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Fonts are continuously generated at any location on the manifold 
providing a smooth transition between existing fonts and novel 

synthesized typefaces
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Figure 1: The manifold of fonts. On the left, we show a 2D manifold learnt from 46 fonts. Every point in the manifold corresponds to a
complete font; as you move across the manifold the corresponding font smoothly changes by interpolating and extrapolating the the original
training fonts. We demonstrate this effect with the text on the right; each character is created from a different 2D location in the manifold
that is obtained by moving along the straight line shown on the left. The colored dots match up with the colored words. The heatmap of the
manifold is indicative of the likelihood of a location containing a good font. In addition to the results presented in this paper, we provide a
standalone Javascript based viewer that allows users to explore both the joint manifold of fonts and manifolds for individual characters.

Abstract

The design and manipulation of typefaces and fonts is an area requir-
ing substantial expertise; it can take many years of study to become
a proficient typographer. At the same time, the use of typefaces is
ubiquitous; there are many users who, while not experts, would like
to be more involved in tweaking or changing existing fonts without
suffering the learning curve of professional typography packages.

Given the wealth of fonts that are available today, we would like
to exploit the expertise used to produce these fonts, and to enable
everyday users to create, explore, and edit fonts. To this end, we
build a generative manifold of standard fonts. Every location on the
manifold corresponds to a unique and novel typeface, and is obtained
by learning a non-linear mapping that intelligently interpolates and
extrapolates existing fonts. Using the manifold, we can smoothly
interpolate and move between existing fonts. We can also use the
manifold as a constraint that makes a variety of new applications
possible. For instance, when editing a single character, we can
update all the other glyphs in a font simultaneously to keep them
compatible with our changes.

CR Categories: I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling; I.2.6 [Artificial Intelligence]: Learning;

Keywords: digital typography, shape matching, modeling

Links: DL PDF

1 Introduction

Everyone has access to a large number of fonts; they are already
installed with our operating systems, provided by software packages,
or may be obtained from online repositories; for example, hundreds
are available on the ‘Google Web Fonts’ project1. These fonts deliver
a wide range of typefaces, each of which is the result of many hours
of design by professional typographers, and each of whom has many
years of training and experience, not to mention their artistry. Thus,
a collection of fonts comprises a huge body of information about the
appearance and style of type.

Many users of type are interested in its appearance and manipulation
but do not have the training, or time, to make use of professional
editing tools. The steep learning curves of font packages act as a
barrier to more users exploring and manipulating fonts and creating
new typefaces. We are motivated by a desire to give users who
have no formal training in typography the ability to explore and
manipulate fonts and to create new typefaces.

Starting from a different view, consider the set of all possible closed
curves. Clearly, only a very small fraction of these curves are
plausible glyphs that could represent a character. While it might
take considerable expertise to start from a set of arbitrary curves
and build a typeface, we already have access to many examples
of valid glyphs. From a machine learning perspective, the set of
typefaces lies in a low dimensional manifold within the space of all
possible curves. Furthermore, we have access to a large number of
training examples (fonts) that are known to lie within this manifold.
Thus, identifying this manifold is an unsupervised learning task that,
when completed, condenses the knowledge and expertise of many
typographers into a single space. From within this space we can
not only recover the original fonts, but also generate a continuum of
novel fonts since every location in the space can generate a complete
typeface.

In this paper we present a framework to perform this learning task
and identify a manifold for fonts. We take, as input, a collection

1http://www.google.com/fonts
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of existing font files and create a low dimensional space such that
every location in this space generates a novel typeface through the
interpolation and extrapolation of these fonts. To the best of our
knowledge, this is the first work to learn a fully generative model
for typefaces in a completely unsupervised manner; one that uses
only existing fonts as input. This is advantageous since, as we have
already discussed, there are a large number of fonts already available
and our learning process is fully automatic; it requires neither user
intervention nor input from a professional typographer.

We acknowledge that our learning based approach in no way replaces
the role of a typographer. Since it is an unsupervised process, we do
not follow a formal process of identifying individual characteristics
or components (e.g. stroke axes and contrast). Instead we make use
of this information by proxy, through the existing font designs, and
summarize it into a form that can be exploited by untrained users;
our learning to generate good fonts is dependent on well designed
typefaces.

The manifold may also be of use to experienced type designers. It
allows for exploration of existing fonts and can be used to identify
regions that are missing typefaces. A generated font can always be
used as a starting point for subsequent editing. Also, the smooth
interpolation between fonts can be used as an artistic tool to create
visual designs that would be time consuming to produce otherwise
(e.g. creating a series of intermediate typefaces between two type-
faces or even automatically producing different weights of a single
typeface between two extrema).

Our Contributions Our paper makes contributions in terms of
both its technical approach and its novel applications. On the tech-
nical side, we present a new energy model specifically designed to
provide dense correspondences between character outlines across
multiple fonts. In addition, we describe a representation scheme
and coarse-to-fine approach that allows for high quality optimiza-
tion results to be obtained for our model. We demonstrate that the
results of our optimization can be used with a powerful non-linear
dimensionality reduction technique to produce a low dimensional
manifold that captures the variation within existing fonts; this allows
it to be used as a generative model for new typefaces.

Once the manifold has been obtained, a number of interesting appli-
cations are made possible. We demonstrate the ability to smoothly
interpolate between fonts at a character by character level as an
exciting artistic tool. Non-expert users are provided with the ability
to manipulate an entire font by just modifying a single character;
their edits can be automatically propagated to maintain visual con-
sistency across the font. The manifold may also be explored directly
to discover new typefaces and we include an interactive tool (a stan-
dalone Javascript based browser) that allows readers to explore two
dimensional versions of both joint manifolds (all characters) and
those for individual characters.

2 Previous Work

In the following we discuss the most relevant previous work. Note
that commonly ‘typeface’ refers to the design of a type, e.g. Hel-
vetica, and a ‘font’ refers to a specific instantiation, e.g. Helvetica
Semi-Bold Italic. Similarly, a ‘glyph’ refers to the specific design of
a ‘character’. However, both of these pairs of terms are often used
interchangeably, and hence we do not differentiate strictly between
them in this paper.

