13 research outputs found

    Summary of the Sussex-Huawei locomotion-transportation recognition challenge 2020

    Get PDF
    In this paper we summarize the contributions of participants to the third Sussex-Huawei Locomotion-Transportation (SHL) Recognition Challenge organized at the HASCAWorkshop of UbiComp/ISWC 2020. The goal of this machine learning/data science challenge is to recognize eight locomotion and transportation activities (Still, Walk, Run, Bike, Bus, Car, Train, Subway) from the inertial sensor data of a smartphone in a user-independent manner with an unknown target phone position. The training data of a “train” user is available from smartphones placed at four body positions (Hand, Torso, Bag and Hips). The testing data originates from “test” users with a smartphone placed at one, but unknown, body position. We introduce the dataset used in the challenge and the protocol of the competition. We present a meta-analysis of the contributions from 15 submissions, their approaches, the software tools used, computational cost and the achieved results. Overall, one submission achieved F1 scores above 80%, three with F1 scores between 70% and 80%, seven between 50% and 70%, and four below 50%, with a latency of maximum of 5 seconds

    Summary of the Sussex-Huawei Locomotion-Transportation Recognition Challenge

    Get PDF
    In this paper we summarize the contributions of participants to the Sussex-Huawei Transportation-Locomotion (SHL) Recognition Challenge organized at the HASCA Workshop of UbiComp 2018. The SHL challenge is a machine learning and data science competition, which aims to recognize eight transportation activities (Still, Walk, Run, Bike, Bus, Car, Train, Subway) from the inertial and pressure sensor data of a smartphone. We introduce the dataset used in the challenge and the protocol for the competition. We present a meta-analysis of the contributions from 19 submissions, their approaches, the software tools used, computational cost and the achieved results. Overall, two entries achieved F1 scores above 90%, eight with F1 scores between 80% and 90%, and nine between 50% and 80%

    Summary of the Sussex-Huawei Locomotion-Transportation Recognition Challenge 2019

    Get PDF
    In this paper we summarize the contributions of participants to the third Sussex-Huawei Locomotion-Transportation (SHL) Recognition Challenge organized at the HASCAWorkshop of UbiComp/ISWC 2020. The goal of this machine learning/data science challenge is to recognize eight locomotion and transportation activities (Still, Walk, Run, Bike, Bus, Car, Train, Subway) from the inertial sensor data of a smartphone in a user-independent manner with an unknown target phone position. The training data of a “train” user is available from smartphones placed at four body positions (Hand, Torso, Bag and Hips). The testing data originates from “test” users with a smartphone placed at one, but unknown, body position. We introduce the dataset used in the challenge and the protocol of the competition. We present a meta-analysis of the contributions from 15 submissions, their approaches, the software tools used, computational cost and the achieved results. Overall, one submission achieved F1 scores above 80%, three with F1 scores between 70% and 80%, seven between 50% and 70%, and four below 50%, with a latency of maximum of 5 seconds

    An overview of deep learning techniques for epileptic seizures detection and prediction based on neuroimaging modalities: Methods, challenges, and future works

    Get PDF
    Epilepsy is a disorder of the brain denoted by frequent seizures. The symptoms of seizure include confusion, abnormal staring, and rapid, sudden, and uncontrollable hand movements. Epileptic seizure detection methods involve neurological exams, blood tests, neuropsychological tests, and neuroimaging modalities. Among these, neuroimaging modalities have received considerable attention from specialist physicians. One method to facilitate the accurate and fast diagnosis of epileptic seizures is to employ computer-aided diagnosis systems (CADS) based on deep learning (DL) and neuroimaging modalities. This paper has studied a comprehensive overview of DL methods employed for epileptic seizures detection and prediction using neuroimaging modalities. First, DLbased CADS for epileptic seizures detection and prediction using neuroimaging modalities are discussed. Also, descriptions of various datasets, preprocessing algorithms, and DL models which have been used for epileptic seizures detection and prediction have been included. Then, research on rehabilitation tools has been presented, which contains brain-computer interface (BCI), cloud computing, internet of things (IoT), hardware implementation of DL techniques on field-programmable gate array (FPGA), etc. In the discussion section, a comparison has been carried out between research on epileptic seizure detection and prediction. The challenges in epileptic seizures detection and prediction using neuroimaging modalities and DL models have been described. In addition, possible directions for future works in this field, specifically for solving challenges in datasets, DL, rehabilitation, and hardware models, have been proposed. The final section is dedicated to the conclusion which summarizes the significant findings of the paper

