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Optimization of potential field method
parameters through networks for
swarm cooperative manipulation tasks
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Abstract
An interesting current research field related to autonomous robots is mobile manipulation performed by cooperating
robots (in terrestrial, aerial and underwater environments). Focusing on the underwater scenario, cooperative manip-
ulation of Intervention-Autonomous Underwater Vehicles (I-AUVs) is a complex and difficult application compared with
the terrestrial or aerial ones because of many technical issues, such as underwater localization and limited communication.
A decentralized approach for cooperative mobile manipulation of I-AUVs based on Artificial Neural Networks (ANNs) is
proposed in this article. This strategy exploits the potential field method; a multi-layer control structure is developed to
manage the coordination of the swarm, the guidance and navigation of I-AUVs and the manipulation task. In the article, this
new strategy has been implemented in the simulation environment, simulating the transportation of an object. This object
is moved along a desired trajectory in an unknown environment and it is transported by four underwater mobile robots,
each one provided with a seven-degrees-of-freedom robotic arm. The simulation results are optimized thanks to the
ANNs used for the potentials tuning.
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Introduction

Mobile manipulation performed by cooperating robots, with

one or more arms, is for sure a challenging and an open

research topic for autonomous robots (Figure 1(a)), espe-

cially in relation to an underwater environment.1–4 Such

kinds of systems can have the capability of performing com-

plex tasks that cannot be reached using a single manipulator.

Cooperative manipulation of Intervention-Autonomous

Underwater Vehicles (I-AUVs) (Figure 1(b))5 represents a

more complex field of application, compared with the ter-

restrial or aerial applications, mainly due to different tech-

nological problems e.g. localization and communication in

underwater environment. However, the use of Autonomous

Underwater Vehicles (AUVs) and I-AUVs will necessarily

grow up in the future exploration of the sea. In this sce-

nario, cooperative I-AUVs represent the natural evolution

of centralized I-AUVs because they may be used in various

underwater assembly tasks, such as complex underwater

structure construction and maintenance (e.g. underwater

pipeline and cable transportation could be carried out by

multiple cooperative I-AUVs; underwater search and
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rescue tasks could be more efficient and effective if multi-

ple I-AUVs could be used6,7). In Joordens et al.1 and Cham-

pion et al.,2 a complete review of the latest cooperative

strategies in the underwater field has been described. In

Hausler et al.,8 an interesting method for the optimal

motion planning of vehicles is presented.

Usually, the strategies for cooperative mobile manipula-

tion can be addressed dividing the approach into different

tasks; these tasks are performed in parallel.

� Swarm motion planning and control: I-AUVs swarm

control has been discussed in a few research arti-

cles.9–11 Some effort has been made regarding coop-

erative localization and communication.12

� Vehicle modelling, motion planning and control:

Antonelli,4 Antonelli et al.13 and Fossen14 propose

models for AUVs and I-AUVs. For example, a track-

ing control law for a desired I-AUV trajectory is

given in Antonelli et al.13 In Antonelli,4 the I-AUV

model has been partially decoupled and the control

scheme compensates the non linear coupling effects.

� Robotic arm motion planning and control: different

force control schemes are given in Siciliano et al.,3

Antonelli4 and Simetti et al.5 In Sugar et al.,15 a

solution to the redundancy resolution problem and

motion coordination between vehicle and manipula-

tor has been presented using fuzzy techniques.

Most of these approaches present different but independent

solutions for swarm, vehicle and robotic arm motion plan-

ning and control.

In Sugar et al.,16 the authors proposed to partially fill

this lack in the state of the art through an innovative

approach for cooperative mobile manipulation completely

based on the potential field method. In fact, the proposed

method is based on an innovative decentralized approach

for cooperative mobile manipulation of I-AUVs. This

strategy is based on a different use of the potential field

method (classically used for obstacle avoidance tasks); in

particular, a multi-layer control structure is developed to

manage in parallel the coordination of the swarm, the

guidance and navigation of I-AUVs and the manipulation

tasks. The main advantage of the potential field method is

the complete integration of all the controller layers within

a compact structure. In addition, the amount of informa-

tion required for the functioning of the control algorithm

(distances among all the subjects) is lower than the classi-

cal localization strategies. In fact, underwater fleets usu-

ally use complex localization algorithms and redundant

expensive sensors (e.g. Ultra-Short Base-Line (USBL))12,17;

the approach proposed in Conti et al.16 exploited the object

to be manipulated (supposed to be partially known) such as

a swarm reference system and the surface vehicle only as a

connection point with the world reference system. How-

ever, in this latter work, the potential field parameters have

been tuned through particular numerical simulations in

order to obtain sufficiently smooth trajectories for the I-

AUVs.

Therefore, in the present article, the authors explore and

apply Artificial Neural Network (ANN) techniques to opti-

mize the potential field parameters; ANNs in fact allow the

reduction of the simulation time and propose a standard

method for parameter optimization (obtained after a train-

ing of the neural network).

