then chooses a new ambassador.

If the leaving node is a coordinator, it uses broadcast to notify other community members to select

a new coordinator.

A node may also leave the system abruptly due to various reasons. Simply relying on the

periodical beacon message, a node cannot tell whether a neighbor has left the system or just moves

away, which is a usual case in MONs. To handle this problem, each node records the timestamps

when it meets other nodes, and sends it to the coordinator through IRA. The coordinator receives

this information and updates the most recent timestamp of each node seen by other nodes. If the

coordinator finds that a node’s timestamp is more than Tx seconds ago, it considers this node as a

departed node. Similarly, normal nodes in a community also maintain and update the timestamp of

the coordinator to determine whether it is still alive. A node piggybacks the coordinator departure

information on the beacon messages. Then, its nearby nodes can know whether the coordinator has

left. Note that a node can know the number of community members from the coordinator. When

a node finds that more than half of community members have found that the coordinator has left,

it broadcasts a coordinator re-election message to select a new coordinator using the same method

explained in Section 4.3.3.1.

4.5 Performance Evaluation

We evaluated the performance of SPOON in comparison with MOPS [68], PDI+DIS [71,82],

CacheDTN [39], PodNet [66], and Epidemic [89]. MOPS is a social network based content service

system. It forms nodes with frequent contacts into a community and selects nodes with frequent

contacts with other communities as brokers for inter-community communication. PDI+DIS is a

combination of PDI [71] and an advertisement-based DISsemination method (DIS) [82]. PDI provides

62

distributed search service through local broadcasting (3 hops), and builds content tables in nodes

along the response path, while DIS let each node disseminate its contents to its neighbors to create

content tables. CacheDTN replicate files to network centers in decreasing order of their overall

popularity. In PodNet, nodes cache files interested by them and nodes they have met. We adopted

the “Most Solicited” file solicitation strategy in PodNet. We doubled the memory on each node in

CacheDTN and PodNet for replicas. In Epidemic, when two nodes meet each other, they exchange

the messages the other has not seen. We have conducted the following experiments.

(1) Evaluation of Community Construction. We first evaluated the proposed community construc-

tion algorithm introduced in Section 4.3.2.

(2) GENI experiments. We conducted experiments on the GENI ORBIT testbed [3, 4] using the

MIT Reality trace. The GENI ORBIT testbed contains 400 nodes with 802.11 wireless cards.

Nodes can communicate with each other through the wireless interface. We used the real trace

to simulate node mobility in ORBIT: two nodes can communicate with each other only during

the period of time when they meet in the real trace.

(3) Event-driven experiments with real traces. We also conducted event-driven experiments with

two real traces.

(4) Evaluation of enhancement strategies. We evaluated the effect of the enhancement strategies

introduced in Section 4.4.1, 4.4.2, and 4.4.3 through event-driven experiments.

We disabled the intelligent prefetching and the multi-copy forwarding (i.e., we set π = 1 and

Ω = 1) in SPOON to make the method comparable to other methods. Also, since the comparison

methods can return only one file for a request, we set Smax = 1 in SPOON. In each community, we

used the node having the most contacts with other communities as the ambassador in SPOON and

as the broker in MOPS. We also set the node with the most contacts with its community members

as the coordinator in SPOON.

Besides the Haggle trace, we further tested with the MIT Reality trace [34], in which 94

smart phones were deployed among students and staffs at MIT to record their encountering. The

two traces last 0.34 million seconds (Ms) and 2.56 Ms, respectively. As in MOPS, we used 40% of

the two traces to detect groups in which nodes share frequent contacts. Here, we use “group” to

represent a group of nodes with frequent contacts, and use “community” to represent a group of

63

nodes with common-interests and frequent contacts. We got 7 and 8 groups for the MIT Reality

trace and the Haggle trace, respectively. Then, since there is no real trace for P2P file sharing

over MONs, we collected articles from different news categories (e.g., sports, entertainment and

technology) from CNN.com and mapped them to the identified communities. Each node contains 50

articles from the news category for its community. Each node extracts its interests from its stored

files. The similarity threshold was set to 70% in AGNES for file classification.

In experiments with the Haggle trace and the MIT Reality trace, we set the initialization

period to 0.09Ms and 0.3Ms, the request generation period to 0.1Ms and 1Ms, and the TTL of

a request to 0.15Ms and 1.2Ms, respectively. Considering that people usually generate requests

according to their interests, we set 70% of total requests searching for files located in the local

communities of their requesters. Each request is for an article randomly selected from the article

pool. We measured following metrics:

(1) Hit rate: the percentage of requests that are successfully delivered to the file holders.

(2) Average delay: the average delay of the successfully delivered requests.

(3) Maintenance cost: the total number of all messages except the requests, which are for

routing information establishment and update or replication creation.

(4) Total cost: the total number of messages, including maintenance messages and requests,

generated in a test.

4.5.1 Evaluation of the Community Construction

We first tested the effectiveness of the community construction method in SPOON, denoted

by SPOON-CC, in comparison with Active-CC and Centralized-CC. The Active-CC selects three

most active nodes to collect node contacts and interests when they meet nodes. In Centralized-CC,

we purposely let a super node collect all node contacts and interests timely. Both Active-CC and

Centralized-CC use AGNES to build communities with the collected information.

Since there is no real trace about P2P file sharing in MONs, we tested in an indirect way.

We first conducted the group construction and content distribution as previously described, and then

removed the group identity of each node. Then, we run the three methods to create communities.

After this, we matched each new community to the most similar old community and calculated the

64

0.5

0.6

0.7

0.8

0.9

1

20 30 40 50

Si
m
ila
rit
y

h1

MIT Reality Haggle

(a) h2 = 30 and h1 = 20− 50.

0.5

0.6

0.7

0.8

0.9

1

20 30 40 50

Si
m
ila
rit
y

h2

MIT Reality Haggle

(b) h1 = 30 and h2 = 20− 50.

Figure 4.3: Average similarity values with different h1 and h2.

similarity value by N2
sm/(Np ∗Nn), where Nsm is the number of common nodes, Np and Nn denote

the size of the old community and the new community, respectively. In SPOON-CC, we set TG

to 1 to ensure interest closeness, and set h1 and h2 to 30. Active-CC and Centralized-CC used

the same threshold for granting community membership as SPOON-CC. The average similarities in

SPOON-CC, Active-CC, and Centralized-CC are 0.95, 0.87, and 1 with the Haggle trace and 0.91,

0.85, and 1 with the MIT trace, respectively. The Active-CC has inferior performance since active

nodes can only collect information from nodes they have met, leading to less accurate community

construction. Also, the performance of SPOON-CC is close to that of Centralized-CC, which has

the best performance. Such a result shows the effectiveness of SPOON-CC in this test.

We further varied h1 and h2 from 20 to 50 to verify the effectiveness of SPOON-CC. Fig-

ure 4.3(a) and 4.3(b) show the average similarity values with the two traces. We see that the

similarity values are above 90% with various h1 and h2. Such results further confirm the effective-

ness of SPOON’s community construction algorithm to cluster nodes with frequent contacts and

similar interests in the experiments with the two real traces.

4.5.2 GENI Experiments

Table 4.3 shows the results of the GENI experiments of the six methods. From the table, we

find that Epidemic generates the highest hit rate with the highest total cost and a low average delay.

This is resulted from the dissemination nature of broadcasting. SPOON produces the second highest

hit rate at the second lowest total cost and relatively high average delay. This is because SPOON

utilizes both contact and content properties of social networks to guide file searching. Therefore, it

can successfully locate requested files without the need of many information exchanges and request

messages, though at a relatively slow speed. SPOON outperforms MOPS in terms of hit rate, delay,

65

and cost. This is because SPOON utilizes IRA for intra-communication and dedicated ambassadors

for inter-communication while MOPS relies heavily on brokers. Also, MOPS only considers node

contact in routing, while SPOON considers both content and contact. We will elaborate the reasons

in describing the trace driven simulation results later on.

Table 4.3: Efficiency and cost in the experiments on GENI

Method Hit Rate Ave. Delay (s) Maintenance Cost Total Cost
SPOON 0.671 152731.3 258764 275312
MOPS 0.629 163282.5 310131 320412
CacheDTN 0.5712 219021.4 283210 298123
PodNet 0.5932 183621 223218 240238
PDI+DIS 0.524 7418.9 298641 359841
Epidemic 0.8813 15621.2 669193 860475

CacheDTN has low hit rate, median cost, and high average delay. This is because though

replicas are created, requests wait for files passively on their originators, leading to a long delay. Also,

the replication of files to network centers incurs a high cost. PodNet has low hit rate for the same

reason as CacheDTN. However, since the replicas on each node are more catered for the interests of

itself and nodes it has met, PodNet has slightly higher hit rate than CacheDTN. Moreover, PodNet

has the lowest cost because nodes in it only replica files they are interested in. PDI+DIS generates

the lowest hit rate at relatively high total cost and low average delay. The low hit rate is caused by

the poor mobility resilience of route tables. As a result, only partial requests are resolved quickly in

the local broadcasting. Others passively wait for file holders or updated routes and usually cannot

be resolved timely. Then, since we only count the average delay of successful requests, PDI+DIS

has the lowest average delay.

Table 4.4: Memory usage in the experiments on GENI

Metric SPOON MOPS CacheDTN PodNet PDI+DIS Epid.
Request 36.8 44.1 48.4 45.3 13.1 1998
Table 10.4 16.9 50 50 15.6 0

We also evaluated the performance of each method in memory utilization in terms of the

average number of requests in the buffer (Request) and the average size of a content/neighbor table

(Table). The results are shown in Table 4.4. For the average number of buffered requests, we find

that PDI+DIS<SPOON< MOPS<PodNet<CacheDTN<Epidemic. In Epidemic, nodes buffer the

most requests since it tries to replicate each request to all nodes in the system. CacheDTN and

PodNet have a lot of requests in memory since they does not actively search for the requested files.

Both SPOON and MOPS keep one copy of each request during the searching process. However,

since SPOON completes file request more quickly than MOPS (as shown in Table 4.3), it buffers

66

0.55

0.65

0.75

0.85

0.95

5 10 15 20 25

H
it
 R
at
e

Number of Queries (x103)

SPOON MOPS Epidemic
PDI+DIS CacheDTN PodNet

(a) Hit rate.

0

10

20

30

40

50

5 10 15 20 25

A
ve
ra
ge
 D
el
ay
 (x
10

3
S)

Number of Queries (x103)

SPOON MOPS Epidemic
PDI+DIS CacheDTN PodNet

(b) Average delay.

2

4

6

8

10

12

14

5 10 15 20 25

M
ai
nt
en

an
ce
 C
os
t

Number of Queries (x103)

SPOON MOPS
Epidemic PDI+DIS
CacheDTN PodNet(x

10
5)

(c) Maintenance cost.

2

7

12

17

22

5 10 15 20 25

To
ta
l C
os
t
(x
10

5)

Number of Queries (x103)

SPOON MOPS
Epidemic PDI+DIS
CacheDTN PodNet

(d) Total cost.

Figure 4.4: Performance in the event-driven experiments with Haggle trace.

fewer quires in memory than MOPS. PDI+DIS has the fewest number of requests on nodes because

local broadcasting just forwards requests without buffering.

Considering that each entry in the content table has roughly the same size, we used the

number of entries in a table to represent memory usage. The results in Table 4.4 show that

Epidemic<SPOON<MOPS< PDI+DIS<CacheDTN=PodNet. Clearly, Epidemic does not need

memory on content table. SPOON stores the second fewest content synopses because most nodes

only store the information of the same community members. In MOPS, brokers store content syn-

opses of all nodes in their communities and consume a large amount of memory. Therefore, MOPS

produces high average number of stored content synopses. PDI+DIS stores a alrge amount of con-

tent synopses because each node collects content synopses from all nodes it has met and from all

received reply messages. CacheDTN and PodNet have the highest number of entries in the content

table since we doubled the memory for replicas. In summary, the results in Table 4.3 and Table 4.4

show that SPOON is superior over other methods in terms of hit rate, average delay, total cost, and

memory efficiency.

67

0.55

0.70

0.85

1.00

5 10 15 20 25

H
it
 R
at
e

Number of Queries (x103)

SPOON MOPS Epidemic
PDI+DIS CacheDTN PodNet

(a) Hit rate.

0

10

20

30

40

50

5 10 15 20 25

A
ve
ra
ge
 D
el
ay
 (x
10

4
S)

Number of Queries (x103)

SPOON MOPS Epidemic
PDI+DIS CacheDTN PodNet

(b) Average delay.

5

10

15

20

25

30

35

5 10 15 20 25

M
ai
nt
en

an
ce
 C
os
t

Number of Queries (x103)

SPOON MOPS
Epidemic PDI+DIS
CacheDTN PodNet

(x
10

5)

(c) Maintenance cost.

5

15

25

35

45

5 10 15 20 25

To
ta
l C
os
t
(x
10

5)

Number of Queries (x103)

SPOON MOPS
Epidemic PDI+DIS
CacheDTN PodNet

(d) Total cost.

Figure 4.5: Performance in the event-driven experiments with MIT Reality trace.

4.5.3 Event-driven Experiments with Real Traces

In this experiments, we varied the total number of requests from 5000 to 25000 to show the

scalability of each method in terms of the amount of requests.

4.5.3.1 Hit Rate

Figures 4.4(a) and 4.5(a) show the hit rate of each method in the experiments with the

Haggle trace and the MIT Reality trace, respectively. We find that with both traces, Epidemic

can resolve almost all requests, while PDI+DIS can only complete about 60% of requests. The hit

rates of SPOON, MOPS, PodNet, and CacheDTN reach about 75%, 70%, 68%, 67%, respectively.

Epidemic has the highest hit rate because of its broadcasting nature. In SPOON, coordinators and

ambassadors facilitate intra- and inter- community searching, while the IRA actively forwarded to

the node with a high probability of meeting the destination. MOPS only relies on the encountering

of mobile brokers for file searching. This probability is lower than that of SPOON, resulting in a

lower hit rate. PodNet and CacheDTN lack active request forwarding, leading to median hit rates.

However, replicas on each node are more catered to the interests of nodes it can meet in PodNet,

while CacheDTN just caches files on network center. Therefore, PodNet has slightly higher hit

rate than CacheDTN. In PDI+DIS, many routes in the content table expire quickly due to node

68

mobility. As a result, most successful requests are resolved through the 3-hop broadcast. Others have

to passively wait for file holders or updated routes. Therefore, many requests cannot be resolved,

leading to a low hit rate.

4.5.3.2 Average Delay

Figures 4.4(b) and 4.5(b) show the average delays of the six methods in the tests with the

Haggle trace and the MIT Reality trace, respectively. The delays follow PDI+DIS< Epidemic<

SPOON<MOPS<PodNet<CacheDTN.

Recall that we only measure the delay of successful requests. In PDI+DIS, most successful

requests are resolved in the initial 3-hop broadcasting stage. Therefore, it generates the least average

delay. In Epidemic, requests are rapidly distributed to nodes at the cost of multiple copies. As a

result, requests can reach their destinations quickly. MOPS exhibits a large delay because requests

in it usually have to wait for a long time for brokers or same-community file holders. In contrast,

SPOON always tries to find an optimal neighbor to send a request to the file holder with the interest-

oriented routing algorithm. In addition, the designation of ambassadors in SPOON increases the

possibility of relaying requests to foreign communities. As a result, SPOON has lower average

request delay than MOPS. PodNet and CacheDTN generate high average delay because requests

only wait for file holders passively on their originators. However, since PodNet create replicas that

are more likely to be encountered by nodes that are interested in them, it has lower average delay

than CacheDTN.

4.5.3.3 Cost

Figures 4.4(c) and 4.5(c) plot the maintenance costs of the six methods in the experiments

with the Haggle trace and the MIT Reality trace, respectively. We see that when the total number

of requests is small, the six methods all have low maintenance cost. When the total number of

requests is larger than 10000, the maintenance costs generally follow: Epidemic>PDI+DIS>MOPS>

CacheDTN> SPOON>PodNet.

In PodNet, nodes only replica interested files when meet other nodes, leading to the least

maintenance cost. In SPOON, nodes exchange node vectors for the update of history vector. Nodes

also report its contents to coordinators for file indexing. In MOPS, brokers exchange the contents of

all nodes from their home communities when meeting each other. Therefore, MOPS produces slightly

69

2

3

4

5

6

7

5 10 15 20 25

To
ta
l C
os
t (
x1
05
)

Number of Queries (x103)

SPOON MOPS
CacheDTN PodNet

(a) Haggle trace.

5

6

7

8

9

10

11

12

13

5 10 15 20 25

To
ta
l C
os
t (
x1
05
)

Number of Queries (x103)

SPOON MOPS
CacheDTN PodNet

(b) MIT Reality trace.

Figure 4.6: Total costs with confidence intervals.

higher cost than SPOON. The active replication of files to network centers in CacheDTN leads to a

high cost. PDI+DIS needs to build content tables through reply messages and disseminated requests,

so it has higher maintenance cost than above four methods when the number of requests becomes

large. In Epidemic, two nodes need to inform each other requests already on them, which causes a

lot of information exchange and leads to the highest maintenance cost.

We see that when the number of requests increases, the maintenance costs of SPOON,

PodNet, CacheDTN, and MOPS remain stable while those of Epidemic and PDI+DIS increase

quickly. This is because the maintenance costs of the former four methods are determined by the

information/replication exchanges among nodes and are irrelevant with the number of requests, and

those of Epidemic and PDI+DIS are related to the total number of requests. Such results prove the

scalability of SPOON, MOPS, CacheDTN, and PodNet in request amount.

Figures 4.4(d) and 4.5(d) show the total cost of each method in the experiments with the

Haggle trace and the MIT Reality trace, respectively. In the two figures, the results of MOPS,

CacheDTN, SPOON, and PodNet are shown to be very close. We then plot the total costs of the

four methods with 95% confidence interval in Figure 4.6(a) and Figure 4.6(b) for better demon-

stration. Note we did not show the confidence interval of other measurements because they have

clear difference. We find that the total costs follow Epidemic>PDI+DIS>MOPS>CacheDTN >

SPOON>PodNet, which is the same as Figures 4.4(c) and 4.5(c). Such a result means that the

maintenance cost is the majority part of the total cost. With above results, we conclude that

SPOON has the highest overall file searching efficiency in terms of hit rate, delay, and cost.

70

4.5.4 Evaluation of the Enhancement Strategies

4.5.4.1 Multi-copy forwarding and Prefetching

We first evaluated the effect of the multi-copy forwarding and the intelligent file prefetch-

ing. We let “Multi-copy forwarding” and “Prefetching” denote the SPOON with the corresponding

improvement strategies, respectively, and compare them with the “Original” SPOON. In Multi-copy

forwarding, we let each request originator distribute two copies of its request. In Prefetching, we let

each ambassador store top ten most popular files. We varied the number of file requests from 5000

to 25000. The test results are shown in Tables 4.5 and 4.6.

We find that the multi-copy forwarding strategy with only two copies enhances the hit rate

greatly in the experiments with both traces. This is because when each request has two copies in

the system, its probability of encountering the node containing the requested file increases. Such a

result shows the effectiveness of the multi-forwarding strategy. We also see from the two tables that

the file prefetching strategy slightly improves the hit rate with both the two traces. This is because

1) we only configure two ambassadors per community, and 2) the prefetched files only satisfy a small

amount of requests since most requests are for contents in local community. The improvement on

the hit rate still demonstrates the effectiveness of the file prefetching strategy and the improvement

would be greater with more ambassadors and greatly varied file popularity.

Table 4.5: Hit rate improvement with the Haggle trace.

of packets Original Prefetching Multi-copy forwarding
5000 0.75137 0.75313 0.779412
10000 0.75215 0.75633 0.780135
15000 0.73831 0.74274 0.778912
20000 0.74928 0.75242 0.774321
25000 0.74731 0.75201 0.779415

Table 4.6: Hit rate improvement with the MIT Reality trace.

of Packets Original Prefetching Multi-copy forwarding
5000 0.761371 0.7671675 0.780413
10000 0.759941 0.762841 0.770838
15000 0.760135 0.763762 0.772843
20000 0.756418 0.759957 0.773901
25000 0.751835 0.754837 0.771963

4.5.4.2 Request-Completion and Loop-Prevention

We name SPOON without request-completion as “SPOON-OR”, SPOON with the request-

completion only as “SPOON-QC”, and SPOON with both request-completion and loop-prevention

71

as “SPOON-QCLP”. We set the number of requests to 15000. In SPOON-OR, requests do not stop

searching until TTL expiration. We also set the maximal number of files each request can retrieve,

Smax, to 2. To enable a request to find two files, we purposely let each file have two copies in the

system. In order to alleviate the influence of the TTL on the evaluation of the request-completion,

we enlarge the TTL to the entire length of the used traces. The test results are shown in Table 4.7.

We find from the table that SPOON-QCLP has slightly higher hit rate than SPOON-QR and

SPOON-QC. This is because the loop-prevention avoids forwarding a request to the same file holder

repeatedly, thereby utilizing forwarding opportunities more efficiently. SPOON-QC has slightly lower

hit rate than SPOON-OR because it stops file searching when Smax files are fetched. We also see that

the number of request forwarding operations follow SPOON-OR>SPOON-QC>SPOON-QCLP. This

is because SPOON-OR does not stop file searching until the TTL is expired. SPOON-QC reduces

the cost as it stops file searching after the specified number of files are located. In SPOON-QCLP,

the loop-prevention avoids redundant forwarding to the same node, leading to smaller number of

forwarding operations and more efficient file searching.

Table 4.7: Effect of request-completion strategy.

Trace SPOON-OR SPOON-QC SPOON-QCLP
Hit Rate

Haggle 0.8741 0.8701 0.8813
MIT Reality 0.9091 0.9012 0.9406

Number of request forwarding operations
Haggle 569841 530516 304953

MIT Reality 721852 609863 249132

4.5.4.3 Node Churn Consideration

We name SPOON with and without a strategy to handle node churn as “SPOON-CH” and

“SPOON-NA”, respectively. The total number of requests was set to 15000. The period for beacon

message was set to 100s and 1000s with the Haggle trace and the MIT Reality trace, respectively.