    Human Action Recognition from Various Data Modalities:A Review

    Get PDF
    Human Action Recognition (HAR), aiming to understand human behaviors and then assign category labels, has a wide range of applications, and thus has been attracting increasing attention in the field of computer vision. Generally, human actions can be represented using various data modalities, such as RGB, skeleton, depth, infrared sequence, point cloud, event stream, audio, acceleration, radar, and WiFi, etc., which encode different sources of useful yet distinct information and have various advantages and application scenarios. Consequently, lots of existing works have attempted to investigate different types of approaches for HAR using various modalities. In this paper, we give a comprehensive survey for HAR from the perspective of the input data modalities. Specifically, we review both the hand-crafted feature-based and deep learning-based methods for single data modalities, and also review the methods based on multiple modalities, including the fusion-based frameworks and the co-learning-based approaches. The current benchmark datasets for HAR are also introduced. Finally, we discuss some potentially important research directions in this area

    Sequential learning and shared representation for sensor-based human activity recognition

    Get PDF
    Human activity recognition based on sensor data has rapidly attracted considerable research attention due to its wide range of applications including senior monitoring, rehabilitation, and healthcare. These applications require accurate systems of human activity recognition to track and understand human behaviour. Yet, developing such accurate systems pose critical challenges and struggle to learn from temporal sequential sensor data due to the variations and complexity of human activities. The main challenges of developing human activity recognition are accuracy and robustness due to the diversity and similarity of human activities, skewed distribution of human activities, and also lack of a rich quantity of wellcurated human activity data. This thesis addresses these challenges by developing robust deep sequential learning models to boost the performance of human activity recognition and handle the imbalanced class problems as well as reduce the need for a large amount of annotated data. This thesis develops a set of new networks specifically designed for the challenges in building better HAR systems compared to the existing methods. First, this thesis proposes robust and sequential deep learning models to accurately recognise human activities and boost the performance of the human activity recognition systems against the current methods from smart home and wearable sensors collected data. The proposed methods integrate convolutional neural networks and different attention mechanisms to efficiently process human activity data and capture significant information for recognising human activities. Next, the thesis proposes methods to address the imbalanced class problems for human activity recognition systems. Joint learning of sequential deep learning algorithms, i.e., long short-term memory and convolutional neural networks is proposed to boost the performance of human activity recognition, particularly for infrequent human activities. In addition to that, also propose a data-level solution to address imbalanced class problems by extending the synthetic minority over-sampling technique (SMOTE) which we named (iSMOTE) to accurately label the generated synthetic samples. These methods have enhanced the results of the minority human activities and outperformed the current state-of-the-art methods. In this thesis, sequential deep learning networks are proposed to boost the performance of human activity recognition in addition to reducing the dependency for a rich quantity of well-curated human activity data by transfer learning techniques. A multi-domain learning network is proposed to process data from multi-domains, transfer knowledge across different but related domains of human activities and mitigate isolated learning paradigms using a shared representation. The advantage of the proposed method is firstly to reduce the need and effort for labelled data of the target domain. The proposed network uses the training data of the target domain with restricted size and the full training data of the source domain, yet provided better performance than using the full training data in a single domain setting. Secondly, the proposed method can be used for small datasets. Lastly, the proposed multidomain learning network reduces the training time by rendering a generic model for related domains compared to fitting a model for each domain separately. In addition, the thesis also proposes a self-supervised model to reduce the need for a considerable amount of annotated human activity data. The self-supervised method is pre-trained on the unlabeled data and fine-tuned on a small amount of labelled data for supervised learning. The proposed self-supervised pre-training network renders human activity representations that are semantically meaningful and provides a good initialization for supervised fine tuning. The developed network enhances the performance of human activity recognition in addition to minimizing the need for a considerable amount of labelled data. The proposed models are evaluated by multiple public and benchmark datasets of sensorbased human activities and compared with the existing state-of-the-art methods. The experimental results show that the proposed networks boost the performance of human activity recognition systems