In conclusion, in this article an innovative cooperative

mobile manipulation algorithm based on ANNs for under-

water vehicles has been defined. For the testing of the

control architecture and the optimization of the potential

field method parameters, the Matlab-Simulink simulation

environment has been employed. An I-AUV swarm

composed of four vehicles, each one provided with a

seven-degrees-of-freedom (DOFs) robotic arm, navigates

performing the transportation of a known object in an

unknown environment (e.g. a harbour); in particular, the

manipulation task is to carry the object along a desired

trajectory where an obstacle is placed. The article is orga-

nized as follows: in the section ‘Introduction’, a brief intro-

duction of the current issues and possible solutions has

been described. In the section ‘A new strategy for I-AUVs

swarms performing cooperative mobile manipulation’, the

new cooperative control architecture is described in detail.

The section ‘Artificial neural network for parameter optimi-

zation’ proposes the use of ANNs to optimize the potential

field parameters to guarantee the best tracking of a suitable

trajectory. The sections ‘Numerical simulations and results’

and ‘Conclusions and further developments’ summarize the

results of the numerical simulations performed to test the

algorithm and its pros and cons.

A new strategy for I-AUVs swarms
performing cooperative mobile
manipulation

This chapter illustrates the control strategy specifically

designed for the cooperative mobile manipulation of the

I-AUVs swarm. Two main issues are faced: the high-

level control of the swarm (including vehicles and robotic

Figure 1. (a) Cooperative mobile manipulation for terrestrial
robot. (b) Prototype of intervention-autonomous underwater
vehicle.
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arms) and the underwater localization. The I-AUV swarm

involves four I-AUVs and an external supporting vehicle

(e.g. a Remotely Operated Surface Vehicle (ROSV)). The

ROSV geo-localizes the swarm by means of a GPS system

and communicates with the I-AUVs through a USBL,

transmitting only the position of one of the swarm vehicles

in the world reference system. The swarm vehicles share

among each other the relative positions in the object refer-

ence system through standard acoustic modems. Conse-

quently, the presented approach is completely

decentralized and the localization is carried out only by

means of few on-board sensors, while the distances among

the vehicles are calculated directly in the object reference

systems (master vehicles are not required).

The control architecture and the potential field method

Control architectures able to contemporaneously consider

guidance of the swarm; vehicles navigation and object

manipulation are crucial in cooperative mobile manipula-

tion tasks performed by I-AUVs swarms. To face problems

arising from unstructured environments where the vehicle

trajectories cannot be generated a priori (for instance in the

presence of obstacles3), vehicle control strategies based on

potential field methods are usually employed, based on the

estimation of the vehicle distance vectors. In this article, an

innovative control architecture based on the potential field

method both to generate the vehicles’ trajectory in unstruc-

tured environments and to manage manipulation tasks and

swarm control during the whole mission has been devel-

oped. Since each vehicle exploits only a few on-board

sensors, the proposed strategy is completely decentralized

from a communication and a localization viewpoint.

According to the potential field method, the I-AUVs are

particles immersed in a potential field generated by the

goals and by the obstacles. The potential field can be

though of as an energy field and its gradient as a force. The

goals are surrounded by an attractive potential, while the

obstacles are surrounded by a repulsive potential. The vehi-

cles in the potential field perceive two force contributions:

the target force (caused by the attractive goal potential field

gradient) drives the vehicles to the goals while the obstacle

force repulses the vehicles from the obstacles (caused by

the repulsive obstacle potential field gradient). Some work-

ing hypotheses are needed to develop the control architec-

ture: the object shape and connection points of the vehicles

are supposed to be known thanks to suitable acoustic and

optical sensors (the gripper–object contact is modelled

through a proper kinematic constraint); the I-AUV internal

control directly orients the vehicle towards the attractive

target direction; finally, the approaching phase to the object

is not considered in this analysis. Figure 2 highlights the

interactions among vehicles, objects and the environment.

Three different elements play a fundamental role in the

control architecture: the vehicles, the object and the envi-

ronment. Each field potential used in the proposed strategy

is related to the interactions among these elements.

1. Vehicle–vehicle (green): the interactions among

vehicles comprise two contributions, the first one

to maintain the swarm formation and the second one

to avoid collisions among the vehicles.

Figure 2. Swarm control architecture: interactions among field potentials. The attractive potentials have the ðþÞ, while the repulsive
ones have the ð�Þ.
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2. Vehicle–environment (red): the interactions

between vehicles and environment (obstacle avoid-

ance) are reported in red and the four arrows high-

light the single interactions.

3. Vehicle–object (blue): the interactions between

vehicles and the object to be manipulated are

reported in blue and the four arrows highlight the

single connections.

The three field potentials introduced above will be

explained in detail in the following sections.

Vehicle–vehicle potential. To build the vehicle–vehicle poten-

tial V v� v, three terms are needed: the attractive potential to

ensure the swarm formation (for instance to force them into

a sphere, useful for this kind of task), the repulsive potential

to force the vehicles into a desired shape (as the vertices of

regular polygons) and the repulsive potential to prevent

vehicles collisions. The potential equations for the i th

vehicles (for i ¼ 1; . . . ; n where n is the number of vehi-

cles) can be written as

~F v� v;i ¼ ∇
!

