
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2023

Novel neural architectures &
algorithms for efficient inference

https://hdl.handle.net/2144/46649
Boston University

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

NOVEL NEURAL ARCHITECTURES & ALGORITHMS

FOR EFFICIENT INFERENCE

by

ANIL KAG

B.Tech., Indian Institute of Technology Guwahati, 2014
M.S., Boston University, 2022

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2023

© 2023 by
ANIL KAG
All rights reserved

Approved by

First Reader

Venkatesh Saligrama, PhD
Professor of Electrical and Computer Engineering
Professor of Systems Engineering
Professor of Computer Science

Second Reader

Brian Kulis, PhD
Associate Professor of Electrical and Computer Engineering
Associate Professor of Systems Engineering

Third Reader

Alexander Olshevsky, PhD
Associate Professor of Electrical and Computer Engineering
Associate Professor of Systems Engineering

Fourth Reader

Kilian Quirin Weinberger, PhD
Professor of Computer Science
Cornell University

Fifth Reader

Prateek Jain, PhD
Senior Staff Research Scientist, Google AI
Adjunct Professor of Computer Science and Engineering
Indian Institute of Technology Kanpur

In loving memory of my Dada ji and Nana ji, one from whom I gleaned invaluable

wisdom and the other whom I yearn to have known, but whose untimely departure

cut short that opportunity.

iv

Acknowledgments

Looking back on the unique trajectory of this thesis, I can see the flashbacks of many

incredible people without whom this outcome would have been impossible.

First and foremost, I would like to thank my thesis advisor Prof. Venkatesh

Saligrama for immense freedom and support during this journey. He enabled me to

explore many crazy ideas and taught me the discipline of fleshing out these ideas to

the general audience, including the dreaded "Reviewer 2". I have been very fortunate

to be part of those long discussion sessions where we started with one problem and

ended up generating many more problems to solve. This ensured I always had some

problems to think about as a potential research direction. Finally, I am thankful for

all the life skills I learned from him beyond academic life.

I want to thank my thesis committee members Prof. Brian Kulis, Prof. Alexander

Olshevsky, Prof. Kilian Weinberger, and Dr. Prateek Jain. Their constructive feed-

back improved this thesis and my research directions in general. I am also grateful

for the online learning lectures by Prof. Francesco Orabona, as they inspired some of

the crazy ideas in this work. Finally, I am fortunate for my research collaborations

with Dr. Prateek Jain. He has been a great role model. He helped me with many

decisions during this journey, including the decision to pursue a Ph.D. at BU.

I am immensely grateful to Microsoft Research Bangalore for its exceptional Re-

search Fellow program and to Dr. Manik Varma, my mentor during the fellowship.

I would not have pursued this career if not for my MSR experience. I got my neck

for empirical research from Manik. I learned the importance of application-driven

research work from him.

Shout-out to amazing BU administrative folks. It is not easy to navigate the

murky waters of official administrative activities. I want to thank Prof. Anna Swan

for the first-year seminar course, as it helped in acclimatizing to the Ph.D. life at BU.

v

Next, I would acknowledge the support of ECE Ph.D. program managers Christine

Ritzwoski and Nanna Syed. These were my go-to people for any admin issues. They

were always supportive and quick to resolve issues. Finally, I want to thank Christina

Polyzos for all the reimbursements she filed for many conference travels. I would also

like to thank the BU Hariri Institute for the Research Fellowship in procuring valuable

equipment during the pandemic as I adjusted to the work-from-home environment.

This journey would have been dull if not for my labmates Aditya Gangrade, Dur-

mus Alp Emre Acar, Tianrui Chen, Samarth Mishra, Ruizhao Zhu, Param Budhraja,

Pengkai Zhu, Ali Siahkamari, and Sheila W. Seidel. I owe my sanity to my office

mates, Alp, Sheila, Tianrui, and Aditya. They ensured that I took regular breaks

with interesting conversations during work hours. In addition, I would thank both

Aditya and Alp for all the work and random life sessions that usually lasted hours.

I would also like to thank my flatmate Ajay Brahmakshatriya for all the Bollywood

movies we watched together that kept the gloomy days at bay and the support dur-

ing various apartment hunts that drained my life. Finally, I want to thank my IIT-G

friends, Harsh Gupta, Viresh Gehlawat, and Deepak Jain, for helping me with vari-

ous hurdles during this journey. I am grateful to Deepak for the support during some

dark hours.

Finally, I am grateful beyond words for the support of my family. I appreciate and

dearly miss the warmth my paternal (Chandu & Maluji Kag) and maternal (Nandu

& Badriji Devda) grandparents provided throughout my life. My sisters Ruchi and

Sonam were a constant source of love and gossip back home. My parents, Anita and

Motilal Kag, were my constant source of inspiration. Without their love and support,

I would not have been where I am now. No words would be enough to thank them, so

I would stop here and hope to be there for my family as they were for me all through

these years.

vi

NOVEL NEURAL ARCHITECTURES & ALGORITHMS

FOR EFFICIENT INFERENCE

ANIL KAG

Boston University, College of Engineering, 2023

Major Professor: Venkatesh Saligrama, PhD
Professor of Electrical and Computer Engineering
Professor of Systems Engineering
Professor of Computer Science

ABSTRACT

In the last decade, the machine learning universe embraced deep neural networks

(DNNs) wholeheartedly with the advent of neural architectures such as recurrent

neural networks (RNNs), convolutional neural networks (CNNs), transformers, etc.

These models have empowered many applications, such as ChatGPT, Imagen, etc.,

and have achieved state-of-the-art (SOTA) performance on many vision, speech, and

language modeling tasks. However, SOTA performance comes with various issues,

such as large model size, compute-intensive training, increased inference latency,

higher working memory, etc. This thesis aims at improving the resource efficiency

of neural architectures, i.e., significantly reducing the computational, storage, and

energy consumption of a DNN without any significant loss in performance.

Towards this goal, we explore novel neural architectures as well as training algo-

rithms that allow low-capacity models to achieve near SOTA performance. We divide

this thesis into two dimensions: Efficient Low Complexity Models, and Input Hardness

Adaptive Models.

Along the first dimension, i.e., Efficient Low Complexity Models, we improve DNN

vii

performance by addressing instabilities in the existing architectures and training

methods. We propose novel neural architectures inspired by ordinary differential

equations (ODEs) to reinforce input signals and attend to salient feature regions. In

addition, we show that carefully designed training schemes improve the performance

of existing neural networks. We divide this exploration into two parts:

(a) Efficient Low Complexity RNNs. We improve RNN resource efficiency

by addressing poor gradients, noise amplifications, and BPTT training issues. First,

we improve RNNs by solving ODEs that eliminate vanishing and exploding gradients

during the training. To do so, we present Incremental Recurrent Neural Networks

(iRNNs) that keep track of increments in the equilibrium surface. Next, we pro-

pose Time Adaptive RNNs that mitigate the noise propagation issue in RNNs by

modulating the time constants in the ODE-based transition function. We empiri-

cally demonstrate the superiority of ODE-based neural architectures over existing

RNNs. Finally, we propose Forward Propagation Through Time (FPTT) algorithm

for training RNNs. We show that FPTT yields significant gains compared to the

more conventional Backward Propagation Through Time (BPTT) scheme.

(b) Efficient Low Complexity CNNs. Next, we improve CNN architectures

by reducing their resource usage. They require greater depth to generate high-level

features, resulting in computationally expensive models. We design a novel residual

block, the Global layer, that constrains the input and output features by approxi-

mately solving partial differential equations (PDEs). It yields better receptive fields

than traditional convolutional blocks and thus results in shallower networks. Further,

we reduce the model footprint by enforcing a novel inductive bias that formulates the

output of a residual block as a spatial interpolation between high-compute anchor

pixels and low-compute cheaper pixels. This results in spatially interpolated con-

volutional blocks (SI-CNNs) that have better compute and performance trade-offs.

viii

Finally, we propose an algorithm that enforces various distributional constraints dur-

ing training in order to achieve better generalization. We refer to this scheme as

distributionally constrained learning (DCL).

In the second dimension, i.e., Input Hardness Adaptive Models, we introduce the

notion of the hardness of any input relative to any architecture. In the first dimension,

a neural network allocates the same resources, such as compute, storage, and working

memory, for all the inputs. It inherently assumes that all examples are equally hard

for a model. In this dimension, we challenge this assumption using input hardness as

our reasoning that some inputs are relatively easy for a network to predict compared

to others. Input hardness enables us to create selective classifiers wherein a low-

capacity network handles simple inputs while abstaining from a prediction on the

complex inputs. Next, we create hybrid models that route the hard inputs from the

low-capacity abstaining network to a high-capacity expert model. We design various

architectures that adhere to this hybrid inference style. Further, input hardness

enables us to selectively distill the knowledge of a high-capacity model into a low-

capacity model by cleverly discarding hard inputs during the distillation procedure.

Finally, we conclude this thesis by sketching out various interesting future research

directions that emerge as an extension of different ideas explored in this work.

ix

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Definition: Efficient Inference 4

1.3 Existing Solutions . 5

1.3.1 Architecture Design . 5

1.3.2 Training Algorithms . 8

1.3.3 Miscellaneous . 11

1.4 Approach in this thesis . 12

1.4.1 Efficient Low Complexity Models 12

1.4.2 Input Hardness Adaptive Models 14

1.5 Contributions . 14

1.5.1 Efficient Low Complexity RNNs 14

1.5.2 Efficient Low Complexity CNNs 16

1.5.3 Input Hardness Adaptive Models 17

1.6 Thesis Overview . 17

I Efficient Low Complexity RNNs 21

2 Recurrent Neural Network: Background 22

2.1 Definition . 22

2.2 Trainability Challenges . 24

2.3 Related Works . 27

x

2.3.1 RNN Architectures . 27

2.3.2 RNN Training Algorithms . 31

2.3.3 Miscellaneous . 32

3 Incremental Recurrent Neural Networks (iRNNs) 34

3.1 Introduction . 34

3.2 Method . 37

3.2.1 Identity Gradient Property and Convergence Guarantees. . . . 40

3.2.2 iRNN Design Implications: Low-Rank Model Parametrization 43

3.3 Experiments . 44

3.3.1 Experimental Setup and Baselines 44

3.3.2 Ablative Analysis . 46

3.3.3 Long-term Dependency and Other Tasks 47

3.4 Discussion . 52

4 Time Adaptive Recurrent Neural Networks (TARNNs) 54

4.1 Introduction . 54

4.2 Time Adaptive Recurrent Neural Network (TARNN) 57

4.2.1 Analysis . 59

4.3 Experiments . 62

4.3.1 Experimental Setup and Baselines 63

4.3.2 Results and Discussion . 67

4.4 Discussion . 71

5 Forward Propagation Through Time (FPTT) 72

5.1 Introduction . 72

5.2 Method . 75

5.2.1 FPTT: Forward Propagation Through Time 76

5.3 Experiments . 82

xi

5.3.1 Experimental Setup . 82

5.3.2 Ablative experiments . 83

5.3.3 Sequence Modelling . 85

5.3.4 Terminal Prediction . 87

5.4 Discussion . 90

II Efficient Low Complexity CNNs 92

6 Convolutional Neural Network: Background 93

6.1 Generic Convolutional Architecture 94

6.2 Resource-Efficiency Challenges . 95

6.3 Related Works . 96

6.3.1 CNN Architectures . 96

6.3.2 Training Algorithms . 100

7 Global Layered Convolutional Neural Networks (PDE-CNNs) 103

7.1 Introduction . 103

7.2 Method . 106

7.2.1 PDE Constrained Features. 107

7.2.2 Global Feature Layer . 108

7.3 Experiments . 112

7.3.1 Experimental Setup . 112

7.3.2 Results on MNIST-10 . 113

7.3.3 Results on CIFAR-10 & CIFAR-100 118

7.3.4 Results on ImageNet-1K . 120

7.3.5 Ablative Experiments . 122

7.4 Discussion . 125

xii

8 Spatially Interpolated Convolutional Neural Networks (SI-CNNs) 127

8.1 Introduction . 127

8.2 Method . 131

8.2.1 Spatially Interpolated Convolutional Blocks 132

8.2.2 SI-Inverted Residual Blocks 133

8.2.3 Computational Cost Analysis 135

8.2.4 Other Residual Blocks . 136

8.3 Experiments . 137

8.3.1 Experimental Setup . 137

8.3.2 Image Classification . 139

8.3.3 Semantic Segmentation . 141

8.3.4 Ablations . 143

8.4 Discussion . 146

9 Distributionally Constrained Learning (DCL) 148

9.1 Introduction . 148

9.2 Related Works . 151

9.3 Intuitive Justification . 153

9.4 Method . 155

9.4.1 Distributional Constraints . 156

9.4.2 Constrained Learning . 158

9.5 Experiments . 162

9.5.1 Experimental Setup . 162

9.5.2 Results . 164

9.5.3 Ablations . 166

9.6 Discussion . 167

xiii

III Input Hardness Adaptive Models 169

10 Input Hardness Adaptive Models: Background 170

10.1 Intuition . 170

10.2 Problems . 172

10.3 Related Works . 175

10.3.1 Selective Classification . 175

10.3.2 Dynamic Computation . 177

10.3.3 Training Algorithms . 178

11 Selective Classification via One Sided Predictions (OSP) 182

11.1 Introduction . 182

11.2 Formulation and Methods . 184

11.2.1 Formulation of SC . 184

11.2.2 Relaxation and One-sided Prediction 186

11.2.3 Equivalence of SC formulations 188

11.2.4 Finite Sample Properties of OSP 189

11.3 Method . 191

11.4 Experiments . 196

11.4.1 Experimental Setup and Baselines 196

11.4.2 Training One-Sided Classifiers 197

11.4.3 Results . 199

11.5 Discussion . 203

12 Efficient Edge Inference by Selective Query (Hybrid Models) 204

12.1 Introduction . 204

12.1.1 Prior Works with Empirical Comparisons on MCU 209

12.2 Method . 211

12.2.1 Learning Hybrid Models . 213

xiv

12.3 Experiments . 216

12.3.1 Hybrid Models for Resource-Limited Edge Devices 218

12.3.2 Ablative Experiments. 221

12.3.3 Joint Neural Architecture Search for Hybrid Models. 223

12.4 Discussion . 224

13 Distilling Selective/Scaffolded Knowledge (DiSK) 226

13.1 Introduction . 226

13.2 Illustrative Examples . 229

13.3 Definitions and Formulations . 234

13.3.1 Vanilla Knowledge Distillation 234

13.3.2 Selective Knowledge Distillation. 235

13.4 Experiments . 238

13.5 Exploratory Experiments . 242

13.6 Discussion . 245

IV Conclusion & Future Directions 248

14 Conclusions and Future Directions 249

14.1 Conclusion . 249

14.2 Future Research Directions . 253

V Appendix: Datasets, Experiment Details and Proofs 255

A Datasets 256

A.1 Vision Datasets . 256

A.1.1 MNIST-10 (LeCun et al., 2010) 256

A.1.2 SVHN-10 (Netzer et al., 2011) 256

xv

A.1.3 Cats & Dogs . 257

A.1.4 CIFAR-10/100 (Krizhevsky and Hinton, 2009) 257

A.1.5 ImageNet-1K (Russakovsky et al., 2015) 257

A.1.6 Tiny-ImageNet (Le and Yang, 2015) 257

A.1.7 Cityscapes (Cordts et al., 2016) 258

A.2 Sequential & Long Range Dependency Datasets 258

A.2.1 Google-12 & Google-30 (Warden, 2017) 259

A.2.2 HAR-2 (Anguita et al., 2013) 259

A.2.3 Permute-Pixel MNIST and Pixel-CIFAR-10 259

A.2.4 PTB-300 . 260

A.2.5 PTB-w (McAuley and Leskovec, 2013) 260

A.2.6 PTB-c (McAuley and Leskovec, 2013) 261

A.2.7 NTU RGB-d Skeleton based Action Recognition (Shahroudy

et al., 2016) . 261

A.2.8 Noisy-MNIST . 261

A.2.9 Noisy-CIFAR . 262

A.2.10 Addition Task (Hochreiter and Schmidhuber, 1997b) 262

A.2.11 Copying Task (Hochreiter and Schmidhuber, 1997b) 263

A.2.12 DSA-19 . 264

A.2.13 Yelp-5 . 264

A.2.14 IMDb (Maas et al., 2011) . 264

B Appendix to iRNNs 265

B.1 Multi-Layer Deep RNN Networks. 265

B.2 Pseudo Code and Implementation . 266

B.3 Convergence Guarantees for General Learning Rates. 266

B.4 Baseline Justification . 267

xvi

B.5 Hyper-parameters for reproducibility 267

B.6 Additional Experiments . 268

B.6.1 Copying and Addition Tasks 268

B.6.2 Traditional Datasets . 268

B.6.3 Activity Recognition Datasets 269

B.6.4 PTB Language Modelling . 269

B.6.5 Linear Rate of Convergence to Fixed Point 270

B.6.6 Theoretical Verification . 270

B.6.7 Identity Gradient comparison iRNN vs RNN 271

B.6.8 Gradient norm w.r.t. loss ∥ ∂L
∂h1
∥ 272

B.6.9 Different Activation Function 273

B.7 Proofs . 273

B.7.1 Local Convergence with Linear Rate 273

C Appendix to TARNNs 279

C.1 Proofs . 279

C.2 Implementation Details . 283

C.3 Unitary RNNs do not solve vanishing gradients. 285

C.4 Relationship to existing Recurrent architectures. 285

C.5 Additional plots for Toy Example. 286

C.6 Toy Example with larger state space. 286

C.7 Gradient Norm Plot for Add-Task. 287

C.8 Google-30, HAR-2 datasets . 288

C.9 Inference time . 289

C.10 Impact of larger K on the results . 289

D Appendix to FPTT 291

D.1 Experiment Details. 291

xvii

D.2 Training Time Comparison. 293

D.3 Impact of α hyper-parameter. 294

D.4 Comparison with Online Gradient Descent. 294

D.5 Convergence Wt − W̄t . 295

D.6 Copy Task Experiments. 296

D.7 Proofs . 298

E Appendix to Global Layered CNNs 301

E.1 Experiments with other PDEs. 301

E.2 Discretizing the Diffusion PDE. 302

E.3 MNIST Experiments. 303

E.4 CIFAR Experiments. 305

E.5 ImageNet Experiments. 309

E.6 Discussion. 311

E.7 Advantages of the Global layer over Neural ODEs and NeuPDE. . . . 311

E.8 Illustrative Example Visualizations. 312

F Appendix to SI-CNNs 314

F.1 Toy Example: CIFAR-10 Dataset . 314

F.2 Classification and Segmentation Architecture Details 315

F.2.1 Classification Architectures and ImageNet backbones for Seg-

mentation. 315

F.2.2 Segmentation Architectures 317

F.3 ImageNet Classification (Training Procedure & Hyper-parameters) . 318

F.4 Other Residual Blocks (Implementation) 321

F.5 Discussion on Optimal Configuration between anchor and cheaper fea-

ture branch . 321

F.6 Mean and Standard Deviations . 323

xviii

G Appendix to DCL 326

G.1 Toy Examples . 326

G.2 Proof of Lemma 1 . 327

G.3 Architecture & Baseline Details . 328

G.4 Hyper-parameters . 329

H Appendix to OSP 331

H.1 Appendix to §11.2 . 331

H.1.1 Proof of Proposition 1 . 331

H.1.2 Asyptotically Feasible Finite Sample Analysis for SC 333

H.1.3 Proofs of Propositions 2 and 4 334

H.2 Algorithmic rewriting of Section 11.3 340

H.3 Experimental Details . 341

I Appendix to Hybrid Models 343

I.1 Illustrative Example Details . 343

I.2 Joint Neural Architecture Search (NAS) for Hybrid Models. 348

I.3 Empirical Validation of Joint NAS over Hybrid Systems 350

I.4 Algorithms . 352

I.5 Implementation Details . 353

I.5.1 Hyper-parameter Settings. 353

I.5.2 Model Details . 354

I.6 Difference between AppealNet and our Hybrid design. 355

I.7 Difference between LENS and our Hybrid design. 357

I.8 Once-for-All Search Experiments . 359

I.9 MCUNet Router Deployment Overhead 361

I.10 Ablative Experiments . 362

I.10.1 Base and Global on same device 362

xix

I.10.2 Router validation . 363

I.10.3 IMDb Experiments . 364

I.10.4 MCUNet experiment with EfficientNet-B7 364

I.11 Dynamic Communication Latency . 366

I.12 Algorithm Convergence Analysis . 366

J Appendix to DiSK 369

J.1 Details for Illustrative Example (1D Intervals) 369

J.2 Details for Illustrative Example (2D Gaussians) 371

J.3 Model Details . 373

J.4 Hyper-parameters . 375

References 377

Curriculum Vitae 413

xx

List of Tables

3.1 Results for Pixel-by-Pixel MNIST and Permuted MNIST datasets. K

denotes pre-defined recursions embedded in graph to reach equilibrium. 50

3.2 Results for Noise Padded CIFAR-10 and MNIST datasets. Since the

equilibrium surface is smooth and resilient to small perturbations,

iRNN achieves better performance than the baselines with faster con-

vergence. 51

3.3 Results for Activity Recognition Datasets. iRNN outperforms the base-

lines on all metrics even with K = 1. Its worth noticing that although

K = 5 increases test time, it’s well within LSTM’s numbers, the overall

train time and resulting performance are better than K = 1. 52

4.1 Results for Pixel MNIST, Permuted MNIST, Noise Padded CIFAR-10

and MNIST datasets. Since TARNN effectively focuses on informative

segments, it achieves better performance with faster convergence. Note

that we only keep baselines which report results with single RNN layer

and no batch normalization (this excludes baselines such as (Li et al.,

2018b), (Cooijmans et al., 2017)). 65

xxi

4.2 PTB Language Modeling: 1 Layer (standard small config except the

sequence length is 300 as per (Kusupati et al., 2018) as opposed to 70

in the conventional PTB). TARNN achieves significantly better per-

formance than the baselines on this task (even with half the hidden

dimensions than the baselines). Note that embedding size is same as

hidden dimension in these experiments, thus smaller hidden dimensions

result in smaller embedding storage as well. 68

4.3 Results for Penn Tree Bank Character and Word level language mod-

elling tasks. These use shorter sequence length (typically 50-150) and

use more than one RNN layer for modelling. For the PTB-w dataset,

where ever applicable, all the baselines report the results with dynam-

iceval(Krause et al., 2018). Our model uses 3 layer composition. It can

be seen that we report reasonable performance with much smaller mod-

els than other methods. With comparable model sizes as the baselines

we report higher performance. In the table, NAS stands for Neural

Architecture Search baseline. 69

4.4 Results for NTU RGB-d dataset (Skeleton based action recognition).

We do not use augmentation on top of the Skeleton data. We point

out that TARNN achieves competitive performance with much lower

complexity model. We also ran a dense variant of TARNN similar to

IndRNN that results in better performance. 70

xxii

5.1 Per-instance computational cost for gradient, parameter update &

memory storage overhead. Parameter update involves several arith-

metic operations (see Algo. 3), exceeding cost of gradient update by a

constant factor. Note that constant associated with gradient computa-

tion is a monotonically increasing function c(·) of the sequence length,

i.e. c(1) < c(K) < C(T). 81

5.2 CIFAR-10 : Different RNN architectures. 84

5.3 CIFAR-10 : BPTT+Auxiliary Loss vs FPTT. 85

5.4 Results for PTB word level language modelling : Sequence length

(300), 1-Layer LSTM. 86

5.5 Results for PTB-w and PTB-c datasets. We use AWD-LSTM

model in our PTB-c experiments and AWD-LSTM with Mixture-of-

Softmaxes(Yang et al., 2018) in the PTB-w experiments. For PTB-w

dataset, wherever applicable, all the baselines report the results with

dynamiceval(Krause et al., 2018). It can be seen that training with

FPTT outperforms the model trained with BPTT. 87

5.6 Results for Sequential MNIST, Permute MNIST and Sequential

CIFAR-10. Models listed below use 1-Layer except IndRNN and Trel-

lisNet as they are multi-layered architectures. Legend Acc. stands for

Accuracy of the method. 88

7.1 CIFAR-10 : Comparison between discrete Resnet32, ODE based

Resnet32 (MDEQ(Bai et al., 2020)), and our PDE embedded Resnet32-

Global. We compute the depth as the number of blocks in the network.

Train and Inference time denote the cost of processing one pass of the

train and test dataset on a V100 GPU. Supplementary Table 7.14 lists

results for Resnet (m = 2) and CIFAR-100 dataset. 105

xxiii

7.2 Results on MNIST-10. Networks with a Global layer have significantly

less storage and compute requirements than ODE, PDE, and discrete

CNNs. 114

7.3 Results on CIFAR-10 and CIFAR-100. Architectures with Global layer

require 2 − 5× less computational and storage budget. For reference,

we borrow results from existing literature: ANODE (Gholami et al.,

2019; Sun et al., 2020), Hamiltonian PDE (Ruthotto and Haber, 2020),

and DenseNet-BC (Huang et al., 2017). 117

7.4 CIFAR-10: Train & Inference times (cost of one pass through train and

test dataset on a V100 GPU) along with the number of cells. Total

cells are a proxy for depth of the network. 121

7.5 Results for ImageNet dataset. 121

7.6 Effect of the hyper-parameter K in update Eq. 7.4. 122

7.7 Global models with similar budget as original models. 122

7.8 Ablative experiments to study the effect of the using a Residual block

instead of our current choice in update Eq. 7.4. Here, all architectures

use the Global layer. 123

7.9 Neural ODEs without equilibrium. 123

7.10 Adding inference numbers for Resnet-Global architecture in Table 6

(Effect of the hyper-parameter K in update Eq. 4). Inference time is

measured as the amount of time taken to pass through the test set on

a V100 GPU. 124

7.11 (CIFAR-10/100) Ablative experiments to study the effect of the using

different free parameter choice (Dx, Dy) than our current choice in

update Eq. 7.4. Here, all architectures use the Global layer. 125

xxiv

7.12 (CIFAR-10/100) Ablative experiments to study the effect of the using

different free parameter choice (u, v) than our current choice in update

Eq. 7.4. Here, all architectures use the Global layer. 125

7.13 (MNIST-10) Ablative experiments to study the effect of the using dif-

ferent free parameter choice (u, v,Dx, Dy) than our current choice in

update Eq. 7.4. Here, all architectures use the Global layer. 125

7.14 CIFAR-10 & CIFAR-100 : Comparing discrete Resnet32 (m=5), ODE

based Resnet32 (MDEQ[10]), our PDE embedded Resnet32-Global

and Resnet32 (m=2) replacing Global layer with a Residual block in

Resnet32-Global. We compute the depth as the number of blocks in

the network. Inference time denote the cost of processing one pass of

the test dataset on a V100 GPU. 126

8.1 Illustration on CIFAR-10 : Comparison between a convolutional net-

work with Inverted Residual and Spatially Interpolated Residual Block.

Train and Inference time denote the cost of processing one pass of the

train and test dataset on a V100 GPU. 131

8.2 ImageNet Classification. We compare MobileNetV3 and EfficientNet

architectures with the proposed Spatially Interpolated (SI) variants.

It clearly shows that SI-MobileNetV3 and SI-EfficientNet achieve up

to 40% compute reduction without any significant loss in accuracy.

In addition, this improvement does not come with additional storage

overhead. We report mean and deviation over 3 runs in Appendix

Table F.15. 138

xxv

8.3 Cityscapes Semantic Segmentation. We use the state-of-the-art seg-

mentation model, MOSAIC (Wang and Howard, 2021) for mobile

devices for evaluation. We replace the ImageNet pre-trained Mo-

bileNetV3 (MNV3) and Multi-Hardware MobileNet (MHMN) back-

bones with their spatially interpolated (SI) variants (see Appendix F.2

for architecture details). It clearly shows that spatially interpolated

(SI) segmentation models yield significant compute reduction without

any significant loss in mIoU metric. 141

8.4 Baselines with lower resolution. We reduce the input resolutions for

the baseline architectures to measure the accuracy vs compute trade-

off. It clearly shows that there is a significant gap between spatially

interpolated architectures and the baselines with reduced computation. 143

8.5 Only keep Anchors or Cheaper branch. Note that in the configura-

tion (1, 1) we learn the addition coefficients for Anchors and Cheaper.

While in the the other two configurations we only keep one branch

or the other. It shows that at a fixed computational budget, using

only anchors or only cheaper branch is not beneficial as compared to

combining these two feature branches. 144

8.6 Spatially Interpolated ResNet-50 and EfficientNetv2-small. 145

xxvi

8.7 Vary number of anchors and cheaper features. Anchors (x=1,2,or 3

refers to the number of anchors selected at every x location. x = 1

simply means that every pixel is an anchor, x = 2 means the image

has been halved in the resolution and so on.). Cheaper features (1
3
,

1
2
, 1) refers to the amount of reduction in the number of channels as

compared to the original Inverted Residual block configuration in the

MobileNetV3-large architecture. 1 means the same number of channels

as in the original architecture. 1
2

means that the number of channels

have been halved, and so on. Note that the configuration Anchors=1

and Cheaper=1 will be the most computationally and storage wise

expensive. Also note that changing number of anchors does not af-

fect the storage as it only impacts the computational aspects of the

architecture. 146

8.8 Choice of Upsampling Operator. We tried out other upsampling

schemes in the anchor branch. This table clearly shows that more

complex schemes yield somewhat better performance but they fall be-

hind in their accuracy vs latency trade-off. 146

9.1 Model Statistics: We list the resource requirements (number of param-

eters and multiply-addition operations) of various models trained on

the CIFAR-100 and Tiny-ImageNet datasets. 164

9.2 CIFAR-100 and Tiny-ImageNet: We benchmark DCL and FL against

CE and pre-trained baselines with various models. We report Gain as

accuracy difference between DCL and CE. It clearly shows that DCL

significantly outperforms CE and FL methods. In addition, it reaches

accuracy of ImageNet pre-trained baseline without any additional data

and requires far less compute. 164

xxvii

9.3 ImageNet-1K: We train various architectures on the ImageNet dataset

and report their resource usage and Top-1 accuracy. It clearly shows

that models trained with DCL outperform the CE and FL baselines. 165

11.1 Dataset sizes and standard classification error 196

11.2 Performance at Low Target Error. The OSP-based scheme is our pro-

posal. SR, SN, DG correspond to softmax-response, selective net, deep

gamblers. Errors are rounded to two decimals, and coverage to one. . 199

11.3 Performance at High Target Coverage. Same notation as Table 11.2. . 199

11.4 Size of overlap between OSP sets in Table 11.2 200

12.1 Device & Model Characteristics: Edge (STM32F746 MCU), Cloud

(V100 GPU). It takes 2000ms to communicate an ImageNet image

from the edge to the cloud (see Appendix §I.1) 205

12.2 Comparing features of our proposal against baseline. E.-to-E. stands

for ‘End-to-End’, and Arch. for ‘Architecture’. 208

12.3 Hybrid models on STM32F746 MCU: Accuracy achieved by different

methods at various latency. 220

12.4 Results for hybrid models with base at various coverages. MASS-600

model achieving ≈ 80% Top1 accuracy is used as global model. Base

model belongs to MBV3 space. Upper bounds (Appendix §I.1) are also

reported and nearly match hybrid. 220

12.5 Joint evolutionary search for hybrid models base constraints: 75M,

150M, & 225M. Table shows hybrid and base accuracies at different

coverages. Upper bounds are reported in Appendix §I.1. Excess gains

represent improved neural-network architecture. 221

12.6 Hybrid models for CIFAR-100 at various coverages. 223

xxviii

12.7 Abstaining Classifier with hybrid models from Sec. 12.3.1. Results for

hybrid models with base at various coverage levels. 223

13.1 The number of times each method lands on various local minima in

two toy problems for 100 runs. 230

13.2 Model Statistics. We compute the storage (number of parameters) and

computational requirements (number of multiply-addition operations)

of the models used in this work. 238

13.3 DiSK performance under large capacity mismatch on CIFAR-100 &

Tiny-ImageNet: We draw mismatched teachers and students from the

ResNet family, and report accuracy of CE trained teachers and stu-

dents, performance of students distilled using KD and DiSK, and gains

of the latter relative to KD. 242

13.4 DiSK performance with small capacity mismatch on CIFAR-100. We

pick standard student and teacher configurations used in the KD liter-

ature, and report accuracies and gains similarly to Table 13.3. Feature

matching KD baselines are due to (Chen et al., 2022). 243

13.5 ImageNet-1K: We pick some student and teacher configurations to

show that we can scale DiSK to the ImageNet dataset with signifi-

cant improvements in Top-1 accuracy. We borrow model definitions

from timm(Wightman, 2019) repository including the convolutional

and transformer vision models. 243

13.6 Self-Distillation (CIFAR-100 dataset): We pick the same student and

teacher configurations to show that we can utilize DiSK even in the self-

distillation literature. The teacher model is the cross-entropy check-

point in both KD and DiSK. 244

xxix

13.7 Low-Capacity Teacher + High-Capacity Student: We pick the student

model to be larger than the teacher network. We use the ShuffleNetV2

model as the teacher. It achieves 73.74% accuracy on the CIFAR-100

dataset. 245

13.8 Hybrid models (trained with the DiSK objective) for CIFAR-100 at

various coverages. Note that Entropy and Hybrid methods are bor-

rowed from Chapter 12, we add the other methods by training Hybrid

models with the DiSK objective. Since DiSK has a guide installed dur-

ing training that decides the hard input instances during training for

the student network, we have two guide functions one utilizing student

and the other utilizing teacher features. 246

13.9 DiSK performance against feature matching KD on CIFAR-100: Sim-

ilar setup as in Table 13.4. We integrate DiSK within SimKD (Chen

et al., 2022). The gains of using DiSK over KD and using SimKD +

DiSK over SimKD are reported. Feature matching KD baselines are

due to (Chen et al., 2022). 247

A.1 Dataset Statistics & Long Term Dependence 258

B.1 Various hyper-parameters to reproduce results 268

B.2 Other Dataset Statistics & Long Term Dependence 268

B.3 Results for Pixel-by-Pixel MNIST and Permuted MNIST datasets. K

denotes pre-defined recursions embedded in graph to reach equillib-

rium. 270

B.4 Results for Yelp Dataset. 271

B.5 Results for Activity Recoginition Datasets. 277

xxx

B.6 PTB Language Modeling: 1 Layer. To be consistent with our other

experiments we used a low-dim U; For this size our results did not

significantly improve with K. This is the dataset of (Kusupati et al.,

2018) which uses sequence length 300 as opposed to 30 in the conven-

tional PTB. 278

B.7 HAR-2 dataset (Sigmoid, ReLU activations): K denotes pre-defined

recursions embedded in graph to reach equillibrium. 278

C.1 Various hyper-parameters to reproduce results 284

C.2 Toy Example: Accuracy for various hidden state sizes. 288

C.3 Results for Activity Recoginition (IoT) Datasets. 288

C.4 PTB Language Modeling: Larger K values. 289

D.1 Training time comparison (reported in hours). 294

D.2 PTB-300 language modelling (validation perplexity) : various α values. 294

D.3 Ablative results for PTB word level language modelling : Sequence

length (300), 1-Layer LSTM. Comparing the FPTT scheme with and

without the dynamic regularizer. 295

E.1 Ablative Experiments on CIFAR-10 : Training with different iterative

steps in the solver and inference with varying steps. 302

E.2 ImageNet: Train & Inference times (cost of one pass through train and

test dataset on a V100 GPU). 311

F.1 Toy Example Architecture Details. 314

F.2 MobileNetV3-Large model. 316

F.3 Spatially Interpolated MobileNetV3-Large model. Legends used in

the table: (a) Anchor Channels (Anc. Chan.), (b) Cheaper Channels

(Cheap Chan.), (c) Cheaper Groups (Cheap Grp). 317

xxxi

F.4 MobileNetV3-Small model. 317

F.5 Spatially Interpolated MobileNetV3-Small model. Legends used in

the table: (a) Anchor Channels (Anc. Chan.), (b) Cheaper Channels

(Cheap Chan.), (c) Cheaper Groups (Cheap Grp). 318

F.6 Multi-Hardware MobileNet model. 319

F.7 Spatially Interpolated Multi-Hardware MobileNet model. IR stands

for Inverted Residual block. Legends used in the table: (a) Anchor

Channels (Anc. Chan.), (b) Cheaper Channels (Cheap Chan.), (c)

Cheaper Groups (Cheap Grp). 320

F.8 EfficientNet-B0 model. 321

F.9 Spatially Interpolated EfficientNet-B0 model. IR stands for Inverted

Residual block. Clf refers to classifier layer. Pool refers to adaptive

global pooling. Legends used in the table: (a) Anchor Channels (Anc.