Parametric Font Design As we have discussed, designing new
fonts from scratch requires professional skills and is a very time-
consuming process. Not surprisingly, there exists a comprehensive
body of research to simplify this process. Parameterizing fonts is one
method of allowing a user to create novel fonts by just adjusting a

few parameters. The well-known Metafont system by Knuth [1986]
supports parametric fonts, and was used to create most of the Com-
puter Modern typeface family through parameterization. Shamir and
Rappoport [1998] proposed a system, where fonts are represented
through high-level parametric features (e.g. serifs, arcs and joints),
and constraints on those features. This enables the user to modify
a glyph’s feature, such as the width of a stem, and it be propagated
to all other glyphs. However, the feature and constraint extraction
is not fully automatic, and requires user assistance. The approach
by Hu and Hersch [2001] extends this idea with parameterizable
shape components, that can be assembled to form glyphs. Once
these assemblies are defined, global parameters can create many
variants of a font. However, creating these assemblies has to be
done for a particular typeface and possibly even for a specific subset
[Hassan et al. 2010]. Lau [2009] proposes to learn a parametric
model with constraints from examples. However, the parametric
model is simple and allows the user to only adjust parameters like
its weight or width.

There are industry standards for specifying fonts with more advanced
interpolation between different glyph shapes, including ‘OpenType
GX’ and ‘Adobe Multiple Masters’ fonts [Adobe Systems 1997]. In
the case of the latter, these are designed such that each glyph has a set
of master outlines where each bézier curve control point is in exact
correspondence; these are the multiple masters for each glyph. A
particular instance is then generated by specifying a weight vector (a
linear convex combination) to apply to each control point to generate
the final outline. Our work is similar in philosophy except that,
instead of relying on a complex design process where every single
font glyph has to be created with an identical parameterization (the
correspondences between control points), we take a large number of
existing fonts and automatically find the correspondences.

Data-Driven Font Synthesis and Hinting Suveeranont and
Igarashi [2010] automatically derive a skeleton and an outline for
each letter of a set of fonts. New fonts can then be created through a
feature-preserving, weighted blend of skeletons and outlines. How-
ever, most results exhibit slight but quite noticeable distortions
within glyphs.

Hersch and Betrisey [1991] and Zongker et al. [2000] aim to (semi)-
automatically translate hints (i.e., the rules on how to render a char-
acter at low resolutions, such as on-screen) to a font without hints,
which an artist can then tweak to perfection. The former technique
requires a model font to be manually created, while the latter can
use any font that has hints as a reference. While their goal is differ-
ent from ours, they also find correspondences between the outlines
of glyphs. More accurately, they match existing control points on
the contour curves. This assumes that the existing knots describe
similar locations, and hence only very similar fonts can be matched.
Furthermore, the resulting matches are also very sparse, and would
not be sufficient for interpolating glyphs.

Zitnick [2013] recently automated hand-writing beautification from
stylus input, by essentially averaging multiple instances of the same
strokes. To this end, input strokes need to be matched. As demon-
strated, curvature-based sampling of the input strokes enables reli-
able matching. Unfortunately, this matching method relies on the
temporal input strokes, which do not exist in our case.

Browsing and Structuring Fonts Almost all commonly used
applications involving type, such as word processors, let a user
access fonts by browsing their names, which is not very intuitive.
Structuring fonts by similarity and creating an embedding in which
the user can more intuitively navigate would be a useful tool, as
proposed by Loviscach [2010]. Note that our manifold serves a
different purpose. We do not use the manifold to let the user browse
for fonts, rather it is a tool to enable the synthesis of new fonts.
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Shape Interpolation The matching and interpolating of 2D and
3D shapes has been studied extensively [Alexa et al. 2000; Kazhdan
et al. 2004; van Kaick et al. 2011]. Generally speaking, these tech-
niques will have difficulties accurately matching and interpolating
glyphs, unless a font-specific regularization term is used, due to the
very different features that the same glyph from different fonts may
exhibit (e.g. the letter ‘i’ with and without serifs). Furthermore, the
pairwise matching of glyphs is not sufficient to build a generative
manifold of fonts, since the creating of an appropriate embedding
requires a single consistent representation.

Very recently, methods have appeared [Kalogerakis et al. 2012; Kim
et al. 2013] that analyze large collections of 3D shapes, from which
new shapes are synthesized by assembling plausible combinations
of shape components either through templates or probabilistically.
In some ways, we are addressing a 2D version of that problem.
However, we do not decompose our shapes, i.e. the glyphs, into
components. Instead we directly match and interpolate the outlines
of the glyphs.

3 Character Matching

The font manifold is built in two stages. We begin by matching
each individual character (glyph) across all fonts using an energy
based optimization procedure with a coarse-to-fine approach; this is
our primary contribution. We then use the dense correspondences
for each character as a basis to perform the second stage of fitting
a generative, non-linear manifold; this ties together the different
characters into a single space.

In this section, we begin with a brief discussion about paramteriza-
tion and then describe the matching algorithm. We provide further
details on the manifold in the subsequent section.

3.1 Universal Parameterization

In order to create novel fonts using a generative manifold model, we
must be able to express every font in a universal parameterization
(UP). That is, we should be able to construct a high dimensional
vector that both contains all the information necessary to draw each
character, and, has its elements in correspondence between differ-
ent fonts. This means that small changes in the generative space
will result in smooth changes in the appearance of the font. The
‘Adobe Multiple Masters’ fonts [Adobe Systems 1997] makes use
of such a parameterization since each of the masters for a single
glyph is laboriously designed with each bézier curve control point
in correspondence.