V v� v;i (1)

with

Vv� v;i ¼ V swarm
i þ V

polygon
i;j þ V collisions

i;j (2)

where V v� v;i is the overall vehicle–vehicle potential acting

on the i th vehicle (for i ¼ 1; . . . ; n), V swarm
i is the forma-

tion potential, V
polygon

i;j is the shape potential (where

j ¼ 1; . . . ; n and j 6¼ i) and V collisions
i;j is the collision poten-

tial (where j ¼ 1; . . . n and j 6¼ i). The formation potential

is employed both to maintain the I-AUVs in a sphere and to

lead the vehicles towards the target. In this circumstance,

the vector ~d
W

i ¼~�W
i � ~G

W

d ðtÞ (written in the world refer-

ence system, specified by the pedix W) is the distance

between the vehicle position ~�W
i and the sphere centre

~G
W

d ðtÞ (the swarm trajectory to be tracked). Consequently,

the force ~F
swarm

i acting on the I-AUV is

~F
swarm

i ¼ ∇
!

V swarm ¼ �f swarm
����~d W

i

����
�
~�W

i � ~G
W

d ðtÞ
�

���~�W
i � ~G

W

d ðtÞ
���
(3)

where f swarm
����~d W

i

���� depends on the distance. This func-

tion introduces a low boundary (equal to the radius R of

the sphere) to attract the vehicle lying outside the shape

and to keep free the vehicles inside: f swarm
����~d W

i

���� ¼
k s

����~d W

i

���� R
�2

for
���~d W

i

��� � R and 0 outside, where k s

is the parameter that increases the curve slope.

The shape potential V polygon is repulsive and aims at

pushing the vehicles towards the vertices of a regular poly-

gon on the sphere surface (the specific polygon depends on

the number of vehicles). In this kind of potential, the key

physical quantity is the inverse of the distance between two

vehicles ~d
W

i;j ¼~�W
i ðtÞ �~�W

j ðtÞ where ~�W
i ,~�W

j are respec-

tively the i th and j th vehicle positions (for j 6¼ i). Conse-

quently, the force ~F
polygon

i;j acting on the i th vehicle is the

sum of the contributions related to each vehicle

~F
polygon

i;j ¼ ∇
!

V
polygon

i;j ¼ f polygon
����~d W

i;j

���� ð~�W
i ðtÞ �~�W

j ðtÞÞ��~�W
i ðtÞ �~�W

j ðtÞ
��

(4)

where f polygon
����~d W

i;j

���� always depends on the distance.

This repulsive function introduces an upper bound

(equal to the diameter of the sphere) to push the vehicles

on the surface: f polygon
����~d W

i;j

���� ¼ k p
1��~d W

i;j

��2 � 1
4R2

 !
for���~d W

i

��� < 2R and 0 outside, where k p is again the parameter

controlling the curve slope: thanks to this potential, the

vehicles will be pushed towards the vertices of a regular

polygon (depending on the number of vehicles).

Eventually, the collision potential V collisions
i;j is repulsive

as well and must avoid collisions among the vehicles. The

potential is useful especially when the transported object is

small in comparison with the vehicle dimensions and the

risk of vehicle collisions is high. Also in this last case, the

key physical quantity is the inverse of the distance among

two vehicles ~d
W

i;j ¼~�W
i ðtÞ �~�W

j ðtÞ described before. Ana-

logously, the force ~F
collisions

i;j acting on the i th vehicle is the

sum of the contributions related to each vehicle

~F
collisions

i;j ¼ ∇
!

V collisions
i;j

¼ f collisions
����~d W

i;j

���� ð~�W
i ðtÞ �~�W

j ðtÞÞ��~�W
i ðtÞ �~�W

j ðtÞ
�� (5)

where f collisions
����~d W

i;j

���� depends on the distance. This

function introduces an upper bound equal, in this case, to

the double of the vehicle sizes. This approximation allows

the avoidance of vehicle collisions: f collisions
����~d W

i;j

���� ¼
k c

1��~d W

i;j

��2 � 1
d2

c

 !
for
���~d W

i

��� < d c and 0 outside, where k c

is, as usual, the parameter governing the curve slope and d c

is a safety distance, for example the double of the vehicle

sizes.

Vehicle–object potential. The vehicle–object potential V v� o

allows the right position of the end-effector to be kept with

respect to the I-AUV position. In more detail, the potential

is built through a function of the end-effector–vehicle dis-

tance (d W
ee;v) composed of three parts: the first zone

(0 � d W
ee;v < WSmin) is repulsive to avoid end-effector–

vehicle collisions; in the second zone (WSmin �
d W

ee;v < WSmax), the potential is not active because, in this
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zone, the standard kinematic controls are exploited; finally,

in the third zone (d W
ee;v � WSmax), the potential is attractive

to push the I-AUV towards the workspace of the robotic

arm. In this application, the vehicle–object potential acts

directly on the vehicle motion to better exploit the motor

thrusts. The use of suitable potentials instead of classical

kinematic controls allows reduction of the stiffness of the

systems and the dynamic interactions between vehicles and

robotic arms.

The vehicle–object potential comprises two functions:

the workspace potential V WS and the robotic arm collision

potential V RAcoll

V v� o ¼ V WS þ V RAcoll (6)

where V v� o is the overall vehicle–object potential, V WS is

the workspace potential, allowing the end-effector position

to be kept in the workspace of the robotic arm, and V RAcoll

is the robotic arm collision potential to prevent vehicle–

end-effector collisions. Note that d W
ee;v ¼

��~�W
v �~�W

ee

�� is

the distance between robotic arm~�W
v and end-effector~�W

ee

~F
WS ¼ ∇

!
V WS ¼ �f WS

����~d W

ee;v

���� ð~�W
v �~�W

eeÞ��~�W
v �~�W

ee

�� (7)

where f WS
����~d W

ee;v

���� ¼ �k WS

����~d W

ee;v

����WSmax

�2

depen-

ds on the distance for
���~d W

ee;v

��� < WSmax and 0 outside, k WS

is the standard parameter governing the curve slope and

WSmax is the robotic arm maximum extension.