Chan.), (b) Cheaper Channels (Cheap Chan.), (c) Cheaper Groups

(Cheap Grp). 322

F.10 EfficientNetV2-Small model. 322

F.11 Spatially Interpolated EfficientNetV2-Small model. IR stands for In-

verted Residual block. 323

F.12 Resnet50 model. 323

F.13 Spatially Interpolated Resnet50 model. 323

F.14 Resnet50 and EfficientNetv2-small. Spatially Interpolated Bottleneck

and Fused-Inverted Residual Blocks. 324

xxxii

F.15 Mean & Standard Deviation over 3 runs: ImageNet Classification. We

compare MobileNetV3 and EfficientNet architectures with the pro-

posed Spatially Interpolated (SI) variants. It clearly shows that SI-

MobileNetV3 and SI-EfficientNet achieve up to 40% compute reduction

without any significant loss in accuracy. In addition, this improvement

does not come with additional storage overhead. 325

H.1 Final hyper-parameters used for all the algorithms (at the desired 0.5%

error level) in Table 11.2. 342

H.2 Performance at Low Target Error. This repeats Table 11.2, except

that the hyperparameter scan for the DG method is corrected, and the

entries in the DG columns are updated to show the resulting values.

Notice that the performance in the last column is worse than in Table

11.2. 342

H.3 Performance at High Target Coverage. Similarly to the previous table,

this repeats Table 11.3 but with the scan for the DG method corrected.

Again note the reduced performance in the final column relative to

Table 11.3. 342

I.1 MBV3 models in our setup. 355

I.2 Once-for-All Pre-trained models in our setup. 355

I.3 Hybrid models for CIFAR-100 at various coverages. 357

I.4 Joint Evolutionary Architecture Search: Models found at three differ-

ent base MAC constraints (75M, 150M, 225M). 361

I.5 Profiling the on device latency and energy overhead associated with

deploying the Hybrid model (MCUNet + router) as compared to de-

ploying the plain MCUNet model on the MCU. 362

I.6 Hybrid models for IMDb at various coverages. 364

xxxiii

I.7 EfficientNet-B7 as Global model: Hybrid models on STM32F746 MCU:

Accuracy achieved by different methods at various latency constraints.

Base model is the MCUNet model with 12M MACs and 200ms latency. 365

J.1 Models used in large capacity mismatch setting along with storage and

computational requirements. 375

J.2 Models used in in small capacity mismatch setting along with storage

and computational requirements. 375

xxxiv

List of Figures

1·1 ImageNet Classification. We evaluate different architecture families in

this plot, namely MCUNet(Lin et al., 2020a), MobileNetV3(Howard

et al., 2019), EfficientNet(Tan and Le, 2019), and Vision Trans-

formers(Dosovitskiy et al., 2021). We plot the Top-1 accuracy (in

%) achieved by these models on the ImageNet-1K validation dataset

against the number of parameters (in millions). 4

2·1 RNN State Transition: Unrolling RNN transition f across T time-

steps, starting with initial hidden state h0 till the final hidden state

hT . 23

2·2 Back-Propagation Through Time (BPTT) Algorithm for training

RNNs . 24

2·3 Vanishing/Exploding Gradients in RNNs. Experiments on the addi-

tion task A.2.10 : (a) Convergence Rate Plot (loss at each training

iteration); (b) Ratio ∥∂hT

∂h1
∥/∥ ∂hT

∂hT−1
∥ illustrates Vanishing/Exploding

gradient. 26

xxxv

2·4 Noise Amplification Example. Example illustrates importance of miti-

gating gradient explosion/decay as well as ignoring noisy observations.

Table lists test performance of baselines focused on improving RNN

training. Fig. (a) plots the noisy input, and sequential changes in

hidden state norms for SkipLSTM(Campos et al., 2018) and proposed

TARNN(Kag and Saligrama, 2021a). Only ours responds to informa-

tive locations. Fig. (b) plots the norm of partials of hidden states.

Only AntisymmetricRNN(Chang et al., 2019) and ours TARNN ex-

hibit near identity gradients. However, only ours is effective as seen

from the table. As such we infer TARNN (a) realizes near identity

gradients for partials of hidden states, thus mitigating gradient ex-

plosion/decay, (b) zooms in on informative inputs and ignores noisy

observations, and (c) By jointly ensuring (a) and (b), it improves RNN

trainability, providing good generalization. 27

3·1 iRNN depicted by unfolding into K recursions for one transition from

g0 = hm−1 to hm = gK . Here, φ(x, g, h) = ϕ(U(g+h)+Wx+b)−α(g+
h). See Sec. B.2 for implementation and pseudo-code. This resembles

(Graves, 2016), who propose to vary K with m as a way to attend to

important input transitions. However, the transition functions used

are gated units, unlike our conventional ungated functions. As such,

while this is not their concern, equilibrium may not even exist and

identity gradients are not guaranteed in their setup. 39

xxxvi

3·2 Phase-space trajectory with tanh activation of RNN, FastRNN, iRNN.

X-axis denotes 1st dimension, and Y-axis 2nd dimension of 2D hidden

state subject to random walk input with variance 10 for 1000 time-

steps. Parameters U,W, b are randomly initialized. RNN states are

scaled to fit plot since FastRNN is not required to be in the cube. . . 41

3·3 Exploratory experiments for the Add task (a) Convergence with vary-

ing K; (b) Ratio ∥∂hT

∂h1
∥/∥ ∂hT

∂hT−1
∥ illustrates Vanishing/Exploding gra-

dient (∥ ∂hT

∂hT−1
∥ and loss gradients are omitted but displayed in B.6.8.

For iRNN (a) and (b) together show strong correlation of gradient with

accuracy in contrast to other methods. 46

3·4 Following (Arjovsky et al., 2016) we display average Cross Entropy for

the Copy Task (Sequence Length (with baseline memoryless strategy)):

(a) 200 (0.09) (b) 500 (0.039). Mean Squared Error for the Add Task,

baseline performance is 0.167 (Sequence Length) : (c) 200 (d) 750. For

both tasks, iRNN runs K = 5. 48

xxxvii

4·1 Example illustrates importance of mitigating gradient explosion/decay

as well as ignoring noisy observations. Table lists test performance

of baselines focused on improving RNN training. Fig. (a) plots

the noisy input, and sequential changes in hidden state norms for

SkipLSTM(Campos et al., 2018) and proposed TARNN. Only ours

responds to informative locations. Fig. (b) plots the norm of partials

of hidden states. Only AntisymmetricRNN(Chang et al., 2019) and

ours TARNN exhibit near identity gradients. However, only ours is

effective as seen from the table. As such we infer TARNN (a) realizes

near identity gradients for partials of hidden states, thus mitigating

gradient explosion/decay, (b) zooms in on informative inputs and ig-

nores noisy observations, and (c) By jointly ensuring (a) and (b), it

improves RNN trainability, providing good generalization. 62

4·2 We evaluate TARNN on synthetic LTD tasks: Copy task with sequence

lengths : (a) 200, (b) 500, and Add task with sequence lengths: (c)

200, (d) 750. Note that many methods perform similar to a simple

fixed baselines described in (Kag et al., 2020)(Appendix:A.4), while

TARNN achieves significantly better solution in fewer training steps. 64

5·1 Add Task (T = 500): Comparison between standard learning and

forward propagation. 75

5·2 Ablative Experiment: Add Task (T = 200) solved by splitting in mul-

tiple parts. Note that FPTT with K = 1 corresponds to BPTT for

LSTM while K = 200 updates Wt at every timestep. This figure

demonstrates as K increases the performance of the algorithm im-

proves. 83

xxxviii

5·3 Results for Add Task with large sequence lengths : (a) T = 750, and

(b) T = 1000. 88

6·1 Generic CNN Architecture. We show a generic CNN architecture com-

posed of multiple repetitions of the convolutional residual block f .

Note that f can be replaced by many popular residual blocks such as

Bottleneck(He et al., 2016) or Inverted Residual(Howard et al., 2019). 93

6·2 (a): Basic Residual Block. (b): Bottleneck Residual Block. (c):

Inverted Residual Block. Acronyms are as follows: 3 × 3 (Full 3-d

Convolution with 3× 3 kernel), 1× 1 (Pointwise projection), Dw 3× 3

(Depthwise Convolution, followed by Squeeze-and-Excitation). Note

that after the each convolutional operation (such as 3 × 3, 1 × 1 and

Dw 3 × 3), there is a batch-norm followed by a non-linear activation

such as ReLU(Nair and Hinton, 2010), Swish (Tan and Le, 2019) or

Hardswish (Howard et al., 2019) except the last 1 × 1 where only a

batch-norm is applied. 94

7·1 Replacing repeated blocks in a given CNN architecture with the Global

layer for compute and model savings. 104

xxxix

7·2 Toy Example comparing different backbones: Convolutional, Residual,

and Global. We show network representation for the input image for

the letter three. Intermediate features from Convolutional and Resid-

ual backbones do not show bright intensity around the edges and have

an uneven background. In contrast, the Global layer smoothens it out

and shows bright spots around the digit. Thus, the Global layer pro-

vides a better and markedly different representation than the other

two backbones. All three networks have 524 parameters. Network

with Global layer achieves 95% accuracy while the other two achieves

≈ 92.5% accuracy. It also has a significantly lesser confusion between

the letters 3 and 5. See other visualizations in supplementary Sec. E.8. 115

7·3 Schematic for the Global layer using the diffusion PDE. 116

8·1 Illustration. On the left is a generic convolutional block that projects

the input features to a high dimension (Op1) and then projects it

down to the low dimensional output space (Op2). On the right is the

interpolated variant of this block. It creates two parallel branches, one

where it computes anchor features from downsampled input and the

other where it computes cheaper features from the full input image.

Our inductive bias is that the output of the original block can be

written as an interpolation between these two different features. . . . 128

8·2 ImageNet Classification. Top-1 accuracy vs computation (MACs) on

ImageNet dataset. Plot compares EfficientNet models against the pro-

posed spatially interpolated (SI) blocks based models (SI-EfficientNet). 129

xl

8·3 Typical Inverted Residual and Spatially Interpolated Inverted Residual

blocks. Acronyms are as follows: SE (Squeeze-and-Excitation), 1 × 1

(Pointwise projection), Dw 3× 3 (Depthwise Convolution). Note that

after the first 1 × 1 and Dw 3 × 3 operation, there is a batch-norm

followed by a non-linear activation such as Swish (Tan and Le, 2019)

or Hardswish (Howard et al., 2019). Last 1× 1 is followed by a batch-

norm. 134

8·4 Fused MBConv and Bottleneck blocks and their interpolated variants. 137

9·1 Plots of empirically averaged loss-landscape depicting two minima.

Shadow curves depict loss-landscape for randomly chosen data sam-

ples. Red-minima exhibits relatively small loss variance induced by

random training data or test examples. 155

9·2 2D toy example with Gaussian distribution. Case study of cosine

scheduling in finding the optimal feasible minimum. 9·2a: Objective

loss landscape with three minima. 9·2b: Constraint function with two

feasible sets. 9·2d,9·2e,9·2f: Trajectory of different methods with differ-

ent initializations. 9·2c: Convergence percentages to different minima

for 100 differently initialized runs. Objective minimization can con-

verge to infeasible minima. Cosine scheduled Lagrangian converges to

the optimal feasible point more than the fixed Lagrangian. 161

xli

9·3 9·3a: Empirical model variability values for CIFAR-100 and ResNet18

experiment as a function of epochs for the train and test dataset. 9·3b:

Empirical input variability values for CIFAR-100 and ResNet18 exper-

iment as a function of epochs for the train and test dataset. 9·3c: Aug-

mented train and test accuracy with epochs. These plots validate our

hypothesis that model/input variability and accuracy on augmented

data are good surrogates for test-time variability. 166

9·4 9·4a: Empirical Model-Variability and Target Budget for CIFAR-100

and ResNet18 experiment are plotted as a function of training itera-

tions. Initially the constraint is violated often, allowing for exploration,

and at termination the constraint is satisfied. 9·4b: Change in Em-

pirical Model-Variability and Target budget during various stages as

defined in the Algorithm 5 for CIFAR-100 and ResNet18 experiment.

It demonstrates that even when the target budget is initialized to a

conservative value DCL adapts to a near optimal target budget during

multi-stage training. 167

10·1 Easy vs Hard Inputs. We show three images for the ‘Golden Retriever‘

class in the ImageNet-1K dataset. Out of these three images, the

first image should be very easily classified by the model as the golden

retriever, but the other two might pose some difficulty. In particular,

we would desire that the network spent as little time to classify the

first image as possible and spend some thoughts on the other images

and get the correct prediction. 171

10·2 Selective Classification. 172

xlii

10·3 Entropy Histogram (ResNet18 model trained on CIFAR-100 data).

This figure plots the behavior of the entropy of the predictive dis-

tribution on the training data. First figure shows the histogram of

the entropy of the all the predictions. Second figure only shows the

histogram of the entropy corresponding to the correct predictions, and

the last one shows the same for the incorrect predictions. 173

10·4 Routing Abstaining Classifier to an Expert. 174

10·5 Leverageing Input Hardness during Training. 174

11·1 An illustration of the equivalence between the three formulations for

binary classification. Top: our formulation; Si denotes disjoint sets;

Bottom Left: gating with Γ representing gated set; Bottom Right: Ci
represents confidence sets, and their intersection representing the re-

jected set. In each case, the dashed line is the Bayes boundary. 189

11·2 Coverage vs Error Curves for the CIFAR-10 dataset. Higher values of

coverage are better. Notice the curious behaviour of SR in that the

curve’s slope sharply changes close to the best standard error rate. . . 202

12·1 Hybrid Model. Cheap base (b) & routing models (r) run on a micro-

controller; Expensive global model (g) runs on a cloud. r uses x and

features of b to decide if g is evaluated or not. 205

12·2 ImagetNet Classification: Accuracy vs Energy/Latency plot: (a) Con-

stant Communication Latency (2000ms), and (b) Dynamic Communi-

cation latency [200, 2000]ms. It clearly shows that the proposed hybrid

model pareto dominates the baselines while getting significantly closer

to the upper-bound in hybrid setup. 208

12·3 Plot for hybrid MACs vs accuracy. Base & Global models on same

device. 222

xliii

13·1 (a): 1D Intervals. Data distribution on x-axis [0, 9]. Teacher T learns

the correct decision boundary with 2-intervals and it is the global min-

ima for this binary classification task. Student S has many bad local

minima, and one global minima that best describes the decision bound-

ary with 1-interval. (b): KD training. Loss contour plot shows the

various local minima exist. (c): DiSK training. Loss contour plot

shows the bad local minima no longer exist. 231

13·2 (a): 2D Gaussians. Data distribution on R2. Teacher T learns the

correct decision boundary with 3 layer NN and it is the global minima

for this three-way classification task. While student S has many bad

local minima, and one global minima that best describes the decision

boundary with 2 layer NN. (b): KD training. Loss contour plot shows

the various local minima in the loss landscape. (c): DiSK training.

Loss contour plot shows the bad local minima no longer exist (wider

minima, join two adjust minima, remove bad local minima). 233

13·3 CIFAR-100 Less Labelled Data. Comparing CE, KD, and DiSK, all

trained on the same amount of labelled data points (50K, 37.5K, 25K,

12.5K). The teacher is the ResNet18 model trained with CE loss on all

labelled data. (a) ResNet10-s (4M MACs) student, and (b) ResNet10-

m (16M MACs). 244

B·1 Mean Squared Error shown for the Add Task (Sequence Length) : (c)

100 (d) 400 . 269

B·2 Linear convergence in iRNN. 272

B·3 Histogram of the eigenvalues of ∇ϕU− I for iRNN on HAR-2 dataset. 273

B·4 Comparison between RNN and iRNN on the magnitudes of gradients. 274

xliv

B·5 Exploratory experiments for the Add task : (a) Gradient norms w.r.t.

loss ∥ ∂L
∂h1
∥, (b) Gradient norms ∥ ∂hT

∂hT−1
∥. This together with Figure 3·3

shows that the gradients are identity everywhere for K = 10 274

C·1 Toy Example. (a) TARNN converges quickly to the 0.0 cross-entropy

error. (b) shows time constant β along with the input, at locations

t = 4, 12, both the input and time constants are in sync resulting in

the state update while everywhere else the time constant does not allow

the state to update (see s1m state which captures the update or skip

state part). (c) shows the norm of the hidden state for SkipLSTM and

TARNN. 287

C·2 Add Task Gradient Norm for 200 length sequences. 290

D·1 Add Task (T = 200): Convergence plot for ∥Wt−W̄t∥2 and the gradient

norm plot. As expected the parameter iterates Wt start to converge to

the average iterate W̄t. Similarly the gradient norms start decays to

near 0 as the training progresses. 296

D·2 Convergence plot Copy Task for Sequence Lengths (a) T = 30: naive

strategy results in 0.39 as the solution, and (b) T = 200: naive strategy

results in 0.09 as the solution. 297

E·1 Another example to demonstrate the visual differences between differ-

ent representation for the MNIST input letter 3 313

E·2 This represents the velocity vectors associated with the example in

Figure E·1. Note that there is some non-zero activity along the corners

(represented by the very bright or very dark spots on the edges of the

letter 3). 313

xlv

I·1 Comparing hybrid models trained with Off-the-Shelf architectures vs

architectures found using Joint NAS (Algorithm 10). 352

I·2 Image recognition on the ImagetNet dataset: Accuracy vs Energy and

Latency plot. This clearly shows that the hybrid design pareto dom-

inates on-device as well as other baselines while getting significantly

closer to the upper-bound in hybrid design. 360

I·3 MBV3: Plot for hybrid MACs vs accuracy. 363

I·4 Setup is same as Figure 12·2: (a) Constant Communication Latency

(b) Dynamic Communication latency [400, 2400] (c) Dynamic Com-

munication latency [1000, 3000] (d) Dynamic Communication latency

[500, 3500] . 367

I·5 Algorithm Convergence. We show the training losses for the three

components in the Algorithm 7: (a) router, (b) base, and (c) global

model. 368

xlvi

List of Abbreviations

AI Artificial Intelligence
CNN Convolutional Neural Network
DCL Distributionally Constrained Learning
DiSK Distilling Scaffolded Knowledge
DNN Deep Neural Network
FPTT Forward Propagation Through Time
GPU Graphics Processing Unit
iRNN Incremental Recurrent Neural Network
ML Machine Learning
ODE Ordinary Differential Equation
OSP One Sided Prediction
PDE Partial Differential Equation
RNN Recurrent Neural Network
SC Selective Classification
SI-CNN Spatially Interpolated Convolutional Neural Network
SOTA State-of-the-art
TARNN Time Adaptive Recurrent Neural Network
TPU Tensor Processing Unit

xlvii

1

Chapter 1

Introduction

1.1 Motivation

In the last decade, the machine learning (ML) universe embraced deep neural net-

works (DNNs) wholeheartedly. More so in the past few years, with the advent of

large-scale models such as DALLE-2(Ramesh et al., 2022), Imagen(Saharia et al.,

2022), ChatGPT(OpenAI, 2023), Codex(Chen et al., 2021b), Whisper(Radford et al.,

2022), etc. These models have remarkable capabilities, including some understanding

of the language, vision, and speech domains. It was possible due to advances in train-

ing algorithms, hardware infrastructure, and neural constructs. For instance, neural

accelerators like GPUs/TPUs, auto differentiation algorithms offered by libraries such

as PyTorch (Paszke et al., 2019) / Tensorflow(Abadi et al., 2015), convolutional mod-

els(Tan and Le, 2021) for image classification, transformers(Brown et al., 2020) for

natural language processing, diffusion models(Saharia et al., 2022) for mixed modal-

ities, etc. While these architectures achieve state-of-the-art (SOTA) performance

on many tasks, their storage, energy, and computational requirements restrict their

deployment to large cloud clusters. More specifically, the following issues become bot-

tlenecks in terms of the resource-efficiency during the training and inference phase.

• Storage Complexity & Working Memory. High-capacity models have large stor-

age requirements. For instance, GPT-3 (Brown et al., 2020) model has nearly

175 billion parameters that occupy 800 GB storage on a hard disk. It is pro-

hibitively large for deployment in resource-constrained setups such as mobile

phones. Even if somehow we can store the model, the more pressing issue

comes down to utilizing this model while training or inference, as that would

require loading each layer in the fast memory like RAM or GPU memory during

the forward pass(Dreuning et al., 2022). It would indeed slow down the entire

training and inference stage(Banbury et al., 2021). It would also be a severe

design flaw in a DNN architecture to have asymmetric memory utilization of

different DNN layers as a costly layer would become the bottleneck even if other

layers are lightweight.

• Computational Complexity & Carbon Footprint. Large models require high-end

graphics processing units — such as GPUs/TPUs — for training. A typical

training cycle involves experimentation, including hyper-parameter tuning, ar-

chitecture selection, distributed pipelines, etc. This entire process requires a

considerable amount of energy(Desislavov et al., 2023), leads to greenhouse gas

emissions, and contributes significantly higher carbon footprint(Patterson et al.,

2021). While it would seem that one can write the training cost as a one-time

investment, it is not true simply because in a practical industrial use-case, a

model goes through many training cycles, and due to the inherent nature of the

data collection and distribution drift, it is likely that the models need to be re-

trained, with a significant cost. Even if we can write the training as a one-time

investment, this does not reduce the carbon footprint (Cai et al., 2020) as the

inference stage — where users interact with this system — still requires lots

of computational resources. Thus, large models have significant computational

resources resulting in a high carbon footprint during the training and inference

stage.

2

• Privacy. Given the current status quo of inference on the cloud setup due to

storage and compute requirements, any user would inevitably have to share their

data with cloud service providers. It leads to severe privacy concerns, and users

would prefer on-device inference rather than on-cloud deployment. For instance,

it would be beneficial from a consumer standpoint that conversations with per-

sonal assistants (like Alexa or Siri) be private. Similarly, artists would prefer

privacy during art development with diffusion models like DALLE-2(Ramesh

et al., 2022) and Imagen(Saharia et al., 2022).

• Real Time Inference. Many ML applications require immediate responses to

the input data. For example, decision-making in self-driving cars, detection in

surveillance cameras, responsiveness in conversations with personal assistants,

etc., require real-time inference. Storage and computational requirements of

large DNNs mean we can only deploy tiny variants of such systems in con-

strained setups and take a hit in the performance. Or, we rely on a cloud

service provider and trade off our privacy for better performance.

• Open Access. Research on Large DNNs – due to their resource requirements

and huge monetary cost – would be limited to industrial labs. This would force

academic researchers with limited resources to treat these systems as black-

box. This resource barrier would limit innovations in the architectures and

algorithmic design required to improve these systems. In addition, it would

be extremely hard to place safeguards such as trustworthiness, transparency,

fairness, and ethics in such ML models.

Thus, it is imperative to focus on improving the resource efficiency of DNNs to

overcome the abovementioned issues.

3

1.2 Problem Definition: Efficient Inference

For an ML model, efficient inference refers to the problem of making accurate pre-

dictions quickly with minimal resource usage. In this problem, there are two key

metrics, (a) resource usage (such as model size/inference latency) and (b) predictive

performance (such as prediction accuracy). Mathematically, to maximize predictive

performance A given a constraint ϱ on the resource usage R, we can write it as the

following optimization problem,

max A s.t. R ≤ ϱ. (1.1)

Figure 1·1: ImageNet Classification. We evaluate different architecture families in
this plot, namely MCUNet(Lin et al., 2020a), MobileNetV3(Howard et al., 2019),
EfficientNet(Tan and Le, 2019), and Vision Transformers(Dosovitskiy et al., 2021).
We plot the Top-1 accuracy (in %) achieved by these models on the ImageNet-1K
validation dataset against the number of parameters (in millions).

This coupling enables any reasonable ML system design to trade off resource usage

for performance, i.e., improve performance by consuming more resources or reduce

resource usage with a decrease in performance. As an example, consider the Ima-

geNet(Russakovsky et al., 2015) object recognition task in Figure 1·1, where we have

very tiny models such as MCUNets(Lin et al., 2020a) achieving close to 51% accu-

4

racy, and on the other hand, we have large vision models such as vision transformers

(Dosovitskiy et al., 2021) achieving close to 89% accuracy. Typically, practitioners

operate with some resource constraints, say deploying a model on mobile phones. It

puts a hard limit on resource usage, such as model size, inference latency, etc. Given

a resource budget, a practitioner deploys the best-performing model that satisfies the

resource constraints. Hence, models that are resource efficient would be desirable.

In this specific example, although one would desire to deploy vision transformers

to achieve the best performance, but the mobile phone resource constraints such as

real-time inference latency and model storage would restrict us to models like Mo-

bileNetV3(Howard et al., 2019) or MCUNets(Lin et al., 2020a). Thus, at the heart of

efficient inference lies the task of improving the performance of a model within given

resource constraints. It could either amount to developing new neural architectures

that improve upon the current SOTA models or designing new algorithms to improve

the performance of existing architectures.

1.3 Existing Solutions

There has been significant progress in improving the resource efficiency of DNNs.

We will briefly summarize various strategies used in the literature. We will carefully

re-visit various closely related works in the review chapters when we go through our

proposed solutions. Broadly, we can divide the literature into the following key areas.

It is worth noting that a practitioner would typically create a recipe that combines

many of these techniques to get the best performance within resource constraints.

1.3.1 Architecture Design

DNNs have evolved significantly from early attempts like Multi-Layer Perceptron,

LeNet(Lecun et al., 1998), and vanilla RNN(Hochreiter, 1991) architectures. These

5

attempts had only a few layers and could not scale to their deeper variants due

to architectural issues, hardware limitations, data scarcity, and poor algorithms.

They were largely supplanted by simpler models such as support vector machines

(SVMs)(Cortes and Vapnik, 1995) and boosting/bagging(Dietterich, 2000) models.

AlexNet(Krizhevsky et al., 2012) demonstrated that deeper models could be trained

using GPUs and could significantly surpass previous state-of-the-art image recogni-

tion performance. It led to even deeper architectures like VGGNet(Simonyan and

Zisserman, 2015). These new developments came with issues such as vanishing and

exploding gradients (Hochreiter, 1991; Bengio et al., 1994; Pascanu et al., 2013b; He

et al., 2016), which meant that any deeper models would yield diminishing gains and

might result in unstable training trajectory. This was followed by the introduction

of skip-connections (ResNet(He et al., 2016)/ Highway networks(Srivastava et al.,

2015)) that enabled deep models with as many as a thousand layers. While these

architectures enabled training deeper networks, their resource usage increased sub-

stantially with diminishing performance returns. It started a race for the design of

resource-efficient residual blocks(Howard et al., 2017; Howard et al., 2019; Gholami

et al., 2018; Zagoruyko and Komodakis, 2016).

Many subsequent works proposed design changes that improved resource efficiency

through improved non-linearities (ReLU(Nair and Hinton, 2010), SeLU(Klambauer

et al., 2017), GeLU(Hendrycks and Gimpel, 2016), etc.), normalization layers (Batch-

Norm(Ioffe and Szegedy, 2015), Layer-Norm(Ba et al., 2016), Group-Norm(Wu and

He, 2018)), overfitting measures (dropout(Srivastava et al., 2014)/drop-path(Larsson

et al., 2017)), efficient layers (squeeze-and-excite(Hu et al., 2018), separable con-

volutions, low-rank decomposition, etc.), etc. This process was further accelerated

through an architecture search process that enabled efficient search for new architec-

tures as a combination of various building blocks(White et al., 2021; Liu et al., 2019a;

6

Wu et al., 2019; Zoph et al., 2018).

In parallel, there have been improvements in the sequential models. Since RNNs

unroll their processing over a large time horizon in the sequential input, they suffer

significantly from the vanishing and exploding gradient issues, more so than the feed-

forward layers like CNNs / MLPs. LSTMs(Hochreiter and Schmidhuber, 1997b) were

introduced to avoid the vanishing gradient problem by introducing a gating mecha-

nism to control the flow of information during state transition. This led to the develop-

ment of GRU(Cho et al., 2014b) and other gated variants(Kusupati et al., 2018) that

address the vanishing and exploding gradients while improving resource efficiency.

Researchers have also focused on RNNs that evolve with well-conditioned state tran-

sition matrices such as Unitary or Orthogonal transitions (Unitary RNNs(Mhammedi

et al., 2017; Arjovsky et al., 2016; Kerg et al., 2019; Lezcano-Casado and Martínez-

Rubio, 2019), Spectral RNNs(Zhang et al., 2018a), etc.) to improve RNN training

and achieve better generalization. In addition, some works(Chang et al., 2019; Rusch

and Mishra, 2021a; Niu et al., 2019; Chen et al., 2018; Rubanova et al., 2019) have

tried to address these issues through a transition function that evolves via an ordinary

differential equation (ODEs).

One of the primary issues with RNNs is their sequential processing of the in-

puts, as it requires careful design of the transition matrices to result in models that

can capture long-range dependencies for lengthy input sequences, typical in tasks

like text summarization, question answering, etc. This process led to the Trans-

former(Vaswani et al., 2017) architectures where instead of sequential processing on

the input as RNNs, they look at the entire sequence and compute pairwise depen-

dencies between each input token. Thus, avoiding issues that exist in RNNs such as

long-range dependencies, vanishing or exploding gradients, etc. But, these transform-

ers come with huge computational and resource costs. There have been many efforts

7

to address these issues(Tay et al., 2022). The success of these transformer architec-

tures in the NLP domain led to vision transformers(Dosovitskiy et al., 2021) with the

eventual development of transformer architecture capable of handling multi-modal

data(Saharia et al., 2022).

Many popular neural networks are static w.r.t. an input, i.e., a network does the

forward pass for every example irrespective of their hardness. They utilize all network

resources without considering into account input characteristics. This viewpoint is

in contrast to the human brain, where simple inputs are handled without much pro-

cessing while we ponder longer on the complex inputs to get the correct prediction.

There have been some efforts in the literature to incorporate these dynamics in DNNs,

namely, efforts like adaptive computation(Graves, 2016; Campos et al., 2018; Chung

et al., 2016; Yu et al., 2017; Jernite et al., 2017; Hansen et al., 2019) in RNNs, and

adaptive inference(Han et al., 2022; Bolukbasi et al., 2017; Nan and Saligrama, 2017a;

Li et al., 2021) in the CNNs.

We point out that we will cover some of these architectures in the upcoming

chapters. We refer readers interested in gaining a more nuanced understanding of

these efficiency aspects to the survey works(Han et al., 2022; Li et al., 2022; Lipton

et al., 2015; Tay et al., 2022).

1.3.2 Training Algorithms

While architecture is an important aspect of achieving good performance, an equally

important piece is the training algorithm. Poorly trained architectures yield subpar

performance.

One of the primary reasons deep learning took off the runway is the access to li-

braries such as PyTorch(Paszke et al., 2019), Tensorflow(Abadi et al., 2015), Caffe(Jia

et al., 2014), Theano(The Theano Development Team et al., 2016), etc. It enabled

8

computing gradients through auto-differentiation in the backward pass and made

training even large models super easy using back-propagation. In contrast, earlier at-

tempts at training neural networks required computing gradients by hand and was a

tiresome and error-prone process. But, back-propagation results in auto gradients for

a training loss function. This can be further fed into various gradient-based optimiza-

tion schemes to yield better performance, such as SGD+Momentum(Ruder, 2016),

Adam(Kingma and Ba, 2015), AdaGrad(Duchi et al., 2011), RMSProp(Tieleman

et al., 2012), LARS(You et al., 2017), LAMB(You et al., 2020), etc.

Since these optimizers aim to minimize the training loss function, it is necessary

to use loss functions that result in (a) a smooth surface for easier optimization and (b)

a solution with better generalization, i.e., nearly approximate the test time behavior.

Below, we list various methods used in the literature to achieve these objectives.

• Promote Generalizing Properties. Many works have associated various loss land-

scape properties to a low generalization error, namely properties such as flat

minima (Foret et al., 2021; Keskar et al., 2017), consistency(Xie et al., 2020),

robustness(Yang et al., 2022), adversarial noise(Volpi et al., 2018), deep mutual

learning(Zhang et al., 2018c), etc. In parallel, (Jiang et al., 2020) empirically

examined the diverse set of complexity measures and tabulated the correlation

between these measures and the generalization gap observed in DNNs trained

with CE loss.

• Additional Data. It is always desirable to have more training data to generalize

better to the test time behavior. It helps to approximate well the unknown prob-

ability distribution behind the task. Note that having access to good quality

labelled data would help improve the performance of even somewhat mediocre

architectures with even naive optimization schemes. But, acquiring high-quality

labelled data is an expensive task, both in terms of the financial cost and the

9

human hours required. Thus, the community has started exploring various

mechanisms to augment the small but high-quality labelled data.

One way to achieve this is data augmentation, i.e., to incorporate multiple views

of the labelled data point. For the vision domain, in the past, the field stuck

to simpler augmentations like cropping, resizing, translating, horizontal flips,

etc. More recently, the field has transitioned into more complex augmenta-

tion strategies such as AutoAugment(Cubuk et al., 2019), Cutout(DeVries and

Taylor, 2017), CutMix(Yun et al., 2019), RandAugment(Cubuk et al., 2020),

etc. Similarly in the language domain, we have Back-Translation(Sennrich

et al., 2016), Word-Replacement in TF-IDF(Xie et al., 2020), Cross-View Train-

ing(Clark et al., 2018), etc. While these augmentations reduce the chance of

overfitting with large models, they may not be natural augmentations from the

human viewpoint. It may not be helping to approximate the unknown data

distribution.