In the test, NL nodes leave the system evenly during the first 1/2 and 1/4 of the Haggle trace and

the MIT Reality trace, respectively. NL was varied from 5 to 25. We name the node that contains

a file matching a request as the primary matching node for the request. In order to demonstrate

the performance of SPOON in node churn, for each requested file, we purposely created a file that

has 70% similarity with it in a non-leaving node in the same community with the primary matching

node. We name this node as the secondary matching node.

The test results of voluntary and abrupt normal nodes departure are shown in Figure 4.7.

72

0.50
0.55
0.60
0.65
0.70
0.75

Voluntary: SPOON‐NA
Voluntary: SPOON‐CH

0.60
0.65
0.70
0.75
0.80

36000 18000 12000 9000 7200
Periodical time for a node departure (s)

Abrupt: SPOON‐NA
Abrupt: SPOON‐CH

H
it
 R
at
e

(a) Hit rate with Haggle trace.

60
65
70
75
80
85
90 Voluntary: SPOON‐NA

Voluntary: SPOON‐CH

55
60
65
70
75
80
85

36000 18000 12000 9000 7200
Periodical time for a node departure (s)

Abrupt: SPOON‐NA
Abrupt: SPOON‐CH

A
ve
ra
ge
 D
el
ay
 (x
10

3
S)

(b) Ave. delay with Haggle trace.

0.5

0.6

0.7
Voluntary: SPOON‐NA
Voluntary: SPOON‐CH

0.5

0.6

0.7

120000 60000 40000 30000 24000
Periodical time for a node departure (s)

Abrupt: SPOON‐NA
Abrupt: SPOON‐CHH

it
 R
at
e

(c) Hit rate with MIT trace.

55

60

65

70

75

Voluntary: SPOON‐NA
Voluntary: SPOON‐CH

50
55
60
65
70

120000 60000 40000 30000 24000

Periodical time for a node departure (s)

Abrupt: SPOON‐NA
Abrupt: SPOON‐CH

A
ve
ra
ge
 D
el
ay
 (x
10

3
S)

(d) Ave. delay with MIT trace.

Figure 4.7: Performance with voluntary and abrupt node departures.

We see that in all cases, when node churn consideration is applied, the hit rate is increased and

the average delay is decreased. This is because with the node churn consideration, requests failing

to find their primary matching nodes (i.e., have left the system) are further forwarded to their

secondary matching nodes while when there is no node churn consideration, these requests just wait

on coordinators for the primary matching node, leading to a low hit rate and a high average delay.

We also observe that when the number of leaving nodes increases, the hit rate decreases and the

average delay increases. This is because leaving nodes can no longer relay requests or departure

notification/detection messages, leading to lower hit rate and higher average delay.

Table 4.8: Effect of the detection of coordinator departures.

Trace w/o churn w/ churn w/ churn
consideration consideration-Ab consideration-Vo

Haggle 0.650643 0.684512 0.729942
MIT Reality 0.641053 0.677841 0.746841

We also tested the scenario in which only coordinator nodes leave the system. Since the

total number of coordinators is limited, we only randomly chose two coordinators to leave the system

during the test. We name the scenarios when coordinators depart abruptly and voluntarily as “w/

churn consideration-Ab” and “w/ churn consideration-Vo”, respectively. The test results are shown

in Table 4.8. We find that when coordinators leave the system, the hit rate of SPOON with node

73

churn consideration is much higher than that without node churn consideration. This is because

the coordinator is critical in both intra- and inter- file searching in SPOON. Without node churn

consideration, requests just wait for coordinators until their TTL expire if they need to be forwarded

to coordinators, leading to a low hit rate and a high average delay. Above results show that SPOON’s

strategies for node churn consideration can improve the system performance at a low cost.

4.6 Summary

In this chapter, we propose a Social network based P2P cOntent file sharing system in mo-

bile Opportunistic Networks (SPOON). SPOON considers both node interest and contact frequency

for efficient file sharing. We introduce four main components of SPOON: Interest extraction identi-

fies nodes’ interests; Community construction builds common-interest nodes with frequent contacts

into communities. The node role assignment component exploits nodes with tight connection with

community members for intra-community file searching and highly mobile nodes that visit exter-

nal communities frequently for inter-community file searching; The interest-oriented file searching

scheme selects forwarding nodes for requests based on interest similarities. SPOON also incorporates

additional strategies for file prefetching, request-completion and loop-prevention, and node churn

consideration to further enhance file searching efficiency. The tests on the GENI Orbit platform and

the trace-driven experiments prove the efficiency of SPOON.

74

Chapter 5

Utilizing Distributed Social Map

for Lightweight Packet Routing

among Nodes in MONs

In previous two chapters, we have investigated how to realize efficient file sharing in MONs.

In this chapter, we explore how to realize efficient packet routing among nodes in MONs. Consid-

ering the social network property that the people a person frequently meets are usually stable and

these people play an important role in forwarding packets for the person [17], we propose a social

map based MON routing algorithm, denoted by SMART. The social map on each node records its

surrounding social network in MONs and is constructed by learning each encountered node’s most

frequently met nodes (i.e., stable friends). To construct the social map, two encountered nodes only

need to exchange the information of their most frequently encountered nodes. Figure 5.1 shows an

example of social map on Bob. Each link in the social map is associated with a weight based on

the encountering frequency and social closeness of the two connected nodes. The weight is used to

deduce the delivery abilities among nodes. Therefore, each node only needs to check its own social

map to make forwarding decisions, i.e., which packets should be forwarded to the other node. For

example, when Bob meets Allen, without querying Allen’s probabilities to meet other nodes, he

would know that packets for Emma, Frank or Glair should be forwarded to Allen. We can see that

the social map is not limited to one or two hops and reflects possible long relay paths to provide

75

Allen Bob

Chris

DavidEmma

Frank

Glair

0.6

0.8

0.7

0.8

0.9

0.8

0.7

Figure 5.1: The social map of Bob.

better forwarder selection. SMART does not require social maps to be identical in all nodes or to be

complete (i.e, including all nodes), which makes the social map construction simple and suitable for

distributed MONs. Further, the stability of most frequently encountered nodes means that no fre-

quent social map update is needed, which reduces resource consumption. As a result, the proposed

SMART algorithm can realize efficient and effective packet routing among nodes in MONs.

In the following, we first explain the benefits of social map on routing efficiency in Section 5.1.

We then present how the social map is constructed in Section 5.2. After this, we introduce the

detailed social map based routing algorithm in Section 5.3. We also provide some discussions on

the scalability and security of the proposed SMART algorithm in Section 5.4. The real-trace driven

performance evaluation is given in Section 5.5. Finally, Section 5.6 summarizes this chapter

5.1 The Benefits of Social Map on Routing Efficiency

We first discuss the benefits of social map from the perspective of routing efficiency with

a simple scenario, shown in Figure 5.2(a). We denote the meeting probability and delivery ability

between two nodes as Pij and Dij (i, j ∈ {a, b, c, d, e, f}), respectively. The former is the probability

of delivering a message to another node directly upon their encountering. The latter refers to the

probability of delivering a message to another node through either direct forwarding or indirect relay.

We assume d is the destination node.

5.1.1 Drawback of Previous Methods

In routing algorithms that use delivery ability, when a meets b, it updates its delivery ability

to d (Dad) by considering the relay through b. In PROPHET [72], Dad = Dad+(1−Dad)∗Pab∗Pbd∗β,

in which β ∈ [0, 1] is a scaling constant. Such updates only consider two-hop relay delivery ability

(i.e., a → b → d), which has limited view on forwarder selection and may miss a forwarder on a

76

b

e

c

a
d

f

(a) A small network.

b

e

ca

d

f

h

0.6 0.8

0.70.3
0.2

0.4
0.3

0.6

?

?

(b) An example on route selec-
tion.

Figure 5.2: A network scenario to show the benefits of social map.

faster but longer path.

One may claim that using transitive probability calculation can provide much wider view.

That is, using b’s delivery ability to d (Dbd) to update Dad: Dad = Dad + (1−Dad) ∗ Pab ∗Dbd ∗ β.

Since Dbd is already calculated based on all routes from b to d (e.g., b → c → d), the updated Dad

can reflect routes more than two hops (e.g., a → b → c → d). However, this may lead to delivery

ability calculated for a routing path with loops (e.g., a → b → a → e → c → d). We see from

the equation that Dad is updated by Dbd. But similarly, Dbd may be updated by Dad previously,

which means Dbd has already considered relaying through a. Therefore, by updating with Dbd, Dad

integrates the relay though itself. In other words, Dbd and Dad may boost each other repeatedly,

leading to inaccurate delivery ability.

We confirm this problem with real traces from the MIT Reality project [34] and the Haggle

project [18]. The former was obtained from students and staffs on the MIT campus, while the latter

was collected from 98 scholars attending Infocom’06. Both traces include encountering records

among people. Table 5.1 shows the summary of the two traces.

Table 5.1: Characteristics of mobility traces.

MIT Reality Haggle
Nodes 94 98
Location Campus Conference
Duration 30 days 4 days
Encountering 137936 74224
Encountering per day 4597 18556

We set β to 0.5 and measured the delivery abilities of all nodes to a randomly selected node

using Pbd and Dbd, respectively. The average delivery abilities of all nodes are 0.43 and 0.70 in

the MIT Reality trace, respectively, and are 0.2 and 0.42 in the Haggle trace, respectively. We see

that by replacing Pbd with Dbd, the delivery ability is exaggerated greatly, thereby cannot provide

77

accurate forwarder selection guidance. Thus, it is not feasible to use the transitive probability to

enlarge the view during forwarder selection. We then propose social map for this purpose with a

controllable cost.

5.1.2 Benefits of Social Map

The social map on a node provides a much broader view naturally. A node can discover

routes to the destination with any lengths, thus providing more accurate forwarder selection. Fig-

ure 5.2(b) gives a simple example, in which the number on each link represents the meeting proba-

bility between the two connected nodes. Suppose each node has learnt their meeting probabilities.

Node h needs to select a node from a and e as the next hop for a packet towards node d. With-

out social map, PROPHET cannot consider relay routes that are more than two hops. Then,

since Dad is 0.3 + 0.6 ∗ 0.2 = 0.42 and Ded is 0.3 + 0.6 ∗ 0.4 = 0.54, node e is a better forwarder

than node a. With social map, we can consider longer routes (i.e., a → b → c → d) for Dad:

0.3 + 0.6 ∗ 0.2 + 0.6 ∗ 0.8 ∗ 0.7 = 0.756, which is larger than Ded. Then, node h can select the correct

forwarder (i.e., a). There are already several ways to compute the weight between two nodes in a

graph when the weight of each edge is known [32,70,79]. These methods require the weight of every

edge in the network and much calculation for each source-destination pair, which cannot be satisfied

in MONs, i.e., a node cannot know all link weights and the routing process needs to calculate the

weights between many pairs of nodes. Therefore, we adopt a different way to calculate the delivery

ability between two nodes on the social map, as explained in Section 5.3.1.

The social map provides benefits on routing, which are actually resulted from the cost of

maintaining more information (i.e., top L friends) on each node. The social map only contains a

node’s major relationship, which is stable and requires less frequent updates. Therefore, it actually

provides an acceptable balance on cost and routing performance.

5.2 Social Map Construction

Ideally, the social map should include all nodes in the system. However, this would consume

extensive resources for information exchange and storage. Also, the social map structure should be

stable to reduce the necessity of timely update, which is hard to realize in MONs. Moreover, the

social link weight should be able to reflect the delivery possibility between connected nodes for

78

efficient routing. These problems pose two challenges: i) how to build stable social maps with a low

maintenance cost? ii) How to define the link weight that can accurately reflect delivery ability? We

introduce our solutions to these challenges in below.

5.2.1 Lightweight Social Map Construction

In a social network, a person usually meets his/her major social relations frequently, who

play a more important role in his message forwarding [17]. For example, we meet the same colleagues,

friends, and family members daily. Inspired by this, we only keep the nodes a node has met and

their top L most frequently encountered nodes (called top L friends) in the node’s social map. L

can be a fixed value or the number of encountered nodes whose meeting frequencies with the node

are higher than a predefined threshold. Due to the stability of a node’s top L friends, the social map

requires low cost for the structure maintenance and update. In below, we first show the stability of

top L friends and then introduce the social map construction process, the coverage of the resulted

social map, the ways to determine the value of L, and the resulted cost saving.

5.2.1.1 Stability of Top L Friends

In order to verify the stability of a node’s top L friends and the frequencies of meeting them,

we analyzed the MIT Reality project [34] trace and the Haggle project [18] trace. We see from the

summary in Table 5.1 that nodes move actively in the two traces.

We set ten observation time points evenly in the two traces. At each observation point, we

generated the top L friend lists of each node and calculated the ratio of the same top L friends as

|Fi∩Fi+1|
|Fi| , in which Fi and Fi+1 denote the set of top L friends at observation point i and i + 1,

respectively. In order to get Fi, SMART counts the encounters from the start time to observation

point i. We measured the ratio when L equal to 2, 4, 6, and 8. The average ratios of all nodes are

shown in Figure 5.3(a). We can see that after the initial two observation points, the average ratio

remains very high (around 90%). Note that the length between two observation points is quite long

in the experiment. This result confirms that a node’s most frequently met nodes are very stable.

We further measured the variance of each node’s meeting frequencies with its top L friends

over time. We first ran the trace and selected the top L most frequently met nodes as the top L

friends in this measurement. The frequency change of a node to its friend is measured by |fi+1−fi|
fi

,

in which fi+1 and fi denote the meeting frequency with the friend at observation point i and i+ 1,

79

0.0

0.5

1.0

1 2 3 4 5 6 7 8 9 10

L=2 L=4 L=6 L=8

0.0

0.5

1.0

1 2 3 4 5 6 7 8 9 10

Observation Point

L=2 L=4 L=6 L=8Av
e.
 ra

tio
 o
f s
am

e
fr
ie
nd

s

Haggle trace set

MIT Reality trace set

(a) Evolution of top L friends.

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10

Av
e.
 p
er
ce
nt
ag
e
of
 c
ha
ng
e

on
 m

ee
tin

g
fr
eq

ue
nc
ie
s

w
ith

 to
p
L
fr
ie
nd

s

Observation Point

MIT Result Haggle Result

L=4

(b) Evolution of the change of
meeting frequency with top L (4)
friends.

Figure 5.3: Evolution on the change of friend list and meeting frequency.

respectively. Figure 5.3(b) shows the average of all nodes’ frequency changes when L equals 4. We

see that in both traces, the frequency change is large only at the beginning and decreases to less

than 20% after the first two observation points and finally reaches about 10%. This result verifies

that a node’s meeting frequencies with its top L friends are also relatively stable.

Though the above results are obtained from only two traces with around 100 nodes, they

can represent human-based MONs to a certain extent. Firstly, the two traces represent two typical

human-based MON scenarios (campus and conference site). Secondly, such results match our daily

experiences that we often meet the same group of people regularly, e.g., colleagues, family members,

and friends.

5.2.1.2 Social Map Construction Process

We first introduce a concept of friendship rank. We divide high meeting frequencies in the

system to a number of ranges and assign a rank to each top L friend based on meeting frequencies.

Each node then matches its meeting frequencies with other nodes to these ranges to determine

its friendship ranks with other nodes. The ranges can be determined using both centralized and

distributed methods. In the centralized method, the system administrator pre-determines the ranges

based on the application scenario. To obtain the meeting frequencies among nodes in the system,

a collector can be placed in a popular place to collect the meeting frequencies from nodes. In the

distributed method, nodes exchange their meeting frequencies in a gossip manner. Then, when the

designated node has collected the meeting frequencies of most nodes in the system, it decides the

meeting frequency ranges and informs all other nodes through broadcasting. Therefore, this method

has a high overhead. The system owner can select a suitable method based on the application

requirement. As observed from Figure 5.3(b), a node’s meeting frequencies with its top L friends

80

g
e

c

a

f

i

j

b l

d
h

k

o

m

n

(a) Initial social map of node a (b) After node a meets b and k
b’s friend map k’s friend map

g
e

c

a

d
h

f

Figure 5.4: Social map update process.

are relatively stable. Therefore, the ranks of a node’s top L friends are relatively stable. The reason

we use the rank instead of meeting frequency is that it can reduce the cost in social map updates

caused by the fluctuation of meeting frequencies.

We define each node’s top L friends and their friendship ranks as its friend map. When

two nodes meet, they exchange and update their friend maps. Each node maintains a social table

that records friend maps of all nodes it has met, as shown in Table 5.2. A node’s social map is

constructed by connecting all nodes in its social table, and each node only appears once in the

map. A directional link from node i to node j means node j is in the top L friend list of node i.

Figure 5.4(a) shows an example of the social map of node a with L=4.

Table 5.2: Social table

Node Top L friends Friendship ranks
a f, e, d, g 1, 2, 3, 4
g d, a, c, h 3, 4 ,4, 5
b h, c a, j 2, 2, 3, 5
k i, o, m, n 1, 1, 3, 4
· · · · · · · · ·

The social map on a node, say node a, is updated after each encountering with another

node rather than at a specific time spot. Specifically, when node a meets node b and receives its

friend map, if b is already in a’s social map, node a updates b’s L connected nodes in the social

map accordingly. Otherwise, node a integrates b’s friend map into its social map. Figure 5.4

demonstrates the update process of node a’s social map after it meets node b and k. When a meets

b, it learns b’s top L friends (c, h, i, and j). As h and c are already in the map, node a only adds b,

i, and j to its social map. There is no partition in the network. Later, node a meets node k, whose

friend map contains l, m, n, and o. Since none of them are in a’s social map, a partition is created

after they are added into a’s social map, as shown in Figure 5.4(b). In this case, we still regard it

as part of the social map because 1) the partition still shows some information of the network (i.e.,

o, l, m, n are good relays for node k), and 2) nodes that can connect partitions may be encountered

81

and inserted into the social map later. Note that though the social map on each node is updated

upon each encountering, this process does not consume significant resources since a node’s top L

friends usually are stable, as shown in Figure 5.3(a).

Above algorithm finally generates social maps that are not identical in all nodes and may

not include all nodes. This is similar to our daily lives that each person has his/her own knowledge of

the social structure. We will see that the routing efficiency can still be ensured later in Section 5.5.

5.2.1.3 Social Map Coverage

We define the coverage of the social map as the number of nodes in the map divided by

the total number of nodes in the system. We then measured the average coverage of the social map

on each node at 10 evenly distributed observation points with different L values. The results with

the Haggle trace and the MIT Reality trace are shown in Figures 5.5(a) and 5.5(b), respectively.

We see that even when L = 2, after a short period of time, the social map on each node can cover

over 80% of nodes in the Haggle trace and 60% of nodes in the MIT trace. When L = 8, the social

map coverage in the two traces increase to 90% and 80%, respectively. Such results demonstrate the

feasibility of using social map to provide routing guidance.

5.2.1.4 Determining the Value of L

Clearly, the value of L affects the social map on each node. When L increases, the social

map contains more information and can provide better routing guidance. However, larger L also

consumes more communication and storage resources. Therefore, we need to balance the value of L

and the cost. As aforementioned, the goal of the social map is to reflect stable social relationships.

Then, we can determine L based on the number of stable friends of each node. The stable friend list

of a node contains the frequently met nodes whose meeting frequencies with the node are larger than

half of that of the most frequently met node. For example, suppose node j is the most frequently

met node of node i, and the meeting frequency between them is fij . Then, nodes whose meeting

frequencies with node i are larger than fij/2 are stable friends of node i. The determination of L

can be realized in both centralized and distributed manner.

In the centralized method, we first let node run for a period of time so that all nodes can

collect enough amount of encountering records. Then, we periodically calculate L as the average

number of stable friends each node has. The updated L is sent to each node whenever its connection

82

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5 6 7 8 9 10

Co
ve
ra
ge

Observation Point

L=2 L=4 L=6 L=8

(a) Haggle trace.

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10

Co
ve
ra
ge

Observation Point

L=2 L=4 L=6 L=8

(b) MIT Reality trace.

Figure 5.5: Social map coverage with different Ls.

to the central server is established. In the distributed method, considering different nodes have

different social relationships and consequently, different numbers of stable friends, we do not require

the L to be identical among all nodes. Each node directly uses the size of its stable friend list as L.

Both the two methods have advantages and disadvantages. In the centralized method, with

the determined L, mobile nodes can save the cost on exchanging L value. However, it suffers from

the problem that it cannot adjust L timely and needs a central/super node to collect necessary

information. In the distributed method, the social maps get updated timely when the stable friends

of a node change, providing more accurate routing information for packets. However, the drawback

of the distributed method is that it is hard to control the size of social map since individual nodes

decide their own Ls.

Some may question that the social map constructed with limited L may fail to reflect some

forwarding opportunities, especially for active nodes, since each node can only have most L friends

in the social map. We argue that it does not sacrifice the routing performance because 1) the top

L friends reflect the major social relationships of each node, which usually take the major roles in

message forwarding, and 2) active nodes would appear as the top L friends of more nodes, thus having

more links in the social map. Therefore, the specified L does not compromise routing performance,

which is verified in our analysis in Section 5.3.3 and experiments in Section 5.5.

5.2.1.5 Cost Saving Resulted from Social Map

We assume the average value of L on each node is K no matter different nodes have the

same L or different Ls. Then, on average, two encountered nodes only exchange their top K friends

and associated friendship ranks for social map construction. Suppose the size of the information

of one friend is T bytes, the total amount of data exchanged is about 2TK bytes. In previous

methods, two encountered nodes exchange their delivery abilities to the destinations of all packets

83

to make forwarding decision. The size of each delivery ability can be regarded as T bytes too since

it also represents the information of a node. We assume packets on each node have N different

destinations on average. Then, the total amount of data exchange is about 2TN bytes. As a result,

the total cost saving is 2T (N −K)M , where M is the total number of encounters. Recall that N

is bounded by the total number of nodes in the system. Also, the higher the packet generation

rate is, the larger N tends to be (suppose packet destinations are evenly distributed). On the other

hand, K usually is small (K < 10). Therefore, the social map can reduce the information exchange

cost in most cases (i.e., when the packet generation rate ensures N > K). Furthermore, the cost

saving is more valuable when the packet generation rate is high because more packets require more

storage/forwarding resources in the resource-limited MONs.