On the contrary, the robotic arm collision potential is

repulsive and has to maintain the end-effector away from

the I-AUV. The key distance to be taken into account is

again: d W
ee;v ¼

��~�W
v �~�W

ee

�� while the force ~F
RAcoll

on the

I-AUV can be written as

~F
RAcoll ¼ ∇

!
V RAcoll ¼ f RAcoll

���d W
ee;v

��� ð~�W
v �~�W

eeÞ��~�W
v �~�W

ee

�� (8)

where f RAcoll
����~d W

ee;v

���� depends as usual on the distance.

The repulsive potential is characterized by an upper

bound equal to the robotic arm minimum extension:

f RAcoll
����~d W

ee;v

���� ¼ k RA
1��~d W

ee;v

��2 � 1
WS2

min

 !
for
���~d W

ee;v

��� <
WSmin and 0 outside, in which k RA governs the curve slope

and WSmin is the robotic arm minimum extension. If

needed, both these parts can be exploited to avoid robotic

arm–vehicle collisions as well.

Vehicle–environment potential. To manage obstacle avoid-

ance during the object transportation, a repulsive vehicle–

environment potential V v� e is required.

The vehicle–environment potential V v� e is built for

each obstacle. The key physical quantity to be taken into

account is the inverse of the vehicle–obstacle distance

d W
i;o ¼

��~�W
i ðtÞ �~�W

o ; ðtÞ
�� where ~�W

i is the i th vehicle

position and~� o; is the obstacle position. At this point, the

force ~F
v� e

i;o on the i th vehicle can be written as

~F
v� e

i;o ¼ ∇ V v� e ¼ þ f v�e
ι;ο

����~d W

ι;ο

���� ð~�W
ι ð tÞ �~�W

o ; ð tÞÞ��~�W
ι ð tÞ �~�W

o ; ð tÞ
��
(9)

where f v� e
i;o

����~d W

i;o

���� depends as usual on the distance. This

repulsive potential introduces an upper bound equal to a

safety distance e.g. the double of the vehicle size d O, to

avoid the obstacle. The potential is defined as

f v� e
i;o

����~d W

i;o

���� ¼ k O
1��~d W

i;o

��2 � 1
d2

O

 !
and 0 outside, in which

k O is again the curve slope parameter.

Distance estimation algorithm

Underwater swarm localization is usually based on expen-

sive sensors, such as long base-line or USBL, able to pro-

vide the proper position of each vehicle in the world

reference frame.12,17 The main drawback of the current

approaches is mainly related to the low frequency of the

vehicle position update: this is hardly acceptable for coop-

erative manipulation tasks because the position update at a

higher frequency is important to obtain correct control

actions. In particular, the proposed control architecture for

the maintaining of the swarm formation and the execution

of cooperative manipulation tasks, exploiting the potential

field method, requires a constant distance vectors update.

Therefore, in the present article, an innovative localization

strategy has been developed. On-board sensors (e.g. inertial

measurement unit (IMU), cameras, echo-sounder) with a

high-frequency rate are considered to overcome this issue:

these sensors firstly provide the vehicle position with

respect to the object reference frame and then the reciprocal

distances of the vehicles. A completely decentralized

solution is given to perform the cooperative manipulation

task, uniquely based on distance vector estimations

(Table 1).

First, it is useful to define some physical quantities and

the reference frames involved in the estimation algorithm

(used by every vehicle to calculate its potentials). ~�W
vi ; is

the i th vehicle position, ~G
W

d ðtÞ is the central position of the

swarm circle, ~�W
ee;i is the position of the i th vehicle end-

effector and~�W
o is the central position of the obstacle. All

these vectors are given in the world reference frame.

The proposed approach reduces the data exchange

between underwater vehicles and the ROSV to increase the

reliability of the control architecture. The manipulated

object is a local reference system of the swarm. Through

the hypotheses of known object and known connection

points between I-AUVs and objects, the distance vectors

can be easily determined; on-board sensors, e.g. cameras,

IMU, joint sensors with high data-flow rates, provide the

correct position of the I-AUV in the object reference frame.

Furferi et al. 5



A world reference frame ~O W, an i th vehicle reference

frame ~O vi; and an object reference frame ~O obj are defined.

Ri
IMU and R DKi, are the rotation matrices respectively

between ~O W and ~O vi; and between ~O vi; and ~O obj. Ri
IMU

can be obtained only through an on-board IMU for the

vehicle orientation measurements (e.g. providing the Euler

angles, e.g. �V ,�V , V ), and R DKi is calculated from the

robotic arm direct kinematic model. The distance vectors

given in Table 1 with respect to the world reference frame

can be rewritten in the vehicle reference frame.