    Novel neural architectures & algorithms for efficient inference

    Get PDF
    In the last decade, the machine learning universe embraced deep neural networks (DNNs) wholeheartedly with the advent of neural architectures such as recurrent neural networks (RNNs), convolutional neural networks (CNNs), transformers, etc. These models have empowered many applications, such as ChatGPT, Imagen, etc., and have achieved state-of-the-art (SOTA) performance on many vision, speech, and language modeling tasks. However, SOTA performance comes with various issues, such as large model size, compute-intensive training, increased inference latency, higher working memory, etc. This thesis aims at improving the resource efficiency of neural architectures, i.e., significantly reducing the computational, storage, and energy consumption of a DNN without any significant loss in performance. Towards this goal, we explore novel neural architectures as well as training algorithms that allow low-capacity models to achieve near SOTA performance. We divide this thesis into two dimensions: \textit{Efficient Low Complexity Models}, and \textit{Input Hardness Adaptive Models}. Along the first dimension, i.e., \textit{Efficient Low Complexity Models}, we improve DNN performance by addressing instabilities in the existing architectures and training methods. We propose novel neural architectures inspired by ordinary differential equations (ODEs) to reinforce input signals and attend to salient feature regions. In addition, we show that carefully designed training schemes improve the performance of existing neural networks. We divide this exploration into two parts: \textsc{(a) Efficient Low Complexity RNNs.} We improve RNN resource efficiency by addressing poor gradients, noise amplifications, and BPTT training issues. First, we improve RNNs by solving ODEs that eliminate vanishing and exploding gradients during the training. To do so, we present Incremental Recurrent Neural Networks (iRNNs) that keep track of increments in the equilibrium surface. Next, we propose Time Adaptive RNNs that mitigate the noise propagation issue in RNNs by modulating the time constants in the ODE-based transition function. We empirically demonstrate the superiority of ODE-based neural architectures over existing RNNs. Finally, we propose Forward Propagation Through Time (FPTT) algorithm for training RNNs. We show that FPTT yields significant gains compared to the more conventional Backward Propagation Through Time (BPTT) scheme. \textsc{(b) Efficient Low Complexity CNNs.} Next, we improve CNN architectures by reducing their resource usage. They require greater depth to generate high-level features, resulting in computationally expensive models. We design a novel residual block, the Global layer, that constrains the input and output features by approximately solving partial differential equations (PDEs). It yields better receptive fields than traditional convolutional blocks and thus results in shallower networks. Further, we reduce the model footprint by enforcing a novel inductive bias that formulates the output of a residual block as a spatial interpolation between high-compute anchor pixels and low-compute cheaper pixels. This results in spatially interpolated convolutional blocks (SI-CNNs) that have better compute and performance trade-offs. Finally, we propose an algorithm that enforces various distributional constraints during training in order to achieve better generalization. We refer to this scheme as distributionally constrained learning (DCL). In the second dimension, i.e., \textit{Input Hardness Adaptive Models}, we introduce the notion of the hardness of any input relative to any architecture. In the first dimension, a neural network allocates the same resources, such as compute, storage, and working memory, for all the inputs. It inherently assumes that all examples are equally hard for a model. In this dimension, we challenge this assumption using input hardness as our reasoning that some inputs are relatively easy for a network to predict compared to others. Input hardness enables us to create selective classifiers wherein a low-capacity network handles simple inputs while abstaining from a prediction on the complex inputs. Next, we create hybrid models that route the hard inputs from the low-capacity abstaining network to a high-capacity expert model. We design various architectures that adhere to this hybrid inference style. Further, input hardness enables us to selectively distill the knowledge of a high-capacity model into a low-capacity model by cleverly discarding hard inputs during the distillation procedure. Finally, we conclude this thesis by sketching out various interesting future research directions that emerge as an extension of different ideas explored in this work

    Intelligent Sensors for Human Motion Analysis

    Get PDF
    The book, "Intelligent Sensors for Human Motion Analysis," contains 17 articles published in the Special Issue of the Sensors journal. These articles deal with many aspects related to the analysis of human movement. New techniques and methods for pose estimation, gait recognition, and fall detection have been proposed and verified. Some of them will trigger further research, and some may become the backbone of commercial systems

    Human-Robot Collaborations in Industrial Automation

    Get PDF
    Technology is changing the manufacturing world. For example, sensors are being used to track inventories from the manufacturing floor up to a retail shelf or a customer’s door. These types of interconnected systems have been called the fourth industrial revolution, also known as Industry 4.0, and are projected to lower manufacturing costs. As industry moves toward these integrated technologies and lower costs, engineers will need to connect these systems via the Internet of Things (IoT). These engineers will also need to design how these connected systems interact with humans. The focus of this Special Issue is the smart sensors used in these human–robot collaborations

    Tight Arms Race: Overview of Current Malware Threats and Trends in Their Detection

    Get PDF
    Cyber attacks are currently blooming, as the attackers reap significant profits from them and face a limited risk when compared to committing the "classical" crimes. One of the major components that leads to the successful compromising of the targeted system is malicious software. It allows using the victim's machine for various nefarious purposes, e.g., making it a part of the botnet, mining cryptocurrencies, or holding hostage the data stored there. At present, the complexity, proliferation, and variety of malware pose a real challenge for the existing countermeasures and require their constant improvements. That is why, in this paper we first perform a detailed meta-review of the existing surveys related to malware and its detection techniques, showing an arms race between these two sides of a barricade. On this basis, we review the evolution of modern threats in the communication networks, with a particular focus on the techniques employing information hiding. Next, we present the bird's eye view portraying the main development trends in detection methods with a special emphasis on the machine learning techniques. The survey is concluded with the description of potential future research directions in the field of malware detection
    corecore