5.2.2 Social Link Weight Calculation

We assign a weight to the link connecting two nodes, say node i and node j, in a social

map to represent how fast a packet can be forwarded between them. We consider two factors in this

process: the meeting frequency and the social closeness between the two nodes, which are reflected

by shared top L friends [30]. We consider social closeness for weight calculation because people

with close relationship are likely to share the same group of friends [30]. A shared top L friend of

two nodes is a good relay to forward messages between them since both of them meet the friend

frequently. Then, the resultant link weight can more accurately reflect the message delivery ability

between the two connected nodes.

We call the link path directly connecting two nodes as 1-hop route and the link path con-

necting two nodes through one shared top L friend as 2-hop route. The weight of a l-hop (l = 1 or 2)

route between node a and node b, denoted by wab, is defined as 1 over the sum of the friendship

rank of each link in the route:

wab = 1/

l−1∑
k=0

rk (5.1)

where rk denotes the rank of the kth link. For two nodes, the weight of one-hop route reflects their

meeting frequency while the two-hop routes show the social closeness.

Then, the weight for a link in the social map connecting node a and node b, denoted by

84

2 1
2a

c

1 2
1

2
3 2

2
2

2

3 4
33

4
2

4 b e

fd 2

1.2

22 h

g4
3

4
3

35
fd

3
k

Figure 5.6: Part of node h’s social map.

Wab, integrates all one-hop and two-hop routes between them.

Wab = 1/

m−1∑
s=0

wabs , (5.2)

where m is the total number of routes and wabs is the weight of the sth route. With this design, the

smaller Wab, the higher forwarding probability the two nodes have.

Figure 5.6 shows an example of part of the social map created on node h, in which L equals

4. We briefly introduce how to calculate the link weight Wab and Wef . There are three routes

between a and b: one one-hop route (b − a) and two two-hop routes through shared top L friend

d and c (a − c − b and a − d − b). Based on Equation 5.1, these routes’ weights are 1/3, 1/3, 1/6,

respectively. Based on Equation 5.2, Wab = 1/(1
3 + 1

3 + 1
6) = 1.2. As for e and f, they have only one

route: e− f . Route e− g − f is not a two-hop route since g is not a shared top L friend, as it only

exists in the top L friend list of e. Therefore, Wef = 1/ 1
2 = 2.

5.2.2.1 Understanding the Social Link Weight

The friendship rank can represent the expected inter-meeting time between the two con-

nected nodes, i.e., the expected delay for a packet to be relayed between the two nodes, as explained

in the definition of friendship rank. As a result, the sum of each link’s friendship rank in a route

(i.e.,
∑l−1

k=0 rk in Equation (5.1)) represents the expected delay of replaying a packet through the

route. Then, the weight of a route, calculated in Equation (5.1), actually represents the “normalized

throughput” of the route. Note that in above discussion, we call “normalized throughput” because

we assume each node’s memory can hold the same amount of packets. This can be adapted to

practical scenarios by deciding the average amount of memory on each node.

The overall “normalized throughput” between two node, say a and b, is the sum of each

route’s “normalized throughput” :
∑m−1

s=0 wabs . Then, the weight of the social link connecting

85

two nodes, which is calculated as 1 over the “overall throughput” (Equation (5.2)), represents

the expected delay to relay a packet from one node to the other node through the possible route

considered in our design.

5.3 Social Map Based Routing Algorithm

In this section, we first introduce how we utilize the social link weight and then present the

detailed routing process.

5.3.1 Deciding Delivery Ability

In MON routing, a packet is always forwarded to the candidate forwarder that has the

highest ability to deliver it to its destination. Then, how to decide the delivery ability with the

social link weight?

For two nodes in the social map, there are multiple paths connecting them. We define the

weight of a path on the social map as the sum of the weights of its social links. Since the weight of

a social link denotes the expected delay to forward a packet between the two connected nodes, the

weight of a path represents the expected delay to pass a packet through the path. Then, the weight

of the minimal weight path from the holder to the destination of a packet represents the minimal

expected time needed to deliver the packet. Since delay is the crucial factor in MON routing, we

take the weight of the minimal weight path to represent the delivery ability between the two nodes.

This also matches the general MON routing process, which forwards packets hop by hop and aims

to maximally reduce the expected delay in each forwarding hop.

5.3.2 Routing Process

With above analysis, the guideline of our routing algorithm is to always forward a packet

to a node whose minimal-weight path to the destination node has smaller weight, i.e., gradually and

maximally reducing the minimal expected delay. In detail, suppose node a needs to decide whether

node b is a better forwarder for one of its packet. Node a first checks whether both a and b are

disconnected to the destination node in the social map. If yes, we use a backup metric to decide

the forwarder, as introduced later. Otherwise, node a uses the Dijkstra [31] algorithm to find the

minimal-weight paths from the destination node to a and b. Note if a or b is disconnected to the

86

destination node, the weight of its minimal-weight path to the destination node is the maximal value.

If node b’s minimal-weight path has smaller weight than that of node a, node a would forward the

packet to node b.

Besides, there are some issues that need to be addressed, such as incomplete social map, loop

prevention, and packet replacement strategy. We first discuss approaches to solve these problems

and then summarize the routing algorithm.

a) Incomplete Social Map: As stated previously, the social map on each node may only

cover part of the entire network. Though we find in Section III-B1c that the social map has high

coverage, it is possible that when a node meets another node, the destination node of a packet is

disconnected from the two nodes in the social map (i.e., no path can be found for both nodes). In

this case, we rank a node’s suitability of forwarding a packet by its active degree, which is measured

by the number of links associated with the node in the social map. The more links connecting to

a node, the more active it is. Then, the packet is forwarded to the node with higher active degree.

This is inspired by the social network property that an active person can meet more people and thus

has a higher probability of meeting the destination [17].

b) Loop Prevention: Since each node maintains its social map independently, forwarding

loops may happen in the system. For example, two nodes may both believe that the other side is a

better forwarder for a packet and forward the packet back and forth repeatedly. To prevent such a

loop, we require each packet to record the IDs of all nodes that it has been forwarded to. Then, the

loop can be avoided by simply forbidding a node to forward a packet to a node that it has visited

before.

c) Packet Replacement: It is possible that a node’s storage is full when a packet arrives. In

this case, SMART simply drops the packet that has lived for the longest period of time.

We then summarize the routing algorithm in SMART as below, with its pseudo-code shown

in Algorithm 1.

(1) When two nodes meet with each other, they first exchange their friend maps, which are then

used to update their social maps (line 2-4). After this, each node processes its packets sequen-

tially (line 7).

(2) For the current packet, the node first checks if it has been forwarded to the other node before.

If not, it proceeds to step (3). Otherwise, it goes to step (5) (line 9).

87

(3) If the destination node connects to at least one of the two nodes in the social map, the node

checks whether the other node’s minimal-weight path to the destination node has lower weight

with the Dijkstra algorithm. Otherwise, the node checks whether the other node has higher

active degree. The processing proceeds to step (4) if yes to either of above check and step (5)

otherwise (line 10-21).

(4) The node forwards the packet to the other node. When the other node receives the packet, if

the storage is full, the oldest packet is dropped until the available memory can hold the new

packet. Then, if the new packet is not dropped, the node inserts its ID into the packet and

stores the packet. (line 25-33).

(5) The process of the current packet stops. If there are unprocessed packets, the checking process

repeats from step (2) for the next packet (line 7).

Algorithm 1 Pseudo-code of the SMART routing algorithm executed by a upon meeting node b.
1: procedure exchangeTopFriendsWith(b)
2: n.sendTopFriendsTo(b)
3: n.receiveTopFriendsFrom(b)
4: n.updateSocialMap()
5: end procedure
6: procedure selectforwarder(b)
7: for each packet p in node a do
8: bForward ← false
9: if p.hasBeenOn(b) = false then

10: if a.connect(p.des) || b.connect(p.des) then
11: if b.getW(p.des) < a.getW(p.des) then
12: bForward ← true
13: end if
14: else
15: if b.getDegree() > a.getDegree() then
16: bForward ← true
17: end if
18: end if
19: if bForward = true then
20: a.forwardPacketTo(p, b)
21: end if
22: end if
23: end for
24: end procedure
25: procedure receivePacketsFrom(p, b)
26: while Memory.Full() = true do
27: dropOldestPacket()
28: end while
29: if p.NotDropped() = true then
30: p.InsertID(a)
31: StorePacket(p)
32: end if

33: end procedure

In summary, two encountering nodes in SMART only exchange a small amount of infor-

88

mation for social map construction and forwarder selection. Also, the delivery ability in SMART

naturally considers the multi-hop relay through the top L friends. This global view based forwarder

selection can enable more efficient routing. SMART can also support different routing metrics such

as minimal average/maximal delay and minimal missed deadlines by setting different packet for-

warding priorities when two nodes meet [9]. SMART uses first-come-first-out forwarding sequence

in this dissertation.

5.3.3 Effect of Top L Friends

Recall that SMART only allows each node to keep a node’s top L friends in the social map.

We now analyze how L affects the routing efficiency and further check the correctness of our design

(i.e., only store top L friends) based on the routing procedure.

As aforementioned, the key step in the routing procedure is to find the minimal weight

path from the candidate forwarders to the destination in the social map. The precision of discovered

minimal weight path decides the effectiveness of the forwarder selection and consequently, the routing

efficiency. We discuss the scenario when we gradually increase L from 1. When L increases, each

node can initiate more links in the social map. The added links can help find a better minimal

weight path (i.e., with a smaller weight) by two ways:

• It connects two previously disconnected nodes and enables a new minimal weight path, as

shown in Figure 5.7(a).

• It improves an existing minimal weight path by lowering its weight, as shown in Figure 5.7(b).

Clearly, when L is small, the two cases happen easily if L increases, thereby improving the accuracy

of discovered minimal weight path. However, when L is large, we argue that both the two cases are

not easy to happen.

Firstly, when L is large enough, the graph is almost connected. The first case then can

hardly happen. Secondly, for the second case, by examining Figure 5.7(b), we find that it happens

when the weight of the added link (1.1) is smaller than the sum of the weights of the two previous

links connecting the two nodes (0.9 + 0.6). Then, since the links are added incrementally, i.e., the

newly added link for a node is its (L+1)-th friend when L increases to L + 1, when L is large, the

weights of the new links are large, thereby can hardly satisfy the requirement for the second case.

89

b cae

Existing link

0.21.1
Added link

(a) Connecting disconnected
nodes.

b cae
0.8 0.2

d

1.1

0.9 0.6

(b) Improve existing path (e to
c).

Figure 5.7: Improvement on social map when L increase.

In conclusion, when L increases from a small value, the two cases happen easily and thus

improve the routing efficiency. However, when L is larger enough, increasing it can hardly trigger

the two cases to improve the routing efficiency. Such a result demonstrates the correctness of only

storing top L friends (with a proper L). Such a finding matches our discussion in Section 5.2.1 that

people forward messages mainly through major social relationships.

5.3.4 Advanced Extensions of Packet Routing

We present two extensions of SMART that can improve the routing efficiency.

5.3.4.1 Alleviating the Load on Overloaded Nodes

In the routing protocol, active nodes that are a top L friend of more nodes have more

chances to be selected as the packet forwarder, and hence can easily become overloaded. To avoid

overloading such nodes, we introduce an overload bit in the beacon messages. When a node is about

to be overloaded, it sets the overload bit in its beacon messages. Then, its neighbors will not select

it as a packet forwarder candidate. The overload bit is reset when the load on the node recovers to

a normal level.

5.3.4.2 Reducing Computation Cost

Recall that when a needs to decide whether the newly met node b is a better forwarder

for one of its packet, the Dijkstra algorithm regards the destination as the root node and iteratively

selects the node that has the minimal path weight to the destination. The selection process ends

when either a or b is picked up, and the first picked node in a and b is a better carrier for the packet.

The complexity of this process is O(n2) [2], where n is the number of nodes in the social map. This

process is executed for the destination of each packet in node a. Therefore, the computation load is

90

very high without further optimization.

In order to reduce the computation load, we propose to proactively cache better forwarders

for each destination node. Specifically, for each destination, node a runs the Dijkstra algorithm

until a is picked or all nodes are picked. Then, the nodes that are selected prior to a and their path

weights to the destination are stored in a Better Forwarder Table (BFT). Thus, the BFT records

the nodes that have higher delivery ability to the destination node than node a. Table 5.3 shows an

example of a BFT in node a. Later on, when node a encounters these recorded nodes, it forwards the

packets for corresponding destination to them directly without running the Dijkstra algorithm. If

multiple nodes in BFT for the same destination are met at the same time, the one with the minimal

path weight is selected as the forwarder.

Table 5.3: Better forwarder table (BFT) in node a

Destination Better forwarder (path weight)
b k(1.8), e(1.7), h(0.4), o(0.9)
c b(2.2), c(1.2), j(1.4), f(0.8)
f k(0.8),m(0.9), d(1.3)
· · · · · ·

The BFT should be updated timely to reflect the changes on the social map due to meeting

frequency change in MONs. It is updated when either the destination of a packet is absent from

the table or the number of changed social links constitutes more than THc% of all social links in

the social map. Note that each node records the number of added or removed social links in its

social map to track the second case. When the former happens, the Dijkstra algorithm is launched

to make the forwarding decision for the destination and meanwhile update the corresponded row in

the BFT. When the latter happens, all entries in the BFT become invalid and are removed, after

which the BFT is updated following the first scenario.

We then discuss the maintenance and storage cost of the BFT. Firstly, the BFT table updates

frequently at the beginning when the social map has less information. However, as mentioned in

Section 5.2.1, a node’s most frequently met nodes are stable. Thus, after the initial stage, the social

map on a node would become stable. Then, we can set a relatively large THc, which would lead to a

low update overhead for BFT. The BFT in a node only stores the IDs of better forwarders and their

associated path weights for each destination. Since a pair of ID and weight only occupies several

bytes, the size of a BFT would not be a burden to modern mobile devices which usually have GB

level memory (i.e., 8 GB).

91

Algorithm 2 shows the process for node a to decide the forwarder for its packets when it

meets node b. For each of its packets, node a first checks if both a and b are disconnected to the

packet’s destination in the social map. If so, the forwarder should be the one with the higher active

degree. Otherwise, node a checks whether the entry for the destination node exists in its BFT and

node b exists in the entry. If so, it forwards the packet to node b directly. If not, node a uses the

Dijkstra algorithm to decide the forwarder as previously described in Section 6.2.4, and meanwhile

updates its BFT.

Algorithm 2 Pseudo-code of the SMART BFT-based routing algorithm executed by a upon meeting
node b.

1: procedure selectForwarder(b)
2: for each packet p in node a do
3: d ← destination of packet p
4: if both a and b are disconnected from d then
5: Forwarder(p)←the node in {a, b} with higher active degree
6: else
7: if there is an entry for d in BFT then
8: if b is in the entry then
9: Forwarder(p)←b

10: end if
11: else
12: LaunchDijkstraAlgFor(p)
13: end if
14: end if
15: end for

16: end procedure

5.4 Discussion on Scalability and Security

We also briefly discuss the scalability and security issues of SMART.

5.4.1 Scalability of SMART

Although each node in SMART needs to store many friend maps, SMART is scalable on

storage in a large-scale network with 10,000 nodes due to two reasons. First, one friend map only

contains L IDs and L friendship ranks, which occupy about 8L bytes. Then, 10,000 friend maps

require about 80L KB memory, which is not a big burden for most mobile devices nowadays. Second,

a node only stores the friend maps of nodes it has met, which are very limited in a large network

since it mostly only meets nodes in the local community. Therefore, even when the network size is

very large, the storage consumption in SMART is limited. As mentioned in the introduction section,

SMART is designed mainly for applications in a certain local community, which means the network

92

size usually is not very big. In our experiment, both traces contain less than 100 nodes. Then, if

L = 8, the social map on a node needs at most 6.4 KB. Thus, the memory can be satisfied easily in

potential application scenarios.

With BFT, the Dijkstra algorithm runs only when necessary. The complexity to determine

packet forwarder by checking the better forwarder table is O(n). Recall that without BFT, the

complexity to determine packet forwarder using the Dijkstra algorithm is O(n2). Therefore, the

computation complexity is greatly reduced with BFTs. Our experimental results in Section 5.5.4

show that the BFT greatly reduces the computation cost without greatly compromising the routing

efficiency.

SMART is also scalable regarding routing path lengths. Large social networks have a 6-hop

property, in which two unknown persons can be connected by 6 hops of transits on average [83].

This implies that through top L friends, SMART may not need a large number of hops to deliver

a packet to its destination even when the network is very large. Note that SMART is designed for

social networks in local communities where the connections between people usually are tight. Thus,

in SMART, a node needs fewer hops to reach an unknown person. Our experimental results also

show that the average number of forwarding hops for a successfully delivered packet is about 5 in

tests with both real traces.

5.4.2 Security in SMART

In MONs, nodes may belong to different entities or organizations. Therefore, some nodes

may not follow the SMART routing algorithm or even behave maliciously for individual interests.

We then briefly discuss the blackhole attack in SMART.

In blackhole attack, malicious node a claims that node b is its friend and falsely report a

very high friendship rank with b in order to attract packets destined to b and drop these packets.

We propose to use friendship verification to detect and prevent it. Specifically, when node a wants

to take node b as its top L friend, node a must send the friendship rank to node b asking for an

approval. Node b then verifies the correctness of the friendship rank and signs the friendship rank

with its private key if it is correct. The friendship rank can be updated and signed timely since they

meet frequently (i.e., b is a top L friend of a). Later, when a claims b as its top L friends, other

nodes can verify the friendship rank with the public key of node b. As a result, nodes that have

forged the friendship rank can be identified, thereby preventing the blackhole attack.

93

An advantage of the above method is that a node would not collude with another node to

fake the friendship ranks since this would reduce its opportunity to receive packets destined for it.

However, a node may attract and drop packets by its real friendship ranks. The detection of such

behaviors is non-trivial in MONs and is out of the scope of this dissertation.

5.5 Performance Evaluation

We conducted event-driven experiments using real traces from the MIT Reality project [34]

and the Haggle project [18]. We first focus on the test with fixed L to show how different L affects

the routing performance. Then, we examine the performance of SMART under different Ls. We

also examined the performances of the method to decide L distributively and the better forwarder

table (BFT). We compared SMART with following representative MON routing algorithms.

(1) PROPHET : PROPHET is a probabilistic routing algorithm. It calculates delivery ability

based on past encountering records and forwards packets to nodes with higher delivery ability to

their destinations.

(2) SimBet : SimBet is a social network based algorithm. It calculates the suitability of

a node for carrying a packet by the node’s centrality value and its similarity with the destination

node (the number of shared encountered nodes). Packets are always forwarded to nodes with better

suitability.

(3) StaticWait : In StaticWait, a source node carries its packet until meeting the packet’s

destination. We use this algorithm as a baseline method to show the routing efficiency when no

active forwarding strategy is adopted.

In the experiment, the first 1/3 of both traces were used as the initialization period to collect

enough encountering records. After this, packets were generated at the rate of Rn per 300s and per

40s in the MIT Reality trace and the Haggle trace, respectively. In the test, at most 10 ∗ Tl packets

can be exchanged when two nodes meet, where Tl is the length of the encountering session in seconds.

The size of a packet was set to 1 KB. The source and destination of a packet were randomly selected

from all nodes in the system. In SMART, L was set to 4 by default. In PROPHET and SimBet,

the parameters used to calculate the delivery ability and utility were configured to the same values

as in their papers. We used the packet replacement strategy in SMART, PROPHET, and SimBet.

We tested the performance of SMART with different packet rates, different memory sizes

94

on each node, and different values of L. In the test with different packet rates, the total number

of packets was varied from 5,000 to 25,000 (i.e., Rn was varied from 1 to 5). The memory size on

each node was set to 100KB. In the test with different memory sizes, the memory on each node was

varied from 60KB to 140 KB with an increase of 20 KB in each step, and the packet rate (Rn) was

set to a medium value of 3. In the test with different values of L, we varied the value of L from 2

to 8, and set the packet rate to 3 and memory size on a node to 100 KB.

We measured the following metrics during the test.

• Hit rate: the percentage of requests that are successfully delivered to their destinations in the

experiment.

• Normalized average delay: the average delay of all packets. We regard the delay of an unsuc-

cessful packet as the trace length, which is 340k and 2560k seconds for the Haggle trace and

the MIT Reality trace, respectively.

• Normalized forwarding hops: the total number of packet forwarding hops divided by the num-

ber of successfully delivered packets.

• Routing cost: the number of information units exchanged between encountered nodes in the

experiment.

5.5.1 Performance with Different Packet Generating Rates

5.5.1.1 Hit Rate

Figure 5.8(a) and Figure 5.9(a) demonstrate the hit rates of the four methods with the

Haggle trace and the MIT Reality trace, respectively. From the two figures, we see that the hit rates

of the four methods follow SMART>SimBet>PROPHET>StaticWait.

StaticWait shows the lowest hit rate because packets only statically wait in their generators

to reach destinations. SMART deduces nodes’ delivery abilities to destinations based on the rela-

tively stable social map. It can choose an optimal forwarder in a long path to the destination with

a broad view, thereby generating the highest hit rate. PROPHET and SimBet can only evaluate

the delivery ability within one or two hops, which cannot consider long routing paths, leading to a

lower hit rate than SMART.

95

0.40

0.45

0.50

0.55

0.60

5 10 15 20 25

Hi
t R

at
e

Number of Packets (x103)

SMART SimBet
PROPHET StaticWait

(a) Hit rate.

15

17

19

21

23

5 10 15 20 25

N
or
m
al
ize

d
Av
er
ag
e
De

la
y
(x
10

4
S)

Number of Packets (x103)

SMART SimBet
PROPHET StaticWait

(b) Normalized average delay.

0

1

2

3

4

5

6

7

5 10 15 20 25

N
or
m
al
ize

d
Fo
rw

ar
di
ng

 H
op

s

Number of Packets (x103)

SMART SimBet
PROPHET StaticWait

(c) Normalized forwarding hops.