1. Ist distance (the distance among vehicles ~d
W

i;j ):

rewriting the position of the i th vehicle in the object

reference frame O W
obj, it is possible to obtain

~�
obj
OVi ¼ ~d

obj;i

cp þ R DKi
~d

V

DKi þ R DK;i
~d

V;i

V (10)

where ~d
obj;i

cp is the known position of the connection point in

the object reference frame, ~d
V

DKi is the end-effector position

in the manipulator base reference frame and ~d
V ;i

V is the

position of the manipulator base in the vehicle reference

frame (a priori known). The position of the vehicles, in the

object reference frame, can be calculated through equation

(10); the distance vectors ~d
obj

i;j are

~d
obj

i;j ¼~�
obj
OVi �~�

obj
OVj (11)

expressed in the world reference frame as

~d
W

i;j ¼ RTi
IMUR T

DKi
~d

obj

i;j (12)

Equation (12) is completely decentralized because the

positions of other I-AUVs are based on on-board data and

local vehicle positions in the object reference frame (trans-

mitted by means of acoustic modems). The I-AUVs’ posi-

tions in the object reference frame ~�
obj
OVi, for

i ¼ 1; 2; . . . ; n vei with n vei number of vehicles, transmitted

among the vehicles through underwater acoustic modems.

2. IInd distance (distance between I-AUVs and the

swarm sphere ~d
W

i ): this distance cannot be calcu-

lated into the vehicle reference frame. Every vehi-

cle finds its position in the world reference frame.

The algorithm exploits the distance calculated in the

previous step ~d
W

i;j and the position in the world ref-

erence frame of one vehicle of the swarm; the i th

vehicle can recalculate the other vehicle positions

(j 6¼ i) in the world reference frame by summing its

position in the world reference frame and the dis-

tance vector for each vehicle (equation (13)). As

regards the position in the world reference frame,

the algorithm needs an I-AUV (one of the swarm) to

receive its position~�W
vi (provided by the ROSV) and

this info will be transmitted to the other vehicles of

the swarm.

~�W
vj ¼~�W

vi þ ~d
W

i;j j 6¼ i; for j ¼ 1; 2; . . . ; n vei (13)

The central position of the swarm ~G
W

d ðtÞ is the desired

position transmitted through acoustic modems. This data is

obtained by equation (14), with a relatively low time rate

~G
W

d ðtÞ ¼~�W
ROSV þ ~G

W

d�ROSVðtÞ (14)

where ~�W
ROSV is the ROSV world position acquired by the

GPS and ~G
W

d�ROSVðtÞ is the desired position of the swarm

with respect to the ROSV. Therefore, ~d
W

i is obtained as

~�W
vi � ~G

W

d ðtÞ.

3. IIIrd distance (distance between the i th vehicle and

the i th end-effector ~d
W

ee;v): it can be easily computed

in the world reference frame from equation (15)

~d
W

ee;v ¼ Ri
IMUð~d

V

v;i þ ~d
V

DKiÞ (15)

where ~d
V

v;i is the distance of the manipulator base into the

vehicle reference frame, Ri
IMU is the rotation matrix

between world and vehicle reference frames and ~d
V

DKi is

the distance vector due to the direct kinematics.

1. IVth distance (distance between the i th vehicle

and the obstacle ~d
W

i; o): it can be computed in the

vehicle reference frame. The value ~d
V

obs comes

from the on-board sensors (e.g. optical cameras

or acoustic sensors) and can be easily calculated

in the world reference frame (equation (16)) using

the rotation matrix between world and vehicle ref-

erence frames Ri
IMU

~d
W

i; o ¼ Ri
IMU

~d
V

obs (16)

Table 1. Distance vectors.

NÂ
�

Distance vector Potential functions Equation

I Distance between I-AUVs V collisions
i -V polygon ~d

W

i;j ¼ ð~�
W
vi ; ðtÞ �~�

W
vj ðtÞÞ ¼ RTiIMUR

T
DKi
~d

obj

i;j

II Distance between I-AUVs and the swarm sphere V swarm ~d
W

i ¼ ð~�
W
vi ;�~G

W

d ðtÞÞ

III Distance between I-AUV(i th) and end-effector(i th) V WS-V RAcoll ~d
W

ee;v ¼ ð~�
W
vi ;�~�

W
eeÞ ¼ RiIMUð~d

V
v;i þ~d

V
DKiÞ

IV Distance between i th vehicle and obstacle V v� e
~d

W

i;o ¼ ð~�
W
i ðtÞ �~�

W
o ; ðtÞÞ ¼ RiIMU

~d obs;
V
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Multibody modelling of the I-AUV

The swarm of I-AUVs comprises n vehicles equipped with

a seven-DOFs robotic arm. A specific multibody model of

the I-AUV is built, considering both the vehicle and the

robotic arm (Figure 3).

The I-AUV geometrical and physical characteristics can

be found in the literature and in the related datasheets.18

Concerning the gripper, it has been assumed to be a rigid

gripper-object connection to simplify the model. All the

multibody models are assembled using the Matlab-

Simulink software.

agreement with the SNAME notation14, the AUV kine-

matics is described using the vectors ~� and ~� where

~� ¼ ð~�1
T;~�2

TÞT
contains the position ð~�1Þ and the orien-

tation ð~�2Þ in the fixed reference system < n > and

~� ¼ ð~� T
1 ;~�

T
2 Þ

T
are the linear ð~� 1Þ and the angular ð~� 2Þ

velocities in the body reference system < b > (both the

reference systems use the standard North-East-Down (NED)

directions).