The ordinary fonts we use are not designed with such a parameteriza-
tion. Instead, we must find a UP automatically by reparameterizing
each of the characters across all the fonts; we use a polyline repre-
sentation to achieve this. This is universal since every vertex in the
polyline is consistent (in correspondence) across all the fonts for a
given glyph; we assume consistent topology between glyphs. Fur-
thermore, our matching algorithm can reparameterize glyph outlines
for all fonts simultaneously. Simultaneous matching is a key benefit
of our approach. If a pairwise matching technique were used, two
additional challenges would have to be overcome. Firstly, there is a
quadratic scaling in cost for matching all possible pairwise combina-
tions. Secondly, there is the problem of consistency when converting
the pairwise matches to a UP; namely that matching around a loop
of fonts does not lead to the identity, i.e. A→ B → C → A , I .

Topology Using outlines limits our approach to glyphs with con-
sistent topology across fonts (a one-to-one correspondence between
the curves). This is not usually a problem for standard fonts except
for cases with an alternate form exists: e.g. ‘g’ has an italic form ‘g’.

In such cases, we treat the two variants as independent glyphs; we
note that an interim state between the two is never used and would
not generate a reasonable character.

3.2 Outline Preparation

Each character is matched individually across all the different fonts.
We describe the process for a single character. Since the matching
is independent between characters, this matching process may be
performed in parallel. We used a dataset of 46 standard fonts; we
provide details of the specific fonts used in supplement § A.

Outline Extraction We extract the outlines of each character from
a truetype file using a standard library.2 Once we have obtained the
raw Bézier curves for each outline, for example the the character ‘o’
has an inner and outer outline, we densely sample N points around
each closed curve to produce a polyline representation.

At this stage, we also extract the metrics from the font file (for
example, ‘horizontal advance’ and ‘vertical linegap’ distances) that
will be used later.

Normalization Given the polylines, a normalization process is
performed to ensure that the different glyphs from each font are
at the same size so that the curvature values are comparable. We
subtract the mean from the vertices and rescale them to have a unit
variance; the offset and scale of this transformation is saved and is
used later, in the manifold, to restore the glyphs true size and aspect
ratio.

Initial Alignment Some characters have multiple outlines that are
stored inconsistently in different font files; we must identify the
correct permutation to, for example, match the outside of one font to
the outside of another. We find the outline correspondence between
two glyphs by evaluating the minimal squared distance between the
sampled vertices for all permutations, and picking the one with the
lowest score; this is inexpensive since there are very few outlines
per glyph. We also use this method to align the ‘starting points’ on
the polylines. Let {ui } and {v j }, for i , j ∈ [1..N ], as two outlines.
The distance matrix D is specified as

Di , j = | | ui − v j | |
2 (1)

and suming along the diagonals gives

∆n =
∑

(i− j) mod N≡n

Di , j . (2)

The minimal value ∆∗n = minn ∆n gives the matching cost between
the outlines and the value of n that achieves the minimum is the
phase shift that aligns the starting points.

This alignment is performed pairwise but we need a global initial-
ization across all the different fonts. We use the ∆∗n score between
pairs of fonts to build a minimum spanning tree and propagate the
pairwise phase shifts; afterwards, the outlines are roughly aligned
over all the fonts (a suitable initialization for the optimization).

3.3 Energy Optimization

After the preparation stage we have a set of polylines (containing N
samples) corresponding to the same outline over M different fonts.
For characters with multiple outlines, each outline is processed
independently so we will assume a single outline for clarity. The
outline may be represented as a sampled, closed, parametric curve

u(t) =
[
x(t)
y(t)

]
(3)

2We used the ‘stb ttf’ public domain library (http://nothings.org)
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Figure 2: Dense correspondence results for the character ‘a’. We
show a representative sample from across 46 fonts used. The colored
dots (subsampled from the actual polyline) on the outline indicate
corresponding points after simultaneous optimization. We can see
that corners and concavities are well matched, despite the variation
in the shape, and that the outlines are all evenly parameterized.

where the parameter t ∈ [0, 1]. We denote the sampled set of outlines
as {ui ,m } where

ui ,m = u(m)(ti ,m ) (4)

is the outline for the mth font evaluated at sample ti , i ∈ [1, N ].
Initially, all the outlines are uniformly sampled such that the dif-
ference (t(i+1),m − ti ,m ) is constant. Our goal is to update all of
these parameters such that for a given i, the points ui ,m across the
fonts m = [1,M] are in shape correspondence. This is equivalent
to reparameterizing each outline into a common universal parame-
terization. Figure 2 illustrates this parameterization by showing the
corresponding samples as dots with the same color across outlines
from different fonts.

We match the shapes of the outlines using both curvature and normal
information. The curvature is defined as

κ(t) =
x′y′′ − y′x′′

(x′)2 + (y′)2
(5)

where x′ = d/dt
(
x(t)

)
, x′′ = d2

/dt2
(
x(t)

)
and similarly for y′ and

y′′. We also have the curve normal as

η(t) =
1(

(x′)2 + (y′)2
) 1

2

[
x′

y′

]
. (6)

To simplify notation we will use κi ,m to denote the curvature of
curve um (t) evaluated at parameter ti ,m . Similarly, we use ηi ,m for
the normal.

The Energy Model Our energy model is a weighted combination
of terms involving the encouraging consistent curvature and normal
information across fonts as well as an elastic regularization term
with a reparameterization constraint. Formally, the energy E(t), with
with t = [· · · ti ,m · · · ]T, is given by

E(t) = Eκ (t) + λelEel(t) + ληE
up
η (t) + ληEdown

η (t) (7)

along with the constraint A t − b ≥ 0. We will now describe these
terms in our energy function.

Curvature Variation When all the outlines are in correct corre-
spondence, the variance in curvature across the different fonts should
be small. That is, sharp concavities and convexities should occur
at the same locations and regions of low curvature should coincide.
The first term in our energy function seeks to minimize this curvature
variance. However, at sharp corners, the curvature tends to infinity
which will dominate the cost function; to avoid this, we remap the
curvature through an exponential function. This resulting energy is

Eκ ({ti ,m }) =
N∑
i=1

1 − exp

− 1
2M

γ

M∑
m=1

(
κi ,m − κ̄i

)2

 (8)

where

κ̄i =
1
M

M∑
j=1

κi , j (9)

is the mean curvature across all fonts at sample i and γ is a constant
parameter.