0

2

4

6

8

10

5 10 15 20 25

Ro
ut
in
g
Co

st
 (x
10

6)

Number of Packets (x103)

SMART SimBet
PROPHET StaticWait

(d) Routing cost.

Figure 5.8: Performance of each method with the Haggle trace under different packet rates.

0.25

0.35

0.45

0.55

5 10 15 20 25

Hi
t R

at
e

Number of Packets (x103)

SMART SimBet
PROPHET StaticWait

(a) Hit rate.

12

14

16

18

20

5 10 15 20 25

N
or
m
al
ize

d
Av
er
ag
e
De

la
y
(x
10

5
S)

Number of Packets (x103)

SMART SimBet
PROPHET StaticWait

(b) Normalized average delay.

0

2

4

6

8

5 10 15 20 25

N
or
m
al
ize

d
Fo
rw

ar
di
ng

 H
op

s

Number of Packets (x103)

SMART SimBet
PROPHET StaticWait

(c) Normalized forwarding hops.

0

2

4

6

8

10

12

5 10 15 20 25

Ro
ut
in
g
Co

st
 (x
10

6)

Number of Packets (x103)

SMART SimBet
PROPHET StaticWait

(d) Routing cost.

Figure 5.9: Performance of each method with the MIT Reality trace under different packet rates.

96

We observe that as the total number of packets increases, the hit rates of the four methods

decrease. This is because the forwarding opportunities and memory available for packet forwarding

are limited. Then, when more packets are generated, more packets are dropped by nodes, leading

to a decreased hit rate. It is interesting to see that the hit rates of the three methods with active

forwarding decrease more quickly than that of StaticWait. This is because we configure fixed memory

in the test. Then, when the number of packets increases, more packets are converged to certain

important nodes, which have fixed storage, resulting in more dropped packets. We can adopt load

balance techniques in Section 5.3.4 to alleviate this problem. In StaticWait, packets are evenly

distributed among nodes, thereby better utilizing the memory on all nodes and leading to fewer

dropped packets.

With above results, we conclude that SMART can achieve efficient routing in the MON

environment with the proposed social map. These results also justify the correctness of the design

of the link weight calculation method that considers both meeting frequency and social closeness.

5.5.1.2 Normalized Average Delay

Figure 5.8(b) and Figure 5.9(b) show the normalized average delays of the four methods in

the tests with the Haggle trace and the MIT Reality trace, respectively. From the two figures, we

find that the normalized average delays of the four methods follow SMART<SimBet<PROPHET<

StaticWait. SMART has the lowest normalized average delay because it considers multi-hop for-

warding opportunities when making forwarding decisions with a broader view from the social map,

which enables a packet to travel through a fast route to its destination. Both PROPHET and Sim-

Bet fail to consider long routing paths that may generate shorter delay. Therefore, they produce

higher average delay than SMART. StaticWait has the highest average delay since packets only wait

in their initiators for destinations without being forwarded. Such results further demonstrate the

high efficiency of SMART in terms of routing delay.

We also find that the normalized average delays of the four methods increase as the packet

generating rate increases. This is because we regard the delay of dropped packets as the length of

the test trace, which is much longer than the delay of a successful packet. Then, when the packet

generating rate increases, there are more dropped packets (the hit rate decreases), as shown in

Figure 5.8(a) and 5.9(a), leading to increased normalized average delay.

97

5.5.1.3 Normalized Forwarding Hops

Figure 5.8(c) and Figure 5.9(c) show the normalized forwarding hops of the four methods

with the Haggle trace and the MIT Reality trace, respectively. We observe that StaticWait has

very low forwarding hops and other three methods have high forwarding hops. In StaticWait, each

packet waits in its initiator for the destination. Therefore, each successful packet is forwarded only

once. The active forwarding in SMART, SimBet and PROPHET leads to much more forwarding

for each successful packet. We see that the normalized forwarding of SMART is on the same level

with SimBet and PROPHET, but SMART has higher hit rate and lower average delay. This further

demonstrates that the active forwarding in SMART is more effective.

5.5.1.4 Routing Cost

Figure 5.8(d) and Figure 5.9(d) plot the routing costs of the four methods with the Haggle

trace and the MIT Reality trace, respectively. We see that StaticWait has no routing cost since no

information exchange is needed. SMART incurs a significantly lower routing cost than PROPHET

and SimBet. This is because two encountered nodes only need to exchange their friend maps with L

(usually a small value) entries in SMART, while nodes need to exchange the information regarding

the destination nodes of all packets in PROPHET and SimBet. SimBet has a slightly higher routing

cost than PROPHET since in addition to the similarity information, a node has to send its centrality

information to the newly met node. In a nutshell, StaticWait incurs the least total costs but has a low

efficiency, SMART consumes low total transmission and storage costs, and PROPHET and SimBet

generate very high total transmission and storage cost. This result confirms SMART’s low-cost on

information exchange.

5.5.2 Performance with Different Memory Sizes on Each Node

5.5.2.1 Hit Rate

Figure 5.10(a) and Figure 5.11(a) demonstrate the hit rates of the four methods with the

Haggle trace and the MIT Reality trace when the memory size varies, respectively. We see that

the hit rates of the four methods follow the same as in Figure 5.8(a) and Figure 5.9(a) due to the

same reasons. We also find that when the memory size on a node increases, the hit rates of all

methods also increase. This is because with larger memory size, each node can carry and forward

98

0.40

0.45

0.50

0.55

0.60

60 80 100 120 140

Hi
t R

at
e

Memory Size (KB)

SMART SimBet
PROPHET StaticWait

(a) Hit rate.

14

16

18

20

22

60 80 100 120 140

N
or
m
al
ize

d
Av
er
ag
e
De

la
y
(x
10

4
S)

Memory Size (KB)

SMART SimBet
PROPHET StaticWait

(b) Normalized average delay.

0

1

2

3

4

5

6

7

60 80 100 120 140

N
or
m
al
ize

d
Fo
rw

ar
di
ng

 H
op

s

Memory Size (KB)

SMART SimBet
PROPHET StaticWait

(c) Normalized forwarding hops.

0

2

4

6

8

10

60 80 100 120 140

Ro
ut
in
g
Co

st
 (x
10

6)

Memory Size (KB)

SMART SimBet
PROPHET StaticWait

(d) Routing cost.

Figure 5.10: Performance of each method with the Haggle trace under different memory sizes.

0.25

0.35

0.45

0.55

60 80 100 120 140

Hi
t R

at
e

Memory Size (KB)

SMART SimBet
PROPHET StaticWait

(a) Hit rate.

12

14

16

18

20

60 80 100 120 140

N
or
m
al
ize

d
Av
er
ag
e
De

la
y
(x
10

5
S)

Memory Size (KB)

SMART SimBet
PROPHET StaticWait

(b) Normalized average delay.

0

1

2

3

4

5

6

60 80 100 120 140

N
or
m
al
ize

d
Fo
rw

ar
di
ng

 H
op

s

Memory Size (KB)

SMART SimBet
PROPHET StaticWait

(c) Normalized forwarding hops.

0

2

4

6

8

10

12

60 80 100 120 140

Ro
ut
in
g
Co

st
 (x
10

6)

Memory Size (KB)

SMART SimBet
PROPHET StaticWait

(d) Routing cost.

Figure 5.11: Performance of each method with the MIT Reality trace under different memory sizes.

99

more packets to their destinations, leading to a higher hit rate.

5.5.2.2 Normalized Average Delay

Figure 5.10(b) and Figure 5.11(b) show the average delay of the four methods with the

Haggle trace and the MIT Reality trace when the memory size on each node varies, respectively.

We find that the relationship of the four methods on average delay is the same as in Figure 5.8(b)

and Figure 5.9(b) for the same reasons. It is interesting to see that when the memory size on a node

increases, the normalized average delays decreases. This is because when the memory size increases,

there are fewer dropped packets, whose delay is very large (i.e., trace length), leading to decreased

normalized average delay.

5.5.2.3 Normalized Forwarding Hops

Figure 5.10(c) and Figure 5.11(c) show the number of forwarding hops of the four methods

with the Haggle trace and the MIT Reality trace when the memory size on each node varies, respec-

tively. We find that the normalized forwarding hops follow the same trend as in Figure 5.8(c) and

Figure 5.9(c) due to the same reasons.

5.5.2.4 Routing Cost

Figure 5.10(d) and Figure 5.11(d) demonstrate the routing costs of the four methods with

the Haggle trace and the MIT Reality trace when the memory size on each node varies, respectively.

We find that the routing costs are the same as the Figure 5.8(d) and Figure 5.9(d) for the same

reasons. This is because the routing cost is irrelevant to the number of packets on each node but is

only related to the L for SMART and the number of nodes in the system for other three methods.

Combining all the above results, we conclude that SMART has superior performance than other

methods in MON routing with different memory sizes on each node.

5.5.3 Effect of the Value of L

In this section, we varied the value of L used in SMART from 2 to 8 to evaluate its effect

on the routing performance and verify that large L values (i.e., greater than a threshold) would not

significantly enhance the routing performance. The total number of packets was set to a medium

value of 15,000. The results are shown in Table 5.4 and Table 5.5.

100

Table 5.4: Routing performance with the Haggle trace

L Hit Rate N. Ave. Delay (s) N. Fwd. Hops Routing Cost
2 0.541425 172,614.8 4.992 277,704
3 0.551023 169,006.2 4.932 416,556
4 0.551156 168,715.7 5.050 555,408
5 0.560021 165,903.7 4.945 833,112
6 0.56822 163,745.5 4.860 833,112
7 0.572219 162,426.5 4.825 971,964
8 0.576218 161,251.9 4.775 1,110,816

Table 5.5: Routing performance with the MIT Reality trace

L Hit Rate N. Ave. Delay (s) N. Fwd. Hops Routing Cost
2 0.431467 1,575,819.5 4.028 546,892
3 0.459933 1,509,557.2 4.776 820,338
4 0.481467 1,459,355.8 4.858 1,093,784
5 0.502867 1,413,748.9 4.884 1,367,230
6 0.502533 1,410,643.2 5.027 1,640,676
7 0.515667 1,384,143.6 4.994 1,914,122
8 0.515933 1,385,610.1 4.955 2,187,568

5.5.3.1 Hit Rate

We see that the hit rate of SMART increases steadily when L increases from 2 to 8. This

is because the calculation of link weight depends on the number of shared top L friends. Therefore,

when L increases, the calculated weight can reflect the delivery ability of the two connected nodes

more precisely. Consequently, a node can more correctly decide if a newly met node is a better

carrier for its packets, leading to improved routing efficiency. This result confirms the feasibility of

constructing a social map by exchanging only the top L friends in MONs and implies that L can be

adjusted to achieve a tradeoff between cost and routing efficiency.

We also see that the increase of hit rate with the MIT Reality trace is much larger than that

with the Haggle trace when L increases. This is because the two traces were obtained in different

environments. The Haggle trace was conducted in a crowded conference scenario, in which each node

can meet many nodes frequently; so a small L can still approximately represent the social structure

and will not decrease the hit rate significantly. However, the MIT Reality trace was obtained in

a sparse campus environment. In this case, a small L would lose some important friends, thereby

providing fewer forwarding opportunities and leading to a low hit rate.

5.5.3.2 Normalized Average Delay

We find that the normalized average delay of SMART decreases when L increases at the

beginning and remains at the same level when L is larger than a medium value (i.e., 5). When the

101

L increases from a small value, the social map constructed on each node becomes more complete,

resulting in better forwarder selection and decreased average delay. The increased hit rate also leads

to fewer dropped packets, which have high delay (i.e., trace length). Consequently, the normalized

average delay decreases. After L reaches the medium value, which enables social maps to show

almost all most frequently met nodes, the enhancement in the routing efficiency is not significant

if L further increases, as shown in the first column of the two tables. Therefore, the normalized

average delays remain on the same level.

5.5.3.3 Normalized Forwarding Hops

We see that when L increases from 2 to 8, the normalized forwarding hops of SMART

remains stable when the Haggle trace is used and increases in the test with the MIT Reality trace.

This is caused by the different environments of the two traces. In the Haggle project, nodes are

more crowded, so it is easy to find a next-hop node even when L is small. Therefore, the normalized

forwarding hops remain stable with different L. But in the MIT Reality trace, nodes are sparser, so

a small L cannot reflect the social structure well, leading to fewer forwarding opportunities and a

low normalized forwarding hops.

5.5.3.4 Routing Cost

We find that the routing cost increases in proportion to the value of L when it increases

from 2 to 8 with both traces. This is because the routing cost is actually the number of encounters

multiplied by 2L. We see that the routing cost is still quite small when L is 8 compared to that of

SimBet and PROPHET shown in Figure 5.8(d) and Figure 5.9(d). This result shows the efficiency

of SMART in reducing information transmission, and also implies that it is important to find an

optimal L value that generates low routing cost while achieving high routing efficiency.

5.5.3.5 Summary

Above experimental results indicate that SMART still works efficiently when L is set to a

small value. For example, even when L = 2, SMART still generates close performance on hit rate,

average delay, and cost with other compared methods. Also, the performance of SMART is improved

when L increases and remains stable when L is larger than 5. Such a result matches our analysis

in Section 5.3.3 and justifies the idea that top L friends can provide enough critical information to

102

0.48

0.52

0.56

0.60

0.64

5 10 15 20 25

Hi
t R

at
e

Number of Packets (x103)

SMART
SMART‐DL
SMART‐BFT

(a) Hit rate.

14

15

16

17

18

19

20

5 10 15 20 25

N
or
m
al
ize

d
Av
er
ag
e
De

la
y
(x
10

4
S)

Number of Packets (x103)

SMART SMART‐DL
SMART‐BFT

(b) Normalized average delay.

3

4

5

6

7

8

9

5 10 15 20 25

N
or
m
al
ize

d
Fo
rw

ar
di
ng

 H
op

s

Number of Packets (x103)

SMART SMART‐DL
SMART‐BFT

(c) Normalized forwarding hops.

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25

Ro
ut
in
g
Co

st
 (x
10

6)

Number of Packets (x103)

SMART SMART‐DL
SMART‐BFT

(d) Routing cost.

Figure 5.12: Performance of each extension with the Haggle trace under different packet rates.

guide packet forwarding. SMART achieves an optimal balance between efficiency and cost when

L is set to a medium value such as 4 or 5 for the two traces. This value may change in different

scenarios. However, since the increase in the routing cost is linear when L increases, we conclude

that SMART is energy efficient and suitable for MONs.

5.5.4 Effect of Dynamic L and BFT-based Routing

In Section 5.2.1.4, we proposed two methods to determine L: the centralized method and

the distributed method. In the former, L is pre-determined based on network statistics and all

nodes have the same L. In the latter, L is dynamically decided on each node. In Section 5.5.3, we

already presented the performance of SMART with different L values in the centralized method.

In this section, we present the performance of SMART with dynamically determined L values in

the distributed method, denoted by SMART-DL. In SMART-DL, L is determined so that the L-th

most frequently met node has half of the meeting frequency of the most frequently met node. We

also present the performance of the BFT-based routing introduced in Section 5.3.4.2, denoted by

SMART-BFT. In the test, we set the memory on each node to a medium value of 100KB, L to a

medium value of 4 in SMART and SMART-BFT, and the threshold of the percentage of changed

links in a social map for BFT update in SMART-BFT to 20%.

103

0.35

0.45

0.55

0.65

5 10 15 20 25

Hi
t R

at
e

Number of Packets (x103)

SMART SMART‐DL
SMART‐BFT

(a) Hit rate.

11

13

15

17

5 10 15 20 25

N
or
m
al
ize

d
Av
er
ag
e
De

la
y
(x
10

5
S)

Number of Packets (x103)

SMART
SMART‐DL
SMART‐BFT

(b) Normalized average delay.

4

5

6

7

5 10 15 20 25

N
or
m
al
ize

d
Fo
rw

ar
di
ng

 H
op

s

Number of Packets (x103)

SMART
SMART‐DL
SMART‐BFT

(c) Normalized forwarding hops.

0.0

0.4

0.8

1.2

1.6

2.0

5 10 15 20 25

Ro
ut
in
g
Co

st
 (x
10

6)

Number of Packets (x103)

SMART SMART‐DL
SMART‐BFT

(d) Routing cost.

Figure 5.13: Performance of each extension with the MIT Reality trace under different packet rates.

5.5.4.1 Hit Rate

Figures 5.12(a) and 5.13(a) show the hit rates of SMART, SMART-DL and SMART-BFT

with the Haggle trace and the MIT Reality trace, respectively. We see that in both traces, SMART-

DL achieves higher hit rate than SMART. This is because in SMART-DL, dynamically determined

Ls can reflect the major social relationships in the social map, leading to a higher hit rate. We found

that the average value of L equals around 5-6 in SMART-DL, which is larger than L = 4 in SMART.

We also see that SMART-BFT has a slightly lower hit rate than SMART. The BFT in SMART-BFT

is updated only when the percentage of the changed links in a social map is larger than a threshold

(i.e., 20%), leading to insufficiently accurate routing guidance for some packets and hence slightly

degraded hit rate. However, the hit rate decrease is very minor while SMART-BFT significantly

reduces the computation cost in forwarder determination in the routing process, as shown below.

5.5.4.2 Normalized Average Delay

Figures 5.12(b) and 5.13(b) show the normalized average delays of SMART, SMART-DL and

SMART-BFT with the Haggle trace and the MIT Reality trace, respectively. We find that SMART

has larger average delay than SMART-DL in the tests with both the traces. This is because the

social maps in SMART-DL can reflect more social relationships. Therefore, it can guide the packet

forwarding more accurately, leading to lower average delay. We also see that SMART-BFT has

104

slightly larger average delay than SMART. For SMART-BFT, it cannot reflect the changes on social

maps timely, which lowers the accuracy of forwarder selection and increases the average delay.

5.5.4.3 Normalized Forwarding Hops

Figures 5.12(c) and 5.13(c) show normalized forwarding hops of SMART, SMART-DL and

SMART-BFT with the Haggle trace and the MIT Reality trace, respectively. We see that in both

traces, the normalized forwarding hops follows SMART-DL>SMART>SMART-BFT. With the dy-

namic L, the social maps in SMART-DL can show more close social relationships, leading to more

packet forwarding opportunities and consequently more packet forwarding. On the contrary, the

untimely updated better forwarder table in SMART-BFT reduces the number of packet forward-

ing opportunities, leading to less packet forwarding than SMART. These results match those in

Figure 5.12(a) and 5.13(a) since higher hit rate comes at more forwarding hops.

5.5.4.4 Routing Cost

Figures 5.12(d) and 5.13(d) show the routing costs of SMART, SMART-DL and SMART-

BFT with the Haggle trace and the MIT Reality trace, respectively. We find that SMART-BFT

and SMART generate the same routing cost and SMART-DL produces higher routing cost. Both

SMART-BFT and SMART have fixed L = 4, leading to the same routing cost. Nodes in SMART-DL

dynamically adjust L. We found that the average values of L in SMART-DL is around 5-6, leading

to more information exchange among top L friends.

Figure 5.14(a) shows the average values of L at 10 observation points, which are evenly

distributed in each trace. We find that after half of each trace, the average values of L are about

6 and 5 in the Haggle trace and the MIT Reality trace, respectively. This result shows the average

number of stable friends of each node in the two traces. Comparing the results in Figure 5.12(a) and

Figure 5.13(a) and those in Table 5.4 and Table 5.5, we find that SMART-DL achieves higher hit

rate than SMART with fixed L = 6 and L = 5. This result demonstrates that the proposed method

to determine L dynamically can effectively find the important social relationships in the network.

5.5.4.5 Computation Cost Reduction in SMART-BFT

We further evaluate the effect of SMART-BFT on reducing the computation cost with

different packet generating rates. Since the Dijkstra algorithm used in the routing has the most

105

0

2

4

6

8

1 2 3 4 5 6 7 8 9 10

Av
er
ag
e
Va
lu
e
of
 L

Observation Point

Haggle MIT Reality

(a) Average value of L.

0

2

4

6

8

10

5 10 15 20 25

Co
m
pu

ta
tio

n
Co

st
 (x
10

6)

Number of Packets (x103)

SMART(Haggle)
SMART‐BFT(Haggle)
SMART (MIT)
SMART‐BFT(MIT)

(b) Computation cost.

Figure 5.14: Experiment results on average value of L and computation cost.

computation cost, we measure the computation cost as the number of Dijkstra algorithm launched

in the experiment. The test results are shown in Figure 5.14(b), in which the name after a method

denote the trace used in the experiment. We find that the BFT can save up to 65% of computation

cost in the tests with both traces. Combining the results in Figure 5.12 and Figure 5.13, we conclude

that the BFT-based routing can significantly reduce the computation cost of SMART without greatly

compromising the routing efficiency.

5.6 Summary

In this chapter, we propose SMART, which is a lightweight routing algorithm in mobile

opportunistic networks that utilizes distributed social maps on mobile nodes. By exploiting the

social network property that a person’s most frequently encountered friends often remain stable,

SMART enables each node to build a social map to record its knowledge of surrounding social

structure. Specifically, nodes exchange the top L most frequently encountered nodes when they

meet for social map construction. In the social map, the delivery ability between two nodes is

evaluated by considering both meeting frequency and social closeness. Then, packets are forwarded

to nodes with higher delivery ability to their destinations. SMART is more efficient than previous

routing algorithms because the social map offers a broader view for forwarder selection. Moreover,

two encountering nodes only need to exchange the information of their top L friends, which is

relatively stable, leading to a low information exchange and update overhead. Extensive real-trace

driven experiments demonstrate the effectiveness of SMART.

106

Chapter 6

Exploiting Node Mobility for

High-Throughput Packet Routing

among Landmark in MONs

While the previous chapter proposes a novel algorithm for efficient packet routing among

nodes in MONs, we further investigate how to realize high-throughput packet routing among land-

marks in MONs. Considering people usually present certain mobility pattern when transiting among

different landmarks, we propose an inter-landmark packet routing algorithm, called DTN-FLOW,

to fully utilizes all node movements in MONs. DTN-FLOW selects popular places that nodes visit

frequently as landmarks and divides the entire MON area into sub-areas represented by landmarks.