Another popular strategy is to utilize the unlabelled data, leading to unsu-

pervised or semi-supervised(Yang et al., 2022) learning paradigms. Note that

unsupervised data is abundant in the wild, and with some precaution, it can

yield good quality feature representation for solving downstream tasks. One

key aspect of utilizing the unsupervised data is the masking, or what I refer to

as the fill-in-the-blank strategy(He et al., 2022; Devlin et al., 2019), where a

neural network looks at the masked /blanked-out inputs and is asked to predict

the masked-out part of the input. This has been a widely adapted strategy

in many learning algorithms like self-supervised learning(Jaiswal et al., 2021),

masked training(He et al., 2022), next token prediction in learning language

models(Merity et al., 2018; Brown et al., 2020), and so on.

• Additional Supervision. In terms of supervision, many works have attempted to

10

incorporate feedback other than just labelled supervision. For instance, knowl-

edge distillation(Gou et al., 2021) uses the supervision from a large teacher

model into a student network. It enables the student to learn some additional

problem structures not available through the labelled data. Another paradigm

is self-supervision(Jaiswal et al., 2021; Tarvainen and Valpola, 2017; Grill et al.,

2020; Caron et al., 2021; Hochreiter and Schmidhuber, 1997a; Foret et al.,

2021; Cha et al., 2021; Chen et al., 2020b; He et al., 2020) where a model uses

an exponential moving average of its weights during training as the reference

teacher model and uses this as a distillation objective. Other works, such as la-

bel smoothing(Müller et al., 2019), have recommended adding some systematic

noise to the labelled data to avoid overfitting.

• Scheduling Concept Learning. Researchers have also emphasized concept learn-

ing in relation to the way humans learn. In particular, progressive learning(Tan

and Le, 2021) refers to learning simple concepts first and progressively learning

complex concepts during the training trajectory. Curriculum learning(Bengio

et al., 2009; Hacohen and Weinshall, 2019; Graves et al., 2017) refers to the fixed

strategy of prioritizing examples during batched training such that a model looks

at the harder examples, followed by easier examples later in the epoch. Simi-

larly, earlier works have argued the importance of hard instances(Zhou et al.,

2020) having more weight in shaping the decision boundary to focus more often

on showing hard instances for training.

1.3.3 Miscellaneous

Researchers have used various strategies in a post-hoc manner to compress an archi-

tecture during the inference phase and many times even during the training stage.

Quantization(Gholami et al., 2021; Jacob et al., 2018) schemes have been developed

11

to reduce the model arithmetic precision from floating point FP32 to low-precision

numerics like INT4. It yields significant computational speed-ups at only slight degra-

dation in performance. Similarly, network pruning(Liang et al., 2021; Han et al.,

2016) is a strategy to convert a dense DNN into a sparse DNN by removing unneces-

sary connections in a network. Similarly, low-rank(Idelbayev and Carreira-Perpinan,

2020; Howard et al., 2017; Zhang et al., 2018a) factorization and CUDA kernel fu-

sion(Filipovic et al., 2015) have been applied in the literature to further reduce the

computational and storage footprint of the neural networks.

1.4 Approach in this thesis

This thesis aims at improving the resource efficiency of neural architectures, i.e.,

significantly reducing the computational, storage, and energy consumption of a DNN

without any significant loss in performance. Towards this goal, we explore novel

neural architectures as well as training methods that allow low-capacity models to

achieve near SOTA performance. While our proposed ideas are generic in nature,

we ground their utility in applications by focusing on learning problems in sequential

processing (time-series and natural language) (Devlin et al., 2019; Wu et al., 2016;

Anguita et al., 2013; Shahroudy et al., 2016) and vision domains(Tan and Le, 2019;

Howard et al., 2019). Specifically, our work follows the following two themes:

1.4.1 Efficient Low Complexity Models

In this theme, we improve the performance of existing DNNs by either addressing

various design issues or improving training algorithms to yield better performance.

Broadly, we focus on Recurrent Neural Networks (RNNs) and Convolutional Neural

Networks (CNNs) and discuss extensions of these ideas to transformer architectures.

First, we address various fundamental challenges posed by RNNs: (a) during

12

training, the gradient of loss back-propagated in time could suffer from exponential

decay/explosion (Hochreiter, 1991; Bengio et al., 1994; Pascanu et al., 2013b) result-

ing in poor generalization for processes exhibiting long-term dependencies (LTD), (b)

sequential data such as time-series has a low signal to noise ratio, thus improperly

designed RNNs could propagate noise in the hidden states, and (c) training with

unrolling in time requires storing all the intermediate hidden states, resulting in sig-

nificant memory cost for very large sequences. These instabilities lead to sub-optimal

performance. We address these issues by proposing novel architectures (Kag et al.,

2020; Kag and Saligrama, 2021a) inspired by constructs such as ordinary differential

equations (ODEs). In addition, we propose novel a training methodology (Kag and

Saligrama, 2021b) to achieve performance gains.

Next, we improve CNN architectures by reducing their resource usage. They

require greater depth to generate high-level features, resulting in computationally ex-

pensive models. We design a novel residual block, Global layer (Kag and Saligrama,

2022), that constrains the input and output features by approximately solving par-

tial differential equations (PDEs). It yields better receptive fields than traditional

convolutional blocks and thus results in shallower networks. Further, we reduce the

model footprint by enforcing a novel inductive bias that formulates the output of

a residual block as a spatial interpolation(Kag et al., 2023d) between high-compute

anchor pixels and low-compute cheaper pixels. This results in spatially interpolated

convolutional blocks (SI-CNNs) that have better compute and performance trade-offs.

Finally, we propose distributionally constrained learning (DCL)(Kag et al., 2023b),

an algorithm that enforces various distributional constraints during training in order

to achieve better generalization.

13

1.4.2 Input Hardness Adaptive Models

Although efficient low-complexity models provide non-trivial gains over the existing

networks, we further improve these leveraging per input hardness, namely the notion

that not all input instances are equally hard to predict for a DNN. We use input

hardness to specialize DNNs in various input regions. First, we allow models to

abstain from a prediction on a few inputs, resulting in abstaining models (Gangrade

et al., 2021). Secondly, we create hybrid models using a few such specialized networks.

In its simplest form(Kag et al., 2023c), we introduce the notion of input hardness to

specialize low-capacity networks for easy examples and routing difficult ones to a

high-capacity network. Finally, the low-capacity model deployed on the edge device

handles easy examples and routes hard ones to the high-capacity network living in the

cloud. This hybrid design achieves SOTA accuracy and significantly outperforms the

existing edge-deployable efficient low-complexity models. Finally, we incorporate this

input hardness notion in training itself. We develop a novel distillation scheme, DiSK

(Kag et al., 2023a), where the teacher scaffolds the student’s prediction on hard-

to-learn examples. It smoothens the student’s loss landscape so that the student

encounters fewer local minima. As a result, it has good generalization properties.

1.5 Contributions

Our contributions are three-folds as listed below.

1.5.1 Efficient Low Complexity RNNs

We focus on improving the trainability of recurrent neural networks, namely issues

such as poor gradients during training, noise amplification in the latent space, and

significant memory cost in unrolling during backpropagation through time.

First, we propose Incremental Recurrent Neural Network (iRNN) (Kag et al.,

14

2020) wherein the state transition function is defined by an ordinary differential equa-

tion such that the hidden state vectors keep track of incremental changes. iRNN ex-

hibits identity gradients and is able to account for long-term dependencies (LTD). We

also present a simple and cost effective discretization scheme to solve this ODE. Fi-

nally, we provide empirical evidence that iRNNs do not face vanishing and exploding

gradients during training. As a result, iRNNs achieve better performance at similar

cost when compared with existing architectures.

Next, we extend iRNNs by developing Time Adaptive Recurrent Neural Network

(TARNN) (Kag and Saligrama, 2021a) which dynamically adapts the time constants

of the state transition ODE, thus enabling the suppression of noise in the inputs.

By varying the time constants, TARNN can ponder longer over informative input

segments and strengthen their contributions in the hidden state. At any time step,

TARNN skips processing the input whenever it predicts that the input at this time

step is noise. We provide the details of this time adaptive logic. In addition, TARNN’s

parameterization enables it to maintain identity gradients where desired during train-

ing. Through various synthetic as well as real-world benchmark datasets, we show

that TARNN outperforms both iRNN as well other RNNs.

Finally, we develop a novel algorithm, Forward Propagation Through Time

(FPTT) (Kag and Saligrama, 2021b), where at each time, for an instance, we update

RNN parameters by optimizing an instantaneous risk function. Our proposed risk

is a regularization penalty at time t that evolves dynamically based on previously

observed losses and allows for RNN parameter updates to converge to a stationary

solution of the empirical RNN objective. FPTT mitigates the vanishing/exploding

gradient issues even in poorly designed architectures. In addition, FPTT reduces

memory consumption as it does not unroll the RNN transition for the entire sequence

length as typically required by BPTT.

15

1.5.2 Efficient Low Complexity CNNs

Convolutional neural networks typically require a lot of repetitions of the residual

blocks in order to capture a large receptive field. This results in a large storage

and computational footprint. We improve their resource efficiency by designing novel

feature layers and training methods.

First, we show how to utilize differential equations to reduce the CNN computa-

tional/storage footprints. We develop a new feature layer, called the Global Layer

(Kag and Saligrama, 2022), that enforces partial differential equation (PDE) as a

constraint on the feature maps. This layer increases the receptive field without the

additional overhead of large kernel convolutions. These constraints are solved by em-

bedding iterative schemes in the network. Thus, the proposed layer can be embedded

in any deep CNN to transform it into a shallower network.

Next, we design a novel interpolation scheme, named Spatial Interpolation(Kag

et al., 2023d), which decomposes a residual block as an interpolation between features

processed at a low-resolution sampling of the input features and cheaper features pro-

cessed at the input resolution. This interpolation scheme reduces the computational

cost of any generic convolutional residual block. We instantiate spatially interpolated

variants of the popular Inverted Residual (Howard et al., 2019) and Fused-MBConv

(Tan and Le, 2021) blocks.

Finally, we develop Distributionally Constrained Learning (DCL) (Kag et al.,

2023b), a novel training method to improve generalization. It penalizes variation

in model-predictions during training, which arises from the randomness of inputs

and stochasticity of model updates. Additionally, in contrast to prior works, where

constraints are handled by means of a regularization penalty and choice of hyper-

parameters, we propose a novel cosine-scheduling scheme coupled with a multi-phase

budget update for gradually hardening distribution penalty that allows for sufficient

16

exploration during the training process.

1.5.3 Input Hardness Adaptive Models

We integrate the notion of input hardness in neural network design and learning

strategies.

First, we develop an abstaining classifier (Gangrade et al., 2021) that learns to

reject a few hard input instances and selectively predicts the remaining input space.

We learn this abstaining model using a novel one-sided prediction objective that

builds confidence region per class label.

Next, we design hybrid models (Kag et al., 2023c) that combines a low-capacity ab-

staining classifier with a high-capacity model such that most of the inference happens

with the low-capacity model and the rejected samples from this abstaining classi-

fier are routed to the high capacity model. Thus, allowing a much better resource

trade-off in terms of performance and compute usage during inference.

Finally, we integrate input hardness in training low-capacity models. More specif-

ically, we develop Distilling Scaffolded Knowledge (DiSK) (Kag et al., 2023a) wherein

we use a large capacity teacher to selectively distill knowledge into a tiny student

such that it focuses its model capacity on easier input region space. In doing so, the

student’s training loss smoothens, and it is able to learn a better generalizing solu-

tion than traditional methods such as training with cross-entropy loss or knowledge-

distillation objective.

1.6 Thesis Overview

The rest of the thesis is in the same order as the three contributions discussed earlier.

In the first part (Chapter 2-5), we design low complexity efficient RNN architectures.

In the second part (Chapter 6-9), we propose new convolutional residual layers and

17

training algorithms to improve CNN architectures. Finally, in the third part (Chap-

ter 10-13), we explore the notion of input hardness and design input adaptive architec-

tures and algorithms. We leave the supplementary details, such as hyper-parameters,

dataset descriptions, architecture configurations, etc., to the Appendices (Chapter A-

J). Note that all the chapters (except for Chapter 8 and Chapter 9) are based on

peer-reviewed conference publications published during my doctoral studies and have

been edited in this thesis for coherency. We highlight the chapter organization below.

We begin our journey with the design of efficient low-complexity RNNs.

In Chapter 2, we review RNN architectures and various challenges that arise

during training and inference. We discuss various solutions proposed in the literature

to address the same. We discuss the vanishing and exploding gradients problems in

RNN training as well as the noise amplification issue that arises while dealing with

sequential inputs. In addition, we review the back-propagation through time (BPTT)

algorithm and enumerate various issues it brings to the table.

In Chapter 3, we discuss Incremental Recurrent Neural Network (iRNN)(Kag

et al., 2020) wherein hidden state transitions are represented by an ODE that elim-

inates vanishing and exploding gradients during RNN training. It enables identity

gradients in the back-propagation. As a result, iRNNs achieve better performance at

a similar cost compared to existing architectures.

In Chapter 4, we present Time Adaptive Recurrent Neural Network (TARNN)(Kag

and Saligrama, 2021a) aimed at solving the noise amplification issue in RNN transi-

tions. We modify the time constants in the ODE-based hidden state transitions such

that the ODE solver is invoked only when a signal is present at a given time step.

So far, our focus has been on introducing new RNN architectures. In Chapter 5,

we show that an improved training scheme yields significant improvements in the

performance of existing neural architectures. We present an alternative to BPTT, i.e.,

18

Forward Propagation Through Time (FPTT)(Kag and Saligrama, 2021b), wherein

instead of propagating the hidden states from the initial timestep to the final timestep,

and finally back-propagating the gradients, we keep on moving the hidden states

forward as well as keep updating the parameters in a forward manner. Thus, avoid the

back-propagation throughout the sequence length. It helps us eliminate the vanishing

and exploding gradients during the training phase and, as such, helps in reaching

better generalizing parameter space.

Next, we move on to designing efficient low-complexity CNN architectures.

In Chapter 6, we review CNN architectures and previous attempts at improving

their resource efficiency. We discuss some key issues underlying many of these efforts,

namely low receptive field, residual block repetitions, and lack of exploitation of

spatial redundancy. In addition, we discuss various training strategies adopted in the

literature to improve generalization.

In Chapter 7, we propose a new feature layer, called the Global Layer(Kag and

Saligrama, 2022), which enforces PDE constraints on the feature maps, resulting in

rich features. This proposed layer can be embedded in any deep CNN to transform

it into a shallower network.

In Chapter 8, we design a novel Spatial Interpolation(Kag et al., 2023d) scheme to

exploit the redundancies in the spatial structures in the convolutional residual blocks.

It decomposes the residual block as an interpolation between features processed at a

low-resolution sampling of the input features and cheaper features processed at the

input resolution. This interpolation strategy is applicable to any generic convolutional

residual block.

In Chapter 9, we propose Distributionally Constrained Learning (DCL)(Kag et al.,

2023b), a novel algorithm that incorporates distributional constraints for training

deep neural networks to improve generalization.

19

In the final part, we develop architectures and algorithms that incorporate input

hardness for adaptively trading off resources and model prediction accuracy.

In Chapter 10, we analyze the static nature of the most DNNs and review var-

ious attempts at incorporating input-hardness adaptive computation in the neural

networks. We discuss the literature on selective classification, a.k.a. learning with a

reject option, other strategies in which an abstaining classifier is coupled with other

expert models to cover the entire input space, and various training strategies in this

context.

In Chapter 11, we propose One-Sided Prediction (OSP)(Gangrade et al., 2021), a

novel method for selective classification, a problem which allows a classifier to abstain

from predicting some instances. In contrast to prior gating or confidence-set-based

work, OSP optimizes a collection of class-wise decoupled one-sided empirical risks

and is, in essence, a method for explicitly finding the largest decision sets for each

class with few false positives.

In Chapter 12, we couple an abstaining classifier with a high-capacity expert model

such that abstained inputs from the selective classifier are routed to the expert model.

This results in Hybrid Models(Kag et al., 2023c) where a small abstaining classifier

handles most of the easy input space, and few difficult instances are handled by a

high-capacity expert model.

In Chapter 13, we integrate the input-hardness notion into a training algorithm.

We propose a novel knowledge distillation method, DiSK(Kag et al., 2023a), to selec-

tively instill teacher knowledge into a student model motivated by situations where

the student’s capacity is significantly smaller than that of the teachers. The teacher

model helps the student by censoring hard-to-learn examples.

Finally, we conclude this thesis in Chapter 14. We discuss various future research

directions that emerge out of this work.

20

Part I

Efficient Low Complexity RNNs

21

22

Chapter 2

Recurrent Neural Network: Background

Recurrent Neural Networks (RNNs) are deep neural architectures designed to process

sequential data such as time series or natural language. RNNs have been widely used

in language modelling(Merity et al., 2018), speech recognition(Warden, 2017), time-

series analysis(Shahroudy et al., 2016), etc. At any time step in the input sequence,

RNNs keep track of a hidden state that summarizes the input sequence seen so far.

This hidden state is updated upon observing the current input token via a coupled

transformation between the previous hidden state and the input token, followed by

some non-linear operation. Thus, the hidden state represents the input sequence in a

latent space. Improving RNN performance is important since they are deployed in a

number of IoT applications (Dennis et al., 2019) due to their light memory footprint.

2.1 Definition

Let us formally define a vanilla RNN. We will fix a notation before proceeding fur-

ther. Let {(x(i),y(i))}, i ∈ [N] denote the N i.i.d. training data points drawn from

an unknown probability distribution P. Each x(i) is a T−length d−dimensional se-

quential input. For classification problems, y(i) is a terminal label y(i)T , taking values

in a discrete set of C classes. For language modeling tasks, we let the true label be

a process, (y
(i)
1 , . . . , y

(i)
T). The predictions (ŷ

(i)
1 , . . . , ŷ

(i)
T) for each input x(i) can be

computed from the D−dimensional hidden states (h
(i)
1 , . . . ,h

(i)
T) obtained by apply-

Figure 2·1: RNN State Transition: Unrolling RNN transition f across T time-steps,
starting with initial hidden state h0 till the final hidden state hT .

ing RNN transition function described below. We omit superscripts when it is clear

from the context. Unless stated otherwise, σ(·) denotes the sigmoid activation; ϕ(·)
refers to any non-linear activation such as a ReLU. At a time-step t, a vanilla RNN

has access to hidden state ht−1 that summarizes the past ({hi}t−1
i=0, {xj}t−1

j=1). Upon

receiving the new input xt, RNN updates the hidden state to ht using the following

transformation,

ht = f(θ,ht−1,xt) ≜ ϕ(Uht−1 +Wxt + b), (2.1)

where U ∈ RD×D,W ∈ RD×d,b ∈ RD and θ = {U,W,b}. We obtain the RNN

prediction at time t as the projection onto the output space through a linear classifier

V ∈ RC×D such that ŷt = Vht. Figure 2·1 shows RNN transition for T time-steps

using the state-transition denoted in Eq. 2.1. Note that the RNN model is defined by

the learnable parameters {θ,V} and the transition function f . We can learn these

parameters by minimizing the empirical risk as follows:

θ∗ = argmin
θ

1

NT

N∑
i=1

T∑
t=1

ℓ(yit, ŷ
i
t) ≜ argmin

θ
L (2.2)

∀i, t; ŷit = Vhi
t; hi

t = f(θ,hi
t−1, x

i
t); hi

0 = 0

23

Figure 2·2: Back-Propagation Through Time (BPTT) Algorithm for training RNNs

where ℓ(y, ŷ) is the loss function penalizing the prediction ŷ for the ground truth

label y. Many popular choices for this loss function exist, such as cross-entropy,

mean-squared error, etc. We can use standard off-the-shelf optimizers to minimize

the training loss in the setup mentioned earlier. Since this objective requires un-

rolling the RNN transitions for all the time steps in the input (0→ T), the standard

back-propagation algorithm used in this context is referred to as Back-Propagation-

Through-Time (BPTT) (see Figure 2·2).

2.2 Trainability Challenges

In principle, RNNs are powerful enough to model many complex dynamics and should

be able to retain information across various lengthy input sequences. But, in practice,

they are very hard to train and suffer from many challenges, many of which arise from

their transition function design as well as the BPTT training algorithm. Below, we

24

enumerate these issues, and in the next section discuss various existing solutions to

these problems.

1. Vanishing/Exploding Gradients. During training using BPTT, the error gra-

dient back-propagated (with one parameter say U) can be written as follows,

∂L
∂U

=
1

NT

N∑
i=1

T∑
t=1

∂ℓ(yit, ŷ
t
i)

∂U
=

1

NT

N∑
i=1

T∑
t=1

∂ℓ(yit, ŷ
t
i)

∂ŷti

∂ŷti
∂hi

t

t∑
j=1

(t∏
s=j

∂hi
s

∂hi
s−1

)∂hi
j−1

∂U

(2.3)

It implies that the gradient back-propagated from time-step T to time-step m < T ,

is dominated by the product of the partials of the hidden-state vectors ∂hs

∂hs−1
. Many

researchers (Hochreiter, 1991; Bengio et al., 1994; Pascanu et al., 2013b) observed

that such a product could be unstable. Specifically, the product term may not

stay close to the identity matrix and could explode or vanish. In the vanishing

gradients case, hidden states corresponding to t≪ T will have little contribution to

the overall error. If the gradients explode, later states may have little contribution.

This phenomenon is referred to as the Vanishing/Exploding Gradients. It would

result in poor performance on tasks that require long-term dependency (LTD). RNN

will not be able to learn correct credit assignments during training and hence, will

be unable to learn the correlation between the task and input time steps that are

important for solving the task. For instance, Figure 2·3 shows that many popular

RNN architectures suffer from vanishing/exploding gradients. As a result, they

either fail to minimize the training objective or take forever to find the minimum of

the objective function (i.e., have a poor convergence rate).

2. Noise Amplification. Although clever transition function f could help mitigate

the poor gradient issues, an RNN could still suffer from accumulating spurious

information from the noise present in the sequential input if it does not have a

mechanism to weed out the noisy time steps and focus more on the informative

25

0 200 400 600 800 1000
Training Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

Sequence length = 200
LSTM
FastRNN(eta=0.01)
FastRNN(eta=0.001)
Antisym(g=0.01,e=0.1)
Antisym(g=0.01,e=0.001)
iRNN(K=1)
iRNN(K=5)
iRNN(K=10)

(a)

0 200 400 600 800 1000
Training Steps

0
1

3

5

7

9

Ra
tio

 o
f |

h T h 1
| &

 |
h T

h T
1
|

Sequence length = 200
LSTM
FastRNN(eta=0.01)
FastRNN(eta=0.001)
Antisym(g=0.01,e=0.1)
Antisym(g=0.01,e=0.001)
iRNN(K=1)
iRNN(K=5)
iRNN(K=10)

(b)

Figure 2·3: Vanishing/Exploding Gradients in RNNs. Experiments on the addition
task A.2.10 : (a) Convergence Rate Plot (loss at each training iteration); (b) Ratio
∥∂hT

∂h1
∥/∥ ∂hT

∂hT−1
∥ illustrates Vanishing/Exploding gradient.

segments. We refer to this issue as the noise amplification problem. It could be very

severe for very long sequences exhibiting long-term dependencies. We show this in an

illustrative example in Figure 2·4. The input sequence contains signals only at two

timesteps t = 4 and t = 12. Everywhere else, it only contains noise drawn uniformly

from [0, 1]. Consider the AntisymmetricRNN in Figure 2·4b. It shows that even if

an architecture achieves near identity gradients during back-propagation, it may

suffer from the noise amplification issue and achieve poor performance. In contrast,

our proposed architecture ((Kag and Saligrama, 2021a)) learns to effectively ponder

only on the informative signals and ignore noisy input segments. Thus, it is very

effective in solving this task.

3. BPTT Complexity. RNN training via BPTT is notoriously hard for RNNs with

a poor transition function design, as illustrated earlier in vanishing/exploding gra-

dients. In addition, the gradient computation is expensive for large T . In addition,

this unrolling in time requires the algorithm to store all the intermediate hidden

states as well as the partials for back-propagating the gradients. Thus, BPTT in-

curs heavy computational and working memory overhead.

26

0 2 4 6 8 10 12 14
Time Steps : m

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50
St

at
e

Di
ff

No
rm

 o
r I

np
ut

 V
al

ue
Class: (t=4)=1, (t=12)=1)

Input
TARNN
SkipLSTM

(a)

0 200 400 600 800 1000 1200 1400 1600
Training Steps

10 3

10 2

10 1

100

101

lo
g

of
 ra

tio
 o

f
s T s 1

| &
 |

s T
s T

1
|

Sequence length = 16
LSTM
FastRNN
Antisymmetric
SkipLSTM
TARNN

(b)

Algorithm Accuracy

Random Guess 25
FastRNN 45
LSTM 45

Antisymmetric 37
SkipLSTM 60

TARNN (Ours) 100

(c)

Figure 2·4: Noise Amplification Example. Example illustrates importance of mit-
igating gradient explosion/decay as well as ignoring noisy observations. Table lists
test performance of baselines focused on improving RNN training. Fig. (a) plots the
noisy input, and sequential changes in hidden state norms for SkipLSTM(Campos
et al., 2018) and proposed TARNN(Kag and Saligrama, 2021a). Only ours responds
to informative locations. Fig. (b) plots the norm of partials of hidden states. Only
AntisymmetricRNN(Chang et al., 2019) and ours TARNN exhibit near identity gra-
dients. However, only ours is effective as seen from the table. As such we infer
TARNN (a) realizes near identity gradients for partials of hidden states, thus miti-
gating gradient explosion/decay, (b) zooms in on informative inputs and ignores noisy
observations, and (c) By jointly ensuring (a) and (b), it improves RNN trainability,
providing good generalization.

2.3 Related Works

2.3.1 RNN Architectures

Gated Architectures. Long short-term memory (LSTM) (Hochreiter and

Schmidhuber, 1997b) is widely used in RNNs to model long-term dependency in

sequential data. Gated recurrent unit (GRU) (Cho et al., 2014a) is another gating

mechanism designed to achieve a similar performance of LSTM architecture with

fewer parameters. Some recent gated RNNs include UGRNN (Collins et al., 2017)

and FastGRNN (Kusupati et al., 2018). While these architectures mitigate the van-

ishing/exploding gradient issues, they do not eliminate them. Often, these models

incur increased inference, training costs, and model size.

Unitary RNNs. (Arjovsky et al., 2016; Jing et al., 2017; Zhang et al., 2018a;

Mhammedi et al., 2017) focus on designing well-conditioned state transition matrices.

27

They attempt to enforce unitary property during training. Note that the unitary

property does not generally circumvent vanishing gradient ((Pennington et al., 2017)).

Also, it limits expressive power and prediction accuracy while also increasing training

time. (Lezcano-Casado and Martínez-Rubio, 2019) alleviates some of these issues by

leveraging Riemannian geometry and Lie group theory. (Kerg et al., 2019) uses Schur

decomposition of the hidden-to-hidden transition matrix and maintains two separate

components (normal and non-normal components) during training.

Deep RNNs. These are nonlinear transition functions incorporated into RNNs

for performance improvement. For instance, (Pascanu et al., 2013a) empirically an-

alyzed the problem of how to construct deep RNNs. (Zilly et al., 2017) proposed

extending the LSTM architecture to allow step-to-step transition depths larger than

one. (Mujika et al., 2017) proposed incorporating the strengths of both multiscale

RNNs and deep transition RNNs to learn complex transition functions. While Deep

RNNs offer richer representations relative to single-layered models, they are comple-

mentary to our proposed architectures.

Residual/Skip Connections. (Jaeger et al., 2007; Bengio et al., 2013; Chang

et al., 2017; Campos et al., 2018; Kusupati et al., 2018) feed-forward state vectors to

induce skip or residual connections, to serve as a middle ground between feed-forward

and recurrent models, and to mitigate gradient decay. Nevertheless, these connections

cannot entirely eliminate gradient explosion/decay. For instance, (Kusupati et al.,

2018) suggest ht = αtht−1 + βtϕ(Uht−1 + Wxt + b), and learn parameters so that

αt ≈ 1 and βt ≈ 0. Evidently, this setting can lead to identity gradients. But observe

that setting βt ≈ 0 implies little contribution from the inputs and can conflict with

good accuracy, as also observed in our experiments.

Linear RNNs. Many attempts improve the computational cost of the sequential

models by introducing lighter recurrent connections. (Lei et al., 2018; Balduzzi and

28

Ghifary, 2016) replace the hidden-to-hidden interactions in the LSTMs with linear

connections in the hope of parallelism. (Bradbury et al., 2016) performs similar linear

interactions along with the increased receptive field from the inputs, i.e., instead of

just using the current observation, it uses the previous few inputs to compensate for

the lost non-linear interaction between the hidden states. Similar to these works,

(Li et al., 2018b; Li et al., 2019b) introduce linear connection in vanilla RNNs and

compensate for the loss of performance by allowing various architectures on top of

this light-recurrent unit. These architectures include stacked encoders, residual, and

dense connections between multiple layers. It should be noted that although light,

the loss of non-linear interaction does result in a significant setback, and as a result,

these works have to rely on more than one RNN layer to gain anything reasonable in

comparison to traditional variants. It reduces training time but results in significantly

increased model size. For example, (Lei et al., 2018) requires twice the number of

cells for LSTM-level performance. These multi-layered models will be prohibitive for

IoT devices as inference time would be larger than vanilla RNNs. Besides, we can

extend our work by allowing only linear connections and applying their orthogonal

ideas for better parallelism and computational speed.

ODE/Dynamical Perspective. (Rosenblatt, 1962; Funahashi and Nakamura,

1993) inspired many RNNs with transition functions leveraging ordinary differential

equations (ODEs). Few ODE-inspired architectures attempt to address stability but

do not end up eliminating vanishing/exploding gradients. (Talathi and Vartak, 2015)

proposed a modified weight initialization strategy based on a dynamical system per-

spective on the weight initialization process to successfully train RNNs composed

of ReLUs. (Niu et al., 2019) analyzed RNN architectures using numerical meth-

ods of ODE and propose a family of ODE-RNNs. (Chang et al., 2019), propose

Antisymmetric-RNN. Their key idea is to express the transition matrix in Eq. 3.1,

29

for the special case α = 0, τ = 1, as a difference: U = V − V T and note that the

eigenspectrum is imaginary. Nevertheless, Euler discretization, in this context, leads

to instability, necessitating damping of the system. As such, vanishing gradients can-

not be completely eliminated. Its behavior is analogous to FastRNN (Kusupati et al.,

2018), where the identity gradients conflict with high accuracy. In summary, we are

the first to propose evolution over the equilibrium manifold and demonstrate identity

gradients.

Neural ODEs (Chen et al., 2018; Rubanova et al., 2019) have also been proposed

for time-series prediction to deal with irregularly sampled inputs. They parameterize

the derivative of the hidden state in terms of an autonomous differential equation

and let the ODE evolve in continuous time until the next input arrives. As such,

this is not our goal, our ODE explicitly depends on the input and evolves until

equilibrium for that input is reached. We introduce incremental updates to bypass

vanishing/exploding gradient issues, which is not of specific concern for these works.

(Erichson et al., 2021) proposed Lipschitz RNN where the transition function is

written as a combination of a linear transformation of the hidden state and a Lipschitz

non-linear function. They study global stability properties of such a dynamical sys-

tem and propose continuous-time Lipschitz recurrent units as a discretization using

Runge-Kutta scheme (RK2) 1. (Rusch and Mishra, 2021a) developed coRNN that

discretizes a system of second-order ODE, modeling controlled non-linear coupled

damped oscillators. Similarly, (Rusch and Mishra, 2021b) designed UnICORNN, a

recurrent unit that uses a Hamiltonian system of second-order ODEs.

Conditional Computation and Attention. Our pondering perspective can be

viewed as a form of conditional computation in time. Nevertheless, much of the con-

ditional computation work aims to gradually scale model capacity without suffering

proportional increases in computational (inference) cost (see (Graves, 2016; Chung
1https://en.wikipedia.org/wiki/Runge-Kutta_methods

30

et al., 2016; Yu et al., 2017; Jernite et al., 2017; Hansen et al., 2019)). Different from

these works, our focus is on improving RNN trainability by suppressing noisy obser-

vations, so that long-term dependencies can be handled by ignoring uninformative

input segments. Within this context, only (Campos et al., 2018) is closely related to

our viewpoint. Like us, (Campos et al., 2018) also proposes to skip input segments

to improve RNN training, but unlike us, since their state-transition designs are con-

ventional, they still suffer vanishing and exploding gradients on segments that are

not skipped, and as a result suffer performance degradation on benchmark datasets.

Also, as (Campos et al., 2018) points out, our work can also be viewed as a temporal

version of hard attention mechanisms for selecting image regions. These works (see

(Campos et al., 2018)) that deal with visually-based sequential tasks, have high model

complexity and are difficult to train on long input sequences. Others (Vaswani et al.,

2017) leverage attention to bypass RNNs. In contrast, we offer an approach that is

lightweight and improves RNN trainability on long sequences.

Structured State Spaces. Recently, researchers have explored structured state

spaces to model long-range dependencies in sequential data. (Gu et al., 2021) in-

vestigated linear state-space layers that transform the input sequence using a linear

continuous time state-space representation. Unfortunately, their memory and com-

putational requirements render them infeasible for many problems of practical im-

portance. (Gu et al., 2022) improve the linear state-space model and propose new

parameterization of the transition function (sum of low-rank and skew-symmetric

matrices).

2.3.2 RNN Training Algorithms

While a number of RNN training methods have been proposed, BPTT remains the

single most dominant method (Rumelhart et al., 1986; Werbos, 1990). BPTT unrolls

31

the recurrent logic for the entire time horizon and computes gradient through this

horizon. It has been observed to be computationally expensive (storing the hidden

states and computing gradient for entire time horizon) and unless the RNN architec-

ture is carefully designed, this leads to vanishing / exploding gradients (Hochreiter,

1991; Bengio et al., 2013). Truncated BPTT (Williams and Peng, 1990) is the variant

of BPTT where gradient flow is truncated after a fixed number of timesteps. This

fails to learn dependencies present beyond the fixed window.

Real time recurrent learning (RTRL) (Williams and Zipser, 1989), a BPTT alter-

native, proposes to propagate the partials ∂ht

∂ht−1
and ∂ht

∂W
from timestep t to t+ 1, by

noting that there is significant overlap in the product term (see Eq. 2.3) from time t

to t + 1, allowing for recursive computation. Early attempts suffered large memory

overhead limiting its usage, and while recent attempts (Mujika et al., 2018; Menick

et al., 2021; Tallec and Ollivier, 2018; Ollivier and Charpiat, 2015) have been more

successful, these methods still fall short of BPTT performance, and so trainability of

RNNs is still a significant issue.

This allows the computation of the gradient at the final timestep recursively. The

initial attempts at maintaining the dynamics to propagate gradients introduced large

overheads. Thus limiting their usage to only small networks. There have been many

recent attempts to revive RTRL (Mujika et al., 2018; Menick et al., 2021; Tallec and

Ollivier, 2018; Ollivier and Charpiat, 2015). While being low on memory footprint

and fast, these attempts have still been lagging behind the performance of BPTT.