Elasticity Regularisation If we minimize the curvature variation
alone, all the samples will simply move to an area of low curvature
and not accurately represent the outline. To prevent this from occur-
ring, we include an elastic regularization term that encourages the
samples to spread out around the whole of the outline while allowing
them to stretch or contract when necessary to follow the curvature.
The elasticity term is

Eel({ti ,m }) =
N∑
i=1

M∑
m=1

[(
t(i+1) mod N,m − ti ,m

)
−

1
N

]2
(10)

where the mod N accounts for the wrap around of the closed curve.

Monotonic Constraint To be a valid reparameterization the map-
ping must be monotonic, that is the samples across the outline of a
given font must maintain the same ordering. We therefore need(

t(i+1) mod N,m − ti ,m
)
≥ 0 ∀ i ,m . (11)

We can enforce this as a linear constraint using a sparse matrix A
and vector b

A t − b ≥ 0 . (12)

We note that the same matrix and vector may be used to encode
equation (10) as

Eel({ti ,m }) =
∥∥∥∥∥A t − b −

1
N

1
∥∥∥∥∥2

. (13)

Normal Matching When substantial stretching or compression of
the correspondences is required, the elasticity regularization prevents
desirable matching. This occurs when matching the extreme cases
of serif and sans serif fonts, as demonstrated in Figure 3. To cope
with this situation, we add an energy term that minimizes the normal
variance locally in the regions where serifs occur for vertical and
horizontal normals. The normal energy

Eη ({ti ,m }) =
N∑
i=1

M∑
m=1

ρ(ui ,m )
∥∥∥Φi ,m − Φ̄i∥∥∥2 (14)

is a summation over two terms. The first term

ρ(ui ,m ) = exp
(
−(ui ,m − q)2

)
(15)

is non-zero where the outline is near q; this is chosen to select either
the top or the bottom of the character in the normalized outline. The
second term

Φi ,m = exp
(
−β

(
ηi ,m · r − 1

))
(16)
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Without the normal term: With the normal term:
the serif has incorrect

matches on both of the legs
the elasticity is relaxed, allowing 

the legs to match

Figure 3: The effect of the normal matching energy term. With
some serifs there can be a dramatic stretching or compression of
the corresponding samples that is too expensive under the elastic
term of equation (10). This is the situation on the left matching the
font ‘Calibri’ to ‘Times New Roman’. The addition of the normal
matching term, equation (14), allows the elastic term to be relaxed
locally at the serif and the terminal is matched correctly.

is non-zero when the normal points in the direction of r; this is set
to point upwards at the top and downwards at the bottom. We then
use a quadratic cost against the mean

Φ̄i =
1
M

M∑
m=1

Φi ,m (17)

over the different fonts to encourage consistency; e.g. all the upwards
normals at the top of the letter should occur at the same parameteri-
zations. The constants β, r and q are chosen to localize the effect
to vertical normals pointing upwards at the top of the outline and
downwards at the bottom (two terms are used).

Optimization The gradients with respect to {ti ,m } may be calcu-
lated for all the terms (and the constraints) and may be optimized
using standard constrained non-linear optimization methods. We
used the ‘fmincon’ solver in ‘Matlab’ using the interior-point algo-
rithm and LBFGS hessian updates.

3.4 Coarse-to-Fine Approach

While our cost function encodes the desirable properties for good
correspondences, the energy is prone to local minima, due, in par-
ticular, to the monotonic constraints. Figure 4 shows an example
of this when matching four different fonts. We overcome this prob-
lem by using a Fourier representation of the curve and running the
optimization in a coarse-to-fine approach. We observe that the low
frequency (smoothed) representation of characters is very similar
and use this to guide our optimizations to good minima.

Elliptical Fourier Representation Elliptic Fourier descriptors
[Kuhl and Giardina 1982] express a closed curve as a summation of
elliptic harmonics (in a similar manner to a standard Fourier series).
Using the notation from equation (3), we can express the closed
outline as a periodic function

x(t) = a0 +
∞∑
k=1

[
ak cos

(
2kπt
T

)
+ ck sin

(
2kπt
T

)]
(18)

where T is the perimeter of the contour, and t ∈ [0, 1] is our standard
parameter; y(t) is defined in a similar manner. Determining the
coefficients {ak , ck } is a straight-forward procedure and we refer to
its treatment in [Kuhl and Giardina 1982] and [Prisacariu and Reid
2011].

Since it is impossible to hold an infinite number of coefficients,
we must truncate our representation at some frequency and only
store the first coefficients. If we store too few coefficients then
we lose all the high frequency detail in the shape. While this is

Without the coarse-to-fine approach: an incorrect local 
minimum is found where the concavities are out of correspondence

Figure 4: Direct minimization of our cost function is prone to fall
into local minima that results in poor correspondences. Here we
show the correspondences between the fonts ‘Tahoma’, ‘Times New
Roman’, ‘Narkisim’, and ‘Miriam’. The highlighted regions show
that the two sharp concavities are not in correspondence. Please
compare to Figure 5 where we show results using our coarse-to-fine
approach.

bad for shape recovery, it is useful to us since character outlines
have very similar shapes at low frequency; this is true even if the
full shapes (including the high frequency components) are quite
different. We take advantage of this to guide our optimization to a
good minima by first performing the minimization using only the low
frequency components (we use a Gaussian filter). We then use the
result of this optimization as the initial starting point for a subsequent
optimization that incorporates more coefficients (higher frequencies).
By gradually incorporating the high frequency components in a
coarse-to-fine strategy we guide the optimization to better minima.
Figure 5 demonstrates this procedure and we can see the benefit of
the approach by comparing the results in the last column to Figure 4.
Figure 2 shows some more results for a sample of the other fonts;
these are all matched at once.