At this point, the vehicle dynamics can be written as14

M RB
_~� þ C RBð~�Þ~� ¼~� Hð~�;~�CÞ þ~gð~�Þ þ~� þ~� g (17)

in which M RB is the vehicle mass matrix and C RBð~�Þ is the

matrix describing the Coriolis and centrifugal effects.

~gð~�Þ, ~� and ~� g are the gravity vector, the generalized

actions of the vehicle thrusters and the generalized actions

caused by the dynamical robotic arm–vehicle interaction,

respectively. The main vehicle geometrical and physical

data are taken from the literature [18]: DOFs ¼ 6, length

l v ¼� 0:8 m, breadth b v ¼� 0:6 m, height h v ¼� 0:4 m

and mass m v ¼� 150 kg. The I-AUV is provided with a

robotic arm with seven DOFs. The robotic arm is placed on

the vehicle bow, in the middle of its lower part. For the

kinematic model of the robotic arm (Figure 4), the joint

coordinates~q ¼ ½q1 q2 . . . q7�T and the end-effector posi-

tion~x ¼ ½x y z� � �T are defined. In Figure 4 and Table 2,

the Denavit–Hartenberg parameters of the arm are given.

Redundant DOFs can be used to achieve secondary tasks

(i.e. the minimization of kinetic energy).3

The dynamic model of the robotic arm is simulated and

every rigid body is modelled as follows

Mi
l
_~� i

l þ Ci
lð~� i

lÞ~� i
l ¼~� i

Hð~� i
l;~�

i
l CÞ þ~gið~� i

lÞ þ~� i
gl (18)

where Mi
l represents the mass matrix, Ci

lð~�
i
lÞ is the Coriolis

and centrifugal effect matrix of the i th link. ~gið~� i
lÞ and~� i

gl

are respectively the contributions related to the gravity

effects and the generalized forces due to the interaction

with the other links of the robotic arm. The robotic arm

characteristics come from the technical literature18 and

can be synthesized into the following parameters:

d1 ¼ d3 ¼ d5 ¼ d7 ¼ 0:3 m are the lengths of the links,

d l ¼ 0:2 m is the link diameter and m l � 10 kg is the

link mass.

The hydrodynamics and buoyancy effects ~� Hð~� r;~� CÞ
for the vehicle and for the robotic arm have been consid-

ered to reproduce in the I-AUV dynamics during the navi-

gation and manipulation tasks.

The I-AUV control architecture is based on a multi-

layer approach where the contributions of the different

potentials are combined with the classical control tech-

niques. The vehicle can be controlled using different

strategies: position control on the six DOFs using the

Proportional-Integral-Derivative (PID) approach or force

control using the potential approach (on the x–y–z direc-

tions). The first approach can be useful for the

approaching phase of the I-AUV to the object (precise

positioning). The second one merges the control on the

x–y–z directions in terms of forces with a PID strategy

in terms of angular quantities during cooperative manip-

ulation tasks. Using a suitable matrix H , describing the

relations ~� ¼ H~S between vehicle forces ~� and thrusts
~S14, the generalized thrusts actions can be evaluated

starting from the forces calculated through the field

potentials in the vehicle reference systems.

Looking at the robotic arm, the required values of the

joints variables (to obtain the desired end-effector posi-

tion) must be found. To reach this goal, a constrained

optimization approach is used. If the required end-

effector velocity ~v e and the Jacobian J are supposed to

be known, the solutions _~q d of the linear equation between

the end-effector velocity and the joint velocities that mini-

mize the quadratic cost functional of the joint velocities

can be found.

Artificial neural network for parameter
optimization

As explained above, different swarm trajectories can be

followed by the I-AUVs depending on different settings

of the vehicle–vehicle, vehicle–object and vehicle–envi-

ronment potentials. Let, accordingly, Pi be a vector whose

elements are the 10 parameters to be set used for a given i th

simulation, parameters defined in the section ‘A new

Figure 3. Model of the intervention-autonomous underwater
vehicle.
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strategy for I-AUVs swarms performing cooperative

mobile manipulation’

~Pi ¼ ðR; k s; k p; d c; k c; WS; k WS; k RA; d O; k OÞ (19)

The resulting desired trajectory, computed using the

approach described above, consists of a polyline Ti. Since

different values lead to different results, a method to pro-

vide the vector P opt able to define the optimal trajectory for

safely avoiding the obstacle, is required. To find such a

vector, that is, to define the optimal parameters values, a

good option could be to apply any optimization algorithms

available in literature.19,20

In effect, for a given set of these parameters it is possible

to simulate the whole trajectory; consequently, it is

straightforward to build a dataset of different trajectories

by testing different values, varying them within a given

range. Unfortunately, since each simulation requires the

setting of 10 input parameters, performing a full factorial

experiment21 is not recommended, even in case only two

states are selected for each parameter (such an experiment

would require 210 ¼ 1024 simulations to be achieved,

involving more than 500 hours of computational time).

Obviously, for higher numbers of states, suggested for

determining more reliable values, the required experiments

increase accordingly thus making impracticable the

experimentation.

To overcome this issue, ANNs could be a valid option to

infer step-by-step variations of the 10 inputs (within proper

ranges) with the swarm actual trajectory by using a lower

number of simulations.