2.3.3 Miscellaneous

(Miller and Hardt, 2019) analyzes LSTMs from the stability perspective and show

that in an unconstrained form LSTMs are unstable. They show that under some

conditions on the non-linearity in transition, stable recurrent neural networks can be

32

represented by a feed-forward network. While stability reasons about the exploding

gradients, it does not eliminate the vanishing gradients issue during training. (Hardt

et al., 2018) analyze a linear time-invariant dynamical system using a sequence of noisy

system generated observations and prove that stochastic gradient descent efficiently

converges to the global optimizer of the maximum likelihood objective. (Linsley et al.,

2020) addresses the large memory cost of BPTT which scales linearly with the number

of time steps. They modify the training process by replacing the BPTT algorithm

with Recurrent BackProp (RBP) algorithm which optimizes the parameters to achieve

steady state dynamics.

(Kuznetsov and Mohri, 2015) study non-stationary non-mixing stochastic pro-

cess, specifically a time series forecasting problem. They present data-dependent

measure of sequential complexity to be estimated from data under mild assumptions.

(Kuznetsov and Mohri, 2016) study time-series forecasting from online learning per-

spective. They prove generalization bounds for a hypothesis derived by online-to-

batch conversion in a non-stationary non-mixing stochastic processes. These works

only analyze this connection from the theoretical perspective and do not provide any

algorithmic insights into training RNNs, which has been the focus in this chapter.

33

34

Chapter 3

Incremental Recurrent Neural Networks

(iRNNs)

3.1 Introduction

(Rosenblatt, 1962), on whose work we draw inspiration from, introduced

continuous-time RNN (CTRNN) to mimic activation propagation in neural circuitry.

CTRNN dynamics evolves as follows:

τ ġ(t) = −αg(t) + ϕ(Ug(t) +Wx(t) + b), t ≥ t0. (3.1)

Here, x(t) ∈ Rd is the input signal, g(t) ∈ RD is the hidden state vector of D

neurons, ġi(t) is the rate of change of the i-th state component; τ, α ∈ R+, referred

to as the post-synaptic time-constant, impacts the rate of a neuron’s response to the

instantaneous activation ϕ(Ug(t) +Wx(t) + b); and U ∈ RD×D, W ∈ RD×d, b ∈ RD

are model parameters. In passing, note that recent RNN works that draw inspiration

from ODE’s (Chang et al., 2019) are special cases of CTRNN (τ = 1, α = 0).

Vanishing Gradients. The qualitative aspects of the CTRNN dynamics is trans-

parent in its integral form:

g(t) = e−α
t−t0
τ g(t0) +

1

τ

t∫
t0

e−α t−s
τ ϕ(Ug(s) +Wx(s) + b)ds (3.2)

This integral form reveals that the partials of hidden-state vector with respect to the

initial condition, ∂g(t)
∂g(t0)

, gets attenuated rapidly (first term in RHS), and so we face

a vanishing gradient problem. We will address this issue later but we note that this

is not an artifact of CTRNN but is exhibited by ODEs that have motivated other

RNNs (see Sec. 2.3.1).

Shannon-Nyquist Sampling. A key property of CTRNN is that the time-

constant τ together with the first term −g(t), is in effect a low-pass filter with

bandwidth ατ−1 suppressing high frequency components of the activation signal,

ϕ((Ug(s)) + (Wx(s)) + b). This is good, because, by virtue of the Shannon-Nyquist

sampling theorem, we can now maintain fidelity of discrete samples with respect to

continuous time dynamics, in contrast to conventional ODEs (α = 0). Additionally,

since high-frequencies are already suppressed, in effect we may assume that the input

signal x(t) is slowly varying relative to the post-synaptic time constant τ .

Equilibrium. The combination of low pass filtering and slowly time varying input

has a significant bearing. The state vector as well as the discrete samples evolve close

to the equilibrium state, i.e., g(t) ≈ ϕ(Ug(t) +Wx(t) + b) under general conditions

(Sec. 3.2).

Incremental Updates. Whether or not system is in equilibrium, the integral

form in Eq. 3.2 points to gradient attenuation as a fundamental issue. To overcome

this situation, we store and process increments rather than the cumulative values g(t)

and propose dynamic evolution in terms of increments. Let us denote hidden state

sequence as hm ∈ RD and input sequence xm ∈ Rd. For m = 1, 2, . . . , T , and a

35

suitable β > 0

τ ġ(t) = −α(g(t)± hm−1) + ϕ(U(g(t)± hm−1) +Wxm + b), g(0) = 0, t ≥ 0

(3.3)

hm ≜ hβ·τm ≜ g(β · τ)

Intuitively, say system is in equilibrium and −α(µ(xm, hm−1)) + ϕ(Uµ(xm, hm−1) +

Wxm + b) = 0. We note state transitions are marginal changes from previous states,

namely, hm = µ(xm, hm−1)−hm−1. Now for a fixed input xm, as to which equilibrium

is reached depends on hm−1, but are nevertheless finitely many. So encoding marginal

changes as states leads to “identity” gradient.

Incremental RNN (iRNN) achieves Identity Gradient. We propose to

discretize Eq. 3.3 to realize iRNN (see Sec. 3.2). At time m, it takes the previous

state hm−1 ∈ RD and input xm ∈ Rd and outputs hm ∈ RD after simulating the

CTRNN evolution in discrete-time, for a suitable number of discrete steps. We show

that the proposed RNN approximates the continuous dynamics and solves the van-

ishing/exploding gradient issue by ensuring identity gradient. In general, we consider

two options, SiRNN, whose state is updated with a single CTRNN sample, similar

to vanilla RNNs, and, iRNN, with many intermediate samples. SiRNN is well-suited

for slowly varying inputs.

Contributions. To summarize, we list our main contributions:

(A) iRNN converges to equilibrium for typical activation functions. The partial gra-

dients of hidden-state vectors for iRNNs converge to identity, thus solving vanish-

ing/exploding gradient problem!

(B) iRNN converges rapidly, at an exponential rate in the number of discrete sam-

plings of Eq. 3.1. SiRNN, the single-step iRNN, is efficient and can be leveraged for

slowly varying input sequences. It exhibits fast training time, has fewer parameters

36

and better accuracy relative to standard LSTMs.

(C) Extensive experiments on LTD datasets show that we improve upon standard

LSTM accuracy as well as other recent proposals that are based on designing tran-

sition matrices and/or skip connections. iRNNs/SiRNNs are robust to time-series

distortions such as noise paddings

(D) While our method extends directly (see Appendix B.1) to Deep RNNs, we deem

these extensions complementary, and focus on single-layer to highlight our incremen-

tal perspective.

3.2 Method

We use Euler’s method to discretize Eq. 3.3 in steps δ = ητ . Denoting the kth step

as gk = g(kδ)

τ
gk − gk−1

δ
= −α(gk−1 + hm−1) + ϕ(U(gk−1 + hm−1) +Wxm + b), k ∈ [K] (3.4)

Rearranging terms we get a compact form for iRNN (see Fig. 3·1). In addition

we introduce a learnable parameter ηkm and let it be a function of time m and the

recursion-step k.

gk = gk−1 + ηkm(ϕ(U(gk−1 + hm−1) +Wxm + b)− α(gk−1 + hm−1)), k ∈ [K] (3.5)

hKm = gK

We run the recursion for k ∈ [K] with some suitable initial condition. This could be

g0 = 0 or initialized to the previous state, i.e., g0 = hm−1 at time m.

In many of our examples, we find the input sequence is slowly varying, and

K = 1 can also realize good empirical performance. We refer to this as single-

37

step-incremental-RNN (SiRNN).

h1m = g0 + ηm(ϕ(U(g0 + hm−1) +Wxm + b)− α(hm−1 + g0)) (3.6)

For both iRNN and SiRNN we drop the superscript whenever it is clear from the

context.

Root Finding and Transitions. The two indices k and m should not be con-

fused. The index m ∈ [T] refers to the time index, and indexes input, xm and hidden

state hm over time horizon T . The index k ∈ [K] is a fixed-point recursion for con-

verging to the equilibrium solution at each time m, given input xm and the hidden

state hm−1. We iterate over k so that at k = K, gK satisfies,

ϕ(U(gK + hm−1) +Wxm + b)− α(gK + hm−1) ≈ 0

The recursion (Eq. 3.5) at time m runs for K rounds, terminates, and recursion is

reset for the new input, xm+1. Indeed, Eq. 3.5 is a standard root-finding recursion,

with gk−1 serving as the previous solution, plus a correction term, which is the error,

ϕ(U(gk−1 + hm−1) + Wxm + b) − α(gk−1 + hm−1). If the sequence converges, the

resulting solution is the equilibrium point. Proposition 2 guarantees a geometric rate

of convergence.

Identity Gradient. We will informally (see Theorem 1) show here that partial

gradients are identity. Say we have for sufficiently large K, hm = gK is the equilibrium

solution. It follows that,

ϕ(U(hm + hm−1) +Wxm + b)− α(hm + hm−1)) = 0

38

φ
xm

η1
φ

η2
φ

ηK
=hm g0 =hm−1 gK

Figure 3·1: iRNN depicted by unfolding into K recursions for one transition from
g0 = hm−1 to hm = gK . Here, φ(x, g, h) = ϕ(U(g+h)+Wx+b)−α(g+h). See Sec. B.2
for implementation and pseudo-code. This resembles (Graves, 2016), who propose to
vary K with m as a way to attend to important input transitions. However, the
transition functions used are gated units, unlike our conventional ungated functions.
As such, while this is not their concern, equilibrium may not even exist and identity
gradients are not guaranteed in their setup.

Taking derivatives, we have,

∇ϕ(·)U
(

∂hm
∂hm−1

+ I

)
−α
(

∂hm
∂hm−1

+ I

)
= 0 =⇒ (∇ϕ(·)U − αI)

(
∂hm
∂hm−1

+ I

)
= 0.

(3.7)

Thus if the matrix (∇ϕ(·)U − αI) is not singular, it follows that (∂hm

∂hm−1
+ I) = 0.

SiRNN vs. iRNN. SiRNN approximates iRNN. In particular, say xm is a

constant in the segment, m ∈ [m0,m0 +K], then SiRNN trajectory of hidden states,

denoted as h1m0+K is equal to the iRNN hidden state hKm0
, when both SiRNN and

iRNN are initialized with g0 = hm−1. Thus, for slowly time-varying inputs we can

expect SiRNN to closely approximate iRNN.

Residual Connections vs. iRNN/SiRNN. As such, our architecture is a

special case of skip/residual connections. Nevertheless, unlike skip connections, our

connections are structured, and the dynamics driven by the error term ensures that the

hidden state is associated with equilibrium and leads to identity gradient. No such

guarantees are possible with unstructured skip connections. Note that for slowly

varying inputs, after a certain transition-time period, we should expect SiRNN to

be close to equilibrium as well. Without this imposed structure, general residual

architectures can learn patterns that can be dramatically different (see Fig. 3·2).

39

3.2.1 Identity Gradient Property and Convergence Guarantees.

Let us now collect a few properties of Eq. 3.3 and Eq. 3.5. First, denote the equilibrium

solutions for an arbirary input x ∈ Rd, arbitrary state-vector ν ∈ RD, in an arbitrary

round:

Meq(x, ν) = {µ ∈ RD | α(µ+ ν) = ϕ(U(µ+ ν) +Wx+ b)}

Whenever the equilibrium set is a singleton, we denote it as a function heq(x, ν). For

simplicity, we assume below that ηik is a positive constant independent of k and i.

Proposition 1. Suppose, ϕ(·) is a 1-Lipshitz function in the norm induced by ∥ · ∥,
and ∥U∥ < α, then for any xm ∈ Rd and hm−1 ∈ RD, it follows that Meq(x, ν) is

a singleton and as K → ∞, the iRNN recursions converge to this solution, namely,

hm = limK→∞ gK = heq(xm, hm−1)

Proof. Define T : RD → Rd, with T (g) = (1− ηα)g+ η(ϕ(U(g+hm−1)+Wxm+ b)−
hm−1). It follows that T (·) is a contraction:

∥T (g)− T (g′)∥ ≤(1− ηα)∥g − g′∥

+ η∥ϕ(U(g + hm−1) +Wxm + b)− ϕ(U(g′ + hm−1) +Wxm + b)∥

≤(1− ηα + ∥U∥η)∥g − g′∥ < ∥g − g′∥.

We now invoke the Banach fixed point theorem, which asserts that a contractive

operator on a complete metric space converges to a unique fixed point, namely,

TK(g) → g∗. Upon substitution, we see that this point g∗ must be such that,

ϕ(U(g∗ + hm−1) +Wxm + b)− (g∗ + hm−1) = 0. Thus equilibrium point exists and is

unique. Result follows by setting hm ≜ heq(xm, hm−1).

Handling ∥U∥ ≤ α. In experiments, we set α = 1, and do not enforce ∥U∥ ≤ α

constraint. Instead, we initialize U as a Gaussian matrix with IID mean zero, small

40

stems from ensuring that derivatives along the equilibrium surface exist, and this can

be realized by invoking the implicit function theorem (IFT). IFT requires continuous

differentiability, which ReLUs violate. Nevertheless, recent results 1 suggests that

one can state implicit function theorem for everywhere differentiable functions, which

includes ReLUs.

Theorem 1. Suppose ϕ(·) is a continuously differentiable, 1-Lipshitz function, with

∥U∥ < α. Then as K → ∞, ∂hm

∂hm−1
→ ∂heq(xm,hm−1)

∂hm−1
= −I. Furthermore, as K → ∞

the partial gradients over arbitrary number of rounds for iRNN is identity.

∂hr
∂hs

=
∏

r≥m>s

∂hm
∂hm−1

= (−1)r−sI⇒
∥∥∥∥∂hr∂hs

∥∥∥∥ = 1. (3.8)

Proof. Define, ψ(g, hm−1) = ϕ(U(g + hm−1) +Wxm + b)− α(g + hm−1). We overload

notation and view the equilibrium point as a function of hm−1, i.e., g∗(hm−1) =

heq(xm, hm−1). Invoking standard results2 in ODE’s, it follows that g∗(hm−1) is a

smooth function, so long as the Jacobian, ∇gψ(g∗, hm−1) with respect to the first

coordinate, g∗, is non-singular. Upon computation, we see that, ∇gψ(g∗, hm−1) =

∇ϕ(g∗, hm−1)U − αI, is non-singular, since ∥∇ϕ(g∗, hm−1)U∥ ≤ ∥U∥. It follows that

we can take partials of the state-vectors. By taking the partial derivatives w.r.t. hm−1

in Eq. 3.5, at the equilibrium points we have [∇ϕ(g∗, hm−1)U − αI][∂g∗
∂hm−1

+ I] = 0

(see Eq. 3.7). The rest of the proof follows by observing that the first term is non-

singular.

Remark. We notice that replacing hm−1 with −hm−1 in Eq. B.3 will lead to
∂heq

∂hm−1
= I, which also has no impact on magnitudes of gradients. As a result, both

1https://terrytao.wordpress.com/2011/09/12/the-inverse-function-theorem-for-
everywhere-differentiable-maps/

2http://cosweb1.fau.edu/~jmirelesjames/ODE_course/lectureNotes_shortVersion_
day1.pdf

42

choices are suitable for circumventing vanishing or exploding gradients during train-

ing, but still may converge to different local minima and thus result in different

test-time performance. Furthermore, notice that the norm preserving property is

somewhat insensitive to choices of α, so long as the non-singular condition is satis-

fied.

3.2.2 iRNN Design Implications: Low-Rank Model Parametrization

Fig. 3·2 depicts phase portrait and illustrates salient differences between RNN, Fas-

tRNN (RNN with skip connection), and iRNN (K=5). RNN and FastRNN exhibit

complex trajectories, while iRNN trajectory is smooth, projecting initial point (black

circle) onto the equilibrium surface (blue) and moving within it (green). This suggests

that iRNN trajectory belongs to a low-dimensional manifold.

Variation of Equilibrium w.r.t. Input. As before, heq be an equilibrium

solution for some tuple (hm−1, xm). It follows that,

(αI−∇ϕ(U(heq +hm−1) +Wxm + b)U)∂heq = ∇ϕ(U(heq + hm−1) +Wxm + b)W∂xm

This suggests that, whenever the input undergoes a slow variation, we expect that the

equilibrium point moves in such a way that U∂heq must lie in a transformed span ofW .

Now W ∈ RD×d with d≪ D, which implies that (αI−∇ϕ(U(heq+hm−1)+Wxm+b)U

is rank-deficient.

Low Rank Matrix Parameterization. For typical activation functions, note

that whenever the argument is in the unsaturated regime, ∇ϕ(·) ≈ I. We then

approximately get span(αI − U) ≈ span(W). We can express these constraints as

U = αI + V H with low-rank matrices V ∈ RD×d1 , H ∈ Rd1×D, and further map

both Uhm and Wxm onto a shared space. Since in our experiments the signal vectors

we encounter are low-dimensional, and sequential inputs vary slowly over time, we

43

enforce this restriction in all our experiments. In particular, we consider,

ϕ (P [U(hm + hm−1) +Wxm + b])− (hm + hm−1) = 0. (3.9)

The parameter matrix P ∈ RD×D maps the contributions from input and hidden

states onto the same space. To decrease model-size we let P = U = (I + V H) learn

these parameters.

3.3 Experiments

We organize this section as follows. First, the experimental setup, competing algo-

rithms will be described. Then we present an ablative analysis to highlight salient

aspects of iRNN and justify some of our experimental choices. We then plot and

tabulate experimental results on benchmark datasets.

3.3.1 Experimental Setup and Baselines

Choice of Competing Methods. We choose competing methods based on the

following criteria: (a) methods that are devoid of additional application or dataset-

specific heuristics, (b) methods that leverage only single cell/block/layer, and (c)

methods without the benefit of complementary add-ons (such as gating, advanced

regularization, model compression, etc.). Requiring (a) is not controversial since our

goal is methodological. Conditions (b),(c) are justifiable since we could also leverage

these add-ons and are not germane to any particular method3. We benchmark iRNN

against standard RNN, LSTM (Hochreiter and Schmidhuber, 1997b), (ungated) An-

tisymmetricRNN (Chang et al., 2019), (ungated) FastRNN (Kusupati et al., 2018).

Unitary RNN Variants. Results for methods based on unitary transitions (such
3These conditions eliminate some potential baselines. We provide specific justifications in the

appendix B.4.

44

as (Arjovsky et al., 2016; Wisdom et al., 2016; Vorontsov et al., 2017; Zhang et al.,

2018a)) are not reported in the main paper (when available reported in appendix) for

the following reasons: (a) They are substantially more expensive, and requiring large

model sizes; (b) Apart from the benchmark copy and add tasks, results tabulated by

FastRNN and Antisymmetric authors (see (Zhang et al., 2018a; Chang et al., 2019))

show that they are well below SOTA; (c) iRNN dominates unitary-RNN variants on

add-task (see Sec. 3.3.3); (d) On copy task, while unitary invariants are superior,

(Vorontsov et al., 2017) attributes it to modReLU or leaky ReLU activations. Leaky

ReLUs allow for linear transitions, and copy task being a memory task benefits from

it. With hard non-linear activation, unitary RNN variants can take up to 1000’s of

epochs for even 100-length sequences ((Vorontsov et al., 2017)).

Implementation. For all our experiments, we used the parametrized update

formulation in Eq. 3.9 for iRNN . We used tensorflow framework for our experiments.

For most competing methods apart from AntisymmetricRNN, which we implemented,

code is publicly available. All the experiments were run on an Nvidia GTX 1080 GPU

with CUDA 9 and cuDNN 7.0 on a machine with Intel Xeon 2.60 GHz CPU with 20

cores.

Datasets. Pre-processing and feature extraction details for all publicly available

datasets are in the appendix A.2. We replicate benchmark test/train split with 20%

of training data for validation to tune hyperparameters. Reported results are based

on the full training set, and performance achieved on the publicly available test set.

Table A.1 (Appendix) and A.2 describes details for all the data sets.

Hyper Parameters. We used grid search and fine-grained validation wherever

possible to set the hyper-parameters of each algorithm, or according to the settings

published in (Kusupati et al., 2018; Arjovsky et al., 2016) (e.g. number of hidden

states). Both the learning rate and η’s were initialized to 10−2. The batch size of 128

45

seems to work well across all the data sets. We used ReLU as the non-linearity and

Adam ((Kingma and Ba, 2015)) as the optimizer for all the experiments.

3.3.2 Ablative Analysis

0 200 400 600 800 1000
Training Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

Sequence length = 200
LSTM
FastRNN(eta=0.01)
FastRNN(eta=0.001)
Antisym(g=0.01,e=0.1)
Antisym(g=0.01,e=0.001)
iRNN(K=1)
iRNN(K=5)
iRNN(K=10)

(a)

0 200 400 600 800 1000
Training Steps

0
1

3

5

7

9

Ra
tio

 o
f |

h T h 1
| &

 |
h T

h T
1
|

Sequence length = 200
LSTM
FastRNN(eta=0.01)
FastRNN(eta=0.001)
Antisym(g=0.01,e=0.1)
Antisym(g=0.01,e=0.001)
iRNN(K=1)
iRNN(K=5)
iRNN(K=10)

(b)

Figure 3·3: Exploratory experiments for the Add task (a) Convergence with varying
K; (b) Ratio ∥∂hT

∂h1
∥/∥ ∂hT

∂hT−1
∥ illustrates Vanishing/Exploding gradient (∥ ∂hT

∂hT−1
∥ and

loss gradients are omitted but displayed in B.6.8. For iRNN (a) and (b) together
show strong correlation of gradient with accuracy in contrast to other methods.

We perform ablative analysis on the benchmark add-task (Sec 3.3.3) for sequence

length 200 for 1000 iterations and explore mean-squared error as a metric. Fig. 3·3
depicts salient results.

(a) Identity Gradients & Accuracy. iRNN accuracy is correlated with identity

gradients. Increasing K improves gradients, and correlates with increased accuracy

(Fig. 3·3). While other models ht = αht−1 + βϕ((U − γI)ht−1 +Wxt), can realize

identity gradients for suitable choices; linear (α = 1, β = 1, γ = 0, U = 0), FastRNN

(α ≈ 1, β ≈ 0, γ = 0) and Antisymmetric (α = 1, β = 1, U = V − V T , ∥U∥ ≤
γ), this goal may not be correlated with improved test accuracy. FastRNN(η =

0.001), Antisymmetric (γ = 0.01, ϵ = 0.001) have good gradients but poorer test

accuracy relative to FastRNN(η = 0.01), Antisymmetric(γ = 0.01, ϵ = 0.1), with

poorer gradients.

46

(b) Identity gradient implies faster convergence. Identity gradient, when-

ever effective, must be capable of assigning credit to the informative parts, which in

turn results in larger loss gradients, and significantly faster convergence with number

of iterations. This is borne out in figure 3·3(a). iRNN for larger K is closer to identity

gradient with fewer (unstable) spikes (K = 1, 5, 10). With K = 10, iRNN converges

within 300 iterations while competing methods take about twice this time (other

baselines not included here exhibited poorer performance than the once plotted).

(c) SiRNN (iRNN with K = 1) delivers good performane in some cases.

Fig. 3·3(a) illustrates that iRNN K = {5, 10} achieves faster convergence than

SiRNN, but the computational overhead per iteration roughly doubles or triples in

comparison. SiRNN is faster relative to competitors. For this reason, we sometimes

tabulate only SiRNN, whenever it is SOTA in benchmark experiments, since accuracy

improves with K but requires higher overhead.

3.3.3 Long-term Dependency and Other Tasks

We list five types of datasets, all of which in some way require effective gradient

propagation: (1) Conventional Benchmark LTD tasks (Add & Copy tasks) that il-

lustrate that iRNN can rapidly learn long-term dependence; (2) Benchmark vision

tasks (pixel MNIST, perm-MNIST) that may not require long-term, but nevertheless,

demonstrates that iRNN achieves SOTA for short term dependencies but with less re-

sources. (3) Noise Padded (LTD) Vision tasks (Noisy MNIST, Noisy CIFAR), where

a large noise time segment separates information segments and the terminal state,

and so the learner must extract information parts while rejecting the noisy parts;

(4) short duration activity embedded in a larger time-window (HAR-2, Google-30

in Appendix Table A.1 and many others B.6), that usually arise in the context of

smart IoT applications and require a small model-size footprint. (Chang et al., 2019)

47

further justify (3) and (4) as LTD, because for these datasets where only a smaller

unknown segment(s) of a longer sequence is informative. (5) Sequence-sequence pre-

diction tasks (PTB language modeling) that are different from terminal prediction

(reported in appendix B.6).

0 2000 4000 6000 8000 10000
Training Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Cr
os

sE
nt

ro
py

Sequence length = 200
iRNN
RNN
LSTM
Antisymmetric
FastRNN

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000
Training Steps

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Cr
os

sE
nt

ro
py

Sequence length = 500
iRNN
RNN
LSTM
Antisymmetric
FastRNN

(b)

0 250 500 750 1000 1250 1500 1750 2000
Training Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

Sequence length = 200
iRNN
RNN
LSTM
Antisymmetric
FastRNN

(c)

0 250 500 750 1000 1250 1500 1750 2000
Training Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

Sequence length = 750
iRNN
RNN
LSTM
Antisymmetric
FastRNN

(d)

Figure 3·4: Following (Arjovsky et al., 2016) we display average Cross Entropy for
the Copy Task (Sequence Length (with baseline memoryless strategy)): (a) 200 (0.09)
(b) 500 (0.039). Mean Squared Error for the Add Task, baseline performance is 0.167
(Sequence Length) : (c) 200 (d) 750. For both tasks, iRNN runs K = 5.

Standard Benchmark LTD Tasks : Addition & Copy Memory

Addition and Copy tasks (Hochreiter and Schmidhuber, 1997b) have long been used

as benchmarks in the literature to evaluate LTD (Hori et al., 2017; Zhang et al., 2018a;

Arjovsky et al., 2016; Martens and Sutskever, 2011). We follow the setup described in

48

(Arjovsky et al., 2016) to create the adding and copying tasks. See appendix A.2.10

and A.2.11 for detailed description. For both tasks we run iRNN with K = 5.

Figure 4·2 show the average performance of various methods on these tasks. For

the copying task we observe that iRNN converges rapidly to the naive baseline and

is the only method to achieve zero average cross entropy. For the addition task, both

FastRNN and iRNN solves the addition task but FastRNN takes twice the number

of iterations to reach desired 0 MSE. 4 In both the tasks, iRNN performance is much

more stable across number of online training samples. In contrast, other methods

either takes a lot of samples to match iRNN ’s performance or depict high variance

in the evaluation metric. This shows that iRNN converges faster than the baselines

(to the desired error). These results demonstrate that iRNN easily and quickly learns

the long term dependencies . We omitted reporting unitary RNN variants for Add

and Copy task. See Sec. 3.3.1 for copy task. On Add-task we point out that our

performance is superior. In particular, for the longer T = 750 length, (Arjovsky

et al., 2016), points out that MSE does not reach zero, and uRNN is noisy. Others

either (Wisdom et al., 2016) do not report add-task or report only for shorter lengths

(Zhang et al., 2018a).

Non LTD Vision Tasks: Pixel MNIST, Permute MNIST

Next, we perform experiments on the sequential vision tasks: (a) classification of

MNIST images on a pixel-by-pixel sequence; (b) a fixed random permuted MNIST

sequence (Lecun et al., 1998). These tasks typically do not fall in the LTD categories

(Chang et al., 2019), but are useful to demonstrate faster training, which can be

attributed to better gradients.

For the pixel-MNIST task, (Kusupati et al., 2018) reports that it takes significantly
4Note that LSTM solves the addition problem in (Arjovsky et al., 2016) only with more than

10k iterations. We only use 2k iterations in our experiments to demonstrate the effectiveness of our
method.

49

Table 3.1: Results for Pixel-by-Pixel MNIST and Permuted MNIST datasets. K
denotes pre-defined recursions embedded in graph to reach equilibrium.

Data set Algorithm Accuracy
(%)

Train
Time (hr) #Params

Pixel-MNIST FastRNN 96.44 15.10 33k
RNN 94.10 45.56 14k
LSTM 97.81 26.57 53k

Antisymmetric 98.01 8.61 14k
iRNN (K=1) 97.73 2.83 4k

iRNN (K=3) 98.13 2.93 4k
Permute-MNIST FastRNN 92.68 9.32 8.75k

LSTM 92.61 19.31 35k
Antisymmetric 93.59 4.75 14k
iRNN (K=1) 95.62 2.41 8k

longer time for existing (LSTMs, Unitary, Gated, Spectral) RNNs to converge to rea-

sonable performance. In contrast, FastRNN trains at least 2x faster than LSTMs.

Our results (table 4.1) for iRNN shows a 9x speedup relative LSTMs, and 2x speedup

in comparison to Antisymmetric. In terms of test accuracy, iRNN matches the per-

formance of Antisymmetric, but with at least 3x fewer parameters. We did not gain

much with increased K values5. For the permuted version of this task, we seem to

outperform the existing baselines 6. In both tasks, iRNN trained at least 2x faster

than the strongest baselines. These results demonstrate that iRNN converges much

faster than the baselines with fewer parameters.

Noise padding Tasks: Noisy-MNIST, Noisy-CIFAR

Additionally, as in (Chang et al., 2019), we induce LTD by padding CIFAR-10 with

noise exactly replicating their setup, resulting in Noisy-CIFAR. We extend this setting

to MNIST dataset resulting in Noisy-MNIST. Intuitively we expect our model to be
5For some existing comparisons LSTM have achieved roughly 98.9 with dataset specific heuristics

(Cooijmans et al., 2017), but we could not achieve this performance in our comparison (and so have
many others like (Kusupati et al., 2018; Zhang et al., 2018a; Arjovsky et al., 2016)).

6Note that there’s no standard permutation in the literature. This may be the main reason we
could not replicate (Chang et al., 2019) performance on the permute MNIST task.

50

Table 3.2: Results for Noise Padded CIFAR-10 and MNIST datasets. Since the
equilibrium surface is smooth and resilient to small perturbations, iRNN achieves
better performance than the baselines with faster convergence.

Data set Algorithm Accuracy
(%)

Train
Time (hr) #Params

Noisy-MNIST FastRNN 98.12 8.93 11k
LSTM 10.31 19.43 44k

Antisymmetric 97.76 5.21 10k
iRNN (K=1) 98.48 2.39 6k

Noisy-CIFAR FastRNN 45.76 11.61 16k
LSTM 11.60 23.47 64k

Antisymmetric 48.63 5.81 16k
iRNN (K=1) 54.50 2.47 11.5k

resilient to such perturbations. We attribute iRNN’s superior performance to the

fact that it is capable of suppressing noise. For example, say noise is padded at

t > τ and this results in Wxt being zero on average. For iRNN the resulting states

ceases to be updated. So iRNN recalls last informative state hτ (modulo const)

unlike RNNs/variants! Thus information from signal component is possibly better

preserved.

Results for Noisy-MNIST and Noisy-CIFAR are shown in Table 3.2. Note that

almost all timesteps contain noise in these datasets. LSTMs perform poorly on these

tasks due to vanishing gradients. This is consistent with the earlier observations

(Chang et al., 2019). iRNN outperforms the baselines very comprehensively on

CIFAR-10, while on MNIST the gains are smaller, as it’s a relatively easier task.

These results show that iRNN is more resilient to noise and can account for longer

dependencies.

Short Duration Embedded Activity Recognition Tasks: HAR-2, Google-30

We are interested in detecting activity embedded in a longer sequence with small

footprint RNNs ((Kusupati et al., 2018)): (a) Google-30 (Warden, 2018), i.e. detec-

51

Table 3.3: Results for Activity Recognition Datasets. iRNN outperforms the base-
lines on all metrics even withK = 1. Its worth noticing that althoughK = 5 increases
test time, it’s well within LSTM’s numbers, the overall train time and resulting per-
formance are better than K = 1.

Data set Algorithm Accuracy
(%)

Train
Time (hr) #Params Test

Time (ms)
HAR-2 FastRNN 94.50 0.063 7.5k 0.01

RNN 91.31 0.114 7.5k 0.01
LSTM 93.65 0.183 16k 0.04

Antisymmetric 93.15 0.087 7.5k 0.01
iRNN (K=1) 95.32 0.061 4k 0.01

iRNN (K=5) 96.30 0.018 4k 0.03
Google-30 FastRNN 91.60 1.30 18k 0.01

RNN 80.05 2.13 12k 0.01
LSTM 90.31 2.63 41k 0.05

Antisymmetric 90.91 0.54 12k 0.01
iRNN (K=1) 93.77 0.44 8.5k 0.01

iRNN (K=5) 94.23 0.44 8.5k 0.05

tion of utterances of 30 commands plus background noise and silence, and (b) HAR-2

(Anguita et al., 2012), i.e. Human Activity Recognition from an accelerometer and

gyroscope on a Samsung Galaxy S3 smartphone.

Table 3.3 shows accuracy, training time, number of parameters and prediction

time. Even with K = 1, we compare well against competing methods, and iRNN

accuracy improves with larger K. Interestingly, higher K yields faster training as

well as moderate prediction time, despite the overhead of additional recursions. These

results show that iRNN outperforms baselines on activity recognition tasks, and fits

within IoT/edge-device budgets.

3.4 Discussion

We eliminate the vanishing/exploding gradients by keeping track of the increments in

the ODE-based state transition. While, in theory, solving the ODE up to equilibrium

yields identity gradients during back-propagation, in practice, we utilize an iterative

52

solver with K number of discrete steps. In some sequential tasks, the equilibrium

(i.e., high K values) may not be the optimal solution. We take this observation into

account in the next chapter (with Time Adaptive RNN design), where we do not fix

the parameterization to yield identity gradients. In contrast, we lift this problem with

free parameters that can achieve loss-less information propagation whenever the task

at hand desires. Additionally, iRNNs do not modify the time constants. As a result,

they are prone to noise amplifications in the hidden state transitions.

Another point is that we use Euler discretization in this setup for simplicity. Later

works(Erichson et al., 2021; Rusch and Mishra, 2021a) have resorted to advanced

ODE solvers such as Range-Kutta solvers, LeapFrop integration, etc. These advanced

solvers can be easily integrated into the ODE state transitions in iRNN hidden state

updates.

53

54

Chapter 4

Time Adaptive Recurrent Neural Networks

(TARNNs)

4.1 Introduction

While we also draw upon ODEs to propose solutions to improve vanilla RNN train-

ability, our proposal differs from existing works in fundamental ways. To build intu-

ition, first consider the ODE, with λ ∈ R+, U ∈ RD×D,W ∈ RD×d, and A ∈ RD×D

Hurwitz stable (Khalil, 2002):

λż(t) = Az(t) + ϕ(Uz(t) +Wxm) (4.1)

where, ϕ(·) is the conventional non-linear RNN activation function such as a ReLU;

This particular form, serving as an analogue1 of vanilla RNNs, is quite old (Rosen-

blatt, 1962). In each round, m, we start from an initial state, z(t0) = sm−1, which

corresponds to the current hidden state, and input, xm, and evolve the ODE for a unit

period of time. Subsequently, the hidden state is updated by setting sm = z(t0 + 1),

and in this way, mapping inputs to the hidden state sequence.