4 Finding the Manifold

As a result of the character matching in the previous section, we
have found a consistent parameterization for each character across
all fonts. We no longer need the elliptical Fourier components and
instead represent each outline as a set of i ∈ [1, N ] samples {u(h)

i ,m }

for each font m ∈ [1,M] and now character h ∈ [1, H]. We also
know, that each point sample i will be in correspondence across the
different fonts.

While a collection of arbitrary polylines contains two degrees-of-
freedom per vertex, the fact that our set of polylines (now matched
to lie in correspondence) represent glyphs means that they should
contain significant redundancy; the true degrees-of-freedom will be
far fewer and depend on the typography rules used to design the fonts.
To this end, we learn a low dimensional space (representing the few
true degrees-of-freedom) and a mapping that generates the high
dimensional set polylines that make up a font. We begin with a brief
introduction to the generative model we use, the Gaussian Process
Latent Variable Model (GP-LVM), before providing details about
the font manifold. We provide a more extensive discussion, offering
greater insight into the model of the GP-LVM, in supplement § B.

4.1 The GP-LVM

Gaussian Processes (GPs) [Rasmussen and Williams 2006] are non-
parametric models that consist of distributions over functions. They
can be used as a prior over functions to encourage smoothness. They
have the property that for a function taken from a GP, any discrete
set of draws under the function will be normally distributed. Thus
if the function is evaluated at a series of values X = [· · · x j · · · ]T

from a multidimensional input space x j ∈ R Q , the corresponding
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2 Components 4 Components 6 Components 10 Components 20 Components 26 Components 40 Components

Figure 5: The minimization results combining our cost function with an elliptical Fourier representation in a coarse-to-fine approach. We
show correspondences between the fonts ‘Tahoma’, ‘Times New Roman’ and ‘Narkisim’. The optimization proceeds from left to right; at each
stage we use the result of the previous optimization to initialize the next while increasing the cut-off of the low pass filter over the Fourier
components. Even though the final outlines are quite different, at low numbers of components we can see that the shapes are very similar and
use this to guide the optimization to good minima. Please see the improvement over the results in Figure 4. The results are found to be in good
correspondence with the other font examples given in Figure 2.

output values Y = [· · · y j · · · ]T in a multidimensional output space
y j ∈ R D will be distributed as

P (Y |X) = N (Y |M(X),C(X , X | θ)) (19)

where M(X) is some mean function and C(X , X | θ) is a covariance
function that creates a positive semi-definite covariance matrix. If
we assume that our data has been normalized to be zero mean then
we can neglect the mean function as M(X) = 0. We have used
the notation X = [· · · x j · · · ]T and Y = [· · · y j · · · ]T to represent a
collection of vectors

GP-LVM The Gaussian Process Latent Variable Model (GP-
LVM) [Lawrence 2005] is a powerful non-linear, dimensionality
reduction technique that produces a probabilistic, generative model
of a high dimensional dataset Y with a set of low dimensional ‘latent’
variables X . Note that the parameters are ‘reversed’ with respect to
the GP; the GP-LVM in effect is a a function mapping from the low
dimensional manifold (latent) space to a high dimensional output
space, so we have Q � D.

The Covariance Function The covariance function defines the
mapping between X and Y . The function must accept one or more
samples from the input space as each argument and return a covari-
ance value between each pairwise combination of samples. The
function can depend on a small number of ‘hyperparameters’ that
we shall denote with θ. The elements a particular covariance ma-
trix, given by a set of inputs to the function, are indexed using the
notation for representing a set of vectors described above. Thus[

C
(

[· · · x j · · · ]T , [· · · x j · · · ]T
∣∣∣ θ)]

i , j
= c

(
xi , x j

∣∣∣ θ) (20)

where [·]i , j denotes the element at the ith row and j th column of
the matrix and c(xi , x j |θ) denotes the covariance between two input
vectors.

We use the radial basis function (RBF)

c
(
xi , x j

∣∣∣ θ) = α exp
(
−

1
2
ψ ‖xi − x j ‖

2
)

(21)

where α andψ are the hyperparameters and therefore θ = [α,ψ]. We
can see that this covariance function will produce a smooth mapping
from the input space to the output space since nearby input vectors
will have a high covariance and therefore the output vectors will be
correlated. Similarly, if the input vectors are far apart (relative to the
length-scale parameter ψ) then there will be a low covariance and
the corresponding output vectors will be independent of one another.

Training The training process for the GP-LVM considers the like-
lihood of the high dimensional data Y as

P(Y | X , θ) =
M∏

m=1

N
(
ym | 0,C(X , X | θ) +σ2I

)
(22)

where there are M training examples (one for each font) and I is the
identity matrix. We maximize this likelihood jointly over the latent
vectors X = [· · · x j · · · ]T as well as the hyperparameters θ such that

X∗ , θ∗ = arg max
X ,θ

log [P(Y | X , θ)] . (23)

The σ value in (22) is a noise variance that accounts for any mis-
match between the generated high dimensional vectors and the ob-
served training data. In our experiments, the noise variation was
found to be very small, suggesting that the font outlines do indeed
lie on a low dimensional manifold.

The covariance function is a complex, non-linear function, both
in terms of its relationship to X and to θ; this means that the op-
timization cannot be performed analytically. However, gradients
may be found with respect to both so training may be performed
using Conjugate Gradients [Lawrence 2005]. Such methods require
initial values for both X and θ. As is standard, [Lawrence 2005], we
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initialize the latent values with a linear PCA reduction of the high
dimensional vectors Y and set the hyperparameters to conservative
values with a wide uninformative prior (log(θ) ∼ N (0, I ), initialized
with the mean).

