895 research outputs found

    Smooth quasi-developable surfaces bounded by smooth curves

    Full text link
    Computing a quasi-developable strip surface bounded by design curves finds wide industrial applications. Existing methods compute discrete surfaces composed of developable lines connecting sampling points on input curves which are not adequate for generating smooth quasi-developable surfaces. We propose the first method which is capable of exploring the full solution space of continuous input curves to compute a smooth quasi-developable ruled surface with as large developability as possible. The resulting surface is exactly bounded by the input smooth curves and is guaranteed to have no self-intersections. The main contribution is a variational approach to compute a continuous mapping of parameters of input curves by minimizing a function evaluating surface developability. Moreover, we also present an algorithm to represent a resulting surface as a B-spline surface when input curves are B-spline curves.Comment: 18 page

    From 4D medical images (CT, MRI, and Ultrasound) to 4D structured mesh models of the left ventricular endocardium for patient-specific simulations

    Get PDF
    With cardiovascular disease (CVD) remaining the primary cause of death worldwide, early detection of CVDs becomes essential. The intracardiac flow is an important component of ventricular function, motion kinetics, wash-out of ventricular chambers, and ventricular energetics. Coupling between Computational Fluid Dynamics (CFD) simulations and medical images can play a fundamental role in terms of patient-specific diagnostic tools. From a technical perspective, CFD simulations with moving boundaries could easily lead to negative volumes errors and the sudden failure of the simulation. The generation of high-quality 4D meshes (3D in space + time) with 1-to-l vertex becomes essential to perform a CFD simulation with moving boundaries. In this context, we developed a semiautomatic morphing tool able to create 4D high-quality structured meshes starting from a segmented 4D dataset. To prove the versatility and efficiency, the method was tested on three different 4D datasets (Ultrasound, MRI, and CT) by evaluating the quality and accuracy of the resulting 4D meshes. Furthermore, an estimation of some physiological quantities is accomplished for the 4D CT reconstruction. Future research will aim at extending the region of interest, further automation of the meshing algorithm, and generating structured hexahedral mesh models both for the blood and myocardial volume

    InterpolaÄŤnĂ­ metody pro konstrukci ploch

    Get PDF

    Assessment criteria for 2D shape transformations in animation

    Get PDF
    The assessment of 2D shape transformations (or morphing) for animation is a difficult task because it is a multi-dimensional problem. Existing morphing techniques pay most attention to shape information interactive control and mathematical simplicity. This paper shows that it is not enough to use shape information alone, and we should consider other factors such as structure, dynamics, timing, etc. The paper also shows that an overall objective assessment of morphing is impossible because factors such as timing are related to subjective judgement, yet local objective assessment criteria, e.g. based on shape, are available. We propose using “area preservation” as the shape criterion for the 2D case as an acceptable approximation to “volume preservation” in reality, and use it to establish cases in which a number of existing techniques give clearly incorrect results. The possibility of deriving objective assessment criteria for dynamics simulations and timing under certain conditions is discussed

    Learning a Manifold of Fonts

    Get PDF
    The design and manipulation of typefaces and fonts is an area requiring substantial expertise; it can take many years of study to become a proficient typographer. At the same time, the use of typefaces is ubiquitous; there are many users who, while not experts, would like to be more involved in tweaking or changing existing fonts without suffering the learning curve of professional typography packages. Given the wealth of fonts that are available today, we would like to exploit the expertise used to produce these fonts, and to enable everyday users to create, explore, and edit fonts. To this end, we build a generative manifold of standard fonts. Every location on the manifold corresponds to a unique and novel typeface, and is obtained by learning a non-linear mapping that intelligently interpolates and extrapolates existing fonts. Using the manifold, we can smoothly interpolate and move between existing fonts. We can also use the manifold as a constraint that makes a variety of new applications possible. For instance, when editing a single character, we can update all the other glyphs in a font simultaneously to keep them compatible with our changes

    Implicit geological modelling : a new approach to 3D volumetric national-scale geological models

    Get PDF
    This report provides information on implicit geological modelling and a possible application in the construction of national-scale (in the UK context) volumetric geological models. The stratigraphy of the UK is reviewed in the context of unconformity-bound stratigraphic sequences and how these can be applied in the modelling process. A range of input datasets are outlined with discussion on how these can be used and where gaps exist in available information. Model outputs are discussed highlighting the new opportunities offered by 3D stratigraphic grids. Some of the advantages and disadvantages of implicit modelling are discussed

    Matching image feature structures using shoulder analysis method

    Full text link
    • …
    corecore