What is new? We introduce two novel aspects within this context. First, we

allow for λ to be time-varying, and in particular, a function of previous hidden state
1Vanilla RNNs and residual variants amount to a suitable Euler discretization (see Appendix).

and input. Our reasoning is that λ serves as a time-constant, and inherently accounts

for how long we evolve the ODE in response to the current input. To see this, let us

write the ODE in integral form for a fixed λ:

Sm ≜ z(t0 + 1) = exp

(
A
1

λ

)
sm−1 +

1

λ

1∫
0

exp

(
A
1− t
λ

)
ϕ(Uz(t) +Wxm)dt (4.2)

Then, with λ→∞, we deduce that, z(t0+1)→ sm−1. Namely, when time constant is

large relative to integration time, we barely process the new input, remaining essen-

tially at our previous solution. Alternatively, if λ→ 0, namely, when the integration

time is large relative to the time-constant, we reach equilibrium, and in this process

strengthen influence of the current input. Moreover, by letting the time-constant

be a function, of sm−1,xm, we selectively adapt the amount of “pondering” that we

need on each new input. Finally, we let λ(·) take values in RD, and thus allow for

element-wise dependence for each hidden state, leading to selective updates of hidden

state components. These ideas result in a time-adaptive RNN (TARNN).

Next, we augment the current input with the hidden state, and consider um =

[xm, sm−1]
⊤ as a composite input in our ODE with initial condition, z(t0) = sm−1:

λ(um) ◦ ż(t) = Az(t) +Bum + ϕ(Uz(t) +Wum) (4.3)

where ◦ represents the element-wise (Hadamard) product. To build intuition into our

ODE choice, observe from the first term in Eq. 4.2 that for A stable, the contribution

of the hidden state, Sm−1 decays exponentially in time, and as such, the discrete

transition process, S1, . . . ,ST rapidly de-correlates. We can overcome this effect by a

persistent presence of the hidden state in the ODE. We also add the linear term, Bum,

as it turns out to be important for improving partial gradient properties for hidden

state sequence. As such our choice does not significantly increase model complexity

55

of vanilla RNN.

Our proposed ODE is sufficiently rich admitting parameter settings that com-

pletely eliminate gradient decay and explosion, which is desirable for LTD tasks. In

addition, our method is capable of enhancing contribution from informative inputs,

while suppressing noisy segments through the pondering mechanism described above.

This aspect is useful in IoT applications (Kusupati et al., 2018; Dennis et al., 2019)

such as keyword detection and wearable sensing devices.

Discretization: For simplicity we discretize our ODEs with Euler discretization

to realize vanilla RNNs. Methods that seek computational and memory efficiency in

this context (Chen et al., 2018; Rubanova et al., 2019) are entirely complementary to

our method. Our novelty is in the design of state-transition with the goal of realizing

desirable ODE solutions2.

Contributions: The main contributions of this work are

• TARNN learns to modulate time constants of transition function, allowing for selec-

tively pondering on informative inputs to strengthen their contribution, and ignoring

noisy inputs. This modification along with designing suitable transition matrices

yield lossless information propagation.

• TARNN improves trainability leading to better handling of LTD tasks with a lighter

memory footprint, and as such our proposed method can be leveraged for IoT tasks.

• Our pseudo code is an RNN cell that is readily deployable in any deep learning

library. We provide a simple implementation at https://github.com/anilkagak2/

TARNN.

• We conduct extensive experiments on benchmark datasets, and show that we im-

prove upon standard LSTM performance as well as other recently proposed works.

We also demonstrate robustness to time-series distortions such as noise paddings.
2(Chen et al., 2018; Rubanova et al., 2019), also propose recurrent models to handle non-uniform

input sampling. While this is interesting, their proposals are unrelated to our goal of improving
RNN trainability.

56

4.2 Time Adaptive Recurrent Neural Network (TARNN)

In this section we further present our objective, ODE discretization and algorithmic

details.

Notation. {(x(i),y(i))}, i ∈ [N] denotes training data. Each x(i) is a T−length

d−dimensional sequential input. For classification problems, y(i) is a terminal label

y
(i)
T , taking values in a discrete set of C classes. For language modeling tasks, we let

the true label be a process, (y(i)1 , . . . , y
(i)
T). The predictions (ŷ(i)1 , . . . , ŷ

(i)
T) for each input

x(i) can be computed from the D−dimensional hidden states (s
(i)
1 , . . . , s

(i)
T) obtained

by solving the ODE Eq. 4.3. When clear from the context we omit superscripts.

Unless stated otherwise, σ(·) denotes the sigmoid activation; ϕ(·) refers to any non-

linear activation such as a ReLU. We collect all model parameters in θ.

Empirical Risk Minimization. Let ℓ(ŷ, y) be the function measuring loss in-

curred for predicting value ŷ on the true value y. Our objective is to minimize the

regularized empirical loss, through back-propagation in any deep learning framework.

We specify the regularizer Ω(θ) later.

L({x(i),y(i)}Ni=1) =
1

N

1

T

∑N

i=1

∑T

m=1
ℓ(ŷim, y

i
m) + Ω(θ) (4.4)

Time-constants. We re-write the ODE Eq. 4.3 in terms of β(·), the inverse of

λ(·), since it is convenient for describing our discretization steps. We parameterize

β(um) = σ(Ussm−1 +Wxxm), where Us ∈ RD×D,Wx ∈ RD×d are parameters to be

learnt. For a component j where βj ≈ 1, then (ż(t))j ≈ (Az(t) +Bum + ϕ(Uz(t) +

Wum))j, and the system responds to the input um and reaches equilibrium. On the

other hand, when βj ≈ 0, then (ż(t))j ≈ 0, and the corresponding state is frozen,

with the input at time m completely skipped. In this paper we limit ourselves to a

binary behavior, i.e. whether to ponder over the input observation for a long time or

57

not ponder at all. For this reason, it suffices to limit the range in [0, 1] with sigmoid

activation. This also avoids numerical instabilities with unbounded non-linearities.

Setting up the ODE. To obtain a discrete implementation, first, we update the

ODE Eq. 4.3 with the change of variables for time-constants, resulting in the ODE:

ż(t) =β ⊙ (Az(t) +Bum + ϕ(Uz(t) +Wum))

≜ F (z(t),um); z(t0) = sm−1 (4.5)

where, ⊙ represents the Hadamard product. Next, we instantiate the specific pa-

rameterization for transition matrices. Finally, an ODE solver is invoked, over a

time-horizon [t0, t1] to update the state:

sm = z(t1); z(t1) = ODESolve(sm−1,xm, F (·), t0, t1)

We predict the output ŷm = σ(w⊤sm + b) using a sigmoid activation on top of a

linear layer parameterized as (w, b). Since, we need A to be Hurwitz-stable, and

we impose equilibrium, when a component is active, we a priori fix A as negative

identity. Other TARNN model parameters (B,U,W,w, b,Us,Wx) are learnt during

training by minimizing the empirical loss in Eq. 4.4.

The ODE solver. A number of methods exists to numerically solve the ODE

of Eq. 4.5 including black-box solvers such as Neural ODEs(Chen et al., 2018) or

advanced root-finding methods such as the Broyden’s method (Broyden, 1965). While

these methods could be further employed to improve computational efficiency, for

exposition we limit ourselves to Euler-recursion withK = 3 steps, since computational

efficiency as such is not the focus of our paper. We let η denote the step-size, with

58

zkm denoting the recursion steps:

zkm =

sm−1 if k = 1

zk−1
m + η(F (zk−1

m ,um)) if 1 < k < K

(4.6)

sm = zKm

As shown in the Sec. 4.2.1, for suitable choice of the activation function, ϕ(·), (includes

popular activations such as ReLU, tanh, sigmoid, etc.), these recursions in the limit,

for (β)j > 0, z∗m = limk→∞ zkm is an equilibrium solution to the ODE of Eq. 4.5.

We provide the pseudo code in Algorithm 1, which generates the hidden states for a

sequential input {xm}Tm=1.

Algorithm 1 TARNN hidden states computation
Input : Sequence {xm}Tm=1

Model :
(
A,U,W,Us,Ws,B

)
Initialize hidden state s0 = 0
for m = 1 to T do
β = σ(Ussm−1 +Wxxm)
F (·) = β ⊙ (Az(t) +Bum + ϕ(Uz(t) +Wum))
z(t1) = ODESolve(sm−1,xm, F (·), t0, t1)
Sm = z(t1)

4.2.1 Analysis

In this section, we show that our setup benefits from several properties, and as a

result, our proposed method leads to a theoretically sound approach for an adaptive

recurrent system that is capable of focusing attention on informative inputs and

rejecting uninformative inputs. The first few propositions establish properties of

TARNN with the proposed parameterization. We then describe a result to assert

that our adaptively recurrent system preserves information by showing that the partial

gradients of hidden states have unit norm.

59

The following proposition shows that equilibrium points for the ODE of Eq. 4.5

exist and are unique. Although, we a priori fix A to be negative identity, we present

a more general result for the sake of completion. We impose the following conditions,

(i) there is a η0 > 0 such that for all η ∈ [0, η0], there is some α ∈ (0, 1] such that

σmax(I + ηA) ≤ 1 − αη. (ii) λmax(A + A⊤) < −1. It is easily verified that these

conditions are satisfied in a number of cases including A -identity, A block triangular

with negative identity blocks.

Proposition 3. Consider the ODE in Eq. 4.5 and assumptions on A described above.

Suppose we have ∥U∥ < α, and ϕ(·) is 1-Lipshitz function, it follows that, for any

given, β, um, an equilibrium point exists and is unique.

Remark. Note that, we impose conditions on U to derive our result. In experi-

ments we do not impose this condition, since for our choices for A, α ≈ 1, and as

such, initializing U to a Gaussian zero-mean, unit covariance often takes care of this

requirement during training, since we generally operate with a small learning rate.

Proof Sketch. To show this we must find a solution to the non-linear equation

Az+Bum−ϕ(Uz+Wum) = 0 and show that it is unique. We do this by constructing a

fixed-point iterate, and show that the iteration is contractive. The result then follows

by invoking the Banach fixed point theorem (contraction-mapping theorem). The

proof is presented in the appendix 6.

Proposition 4. With the setup in Proposition 3, and regardless of β, the equilibrium

point is globally asymptotically stable, and the discrete Euler recursion converges to

the equilibrium solution at a linear rate.

We discuss the main idea and present the proof in the appendix. Let z∗ be the

equilibrium solution. We consider the Lyapunov function V (z(t)) = ∥z(t)− z∗∥2 and

show that it is monotonically decreasing along the ODE system trajectories. Observe

60

that, as per our setup, components where (β)j = 0 does not pose a problem, because

those states remain frozen, and serve as an additional exogenous input in our ODE.

Lossless Information Propagation. Our goal is to show that there exist pa-

rameter constraints in Eq. 4.5 that can result in identity partial gradients of the

hidden states. This will in turn inform our regularization objective, Ω(θ) later. With

the constraint in place, for arbitrary values, m, n ∈ Z+, we will show that, ∂sn(j)
∂sm(j)

= 1.

For ease of analysis we replace binary-valued β with a continuous function and let

the output be a ReLU non-linearity. Partition W = [W1,W2], B = [B1,B2], where

W2,B2 ∈ RD×D are associated with the hidden state components. To realize identity

gradients for a specific component i we need to constrain the parameter space. While

there are many possibilities, we consider following constraints, because they lead to

concrete regularization objectives, and generalize the specific A matrices we have in

mind (identity, and upper-triangular). We constrain ∥U∥ < 1 ≤ ∥A∥, and consider

the following case: A±B2 = 0, U±W2 = 0.

Theorem 2. Under the above setup, as K → ∞ in Eq. 4.6, for any m,n ∈ Z+,

|∂sn(i)/∂sm(i)| → 1.

Proof Sketch (see Appendix for proof). Note that, when βj = 0, the jth component

sm(j) = sm−1(j) and the result follows trivially. Suppose now the jth component

(β)j > 0, we will show that, ∂sm(j)/∂sm−1(j) = 1, which then establishes the result

through chain rule.

Theorem 2 shows that there is a configuration with lossless propagation. Thus,

if it is necessary, the training algorithm will find a solution, that results in lossless

propagation, even without imposing parameter constraints stated in the theorem.

However, Theorem 2 suggests a natural regularizer, with γ1 and γ2 serving as hy-

perparameters. As a case in point, we could encourage parameters to subscribe to

61

constraints of theorem if we consider the following regularizer for Eq. 4.4:

Ω(θ) ≜ Ω([A,B,U,W]) = γ1∥A+B2∥22 + γ2∥U+W2∥22

An interesting case is when B2 row-wise sparse. In this case, states corresponding to

zero rows operate as standard RNN (no linear term). We can ensure identity gradient

holds in this case with block-wise parametric constraints, leading to more structured

regularization penalty.

0 2 4 6 8 10 12 14
Time Steps : m

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

St
at

e
Di

ff
No

rm
 o

r I
np

ut
 V

al
ue

Class: (t=4)=1, (t=12)=1)

Input
TARNN
SkipLSTM

(a)

0 200 400 600 800 1000 1200 1400 1600
Training Steps

10 3

10 2

10 1

100

101

lo
g

of
 ra

tio
 o

f
s T s 1

| &
 |

s T
s T

1
|

Sequence length = 16
LSTM
FastRNN
Antisymmetric
SkipLSTM
TARNN

(b)

Algorithm Accuracy

Random Guess 25
FastRNN 45
LSTM 45

Antisymmetric 37
SkipLSTM 60

TARNN (Ours) 100

(c)

Figure 4·1: Example illustrates importance of mitigating gradient explosion/decay
as well as ignoring noisy observations. Table lists test performance of baselines focused
on improving RNN training. Fig. (a) plots the noisy input, and sequential changes
in hidden state norms for SkipLSTM(Campos et al., 2018) and proposed TARNN.
Only ours responds to informative locations. Fig. (b) plots the norm of partials
of hidden states. Only AntisymmetricRNN(Chang et al., 2019) and ours TARNN
exhibit near identity gradients. However, only ours is effective as seen from the table.
As such we infer TARNN (a) realizes near identity gradients for partials of hidden
states, thus mitigating gradient explosion/decay, (b) zooms in on informative inputs
and ignores noisy observations, and (c) By jointly ensuring (a) and (b), it improves
RNN trainability, providing good generalization.

4.3 Experiments

Toy Example. For a sneak preview of our results, we illustrate the importance of

both time-constants and gradient mitigation on a toy example. We construct a 16-

length input sequence with 4 class labels. Information is placed in the form of binary

62

{0, 1} values at locations 4, 12, corresponding to the four classes, and for all other

locations we assign values from a uniform distribution in the unit interval. RNNs with

a 2-dimensional state-space are trained on 50K time-traces. Due to low-dimension,

the (terminal) state cannot replicate the entire trace, requiring generalization.

On one hand, techniques that mitigate gradient explosion/decay like Antisymmet-

ric (Chang et al., 2019), do so across all input locations, but fail to output meaningful

results as seen from Figure 4·1(c). Thus focusing solely on vanishing/exploding gradi-

ents is not sufficient, since noise gets amplified in latent state updates. On the other

hand, SkipLSTM (Campos et al., 2018), which is capable of pondering at informative

inputs and skipping uninformative inputs, is also ineffective. SkipLSTM (Campos

et al., 2018) suffers severe gradient degradation, leading to poor control over which

locations to ponder. In contrast, TARNN exhibits near identity gradients, skips all

but locations 4, 12, and achieves 100% accuracy. Similar trend holds for larger state

space (see Appendix).

4.3.1 Experimental Setup and Baselines

Datasets

We follow earlier works (Chang et al., 2019; Kag et al., 2020; Kusupati et al., 2018) in

order to setup experiments. Datasets used in this work are publicly available, except

NTU RGB+d(Shahroudy et al., 2016) (skeleton modality is available for academic

usage). We use 10% of the training data as validation set for tuning the hyper-

parameters through grid search. The grid for each method is setup as per their

experimental section. Finally, the entire training set is used to train the model. The

performance is reported on the publicly available test set. We refer the reader to

Appendix A.2 for detailed description.

63

0 2000 4000 6000 8000 10000
Training Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Cr
os

sE
nt

ro
py

Sequence length = 200
LSTM
FastRNN
Antisymmetric
iRNN
TARNN

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000
Training Steps

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Cr
os

sE
nt

ro
py

Sequence length = 500
LSTM
FastRNN
Antisymmetric
iRNN
TARNN

(b)

0 200 400 600 800 1000
Training Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

Sequence length = 200
LSTM
FastRNN
Antisymmetric
iRNN
TARNN

(c)

0 250 500 750 1000 1250 1500 1750 2000
Training Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

Sequence length = 750
LSTM
FastRNN
Antisymmetric
iRNN
TARNN

(d)

Figure 4·2: We evaluate TARNN on synthetic LTD tasks: Copy task with sequence
lengths : (a) 200, (b) 500, and Add task with sequence lengths: (c) 200, (d) 750.
Note that many methods perform similar to a simple fixed baselines described in (Kag
et al., 2020)(Appendix:A.4), while TARNN achieves significantly better solution in
fewer training steps.

64

T
ab

le
4.

1:
R

es
ul

ts
fo

r
P

ix
el

M
N

IS
T

,P
er

m
ut

ed
M

N
IS

T
,N

oi
se

P
ad

de
d

C
IF

A
R

-1
0

an
d

M
N

IS
T

da
ta

se
ts

.
Si

nc
e

TA
R

N
N

eff
ec

ti
ve

ly
fo

cu
se

s
on

in
fo

rm
at

iv
e

se
gm

en
ts

,
it

ac
hi

ev
es

be
tt

er
pe

rf
or

m
an

ce
w

it
h

fa
st

er
co

nv
er

ge
nc

e.
N

ot
e

th
at

w
e

on
ly

ke
ep

ba
se

lin
es

w
hi

ch
re

po
rt

re
su

lt
s

w
it

h
si

ng
le

R
N

N
la

ye
r

an
d

no
ba

tc
h

no
rm

al
iz

at
io

n
(

th
is

ex
cl

ud
es

ba
se

lin
es

su
ch

as
(L

ie
t

al
.,

20
18

b)
,(

C
oo

ijm
an

s
et

al
.,

20
17

)
).

D
at

as
et

P
ix

el
-M

N
IS

T
P
er

m
u
te

-M
N

IS
T

H
id

d
en

D
im

.
A

cc
u
ra

cy
(%

)
T
ra

in
T

im
e

(h
r)

#
P
ar

am
s

H
id

d
en

D
im

.
A

cc
u
ra

cy
(%

)
T
ra

in
T

im
e

(h
r)

#
P
ar

am
s

Fa
st

R
N

N
12

8
97

.7
1

16
.1

0
18

K
12

8
92

.6
8

9.
32

18
K

LS
T

M
12

8
97

.8
1

26
.5

7
68

K
12

8
92

.6
1

19
.3

1
68

K
Sk

ip
LS

T
M

12
8

97
.3

1
-

68
K

12
8

93
.7

2
23

.3
1

68
K

A
nt

is
ym

m
et

ri
c

12
8

98
.8

1
10

.3
4

18
K

12
8

93
.5

9
4.

75
18

K
ex

pR
N

N
12

8
97

.3
5

-
34

K
12

8
94

.0
1

-
34

K
nn

R
N

N
12

8
97

.8
1

-
51

K
12

8
94

.2
9

-
51

K
iR

N
N

12
8

98
.1

3
2.

93
4K

12
8

95
.6

2
2.

41
8K

T
A

R
N

N
32

98
.4

3
2.

13
10

K
32

96
.2

1
1.

71
10

K
T
A

R
N

N
12

8
98

.9
3

3.
42

68
K

12
8

97
.1

3
2.

96
68

K
D

at
as

et
N

oi
sy

-M
N

IS
T

N
oi

sy
-C

IF
A

R
Fa

st
R

N
N

12
8

98
.1

2
8.

93
11

K
12

8
45

.7
6

11
.6

1
16

K
(S

ki
p)

LS
T

M
12

8
10

.2
1

19
.4

3
82

K
12

8
10

.4
1

13
.3

1
11

4K
A

nt
is

ym
m

et
ri

c
12

8
97

.7
6

5.
21

10
K

12
8

54
.7

0
7.

48
41

K
ex

pR
N

N
12

8
97

.9
2

-
37

K
12

8
48

.9
7

-
47

K
nn

R
N

N
12

8
98

.0
6

-
54

K
12

8
49

.2
8

-
63

K
iR

N
N

12
8

98
.4

8
2.

14
6K

12
8

54
.5

0
2.

47
12

K
T
A

R
N

N
32

98
.7

8
1.

31
8K

32
57

.4
2

2.
01

14
K

T
A

R
N

N
12

8
99

.0
3

1.
71

78
K

12
8

59
.0

6
1.

05
10

0K

65

Baselines

We use various state-of-the-art methods for evaluating TARNN’s performance, in-

cluding popular RNNs such as: gating methods(LSTM(Hochreiter and Schmidhu-

ber, 1997b), FastGRNN(Kusupati et al., 2018)), ODE inspired(iRNN (Kag et al.,

2020), AntisymmetricRNN (Chang et al., 2019)), conditional computation (SkipRNN

(Campos et al., 2018)), as well as recent Unitary/Orthogonal (nnRNN(Kerg et al.,

2019) & expRNN(Lezcano-Casado and Martínez-Rubio, 2019)). For baselines with

gated/ungated variants, we report results for the best of the two. We also tried to

incorporate SkipRNNs (Campos et al., 2018) in our baselines, but for many of our

tasks, its performance remained similar to the corresponding RNN variant. Hence,

we do not list SkipRNNs on all our experiments. Furthermore, adaptive computa-

tion time (ACT) (Graves, 2016) is not tabulated as we found that performance of

SkipLSTM is significantly better. This has also been observed in (Fojo et al., 2018),

who shows repeat-RNNs, a variant of iRNN outperforms ACT. Note that we do not

report baselines (Lei et al., 2018; Bradbury et al., 2016; Li et al., 2018b) which

trade-off non-linear hidden-to-hidden connections with linear connections, since these

interactions are complementary to our method and can be incorporated in TARNN

for computational advantages. Note that the datasets 5 and 6 (PTB-w, PTB-c and

Action recognition) are computationally expensive and take days for a single run with

standard baselines, hence we do not run baselines on these datasets and simply cite

the current best known results. These datasets demonstrate that, (a) TARNN can

outperform baselines with smaller models, and (b) since these datasets require stacked

or other complex architectures, our experiments show that multi-layered TARNN can

be trained with similar ease.

66

Code & Evaluation Metrics

We implement TARNN in the tensorflow framework using the pseudo code. Most

of the baselines are publicly available except Antisymmetric and Incremental RNNs

which provide pseudo code for implementation. For all the methods, we report the

accuracy, training time and the model parameters. Unfortunately, we do not report

train times for nnRNN and expRNN as their code is written in PyTorch. We use

Adam((Kingma and Ba, 2015)) for minimizing the loss function in Eq. 4.4. We

provide the final hyper-parameters along with the grid values for our experiments in

the appendix C.2. Our inference time is comparable to FastRNNs and iRNNs, in

contrast LSTMs take 4x longer for inference (see Appendix C.9).

4.3.2 Results and Discussion

Figure 4·2 shows the results on Copy and Add tasks. Table 4.1 reports the perfor-

mance on Pixel-MNIST, Permute-MNIST, Noisy-MNIST and Noisy-CIFAR datasets.

These results show that TARNN outperforms various methods on many benchmark

LTD tasks, which can be attributed to its near lossless gradient propagation between

informative segments. Additionally, tables 4.2 and 4.3 report TARNN’s performance

on various PTB datasets, and table 4.4 lists accuracies of all the methods on CS

and CV variants of the Skeleton based Action recognition task. These experiments

demonstrate that TARNN outperforms many baselines in learning short-term depen-

dencies on language modelling tasks and terminal short term dependency task. Below

we present TARNN’s useful properties backed by empirical evaluations.

(A) Fast convergence. Figure 4·2 shows the convergence plots for various

methods on the Add & Copy tasks. It should be observed that TARNN solves both of

these tasks significantly faster than the baselines. Due to poor gradient propagation,

LSTMs only achieve the performance of fixed strategies. While iRNN solves these two

67

Table 4.2: PTB Language Modeling: 1 Layer (standard small config except the
sequence length is 300 as per (Kusupati et al., 2018) as opposed to 70 in the conven-
tional PTB). TARNN achieves significantly better performance than the baselines on
this task (even with half the hidden dimensions than the baselines). Note that em-
bedding size is same as hidden dimension in these experiments, thus smaller hidden
dimensions result in smaller embedding storage as well.

Algorithm Hidden
Dimension

Test
Perplexity

Train
Time (min) #Params

FastRNN 256 115.92 40.33 131K
LSTM 256 116.86 56.52 524K

SkipLSTM 256 114.23 63.52 524K
iRNN 256 113.38 34.11 100K

TARNN 128 102.42 40.23 114K
TARNN 256 94.62 53.16 524K

tasks, it requires more training steps to reach the desired target error. Note that we

do not show Unitary RNNs on these tasks, as they take significantly longer number of

training steps to solve the Addition task, and benefit from the modReLU activation

on the copy tasks (Kag et al., 2020). Similarly, TARNN trains significantly faster on

LTD tasks presented in the Table 4.1 (at least 8× faster than LSTMs and at least

1.3× faster than the best).

(B) Better generalization. Table 4.1 shows that TARNN outperforms the

baselines resulting in better accuracies on all the terminal prediction tasks. On Noisy-

CIFAR dataset, TARNN achieves more than four points increase in accuracy, while

on the 300-length PTB language modelling task, we get nearly 20 points better in

perplexity than the best method.

(C) Noise resiliency. In order to evaluate TARNN’s noise resilience, we

conduct experiments on the Noisy-MNIST and Noisy-CIFAR datasets (Chang et al.,

2019; Kag et al., 2020) which introduces the informative segments in the first few

timesteps and embeds every other segment with noise. These datasets requires both

lossless gradient propagation along with the ability to suppress noisy segments and

only focus on informative segments. Intuitively we expect to perform better on

this task since TARNN selectively ponders on informative segments to strengthen

68

their contribution and allows the state transition to achieve near lossless gradient

propagation. Table 4.1 shows that TARNN achieves much better performance than

iRNNs/AntisymmetricRNNs which in turn beat the remaining methods by significant

margins.

Table 4.3: Results for Penn Tree Bank Character and Word level language modelling
tasks. These use shorter sequence length (typically 50-150) and use more than one
RNN layer for modelling. For the PTB-w dataset, where ever applicable, all the
baselines report the results with dynamiceval(Krause et al., 2018). Our model uses 3
layer composition. It can be seen that we report reasonable performance with much
smaller models than other methods. With comparable model sizes as the baselines we
report higher performance. In the table, NAS stands for Neural Architecture Search
baseline.

Dataset PTB-c PTB-w
Hidden
Dim. BPC #Params Hidden

Dim. Perplexity #Params
(GAM) RHN(Luo and Yu, 2019) 600 1.147 16M 830 66.0 24M

Trellis-Net (Bai et al., 2019b) 1000 1.158 13.4M 1000 54.19 34M
AWD-LSTM (Merity et al., 2018) 1000 1.175 13.8M 1150 51.1 24M

NAS (Zoph and Le, 2016) 800 1.21 16.3M 800 62.4 54M
IndRNN (Li et al., 2018b) 2000 1.21 22M 2000 60.21 28M

Residual IndRNN (Li et al., 2019b) 2000 1.19 50.7M 2000 58.99 57M
Dense IndRNN (Li et al., 2019b) 2000 1.18 45.7M 2000 50.97 52M

TARNN 500 1.29 7M 500 60.90 11M
TARNN 1400 1.19 42M 1200 53.21 56M

(D) Adapts well on short-term dependency tasks. We benchmark

TARNN on PTB-300 dataset. We do not report expRNN and nnRNN results as

they perform poorly in comparison to LSTM (Kerg et al., 2019). Table 4.2 reports all

the evaluation metrics for the PTB Language modelling task with 1 layer as setup by

(Kusupati et al., 2018). It can be clearly seen that TARNN outperforms the baselines

by roughly ≈ 10 point difference in the test perplexity for similar model complexity

while it achieves ≈ 20 points for a larger model. Likewise, TARNN adapts well to

other short-term dependency tasks as observed by Table 4.3 and Table 4.4.

(E) Low model complexity. Table 4.1, 4.2 show TARNN performance with

two different hidden state dimensions, namely one configuration with similar model

size as iRNN and other one with similar model size as larger RNNs. With model

complexity similar to iRNNs, which are much compact than the other baselines, we

69

achieve better performance than iRNNs. With larger model complexity, we achieve

much better performance on Permute-MNIST, Noisy-CIFAR and PTB datasets. The

other tasks are relatively saturated as almost all the methods are near optimal. We

point out that the number of parameters reported in the Table 4.2 only count the

RNN parameters and omit the embeddings. We achieve 102 perplexity with lower

hidden dimension, i.e. 128. This means we require less number of parameters for the

embedding representation. Similarly, Table 4.3, 4.4 compare TARNN’s performance

on larger multi-layered RNN tasks, namely PTB-c, PTB-w, and Action recognition.

It can be seen that TARNN achieves similar performance as known baselines with

much smaller model.

Table 4.4: Results for NTU RGB-d dataset (Skeleton based action recognition). We
do not use augmentation on top of the Skeleton data. We point out that TARNN
achieves competitive performance with much lower complexity model. We also ran a
dense variant of TARNN similar to IndRNN that results in better performance.

Dataset NTU RGB-d
Accuracy
CS (%)

Accuracy
CV (%) #Params

2-Layer LSTM (Shahroudy et al., 2016) 60.09 67.29 >1M
2-Layer PLSTM (Shahroudy et al., 2016) 62.93 70.27 >1M

Enhanced Visualization+CNN (Liu et al., 2017b) 80.03 87.21 -
Pose Conditioned STA-LSTM (Baradel et al., 2017) 77.10 84.50 -

6-Layer IndRNN (Li et al., 2018b) 81.80 87.97 2M
Dense IndRNN (Li et al., 2019b) 84.88 90.43 2.3M

3-Layer TARNN 80.52 87.54 180K
Dense TARNN 82.31 90.86 5.6M

RNN Trainability. TARNN exhibits substantial improvement with respect to (a)

size of memory footprint, (b) computational efficiency (faster convergence, training

and inference times), and (c) generalization (test performance). As evident from

the Tables 4.1, 4.2, 4.3, and 4.4, TARNN is consistently among the models with

lowest number of model parameters. It enjoys faster convergence rate as evident from

the convergence plots for addition and copying tasks (Figure 4·2) and toy example

(Appendix C.5). Thus improving the training time. It should also be noted that

TARNN has similar inference time as vanilla RNNs. It also generalizes well as evident

from the test accuracy on multiple synthetic and real-world tasks. This is attributed

70

to the ability to achieve near identity gradients and effectively skipping uninformative

input segments. This leads to the conclusion that TARNN improves vanilla RNN

training. Due to the light footprint TARNN is suitable for IoT tasks. We tabulate

results for IoT datasets where TARNN outperforms baselines (see Appendix C.3).

4.4 Discussion

Similar to iRNN, TARNN uses the Euler discretization for a simple iterative solver.

We can improve this architecture using higher-order solvers such as Runge-Kutta,

Leapfrog integration, etc.

In scenarios where compute/storage is not the limit, transformers (Vaswani et al.,

2017) have replaced RNNs. It is worth pointing out that we can extend the ideas

presented in this chapter to transformer architectures. More specifically, the pairwise

dependencies modeled by transformers for the entire sequence lengths can be emulated

with RNNs by feeding the entire sequence as the input in a single time step rather

than the sequential input per time step. It would be a good exploration direction to

see the extensions such as TARNN or other newer architectures could be leveraged

as it is in the transformer architectures.

71

72

Chapter 5

Forward Propagation Through Time (FPTT)

5.1 Introduction

Given the training dataset {xi, yi}Ni=1 with N examples of T−length sequences xi, yi,

we optimize the following empirical risk function:

[W ∗, v∗] = argmin
W,v

L(W, v) =
1

NT

N∑
i=1

T∑
t=1

ℓ(yit, ŷ
i
t) (5.1)

∀i, t; ŷit = v⊤hit; h
i
t = f(W,xit, h

i
t−1); hi0 = 0

where, RNN parameters W and classifier v ∈ RD are optimized. This objective is

minimized by BPTT that has many challenges (see Sec. 2.2).

In this work, our focus is on simplifying the RNN training procedure. Once the

RNN parameters are learnt, the inference process remains same as before. Our goal is

to reduce computational complexity of BPTT so that each step only involves taking

a derivative for a single time.

Challenges. Minimizing Eq. 5.1 poses two challenges:

(a) Dynamics. Equation 5.1 enforces a temporal constraint on allowable transitions.

(b) Time-Invariance. The transition matrices W are fixed, and as a result the dy-

namics of RNNs is time-invariant.

Let us examine a few potential directions in this context.

Method of Multipliers allows for eliminating constraints imposed by (a) and (b) by

introducing a regularizer based on an augmented Lagrangian. This approach is often

adopted in distributed optimization (Boyd et al., 2011). Eliminating (a) could be

accomplished with ADMM methods with squared norm penalty, or other specialized

functions (Gu et al., 2020). For (b), leveraging the key insight in distributed opti-

mization, we can write the condition (b) as Wt = Wt−1 for all t, and rewrite it as

a penalty. Nevertheless, while computationally block-coordinate descent allows for

efficiency, memory expands substantially (O(TD2 +NTD)).

Online Gradient Method (OGD). We can view ℓt(W) = ℓ(yt, v
⊤f(W,xt, ht−1) as

the instantaneous loss incurred in round t by “playing” the parameter W . We can

update Wt+1 = Wt − η∇ℓt(Wt), based on the observed loss. While this could work,

there is no reason why Wt’s converge, and furthermore, it is unclear how to choose

a constant parameter, W , based on the sequence of updates. In general, we have

observed in experiments that training performance based on time-varying transition

matrices does not reflect test-time and does not generalize well.

Follow-the-Regularized-Leader Rule. (McMahan et al., 2013) Rather than opti-

mizing the instantaneous loss as in OGD, we utilize all of the previously seen losses,

namely, Lt(W) =
∑t

j=1 ℓj(W) and attempt to find a update direction. Nevertheless,

this approach suffers from the same issue as BPTT, since for large t ≈ T , finding

a descent direction involves back-propagation through ≈ T steps. Furthermore, this

method adds a multiplicative factor of T in the run-time in comparison to BPTT.

Our Forward-Propagation Method. We propose a novel forward-

propagation-through-time (FPTT) method based on instantaneous dynamic regu-

larization. FPTT at each time takes a gradient step to minimize an instantaneous

risk function. The instantaneous risk is the loss at time t plus a dynamically evolving

regularizer. This dynamics is controlled by a state-vector, which summarizes past

73

losses. FPTT has the in-built property that the point of convergence of Wt sequence,

is also a stationary point of the global empirical risk Equation 5.1. The resulting

method has a light-weight footprint and is computationally efficient. For sequence-

to-sequence modelling tasks our learning scheme integrates easily since the losses are

instantaneous, i.e., at timestep t, we immediately get feedback for the updated Wt.

For terminal prediction problems we present a simple scheme to construct surrogate

losses at any timestep using the label for the entire sequence.