4.2 Font Manifold

The GP-LVM model is well suited to learning a manifold of fonts
since we are starting with a very high dimensional space. If we
have (2N ) points for each outline (some characters have multiple
outlines) and H characters we will have the high dimensional space
as dimension D ≥ (2NH). In our experiments we used N = 512
and when using all the characters (lower- and upper-case) and the
digits we have H = 62. Previous work has demonstrated that the
non-linear embeddings produced by the GP-LVM require orders
of magnitude fewer latent dimensions than linear models such as
Principal Component Analysis (PCA); see [Prisacariu and Reid
2011] for an example.

Training the GP-LVM We concatenate all of our outline samples
{u(h)

i ,m } to generate M high dimensional vectors um , one for each
font, as

um =



u(1)

1,m

u(1)
2,m
...


T 

u(2)
1,m

u(2)
2,m
...


T

. . .


T

(24)

and we subtract off the mean ū to produce the ym vectors as

ym = um − ū , ū = Em [um ] (25)

for use with the GP-LVM. This allows us to use a zero mean function.
The mean vector ū is actually the average font from the training data,
shown in Figure 12. This mean will be added on to any new ŷ vector
returned from the manifold to generate a new font outline vector û;
this means that the average font will be returned in regions of the
manifold that are far away from the embedded fonts.

The GP-LVM is trained using these outline vectors for Y , as de-
scribed in § 4.1, to produce the optimal set of low dimensional
vectors X∗ = [· · · x∗m · · · ]T and hyperparameters θ∗ .

Generating a Font Once we have learnt the latent variables X∗

and hyperparameters θ∗ , generating a new font from the manifold is
straight-forward (described in supplement § B.2) and computation-
ally inexpensive. Consider x̂ as our location on the manifold. We
obtain the corresponding high dimensional vector ŷ as

ŷ = C(x̂, X∗ | θ∗)
[
C(X∗ , X∗ | θ∗)

]−1
Y (26)

where [C(X∗ , X∗ | θ∗)]−1 is precomputed and finding the 1 ×M row
vector C(x̂, X∗ | θ∗) is a simple application of equation (20). From ŷ,
we add on the mean vector ū, from (25), to get û, which contains the
outline polylines from which all the characters can then be drawn.

Example Manifold Figure 1 illustrates the result of this process
generating a two dimensional manifold (i.e. Q = 2). Each of the
grey dots on the heatmap represents a x j vector that corresponds to
a font. In regions surrounding the fonts, the manifold will generate
novel u vectors, each of which corresponds to a new and unique font.
Therefore by traversing the manifold we smoothly interpolate and
extrapolate from the existing fonts.

To illustrate the fonts generated from this manifold, the text to the
right of the figure is generated by taking a linear trajectory across the
manifold (marked in the figure in white with colored dots) and using
the location to generate each character individually. The colored
words match up with the colored dots as the font changes from a sans
region of the manifold, in red at the start, to a serif region, in orange

at the end. Every character is made from a non-linear mixture of a
number of the input fonts and is representative of an entire typeface.
The smooth motion over the manifold means that we observe no
sharp transitions between the fonts but rather a gradual and disguised
one. Each location on the manifold is able to generate an entire set
of characters as in Figure 6.

Probabilistic Mapping The probabilistic nature of the mapping
is displayed by the heatmap, in Figure 1, that encodes the model
variance. Red regions are well mapped by the embedded fonts and
are therefore likely to generate good fonts whereas the blue regions
are far from existing data and are therefore more in the realm of
extrapolation and hence a potential falloff in quality.

Manifold Dimensionality For the purpose of visualization, we
have limited the manifold dimensionally in the figures to Q = 2. In
reality, the true dimensionality of the manifold may be higher and
we used a more advanced derivate of the GP-LVM, the Bayesian
GP-LVM of Titsias and Lawrence [2010], to estimate it; we provide
further details in supplement § B.3. For the joint manifold, shown
in Figures 1 and 6, the best setting is obtained with Q = 4 mani-
fold; this explains the separation into islands when constrained to
Q = 2. Manifolds for individual characters may differ in intrinsic
dimensionality, e.g. the character ‘g’ has Q = 3.

Additional Information As well as the outline information, we
can also concatenate additional font specific information to the end
of the high dimensional vectors. We add the outline offset and scale,
which were taken off the font as part of the normalization process
in § 3.2, as well as the font metric information (horizontal and
vertical advance distances). These values will then be interpolated
and extrapolated as appropriate along with the outlines to ensure
the generated font has the correct scaling and metric information
available.

Recovery of Bézier Curves Although the polyline representation
is sufficient for browsing and displaying characters, to generate an
actual font file (or for editing) we need to convert the polyline back
into a bézier curve. We can do this using a standard least-squares
fitting approach although there has been font specific research on
curve fitting from optical scans, e.g. [Itoh and Ohno 1993], which
could possibly confer improved performance.

Projection onto the Manifold Once we have trained a GP-LVM
model, there are established techniques (e.g. [Navaratnam et al.
2007] or [Prisacariu and Reid 2011]) that may be used to project
high-dimensional vectors, i.e. character outlines, onto the manifold.
The standard approach is to define a cost function (or error measure)
that compares a generated character outline y to some target ytarget;
in the case of fonts, we use use the chamfer distance [Barrow et al.
1977] between the two outlines Echamfer(y, ytarget). An optimization
is then performed; starting from an initial location on the manifold
x̃, the corresponding outline ỹ(x̃) is found using (26). We then
minimize

Echamfer
(
ỹ(x̃), ytarget

)
(27)

iteratively by taking gradients with respect to x̃; this is performed
numerically. Since there may be local minima on the manifold we
run the optimization from multiple starting locations, which span
the manifold, in parallel; we can use the embedded font locations
as starting points. This is not an expensive process since the dimen-
sionality of the manifold Q is low and there are efficient ways to
compute the chamfer distance.

Interactive Editing A practical example of manifold projection is
font editing; we show this application in § 5. Our editing operation
is for the user to select a point on the outline of a character and
drag it to a new location; our desired outcome is for the rest of the
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character outline to alter accordingly (to maintain an appropriate
glyph) and for the edits to the single character to be propagated
to others as necessary. Thus, if a user drags to increase the serif
width on a character, we would like other characters with serifs to
increase the width correspondingly; this is achieved by ensuring that
the character under edit is always represented by a location on the
manifold x̃.

