16 research outputs found

    A residual based snapshot location strategy for POD in distributed optimal control of linear parabolic equations

    Full text link
    In this paper we study the approximation of a distributed optimal control problem for linear para\-bolic PDEs with model order reduction based on Proper Orthogonal Decomposition (POD-MOR). POD-MOR is a Galerkin approach where the basis functions are obtained upon information contained in time snapshots of the parabolic PDE related to given input data. In the present work we show that for POD-MOR in optimal control of parabolic equations it is important to have knowledge about the controlled system at the right time instances. For the determination of the time instances (snapshot locations) we propose an a-posteriori error control concept which is based on a reformulation of the optimality system of the underlying optimal control problem as a second order in time and fourth order in space elliptic system which is approximated by a space-time finite element method. Finally, we present numerical tests to illustrate our approach and to show the effectiveness of the method in comparison to existing approaches

    On Optimal Pointwise in Time Error Bounds and Difference Quotients for the Proper Orthogonal Decomposition

    Get PDF
    In this paper, we resolve several long standing issues dealing with optimal pointwise in time error bounds for proper orthogonal decomposition (POD) reduced order modeling of the heat equation. In particular, we study the role played by difference quotients (DQs) in obtaining reduced order model (ROM) error bounds that are optimal with respect to both the time discretization error and the ROM discretization error. When the DQs are not used, we prove that both the ROM projection error and the ROM error are suboptimal. When the DQs are used, we prove that both the ROM projection error and the ROM error are optimal. The numerical results for the heat equation support the theoretical results

    Space-time goal-oriented error control and adaptivity for discretizations and reduced order modeling of multiphysics problems

    Get PDF
    In this thesis, we investigate the use of adaptive methods for the efficient solution of linear multiphysics problems and nonlinear coupled problems. The main ingredients are a posteriori error estimates based on the dual-weighted residual method. By solving an auxiliary adjoint problem, these error estimates can be used to compute local error indicators for spatial and temporal refinements, which can be used for adaptive spatial and temporal meshes for e.g. the Navier-Stokes equations. For interface- and volume-coupled problems, we present a further extension of temporal adaptivity by using different temporal meshes for each subproblem while still being able to assemble the linear system in a monolithic fashion. Since multiphysics problems, like poroelasticity, are expensive to solve for fine discretizations with millions of degrees of freedom, we present a novel online-adaptive model order reduction method called MORe DWR (Model Order Reduction with Dual-Weighted Residual error estimates), which merges classical proper orthogonal decomposition based model order reduction with a posteriori error estimates. Thus, we can avoid the costly offline phase of classical model order reduction methods and still achieve high accuracy by enriching the reduced basis on-the-fly in the online phase when the error estimators exceed a given tolerance.German Research Foundation (DFG)/International Research Training Group 2657/Grant Number 43308229/E

    Model Order Reduction for Parameterized Nonlinear Evolution Equations

    No full text

    Snapshot-Based Methods and Algorithms

    Get PDF
    An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This second volume focuses on applications in engineering, biomedical engineering, computational physics and computer science

    Model Order Reduction

    Get PDF
    An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This second volume focuses on applications in engineering, biomedical engineering, computational physics and computer science

    Modellreduktion thermischer Felder unter Berücksichtigung der Wärmestrahlung

    Get PDF
    Transiente Simulationen im Rahmen von Parameterstudien oder Optimierungsprozessen erfor-dern die Anwendung der Modellordnungsreduktion zur Minimierung der Berechnungs¬zeiten. Die aus der Wärmestrahlung resultierende Nichtlinearität bei der Analyse thermischer Felder wird hier als äußere Last betrachtet, wodurch die entkoppelte Ermittlung der strahlungs-beding¬ten Wärmeströme gelingt. Darüber hinaus ermöglichen die infolgedessen konstanten System¬matrizen die Reduktion des Temperaturvektors mit etablierten Verfahren für lineare Systeme, wie beispielsweise den Krylov-Unterraummethoden. Die aus der in der Regel großflächigen Verteilung der thermischen Lasten folgende hohe Anzahl von Systemeingängen limitiert allerdings die erzielbare reduzierte Dimension. Deshalb werden zustandsunabhängige, sich synchron verändernde Lasten zu einem Eingang zusammengefasst. Die aus der Strahlung resultierenden Wärmeströme sind im Gegensatz dazu durch die aktuelle Temperaturverteilung bestimmt und lassen sich nicht derart gruppieren. Vor diesem Hintergrund wird ein Ansatz basierend auf der Singulärwertzerlegung von aus Trai¬ningssimulationen gewonnenen Beispiellastvektoren vorgeschlagen. Auf diese Weise gelingt eine erhebliche Verringerung der Eingangsanzahl, sodass im reduzierten System ein sehr geringer Freiheitsgrad erreicht wird. Im Vergleich zur Proper Orthogonal Decomposition (POD) genügen dabei deutlich weniger Trainingsdaten, was den Rechenaufwand während der Offline-Phase erheblich vermindert. Darüber hinaus dehnt das entwickelte Verfahren die Gültigkeit des reduzierten Modells auf einen weiten Parameterbereich aus. Die Berechnung der strahlungsbedingten Wärmeströme in der Ausgangsdimension bestimmt dann den numerischen Aufwand. Mit der Discrete Empirical Interpolation Method (DEIM) wird die Auswertung der Nichtlinearität auf ausgewählte Modellknoten beschränkt. Schließlich erlaubt die Anwendung der POD auf die Wärmestrahlungsbilanz die schnelle Anpassung des Emissionsgrades. Somit hängt das reduzierte System nicht mehr vom ursprünglichen Freiheitsgrad ab und die Gesamt-simulationszeit verkürzt sich um mehrere Größenordnungen.Transient simulations as part of parameter studies or optimization processes require the appli-cation of model order reduction to minimize computation times. Nonlinearity resulting from heat radiation in thermal analyses is considered here as an external load. Thereby, the determi-nation of the radiation-induced heat flows is decoupled from the temperature equation. Hence, the system matrices become invariant and established algorithms for linear systems, such as Krylov Subspace Methods, can be used for the reduction of the temperature vector. However, in general the achievable reduced dimension is limited as the thermal loads distributed over large parts of the surface lead to a high number of system inputs. Therefore, state-independent, synchronously changing loads are combined into one input. In contrast, the heat flows resulting from radiation are determined by the current temperature distribution and cannot be grouped in this way. Against this background, an approach based on the singular value decomposition of snapshots obtained from training simulations is proposed allowing a considerable decreased input number and a very low degree of freedom in the reduced system. Compared to Proper Orthogonal Decomposition (POD), significantly less training data is required reducing the computational costs during the offline phase. In addition, the developed method extends the validity of the reduced model to a wide parameter range. The computation of the radiation-induced heat flows, which is performed in the original dimension, then determines the numerical effort. The Discrete Empirical Interpolation Method (DEIM) restricts the evaluation of the nonlinearity to selected model nodes. Finally, the application of the POD to the heat radiation equation enables a rapid adjustment of the emissivity. Thus, the reduced system is no longer dependent on the original degree of freedom and the total simulation time is shortened by several orders of magnitude

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described
    corecore