We then conduct a number of experiments on benchmark datasets and show that

our proposed method is particularly effective on tasks that exhibit long-range de-

pendencies. In summary, our proposed method suggests that vanilla LSTMs are

effective tools for inferring long-term dependencies, and exhibit performance match-

ing state-of-the-art competitors–even those with higher capacities and well-designed

architectures.

Toy Example. As a sneak preview, we demonstrate effectiveness of FPTT on

the Add Task (see Sec. 5.3 for details) against BPTT on training LSTMs under

an identical test/train split. Figure 5·1 shows that FPTT solves this problem while

BPTT fails to find the correct parameters, it stays near the same loss value throughout

the training phase. BPTT’s poor behavior on this task has been observed in previous

works (Kag et al., 2020; Zhang et al., 2018a).

Contributions.

• We proposed forward-propagation-through-time (FPTT) as an alternative to con-

ventional BPTT.

• FPTT takes a gradient step of an instantaneous time-dependent risk function at

each time. The risk function is the regularized loss, with a dynamic evolving regu-

larization. The dynamic penalty requires minimal memory, thus allowing for rapid

gradient computation.

74

Algorithm 2 Training RNN with BackProp
Input: Training data B = {xi, yi}Ni=1, Timesteps T
Input: Learning rate η, #Epochs E
Initialize: W1 randomly in the domain W
for e = 1 to E do

Randomly Shuffle B
for i = 1 to N do

Set: (x, y) = (xi, yi) and h0 = 0
for t = 1 to T do

Update : ht = f(W,xt, ht−1)
Loss: ℓ(W) =

∑T
t=1 ℓ(yt, v

⊤ht)
Set: : Wi+1 = Wi − η∇W ℓ(W)|W=Wi

Reset: W1 = WN+1

Return : WN+1

the context. With initial hidden state h0 = 0 ∈ H, an RNN with parameters W ∈ W
and transition function f : W × X × H → H generates the hidden state sequence

{h1, h2, · · · , hT} for the data point {x, y}. We use ℓt(W) = ℓ(yt, v
⊤f(W,xt, ht−1)) to

denote the loss incurred at time step t, where v ∈ V is a linear classifier.

To simplify the equations, (a) we will only use one example and drop the
∑

i and

superscript i used in Eq. 5.1, since the motivation behind the proposal remains same,

and (b) we will assume v is constant, while in practice to learn v, the operations

applied on W , are applied on v as well.

5.2.1 FPTT: Forward Propagation Through Time

Given one example (x, y) = ({xt}Tt=1, {yt}Tt=1) and initial parameter estimate W0,

BPTT (see Algorithm 2) updates the parameter once by taking the gradient of the

T length loss
∑T

t=1 ℓt(W). In contrast, we update parameters at every time step

t by utilizing (xt, yt) to avoid getting penalized by T length gradient dependence.

Since the parameters update very frequently, we need to incorporate two mechanisms

in parameter updates: (a) stability in updates so that a single step does not stray,

76

(b) since our training does not follow standard RNN transition (i.e. keep a single

parameterW through the input sequence), our updates should ensure that the iterates

converge to a single parameter. This in turn guarantees that towards the end of the

training sequence we will mimic an RNN.

To build motivation into our method Algorithm 3, we refer to the sequence of

updates on a single instance, i ∈ [N] at time step t. The first update is a gradient

step of the loss ℓt(W) for a fixed value of W̄t. As such, we track one additional copy

of the parameter, Wt, namely W̄t ∈ W . At time step t, we update parameters using

the supervision (xt, yt) and previous iterates Wt, W̄t. Following T updates, on a new

instance, we set the initial weight parameter W0 ← WT+1, and the iteration follows

subsequently.

To understand our scheme, let us consider the situation where the number of

gradient steps of the loss approaches infinity. In this case, our equations read as:

Wt+1 = argmin
W

ℓt(W) +
α

2
∥W − W̄t −

1

2α
∇ℓt−1(Wt)∥2 (5.2)

W̄t+1 =
1

2
(W̄t +Wt+1)−

1

2α
∇ℓt(Wt+1) (5.3)

These update equations are loosely inspired by consensus in distributed optimization

problems over a star-network1

Intuition. The basic concept here is that W̄t represents, in principle, the running

average of all the Wt’s seen so far, with a small correction term (Eq. 5.3). Therefore,

the updates impose proximity to the running average in the update step. However,

this alone is not sufficient to converge to stationary points of Eq. 2.3. We will show
1Distributed agents connected over a star-network seek to solve a joint optimization problem,

which requires seeking consensus on the decision variables (Boyd et al., 2011). A master agent co-
ordinates with the agents to communicate and synchronize decision variables in an iterative fashion.
Eq. 5.1 could be viewed in a number of ways, as a single-agent network, a T node network, or an N
node network etc. Each of these in turn lead to different coordinating mechanisms.

77

Algorithm 3 Training RNN with FPTT
Input: Training data B = {xi, yi}Ni=1, Timesteps T
Input: Learning rate η, Hyper-parameter α, # Epochs E
Initialize: W1 randomly in the domain W
Initialize: W̄1 = W1

for e = 1 to E do
Randomly Shuffle B
for i = 1 to N do

Set: (x, y) = (xi, yi) and h0 = 0
for t = 1 to T do

Update : ht = f(W,xt, ht−1)
ℓt(W) = ℓt(yt, v

⊤ht)
ℓ(W) = ℓt(W) + α

2
∥W − W̄t − 1

2α
∇ℓt−1(Wt)∥2

Wt+1 = Wt − η∇W ℓ(W)|W=Wt

W̄t+1 =
1
2
(W̄t +Wt+1)− 1

2α
∇ℓt(Wt+1)

Reset: W1 = WT and W̄1 = W̄T

Return : WT

this later. As such W̄t is a vector that summarize past losses. Eq. 5.3 is also the

first order condition for ℓt(Wt+1)+
α
2
∥Wt+1−W̄t− 1

α
∇ℓt−1(Wt)∥2. Taken together the

scheme resembles an alternative optimization method for a joint risk function over

W, W̄ , namely, we hold W̄t fixed and optimize W , and after the update, optimize

W̄ with fixed W . However, notice that unlike conventional setting, here the risk

functions are time-varying. Note that Eq. 5.3 requires gradient of the loss ℓt at the

new iterate Wt+1. Computational cost for this step can be eliminated by keeping a

running estimate λt with update equation λt+1 = λt−α(Wt+1− W̄t) and initial value

λ0 = 0.

Observe that for large α, we expect Wt+1 to be close to the previous Wt, and this

would result in the hidden state sequence {ht}Tt=1 to be essentially very close to the

one generated by a single W ≈ Wt+1 ≈ Wt. In effect this would simulate hidden state

trajectories with a static time-invariant RNN parameter.

Pseudo Code. Algorithms 2 and 3 enumerates the learning schemes for BPTT and

FPTT respectively. These procedures can be utilized to train an RNN architecture in

78

any popular deep learning framework with minimal efforts. Note that for simplicity

we write the algorithms with batch size 1, this is relaxed to the conventional choice

of larger batch size in our experiments. In FPTT, starting with small values of α

we gradually increase α to enforce the constraint. We explore the impact of this

hyper-parameter in the ablative experiments (see Sec. 5.3.2).

Remarks. (a) Note that even though we have separate Wt for each timestep, we do

not suffer additional storage overhead of the factor T . This follows from the fact that

we solve these sub-problems forward in time and only solve for Wt+1 at timestep t. (b)

We show that the iterates converge in our ablative experiments (see supplementary),

below we provide an explanation for the convergence.

Convergence. Let us focus on the argmin step in Eq. 5.2. Taking gradient w.r.t.

W results in the following dynamics:

∇ℓt(Wt+1)−∇ℓt−1(Wt) + α(Wt+1 − W̄t) = 0

W̄t+1 =
1

2
(W̄t +Wt+1)−

1

2α
∇ℓt(Wt+1) (5.4)

Let us see why these equations allow for reaching a stationary point of Eq. 5.1. For

now suppose the sequence Wt converges to a limit point W∞. One way to ensure

this happens is to view Eq. 5.4 as a map from [Wt, W̄t]
⊤ → [Wt+1, W̄t+1]

⊤, and show

that this map is contractive, and as such invoke the Banach fixed point theorem.

Nevertheless, this is difficult to show and we assume that it is true for now.

Proposition 5. In the Algorithm 3, suppose, the sequence Wt is bounded and con-

verges to a limit point W∞. Further assume the loss function ℓt is smooth and Lips-

chitz. Let the cumulative loss be F = 1
T

∑T
t=1∇ℓt(W∞) after T iterations 2. It follows

that W∞ is a stationary point of Eq. 2.3, i.e., limT→∞
∂F
∂W

(W∞) = 0.

2For simplicity in exposition, we concatenate all the losses ℓt into a single online stream and get
rid of the index N , that gets repeated to provide T iterations of the gradient updates.

79

We sketch the proof below (see Sec. D.7 for detailed proof). Rewriting the

first equation in Eq. 5.4 as: Wt+1 = W̄t +
1
α
(ℓt−1(Wt) − ℓt(Wt+1)), we note that

if Wt+1 → W∞, then invoking Cesaro mean3 argument, the corresponding aver-

ages do as well: 1
T

∑T
t=1Wt+1

T→∞−→ W∞. In turn, we note that the second term

in the above expression telescopes, and consequently, it follows that 1
T

∑T
t=1Wt+1 =

1
T

∑T
t=1 W̄t − 1

T
∇ℓT (WT+1). Now under smoothness and Lipschitz conditions, we

can assume that 1
T
∇ℓT (WT+1) → 0 in all of its components. As a result, we have

1
T

∑T
t=1 W̄t → W∞ as well. Plugging these facts into the second equation, we get

1
2αT

∑T
t=1∇ℓt(Wt+1) ≈ 0. Now we also know that Wt+1 ≈ W∞ for sufficiently large

T , and using standard arguments it follows that 1
2αT

∑T
t=1∇ℓt(W∞) also approaches

zero. This is the proposed stationarity condition, and our claim follows.

Computational Complexity. BPTT gradient cost scales as Ω(T) as seen from

Eq. 2.3. Although FPTT for T times steps leads to Ω(T) gradient computations, but

it is worth noting that the constants involved in taking gradient for the full length T

are higher than computing single step gradients. However, FPTT has more arithmetic

operations per gradient step, and as such a tradeoff exists. BPTT has higher memory

overhead since it stores intermediate hidden states for the full-time horizon T . In

contrast, since FPTT only optimizes instantaneous loss functions, it does not require

storing hidden states for the full-time horizon. We list computational complexities of

different algorithms in Table 5.1.

FPTT-K. Instead of updating parameters at every timestep, we could perform

updates in Eq. 5.2 only K times for the sequence length T . To do this, for each

example, we consider a window of size ω = ⌊ T
K
⌋, and define a windowed loss, ℓ̄t,ω(W) =

1
ω

∑t
τ=t−ω ℓt(W). We then loop this over K steps instead of T . Setting K = 1 is

the same as learning RNN through BPTT, while K = T results in the FPTT 3.

We provide ablative experiments to study the effect of this parameter on learning
3https://www.ee.columbia.edu/~vittorio/CesaroMeans.pdf

80

efficiency in Section 5.3.
Table 5.1: Per-instance computational cost for gradient, parameter update & mem-
ory storage overhead. Parameter update involves several arithmetic operations (see
Algo. 3), exceeding cost of gradient update by a constant factor. Note that constant
associated with gradient computation is a monotonically increasing function c(·) of
the sequence length, i.e. c(1) < c(K) < C(T).

.

Algorithm Gradient
Updates

Parameter
Updates

Memory
Storage

BPTT Ω(c(T)T) Ω(1) Ω(T)
FTRL Ω(c(T)T 2) Ω(T) Ω(T)
FPTT Ω(c(1)T) Ω(T) Ω(1)

FPTT-K Ω(c(K)T) Ω(K) Ω(T/K)

Intermediate Losses for Terminal Prediction. In our exposition so far, we

assumed that we have access to an instantaneous loss ℓt at timestep t. While this is

true for Seq-to-Seq modelling tasks, for terminal prediction tasks we only get one label

y for the entire input sequence x. Let P̂ = softmax(v⊤ht) be our current estimate

of label distribution and Q be our estimate in last training epoch. We use cross-

entropy for the classification loss. We construct intermediate losses ℓt for anytime

step t as a convex combination of two terms : (a) cross-entropy using the current

label distribution P̂ , and (b) divergence like term to enforce P̂ and Q to stay close

by. This results in the following loss:

ℓt = βℓCE
t + (1− β)ℓDiv

t

ℓCE
t = −

∑
ȳ∈Y

1ȳ=y log P̂ (ȳ); ℓDiv
t = −

∑
ȳ∈Y

Q(ȳ) log P̂ (ȳ)

where β ∈ [0, 1]. Our intuition is that for timesteps near T , classification loss is

weighted more and less to the divergence term. In the beginning, we should have

much less confidence in the classification loss and more on the divergence term. This

leads to a natural choice of β = t
T

achieving the desired effect.

Extensions to Stacked/Hierarchical RNNs. There can be various extensions

81

of our scheme to multi-layered RNNs. One simple scheme is to treat the transition in

the stacked RNN as a multi-layered function which transforms hidden states from one

time step to the next. Our language modelling experiments (Sec. 5.3.3) on PTB-word

and character level uses this extension for the 3-layered stacked LSTM models. Note

that ideally such an extension should work for hierarchical RNNs as well as state

transitions can be seen at the most frequent update equation. We leave this as a

potential future direction.

5.3 Experiments

In this section we empirically demonstrate that the proposed algorithm outperforms

BPTT. First, we provide ablative experiments to justify our default choice of hyper-

parameters and the chosen architecture. Next, we run FPTT on sequence-to-sequence

modelling tasks. Finally, we benchmark FPTT on terminal prediction tasks which

provide the true label only for the full input sequence.

5.3.1 Experimental Setup

We implement FPTT in Pytorch using the pseudo code given by Algorithm 3. We

perform our experiments on single GTX 1080 Ti GPU. The benchmark datasets used

in this study are publicly available along with a train and test split. For hyper-

parameter tuning, we set aside a validation set on tasks where a validation set is not

available. Wherever applicable we use grid search for tuning hyper-parameters (details

in supplementary). In our experiment, we use LSTM(Hochreiter and Schmidhuber,

1997b) as the default RNN architecture for evaluation purpose. They have been

shown to suffer from vanishing/exploding gradients on many tasks (Zhang et al.,

2018a; Chang et al., 2019; Kag et al., 2020). Our reasoning follows from the fact that

they are widely available with most efficient CUDA implementation on many popular

82

by choosing a suitable K and run FPTT-K. Larger K decreases number of parameter

updates, but can impact convergence. For the Add-Task with sequence length T =

200, we learn LSTMs with different K values (ranging from K = 1, 3, 5, 10, 100, 200).

Note that K = 1 is essentially BPTT as we only update the RNN parameter after

seeing the entire sequence. Figure 5·2 shows that higher K values result in better

convergence. On the other hand higher values of K are more expensive since, as

described in Table 5.1, cost of parameter updates exceeds gradient by a constant

factor4. Suppose this factor is C2, the highest computational efficiency is achieved

by FPTT-K with K = ⌊T
C
⌋. On the other hand small values of K could lead to

poor training as observed in Figure 5·2. As a rule of thumb we use K ≈
√
T for

all our other experiments. This results in meaningful performance (trainability), and

computational efficiency matching GPU LSTM implementation.

Table 5.2: CIFAR-10 : Different RNN architectures.

Accuracy #Params
LSTM 60.11% 67K

FPTT LSTM 71.03% 67K
GRU 66.28% 51K

FPTT GRU 71.37% 51K
Antisymmetric 62.41% 37K

FPTT Antisymmetric 72.13% 37K

Choice of architecture. In this experiment we show that FPTT provides non-

trivial gains for many RNN architectures. We train one layer LSTM, and GRU

architectures on the CIFAR-10 dataset with the same setting as the described in sec-

tion 5.3.4. Table 5.2 shows that RNNs trained with FPTT provide gains of about

5−10 points in accuracy over the RNNs trained with BPTT. In the remaining exper-

iments, we reduce experimentation cost by only performing evaluations on LSTMs

as they are readily available in PyTorch with very efficient CUDA implementation.

We also want to show that replacing BPTT with FPTT allows LSTMs to achieve
4This factor is difficult to pin-down since gradients leverage CUDA-pytorch, while parameter

updates are not optimized.

84

performance near state-of-the-art performance achieved by recent architectural im-

provements.

Auxiliary Losses in BPTT vs FPTT. In this experiment we augment BPTT

with the auxiliary losses (proposed for terminal prediction in section 5.2) simi-

lar to (Trinh et al., 2018) in order to isolate the gains from auxiliary losses in the

BPTT routine. Table 5.3 shows that our auxiliary losses helps BPTT to improve the

performance but still lack behind the proposed algorithm.

Table 5.3: CIFAR-10 : BPTT+Auxiliary Loss vs FPTT.

Accuracy #Params
LSTM 60.11% 67K

Aux-Loss+LSTM 65.65% 67K
FPTT LSTM 71.03% 67K

Sensitivity to α hyper-parameter. Note that very small value of α, i.e. α→ 0

would lead FPTT to ignore the regularizer and would only optimize the instantaneous

loss at every step resulting in diverging iterates. While very high value of α would

lead FPTT to only optimize the regularizer and hence very poor generalization per-

formance. We explore the sensitivity to the α hyper-parameter in the Algorithm 3.

We use the PTB-300 language modelling dataset. In this experiment we train FPTT

on the following α values: {1.0, 0.8, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001}. Best perplexity

is reached at α = 0.5 while α = 1.0 fails to converge to a good solution. Also, the

performance starts to decrease with α ≤ 0.05. We show the full result in the appendix

(see Table D.2 in Sec. D.3).

5.3.3 Sequence Modelling

We perform experiments on three variants of the sequence-to-sequence benchmark

Penn Tree Bank (PTB) dataset (McAuley and Leskovec, 2013). We provide full

details of these experiments in the supplementary.

85

PTB-300 is a word level language modelling task with the difficult sequence

length of 300 and has been studied in many previous works to study long range de-

pendencies in language modeling (Zhang et al., 2018a; Kusupati et al., 2018; Kag

et al., 2020). Table 5.4 shows the test perplexity for our experimental runs along

with results from earlier works. Note that improved architectures such as FastGRNN

(Kusupati et al., 2018), SpectralRNNs(Zhang et al., 2018a), IncrementalRNNs (Kag

et al., 2020) show improvements over the LSTMs trained using backpropagation al-

gorithm. By incorporating FPTT as the training algorithm we improve LSTM’s test

perplexity by nearly 11 points and thus outperforming the reported LSTM results.

Table 5.4: Results for PTB word level language modelling : Sequence length (300),
1-Layer LSTM.

Dataset PTB-w
Perplexity #Params

FastGRNN (Kusupati et al., 2018) 116.11 53K
IncrementalRNN (Kag et al., 2020) 115.71 30K
SpectralRNN (Zhang et al., 2018a) 130.20 31K

LSTM (Zhang et al., 2018a) 130.21 64K
LSTM (Kusupati et al., 2018) 117.41 210K

LSTM 117.09 210K
FPTT LSTM 106.27 210K

PTB-w is the traditional word level language modelling variant of the PTB

dataset. It uses 70 as sequence length and we follow (Yang et al., 2018) to setup

this experiment. We use three-layer LSTM model for this task with embedding

dimensions 280 and hidden size 1150. We report the results with dynamic evalu-

ation(Krause et al., 2018) on the trained model. We use the same architecture and

training setup to train LSTMs with both BPTT and FPTT. Table 5.5 demonstrates

that LSTM trained with FPTT result in better performance than the ones trained

with BPTT.

PTB-c is the character level modelling task that uses 150 sequence length. We

utilize (Merity et al., 2018) to setup the character level task. We use 3-layer LSTM

86

models as recommended with hidden size 1000 and embedding dimension 200. We

train this model with both BPTT and FPTT with the same setting. As shown in

Table 5.5, LSTM trained with FPTT results in better bits-per-characters and has

comparable performance with existing state-of-the-art results present in this table.

Table 5.5: Results for PTB-w and PTB-c datasets. We use AWD-LSTM model
in our PTB-c experiments and AWD-LSTM with Mixture-of-Softmaxes(Yang et al.,
2018) in the PTB-w experiments. For PTB-w dataset, wherever applicable, all the
baselines report the results with dynamiceval(Krause et al., 2018). It can be seen
that training with FPTT outperforms the model trained with BPTT.

Dataset PTB-c PTB-w
Hidden
Dim. BPC #Params Hidden

Dim. Perplexity #Params
Trellis-Net (Bai et al., 2019b) 1000 1.158 13.4M 1000 54.19 34M

AWD-LSTM (Merity et al., 2018) 1000 1.175 13.8M 1150 51.1 24M
Dense IndRNN (Li et al., 2019b) 2000 1.18 45.7M 2000 50.97 52M

LSTM 1000 1.183 13.8M 1150 51.9 22M
FPTT LSTM 1000 1.165 13.8M 1150 50.96 22M

5.3.4 Terminal Prediction

We benchmark FPTT on popular terminal prediction tasks to demonstrate that the

proposed algorithm provides non-trivial gains over BPTT in this setting as well. For

fair comparison, following previous works(Zhang et al., 2018a; Kusupati et al., 2018;

Kag et al., 2020), we use LSTMs with 128 dimensional hidden state and Adam as the

choice of optimizer with initial learning rate 1e− 3 for both algorithms. We provide

other hyper-parameter tuning details in the supplementary (see Sec. D.1).

Add-Task (Hochreiter and Schmidhuber, 1997b) has been used to evaluate long

range dependencies in RNN architectures. An example data point consists of two

sequences (x1, x2) of length T and a target label y. x1 contains real-valued entries

drawn uniformly from [0, 1], x2 is a binary sequence with exactly two 1s, and the

label y is the sum of the two entries in sequence x1 where x2 has 1s. For both

the algorithms (BPTT and FPTT), we use episodic training where a train batch

size of 128 is presented to the RNN to update its parameters and evaluated using

87

CIFAR-10 consists of images with shape 32× 32× 3. The input images are flattened

into a sequence (row-wise). At each time step, 1 and 3 pixels are presented as the

input for MNIST and CIFAR datasets respectively. This construction results in Pixel

MNIST and CIFAR datasets with 784 and 1024 length sequences respectively. While

Permute-MNIST is obtained by applying a fixed permutation on the Pixel MNIST

sequence. This creates a harder problem than the Pixel setting since there are no

obvious patterns to explore.

Table 5.6 lists the performance of LSTMs trained using BPTT and FPTT, along

with the known results in the literature on these datasets. This shows that LSTMs

trained with FPTT outperforms the ones trained with BPTT. We point out that

FPTT LSTMs performance is reasonably close to the best performance reported on

this dataset with better architectures and higher complexity.

Below we list benefits of the proposed algorithm.

(A) Better Generalization. FPTT provides better generalization on many

benchmark tasks compared to BPTT. Tables 5.4, 5.5, and 5.6 shows that FPTT

yields better test performance as compared to training with BPTT. Note that table 5.2

shows similar gains in architectures other than LSTMs.

(B) Learning Long Term Dependency tasks. Training with FPTT enables

LSTMs to solve LTD tasks. Our experiments evaluate FPTT on many LTD datasets

(Add-Task, Permute/Pixel MNIST, CIFAR-10 and PTB-300). Figure 5·3 shows that

FPTT enables LSTMs to solve Add-Task while BPTT was unable to solve this task.

Similarly, tables 5.4, and 5.6 shows that FPTT outperforms BPTT on LTD tasks.

(C) Better Model Efficiency. FPTT trained LSTMs compete with higher

complexity models. Table 5.6 shows our 1-layer LSTMs are competitive with multi-

layered deep RNN higher capacity models (TrellisNet(Bai et al., 2019b), IndRNN(Li

et al., 2018b)). In retrospect it is worth considering that the higher complexity models

89

have often stemmed from inability to train LSTMs on long-term dependency tasks.

FPTT points to the fact that the issue is not capacity but the training method.

(D) Learning Short-term dependency tasks. FPTT shows competitive per-

formance on sequence modelling tasks. Our experiments on language modelling tasks

with shorter sequence lengths (PTB-w, PTB-c datasets) demonstrates the proposed

method can learn short term dependencies present in these datasets. Table 5.5 shows

that FPTT provides better test performance than BPTT.

(E) Computational Efficiency/Convergence. We discussed the computa-

tional trade-off of the proposed method in table 5.1. This trade-off allows FPTT to

provide training complexity similar to BPTT while providing better statistical train-

ability and generalization. We show training time comparison in the supplementary

(see Sec. D.2). Additionally, FPTT reduces the memory overhead by only storing hid-

den states between two iterate updates, in contrast BPTT stores all the intermediate

states in the time horizon T .

5.4 Discussion

While our theoretical analysis only provides weak guarantees in that if the parameter

sequence converges, the convergent point would be the stationary point for the BPTT

loss. It also requires an assumption that the sequence length is large. We can extend

this analysis by only looking at the online update and analyzing the regret in a

similar manner as FedDyn paper(Acar et al., 2021). Similarly, we can piggyback on

the generalization bounds (Kuznetsov and Mohri, 2015; Kuznetsov and Mohri, 2016)

for non-stationary non-mixing stochastic processes (such as time-series forecasting

problem) for generalization analysis under mild assumptions on the input sequential

process.

From an algorithmic viewpoint, there can be multiple extensions of the proposed

90

FPTT scheme. Currently, we use a single data point to move forward in time and

update parameters in this manner. This setup is very similar to the online learning

setup. Instead, we can also look at all the input data per time step and update

parameters per time step. It is a bit different strategy than the proposed scheme.

Similarly, many other variants can be derived. We leave the exercise of finding the

best scheme for future research. Another line of thought is the extension of this

scheme to transformer training. The bigger challenge that FPTT would encounter

running into transformers is that they do not operate at a time step level. It would

be interesting to ask what modifications would FPTT require to be applicable for

transformer training.

91

Part II

Efficient Low Complexity CNNs

92

93

Chapter 6

Convolutional Neural Network: Background

Convolutional neural networks (CNNs) have been the backbone for recent advances

in image recognition (Krizhevsky et al., 2012; Howard et al., 2019; Tan and Le, 2019),

object detection (Zhao et al., 2019; Jiao et al., 2019), and other applications (Wang

et al., 2020) interfacing the image modalities. At the heart of these architectures lie

basic building blocks such as residual blocks and other variants. Researchers have

designed resource-efficient convolutional blocks that yield a better trade-off between

performance and resource usage. For instance, Inverted Residual Block (Sandler et al.,

2018) and its derivatives have been used in many efficient CNN architectures such as

MobileNetV3(Howard et al., 2019), EfficientNet(Tan and Le, 2019), MNASNet(Tan

et al., 2019), etc.

Figure 6·1: Generic CNN Architecture. We show a generic CNN architecture com-
posed of multiple repetitions of the convolutional residual block f . Note that f can
be replaced by many popular residual blocks such as Bottleneck(He et al., 2016) or
Inverted Residual(Howard et al., 2019).

6.1 Generic Convolutional Architecture

We show a generic convolutional neural network in Figure 6·1 that uses the convolu-

tional residual layer f . These residual blocks take a feature map of size H ×W × C
as input, where C denotes the number of channels, H, and W denotes the height

and width of the feature maps. Residual block f applies a few non-linear operations

and outputs the resulting feature map. For simplicity, we will assume that the in-

put and output activation maps have the same size. Different choices of the residual

block f yield different convolutional architectures. For instance, f = basic and bot-

tleneck blocks (Figure 6·2.a, b) results in ResNet(He et al., 2016) architecture, while

inverted residual block (Figure 6·2.c) yields MobileNetV3(Howard et al., 2019) and

EfficientNet(Tan and Le, 2019) architectures.

(a) Basic (b) Bottleneck (c) Inverted Residual

Figure 6·2: (a): Basic Residual Block. (b): Bottleneck Residual Block. (c):
Inverted Residual Block. Acronyms are as follows: 3× 3 (Full 3-d Convolution with
3×3 kernel), 1×1 (Pointwise projection), Dw 3×3 (Depthwise Convolution, followed
by Squeeze-and-Excitation). Note that after the each convolutional operation (such as
3×3, 1×1 and Dw 3×3), there is a batch-norm followed by a non-linear activation such
as ReLU(Nair and Hinton, 2010), Swish (Tan and Le, 2019) or Hardswish (Howard
et al., 2019) except the last 1× 1 where only a batch-norm is applied.

94

6.2 Resource-Efficiency Challenges

Convolutional models suffer from many issues both from the architectural design

perspective as well as training. Below, we list issues that are at the heart of the next

few chapters.

1. Low Receptive Field. Convolutional filters with limited receptive fields (such

as 3 × 3) act on localized input regions to generate low-level features. Features

used for decision-making are complex functions of these low-level features, achieved

through the composition of many convolutional operators applied in sequence. It

requires successive application of such convolutional blocks to yield rich features for

downstream applications, resulting in very deep neural networks. Thus, resulting

CNNs have large resource footprints, such as high inference/train time and large

model size.

While it is possible to increase the convolutional kernel size significantly, such a

change significantly increases the storage and computational resource requirements.

For instance, let us apply a full 3-d convolution with kernel K × K on the input

feature map of sizeH×W×C to output a feature map of similar size. We will require

O(K2C2) storage (number of parameters) andO(HWC2K2) compute (multiply-add

operations). It shows that the effect of kernel size is quadratic on the storage and

compute requirements. As a result, for large K (≫ 3), this cost becomes excessive

and not feasible for deployment in CNNs with real-time inference.

2. Exploiting Spatial Smoothness. Typically, convolutional blocks compute high-

dimensional activation maps to capture key features while being computationally

inexpensive. For example, the Inverted Residual Block (see Figure 6·2) projects

the input onto a high dimensional space, and performs a depth-wise convolution,

followed by a projection onto a lower dimension space. Thus they compute high-

dimensional features without paying for full 3-d convolutions, with the intuition

95

that such a “low-rank" structure is enough to capture the key features.

However, such methods typically do not exploit any redundancies in the spatial fea-

tures. The key observation of our work is that spatially features are quite “smooth".

That is, while the features of each pixel might be different, they tend to be “close"

to each other. It enables accurate predictions without paying for expensive compu-

tations for each pixel.

3. Promoting Inductive Biases. By design, CNNs promote many inductive biases.

For instance, translation invariance, i.e., convolutional kernels operate as local fea-

ture extractors in the sense that they search for some template over the entire input.

Many such properties have been integrated into the design phase (such as residual

skip connections leading to wide minima(Li et al., 2018a) of the training loss as well

as less prone to vanishing/exploding gradients(He et al., 2016); wide convolutional

layers lead to better generalization (Doimo et al., 2022)). While these biases are

a function of architectural design, less emphasis has been given to inducing such

inductive biases during training.

6.3 Related Works

6.3.1 CNN Architectures

Early Skip CNNs. Resnet(He et al., 2016), Highway networks(Srivastava et al.,

2015), Wide-Resnets (Zagoruyko and Komodakis, 2016), Dense-Nets (Huang et al.,

2017), etc. proposed networks with skip/residual connections. These changes helped

alleviate the vanishing gradient issues in the deep neural networks. These trained

much deeper models and hence achieved significantly better performance than the

previous generation models like AlexNet (Krizhevsky et al., 2012), VGG-Nets (Si-

monyan and Zisserman, 2015), etc. Note that deeper models implicitly mean larger

storage costs and higher compute requirements.

96

Mobile/IoT ready CNNs. Many initial attempts (SqueezeNet (Iandola et al.,

2016), SqueezeNext (Gholami et al., 2018), MobileNets (Howard et al., 2017)) at

designing low complexity models included handcrafted feature blocks (with low rank

filters, separable convolutions, etc.) whose composition yielded small models with low

floating-point operations. Recently, EfficientNets (Tan and Le, 2019) were proposed

to systematically study the effect of width, depth, channels, etc., along with memory

and MACs constraints. There have also been efforts (Liu et al., 2017a; Zoph and Le,

2016) to search for neural architectures that outperform hand-crafted architectures.

Note that these are complementary to our proposal.

Residual Blocks. ResNet (He et al., 2016) proposed the identity shortcuts

wherein the input is added to the output of the feature processing branch, but full

3-d convolutions can be computationally expensive. MobileNet (Howard et al., 2017)

replaced the 3×3 convolution with a 3×3 depth-wise convolution followed by a 1×1

projection. Highway Networks (Srivastava et al., 2015) used learned gating functions

for shortcut connections.

MobileNetV2 (Sandler et al., 2018) proposed an Inverted Residual Block wherein

they inverted the residual connection in ResNet’s Bottleneck block. It consists of

a 1 × 1 high dimensional projection, followed by 3 × 3 depth-wise convolution, and

finally 1×1 low dimensional projection. In parallel, ShuffleNets (Zhang et al., 2018b;

Ma et al., 2018) introduced groups in the 1 × 1 projection step and channel shuffle

operation to bridge the performance gap between the full projection step. Note that

shuffle operations are non-trivial to implement in general-purpose hardware.

EfficientNetV2 (Tan and Le, 2021) introduced Fused Inverted residual blocks

which replace the projection and depth-wise convolution with a full convolution. They

demonstrate better throughput on GPU / TPU hardware as Inverted Residual blocks

do not effectively leverage the accelerators. That is, the existing techniques mostly

97

focus on efficient computation despite the presence of a large number of channels.

In contrast, the proposed interpolation scheme focuses on the spatial smoothness

of activations and is complimentary, and generic enough to be applicable to most

existing residual blocks.

Neural Architecture Search (NAS). Several works have introduced techniques

to search for efficient architectures using above mentioned CNN blocks as building

blocks. There are three main approaches for NAS in the literature: 1) reinforcement

learning approaches (Zoph and Le, 2016; Zoph et al., 2018) where a controller learns

to generate new architectures based on the delayed rewards through REINFORCE

rule, 2) evolutionary search algorithms (Real et al., 2019; Liu et al., 2017a; Dai et al.,

2021) proceed by starting at some initial parent architectures and evolve into children

architectures through mutations (adding or deleting operations), 3) differentiable ar-

chitecture search methods (Liu et al., 2019a; Wu et al., 2019; Cai et al., 2019; Dong

and Yang, 2019) that create a super-network as a combination of all the possible

operations at a block level, and use standard SGD style techniques to find the sparse

set of weights for each operation/block in the super-network. NAS is an orthogonal

direction to our work and can be used to further optimize the hyper-parameters of

our spatially interpolated blocks.

Model Compression/Distillation. An alternate strategy to obtain small mod-

els require model compression. Deep-compression (Han et al., 2016) is an early work

where a pre-trained network is pruned, quantized, and compressed to yield small

networks which can be deployed on the edge devices. Other works include distill-

ing (Hinton et al., 2015) knowledge from a larger pre-trained network into a small

compact model. We do not pursue these techniques to simplify our exposition.

ODE Inspired CNNs. Related work in this class has the most similarity with

our approach. Neural ODEs (NODEs) (Chen et al., 2018) introduce continuous time

98

layers following an ODE. It uses black-box ODE solvers along with the adjoint method

for back-propagation. Augmented Neural ODEs (Dupont et al., 2019) extend NODEs

to a richer class of functions while ANODE (Gholami et al., 2019) addresses the

gradient computation in the adjoint method to allow for more accurate gradients

matching the discretization. Neural ODEs and their variants do not demonstrate

their scalability to tasks like ImageNet.