DTN-FLOW then measures the amount of nodes moving from one landmark, say Li, to another

landmark, say Lj , to represent the packet forwarding capacity from Li to Lj . This capacity indicates

the packet transfer capacity between landmarks, hence is similar to the concept of “bandwidth” for

physical wired or wireless links. With the measured capacity, each landmark uses the distance-

vector method [47] to build its routing table that indicates the next hop landmark on the fastest

path to reach each destination landmark. DTN-FLOW predicts node transits based on their previ-

ous landmark visiting records using the order-k Markov predictor. In packet routing, each landmark

determines the next hop landmark for each packet based on its routing table, and forwards the packet

to the node with the highest probability of transiting to the selected landmark. Thus, DTN-FLOW

107

fully utilizes node transits among landmarks to forward packets along landmark paths that have the

shortest latency to reach their destinations.

In the following, we first present network model of DTN-FLOW and the analysis of two real

MON traces to confirm the shortcoming of the current routing algorithms and to support the design

of DTN-FLOW in Section 6.1. We then introduce the detailed design of DTN-FLOW in Section 6.2.

The performance evaluation is given out in Section 6.3. Finally, Section 6.4 summarizes this chapter.

6.1 Network Model and Trace Analysis

We first introduce the network model of the proposed system. We then analyze two real

traces to support the design of DTN-FLOW.

6.1.1 Network Model

6.1.1.1 Network Description

We assume a MON with mobile nodes denoted by Ni. Each node has limited storage space

and communication range. We select landmarks, denoted by Li (i = 1, 2, 3, · · · ,M), from places

that nodes visit frequently. Then, the entire MON area is split into sub-areas based on landmarks,

each of which is represented by a landmark. We configure a central station at each landmark, which

has higher processing and storage capacity than mobile nodes and can cover its whole sub-area.

As in other social network based MON routing algorithms [10, 29, 30, 53, 68, 92], DTN-FLOW also

assumes the existence of social network structure in MONs. Such social structures determine node

movement, leading to re-appearing visiting patterns to these landmarks.

A transit means a node moves from one landmark to another landmark. We denote the

transit link from landmark Li to landmark Lj as Tij . For a transit link, say Tij , we define the

bandwidth as the average number of nodes transiting from Li to Lj in a unit time (T), denoted by

Bij . For simplicity, we assume that each packet has a fixed size. Our work can be easily extended

to packets with various lengths by dividing a large packet into a number of the same-size segments.

108

6.1.1.2 Differences with Infrastructure Networks

Though DTN-FLOW presents similar overlay as the infrastructure network (i.e., sub-areas

covered by landmarks), they have significant differences. Firstly, DTN-FLOW does not require

landmarks to be inter-connected with fixed links. Rather, landmarks rely on the mobile nodes

moving between them to relay packets. Secondly, as shown later, a landmark only functions as

a special relay node in the packet routing. Therefore, landmarks do not bring about server-client

structure but keep the ad hoc nature of MONs. Unlike base stations, landmarks are just static nodes

in MONs with higher processing capacity.

6.1.1.3 Purpose of Landmarks

In DTN-FLOW, landmarks function as “routers” in the network. Each landmark decides

the neighbor landmark to forward its received packets. Neighbor landmarks are connected by “links”

that take mobile nodes as the transfer media for packets. Without landmarks, packets are relayed

purely through mobile nodes when they meet with each other, which may suffer from the uncertainty

of node mobility and the limited number of nodes that can deliver them quickly. Therefore, land-

marks make the MON routing more structured (i.e., along landmarks) under the network dynamism

in MONs. In summary, the use of landmarks in DTN-FLOW can better utilize node mobility in

MONs for efficient packet routing with a low extra cost.

6.1.2 Trace Analysis

In order to better understand how nodes transit among different landmarks in MONs, we

analyzed two real MON traces collected from two different scenarios: students on campus and buses

in the downtown area of a college town.

6.1.2.1 Empirical Datasets

Dartmouth Campus Trace (DART) [48]. DART recorded the WLAN Access Point

(AP) association with digital devices carried by students in the Dartmouth campus between Nov.

2, 2003 and Feb. 28, 2004. We preprocessed the trace to fit our investigation. We regarded each

building as a landmark and merged neighboring records referring to the same node (mobile device)

and the same landmark. We also removed short connections (< 200s) and nodes with few records

109

(< 500). Finally, we obtained 320 nodes and 159 landmarks.

DieselNet AP Trace (DNET) [8]. DNET collected the AP association records from 34

buses in UMass Transit from Oct. 22, 2007 to Nov. 16, 2007 in Amherst, MA. Each bus carried a

Diesel Brick that constantly scanned the surrounding area for open AP connections, and a GPS to

record its GPS coordinators. Since there are many APs in the outdoor testing environment, some

of which are not from the experiment, we removed APs that did not appear frequently (< 50) from

the trace. We mapped APs that are within certain distance (< 1.5km) into one landmark. Similar

to the processing of the DART trace, neighboring records refereeing to the same node (bus) and the

same landmark were merged. Finally, we obtained 34 nodes and 18 landmarks.

The key characteristics of the two traces are summarized in Table 6.1. We then measured

the landmark visiting distribution and the transits of mobile nodes among landmarks.

Table 6.1: Characteristics of mobility traces.

DART Campus (DART) DieselNet AP (DNET)
Nodes 320 34
Landmarks 159 18
Duration 119 days 20 days
Transits 477803 25193
Transits per day 2401 1257

6.1.2.2 Landmark Visiting Distribution

We first measured how landmarks are visited by mobile nodes. Due to page limit, we only

show the visiting distribution of the 5 most visited landmarks in the two traces in Figure 6.1(a)

and Figure 6.1(b), respectively. We see that in both traces, for each of the top 5 landmarks, only a

small portion of nodes visit it frequently. For example, in the DART trace, less than 15 out of 320

nodes visit landmarks frequently. Though not shown in the figures, such a finding holds for almost

all landmarks in the two traces. Thus, we obtain the first observation (O):

O1: For each sub-area, only a small portion of nodes visit it frequently.

This observation matches our daily experience that a department building in a campus

usually is mainly visited by students in the department, and a bus station may only be visited by

buses that stop at it. Such a finding validates our claim in the introduction section that the number

of nodes frequently visiting the destination area is limited, which leads to degraded throughput in

previous routing algorithms that only rely on such nodes for packet forwarding.

110

0

2

4

6

8

10

1 21 41 61

N
um

be
r
of
 V
is
its
 (x
10

3)
Node Sequence

L99 L64
L145 L59
L17

(a) DART.

0

2

4

6

8

10

12

1 6 11 16 21 26 31

N
um

be
r
of
 V
is
its
 (x
10

2)

Node Sequence

L0 L4
L6 L5
L2

(b) DNET.

Figure 6.1: Visiting distribution of top 5 most visited landmarks.

0
1
2
3
4

1 501 1001 1501 2001
Transition Link Sequence

Ly‐>Lx

0

1

2

3

4
Lx‐>Ly

Ba
nd

w
id
th
(x
10

2)

(a) DART.

0.0

0.5

1.0

1.5

1 21 41 61 81

Transition Link Sequence

Ly‐>Lx

0.0

0.5

1.0

1.5
Lx‐>Ly

Ba
nd

w
id
th
(x
10

2)

(b) DNET.

Figure 6.2: Bandwidth distribution of transit links.

6.1.2.3 Transits among Landmarks

We refer to two transit links containing the same landmarks but have different directions

(e.g., Tij and Tji) as matching transit links. We then measured the bandwidths of all transit links

in the two traces and ordered them in decreasing order. We label two matching transit links with

the same sequence number and plot them in two separated sub-figures, as shown in Figure 6.2(a)

and Figure 6.2(b). Transit links with 0 bandwidth were omitted. From the two figures, we make

the following two observations.

O2: A small portion of transit links have high bandwidth.

O3: The matching transit links are symmetric in bandwidth.

We also measured the bandwidth of all transit links in the two traces along time. The time

unit was set to 3 days and 0.5 day in the two traces, respectively. This results in a total of 40 time

units for both traces. Due to page limit, we only present the results of the 3 highest bandwidth

transit links in Figure 6.3(a) and Figure 6.3(b). Figure 6.3(a) shows that except two time periods

[7, 10] and [14, 21], the measured bandwidth of each transit link fluctuates around its average

value slightly. We checked the calendar and found that the two periods are the Thanksgiving and

Christmas holidays, which means that few students moved around on the campus. In Figure 6.3(b),

111

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0 5 10 15 20 25 30 35 40

Ba
nd

w
id
th
 (x
10

2)
Time Unit Sequence

L7‐>L99 L145‐>L125
L75‐>L78

(a) DART.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 5 10 15 20 25 30 35 40

Ba
nd

w
id
th
 (x
10

2)

Time Unit Sequence

L0‐>L4 L6‐>L0

L5‐>L6

(b) DNET.

Figure 6.3: The transit distribution of top 3 highest bandwidth transit links.

we see that the measured bandwidth of each transit link is more stable around its average bandwidth

than in the DART trace. This is because that 1) the DNET trace excludes holidays and weekends,

and 2) bus mobility is more repetitive over time than human mobility. Also, both figures show that

though there are some fluctuations, the bandwidth relationship of the three transit links remains

stable. We then derive:

O4: The bandwidth of a transit link measured in a certain time period can reflect its overall

bandwidth.

6.2 System Design

In this section, we introduce the detailed architecture of our DTN-FLOW system based on

above observations. It has four main components: (1) landmark selection and sub-area division, (2)

node transit prediction, (3) routing table construction, and (4) packet routing algorithm. Component

(1) provides general guidelines to select the location of landmarks and split the MON into sub-

areas. Component (2) predicts the next landmark a node is going to visit based on its previous

visiting records. Such predictions are used to forward packets and exchange routing tables among

landmarks. Component (3) measures the data transfer capacity between each pair of landmarks,

based on which the routing table is built to indicate the next hop landmark for each destination

landmark and associated estimated delay. With the support of the first two components, component

(4) determines the next-hop landmark and the forwarding node in packet routing.

112

6.2.1 Landmark Selection and Sub-area Division

The landmark selection determines the places to install landmarks. Sub-area division

assigns each landmark a sub-area. Both landmark selection and sub-area division are conducted by

the network administrator or planner who hopes to utilize the MON for a certain application.

6.2.1.1 Landmark Selection

As aforementioned, we select popular places that are frequently visited by mobile nodes as

landmarks. To identify popular places, a simple way is to collect node visiting history and take top

Nv most frequently visited places as popular places. Popular places in MONs with social network

structures can also be pre-determined based on node mobility pattern. For example, in the DART

network, we can easily find popular buildings that students visit frequently: library, department

buildings, and dorms. In MONs in rural areas, villages are naturally popular places. In the MONs

using animals as mobile nodes for environment monitoring in mountain areas, places with water/food

are frequently visited.

The resulted popular places form a candidate landmark list. There may be several popular

places in a small area. Thus, not every popular place needs to be a landmark. Then, for every two

candidate landmarks with distance less than Dv meters, the one with less visit frequency is removed

from the candidate list. Finally, the distance between every two candidate landmarks is larger than

Dv meters.

6.2.1.2 Sub-area Division

With the landmarks, we split the entire network into sub-areas. Since the sub-area division

only serves the purpose of routing among landmarks, we do not need a method to precisely define

the size of each sub-area. Therefore, we follow below rules to generate sub-areas:

• Each sub-area contains only one landmark.

• The area between two landmarks is evenly split to the two sub-areas containing the two

landmarks.

• There is no overlap among sub-areas.

113

L2 L0L1 L7

L6

L5
L4L3

Figure 6.4: Sub-area division in our campus deployment.

Note that the split of area between landmarks does not affect how nodes move between

landmarks. Nodes can transit among landmarks through any routes. Figure 6.4 gives an example of

the sub-area division in our campus deployment of DTN-FLOW, which is introduced in Section 6.3.3.

6.2.1.3 Influence of Landmark Selection and Sub-area Division

In the above algorithms, Nv and Dv determine the number of landmarks and the sub-area

sizes. With more landmarks, a node’s transits between landmarks may present higher diversity

and may not exhibit a stable pattern for prediction, thereby degrading the routing performance.

The maintenance cost of landmarks also increases in this case. With fewer landmarks, the average

sub-area size increases, which makes it difficult to provide fine-grained destinations. Therefore, the

values of Nv and Dv should be determined so that necessary popular places are represented by

landmarks and the patterns of node transits between landmarks can be stably summarized. This

objective can be achieved by simply following the above landmark selection and sub-area division

process. Recall that landmarks are selected from popular places. Then, a resultant large sub-area

with a single landmark is caused by the fact that there are no other popular places in this area.

This means even if we place extra landmarks in this area, packets cannot quickly reach them since

they are in unpopular places with few node visits. Therefore, Nv and Dv are determined by the

popularity of areas, i.e., the node mobility patterns.

6.2.1.4 Real World Scenarios and Limitations

Above landmark selection and sub-area division procedures require certain administration

input. However, as previously introduced, this step is quite intuitive and requires slight effort. With

the design of landmarks, we can see that DTN-FLOW is suitable for MONs with distributed popular

places. In a real-world MON, popular places usually are distributed over an area. For example,

mobile device carriers (i.e., people or animals) usually belong to certain social structures and have

114

skewed and repeated visiting patterns [65]. Therefore, the proposed DTN-FLOW is applicable to

most realistic MON scenarios.

6.2.1.5 Cost of Landmarks

As mentioned previously, a landmark can be regarded as a static autonomous node. Each

landmark only needs to communicate with nodes in its sub-area. Therefore, landmarks do not need

network connection or to be interconnected. This means that the import of landmarks only needs

to build some fixed nodes in the network. Although landmarks require higher capacity in storage

and computing compared to normal mobile nodes, these requirements can be easily satisfied on fixed

nodes. It is also easy to maintain landmarks. When a landmark malfunctions, we can simply replace

it without network-level re-configuration or merge its sub-area with that of a neighboring landmark.

Since the number of landmarks often is very limited, the total cost is limited. In summary, the cost

of landmark deployment is acceptable, especially when considering the improvement on the routing

efficiency and the reduction of the overhead on the mobile nodes.

6.2.2 Node Transit Prediction

Since DTN-FLOW relies on node transit for packet forwarding, accurate prediction of

node transit is a key component. DTN-FLOW predicts each node’s next transit by maintaining

a landmark visiting history table on each node, as shown in Table 6.2. The “Start time” and

“End time” denote the time when a node connects and disconnects to the central station in the

corresponding landmark, respectively. Note that the “End time” in previous landmark may differ

with the “Start time” in current landmark since a node may not always connect to a landmark

during its movement.

Table 6.2: Landmark visiting history table on a node.

Landmark ID Start time (s) End time (s)
8 8500 9000
1 7100 8450
7 2000 7000
· · · · · · · · ·

115

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Dartmouth Campus DieselNet AP

A
cc
ur
ac
y
Ra
te

k=1 k=2 k=3

(a) Average prediction accuracy
of order-k predictor.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Dartmouth Campus DieselNet AP

A
cc
ur
ac
y
Ra
te

(b) The minimal, 1st quantile,
average, third quantile, and max-
imal of the accuracy of the order-
1 predictor.

Figure 6.5: Accuracy of the transit prediction.

6.2.2.1 Order-k Markov Predictor

To predict node transits among landmarks, we adopt the order-k (O(k), k = 0, 1, 2, · · ·)

Markov predictor [86], which assumes that the next transit is only related to the past k transits.

A node’s landmark transit history can be represented by TH = Tx1,x2Tx2,x3 . . . Txj−1,xj . . . Txn−1,xn ,

in which Txj−1,xj
(xj−1 6= xj and xj−1, xj ∈ [1,M]) represents a transit from Lxj−1

to Lxj
. We

let X(n − k, n) = Txn−k,xn−k+1
· · ·Txn−1,xn

represent the past k consecutive transits. When k = 0,

X(n − k, n) = Txn,xn , representing the visiting of landmark Lxn . Then, the probability for each

possible next transit Txn,xn+1
of a node is calculated by

Pr(Txn,xn+1 |X(n− k, n)) =
Pr(X(n− k, n), Txn,xn+1)

Pr(X(n− k, n))
, (6.1)

where

Pr(X(n− k, n), Txn,xn+1) = Pr(X(n− k, n+ 1)) (6.2)

and

Pr(X(n− k, n)) =
N(X(n− k, n))

N(Allk)
(6.3)

whereN(X(·)) andN(Allk) denote the number ofX(·) and k consecutive transits in TH , respectively.

Note that N(All0) denotes the total number of landmark visits of the node. Then, the transit that

leads to the maximal probability based on Equ. (6.1) is selected as the predicted transit. For

example, suppose we use an order-1 Markov on a system with 5 landmarks (M = 5), and the

landmark transit history of a node is TH = T0,1T1,3T3,4T4,2T2,0T0,1. Then, based on Equ. (6.1),

the probability for each possible next landmark La (a ∈ [1, 5]) is calculated as
Pr(T0,1T1,a)

Pr(T0,1) . Based

on Equ. (6.3), Pr(T0,1T1,3) = 1/5 since T0,1T1,3 appears once in TH and the total number of 2

consecutive transits is 5. Similarly, Pr(T0,1) = 2/6. Then, the transit probability is 0.6.

116

6.2.2.2 Determination of k

In general, the prediction accuracy of the order-k Markov increases as k increases until a

certain value due to insufficient position records [69]. The order-k Markov predictor actually exploits

the (k + 1)-hop transit pattern for prediction. Therefore, when k increases, more information is

considered to classify node mobility, thus increasing the prediction accuracy. However, when k

increases, the possibility that at least one transit in a (k+1)-hop transit pattern cannot be collected

(i.e., a missed (k + 1)-hop transit pattern) also increases. When k increases to a large value, too

many (k + 1)-hop transit patterns may be missed, leading to a low prediction accuracy. In other

words, the completeness of the collected position information affects the k that can lead to the

highest prediction accuracy. Therefore, the administrator needs to first collect nodes’ historical

visiting records and then check which k can lead to the highest prediction accuracy. The identified

k then can be used for future prediction.

6.2.2.3 Prediction Accuracy with the Two Traces

We applied the order-k Markov predictor to both the DART and the DNET traces with

k equals to 1, 2, and 3 to check which k can lead to the best prediction accuracy. We calculated

the accuracy rate of each node as the number of correct predictions over the number of predictions.

The average accuracy rates of all nodes with different k are shown in Figure 6.5(a). We see that

k = 1 leads to the highest prediction accuracy. This is because many position records are absent

in the two traces. In DART trace, a student’s device cannot be logged unless he/she is using the

device. In DNET trace, the APs are roadside APs owned by others and are not dedicated for the

experiment, which means they may not appear constantly in the trace, leading to missing records.

Based on such a result, we use the order-1 Markov predictor in the experiments in this paper.

We further show the minimal, 1st quantile, average, third quantile and maximal of the

accuracy rates of all nodes with the order-1 Markov predictor in Figure 6.5(b). We see that in the

DART trace, the accuracy rates of over 75% of nodes are higher than 64%, and the average accuracy

rate of all nodes is about 77%. In the DNET trace, the accuracy rates of over 75% of nodes are

higher than 59%, and the average accuracy rate of all nodes is about 66%. It is intriguing to see that

the prediction accuracy in the bus network in DNET, which should have more repetitive moving

patterns, is lower than that in the student network on campus in DART. We believe this is caused

117

by the reason that we only predict one AP for the next transit while a bus may associate with one

of several neighboring APs after each transit in the trace. Though certain inaccurate predictions

exist, the routing efficiency can be ensured with a method that will be explained in Section 6.2.4.

6.2.3 Routing Table Construction

In DTN-FLOW, each landmark dynamically measures the bandwidths of its transit links to

each neighbor landmark. The bandwidth of a transit link represents the expected delay of forwarding

data through it. Based on the estimated delay, each landmark uses the distance-vector method [47]

to build a routing table indicating the next hop landmark for each destination landmark. Each

landmark periodically transfers its routing table to its neighbor landmarks for routing table update.

This step is realized through mobile nodes, i.e., a landmark, say Li, chooses its node with the highest

predicted probability of visiting Lj to forward its routing table to Lj . The detailed processes are

introduced below.

6.2.3.1 Transit Link Bandwidth Measurement

Each landmark maintains a bandwidth table as shown in Table 6.3 to record the bandwidth

from it to each of its neighbor landmarks. We let N t
ij denote the number of nodes that have moved

from Li to Lj in the t-th time unit. Each landmark, say Li, periodically updates its bandwidth to

landmark Lj by

Bijnew
= αBijold + (1− α)Nt

ij (6.4)

in which Bijnew
and Bijold represent the updated and previous bandwidth, respectively, and α is a

weight factor.

Table 6.3: Bandwidth table on a node.

Landmark ID Measured Bandwidth Time Unit Sequence
2 20 9
6 6 9
1 15 9
· · · · · · · · ·

It is easy for landmark Li to calculate N t
ji since mobile nodes moving to Li can report their

previous landmarks to Li. However, it is difficult for Li to calculate N t
ij because after a mobile node

moves from Li to Lj , it cannot communicate with Li. Recall that O3 indicates that two matching

transit links are symmetric in bandwidths. In this case, Li can regard N t
ij ≈ N t

ji and calculate

118

Bijnew
using Equ. (6.4).

However, the symmetric property does not always hold true. For example, transit links

connecting two stations in a one way road can hardly be symmetric in bandwidth. To solve this

problem, Li relies on Lj to keep track of Nij . When landmark Lj predicts that a node is going

to leave it for Li, it forwards Nij to the node. When Li receives Nij from Lj , it checks whether

the time unit sequence in it is larger than the current one. If yes, it updates its bandwidth to Lj

accordingly based on Equ. (6.4). Otherwise, the packet is discarded.

6.2.3.2 Building Routing Tables

With the bandwidth table, each landmark can deduce the expected delay needed to transfer

W bytes of data to each of its neighbor landmarks. Recall T denotes the time unit for Bij measure-

ment. Suppose each node has S bytes of memory, then the expected delay for forwarding a packet

from Li to Lj (Dij) is Dij = W
BijS

T . Then, the routing table on each landmark is initialized with the

delays to all neighbor landmarks. Each landmark, Li, further uses the distance-vector protocol to

construct the full routing table (as shown in Table 6.4) indicating the next hop for every destination

landmark (Ld) in the network and the overall delay from Li to Ld, denoted by D(Li, Ld).