The font editing example is more straight-forward than general
projection onto the manifold since we start from a known location
(the initial font); this location could also be determined by manifold
projection. During a drag operation we quantize each movement of
the vertices into a series of small steps; for each step we consider
the vertices on ỹ nearest the cursor and move them to a new location
(the target). By taking gradients, with respect to x̃, of the distance
between ỹ(x̃) and the target (for the active vertices) we identify a
new location, x̃′, on the manifold to move to; this new location then
gives a new outline ỹ′ = ỹ(x̃′) for all the characters. By performing
a sequence of these steps we find a new manifold location and
corresponding outline at the end of each editing operation. We can
also provide the user with feedback during the drag: The variance
(heat map) can be used to indicate when the user is getting close to
the edge of the manifold; the outline will not be allowed to leave the
manifold so will stop moving if the user drags too far.

5 Results and Applications

Interactive Manifold Exploration The best way to visualize the
manifold results is via the interactive viewer. The browser is written
in Javascript and runs standalone in a web browser. It is possible to
explore 2D versions of manifolds for individual characters as well
as several joint manifolds. The restriction to only two dimensions
leads to some of the manifolds separating into islands and is thus
not truly representative of the manifolds in their natural dimension.
It is possible to observe the different fonts generated by dynamically
changing the manifold location in real time.

Joint Font Manifold We demonstrate the variations in fonts cap-
tured by the learned manifold using the test word ‘hamburgefon’
in Figure 6. The light grey dots indicate the embedded locations
of the training fonts. The heat map shows the predictive variance
of the GP-LVM. Roughly speaking, the color indicates the likeli-
hood of obtaining a useful interpolation of the data; points in the
red region are representative of the characteristics of the training
fonts and points in blue regions tend toward the average font. We
observe that many font characteristics are captured by the manifold.
This includes smooth transitions between serif and non-serif fonts;
smooth changes in the strokes used in terms of thickness and the
contrast ratio and angle; smooth variation in the aspect ratio (the
fonts are normalized to have a fixed ‘x’ height). We provide details
of the fonts used in supplement § A.

Single Character Manifolds We also learned manifolds for in-
dividual characters and show some samples of these in Figure 7.
Again, we can see the variation captured and the efficacy of our
matching technique. In addition to verification of the matching, the
single manifolds can also be used to edit a character in isolation of
the others; this could present more freedom for individual letters,
e.g. for logo design. We note that sampling from lower likelihood
regions can introduce artifacts, e.g. the second example for ‘Q’,
however this is not necessarily the case, as in the first example for
‘B’. We also show the manifold for the alternate ‘a’ glyph learned
from fonts with the single storey character available.

Interpolation Comparison An alternative universal parameteri-
zation to our polyline would be to rasterize each font at a certain
resolution yielding a fixed-length vector, either in a signed distance

Calibri

New
Roman

Times

Figure 9: Smoothly transforming between two typefaces using the
character matching results. Each character is generated as a linear
interpolation of the two input fonts and corresponds to a novel font.

Figure 12: The average font found from 46 fonts. We observe a font
somewhere between a sans and a serif font since we had an even
mix of the two in our training set. The asymmetries in some of the
letters, for example the ‘W’, are due to asymmetries in some of the
input fonts.

domain or as a set of masses. We compare our interpolation results
to those obtained by looking in the pixel space directly in Figure 8.
In the top row we show the result of interpolating with the signed dis-
tance transform that has topology issues if the curves are not strictly
inside one another. On the second row we use the Lagrangian mass
transport method of Bonneel et al. [2011]. This has better perfor-
mance but has no constraints to preserve the topology or provide
smooth boundaries. The bottom row shows the interpolation using
the correspondences found by our generative matching model. By
minimizing the curvature variation we produce a smooth transition
while maintaining the key characteristics of the character’s visual
appearance.

We can also perform interpolation between two fonts directly as a
result of the character matching procedure. In Figure 9 we observe a
linear interpolation between the character matches for the serif font
‘Times New Roman’ and the sans font ‘Calibri’. The high quality of
the matching leads to a smoothly varying output without any obvious
jarring or discontinuities.

Font Editing An example of a novel application made possible by
the joint font manifold is the propagation of user edits. Traditional
font editing packages have a steep learning curve and require special-
ist training in typography. We can constrain the result of any basic
editing operation to remain on the manifold and, therefore, ensure
that at every stage in the proceedings we have a valid font. Fur-
thermore, the manifold contains joint information between different
characters, therefore edits to a single character may be propagated
across all other characters using the manifold.

In Figures 10 and 11 we show examples of a user editing a font by
simply grabbing a location on the outline of a character and dragging
it. Propagated results are shown across similar characters to demon-
strate that they move in sympathy with the edits. In Figure 10, the
user makes the bottom stroke of the ‘2’ thinner and we see the other
digits copying this to produce thinner strokes while maintaining
the stroke contrast. This is an operation that would be very labor
intensive with existing tools, even for an expert typographer.

Similarly, in Figure 11, the user wishes to increase the serif width
of the ‘m’ character. By grabbing the tip of the existing serif and
dragging it to the right, not only are the serifs within the ‘m’ char-
acter changed to stay symmetric, but the serifs across all the other
characters are widened to stay consistent.
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Figure 6: Typography samples of the test word ‘hamburgefon’ over the learnt joint manifold of fonts. We can observe many changes over the
manifold including variations in the presence of serifs; the stroke contrast, thickness and angle; and the aspect ratio. The heat map of the
manifold roughly indicates the probability of finding good fonts as in Figure 1; see the text for further details.

Figure 7: Explorations of a sample of the single manifolds demonstrating our matching results. We find each manifold on the left using only
the outlines for a single character. The points and path drawn on the manifold indicates where the samples on the right are taken from. The
color coding and path indicate the points on the manifold used to generate each glyph. See Figure 13 for matching limitations.

