3,253 research outputs found

    Chitosan-zinc oxide composite for active food packaging Applications

    Get PDF
    Chitosan-zinc oxide (C-ZnO) films were prepared by a simple one pot procedure. In order to investigate the property of C-ZnO films, two composite films were prepared by varying the loading of ZnO and compared with pure chitosan film (C). The films were character-ized by various techniques such as FTIR, DSC, tensile, contact angle and water vapour permeability. FTIR analysis showed changes in hydrogen bonds band at 3351 cm-1 compared to pure chitosan film. The incorporation of ZnO in chitosan films increased the contact angle by 30.5% in C-ZnO1.0 film while water vapour transmission rate decreased by 7.8% compared to C film. From the tensile test, C-ZnO0.5 and C-ZnO1.0 films were found to be much superior by 1.5 times and 2.5 times respectively compared to bare chitosan film. Larger inhibition ring (by 47%) was exhibited by C-ZnO1.0 as compared to C-ZnO0.5 when tested against S.aureus. From the results, it is displayed that the incorporation of zinc oxide to chitosan improve their properties which also shown the potential to become a candi-date for food active packaging

    Effort reduction and collision avoidance for powered wheelchairs : SCAD assistive mobility system

    Get PDF
    The new research described in this dissertation created systems and methods to assist wheelchair users and provide them with new realistic and interesting driving opportunities. The work also created and applied novel effort reduction and collision avoidance systems and some new electronic interactive devices. A Scanning Collision Avoidance Device (SCAD) was created that attached to standard powered wheelchairs to help prevent children from driving into things. Initially, mechanical bumpers were used but they made many wheelchairs unwieldy, so a novel system that rotated a single ultra-sonic transducer was created. The SCAD provided wheelchair guidance and assisted with steering. Optical side object detectors were included to cover blind spots and also assist with doorway navigation. A steering lockout mode was also included for training, which stopped the wheelchair from driving towards a detected object. Some drivers did not have sufficient manual dexterity to operate a reverse control. A reverse turn manoeuvring mode was added that applied a sequential reverse and turn function, enabling a driver to escape from a confined situation by operating a single turn control. A new generation of Proportional SCAD was created that operated with proportional control inputs rather than switches and new systems were created to reduce veer, including effort reduction systems. New variable switches were created that provided variable speed control in place of standard digital switches and all that research reduced the number of control actions required by a driver. Finally, some new systems were created to motivate individuals to try new activities. These included a track guided train and an adventure playground that including new interactive systems. The research was initially inspired by the needs of young people at Chailey Heritage, the novel systems provided new and more autonomous driving opportunities for many powered wheelchair users in less structured environments.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Optimization of Potential Field Method Parameters through networks for Swarm Cooperative Manipulation Tasks

    Get PDF
    An interesting current research field related to autonomous robots is mobile manipulation performed by cooperating robots (in terrestrial, aerial and underwater environments). Focusing on the underwater scenario, cooperative manipulation of Intervention-Autonomous Underwater Vehicles (I-AUVs) is a complex and difficult application compared with the terrestrial or aerial ones because of many technical issues, such as underwater localization and limited communication. A decentralized approach for cooperative mobile manipulation of I-AUVs based on Artificial Neural Networks (ANNs) is proposed in this article. This strategy exploits the potential field method; a multi-layer control structure is developed to manage the coordination of the swarm, the guidance and navigation of I-AUVs and the manipulation task. In the article, this new strategy has been implemented in the simulation environment, simulating the transportation of an object. This object is moved along a desired trajectory in an unknown environment and it is transported by four underwater mobile robots, each one provided with a seven-degrees-of-freedom robotic arm. The simulation results are optimized thanks to the ANNs used for the potentials tuning

    Anti-collision systems in tunneling to improve effectiveness and safety in a system-quality approach: A review of the state of the art

    Get PDF
    Tunnelling and underground construction operations are often characterized by critical safety issues mainly due to poor visibility and blind spots around large vehicles and equipment. This can lead to collisions between vehicles or between vehicles and pedestrians or structural elements, causing accidents and fatalities. To improve the OS&H conditions, it is important to investigate the possible introduction of innovative techniques and technologies to reduce the occurrences and consequences of shared spaces (spaces used by both vehicles and pedestrians). For this reason, research was conducted to investigate the possible use of different technologies of anti-collision systems in tunnelling operations. First, to achieve this goal, an extensive review of the literature was carried out in accordance with the PRISMA statement to select the current techniques and technologies used by general anti-collision systems in civil and mining construction sites. Then, the operating principles, the relative advantages and disadvantages, combinations, and costs were examined for each of these. Eight types of systems and many examples of applications of anti-collision systems in underground environments were identified as a result of the analysis of the literature. Generally, it was noted that the anti-collision techniques available have found limited application in the excavation sites of underground civil works up to the present day, though the improvement in terms of safety and efficiency would be considerable