Table 6.4: Routing table on one node.

Des. Landmark ID Next Hop ID Overall Delay
1 1 7
5 5 3
9 1 18
· · · · · · · · ·

In the distance-vector protocol, each landmark periodically forwards its routing table and

associated time unit to all neighbor landmarks through mobile nodes. When a landmark, say Li,

receives the routing table from a neighbor landmark, say Lj , it first checks whether it is newer than

the previously received one. If not, the table is discarded. Otherwise, the routing table is processed

one entry by one entry. For each entry, if the destination landmark, Ld, does not exist in the routing

table of Li, it is added to the routing table by setting the “Next Hop ID” as Lj and the “Overall

Delay” as Dij +D(Lj , Ld). If Ld already exists, it checks whether D(Li, Ld) ≤ Dij +D(Lj , Ld). If

yes, no change is needed. Otherwise, the “Next Hop ID” is replaced as Lj and the “Overall Delay”

is updated with Dij +D(Lj , Ld). This process repeats periodically, and each landmark finally learns

the next hop to reach each other destination landmark with the minimum overall delay in its routing

119

Des. ID Next ID Delay

1 1 8
4 7 20
7 7 6
9 7 34

Des. ID Next ID Delay

1 1 8
3 6 17
4 6 18
7 7 6
9 7 34

3 3 10
4 3 11
9 3 30

Original Routing
Table on L2

Updated Routing
Table on L2

Received Routing
Table from L6

Distance from L2
to L6 is 7

Figure 6.6: Demonstration of the routing table update.

0.0

0.3

0.6

0.9

1.2

1 2 3 4 5 6 7 8 9 10

R
at
e

Observation point

DART_Coverage DART_Stability
DNET_Coverage DNET_Stability

Figure 6.7: Average routing table coverage and stability.

table.

For example, suppose the routing table on L2 originally contains four entries: (1, 1, 8), (4,

7, 20), (7, 7, 6) and (9, 7, 34), and it receives a routing table from L6 with 3 entries: (3, 3, 10), (9,

3, 30), (4, 3, 11), and D26=7. Figure 6.6 summaries the routing table update. In detail, since the

routing table has no entry for landmark L3, entry (3, 6, 17) is inserted directly. Though L9 already

exists in the routing table, D29=34 is less than that of relaying through L6 (i.e., 37), so no change is

needed. L4 already exists in the routing table, and D24=20 is larger than that of relaying through

L6 (i.e., 18), so the “Next Hop ID” is changed to 6 and the “Overall Delay” is set to 18. The final

entries in the routing table are (1, 1, 8), (3, 6, 17), (4, 6, 18), (7, 7, 6), and (9, 7, 34).

6.2.3.3 Routing Table Coverage and Stability

We further measured the average coverage and the average stability of all landmarks’ routing

tables at 10 evenly distributed observation points in the two traces. A landmark’s routing table

coverage at the i-th observation point is calculated as Si/Nt, where Si is the size of its routing table

and Nt is the total number of landmarks. A Landmark’s stability at the i-th observation point is

calculated by 1-Ei/Nt, where Ei is the number of destination landmarks whose next hop landmarks

have changed since the previous observation point.

The measurement results are shown in Figure 6.7. We see that after the first several obser-

120

vation points, each routing table can cover most destination landmarks, which demonstrates that

the routing table is capable of providing packet routing guidance to any destinations in our design.

We also find that each routing table is quite stable after the first several observation points. This

is because node movement presents stable pattern in the two traces, leading to stable bandwidth

(i.e. delay) on each link. Therefore, the path to each destination landmark is also stable, leading

to stable routing table. This result can be utilized to save the routing table maintenance cost by

reducing the routing table update frequency.

6.2.4 Packet Forwarding Algorithm

During the packet forwarding, a landmark refers to its routing table to select the next-hop

landmark, and forwards the packet to the mobile node that has the highest predicted probability to

transit to the next-hop landmark. However, as mentioned in Section 6.2.2, node transit prediction

may not always be accurate, which means a node may fail to carry a packet to the landmark

indicated in the routing table. Also, there may be nodes that are moving to the packet’s destination

node directly, which can be utilized to enhance the routing performance. We first introduce our

approaches to handle the two issues and then summarize the routing algorithm.

6.2.4.1 Handling Prediction Inaccuracy

To handle the inaccurate transit prediction, DTN-FLOW follows the principle that every

forwarding must reduce the routing latency. Thus, when a node moves from Li to a landmark

Lk other than the predicted one Lj , the node checks whether the new landmark still reduces the

expected delay to the destination Ld, that is, whether D(Lk, Ld) < D(Li, Ld). If yes, the node still

forwards the packet to landmark Lk for further forwarding. Otherwise, the node holds the packet,

waiting for next landmark that has shorter delay to the destination. This design aims to ensure

that each transit, though may not be optimal due to node transit prediction inaccuracy, can always

improve the probability of successful delivery.

6.2.4.2 Exploiting Direct Delivery Opportunities

Since nodes move opportunistically in a MON, it is possible that a landmark can discover

nodes that are predicted to visit the destination landmarks of some packets. Therefore, when a

landmark receives a packet, it first checks whether any connected nodes are predicted to transit to

121

its destination landmark. If yes, the packet is forwarded to the node directly. In case the node fails to

forward the packet to its destination landmark, the node uses the scheme described in Section 6.2.4.1

to decide whether to forward the packet to the new landmark.

6.2.4.3 Routing Algorithm

We present the steps of the routing algorithm as following.

(1) When a node generates a packet for an area, it forwards the packet to the first landmark it

meets.

(2) When a landmark, say Li, generates or receives a packet, it first checks whether any nodes are

predicted to move to the destination landmark of the packet. If yes, the packet is forwarded to

the node with the highest predicted probability and the expected overall delay, which is used

by the carrier node to determine whether to forward the packet to an encountered landmark

that is different from the one in the prediction.

(3) Otherwise, Li checks its routing table to find the next-hop landmark for the packet and inserts

the landmark ID and the expected overall delay into the packet.

(4) Li then checks all connected nodes and forwards the packet to the node that has available mem-

ory and has the highest predicted probability to transit to the next-hop landmark indicated

by the routing table.

(5) When a node moves to the area of a landmark, say Lj , it forwards Lj all packets that target

Lj or have less overall delay from Lj to the destination than Li. After this, it predicts its next

transit based on the order-k Markov predictor and informs this to Lj .

6.2.4.4 Refining Transit Node Selection

In the 4th step of packet routing, the node with the highest predicted probability to transit

to the next hop landmark of a packet is selected as its carrier. However, as mentioned in Section 6.2.2,

the prediction may not always be correct. We then integrate the prediction accuracy into the process

of carrier selection.

Specifically, when selecting the carrier from Li to Lj , instead of directly using each node’s

transit probability from Li to Lj (i.e., Pr(Tij)), we use an overall transit probability, denoted by

122

Pc(Tij); Pc(Tij) = Pr(Tij) ∗ Ar(Li), in which Ar(Li) is a node’s prediction accuracy at landmark

Li. It denotes the probability that the node actually transits to the predicted landmark that the

node is going to transit to. It is initiated as a medium value (e.g., 0.5), and is multiplied by β

(β > 1) and γ (γ < 1) when a correct and an incorrect prediction occurs, respectively. Finally, the

node with the highest overall transit probability is selected as the carrier.

As a result, the selected carrier should have both high transit probability and stable mobility

pattern (i.e., high prediction accuracy) and can improve the probability of carrying the packet to

the next hop landmark indicated in the routing table.

6.2.4.5 Communication Scheduling

When a node connects to a landmark, it uses the uplink to upload packets to the landmark.

Meanwhile, the landmark utilizes the downlink to forward packets on it to nodes. Both steps follow

the packet routing algorithm introduced in Section IV-D3. We assume that the landmark can only

communicate with one node through either the uplink or the downlink at a moment. Though nodes

usually are sparsely distributed in MONs, a few landmarks may be congested in DTN-FLOW. We

then design a scheduling algorithm to improve the overall throughput against the congestion.

(1) The landmark scans its subarea to discover new nodes every Tsc, e.g., 1 minute. If found, the

landmark allows the new node to use the uplink to register immediately.

(2) Other than the scanning period, the landmark decides to use the uplink or the downlink based

on the ratio of the number of packets it holds (Npl) to the number of packets on all nodes

(Npn): Rud = Npl/Npn. When Rud < Nsm, the landmark switches to packet uploading mode

and selects nodes to use the uplink to upload packets. When Rud ≥ Nlg, it switches to packet

forwarding mode again. Nsm and Nlg can be dynamically adjusted based on system needs,

e.g., Nsm = 1 and Nlg = 3.

(3) In the packet uploading mode, the uplink is assigned to the node with the most packets that

their expected delays to destination landmarks are lower than their remaining TTLs. The

node is allowed to upload at most Nuu (e.g., 50) packets each time. Such a process repeats

until the landmark switches to the packet forwarding mode.

(4) In the packet forwarding mode, the landmark first forwards the packet that 1) has the minimal

remaining TTL and 2) its expected delay to its destination landmark is smaller than the

123

remaining TTL. Such a process repeats until the landmark switches to the packet uploading

mode.

Following this manner, packets that need to be handled first to ensure their successful delivery are

assigned higher priority on the landmark, thereby improving the overall throughput.

6.2.5 Advanced Extensions and Discussions

In this section, we further propose three strategies to improve the efficiency and robustness

of DTN-FLOW.

6.2.5.1 Dead End Prevention

As mentioned previously, a node may carry a packet to an “unexpected” landmark, which

means that it fails to transit to the predicted landmark but moves to a wrong landmark. In this

case, based on our routing algorithm, this node still is responsible for carrying the packet to the

next hop landmark or a suitable landmark. However, this process may lead to a dead end, in which

the packet carrier stays in a wrong landmark for a long time. For example, when moving out of

landmark Li, a bus may move to a parking lot or a garage for maintenance. In this case, the packets

on the bus have to wait for a long time, leading to a dead end.

We propose a method to detect the dead end based on a node’s historical average stay time

in landmarks. In this method, each node calculates and stores the average time it stays in each

landmark based on its historical movement records. When a node transits to a landmark, say Le, it

checks if a dead end occurs based on following conditions, where Ht is a determination factor and

is usually set to a relatively large value to prevent false positives.

• If it stays in Le for Ht times longer than its average stay time in a landmark.

• If it has stayed in Le for Ht times longer than its average stay time in Le.

The first condition means that the node encounters a dead end on its regular route, while the second

condition means it encounters an abrupt dead end, i.e., unexpected maintenance. When a node

observes a dead end when it moves to Le, rather than keeping its packets, it forwards them to

Le directly. Then, Le utilizes its routing table to decide the next hop landmark for these packets

and forward them to the nodes that can carry them out of Le. Note that in order to reduce false

124

A1

A2

A3 A4

A5

2

2

6

1

3
3 A1

A2

A3 A4

A5

2

2

6

15

3
3 A1

A2

A3 A4

A5

2

2

6

15

3
3

(a) Initial condition (b) Routing loop (c) Break the loop

Figure 6.8: Demonstration of the routing loop detection and correction.

positives, dead end detection is launched only when a node has accumulated enough historical records

to calculate its average stay time in each landmark.

6.2.5.2 Routing Loop Detection and Correction

Recall that we use the distance-vector protocol to build the routing tables on each landmark

to indicate the next hop landmark to each destination landmark. Specifically, landmarks exchange

their routing tables periodically or when necessary, and update their routing tables accordingly, as

explained in Section 6.2.3.2.

However, due to untimely routing table updates, routing loop may happen. Figure 6.8(a)

and Figure 6.8(b) demonstrate an example of the routing loop regarding the destination landmark

A5. In Figure 6.8, the number on each link denotes the expected delay of the link. As shown in

Figure 6.8(a), initially, the next hop landmark for A5 in the routing tables on A1, A2, A3, and A4

are A2, A5, A1, and A5, respectively. Then, as shown in Figure 6.8(b), suppose the delay of the

link connecting A2 and A5 changes to 15, and this information is only known by A2. Meanwhile, a

distance vector from A3 arrives at A2 claiming A3’s estimated delay to A5 is 5 (i.e., 2+2+1) through

A1. In this case, A2 will change the next hop landmark for A5 from A5 to A3, which leads to a

routing loop of A2→ A3→ A1→ A2 for packets targeting A5.

In order to detect and correct routing loops, we let each packet record the IDs of the

landmarks it has visited. When a packet finds that it has visited a landmark twice, it informs this

landmark the existence of a routing loop and the involved landmarks in the loop (e.g., A1, A2, and

A3 in Figure 6.8(b)). Then, the landmark generates a loop correction packet, which includes the

IDs of the involved landmarks and the destination landmark, and sends it to all involved landmarks.

Upon receiving such a correction packet, these landmarks immediately send its updated distance

vector on the destination landmark to all neighbor landmarks repeatedly until the next hop landmark

for the destination landmark remains unchanged for a certain period of time Tl. Tl should be large

enough so that each landmark in the loop can collect the updated distance vector from all other

125

A1 A2

A5

A6

1
2

2

5

6

(a) Packets from A1
destined to A2, A5, and
A6 overload link T12.

A1 A2

A5

A6

1
2

2

5

6

(b) Link T15 and T16 al-
leviate the load on link
T12

Figure 6.9: Demonstration of an overloaded link and solution.

landmarks in the loop. We then set Tl to the average time for a packet to traverse the loop.

6.2.5.3 Load Balancing

In above design, DTN-FLOW decides the next hop landmark by solely considering the

delay of the links, i.e., choosing the link that leads to the destination landmark with the minimal

expected delay. However, such a strategy may generate overloaded links because a link with a

very low expected delay may be included in the optimal routes to multiple destination landmarks.

Figure 6.9(a) shows such an example, in which the number on each link denotes its expected delay.

In the figure, the packets generated on A1 destined to A2, A5 and A6 will select the transit link T12

since it has a very low expected delay, (i.e., 1), thereby possibly overloading the link T12.

When a link is overloaded, the packets may wait for a long time to be forwarded through

the link. They may take much longer time than the expected delay of the link to pass through the

link, thereby degrading the routing efficiency. Actually, when many packets wait for the same link,

other links can be utilized to offload the load. For example, in Figure 6.9(b), the transit link T15

and T16 can take some packets from A1 destined to A5 and A6 to reduce the load on link T12.

For this purpose, we first expand the routing table to provide a backup next hop landmark

for each destination landmark, which has the second lowest overall delay to the destination landmark,

as shown in Table 6.5. The backup next hop landmark is updated concurrently with the update

of the original routing table, which does not incur additional communication cost. Then, each

landmark monitors the incoming rate and outgoing rate for each link. The former is calculated as

the average number of received packets that need to be forwarded through the link in a time unit,

while the latter is calculated as the average number of packets that are carried by mobile nodes to

pass through the link in a time unit. When the incoming packet rate is Tb times larger than the

126

outgoing rate, it means that the number of received packets increases faster than the number of

packets being forwarded out through the link, which leads to link overloaded. Then, the landmark

forwards the packets to the backup next hop landmark through another link.

Table 6.5: Expanded routing table in one node.

Des. Landmark Next Hop Delay Backup Delay
1 1 7 14 20
5 5 3 11 8
9 1 18 7 30
· · · · · · · · · · · · · · ·

6.2.5.4 Routing Packets to Mobile Nodes

Recall that DTN-FLOW is mainly designed to realize packet routing between different sub-

areas/landmarks. In certain scenarios, it is also desirable to route a packet to a certain mobile node.

DTN-FLOW can be adapted to realize this objective. In MONs, mobile nodes usually have skewed

visiting preferences [65], which means that they visit certain landmarks frequently. This property

can be utilized to forward a packet to a mobile node efficiently. Nodes can summarize their most

frequently visited landmarks and report such information to landmarks in the network. Thus, the

sender of a packet destined to a destination node can first learn the destination’s frequently visited

landmarks and forward/copy the packet to them. Since the destination node visits these landmarks

frequently, the packet is unlikely to stay in the landmarks for a long time before being forwarded

to the destination. This scheme avoids chasing the mobile nodes continuously or the requirement of

knowing the position of the destination node beforehand.

6.3 Performance Evaluation

We first conducted trace-driven experiments with both the DART and the DNET traces

and then evaluated the extensions introduced in Section 6.2.5. A small DTN-FLOW system is also

deployed on our campus.

127

6.3.1 Trace-driven Experiments

6.3.1.1 Experiment Settings

We used the first 1/4 part of the two traces as the initialization phase, in which nodes

construct routing tables. Then, packets were generated at the rate of Rp packets per landmark per

day. Rp was set to 500 by default. The destination landmark of each packet is randomly selected.

We set the TTL (Time to Live) of packets to 20 days in the DART trace and 4 days in the DNET

trace. A packet is dropped after its TTL expires. The time unit T for bandwidth evaluation and

routing table update was set to 3 days. The size of each packet was set to 1KB, and each node’s

memory was set to 2000KB by default. The memory of the landmark was not limited. We used the

order-1 Markov predictor in the experiments.

We compared DTN-FLOW with five state-of-the-art MON routing algorithms: SimBet [30],

PROPHET [72], PGR [62], GeoComm [36], and PER [93]. They were originally proposed for node-

to-node routing or packet dissemination in MONs. We adapted them to fit landmark-to-landmark

routing to make them comparable to DTN-FLOW. We use SimBet to represent the social network

based routing methods. It combines centrality and similarity to calculate the suitability of a node to

carry packets to a given destination landmark. The similarity is derived from the frequency at which

the node visits the landmark. We use PROPHET to represent the probabilistic routing methods. It

simply employs the visiting records with landmarks to calculate the future meeting probability to

guide the packet forwarding. PGR, GeoComm, and PER exploit geographical information for MON

routing. PGR uses observed node mobility routes, i.e., a sequence of locations, to check whether the

destination landmark is on a node’s route. GeoComm measures each node’s contact probability per

unit time with each geo-community, i.e., landmark, to guide the packet routing. In PER, a node’s

past mobility and sojourn among different landmarks are summarized to provide prediction a node’s

probability to visit a landmark before a certain deadline.

We measured following metrics.

• Success rate: The percentage of packets that successfully arrive at their destination landmarks.

• Average delay : The average time per successfully delivered packet needed to reach the desti-

nation landmark.

• Forwarding cost : The number of packet forwarding operations occurred during the experiment.

128

0.25

0.30

0.35

0.40

0.45

0.50

0.55

12 14 16 18 20 22 24 26 28 30

Su
cc
es
s
Ra
te

Memory Size (x102KB)

DTN‐FLOW SimBet
PROPHET PGR
PER GeoComm

(a) Success rate.

78

82

86

90

94

98

102

106

12 14 16 18 20 22 24 26 28 30

Av
er
ag
e
D
el
ay
 (x
10

4 s
)

Memory Size (x102KB)

DTN‐FLOW SimBet
PROPHET PGR
PER GeoComm

(b) Average delay.

0

1

2

3

4

12 14 16 18 20 22 24 26 28 30

Fo
rw

ar
di
ng

 C
os
t (
x1
08
)

Memory Size (x102KB)

DTN‐FLOW SimBet
PROPHET PGR
PER GeoComm

(c) Forwarding cost.

0

10

20

30

40

50

60

12 14 16 18 20 22 24 26 28 30

To
ta
l C
os
t (
x1
07
)

Memory Size (x102KB)

DTN‐FLOW SimBet
PROPHET PGR
PER GeoComm

(d) Total cost.

Figure 6.10: Performance with different memory sizes using the DART trace.

• Overall cost : The total number of packet and routing information forwarding operations during

the experiment. The cost of forwarding a routing table or a meeting probability table with m

entries is counted as m.

Recall that in DTN-FLOW, landmark deployment is completed off-line before the system

starts. Thus DTN-FLOW incurs additional cost for landmark deployment compared to other al-

gorithms. However, this small additional cost can improve the routing efficiency and reduce the

forwarding costs of energy-constraint mobile nodes (as shown in the experimental results later on),

which is the key advantage of DTN-FLOW.

6.3.1.2 Performance with Different Memory Sizes

We first evaluated the performance of the six methods when the size of memory in each

node was varied from 1200KB to 3000KB with a 200KB increase in each step.

Success Rate: Figure 6.10(a) and Figure 6.11(a) present the success rates of the six meth-

ods with the DART and the DNET traces, respectively. We see that when the memory in each node

increases, the success rates always follow DTN-FLOW>PER>SimBet≈PROPHET>GeoComm>PGR.

DTN-FLOW has the highest success rate because it fully utilizes node movements to forward pack-

ets one landmark by one landmark to their destination landmarks, even though some nodes rarely

129

0.63

0.68

0.73

0.78

0.83

12 14 16 18 20 22 24 26 28 30

Su
cc
es
s
Ra
te

Memory Size (x102KB)

DTN‐FLOW SimBet
PROPHET PGR
PER GeoComm

(a) Success rate.

7.5

8.0

8.5

9.0

9.5

10.0

12 14 16 18 20 22 24 26 28 30

Av
er
ag
e
D
el
ay
 (x
10

4 s
)

Memory Size (x102KB)

DTN‐FLOW SimBet
PROPHET PGR
PER GeoComm

(b) Average delay.

6

10

14

18

22

26

12 14 16 18 20 22 24 26 28 30

Fo
rw

ar
di
ng

 C
os
t (
x1
06
)

Memory Size (x102KB)

DTN‐FLOW SimBet
PROPHET PGR
PER GeoComm

(c) Forwarding cost.

4

8

12

16

20

24

28

12 14 16 18 20 22 24 26 28 30

To
ta
l C
os
t (
x1
06
)

Memory Size (x102KB)

DTN‐FLOW SimBet
PROPHET PGR
PER GeoComm

(d) Total cost.

Figure 6.11: Performance with different memory sizes using the DNET trace.

or may not visit these destinations. On the contrary, other methods only rely on nodes that visit

destinations frequently for packet forwarding. Limited number of such nodes prevents them from

achieving high success rate.