There have been previous works that utilize ODE-inspired models for sequential

processing. Some of these models require the architecture to achieve equilibrium

(Kag et al., 2020; Kag and Saligrama, 2021a), (Bai et al., 2019a), where the later has

been extended to image modalities by Multi-scale deep equilibrium models (MDEQs)

(Bai et al., 2020). MDEQs use implicit layers at multiple feature scales to scale to

large datasets such as ImageNet. Although they show good performance on large-

scale tasks, the model capacity still needs to be nearly the same as the discrete

counterparts. Although implicit models offer low memory cost training, they still do

not offer much flexibility for inference. In addition, their inference cost is much higher

in comparison to discrete variants such as Resnet.

PDE Inspired CNNs. (Ruthotto and Haber, 2020) proposed new architectures

based on parabolic and hyperbolic partial differential equations. These connections

with PDEs enable theoretical reasoning, such as the stability of the resulting network.

Although the resulting models are small, these models take a significant hit in per-

formance. NeuPDE (Sun et al., 2020) uses the convolutional filters to approximate

the differential operators for generic second order PDE. NeuPDEs downsample the

input image to a manageable feature map through many convolutional layers and

then finally applies the PDE blocks. This construction helps in reducing the model

size but the gains are not sufficient enough.

Miscellaneous. There are several general techniques to reduce the resource foot-

99

print of any architecture. It includes weight quantization (Han et al., 2016; Gholami

et al., 2021), network pruning (Dong and Yang, 2019; Han et al., 2016; Liang et al.,

2021), and distillation (Hinton et al., 2015; Gou et al., 2021). Finally, progressive

learning (Tan and Le, 2021) trains models by progressively increasing image sizes.

Note that these techniques work with any CNN block and can be applied directly to

our spatially interpolated blocks. For simple exposition and to clearly demonstrate

the impact of our technique over SOTA CNN blocks, we use these blocks in the

original form without any quantization/distillation, etc.

6.3.2 Training Algorithms

Consistency Loss. Prior works on semi-supervised learning have proposed con-

sistency loss (Volpi et al., 2018; Xie et al., 2020; Sohn et al., 2020; Laine and Aila,

2017; Sajjadi et al., 2016) to inductively bias model predictions to be consistent under

reasonable modifications to the input. (Sajjadi et al., 2016) predicts the same label

amidst stochasticity in dropout, random max-pooling, and randomized affine data

augmentations. (Volpi et al., 2018) preserves predictions in the presence of pertur-

bations such as adversarial noise. (Xie et al., 2020) improves upon these works to

include advanced data augmentations (such as RandAugment(Cubuk et al., 2020))

as multiple viewpoints of the underlying input across which the model prediction re-

mains consistent. (Sohn et al., 2020) uses weak augmentation to preserve the label

information and maintains consistency by penalizing the model prediction on strong

data augmentation if it differs from weak augmentation prediction. Similarly, Π model

(Laine and Aila, 2017) penalizes when the model predictions differ between random

data augmentations and dropout for the same input, while Temporal Ensembling

(Laine and Aila, 2017) uses an average of predictions for various viewpoints of the

data during the training trajectory and this prediction is used as the target label.

100

The survey (Yang et al., 2022) presents an in-depth review.

Contrastive Loss. Contrastive learning(Jaiswal et al., 2021) brings closer various

alternate views of the data point and maximizes the distance between the negative

of the data point. (Schroff et al., 2015) designed a triplet loss function, given an

image (called the anchor), finds positive and negative views w.r.t. the anchor and

minimizes the distance between positives and maximizes the distance between neg-

atives. Since triplet loss only uses one negative example in each update, it suffers

from slow convergence. (Sohn, 2016) addresses this issue by using N − 1 negatives

and one positive example and using a modified softmax loss to model this N way

relationship with the anchor data point. (Gutmann and Hyvärinen, 2010) proposed

the Noise Contrastive Estimation (NCE) to estimate model parameters by learning

a logistic regression model to distinguish observed data from artificially generated

noise. (van den Oord et al., 2019) introduced the InfoNCE loss by extending NCE

to include multiple negatives. Note that the quality of the learned solution improves

by using more negative examples. (Chen et al., 2020a) uses a large batch size to

generate sufficient negatives (in a sense, mining hard negatives for the data point).

Others(Wu et al., 2018; Tian et al., 2020) have proposed using a separate memory

bank to address this issue.

Wide Minima. In parallel, (Tarvainen and Valpola, 2017; Grill et al., 2020;

Caron et al., 2021; Hochreiter and Schmidhuber, 1997a; Foret et al., 2021; Cha et al.,

2021; Chen et al., 2020b; He et al., 2020) have also explored variance arising due to

different model views. Mean-Teacher(Tarvainen and Valpola, 2017) regularizes model

predictions to be close to the teacher predictions, which is an exponential moving av-

erage (EMA). Self-supervised learning (Caron et al., 2021; Grill et al., 2020) explores

a similar penalty in the absence of ground truth. Typically, the regularization mini-

mizes the difference between different views of the input forwarded through the EMA

101

and model. Although this requires careful design considerations to avoid representa-

tion collapse, such a strategy successfully learns resilient latent feature space without

labels. In parallel, we can also view model invariability from the flat/wide minima

(Hochreiter and Schmidhuber, 1997a) perspective in the parameter space. Many

works have promoted this notion, such as sharpness-aware minimization(Foret et al.,

2021), averaging of the stochastic gradient models(Izmailov et al., 2018), etc.

102

103

Chapter 7

Global Layered Convolutional Neural

Networks (PDE-CNNs)

7.1 Introduction

Convolutional neural networks (CNNs) have been the backbone for recent advances in

image recognition (Krizhevsky et al., 2012), object detection (Zhao et al., 2019), and

other applications (Wang et al., 2020) interfacing the image modalities. Convolutional

filters with limited receptive fields act on localized input regions to generate low-level

features. Features used for decision-making are complex functions of these low-level

features, achieved through the composition of many such convolutional operators

applied in sequence, resulting in deep networks with high inference/train time and

large model size.

Recent works (Chen et al., 2018; Gholami et al., 2019) have explored neural

networks inspired by ordinary differential equations (ODEs), offering richer represen-

tation than their discrete counterparts. Resnets (He et al., 2016) can be viewed as

a discretized form of ODEs. The final architecture based on these continuous layers

leads to higher computational cost in comparison to their discrete counterpart (Bai

et al., 2020), namely due to the costly fixed point solvers. In contrast, we explore

novel constraints on the feature maps, based on partial differential equations (PDEs)

that offer similar rich representation but with shallower neural networks. In addition,

Figure 7·1: Replacing repeated blocks in a given CNN architecture with the Global
layer for compute and model savings.

we provide efficient and scalable solvers to provide computational and storage savings.

Proposed Method. We explore a hybrid approach wherein we modify discrete

models by embedding a new layer with a global receptive field that operates on the

input feature map and computes complex compositions of these low-level features. We

call this layer the Global feature layer. It approximately solves a PDE constraint that

couples the input and output feature maps. In a typical discrete model, at every input

resolution, the same convolutional block is applied repeatedly m times. We modify

this structure by keeping only one convolutional block and replacing the m−1 blocks

with a single global feature layer (see Figure 7·1). Thus, reducing the deep neural

network to a much shallower network without any significant performance loss. It

leads to smaller models with low computational and storage costs. In addition, it

improves both the train and inference times.

By keeping at least one block from the original architecture, we are incorporating

the signature of this architecture. It allows the application of this generic global

feature layer to any architecture. Also, since a good start for any iterative solver

implies smaller steps to reach the solution, this original block helps to initialize the

PDE solution.

Estimated Savings. Suppose a Resnet architecture constructed with three

resolutions has m residual blocks, and for the three resolutions, the compute cost

is = {c1, c2, c3} respectively. The total compute cost for operating this network

is m × (c1 + c2 + c3). Global residual block replaces m − 1 residual blocks with

104

just one global block and assuming that the cost of this global block is similar, i.e.

= {c1, c2, c3}, then the cost to operate the modified network is 2×(c1+c2+c3). Given

that m > 2, the modified network can lead to computational savings over Resnet.

Similar conclusions can be drawn for storage savings.

Motivational Example. To motivate our approach, we apply the Global fea-

ture layer to the Resnet32 (He et al., 2016) architecture, where at each feature map

resolution, the same block repeats 5 times. With the experimental setup described

in the section 7.3, we train three models on the CIFAR-10 dataset: (a) Resnet32 :

same architecture as used in (He et al., 2016), (b) ODE based Resnet32, i.e., MDEQ

(Bai et al., 2020) modified to match feature map configuration as in Resnet32, and

(c) ResNet32-Global : replaced repeated blocks with global layers. Table 7.1 shows

that both Resnet32 and MDEQ have similar performance. Note that MDEQ is sig-

nificantly costly in terms of the floating-point multiply-add operations (MACs). In

contrast, the proposed Resnet32-Global results in a much smaller model and a sig-

nificantly lower computational footprint without any hit in the performance. This

experiment clearly shows that the Global layer results in the following benefits:

1. Shallow network. Resnet32-Global has ≈ 3× less depth.

2. Less storage. Resnet32-Global has ≈ 3× less parameters.

3. Less compute. Resnet32-Global uses ≈ 5× less MACs.

4. Readily embedable in any network.

Table 7.1: CIFAR-10 : Comparison between discrete Resnet32, ODE based Resnet32
(MDEQ(Bai et al., 2020)), and our PDE embedded Resnet32-Global. We compute
the depth as the number of blocks in the network. Train and Inference time de-
note the cost of processing one pass of the train and test dataset on a V100 GPU.
Supplementary Table 7.14 lists results for Resnet (m = 2) and CIFAR-100 dataset.

Accuracy #Params #MACs Train
Time(s)

Inference
Time(s) Depth

Resnet32 92.49% 460K 70M 78 4.45 15
MDEQ 92.28% 1.1M 1.5B 409 23.32 -

Resnet32-Global 91.93% 162K 15M 24 1.91 6

105

Contributions.

• Proposed a Global feature layer that imposes PDE constraints on the input and out-

put feature maps. Embedding this layer in deep networks results in their shallower

variants with a smaller footprint with similar performance.

• Embedded the proposed global layer in many existing CNN architectures and con-

ducted an extensive empirical study on benchmark image recognition datasets to

show computational and storage savings.

• Proposed an efficient and approximate PDE solver to embed in the neural network

wherein model accuracy can be traded-off for the computational budget.

• We provide pseudo-code for the Global layer that is readily deployable in any pop-

ular deep learning library. Our PyTorch implementation is available at https:

//github.com/anilkagak2/PDE_GlobalLayer.

7.2 Method

In this section, we will formalize the PDE constraint on the feature representation.

We will describe the proposed Global layer, including our PDE choice, and embed an

approximate numerical solver in the neural network. Finally, we will provide building

blocks and pseudo-code to improve the understanding of our architecture.

Notation. For simplicity, we will assume that the output shape is the same as

the input, and we are dealing with only a 2D feature map represented by the X − Y
plane. Let I(x, y) ∈ Rh×w denote the input feature map with h × w entries. Let

H(x, y) ∈ Rh×w be the output feature map. We will denote ∆xy as the differential

operator (contains partial differential operators for various interactions between the

two dimensions in the input).

106

7.2.1 PDE Constrained Features.

We enforce the following PDE constraint on the output feature map H

∆xyH(x, y) = f(I(x, y)) (7.1)

where f is a function applied on the input feature map. The above operator applies

globally on the feature map and does not restrict itself to the local receptive field of

operators such as one-layer convolutions.

Illustration. Before delving into further details about the global feature layer

(namely the exact PDE and the numerical solver), we provide an intuitive example on

the MNIST dataset to demonstrate the effectiveness of such a strategy. We construct

a network with one feature layer followed by average pooling operation and classifier

layer (see Figure 7·2). Note that the feature map layer constructs only one feature

map. It gives rise to three networks by using different feature layers : (a) CNN-

Net: convolutional layer as the feature map, (b) Residual-Net: a residual connection

between the convolutional layers, and (c) PDE-Net: PDE constrained layer as the

feature map. Note that all three networks have 524 parameters to ensure a fair

comparison. Thus the only difference between these networks remains in the way

features are processed. We train these networks on the MNIST dataset with the

same settings (optimizer, learning rate, epochs, no data-augmentations, see Sec. 7.3)

to provide a fair evaluation.

On the held-out test set, CNN-Net achieves 92.01% accuracy, Residual-Net

achieves 92.53% accuracy, while PDE-Net achieves 95.03% accuracy. Since the net-

work architecture apart from the feature layer is the same, we can analyze the feature

map easily to see the contrast between the two feature representations. Figure 7·2
shows the intermediate representation from these neural networks. It shows that the

feature maps generated by PDE-Net effectively highlight the input object by smooth-

ing the noisy background and increasing brightness around the object edges.

107

7.2.2 Global Feature Layer

To embed a PDE in the neural network layer, we need to describe four components

of the PDE: (a) its exact form, i.e. ∆xy, (b) a numerical solver, (c) initial guess of the

solution, and finally (d) choice of free parameters such as the function f . We refer to

this new layer as the Global feature layer and describe these components below.

(a) PDE: At the heart of the Global feature layer is the following generic

advection-diffusion PDE 1

∂

∂t
H = ∇ · (D∇H) +∇ · (vH) + f(I) (7.2)

It lets us treat the input feature map pixels as particles in motion with velocity v

that interact with their neighborhood through diffusion coefficient D. Starting at

time t = 0 with initial guess of the concentration H(t = 0), the solution of this

advection-diffusion equation provides the final particle concentration H(t = T) at

time T . It is the output representation of the global feature layer. The motion of the

particles affects the concentration and is modelled by the advection term ∇ · (vH).

Similarly, the term ∇ · (D∇H) describes the diffusion phenomenon, where particles

shift between low and high concentrations to reach a steady state. Note that both D

and v can be a function of the particle locations. Finally, the term f(I) is the source

of the particle concentration.

In our 2D world, the velocity and diffusion coefficients have two components, i.e.

v = (u, v) and D = (Dx, Dy), and the Eq. 7.2 boils down to the following form

(Hutomo et al., 2019)

∂

∂t
H(x, y, t) +

∂

∂x

(
u(x, y, t)H(x, y, t)

)
+

∂

∂y

(
v(x, y, t)H(x, y, t)

)
1https://en.wikipedia.org/wiki/Convection-diffusion_equation

108

=
∂

∂x

(
Dx

∂

∂x
H(x, y, t)

)
+

∂

∂y

(
Dy

∂

∂y
H(x, y, t)

)
+ f(I(x, y)) (7.3)

(b) Iterative Solver: For an efficient implementation of the global layer, we

need a simple and efficient PDE solver that can be embedded in the neural network

and can achieve approximate solutions easily. To obtain a finite element scheme, it

is standard in the literature to expand the partial differential operators with their

finite-difference elements. Assume the discrete steps for x, y and t by δx, δy and

δt respectively. Following (Hutomo et al., 2019), we discretize the Eq. 7.3 as (see

Supplementary Sec. E.2 for detailed derivation),

LHk+1
x,y =MHk−1

x,y − 2(ux + vy)δtH
k
x,y + 2δtf(I(x, y))

+ (−Ax + 2Bx)H
k
x+1,y + (Ax + 2Bx)H

k
x−1,y

+ (−Ay + 2By)H
k
x,y+1 + (Ay + 2By)H

k
x,y−1 (7.4)

where L = (1 + 2Bx + 2By), and M = (1− 2Bx − 2By)

ux =
ux+1,y − ux−1,y

2δx
; vy =

vx,y+1 − vx,y−1

2δy
;

Ax =
uδt
δx

;Ay =
vδt
δy

;Bx =
Dxδt
δ2x

;By =
Dyδt
δ2y

;

Given a suitable initialization of the output feature map H at t = 0, Eq. 7.4

provides an update rule to find the PDE solution at any time t = T . We need to

initialize the algorithm and we can take K steps of this iteration on the entire 2D

map to get the solution at time T = Kδt.

(c) Initialization: An initial guess of the solution is crucial for the convergence

of the previous recursion. A better initial guess leads to faster convergence. Multiple

strategies exist to initialize the output feature map, namely (a) input feature map

I, (b) fixed function of the input, and (c) a learnable function of the input. We

109

follow the last option. Given an architecture, we use one of its building blocks as

the initialization point and learn its parameters during the training stage with back-

propagation. Thus, for architecture such as Resnet, at any resolution level, we use

the first block as the output of the global feature layer at t = 0. We run the PDE for

K steps to get the final feature map at time K
δt

.

(d) Choice of the free parameters: There are some free parameters in

the Eq. 7.3. To complete the description of the Global feature layer, we list our

parameterization for these free parameters, namely (a) function f (b) particle velocity

(u, v), and (c) diffusion coefficient (Dx, Dy). For simplicity, we keep f as identity

operator on the input and learn other parameters as the depth-wise convolution over

the initialization. We point out that, for compute savings, one can further fix these

parameters by keeping identity operations or treating these as hyper-parameters.

We study the impact of different choices for free parameters in our ablations (see

Sec. 7.3.5). We leave the design choice improvements (ex. employing architectural

search for better combinations) for future work.

Finally, as a passing remark, we point out that we have not handled the bound-

ary conditions explicitly in our formulation. Ideally, one should carefully design the

behavior of the PDE at the boundary. Instead, we roll the image such that the first

particle is a neighbor of the last. Since our goal is only to find an approximation, this

modification suffices.

Note that our choices for the PDE and the numerical solver are motivated by

the ease of implementation and simplicity in exposition. We leave the exploration

of various other PDEs (Laplace equations, Heat equations, Navier-Stokes etc.) and

better solvers to future work.

Implementation. Algorithm 4 shows the pseudo-code for the Global layer. This

feature layer integrates easily in any architecture with appropriate initializations. By

110

default, we take the discrete step sizes to be δt = 0.2, and run the recursions till

K = 5 steps, resulting in the output state at T = Kδt = 1. We take δx = δy = 1 as

the pixel values are not available at any finer details. For all our experiments, free

parameters in Eq. 7.3 are depthwise convolutional operators with the same kernel

size as the original block. For CIFAR-10 low-budget experiments, we use constant

diffusion coefficients and set 1 as their default values.

Differences from existing PDE/ODE CNNs. Existing ODE-based CNNs

(Chen et al., 2018) have focused on showing an equivalence between ResNet like

architectures and the continuous-time ODEs. Although such connections provide

new insights, few efforts utilize such ideas for compact CNNs due to expensive fixed

point solvers and costly residual functions. Thus, these architectures are unable to

scale-up to large datasets such as ImageNet (see Supplementary Sec. E.7 for further

details).

Existing PDE-based CNNs (Ruthotto and Haber, 2020; Sun et al., 2020) apply

generic stencil operators and do not solve any specific PDE. Furthermore, most of

the works use such operators on the heavily downsampled initial feature map. In

contrast, we apply the proposed Global layer at every resolution level and remove the

dependence on the repetition of the architectural blocks.

We also point out that our update Eq. 7.4 is not a simple residual connection.

It is a discretization corresponding to the PDE Eq. 7.3, wherein different elements

interact in time and spatial dimensions. In contrast, a recursive update of any generic

convolution would not necessarily correspond to an iterative scheme and will not

converge. In addition, we do not have expensive non-linearities in the update equation

that slow down the recursion. Typically in ODE/PDE CNNs, the function f is a

residual block with multiple full convolutions and non-linearities like batch-norm and

activation functions.

111

Algorithm 4 Pseudo Code for the Global Feature Block

Input : Input feature map I ∈ Rh×w

Input : Initial solution guess F (I), Function f
Output : Output feature map O
Init : H−1 = H0 = F (I)
Compute velocity (u, v), diffusion coefficient (Dx, Dy)
for k = 1 to K do

Compute f(Hk−1, I)
for x = 1, y = 1 to h,w do

Set Hk+1[x, y] as per Eq. 7.4
Set output feature map O = HK

Architectures with Global layer. Fig. 7·3 shows an schematic of the proposed

Global layer. As discussed earlier, the free parameters in this layer are constructed

as depthwise convolutions. This layer can be embedded in any existing architectures

as seen in Sec. 7.3.

7.3 Experiments

In this section, we will apply the proposed Global layer in popular architectures. We

will show that the resulting architectures have a much smaller computational and

storage footprint than the original models. We will evaluate these models on various

benchmark image recognition datasets (see Appendix A.1).

7.3.1 Experimental Setup

We implement the Global feature layer in PyTorch using the Algorithm 4. Our ex-

periments include strong baselines such as Resnet (He et al., 2016), Densenet (Huang

et al., 2017), Wide Resnet (Zagoruyko and Komodakis, 2016), DARTS (Liu et al.,

2019a). We embed global feature layers in these architectures and remove feature

block repetitions resulting in Resnet-Global, Densenet-Global, Wide Resnet-Global,

and DARTS-Global. For the ImageNet experiments, we perform similar adjustments

112

to the state-of-the-art architectures such as MobileNetV3 (Howard et al., 2019) and

EfficientNet (Tan and Le, 2019). We follow guidance from these works for a fair

comparison. Unless the original papers recommend extra augmentation or training

techniques, we minimize cross-entropy loss with the stochastic gradient descent with

momentum optimizer in all our experiments. In addition, we cite known results from

the literature for baseline reference.

We primarily report accuracy, the number of parameters, and the number of

floating-point multiply-add operations2. These metrics measure the performance,

model size, and computational footprint of a model. In addition, we tabulate depth,

inference, and training times for few experiments. We do not pursue compression-

related ideas (quantization, deep-compression, distillation, etc.) or hardware opti-

mizations in this work to simplify the crux of our exposition. These can be further

incorporated in our scheme to provide similar gains as reported in earlier works.

7.3.2 Results on MNIST-10

Since the ODE baselines do not scale to large-scale datasets, we compare our archi-

tectures with these baselines on MNIST-10 dataset. We use the Resnet architecture

in this experiment. Similar to (Chen et al., 2018; Sun et al., 2020), we use one Resnet

architecture where we apply one Global or one ODE layer or 6 residual layers after

downsampling the input twice. In addition, we use a budget (< 5M MACs) Resnet

architecture where we apply one Global layer or residual layers without downsampling

(see Supplementary Sec. E.3 for details). We minimize the cross-entropy loss using

the SGD optimizer with momentum. We follow a similar experimental setup (epochs,

learning rate, scheduler, etc.) as the baselines.

Results. Resnet-Global at same accuracy has 3 − 5× storage gains (number of pa-
2Following convention (Howard et al., 2019; Tan and Le, 2019) we leverage the benchmarked

PyTorch utility https://github.com/Lyken17/pytorch-OpCounter for MACs.

113

rameters) and 2.5− 3× compute gains. Table 7.2 compares the Resnet-Global model

with Neural ODEs(Chen et al., 2018), NeuPDE (Sun et al., 2020), Resnet (He et al.,

2016). It shows that Resnet-Global achieves similar performance as the baselines

while reducing the number of parameters and the compute requirements. In particu-

lar, compared to Resnet, our architectures reduce the storage by 3− 4× and reduce

the compute by 2 − 3×. On the other hand, Neural-ODEs have 3× higher compute

footprint when compared to Resnet.

Table 7.2: Results on MNIST-10. Networks with a Global layer have significantly
less storage and compute requirements than ODE, PDE, and discrete CNNs.

Architecture Accuracy #Params #MACs
Neural ODEs (Chen et al., 2018) 99.49 220K 100M

NeuPDE (Sun et al., 2020) 99.49 180K
Resnet (He et al., 2016; Chen et al., 2018) 99.59 600K 30M

Resnet-Global (ours) 99.51 136K 14M
Resnet 99.61 33.3K 5.7M

Resnet-Global (ours) 99.43 9.94K 1.7M

114

Figure 7·2: Toy Example comparing different backbones: Convolutional, Residual,
and Global. We show network representation for the input image for the letter three.
Intermediate features from Convolutional and Residual backbones do not show bright
intensity around the edges and have an uneven background. In contrast, the Global
layer smoothens it out and shows bright spots around the digit. Thus, the Global
layer provides a better and markedly different representation than the other two
backbones. All three networks have 524 parameters. Network with Global layer
achieves 95% accuracy while the other two achieves ≈ 92.5% accuracy. It also has a
significantly lesser confusion between the letters 3 and 5. See other visualizations in
supplementary Sec. E.8.

115

(a)

(b)

Figure 7·3: Schematic for the Global layer using the diffusion PDE.

116

T
ab

le
7.

3:
R

es
ul

ts
on

C
IF

A
R

-1
0

an
d

C
IF

A
R

-1
00

.
A

rc
hi

te
ct

ur
es

w
it

h
G

lo
ba

ll
ay

er
re

qu
ir

e
2
−

5×
le

ss
co

m
pu

ta
ti

on
al

an
d

st
or

ag
e

bu
dg

et
.

Fo
r

re
fe

re
nc

e,
w

e
bo

rr
ow

re
su

lt
s

fr
om

ex
is

ti
ng

lit
er

at
ur

e:
A

N
O

D
E

(G
ho

la
m

ie
t

al
.,

20
19

;S
un

et
al

.,
20

20
),

H
am

ilt
on

ia
n

P
D

E
(R

ut
ho

tt
o

an
d

H
ab

er
,2

02
0)

,a
nd

D
en

se
N

et
-B

C
(H

ua
ng

et
al

.,
20

17
).

A
rc

h
it

ec
tu

re
C

IF
A

R
-1

0
C

IF
A

R
-1

00
A

cc
u
ra

cy
P
ar

am
s

(S
av

in
gs

)
M

A
C

s
(S

av
in

gs
)

A
cc

u
ra

cy
P
ar

am
s

(S
av

in
gs

)
M

A
C

s
(S

av
in

gs
)

D
en

se
N

et
-B

C
95

.4
9

80
0K

30
0M

77
.7

3
80

0K
30

0M
R

es
ne

t5
6

(H
e

et
al

.,
20

16
)

93
.0

3
85

0K
12

7M
-

-
N

eu
P

D
E

(S
un

et
al

.,
20

20
)

95
.3

9
9M

76
.3

9
9M

A
N

O
D

E
94

.9
6

11
M

71
.2

8
11

M
H

am
ilt

on
ia

n
P

D
E

89
.3

26
2K

64
.9

36
2K

M
D

E
Q

(B
ai

et
al

.,
20

20
)

93
.8

10
M

8.
3B

-
-

R
es

ne
t3

2
(m

=
5)

92
.4

9
46

0K
(1

.0
×

)
70

M
(1

.0
×

)
68

.5
7

47
3K

(1
.0
×

)
70

M
(1

.0
×

)
R

es
ne

t-
G

lo
ba

l(
m

=
1)

91
.9

3
16

2K
(2

.8
×

)
15

M
(4

.7
×

)
68

.0
1

16
8K

(2
.8
×

)
15

M
(4

.7
×

)
R

es
ne

t5
6

(m
=

9)
93

.0
3

85
0K

(1
.0
×

)
12

7M
(1

.0
×

)
70

.4
8

86
1K

(1
.0
×

)
12

7M
(1

.0
×

)
R

es
ne

t-
G

lo
ba

l(
m

=
2)

93
.0

1
33

0K
(2

.6
×

)
30

M
(4

.2
×

)
70

.0
6

33
6K

(2
.6
×

)
30

M
(4

.2
×

)
D

en
se

ne
t

95
.3

2
76

9K
(1

.0
×

)
29

7M
(1

.0
×

)
77

.2
1

80
0K

(1
.0
×

)
29

7M
(1

.0
×

)
D

en
se

ne
t-

G
lo

ba
l

95
.0

1
46

5K
(1

.7
×

)
13

6M
(2

.2
×

)
75

.6
9

48
1K

(1
.7
×

)
13

6M
(2

.2
×

)
W

id
e-

R
es

ne
t

95
.9

1
9.

0M
(1

.0
×

)
1.

30
B

(1
.0
×

)
79

.1
1

9.
0M

(1
.0
×

)
1.

30
B

(1
.0
×

)
W

id
e-

R
es

ne
t-

G
lo

ba
l

95
.5

4
2.

8M
(3

.2
×

)
42

5M
(3

.1
×

)
78

.1
3

2.
8M

(3
.2
×

)
42

7M
(3

.1
×

)
D

A
R
T

S
97

.1
1

3.
3M

(1
.0
×

)
53

9M
(1

.0
×

)
82

.5
1

3.
4M

(1
.0
×

)
53

9M
(1

.0
×

)
D

A
R
T

S-
G

lo
ba

l
96

.8
3

78
3K

(4
.2
×

)
21

3M
(2

.5
×

)
81

.8
9

83
5K

(4
.1
×

)
21

3M
(2

.5
×

)
R

es
ne

t
80

.7
6

13
K

3.
42

M
35

.2
1

14
K

3.
42

M
R

es
ne

t-
G

lo
ba

l
82

.5
5

14
K

3.
6M

43
.6

2
16

K
3.

6M
W

id
e-

R
es

ne
t

83
.8

3
22

K
9.

8M
39

.0
1

23
K

9.
8M

W
id

e-
R

es
ne

t-
G

lo
ba

l
85

.5
1

23
K

8.
7M

50
.2

3
24

K
8.

7M
D

A
R
T

S
86

.0
5

39
K

7.
7M

54
.5

7
43

K
7.

7M
D

A
R
T

S-
G

lo
ba

l
88

.4
4

34
K

8.
2M

60
.6

8
41

K
8.

2M

117

7.3.3 Results on CIFAR-10 & CIFAR-100

Architectures. We evaluated popular residual architectures in this task, namely

Resnet, Wide-Resnets, and DenseNets. We ran two variants of Resnet (He et al.,

2016): Resnet32 repeats same residual block m = 5 times at every resolution while

Resnet56 increases the repetitions to m = 9. We strictly adhere to the configuration

described in the original paper (He et al., 2016). We replace the repeated blocks in

these architectures with the Global layer, resulting in two Resnet-Global architectures

where we keep m = 1 and m = 2 repetitions.

We used Wide-Resnet (Zagoruyko and Komodakis, 2016) with 40 layers and 4×
the width of the residual architecture, commonly referred to as WRN-40-4. It is

constructed similar to the above-described Resnet with m = 6 repetitions except with

4× the width. We replace these repetitions with a Global layer, resulting in Wide-

Resnet-Global with m = 1. For DenseNet, we borrowed the cost-efficient variant

DenseNet-BC (Huang et al., 2017) which has a growth rate of 12 and three dense

blocks each with 16 dense layers, also known as Densenet-BC (k=12, L=100).

In addition, we apply the Global layer to an efficient architecture found by neural

architecture search DARTS (Liu et al., 2019a) which uses a cell found by the search.

We modify this network by replacing the cell repetitions with a global layer.

Training Details. All the global architectures and their respective original base-

lines are trained with SGD+momentum optimizer for 300 epochs. We set the initial

learning rate to 0.1 and decay by 10 at epoch 150 and 225. Note that for each

architecture we use the recommended hyper-parameter settings (batch size, weight

decay, data-augmentation etc.). When hyper-parameter recommendations are miss-

ing, we use grid search over weight decay {3e − 4, 2e − 4, 1e − 4, 5e − 5, 1e − 5} and

batch size {32, 64, 128, 256} on a validation set (see Supplementary Sec. E.4 for final

hyper-parameters).

118

Results. We tabulate primary evaluation metrics in the the Table 7.3. Additional

evaluation metrics such as train/inference times and architecture configurations are

tabulated in Table 7.4. Below we summarize the main findings.

(a) Computational and storage savings. Table 7.3 shows that Global layer

enabled architectures are compact and computationally efficient. In comparison to

the baseline architectures, models with Global layer achieve 2.5−4.5× flops reduction

and 2.5− 4.2× parameters reduction.

(b) Lower training and inference times. It is evident from Table 7.4 that Global

architectures have better training and inference times, with at least 2× reductions.

Note that we can discard the training time in many IoT applications as a one-time

cost. In contrast, the inference time directly affects the battery drain and the respon-

siveness of the device.

(c) Shallower neural networks. From Table 7.4, one can deduce that Global

architectures are shallower as they reduce the number of cells in the architecture by

nearly 3× in many instances. For example, the popular Resnet56 model has 27 cells

while Resnet-Global only has 9 cells.

(d) Integrable in many popular architectures. Table 7.3 and 7.4 show that

Global layer can be successfully applied across a range of architectures with the

aforementioned benefits.

(e) Comparison at a fixed computational budget. It is worth noting that for

an IoT device, although storage space could be a prohibitive factor for large models,

the main issue with such small devices is computational in nature. The number of

floating-point operations used for inference directly impacts the battery drain as well

as the real-time latency required for any successful ML application. Keeping this in

mind, we compare Global architectures with the baselines under a low computational

budget, i.e., < 10M MACs. At this regime, Global models achieve much higher

119

accuracy than the baseline architectures. Thus, demonstrating that our models are

better suited for IoT applications.

7.3.4 Results on ImageNet-1K

Experiments on MNIST and CIFAR datasets demonstrate that architectures with a

Global layer are compact, shallower, and computationally efficient. In this section,

we show that the Global layer improves the state-of-the-art models for the ImageNet

dataset. It has been already shown in the literature that MobileNet (Sandler et al.,

2018; Howard et al., 2019) and EfficientNet (Tan and Le, 2019) models are more

cost-efficient than the Resnet/Densenet models.

Architectures. We apply the global layer to MobileNetV2, MobileNetV3, and

EfficientNet and replace the repetitions with the Global layer. For MobileNetV2, we

use the baseline with a width multiplier of 1. We obtain MobileNetV2-Global by

replacing all the invertible residual block repetitions with one Global layer at each

feature resolution. We use the large variant of MobileNetV3 with a width multiplier of

1. We create MobileNetV3-Global by replacing the building block (invertible residual

+ squeeze-and-excite) with a Global layer. Finally, for the EfficientNet family, we only

pick the B0 variant due to its low compute requirements. We provide the architecture

details along with building blocks in the Supplementary Sec. E.5.

Training Details. Due to computing limitations, we do not re-train the baselines

and only report their publicly known performance metrics in Table 7.5. We train the

architectures with the Global layer from scratch using the hyper-parameter recom-

mendations from the baselines. We use the RMSProp optimizer with 0.9 momentum

to minimize the cross-entropy loss along with a weight decay term with a value of

1e−5. The remaining hyper-parameters are available in the Supplementary Sec. E.5.

Results. Table 7.5 reports the top1 accuracy along with the number of parameters

120

Table 7.4: CIFAR-10: Train & Inference times (cost of one pass through train and
test dataset on a V100 GPU) along with the number of cells. Total cells are a proxy
for depth of the network.

Architecture Accuracy Train
Time(s)

Inference
Time(s)

original
cells

global
cells

total
cells

Resnet56 93.03 119 6.71 27 0 27
Resnet-Global 93.01 56 2.33 6 3 9

Densenet 95.32 138 10.22 48 0 48
Densenet-Global 95.01 24 3.4 24 2 26

Wide-Resnet 95.91 34 4.88 18 0 18
Wide-Resnet-Global 95.54 20 2.71 3 3 6

DARTS 97.11 126 6.86 20 0 20
DARTS-Global 96.83 61 3.43 6 3 9

and number of multiply-add operations. Below we summarize the main findings.