    Nonholonomic Motion Planning as Efficient as Piano Mover's

    Full text link
    We present an algorithm for non-holonomic motion planning (or 'parking a car') that is as computationally efficient as a simple approach to solving the famous Piano-mover's problem, where the non-holonomic constraints are ignored. The core of the approach is a graph-discretization of the problem. The graph-discretization is provably accurate in modeling the non-holonomic constraints, and yet is nearly as small as the straightforward regular grid discretization of the Piano-mover's problem into a 3D volume of 2D position plus angular orientation. Where the Piano mover's graph has one vertex and edges to six neighbors each, we have three vertices with a total of ten edges, increasing the graph size by less than a factor of two, and this factor does not depend on spatial or angular resolution. The local edge connections are organized so that they represent globally consistent turn and straight segments. The graph can be used with Dijkstra's algorithm, A*, value iteration or any other graph algorithm. Furthermore, the graph has a structure that lends itself to processing with deterministic massive parallelism. The turn and straight curves divide the configuration space into many parallel groups. We use this to develop a customized 'kernel-style' graph processing method. It results in an N-turn planner that requires no heuristics or load balancing and is as efficient as a simple solution to the Piano mover's problem even in sequential form. In parallel form it is many times faster than the sequential processing of the graph, and can run many times a second on a consumer grade GPU while exploring a configuration space pose grid with very high spatial and angular resolution. We prove approximation quality and computational complexity and demonstrate that it is a flexible, practical, reliable, and efficient component for a production solution.Comment: 34 pages, 37 figures, 9 tables, 4 graphs, 8 insert

    Cooperative Intersection Crossing Over 5G

    Get PDF
    IEEE Autonomous driving is a safety critical application of sensing and decision-making technologies. Communication technologies extend the awareness capabilities of vehicles, beyond what is achievable with the on-board systems only. Nonetheless, issues typically related to wireless networking must be taken into account when designing safe and reliable autonomous systems. The aim of this work is to present a control algorithm and a communication paradigm over 5G networks for negotiating traffic junctions in urban areas. The proposed control framework has been shown to converge in a finite time and the supporting communication software has been designed with the objective of minimizing communication delays. At the same time, the underlying network guarantees reliability of the communication. The proposed framework has been successfully deployed and tested, in partnership with Ericsson AB, at the AstaZero proving ground in Goteborg, Sweden. In our experiments, three heterogeneous autonomous vehicles successfully drove through a 4-way intersection of 235 square meters in an urban scenario

    Collision warning design in automotive head-up displays

    Get PDF
    Abstract. In the last few years, the automotive industry has experienced a large growth in the hardware and the underlying electronics. The industry benefits from both Human Machine Interface (HMI) research and modern technology. There are many applications of the Advanced Driver Assistant System (ADAS) and their positive impact on drivers is even more. Forward Collision Warning (FCW) is one of many applications of ADAS. In the last decades, different approaches and tools are used to implement FCW systems. Current Augmented Reality (AR) applications are feasible to integrate in modern cars. In this thesis work, we introduce three different FCW designs: static, animated and 3D animated warnings. We test the proposed designs in three different environments: day, night and rain. The designs static and animated achieve a minimum response time 0.486 s whereas the 3D animated warning achieves 1.153 s

    Challenges of micro/mild hybridisation for construction machinery and applicability in UK

    Get PDF
    In recent years, micro/mild hybridisation (MMH) is known as a feasible solution for powertrain development with high fuel efficiency, less energy use and emission and, especially, low cost and simple installation. This paper focuses on the challenges of MMH for construction machines and then, pays attention to its applicability to UK construction machinery. First, hybrid electric configurations are briefly reviewed; and technological challenges towards MMH in construction sector are clearly stated. Second, the current development of construction machinery in UK is analysed to point out the potential for MMH implementation. Thousands of machines manufactured in UK have been sampled for the further study. Third, a methodology for big data capturing, compression and mining is provided for a capable of managing and analysing effectively performances of various construction machine types. By using this method, 96% of data memory can be reduced to store the huge machine data without lacking the necessary information. Forth, an advanced decision tool is built using a fuzzy cognitive map based on the big data mining and knowledge from experts to enables users to define a target machine for MMH utilization. The numerical study with this tool on the sampled machines has been done and finally realized that one class of heavy excavators is the most suitable to apply MMH technology

    Unmanned Ground Vehicles for Smart Farms

    Get PDF
    Forecasts of world population increases in the coming decades demand new production processes that are more efficient, safer, and less destructive to the environment. Industries are working to fulfill this mission by developing the smart factory concept. The agriculture world should follow industry leadership and develop approaches to implement the smart farm concept. One of the most vital elements that must be configured to meet the requirements of the new smart farms is the unmanned ground vehicles (UGV). Thus, this chapter focuses on the characteristics that the UGVs must have to function efficiently in this type of future farm. Two main approaches are discussed: automating conventional vehicles and developing specifically designed mobile platforms. The latter includes both wheeled and wheel-legged robots and an analysis of their adaptability to terrain and crops
    • …
    corecore