As widely recognized22 artificial neural networks are

computational systems that simulate the microstructure of

a biological nervous system. ANNs can be trained to per-

form a particular function either from the information

from outside the network or by the neurons themselves

in response to the input.23 A properly trained ANN is

capable of generalizing the information on the basis of

the parameters acquired during its training phase; as a

consequence, for any given input different from the ones

used for training, it provides a reliable forecast of the

inferred output.

Therefore, in the present work an ANN is built with the

aim of finding a transfer function between a given set of

values Pi and the resulting trajectory Ti. To reduce the

complexity of the devised system, instead of using the

whole polyline Ti obtainable from the i th simulation, a

parameter li describing the lateral offset of the transported

object centre of gravity with respect to the obstacle centre is

used as target for the ANN.

Accordingly, the ANN, devised by using the Matlab

Neural Network Toolbox, is built using the following data.

Table 2. Robotic arm Denavit–Hartenberg parameters.

Link ai ai di #i

0 �=2 d1 #1

0 �=2 0 #2 þ �2
0 ��=2 d3 #3

0 �=2 0 #4 þ �2
0 ��=2 d5 #5

0 �=2 0 #6

0 0 d7 #7

Figure 4. Kinematic scheme of the robotic arm.
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� The training set consists of a matrix ~P built by

choosing 80 different Pi vectors obtained by varying

the potentials within the ranges described in Table 3

~P ¼ ½P1;P2; . . . ;P80� (20)

� The target set consists of the vector ~L whose ele-

ments are the parameters li

~L ¼ ½l1; l2; . . . ; l80� (21)

The ANN architecture is characterized by the following

parameters:

� three layers: input, hidden and output layer22;

� a hidden layer made of logistic neurons followed by

an output layer of linear neurons;

� ten input, h hidden, and 1 output units. The number

of hidden units was varied from 6 to 18 with a step of

3 units, monitoring the performance of the response

using the training data. The number of hidden units

that achieved the optimal response is h ¼ 15.

The ANN is trained using a back-propagation algorithm

with momentum.24 The algorithm requires two parameters:

the learning rate and momentum term. The momentum

term was fixed at 0.71 and the learning rate was fixed at

0.08. The network was trained five times starting each time

with a randomly chosen set of weights. As widely known,

during the training, the weights and the biases of the net-

work are iteratively adjusted to minimise the network error

function. The network error used in this work is the mean

square error correspondent to the training set elements.

This error is monitored during the training process and will

normally decrease during the training. However, when the

network becomes excessively specialised in reproducing

the training data, the early stopping error will typically

begin to rise.25 When the early stopping error increases for

a specified number of iterations, the training is stopped, and

the weights and biases at the minimum early stopping error

are returned. Optimal training was achieved in 74 epochs.

In Figure 5 the ANN performance is depicted in terms of

linear regression between dataset (split into the typical

subsets training, validation and testing). As already stated,

once trained the ANN accepts any vector Pj as input and

computes instantly the correspondent neural network out-

put vector, that is, the corresponding value lj.

The ANN has been tested with 20 new sets of potentials.

The average difference between estimated and actual li
values was equal to 0.057 m with a variance equal to

0.001. Consequently, based on experimental tests, it can

be stated that the results obtainable from the ANN are

comparable to the ones derived from the simulation.

It is worth noting again that the main aim in devising the

ANN described above is not to overcome the performance

of the trajectory simulation algorithm, neither to replace it.

It is, rather, a method to artificially and considerably

increase the amount of experimental data for applying opti-

mization algorithms aimed at determining the optimal

potential parameters. In fact, since a single simulation

using the ANN is performed in less than 0.05 s with com-

mercial hardware consisting of an Intel Core i7-2860QM

processor with 24 GB RAM, it is plausible to test a huge

number of different parameter values.

Accordingly, the main idea is to solve the following

optimization problem.26

Given:

1. a set of vectors Pk obtained by varying k times and

one by one the parameters within their given range

with a given step; in Table 3 the steps used for each

parameter are listed. In this work, since four states

are used for each of the 10 parameters, the number

of the k tested solutions is equal to

410 ¼ 1; 048; 5761;

2. a set of lk outputs obtained by simulating the ANN

using the vectors Pk ;

3. the absolute difference value �k between the lk

value and the desired optimal position of the trans-

ported object l opt defined as follows

l opt ¼
d obs;þw obj

2
þ 	 (22)

�k ¼ jlk � l optj (23)

where d obs is the obstacle diameter, w obj is the width of the

transported object and 	 is a precautionary distance

(between such an object and the obstacle) to be maintained

during the object transportation phase along the desired

trajectory.

Find:

� the vector P opt allowing the minimum value

� opt 2 f�kg to be obtained.

This optimization problem is solved using a brute force

algorithm, that is, performing an exhaustive search of the

solution domain �k to find the input P opt achieving the

Table 3. Parameters used for simulating the artificial neural
network and allowed values.

Parameter Allowed values Step Units

R 4 4.5 5 5.5 0.5 m
k s 7 8 9 10 1 N/m2

k p 0.08 0.1 0.12 0.14 0.02 Nm2

d c 1 1.5 2 2.5 0.5 m
k c 0.9 1.2 1.5 1.8 0.3 Nm2

WS 0.4 0.6 0.8 1 0.2 N/m2

kws 80 100 120 140 20 Nm2

kRA 80 100 120 140 20 Nm2

dO 15 16 17 18 1 m
kO 7 8 9 10 1 Nm2

Furferi et al. 9



absolute minimum value � opt. Since the overall number of

simulations carried out using the ANN is, as already stated,

k¼ 410, the computational time for determining the whole

set of distances is equal to approximately 14 hours and 33

minutes when the above hardware is used.