PER leads to the second highest success rate because it considers both transit probability

distribution and sojourn time probability distribution to predict a node’s probability to move to

a landmark within a time limit. SimBet and PROPHET present similar success rates. SimBet

exploits social properties, i.e., centrality and similarity, to rank a node’s suitability to carry packets

to a landmark. PROPHET uses previous encountering records to predict a node’s probability of

visiting a landmark. Both metrics can indirectly reflect a node’s ability to visit a landmark, leading

to high and similar success rates.

GeoComm has similar success rate with and lower success rate than SimBet and PROPHET

in the tests with DART trace and the DNET trace, respectively. This is because in the DNET trace,

each node, i.e., bus, has even contact probability with landmarks on its route since it stays on

these landmarks with equal amount of times. Then, the contact probability cannot reflect a node’s

probability to visit landmarks as accurate as in SimBet and PROPHET, leading to lower success

rate.

PGR tries to predict the entire route of a node (with multiple landmarks) for packet for-

130

warding. However, such a prediction has a low accuracy. As shown in Figure 6.5(b), the average

accuracy of the prediction of only one location is already below 80%. Therefore, PGR has the lowest

success rate.

In summary, the experimental results verify the high throughput of DTN-FLOW in trans-

ferring data among landmarks with difference memory sizes on each node.

Average Delay: Figure 6.10(b) and Figure 6.11(b) show the average delays of successfully

delivered packets in the six methods with the DART and the DNET traces, respectively. We see

that the average delays follow DTN-FLOW<SimBet≈PROPHET<GeoComm<PER<PGR. DTN-

FLOW has the lowest average delay because the designed routing tables in landmarks guide packets

to be forwarded along the fastest paths to their destinations. In SimBet and PROPHET, packets

may be generated in or carried to areas where very few nodes move to their destinations regularly.

Therefore, packets have to wait for a certain period of time before meeting nodes that visit their

destinations frequently, leading to a moderate average delay. Moreover, since nodes with high

centrality (i.e., connecting many landmarks) may not visit the specific destination landmark as

frequently, SimBet has slightly higher average delay than PROPHET.

For GeoComm, the contact probability between a landmark and a node cannot reflect the

node’s future probability to visit a landmark as accurate as that in SimBet and PROPHET. There-

fore, it has larger average delay than SimBet and PROPHET. PER further has larger delay than

GeoComm because it only chooses the node that has the highest probability to visit the destination

landmark before a deadline as the forwarder for a packet, rather than the node that can carry the

packet to the destination landmark as soon as possible. For PGR, as explained previously, it is dif-

ficult to accurately predict long paths with multiple locations, thus leading to inaccurate forwarder

selection and the long delay.

These experimental results show the high efficiency of DTN-FLOW in transferring data

among landmarks with difference sizes of memory in each node.

Forwarding Cost: Figure 6.10(c) and Figure 6.11(c) plot the forwarding costs of the six

methods with the DART and the DNET traces, respectively. We find that the forwarding costs

follow DTN-FLOW<PGR<SimBet<PROPHET<PER with both traces and GeoComm has the

second and the third largest forwarding cost with the DART and the DNET trace, respectively.

DTN-FLOW refers to the routing table to forward packets along fastest landmark paths to reach

their destinations, which usually takes several forwarding operations.

131

PGR has the second lowest forwarding cost because nodes tend to show similar ability

to visit a landmark. Therefore, a packet holder cannot easily find another node that has higher

probability of meeting the destination node. Then, packets are not forwarded frequently. However,

the low forwarding cost in PGR also results in a low efficiency.

SimBet, PROPHET, GeoComm, and PER use a metric to rank the suitability of nodes for

carrying packets and forward packets to high rank nodes. Then, packets are frequently forwarded

to nodes with higher suitability, leading to high forwarding cost. More specifically, the easiness

of finding a node with higher rank determines the actual forwarding costs of the four methods. In

SimBet, since high-centrality nodes usually are limited in the network, packets are gathered on these

nodes without further forwarding, leading to the lowest forwarding cost among the four methods.

GeoComm has higher and lower forwarding cost than PROPHET in the test with the DART

trace and the DNET trace, respectively. This is because in GeoComm, a node’s contact probabilities

with each landmark vary greatly due to people’s mobility in the DART trace and remain stable in

the DNET trace. Therefore, packets are frequently forwarded in the test with DART trace. On the

contrary, PROPHET forwards packets greedily by only considering meeting frequency, leading to

high forwarding cost in both traces. PER leads to the highest forwarding cost in the tests with both

traces. This because whenever a node moves to a new landmark, its probability of visiting a certain

landmark before a deadline changes. In other words, such probabilities vary significantly with node

movement. As a result, packets are forwarded for the most frequently in the network.

Total Cost: Figure 6.10(d) and Figure 6.11(d) plot the total costs of the six methods

with the DART and the DNET traces, respectively. We see that the total costs follow DTN-

FLOW <PGR<SimBet≈PROPHET<GeoComm<PGR in the tests with the DART trace and DTN-

FLOW<PGR<SimBet≈GeoComm<PROPHET<PGR in the tests with the DNET traces. Recall

that the total cost includes packet forwarding cost and maintenance cost, which is incurred by routing

information forwarding. In DTN-FLOW, the maintenance cost comes from routing table updates.

When a node connects to a new landmark, it forwards the routing table of its previously connected

landmark to the new landmark and receives the routing table of the new landmark. In other methods,

two encountering nodes exchange their calculated suitability/rank for each destination landmark and

then decide whether to forward packets to the other node. Since a node’s probability of meeting

a landmark is lower than that of meeting another node, maintenance cost in DTN-FLOW is lower

than that in other methods. Therefore, DTN-FLOW produces the lowest total cost.

132

0.25

0.30

0.35

0.40

0.45

0.50

0.55

100 200 300 400 500 600 700 800 900 1000

Su
cc
es
s
Ra
te

Packet Rate

DTN‐FLOW SimBet
PROPHET PGR
PER GeoComm

(a) Success rate.

78

82

86

90

94

98

102

100 200 300 400 500 600 700 800 900 1000

Av
er
ag
e
D
el
ay
 (x
10

4 s
)

Packet Rate

DTN‐FLOW SimBet
PROPHET PGR
PER GeoComm

(b) Average delay.

0

1

2

3

4

5

6

100 200 300 400 500 600 700 800 900 1000

Fo
rw

ar
di
ng

 C
os
t (
x1
08
)

Packet Rate

DTN‐FLOW SimBet
PROPHET PGR
PER GeoComm

(c) Forwarding cost.

0

2

4

6

8

10

100 200 300 400 500 600 700 800 900 1000

To
ta
l C
os
t (
x1
08
)

Packet Rate

DTN‐FLOW SimBet
PROPHET PGR
PER GeoComm

(d) Total cost.

Figure 6.12: Performance with different packet rates using the DART trace.

Comparing Figure 6.10(d) and Figure 6.11(d) with Figure 6.10(c) and Figure 6.11(c), we

notice the maintenance cost only counts a small part of the total cost. Therefore, the relationship

on total cost remains the same as that on the forwarding cost. We also see that when the memory

size on each node increases, the total costs of all methods increase, though the maintenance costs

of each method actually remain stable. This is because the forwarding cost is much higher than

the maintenance cost. The results on forwarding cost and total cost verify the high efficiency of

DTN-FLOW in terms of cost with different memory sizes on each node.

6.3.1.3 Performance with Different Packet Rates

We also evaluated the performance of the six methods with different packet generation rates.

We varied the packet rate from 100 to 1000 with 100 increase in each step.

Success Rate: Figure 6.12(a) and Figure 6.13(a) show the success rates of the six methods

in the tests using the DART and the DNET traces, respectively. We see that the success rates

follow DTN-FLOW>PER>SimBet≈ PROPHET>GeoComm>PGR. Such results match those in

Figure 6.10(a) and Figure 6.11(a) for the same reasons. We also see that when the packet rate

increases, the success rates of the six methods decrease. The forwarding opportunities in the system

are determined by node memory and encountering opportunities, which are independent with the

133

0.56

0.60

0.64

0.68

0.72

0.76

100 200 300 400 500 600 700 800 900 1000

Su
cc
es
s
Ra
te

Packet Rate

DTN‐FLOW SimBet
PROPHET PGR
PER GeoComm

(a) Success rate.

7.0

7.5

8.0

8.5

9.0

9.5

100 200 300 400 500 600 700 800 900 1000

Av
er
ag
e
D
el
ay
 (x
10

4 s
)

Packet Rate

DTN‐FLOW SimBet
PROPHET PGR
PER GeoComm

(b) Average delay.

0

1

2

3

4

5

100 200 300 400 500 600 700 800 900 1000

Fo
rw

ar
di
ng

 C
os
t (
x1
07
)

Packet Rate

DTN‐FLOW SimBet
PROPHET PGR
PER GeoComm

(c) Forwarding cost.

0

1

2

3

4

5

6

100 200 300 400 500 600 700 800 900 1000

To
ta
l C
os
t (
x1
07
)

Packet Rate

DTN‐FLOW SimBet
PROPHET PGR
PER GeoComm

(d) Total cost.

Figure 6.13: Performance with different packet rates using the DNET trace.

number of packets. When the number of packets increases, the number of packets that can be

delivered successfully does not increase accordingly, leading to a degraded success rate. The high

success rate of DTN-FLOW with different packet rates verifies the high throughput performance of

DTN-FLOW.

Average Delay: Figure 6.12(b) and Figure 6.13(b) illustrate the average delays of the six

methods in the tests using the DART and the DNET traces, respectively. We see that the average de-

lays follow DTN-FLOW<SimBet≈PROPHET <GeoComm<PGR<PER. This relationship remains

the same as in Figure 6.10(b) and Figure 6.11(b) for the same reasons. Moreover, we find that when

the packet rate increases, the average delays of the four methods increase. This is caused by the

limited forwarding opportunities in the system. When there are more packets in the system, the

average time a packet needs to wait before being forwarded increases, resulting in higher total delay.

DTN-FLOW always generates the lowest average delay at all packets rates, which demonstrates the

high efficiency of DTN-FLOW in terms of routing delay.

Forwarding Cost: Figure 6.12(c) and Figure 6.13(c) show the forwarding costs of the

six methods in the tests using the DART and the DNET traces, respectively. We see that the

forwarding costs DTN-FLOW<PGR<SimBet <PROPHET<PER with both traces and GeoComm

has the second and the roughly third largest forwarding cost with the DART and the DNET trace,

134

respectively. Again, this relationship is the same as in Figure 6.10(c) and Figure 6.11(c) due to the

same reasons. We also see that the forwarding costs of the four methods increase when the packet

rate increases. When there are more packets generated in the system, more forwarding opportunities

are utilized, resulting in more packets forwarding operations. This is why the forwarding costs in

Figure 6.13(c) remain relative stable when the packet rate is larger than 40.

Total Cost: Figure 6.12(d) and Figure 6.13(d) show the total costs of the six methods in the

tests using the DART and the DNET traces, respectively. We see that their total costs again follow

DTN-FLOW<PGR<SimBet≈PROPHET< GeoComm<PER and DTN-FLOW<PGR< SimBet ≈

GeoComm < PROPHET < PER in the tests with the DART and the DNET traces, respectively.

This result matches that in Figure 6.10(d) and Figure 6.11(d) for the same reasons. We also find

that the total costs of the four methods increase when the packet rates increase. This is because

that the maintenance costs of the four methods, which are irrelevant to the packet rate, only account

for a small part of the total costs. Such results further confirm the high efficiency of DTN-FLOW

in terms of cost with difference packet rates.

Combining all above results obtained with various memory sizes and packet rates, we con-

clude that DTN-FLOW has superior performance in achieving high throughput, low average delay,

and low cost data transmission between landmarks than previous routing algorithms in MONs.

6.3.2 Evaluation of Advanced Algorithm Extensions

In this section, we evaluate the performance of the extensions proposed in Section 6.2.5. We

set the packet rate to 500 and the memory size on each node to 2000 KB. Other settings are the

same as in the trace-driven experiments.

6.3.2.1 Dead End Prevention

We evaluated the performance of our proposed dead end prevention method. We varied

Ht from 2 to 5 in the test. Table 6.6 shows the hit rates and average delays of each test. Note the

“ORG” represents the original DTN-FLOW without the proposed dead end prevention method.

We see from the table that in the tests with both traces, when the dead end prevention

method is used, the success rate is increased and the average delay is decreased. This result confirms

that our proposed method enables nodes to effectively detect dead ends and transfer their packets

to other nodes through landmarks. We also find that the best performance is achieved when Ht

135

Table 6.6: Experimental results on dead end prevention.

Trace \ Ht ORG 2 3 4 5

DART
Success Rate 0.410 0.433 0.431 0.429 0.428

Delay (×105S) 8.19 7.89 7.94 7.99 8.01

DNET
Success Rate 0.747 0.761 0.760 0.751 0.749

Delay (×104S) 8.02 7.46 7.49 7.55 7.58

equals to 2 in the tests with both traces. This shows that Ht = 2 is sufficient to detect most dead

ends. When Ht is larger than 2, it requires more time to identify a dead end. Then, some packets

maybe dropped due to TTL during the waiting, leading to more dropped packets (i.e., decreased

success rate) and increased average delay.

6.3.2.2 Routing Loop Detection and Correction

We also evaluated the effectiveness of the loop detection and correction method proposed

in Section 6.2.5.2. We purposely created Ls loops in this test and tested when Ls equals to 2 and

3. The destination landmark of each created loop is randomly selected in the network. Table 6.7

shows the experimental results with both traces, in which “ORG-x” and “W-x” (x=2, 3) represent

the DTN-FLOW without and with the proposed loop detection and prevention method when Ls

equals x, respectively.

Table 6.7: Experimental results on loop detection and correction.

Trace \ Ls ORG-2 W-2 ORG-3 W-3

DART
Success Rate 0.379 0.404 0.362 0.373

O. Delay (×106S) 6.44 6.07 6.49 6.02

DNET
Success Rate 0.738 0.745 0.732 0.740

O. Delay (×105S) 5.47 5.12 5.51 5.18

We see from the table that when 2 or 3 routing loops exist in the network, the hit rates

decrease in the tests with both traces without the proposed loop detection and correction method.

This is because some packets are continuously forwarded along the loop, failing to reach their

destinations. We also find that the hit rates in W-2 and W-3 are only slightly lower than those when

there are no routing loops as shown in Figures 6.12(a) and 6.13(a). Such a result demonstrates that

our proposed method can effectively detect and correct loops.

In order to compare the delay fairly, we measure the overall average delay, denoted O. Delay,

in this test, which calculates the average delay of all packets (including the unsuccessful packets). We

regard the delay of an unsuccessful packet as the experimental time, i.e., 107 seconds for the DART

trace and 2 × 106 seconds for DNET trace. We see from the table that when the loop detection

136

correction method is used, the overall average delay is decreased. This is because the proposed

method can reduce the number of unsuccessful packets due to routing loops, thereby decreasing the

overall average delay.

6.3.2.3 Load Balancing

We further evaluated the performance of the proposed load balancing method. For the

success rate, in order to better demonstrate the effectiveness of our proposed method, we purposely

enlarged the packet rate to the range of [1100, 1500] to create overloaded links in the network.

Table 6.8: Experimental results of load balancing on success rate.

Packet Rate (×102) 11 12 13 14 15

DART
W/O-Balance 0.315 0.307 0.295 0.283 0.260

W-Balance 0.319 0.313 0.307 0.297 0.280

DNET
W/O-Balance 0.679 0.645 0.610 0.584 0.541

W-Balance 0.696 0.663 0.628 0.603 0.568

Table 6.9: Experimental results of load balancing on average delay.

Packet Rate (×102) 11 12 13 14 15

DART(×104s)
W/O-Balance 89.4 89.7 89.8 90.3 90.8

W-Balance 87.6 87.4 87.0 87.2 87.5

DNET(×104s)
W/O-Balance 8.44 8.62 8.71 8.79 8.94

W-Balance 8.36 8.43 8.66 8.71 8.81

Table 6.8 and 6.9 show the experimental results on hit rates and average delays of DTN-

FLOW with and without the load balancing method, denoted by “W-Balance” and “W/O-Balance”,

respectively. We see from the two tables that when the load balancing method is used, the success

rate is increased and the average delay is decreased in the tests with both traces. This is because the

backup next hop landmark effectively offload packets waiting for overloaded links, thereby reducing

their waiting time. These results show that the proposed load balancing method can effectively

offload packets on overloaded links to improve the overall routing efficiency.

6.3.3 Real Deployment

We deployed DTN-FLOW on our campus for real-world evaluation of its performance.

6.3.3.1 Settings

We selected 8 buildings as landmarks and labeled them as L0 to L7. Their relative locations

are shown in Figure 6.14(a). Among the 8 landmarks, L0 is the library, L1, L2, L4, and L5 are

137

Library

L0

Sirren Hall

L1 Riggs Hall
L2

Union

L3 Brackett Hall

L4
Martin Hall

L5

S‐Dining Hall
L6

Hendrix Center

L7

(a) Map for landmark locations.

Item Value
Landmarks 8
Nodes 9
Transits 147
Packets 2100
Duration 4 days
Packet size 1 KB

Node memory 50 KB

(b) Configuration

Figure 6.14: Landmark map and configurations in the real deployment.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Success Rate

Pe
rc
en
ta
ge

0

5

10

15

20

25

30

35

40

45

Delay

M
inutes (x10

2)
(a) Success rate and delay.

L2 L0L1 L7

L6

L5
L4L3

0.57

0

0.28
0.14 0.57

0.57

1.28

1.57 3.28

3.14

0.57

0.42
0.85

0.710.57

0.43

0.290.29

(b) Bandwidths of transit links

Figure 6.15: Experimental results in real deployment.

department buildings, and L3, L6, and L7 are the student center and dining halls. Each of 9

students from 4 departments carried a Windows Mobile phone daily, each of which checks its GPS

coordinator periodically to judge the landmark it associates with.

In the test, each landmark generates 75 packets evenly in the daytime each day. We sim-

ulated a scenario in which L0 (Library) needs to collect information from other buildings, i.e., all

packets were targeted to L0. The packet TTL was set to 3 days. We set the packet size to 1KB

and the memory on each node to 50KB. The time unit T was set to 12 hours. The deployment

configuration is summarized in Figure 6.14(b).

6.3.3.2 Experimental Results

Figure 6.15(a) demonstrates the success rate and the minimal, first quantile, average, third

quantile, and maximal of the delays of successfully delivered packets. We see that more than 82% of

packets were successfully delivered to the destination. Also, more than 75% of packets were delivered

within 1400 minutes, and the average delay is about 1000 minutes. Note that the entire deployment

only employed 9 mobile nodes with 147 transits to forward packets. A larger deployment with more

nodes would increase the success rate and reduce the delay. These experimental results demonstrate

138

the high efficiency of the DTN-FLOW in transferring data among landmarks.

We also obtained the bandwidth of each transit link at the end of the deployment, as shown

in Figure 6.15(b). We omit transit links with bandwidth lower than 0.14 to show the major routing

paths. The bandwidth on different transit links are within our expectation. For example, the links

between L0 and L2 have very high bandwidth. This is because most students attended the test are

from departments located in L2 and L1, and they usually study in the library (L0) and go to classes

in both department buildings (L1 and L2). Such results justify that the DTN-FLOW can accurately

measure the amount of transits among landmarks.

We further recorded the routing table on each landmark. Due to page limit, we only show

those of L2, L4, and L6 in Table 6.10. We see that the routing tables match the fastest path based

on transit link bandwidths shown in Figure 6.15(b). For L2, it needs to go through L0 to reach

L0, L5, L6, L7. For L4, it relies on L3 and L2 to reach other landmarks. For L6, except for L7, it

has to go through L0 to reach other landmarks. Such results verify that the routing table update

in DTN-FLOW, which relies on mobile nodes, is reliable and can reflect the suitable paths to each

destination.

Table 6.10: Routing tables in L2, L4, and L6.

Landmark ID Destination Landmark Next-hop

L2

L0, L5, L6, L7 L0

L1 L1

L3 L3

L4 L4

L4
L0, L1, L3, L6, L7 L3

L2, L5 L2

L6
L0, L1, L2, L3, L4, L5, L6 L0

L7 L7

6.4 Summary

In this chaper, we propose DTN-FLOW, an efficient routing algorithm to transfer data

among landmarks with a high throughput in MONs. DTN-FLOW splits the entire MON area into

sub-areas with different landmarks, and uses node transits between landmarks to forward packets

one landmark by one landmark to reach their destinations. Specifically, DTN-FLOW consists of

four components: landmark selection and sub-area division, node transit prediction, routing table

construction, and packet routing algorithm. The first component selects landmarks from places that

139

are frequently visited by nodes and split the network into sub-areas. The second component predicts

node transits among landmarks based on previous movement using the order-k Markov predictor.

The third component measures the transmission capability between each pair of landmarks to build

routing tables on each landmark. In the fourth component, each landmark decides the next-hop

landmark for each packet by checking its routing table and forwards the packet to the node that is

most likely to transit to the landmark. Extensive analysis, experiments, and real deployment on our

campus demonstrate the effectiveness of DTN-FLOW.

140

Chapter 7

Conclusions and Future Work

Mobile opportunistic networks (MONs) have attracted significant attention recently due to

the increasing popularity of mobile devices such as smartphones and mobile sensors. In such a net-

work, mobile devices rely on the intermittent encountering for packet exchange without the support

of infrastructures, i.e., peer-to-peer communication. Therefore, MONs can exploit the otherwise

wasted communication opportunities resulted from device mobility and bring about many beneficial

services. For example, due to the distributed network structure, i.e., no central station is needed, it

can enable certain communication services in areas without infrastructures, e.g., rural and mountain

areas. Further, since nodes communicate with each other during the encountering, it can enable the

encountering based social network services even in areas with communication infrastructures, e.g.,

campus.

However, due to the aforementioned properties of MONs, file sharing and packet routing

in MONs, which are the key for many services built upon MONs, are non-trivial. Therefore, in

this dissertation, we instigated how to realize efficient file sharing and packet routing in MONs.

Firstly, in Chapter 3, we explore how to create replicas for globally optimal file replication in the

scenario when a file requester relies on the encountering with the file holder to retrieve the requested

file. In this work, we consider both the ability to meet nodes and storage as available resources.