The Average Font The Avería font3 is a project to create an ‘av-
erage font’ by a user with no formal typography training; instead
of matching, their process uses a simple superposition of rasteriza-
tions of many fonts. For curiosity and comparison, we present the
average font from our matching in Figure 12; this is ũ from (25). As
expected, we see a font between sans and serif due to the equal mix
of the two in our training fonts.

3http://iotic.com/averia/

Parameters and Timing We used M = 46 fonts to generate our
manifolds (details are provided in supplement § A). For the matching
procedure we used N = 512 samples for each outline and the energy
parameters: γ = 50, β = 5, λη = 1 and λel = (MN 2/ 6000). The op-
timization stage took an average of 20 minutes for each outline. This
is a one off procedure and each outline can be matched in parallel
independently. The manifold learning took under 2 minutes (again a
one off procedure). Once all the processing has been performed the
generation of a font from the manifold is in the order of milliseconds,
as is demonstrated by the Javascript based manifold browser.
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Signed Distance Transform

Lagrangian Mass Transport

Our Generative Model

Figure 8: Comparison of our matching approach to interpolation methods. Moving from left to right interpolates from the font ‘Times New
Roman’ to ‘Tahoma’. The signed distance transform has topological issues. While the Lagrangian mass transport method improves, it has
no constraints to preserve topology or provide smooth boundaries. Our curvature optimization result produces a smooth transition while
maintaining the visual characteristics of the character for all interpolants.

The user grabs the top 
of the bottom stroke 

and drags downwards to 
decrease the thickness

Figure 10: An example of interactive font editing. The manifold can be used to propagate edits to a single character across the entire font. The
user edits the ‘2’ digit by selecting at the red dot and dragging the outline down to reduce the thickness of the base. As the user drags the
outline to a new location, we infer the change in location on the manifold. This means that not only will the whole outline of the ‘2’ change to
maintain a reasonable font, but the changes can be propagated to all the other characters; we show all the other digits as they change.

6 Conclusion

We have presented a framework that takes a set of existing fonts and
successfully learns a generative manifold of fonts. This unsupervised
learning process requires no input from either an end user or a
professional typographer and yet is capable of generating new, high
quality fonts. The results presented in the previous section, and
the interactive manifold browser, demonstrate the efficacy of the
combination of our novel energy model and optimization scheme for
dense character matching, and the non-linear manifold embedding.

Armed with this font manifold, we have shown that a number of
new applications are now made possible. By constraining edits to lie
on the manifold, non-expert users can manipulate fonts without any
formal training in typography and guarantee that the results of their
edits will produce recognizable fonts. In addition, the time require-
ments for editing are greatly reduced since edits can be propagated
across entire fonts, maintaining consistency of appearance, rather
than having to edit each glyph independently. Such automation is
also time saving for expert type designers. Generation of fonts on
the manifold is computationally efficient so all of these processes
may be performed at interactive speeds.

In addition to providing smooth interpolations between fonts, the
manifold may also be used directly as a means to explore the space of
fonts, whether browsing for a new font or trying to identify possible
new fonts to fill a gap in those currently available.

6.1 Limitations and Future Work

Character Matching Since our matching method is based around
matching outlines, we cannot match two characters with differing
topology as discussed in § 3.1. For ‘a’ and ‘g’ we treat the two
glyphs separately; we show a manifold for the alternate ‘a’ in Fig-
ure 7. If a font is missing the appropriate character version, it can

still be embedded in the manifold using a GP-LVM with missing
data [Navaratnam et al. 2007]; this will also produce the best esti-
mate of the missing character given the the other fonts.

While the results of the character matching are very successful
there is an occasional matching failure when a font has an outlying
character that is far from the outlines in the other fonts (the shape is
under-represented in the training fonts). Figure 13 shows an example
for the character ‘J’. Here the representative examples, both sans
and serif fonts, are matched correctly whereas the long horizontal
stroke of the outline on the left is too far from any other fonts and is
incorrectly matched to the vertical stroke. This can introduce a local
artifact on the manifold but usually outlying fonts are on the edges
of the manifold and therefore distortion is minimized. Another such
example is seen in the second ‘Q’ sample in Figure 7; the crossing
tail in the first sample is rare and therefore the matching finds it
difficult to blend in to the purely descending tails. Outliers may be
reduced by increasing the number and variety of fonts.

Hinting and Kerning In our present system, the generated fonts
do not have any kerning or hinting information. The addition of
kerning is a straight-forward extension by concatenating the addi-
tional kerning tables to the end of the high dimensional vector. The
transfer of hinting information is more challenging and is an area
for future work.

Typographic Supervision As we have discussed previously, our
learning approach is fully unsupervised and requires no input from a
user or an expert typographer. As such, we do not break down char-
acters into individual components under standard typographic rules;
this may limit the extrapolation to new fonts by placing constraints
on the fonts that can be generated from our manifold. In future
work we would like to make use of recent advances in ‘deep learn-
ing’ to perform more advanced unsupervised learning to identify
automatically these constituent parts.
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The user grabs the tip of the 
serif abd drags to the right 
to increase the serif width

Figure 11: Edit to widen the serif. As the user drags the edge of the ‘m’ serif to the right we observe the serifs in the other letters widening in
sympathy to remain consistent and on the manifold. Thus the user can change the serif width for the entire font by editing a single character.

Outlier Representative Examples

The incorrect matching leads 
to a local corruption of the 

manifold

However, this error is not 
propagated to the rest of the 

manifold

Figure 13: Occasionally the matching can fail for specific examples when there is a font with an outlying character, for example the ‘J’ shown
here. The representative examples are all correctly matched however the long extended top stroke on the example on the right is an outlier. By
matching to the ascenders of the typical examples, artifacts can be introduced locally for a small part of the manifold however this effect does
not disrupt the entire manifold.
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