Finally, simulating the trajectory of a swarm transport-

ing an object whose width w obj ¼ 2 m, supposed to avoid an

obstacle with a diameter of 2 m and using a 0.6 m value for

" (i.e. l opt ¼ 3.6 m), the retrieved optimal set P opt is the

following

~P opt ¼ ð5; 10; 0:1; 2; 1:5; 0:8; 99:5; 100:5; 16; 10Þ (24)

Such a set provides � opt ¼ 0.23 m.

Numerical simulations and results

In this section the results of the numerical simulations are

analysed. The objective of this analysis is to test the

proposed cooperative strategy for a swarm of I-AUVs,

highlighting its advantages and drawbacks. The simulated

tasks are referred to the potential functions shown in the

Figure 5. ANN performance.

Figure 6. Zoom on the initial conditions of the intervention-
autonomous underwater vehicles swarm.
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section ‘A new strategy for I-AUVs swarms performing

cooperative mobile manipulation’. The sum of all these

contributions determines the I-AUVs swarm trajectory.

The analysed task is a classical transportation task in which

the swarm is composed of four I-AUVs with six DOFs.

Each vehicle has a single robotic arm with seven DOFs

and a gripper that is (for hypothesis) rigidly connected with

the object. In this simulation the approaching phase to the

object is neglected. The simulation environment is Matlab-

Simulink where the I-AUVs are modelled using the multi-

body approach explained in the section ‘Artificial Neural

Network for parameter optimization’. The integrator used

is the fixed-step differential equation implemented by Dor-

mand-Prince [5], with a step size of �t ¼ 1e�4 s.

In this part, the preliminary results of the cooperative

manipulation with obstacle avoidance are shown. The

cooperative mobile manipulation is performed by four

I-AUVs placed at the four corners of the object. The

trajectory is calculated by the sum of all contributions

(vehicle–vehicle, vehicle–object, vehicle–environment

potentials). The obstacle is modelled as a sphere placed

along the desired trajectory of the swarm.

In Figure 6, the initial positions of the vehicles are rep-

resented; in addition, the influence of the potentials is

shown (the red circle is the vehicle–object potential and

the green circle is the vehicle–vehicle one). The red line

is the desired trajectory of the swarm imposed by the

ROSV (support surface vehicle).

Finally, Figure 7 represents the final condition of the

I-AUVs swarm, after the obstacle avoidance phase in

which the object is carried by the swarm; the trajectory

of the vehicles in the XY plane is shown. The results are

encouraging because the dynamical behaviours of the

I-AUVs are very smooth. The vehicles have not yet reached

the swarm formation (the green circle); in addition, it is

possible to evaluate the behaviour of the manipulated

object that avoids the obstacle. There are three different

time instants shown on this figure: the blue object is at the

beginning of the obstacle avoidance phase, the black object

is at the maximum effect of the V v� e potential that forces

the object to avoid the obstacle and, finally, the red object

at the final situation of the swarm.

In Figure 8, the tracking error of the object with respect

to the desired straight trajectory is shown. The error is

highlighted only in terms of y-direction because the poten-

tials work mainly in that direction in this task. As depicted,

the error is initially zero but, when the swarm arrives near

the obstacle, I-AUVs begin to avoid the obstacle, changing

Figure 7. Trajectories of the intervention-autonomous underwater vehicles swarm during the manipulation task: XY plane.

Figure 8. Tracking error of the object with respect (y-
coordinate).
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their trajectories and the trajectory of the object. After the

obstacle avoidance phase, the swarm comes back to follow

the ideal trajectory of the swarm. It is worth noting that the

slope and the amplitude of the obstacle avoidance phase

mainly depend on the potential parameters. This simulation

represents a particular case of cooperative mobile manipula-

tion, but different testing conditions have been assessed. In

addition, during this task, both the distance estimation algo-

rithm and the cooperative control strategy have shown a pro-

mising behaviour. The localization algorithm worked well

and should be tested by introducing some realistic effects like

delays, loss of information, etc. The cooperative control strat-

egy based on the latter algorithm has shown a strong depen-

dence on the amplitude of the potential parameters. A more

deep analysis of the correlations among these parameters and

the effects on the dynamical behaviour of the vehicles could

clarify the best solution for the potential parameter tuning.

Conclusions and further developments

The study of cooperative manipulation strategies of

I-AUVs represents a more complex field of application,

compared with the terrestrial or aerial ones, mainly due

to different technological problems, e.g. localization and

communication in an underwater environment. In this arti-

cle, an innovative decentralized approach for cooperative

mobile manipulation of I-AUVs based on the potential field

method has been presented; the potential field parameters

have been optimized through a suitable and trained ANN.

The control architecture is developed to manage in parallel

the coordination of the swarm, the guidance and navigation

of I-AUVs and the manipulation tasks within a unique

control structure. The future developments planned for this

research activity will be the implementation in the model of

more-complex functions describing sensor and actuator

performance, regarding optical and acoustic devices, the

introduction of different constraints between objects and

the grippers and the testing of the proposed control archi-

tecture based on the potential field method, with the under-

water vehicles built by the authors’ laboratory.
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