In this paper we study the approximation of a distributed optimal control
problem for linear para\-bolic PDEs with model order reduction based on Proper
Orthogonal Decomposition (POD-MOR). POD-MOR is a Galerkin approach where the
basis functions are obtained upon information contained in time snapshots of
the parabolic PDE related to given input data. In the present work we show that
for POD-MOR in optimal control of parabolic equations it is important to have
knowledge about the controlled system at the right time instances. For the
determination of the time instances (snapshot locations) we propose an
a-posteriori error control concept which is based on a reformulation of the
optimality system of the underlying optimal control problem as a second order
in time and fourth order in space elliptic system which is approximated by a
space-time finite element method. Finally, we present numerical tests to
illustrate our approach and to show the effectiveness of the method in
comparison to existing approaches