We theoretically analyze the relationship between resource allocation and average file access delay

to deduce an optimal file replication rule. Based on the rule, we design the Priority Competition

and Split replication protocol (PCS) that can approximate the optimal file replication in a fully

distributed manner. Extensive experiments with both real traces and synthesized node mobility

141

demonstrate the correctness of the optimal file replication rule and the efficiency of PCS.

We further consider the scenario in which a file request can be actively forwarded in the

network to locate the requested file in Chapter 4. In this chapter, we consider both device holders’

file sharing interests and their contact frequencies to assist the file searching process. We propose a

Social network based P2P cOntent file sharing system in mobile Opportunistic Networks (SPOON).

We first extract node interests from files on it and then cluster common-interest nodes with frequent

contacts into one community. We further exploit node mobility patterns to design nodes that have

tight connection with community members for intra-community file searching and highly mobile

nodes to bridge requests among communities. Finally, file requests are always forwarded to nodes

that are more likely to meet the file holders based on interest similarity and contact frequency. Both

GENI testbed experiments and trace-driven simulations prove the efficiency of SPOON.

In addition to file sharing, we also develop an efficient and lightweight MON packet routing

algorithm that exploits the social maps on mobile nodes, denoted by SMART, in Chapter 5. SMART

is designed for packet routing among nodes in MONs. It exploits the social network property that

the frequently met friends of a person often remain stable. Nodes exchange the top L most frequently

encountered nodes during the encountering. Such information is used to build the social map on

each node to reflect its understanding of the surrounding social structure. In the social map, the

delivery ability between two linked nodes is evaluated by considering both meeting frequency and

social closeness. As a result, each node only needs to check its own social map to decide whether to

forward a packet to the newly met node, leading to efficient packet routing with a low cost. Extensive

real-trace driven experiments show the effectiveness and efficiency of SMART in comparison with

previous algorithms.

We further propose a method to realize efficient packet routing among landmarks, denoted

by DTN-FLOW, in Chapter 6. We first split the entire MON area into sub-areas, each of which is

represented by one landmark selected from frequently visited places in the network. Then, we mea-

sure the transmission capability between each pair of landmarks as the frequency of node transition

between them. This is because packets can only be carried by nodes to move from one landmark to

another in MONs. After this, we build a routing table on each landmark to indicate the next-hop

landmark for each destination landmark with the smallest expected delay using the distance vector

method. DTN-FLOW also predicts node transition using the order-k Markov predictor to forward

packet from one landmark to a neighbor landmark. Finally, packets are routed one landmark by one

142

landmark to gradually reach their destination landmarks. Extensive analysis, experiments, and real

deployment on our campus demonstrate the effectiveness of DTN-FLOW.

The future work will be in two directions. Firstly, the proposed methods in this dissertation

can be enhanced by considering more realistic scenarios or including more useful information. For

example, more realistic environment with dynamic file generation (i.e., file addition and deletion) and

node request pattern can be considered to improve the adaptability of the theoretical analysis results

and the proposed PCS method in Chapter 3. In SPOON, dynamically adjusting the thresholds for

interest abstraction, community construction, and file searching can help find more suitable carriers

for file requests and improve the file sharing efficiency. Other social factors, e.g., affiliation and

interests, can also be considered to reveal more accurate social structures and mobility modeling in

SMART and DTN-FLOW for more efficient packet routing.

Secondly, security and privacy issues are also critical for MON applications/services. While

mobile devices are mainly held by people in MONs, the information exchanged among nodes in

MON file searching or packet routing algorithms, e.g., real identifies, routing utilities, and selected

packet forwarders, actually reflect people’s personal privacy to a certain extent. For example, it can

show who the device holder is, whom a person meets frequently, where a person visits for the most,

and how tightly a person connects to others in a community. Such sensitive personal information

can be exploited by adversaries to launch attacks in MONs. On the other side, while mobile services

are usually deployed in open environments, nodes may not necessarily follow designed schemes or

even launch certain attacks, e.g., attract and drop packets, to break the system. Therefore, it is

essential to ensure privacy protection and security and meanwhile enabling efficient file searching or

packet routing to encourage nodes to participate in MONs.

143

Bibliography

[1] http://web.informatik.uni-bonn.de/IV/BoMoNet/BonnMotion.htm.

[2] Dijkstra complexity. http://mathworld.wolfram.com/DijkstrasAlgori thm.html.

[3] GENI project. http://www.geni.net/.

[4] Orbit. http://www.orbit-lab.org/.

[5] The Network Simulator ns-2. http://www.isi.edu/nsnam/ns/.

[6] http://blogs.strategyanalytics.com/WDS/post/2012/10/17/Worldwide-Smartphone-
Population-Tops-1-Billion-in-Q3-2012.aspx. Technical report, Strategy Analytics, 2012.

[7] George Aggelou. Mobile Ad Hoc Networks: From Wireless LANs to 4G Networks. McGraw-Hill
Professional, 1 edition, 2004.

[8] Aruna Balasubramanian, Brian Levine, and Arun Venkataramani. Enhancing Interactive Web
Applications in Hybrid Networks. In Proc. of MOBICOM, 2008.

[9] Aruna Balasubramanian, Brian Neil Levine, and Arun Venkataramani. DTN Routing as a
Resource Allocation Problem. In Proc. of SIGCOMM, 2007.

[10] Chiara Boldrini, Marco Conti, Jacopo Jacopini, and Andrea Passarella. HiBOp: A History
Based Routing Protocol for Opportunistic Networks. In Proc. of WoWMoM, 2007.

[11] Chiara Boldrini, Marco Conti, and Andrea Passarella. ContentPlace: Social-aware Data Dis-
semination in Opportunistic Networks. In Proc. of MSWIM, 2008.

[12] P. Bonacich. Factoring and Weighting Approaches to Status Scores and Clique Identification.
Journal of Mathematical Sociology, 2(1):113–120, 1972.

[13] J. Broch, D. A. Maltz, D. B. Johnson, Y. Hu, and J. G. Jetcheva. A Performance Comparison
of Multi-Hop Wireless Ad hoc Network Routing Protocols. In Proc. of MOBICOM, 1998.

[14] John Burgess, Brian Gallagher, David Jensen, and Brian Neil Levine. MaxProp: Routing for
Vehicle-Based Disruption-Tolerant Networks. In Proc. of INFOCOM, 2006.

[15] Han Cai and Do Young Eun. Crossing over The Bounded Domain: from Exponential to Power-
law Inter-meeting Time in MANET. In Proc. of MOBICOM, 2007.

[16] V. Carchiolo, M. Malgeri, G. Mangioni, and V. Nicosia. An Adaptive Overlay Network Inspired
By Social Behavior. Journal of Parallel and Distributed Computing, 70:282–295, 2010.

[17] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott. Impact of Human Mobility
on the Design of Opportunistic Forwarding Algorithms. In Proc. of INFOCOM, 2006.

144

[18] Augustin Chaintreau, Pan Hui, Jon Crowcroft, Christophe Diot, Richard Gass, and James
Scott. Impact of human mobility on opportunistic forwarding algorithms. IEEE Trans. Mob.
Comput., 6(6):606–620, 2007.

[19] Kang Chen and Haiying Shen. Global Optimization of File Availability through Replication for
Efficient File Sharing in MANETs. In Proc. of ICNP, 2011.

[20] Kang Chen and Haiying Shen. SMART: Lightweight Distributed Social Map based Routing in
Delay Tolerant Networks. In Proc. of ICNP, 2012.

[21] Kang Chen and Haiying Shen. SMART: Utilizing Distributed Social Map for Lightweight
Routing in Delay Tolerant Networks. IEEE/ACM Trans. Netw., accpected, 2013.

[22] Kang Chen and Haiying Shen. DTN-FLOW: Inter-Landmark Data Flow for High-Throughput
Routing in DTNs. In Proc. of IPDPS, 2013.

[23] Kang Chen and Haiying Shen. DTN-FLOW: Inter-Landmark Data Flow for High-Throughput
Routing in DTNs. IEEE/ACM Trans. Netw., accpected, 2013.

[24] Kang Chen and Haiying Shen. Maximizing P2P File Access Availability in Mobile Ad Hoc
Networks through Replication for Efficient File Sharing. IEEE Transactions on Computers,
accpected, 2014.

[25] Kang Chen, Haiying Shen, and Haibo Zhang. Leveraging Social Networks for P2P Content-
Based File Sharing in Mobile Ad Hoc Networks. In Proc. of MASS, 2011.

[26] Kang Chen, Haiying Shen, and Haibo Zhang. Leveraging Social Networks for P2P Content-
based File Sharing in Disconnected MANETs. IEEE Trans. Mob. Comput., 13(2):235–249,
2014.

[27] X. Chen. Data Replication Approaches for Ad hoc Wireless Networks Satisfying Time Con-
straints. IJPEDS, 22(3):149–161, 2007.

[28] S. Chessa and P. Maestrini. Dependable and Secure Data Storage and Retrieval in Mobile
Wireless Networks. In Proc. of DSN, 2003.

[29] Paolo Costa, Cecilia Mascolo, Mirco Musolesi, and Gian Pietro Picco. Socially-aware Routing
for Publish-subscribe in Delay-tolerant Mobile Ad hoc Networks. IEEE Journal on Selected
Areas in Communications, 26(5):748–760, 2008.

[30] Elizabeth M. Daly and Mads Haahr. Social Network Analysis for Routing in Disconnected
Delay-tolerant MANETs. In Proc. of MobiHoc, 2007.

[31] E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische Mathematik,
1:269–271, 1959.

[32] W. P. Dotson and J. O. Goblen. A New Anylisis Technique for Probilisitic Graphs. IEEE
Trans. on Circults and Systems, 26(10):855–865, 1979.

[33] H. Duong and I. Demeure. Proactive Data Replication Semantic Information within Mobility
Groups in MANET. In Proc. of Mobilware, 2009.

[34] N. Eagle, A. Pentland, and D. Lazer. Inferring Social Network Structure using Mobile Phone
Data. Proceedings of the National Academy of Sciences, 106(36):15274–15278, 2009.

[35] Kevin Fall. A Delay-Tolerant Network Architecture for Challenged Internets. In Proc. of
SIGCOMM, 2003.

145

[36] Jialu Fan, Jiming Chen, Yuan Du, Wei Gao, Jie Wu, and Youxian Sun. Geocommunity-based
Broadcasting for Data Dissemination in Mobile Social Networks. IEEE Trans. Parallel Distrib.
Syst., 24(4):734–743, 2013.

[37] Andrew Fast, David Jensen, and Brian Neil Levine. Creating Social Networks to Improve
Peer-to-Peer Networking. In Proc. of KDD, 2005.

[38] Wei Gao and Guohong Cao. User-centric Data Dissemination in Disruption Tolerant Networks.
In Proc. of INFOCOM, 2011.

[39] Wei Gao, Guohong Cao, Arun Iyengar, and Mudhakar Srivatsa. Supporting Cooperative
Caching in Disruption Tolerant Networks. In Proc. of ICDCS, 2011.

[40] Wei Gao, Guohong Cao, Mudhakar Srivatsa, and Arun Iyengar. Distributed Maintenance of
Cache Freshness in Opportunistic Mobile Networks. In Proc. of ICDCS, 2012.

[41] V. Gianuzzi. Data Replication Effectiveness in Mobile Ad-hoc Networks. In Proc. of PE-
WASUN, 2004.

[42] R. S. Gray, D. Kotz, C. Newport, N. Dubrovsky, A. Fiske, J. Liu, C. Masone,
S. McGrath, and Y. Yuan. CRAWDAD data set dartmouth/outdoor (v. 2006-11-06).
http://crawdad.cs.dartmouth.edu/dartmouth/outdoor.

[43] Robin Groenevelt, Philippe Nain, and Ger Koole. The Message Delay in Mobile Ad hoc Net-
works. Perform. Eval., 62(1-4):210–228, 2005.

[44] T. Hara. Effective Replica Allocation in Ad hoc Networks for Improving Data Accessibility. In
Proc. of INFOCOM, 2001.

[45] T. Hara and S. K. Madria. Data Replication for Improving Data Accessibility in Ad Hoc
Networks. IEEE Trans. Mob. Comput., 5(11):1515–1532, 2006.

[46] D. W. Anna Hayes. Peer-to-Peer Information Sharing in a Mobile Ad hoc Environment. In
Proc. of WMCSA, 2004.

[47] C. Hedrick. RFC1058 - Routing Information Protocol, 1988.

[48] Tristan Henderson, David Kotz, and Ilya Abyzov. The Changing Usage of a Mature Campus-
wide Wireless Network. In Proc. of MOBICOM, 2004.

[49] C. Hoh and R. Hwang. P2P File Sharing System over MANET based on Swarm Intelligence:
A Cross-Layer Design. In Proc of WCNC, pages 2674–2679, 2007.

[50] Weijen Hsu, Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Ahmed Helmy. Modeling
Time-variant User Mobility in Wireless Mobile Networks. In Proc. of INFOCOM, 2007.

[51] Ying Huang, Yan Gao, Klara Nahrstedt, and Wenbo He. Optimizing File Retrieval in Delay-
Tolerant Content Distribution Community. In Proc. of ICDCS, 2009.

[52] Pan Hui, Augustin Chaintreau, James Scott, Richard Gass, Jon Crowcroft, and Christophe
Diot. Pocket Switched Networks and Human Mobility in Conference Environments. In Proc.
of WDTN, 2005.

[53] Pan Hui, Jon Crowcroft, and Eiko Yoneki. Bubble Rap: Social-based Forwarding in Delay
Tolerant Networks. In Proc. of MobiHoc, 2008.

[54] A. Iamnitchi, M. Ripeanu, E. Santos-Neto, and I. Foster. The Small World of File Sharing.
IEEE Trans. Parallel Distrib. Syst., 22(7):1120–1134, 2011.

146

[55] Adriana Iamnitchi, Matei Ripeanu, and Ian T. Foster. Small-World File-Sharing Communities.
In Proc. of INFOCOM, 2004.

[56] Sushant Jain, Kevin R. Fall, and Rabin K. Patra. Routing in a Delay Tolerant Network. In
Proc. of SIGCOMM, 2004.

[57] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein. Energy-Efficient
Computing for Wildlife Tracking: Design Tradeoffs and Early Experiences with ZebraNet. In
Proc. of ASPLOS-X, 2002.

[58] J. Kangasharju, K. W. Ross, and D. A. Turner. Optimizing File Availability in Peer-to-Peer
Content Distribution. In Proc. of INFOCOM, 2007.

[59] L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis.
Wiley, New York, USA, 1990.

[60] L. Kleinrock. Queueing Systems, Volume II: Coputer Applications. John Wiley & Sons, 1976.

[61] A. Klemm, C. Lindemann, and O. Waldhorst. A Special-Purpose Peer-to-Peer File Sharing
System for Mobile Ad Hoc Networks. In Proc. of VTC, 2003.

[62] Jani Kurhinen and Jukka Janatuinen. Geographical Routing for Delay Tolerant Encounter
Networks. In Proc. of ISCC, 2007.

[63] Kevin C. Lee, Michael Le, Jerome Härri, and Mario Gerla. LOUVRE: Landmark Overlays for
Urban Vehicular Routing Environments. In Proc. of VTC Fall, 2008.

[64] Kyunghan Lee, Yung Yi, Jaeseong Jeong, Hyungsuk Won, Injong Rhee, and Song Chong.
Max-Contribution: On Optimal Resource Allocation in Delay Tolerant Networks. In Proc. of
INFOCOM, 2010.

[65] Jeremie Leguay, Timur Friedman, and Vania Conan. DTN Routing in a Mobility Pattern Space.
In Proc. of WDTN, 2005.

[66] Vincent Lenders, Martin May, Gunnar Karlsson, and Clemens Wacha. Wireless Ad hoc Pod-
casting. Mobile Computing and Communications Review, 12(1):65–67, 2008.

[67] Ilias Leontiadis and Cecilia Mascolo. GeOpps: Geographical Opportunistic Routing for Vehic-
ular Networks. In Proc. of WOWMOM, 2007.

[68] Feng Li and Jie Wu. MOPS: Providing Content-Based Service in Disruption-Tolerant Networks.
In Proc. of ICDCS, pages 526–533, 2009.

[69] Miao Lin, Wen-Jing Hsu, and Zhuo Qi Lee. Predictability of Individuals Mobility with High-
Resolution Positioning Data. In Proc. of UbiComp, 2012.

[70] P. M. Lin, B. J. Leon, and T. C. Huang. A New Algorithm for Symbolic System Reliability
Analysis. IEEE Trans. Reliability, 25(1):2–15, 1976.

[71] C. Lindemann and O. P. Waldhort. A Distributed Search Service for Peer-to-Peer File Sharing
in Mobile Applications. In Proc. of P2P, 2002.

[72] Anders Lindgren, Avri Doria, and Olov Schelén. Probabilistic Routing in Intermittently Con-
nected Networks. Mobile Computing and Communications Review, (3):19–20, 2003.

[73] J Link, Daniel Schmitz, and Klaus Wehrle. GeoDTN: Geographic Routing in Disruption Tol-
erant Networks. In Proc. of GLOBECOM, 2011.

147

[74] M. Lu and J. Wu. Opportunistic Routing Algebra and Its Application. In Proc. of INFOCOM,
2009.

[75] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a Feather: Homophily in
Social Networks. Annual Review of Sociology, 27(1):415–444, 2001.

[76] S. Moussaoui, M. Guerroumi, and N. Badache. Data Replication in Mobile Ad hoc Networks.
In Proc. of MSN, 2006.

[77] M. Musolesi and C. Mascolo. Designing Mobility Models based on Social Network Theory.
Mobile Computing and Communications Review, 11(3):59–70, 2007.

[78] Mirco Musolesi and Cecilia Mascolo. CAR: Context-Aware Adaptive Routing for Delay-Tolerant
Mobile Networks. IEEE Trans. Mob. Comput., 8(2):246–260, 2009.

[79] A Nelson, J. R. Batts, Jr, and Robert L. Beadles. A Computer Program for Approximating
System Reliability. IEEE Trans. Reliability, 19(2):61–65, 1970.

[80] M. Papadopouli and H. Schulzrinne. A Performance Analysis of 7DS: a Peer-to-Peer Data
Dissemination and Prefetching Tool for Mobile Users. Advances in Wired and Wireless Com-
munications, IEEE Sarnoff Symposium Digest, 2001.

[81] Joshua Reich and Augustin Chaintreau. The Age of Impatience: Optimal Replication Schemes
for Opportunistic Networks. In Proc. of CoNEXT, 2009.

[82] T. Repantis and V. Kalogeraki. Data Dissemination in Mobile Peer-to-Peer Networks. In Proc.
of MDM, 2005.

[83] Sebastian Schnettler. A Structured Overview of 50 Years of Small-world Research. Social
Networks, 31:165–178, 2009.

[84] Hinrich Schüze and Craig Silverstein. Projections for Efficient Document Clustering. In Proc.
of SIGIR, 1997.

[85] Gaurav Sharma, Ravi Mazumdar, and Ness B. Shroff. Delay and Capacity Trade-Offs in Mobile
Ad hoc Networks: A Global Perspective. In Proc. of INFOCOM, 2006.

[86] Libo Song, David Kotz, Ravi Jain, and Xiaoning He. Evaluating Location Predictors with
Extensive Wi-Fi Mobility Data. In Proc. of INFOCOM, 2004.

[87] T. Spyropoulos, K. Psounis, and C. Raghavendra. Efficient Routing in Intermittently Connected
Mobile Networks: The Single-copy Case. IEEE/ACM Trans. Netw., 16(1):63–76, 2008.

[88] J. B. Tchakarov and N. H. Vaidya. Efficient Content Location in Wireless Ad hoc Networks.
In Proc. of MDM, 2004.

[89] Amin Vahdat and David Becker. Epidemic Routing for Partially-Connected Ad hoc Networks.
Technical report, Duke University, 2000.

[90] Jie Wu, Mingjun Xiao, and Liusheng Huang. Homing Spread: Community Home-based Multi-
copy Routing in Mobile Social Network. In Proc. of INFOCOM, 2013.

[91] L. Yin and G. Cao. Supporting Cooperative Caching in Ad hoc Networks. IEEE Trans. Mob.
Comput., 5(1):77–89, 2006.

[92] Eiko Yoneki, Pan Hui, ShuYan Chan, and Jon Crowcroft. A Socio-aware Overlay for Publish/-
Subscribe Communication in Delay Tolerant Networks. In Proc. of MSWiM, pages 225–234,
2007.

148

[93] Quan Yuan, Ionut Cardei, and Jie Wu. Predict and Relay: An Efficient Routing in Disruption-
tolerant Networks. In Proc. of MobiHoc, 2009.

[94] J. Zheng, J. Su, K. Yang, and Y. Wang. Stable Neighbor Based Adaptive Replica Allocation
in Mobile Ad Hoc Networks. In Proc. of ICCS, 2004.

149

	Clemson University
	TigerPrints
	8-2014

	Towards Efficient File Sharing and Packet Routing in Mobile Opportunistic Networks
	Kang Chen
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Problem Statement
	Research Approaches
	Contributions
	Dissertation Organization

	Related Work
	File Sharing in MANETs/MONs
	Packet Routing in MONs

	Optimal File Replication for Efficient Sharing in MONs
	Theoretical Analysis of Globally Optimal File Replication
	Distributed File Replication Protocol
	Performance Evaluation in Connected MONs based on the RWP Mobility Model
	Performance Evaluation in Disconnected MONs based on the Community-based Mobility Model
	Summary

	Leveraging Social Networks for Efficient File Sharing in MONs
	Overview
	Trace File Analysis
	Main Components
	Discussion on Advanced Methods
	Performance Evaluation
	Summary

	Utilizing Distributed Social Map for Lightweight Packet Routing among Nodes in MONs
	The Benefits of Social Map on Routing Efficiency
	Social Map Construction
	Social Map Based Routing Algorithm
	Discussion on Scalability and Security
	Performance Evaluation
	Summary

	Exploiting Node Mobility for High-Throughput Packet Routing among Landmark in MONs
	Network Model and Trace Analysis
	System Design
	Performance Evaluation
	Summary

	Conclusions and Future Work
	Bibliography