(a) Computational and storage savings. Table 7.5 shows that Global layer

enabled architectures are compact and computationally efficient. Our architectures

achieve similar performance as the baselines with 1.5× fewer MACs and 2.5× param-

eters savings. In addition, with a slight reduction in accuracy, we save 2× MACs and

3× parameters.

(b) Lower training and inference times. Global architectures have better

training and inference times, with nearly 2× reductions (see Supplementary Sec. E.5).

(c) Integrable in many popular architectures. Table 7.5 show that the

Global feature layer can be successfully applied across a range of architectures.

Table 7.5: Results for ImageNet dataset.

Architecture ImageNet
Top-1 #Params #MACs

MobileNet (Howard et al., 2017) 70.6 4.2M 575M
SqueezeNext (Gholami et al., 2018) 67.44 3.23M 708M
DenseNet-169 (Huang et al., 2017) 76.2 14M 3.5B

Resnet-152 (He et al., 2016) 77.8 60M 11B
MDEQ-Small (Bai et al., 2020) 75.5 18M

MobileNetV2(Sandler et al., 2018) 72.0 3.4M (1.0×) 300M (1.0×)
MobileNetV2-Global 71.63 1.6M (2.1×) 193M (1.6×)

MobileNetV2-Global-s 69.03 1.2M (2.8×) 150M (2.0×)
MobileNetV3(Howard et al., 2019) 75.2 5.4M (1.0×) 219M (1.0×)

MobileNetV3-Global 74.11 3.0M (1.8×) 156M (1.4×)
MobileNetV3-Global-s 71.89 1.8M (3.0×) 110M (2.0×)

EfficientNet-B0 (Tan and Le, 2019) 77.1 5.3M (1.0×) 390M (1.0×)
EfficientNet-B0-Global 76.12 2.4M (2.2×) 244M (1.6×)

EfficientNet-B0-Global-s 74.53 1.8M (2.9×) 201M (1.9×)

121

7.3.5 Ablative Experiments

In this section, we probe various aspects of the proposed method.

(A) Impact of K in iterative solver. We study the effect of theK hyper-parameter

in the iterative solver. On CIFAR-10 and CIFAR-100 datasets, Table 7.6 shows the

performance of the Resnet-Global model (see Sec. 7.3.3) as we vary K. Note that

the increasing K does not increase the number of parameters in our formulation. In

this case, for CIFAR-10, Resnet-Global has 162K parameters, while for CIFAR-100,

Resnet-Global has 168K parameters. Our default choice of K = 5 is justifiable from

the marginal improvement in accuracy with increased computational cost.

Table 7.6: Effect of the hyper-parameter K in update Eq. 7.4.

Architecture K CIFAR-10 CIFAR-100
Accuracy #MACs Accuracy #MACs

Resnet-Global 1 90.69 14.3M 66.89 14.3M
Resnet-Global 3 91.34 14.7M 67.37 14.7M
Resnet-Global 5 91.93 15M 68.01 15M
Resnet-Global 10 92.01 15.5M 68.23 15.5M
Resnet-Global 20 92.21 17M 68.24 17M

(B) Baseline and Global model with same MACs. Our earlier experiments

showed that the Global layer improves the computational footprint of any architec-

ture. In this ablation, we compare the Global architectures with the baselines by

keeping the same computational budget. Table 7.7 shows the performance of these

models on the CIFAR-100 dataset. Global models improve baselines by up to 4%.

Table 7.7: Global models with similar budget as original models.

Architecture CIFAR-100
Accuracy #Params #MACs

Resnet56 70.48 861K 127M
Resnet-Global 74.33 1.32M 119M

Densenet 77.21 800K 297M
Densenet-Global 78.91 922K 247M

Wide-Resnet 79.11 9M 1.3B
Wide-Resnet-Global 80.53 9M 1.3B

DARTS 82.51 3.4M 539M
DARTS-Global 84.19 2.4M 519M

(C) Non-linear Residual block as f . We compare the cost of using a standard

122

Residual block as the function f in the update Eq. 7.4 instead of the identity func-

tion. Table 7.8 shows the performance characteristics of Resnet and WideResnet on

CIFAR-10 and CIFAR-100. It shows that using Residual block only brings marginal

improvements in accuracy (< 0.5%) with a significant increase in compute cost.

Table 7.8: Ablative experiments to study the effect of the using a Residual block
instead of our current choice in update Eq. 7.4. Here, all architectures use the Global
layer.

Global Function CIFAR-10 CIFAR-100
Architecture f Acc. #Params #MACs Acc. #Params #MACs

Resnet Identity 91.93 162K 15M 68.01 168K 15M
Resnet Residual 92.28 175K 27M 68.37 181K 27M

WideResnet Identity 95.54 2.8M 425M 78.13 2.8M 427M
WideResnet Residual 95.67 3M 566M 78.34 3.1M 567M

(D) Neural ODEs without equilibrium. We compared the proposed layer vs

Neural ODE layer with smaller number of iterations. Instead of running the Neural

ODEs up to equilibrium, we unrolled the update equation to K = 5 steps (similar

unrolling as our Global layer). Table 7.9 shows that even such an optimization does

not improve its compute footprint when compared to a standard Resnet architecture.

In contrast, Global layer uses at least 2× less MACs than Resnet.

Table 7.9: Neural ODEs without equilibrium.

Architecture Accuracy #Params #MACs
Neural ODEs (Chen et al., 2018) 99.49 220K 100M
Neural ODEs (no equilibrium) 99.46 220K 27M

Resnet (Chen et al., 2018) 99.59 600K 30M
Resnet-Global (ours) 99.51 136K 14M

Resnet 99.61 33.3K 5.7M
Resnet-Global (ours) 99.43 9.94K 1.7M

(E) Impact of increasing K on compute time. Table 7.10 provides inference

time for the ablative experiment discussed in the main text (see Sec. 7.3.5(A) and the

Table 7.6). This shows that the inference time increases sub-linearly with K.

(F) Choice of free parameters. In the main text, we studied some ablations on

the choice of one free parameter, i.e., f . Here, we will study the impact of (u, v) as

well as (Dx, Dy) on the performance characteristics of the global architectures (see

123

Table 7.10: Adding inference numbers for Resnet-Global architecture in Table 6
(Effect of the hyper-parameter K in update Eq. 4). Inference time is measured as the
amount of time taken to pass through the test set on a V100 GPU.

K CIFAR-10 CIFAR-100
Accuracy

(%) #MACs Inference
Time (s)

Accuracy
(%) #MACs Inference

Time (s)
1 90.69 14.3M 1.43 66.89 14.3M 1.57
3 91.34 14.7M 1.74 67.37 14.7M 1.83
5 91.93 15M 1.91 68.01 15M 1.98
10 92.01 15.5M 2.18 68.23 15.5M 2.22
20 92.21 17M 2.48 68.24 17M 2.59

Table 7.11, 7.12, & 7.13). We will use the following options for the free parameter

initialization :

• ’Residual(Basic)’ : Used as the building block in many residual networks (He

et al., 2016)

• ’Residual(Bottleneck)’ : Used as the building block in residual networks with

larger depth (He et al., 2016)

• ’FullConv’: One layer full 3× 3 convolution

• ’PwConv’: One layer 1 × 1 convolution, also referred as the pointwise-

convolution

• ’DwConv’: One layer 3×3 depthwise convolution (does not involve any channel

mixing)

• ’Identity’ : No operation (simply pass through the features)

(G) Training & Inference Time Comparison. We further extend the motiva-

tional example to CIFAR-100 dataset as well as another Resnet32 model with m = 2

repetitions. We show the results in Table 7.14. This shows that even when Resnet

is equipped with same depth as the Resnet-Global model, it still has much worse

compute and storage footprint. In addition, by reducing the number of repetitions,

Resnet suffers a significant degradation in performance.

124

Table 7.11: (CIFAR-10/100) Ablative experiments to study the effect of the using
different free parameter choice (Dx, Dy) than our current choice in update Eq. 7.4.
Here, all architectures use the Global layer.

Global Function CIFAR-10 CIFAR-100
Architecture (Dx, Dy) Acc. #Params #MACs Acc. #Params #MACs

Resnet Identity 91.26 159K 14.7M 67.15 165K 14.7M
Resnet DwConv 91.93 162K 15M 68.01 167K 15.3M
Resnet PwConv 92.17 170K 16.4M 68.34 176K 16.4M
Resnet FullConv 92.12 256K 28.9M 68.39 262K 28.9M
Resnet Residual(Basic) 92.68 353K 43M 68.53 359K 43.3M
Resnet Residual(Bottleneck) 92.57 279K 32M 68.48 284K 32.4M

Table 7.12: (CIFAR-10/100) Ablative experiments to study the effect of the using
different free parameter choice (u, v) than our current choice in update Eq. 7.4. Here,
all architectures use the Global layer.

Global Function CIFAR-10 CIFAR-100
Architecture (u, v) Acc. #Params #MACs Acc. #Params #MACs

Resnet Identity 91.36 159K 14.7M 67.07 165K 14.7M
Resnet DwConv 91.93 162K 15M 68.01 167K 15.3M
Resnet PwConv 92.11 170K 16.4M 68.23 176K 16.4M
Resnet FullConv 91.98 256K 28.9M 68.28 262K 28.9M
Resnet Residual(Basic) 92.47 353K 43M 68.45 359K 43.3M
Resnet Residual(Bottleneck) 92.43 279K 32M 68.41 284K 32.4M

Table 7.13: (MNIST-10) Ablative experiments to study the effect of the using
different free parameter choice (u, v,Dx, Dy) than our current choice in update Eq. 7.4.
Here, all architectures use the Global layer.

Global Function (Dx, Dy) (u, v)
Architecture Acc. #Params #MACs Acc. #Params #MACs

Resnet Identity 99.36 134K 13.9M 99.38 134K 13.9M
Resnet DwConv 99.49 136K 14M 99.46 136K 14M
Resnet PwConv 99.56 142K 14.3M 99.52 142K 14.3M
Resnet FullConv 99.43 208K 16.6M 99.47 208K 16.6M
Resnet Residual(Basic) 99.62 282K 19.3M 99.53 282K 19.3M
Resnet Residual(Bottleneck) 99.59 225K 17.2M 99.54 225K 17.2M

7.4 Discussion

Global layers demonstrate that carefully designed differential equations reduce stor-

age and computational footprints of convolutional architectures. While we explored

advection-diffusion PDE in this chapter, other PDEs may yield different desirable

properties. We leave the extension to PDEs such as Heat-Dissipation, Navier-Stokes

equations, etc., to future work.

Our design choice of keeping one residual block followed by one Global layer was

125

Table 7.14: CIFAR-10 & CIFAR-100 : Comparing discrete Resnet32 (m=5), ODE
based Resnet32 (MDEQ[10]), our PDE embedded Resnet32-Global and Resnet32
(m=2) replacing Global layer with a Residual block in Resnet32-Global. We compute
the depth as the number of blocks in the network. Inference time denote the cost of
processing one pass of the test dataset on a V100 GPU.

CIFAR Method Acc. #Params #MACs Train
Time(s)

Inf.
Time(s)

Resnet32 (m=5) 92.49% 460K 70M 78 4.45
MDEQ 92.28% 1.1M 1.5B 409 23.32

10 Resnet32-Global 91.93% 162K 15M 24 1.91
Resnet32 (m=2) 89.42% 175K 27M 33 2.32
Resnet32 (m=5) 68.57% 473K 70M 82 4.57

MDEQ 67.89% 1.1M 1.5B 413 25.66
100 Resnet32-Global 68.01% 168K 15M 29 2.03

Resnet32 (m=2) 63.35% 182K 27M 41 2.65

motivated by the goal of reducing the model footprint. This design restriction should

be lifted by using multiple repetitions of the Global layer to increase model capacity.

One issue with the differential equations is that their iterative solver implementa-

tion requires full numerical precision during training. While it is possible to carefully

design half-precision schemes that utilize modules like AMP in PyTorch, the current

implementation suffers from numerical instabilities when training in half-precision

mode.

126

127

Chapter 8

Spatially Interpolated Convolutional Neural

Networks (SI-CNNs)

8.1 Introduction

Convolutional Neural Networks (CNNs) are de-facto architectures for vision appli-

cations such as image classification(Howard et al., 2019; Tan and Le, 2019), object

detection(Jiao et al., 2019), and semantic segmentation (Minaee et al., 2022). At

the heart of these architectures lie basic building blocks such as residual blocks and

other variants. Researchers have designed resource-efficient convolutional blocks

that yield a better trade-off between performance and resource usage. For instance,

Inverted Residual Block (Sandler et al., 2018) and its derivatives have been used

in many efficient CNN architectures such as MobileNetV3(Howard et al., 2019),

EfficientNet(Tan and Le, 2019), MNASNet(Tan et al., 2019), etc.

Typically, such blocks compute high-dimensional activation maps to capture key

features while being computationally inexpensive. For example, the Inverted Residual

Block projects the input onto a high dimensional space, and performs a depth-wise

convolution, followed by a projection onto a lower dimension space. Thus they com-

pute high-dimensional features without paying for full 3-d convolutions, with the

intuition that such a “low-rank" structure is enough to capture the key features.

However, such methods typically do not exploit any redundancies in the spatial

Figure 8·1: Illustration. On the left is a generic convolutional block that projects
the input features to a high dimension (Op1) and then projects it down to the low
dimensional output space (Op2). On the right is the interpolated variant of this
block. It creates two parallel branches, one where it computes anchor features from
downsampled input and the other where it computes cheaper features from the full
input image. Our inductive bias is that the output of the original block can be written
as an interpolation between these two different features.

features. The key observation of our work is that spatially features are quite “smooth".

That is, while the features of each pixel might be different, they tend to be “close" to

each other. It enables accurate predictions without paying for expensive computations

for each pixel.

Our Idea. In this work, we exploit the above mentioned observation by using a

simple and novel Spatial Interpolation (SI) scheme widely applicable to most convo-

lutional models. At a high level, our approach is to compute spatial "anchors" for a

given activation map and only perform expensive computation on the anchors, while

we use significantly cheaper computation for the rest of the image (say, decreasing the

number of features/channels). That is, while the method performs computationally

intensive feature computation, it does so only for a fraction of pixels in the activation

map and perform relatively cheap operations on the full activation map.

We illustrate our scheme by applying it to the popular inverted residual block (San-

dler et al., 2018) in Figure 8·1(a). Note that the computational cost of the inverted

128

residual block originates from the presence of the high dimensional space. For exam-

ple, projection from C → 6 ·C channels and projection back from 6 ·C → C channels.

As shown in Figure 8·1(b), we reduce this cost by expressing the output of this block

as an interpolation between two computationally cheaper processing branches. First,

anchor features generated from a down-sampled (H
2
, W

2
) input features, and second,

cheaper features generated from the full-size (H,W) input map but with significantly

smaller channel dimensions. Figure 8·1(c) represents our spatially interpolated vari-

ant of this block. Anchor features are common for a neighborhood (in Figure 8·1(b),

for a 2× 2 area), and the cheaper computation over the remaining image denotes the

perturbation from the anchors unique to the individual pixels.

Figure 8·2: ImageNet Classification. Top-1 accuracy vs computation (MACs) on
ImageNet dataset. Plot compares EfficientNet models against the proposed spatially
interpolated (SI) blocks based models (SI-EfficientNet).

That is, the anchor features capture the high-dimensional features, whereas the

low-cost perturbations in the remaining image capture subtle spatial variations. Natu-

rally, for higher-resolution images, we can allow a smaller fraction of anchors compared

to the low-resolution images, thus helping CNN models scale. Also, parallel computa-

tion of anchor features and cheap perturbations implies that the method should help

neural accelerators as they can schedule both these computations simultaneously.

129

Toy Example. To illustrate, let us dive into an image classification task on the

CIFAR-10 (Krizhevsky and Hinton, 2009) dataset. We use a simple architecture with

a convolutional stem followed by Spatially Interpolated or Inverted Residual block

and a classifier layer. We describe the experimental setup and training details in

Appendix F.1. Table 8.1 shows the performance and resource usage of these two

architectures. For a fair comparison, both architectures have the same number of

parameters. It is clear that the Interpolated block reduces the multiply-addition op-

erations (MACs) by nearly half and results in nearly 33% savings in the inference

time. In addition, it has higher accuracy than the Inverted Residual block (see Ta-

ble 8.1). This experiment shows that the interpolation scheme results in the following

benefits:

• Less Compute. It has low resource footprint that translates into low inference

and training time.

• Little Loss in Performance. By exploiting the spatial smoothness of activation

maps, the method ensures that the loss in accuracy compared to the full model is

relatively small.

• Similar Storage Footprint as the original residual block.

• Easily Integrable. It is simple to implement. Sec. 8.2 gives architecture updates

for various blocks.

While our method is general and applicable to most standard convolutional blocks,

in this work, we focus mainly on the Inverted Residual Block due to its widespread

usage in low-resource deployments. Figure 8·2 compares MACs vs ImageNet accu-

racy trade-off of our spatially interpolated inverted residual block (SI-IR) against the

standard inverted residual block deployed in EfficientNet (Tan and Le, 2019) archi-

tectures. It clearly demonstrates that the proposed spatial interpolation scheme is

able to improve accuracy for the same number of computational steps as measured by

130

MACs. In Sec. 8.2, we will describe the Interpolated Inverted Residual with various

design choices. In Sec. 8.2.4 and Sec. 8.3.4, we show how to adapt this interpolation

scheme to other building blocks such as Fused-MBConv(Tan and Le, 2021).

Table 8.1: Illustration on CIFAR-10 : Comparison between a convolutional network
with Inverted Residual and Spatially Interpolated Residual Block. Train and Infer-
ence time denote the cost of processing one pass of the train and test dataset on a
V100 GPU.

Accuracy #Params #MACs Train
Time(s)

Inference
Time(s)

ConvNet-IR 75.88% 14K 11M 1.5 0.3
SI-ConvNet-IR 80.24% 14K 6M 1.1 0.2

Contributions. We summarize our contributions below.

• We propose a novel interpolation scheme that exploits spatial smoothness in convo-

lutional residual blocks to improve the accuracy-vs-computation tradeoff and show

that the proposed interpolation scheme can be applied to most standard residual

blocks.

• Our proposal reduces the computational cost by up to≈ 40% for SOTA architectures

such as MobileNetV3 and EfficientNet on the ImageNet classification task.

• We demonstrate applicability of our method by designing spatially interpolated

backbones in semantic segmentation and show similar accuracy-vs-computational

benefits as the ImageNet task.

• Our proposed scheme is simple to implement in any major deep-learning library.

Our PyTorch implementation is available at https://github.com/anilkagak2/

Spatial_Interpolation.

8.2 Method

In this section, we will discuss our spatial interpolation scheme (SI-f) for a generic

residual block f . Then, we will instantiate it for inverted residual blocks, resulting

131

in spatially interpolated inverted residual blocks. We will analyze the computational

footprint of the proposed block. Finally, we will conclude this section with applica-

tions of the spatial interpolation to other residual blocks such as fused MBConv(Tan

and Le, 2021) and Bottleneck(He et al., 2016).

8.2.1 Spatially Interpolated Convolutional Blocks

In this section, we describe our spatially interpolated (SI) convolutional blocks. Let

X ∈ RH×W×C be an intermediate activation map generated after say i-th convolu-

tional block in a DNN; e.g., say after 4-th residual block in ResNet-18. The activation

map has H rows, W columns, and C channels. Also, let f(·) be a convolutional block

applied by the network on X, i.e., Y = f(X) where Y ∈ RH′×W ′×C′ is the (i+ 1)-th

convolutional block.

With this notation, we now describe the SI block as a combination of the following

three steps:

1. Down-sampling. The first step of SI-block is to downsample the activation map

onto a small set of anchors, i.e., A = D(X) where D : RH×W×C → R(s·H)×(s·W)×C is

a downsampling operator and s < 1 is a scaling factor. There are multiple options

for downsampling, including average-pooling or max-pooling. In this work, we use

strided depth-wise convolution for downsampling.

2. Parallel and Cheaper Convolutional Block. Next, we apply two different

convolutional blocks to X and A, where the block applied to X can be of the same

type as f but should be significantly cheaper; for example, it might have a lower

kernel size. On the other hand, the block applied to A can be as expensive as f or

can be even more expensive. That is, Ã = fA(A) ∈ R(s·H′)·(s·W ′)·C′ , X̃ = fX(X) ∈
RH′×W ′×C′ , and both have C ′ channels. The computational cost of fX is significantly

lesser than that of f , while fA can be the same as f .

132

3. Up-sampling and addition. Finally, we up-sample Ã and add it to X̃, i.e.,

Y = α · U(Ã) + β · X̃. For up-sampling, we use a simple scheme where U(Ã)ij =

mean(Ãi′j′ ; |i − i′| + |j − j′| = mina,b |i − a| + |j − b|), i.e., upsampled value is an

average of the spatially neighboring pixels in the feature map fA(D(X)). Thus, the

spatially interpolate block (SI-f) is given by:

SI-f(X) = α · U(fA(D(X))) + β · fX(X).

The above formulation allows α and β to be non-linear functions for increased

representation capacity. In our setup, for simplicity, α, β ∈ R1×1×C are learnable

coefficients, two scalars per channel.

8.2.2 SI-Inverted Residual Blocks

We now instantiate the SI block for the widely used inverted residual (InvRes) blocks

(Howard et al., 2019; Tan and Le, 2019); see Figure 8·3. For simplicity, we assume that

the block takes in an input feature map with dimensions H ×W × C and outputs

a feature map of the same size. Following notation from the previous section, the

InvRes block applies function f to activation map X ∈ RH×W×C , where f is defined

as follows:

f = P ◦ SE ◦ DC ◦ E ,

where E represents a convolution operator with 1 × 1 kernel size, typically with

Swish(Tan and Le, 2019) or Hardswish(Howard et al., 2019) as the non-linearity.

Generally, the operator increases the number of channels from say C to 6 · C. DC
represents depth-wise convolution of size 3×3, and SE represents Squeeze-and-Excite

operator (Hu et al., 2018). Finally, P represents the linear projection operator that

applies a convolutional operator with 1 × 1 kernel and without any non-linearity.

133

Generally, this operator decreases the number of channels from say 6 · C to C.

Figure 8·3: Typical Inverted Residual and Spatially Interpolated Inverted Residual
blocks. Acronyms are as follows: SE (Squeeze-and-Excitation), 1 × 1 (Pointwise
projection), Dw 3 × 3 (Depthwise Convolution). Note that after the first 1 × 1 and
Dw 3× 3 operation, there is a batch-norm followed by a non-linear activation such as
Swish (Tan and Le, 2019) or Hardswish (Howard et al., 2019). Last 1× 1 is followed
by a batch-norm.

Spatially Interpolated Inverted Residual (SI-InvRes) Block. We first

note that typically the largest computational footprint of InvRes block resides in the

E and P operations. So, to decrease the overall computational footprint, we use much

cheaper fX operators compared to the larger 1×1 operators used by standard InvRes.

Below we describe the D and fA, fX operators for SI block below:

1. Downsampling : Here, we apply a depth-wise convolution with stride 1/s with say

s = 1/2. This implies that A = D(X) is of size H
2
× W

2
.

2. fA: Here, we apply the standard InvRes block to the anchor points. That is fA =

f = P ◦ SE ◦ DC ◦ E with essentially same set of hyper-parameters as the baseline

InvRes block.

3. fX : We apply the standard InvRes block but with much smaller expansion factor.

That is, fX = f = P ′ ◦ SE ◦ DC ◦ E ′ where E ′ is 1 × 1 convolution but where the

expansion factor is much smaller than that of fA. That is, typically, we set the

expansion factor to be 2 · C, i.e., E ′(X) ∈ RH×W×2·C .

134

Finally, after applying the two parallel operations, we upsample and add.

Y = α · U(fA(D(X))) + β · fX(X). (8.1)

Note that in Eq. 8.1, each output channel is an interpolation between an anchor

and a cheaper block channel. Although we can use fancier merge operations such as

concatenation or other non-linear transformations, this simple scheme suffices in our

empirical evaluations.

8.2.3 Computational Cost Analysis

We will use Fig. 8·3 to compare the compute requirements of an interpolated residual

block and its vanilla counterpart. For simplicity, let us assume the Squeeze-and-

Excite (SE) operation has no cost (in practice, most of the compute cost originates in

the 1× 1 convolutions in the inverted residual block). Also, let the expansion factor

of f and fA be 6, and the factor of fX is 2. The inverted residual block requires

6C2HW operations for the first 1×1 projection from C → 6C space. Next, depthwise

convolution with kernel K uses 6CK2HW operations. Final 1 × 1 projection uses

6C2HW operations. The overall cost is 12C2HW+6CK2HW . Typically, the number

of channels is much greater than kernel size squared, i.e., C ≫ K2. Thus, the cost is

dominated by 12C2HW .

In contrast, the interpolated block has two branches: (a) anchors, and (b) cheaper

block. Its anchor branch downsamples the input to (H
2
, W

2
), as a result, the computa-

tional overhead associated with this branch is 12C2HW+6CK2HW
4

≈ 3C2HW . Similarly,

the cheaper branch projects only to 2C channels as compared to 6C channels, result-

ing in the cost 4C2HW + 2CK2HW . Thus, the overall cost of these operations is

close to 7C2HW . With additional overhead in the down-sampling, upsampling, and

interpolation, we can achieve about 30 − 40% savings. This can be further reduced

135

by using group convolutions in the cheaper block feature processing.

Remarks. There are various ways to balance the computation between anchors

and cheaper block features. In this work, we follow a simple and widely applicable

guideline to achieve substantial computational benefits without significant loss in

performance. As a general rule in spatial interpolation, we one-third the channels

in the cheaper branch that uses full input resolution and down-sample the input to

half the size for processing the anchor features with the same number of channels

as in the original architecture. We discuss future architecture search directions in

Appendix F.5.

8.2.4 Other Residual Blocks

So far, we have created a spatially interpolated variant of the popular inverted residual

block. However, our spatial interpolation technique is general and can apply to most

standard convolutional blocks such as Bottleneck (He et al., 2016) and Fused-MBConv

(Tan and Le, 2021) residual blocks. As a general rule, we set fA = f , i.e., apply the

same block as the standard block for the anchor points, while we use a cheaper version

of f for fX ; usually, we use cheaper convolutions in fX such as projection onto low

dimensional space.

In this section, we create spatially interpolated variants of the Fused MBConv(Tan

and Le, 2021) and Bottleneck residual blocks(He et al., 2016). These blocks are

heavily used in the EfficientNetV2(Tan and Le, 2021) and Resnet(He et al., 2016)

architectures respectively. Figure 8·4 shows the original residual block and its spatially

interpolated variant using the similar guideline as discussed in the Sec. 8.2. We train

the representative architectures that use these residual blocks in the Sec. 8.3.4 and

show the results in Table 8.6. We provide the implementation details in Appendix F.4.

136

Figure 8·4: Fused MBConv and Bottleneck blocks and their interpolated variants.

8.3 Experiments

In this section, we will evaluate convolutional neural networks by replacing their

residual blocks with our interpolated variants. We will show that the proposed

spatial interpolation scheme yields up to 40% computational benefits without any

noticeable loss in performance. First, we will benchmark spatially interpolated Mo-

bileNetV3(Howard et al., 2019) and EfficientNet(Tan and Le, 2019) models on the

ImageNet dataset (Russakovsky et al., 2015). Next, we will train segmentation mod-

els using MobileNetV3 backbone on the Cityscapes dataset (Cordts et al., 2016). We

will conclude this section with design choice ablations.

8.3.1 Experimental Setup

Datasets. We will study two applications in the vision domain, namely, image

classification and semantic segmentation. For the classification task, we will use the

large-scale ImageNet dataset A.1.5 and for the semantic segmentation task, we will

use the Cityscapes dataset A.1.7.

Models. We borrow the publicly available definitions for MobileNetV3 (Howard

et al., 2019) and EfficientNet (Tan and Le, 2019) architectures for image classifica-

tion(Wightman, 2019). We create their interpolated variants (SI-MobileNetV3 and

137

Table 8.2: ImageNet Classification. We compare MobileNetV3 and EfficientNet
architectures with the proposed Spatially Interpolated (SI) variants. It clearly shows
that SI-MobileNetV3 and SI-EfficientNet achieve up to 40% compute reduction with-
out any significant loss in accuracy. In addition, this improvement does not come with
additional storage overhead. We report mean and deviation over 3 runs in Appendix
Table F.15.

Architecture Image
Size Accuracy Params MACs

(Savings)
CPU

(4 threads)
Latency (ms)

CPU
(1 thread)

Latency (ms)
MobileNetV3-Large 224× 224 75.2% 5.4M 219M (1.0×) 150 (1.0×) 305 (1.0×)

SI-MobileNetV3-Large 224× 224 75.1% 5.2M 171M (0.8×) 110 (0.7×) 240 (0.8×)
EfficientNet-B0 224× 224 76.84% 5.3M 390M (1.0×) 290 (1.0×) 626 (1.0×)

SI-EfficientNet-B0 224× 224 76.75% 5.4M 264M (0.7×) 220 (0.8×) 493(0.8×)
EfficientNet-B1 240× 240 78.83% 7.8M 700M (1.0×) 467 (1.0×) 950 (1.0×)

SI-EfficientNet-B1 240× 240 78.84% 7.8M 477M (0.7×) 320 (0.7×) 780 (0.8×)
EfficientNet-B2 260× 260 80.09% 9.2M 1B (1.0×) 730 (1.0×) 1457 (1.0×)

SI-EfficientNet-B2 260× 260 79.81% 9.2M 0.7B (0.7×) 480 (0.6×) 1109 (0.8×)
EfficientNet-B3 300× 300 81.5% 12.3M 1.9B (1.0×) 1377 (1.0×) 2819 (1.0×)

SI-EfficientNet-B3 300× 300 81.2% 12.4M 1.3B (0.7×) 998 (0.7×) 2465 (0.9×)

SI-EfficientNet) by replacing the inverted residual blocks with our interpolated in-

verted residual blocks. For the semantic segmentation application on mobile devices,

we use the state-of-the-art MOSAIC (Wang and Howard, 2021) segmentation model.

Extensive empirical evaluation shows that this segmentation architecture achieves

superior semantic image segmentation results on multiple hardware platforms includ-

ing, CPU, GPU, and EdgeTPU. We replace the backbone MobileNet architecture

with our interpolated variant. We follow the training setup as proposed in the base-

line architectures. We refer the reader to Appendix F.2 for full architectural details,

including the training hyper-parameters.

Evaluation Metrics. For characterizing the performance, we use the Top-1

accuracy on the ImageNet dataset and the mIoU metric on the Cityscapes dataset.

For compute and storage characterization, we calculate the number of parameters

and multiply-addition operations (MACs) required for a single image inference using

standard PyTorch utilities. In addition, we benchmark the latency required for one

image inference on a single CPU core with 1 and 4 threads on a server with 128GB

RAM, 512GB NVMe storage, and an Intel Core-i9-9820X CPU with 3.30GHz clock

138

speed. This setup mimics the compute constraint typically available on resource-

constrained devices.

8.3.2 Image Classification

We train the MobileNetV3(Howard et al., 2019) and EfficientNet(Tan and Le, 2019)

architectures on the ImageNet dataset. These are well known for their resource effi-

ciency compared to other architectures such as ResNet (He et al., 2016). For the Mo-

bileNet family, we use the MobileNetV3-large architecture as the baseline and create

an interpolated variant (SI-MobileNetV3) by replacing the inverted residual blocks.

Similarly, for the EfficientNet family, we use the EfficientNet-B0 to EfficientNet-B3

architectures as the baseline and create their interpolated variants (SI-EfficientNet).

Due to our computing infrastructure limitations, we do not train the remaining larger

models from the EfficientNet family. We provide the architecture details along with

building blocks in Appendix F.2.

Training Details. We follow the publicly available training procedure (Wight-

man, 2019) to train the baseline and the interpolated architectures on four V100

GPUs. We minimize the cross-entropy loss with a weight decay of 1e − 5 using the

standard RMSProp optimizer(Tieleman et al., 2012) with 0.9 momentum. We use 5

linear warm-up epochs from 1e− 6 to the learning rate 0.064 for a batch size of 1024

images. We decay the learning rate by 0.97 every 2.4 epoch. We train the MobileNet

and Efficient models for 600 and 450 epochs respectively. Similar to the earlier

works, we use an exponential moving average (EMA) of the trained models with a

decay factor of 0.9999. Note that these hyper-parameters have been successfully used

to reproduce the MobileNet and EfficientNet baselines in the PyTorch community

(Wightman, 2019).

Results. Table 8.2 compares the baseline architectures and their spatially inter-

139

polated variants. It clearly highlights the following aspects of the proposed spatially

interpolated inverted residual blocks.

(a) Computational Savings. Table 8.2 shows that interpolated architectures

achieve up to 1.5× reduction in multiply-addition operations without any significant

loss in performance. For instance, our interpolated variant of the EfficientNet-B0

architecture achieves similar accuracy (76.8%) at 264M MACs while the original ar-

chitecture requires 390M MACs.

(b) Lower Inference Times. Since multiply-add operations do not always di-

rectly correspond one-to-one to the inference latency, we benchmark the inference

latency on a single CPU core as described in Sec. 8.3.1. Spatially Interpolated archi-

tectures achieve up to 30% reduction in inference latency compared to the original

architecture. Furthermore, on multi-threaded CPUs, parallelization of architecture

can also be exploited to translate most of the MACs savings into latency reduction.

(c) Similar Storage Footprint. Although the interpolated residual block intro-

duces two lightweight feature processing branches compared to a single branch in the

inverted residual block, we do not add any significant storage overhead due to this

change. As seen from Table 8.2, our storage requirements are on-par with the original

MobileNetV3 and EfficientNet architectures. Thus, we can deploy these interpolated

architectures with reduced inference latency without any additional storage footprint.

(d) Easily Integrable. The proposed interpolated inverted residual block is

easily integrable within state-of-the-art architectures, as evident from Table 8.2. In

addition, the interpolation scheme is agnostic to the nature of the residual block. We

create interpolated variants of other convolutional residual blocks such as Bottleneck

(He et al., 2016) and Fused Inverted Residual (Tan and Le, 2021) in Sec.8.2.4 and

show similar benefits in the ablations (see Sec 8.3.4).

140

Table 8.3: Cityscapes Semantic Segmentation. We use the state-of-the-art segmen-
tation model, MOSAIC (Wang and Howard, 2021) for mobile devices for evaluation.
We replace the ImageNet pre-trained MobileNetV3 (MNV3) and Multi-Hardware
MobileNet (MHMN) backbones with their spatially interpolated (SI) variants (see
Appendix F.2 for architecture details). It clearly shows that spatially interpolated
(SI) segmentation models yield significant compute reduction without any significant
loss in mIoU metric.

Segmentation
Architecture Backbone mIoU Params

(M)
MACs
(B)

CPU
(4 threads)

Latency (ms)

CPU
(1 thread)

Latency (ms)
MOSAIC MNV3-Small 69.12 0.61 3.46 (1.0×) 450 (1.0×) 913 (1.0×)

SI-MNV3-Small 68.94 0.68 2.79 (0.8×) 320 (0.7×) 840 (0.9×)
MOSAIC MNV3-Medium 71.41 1.22 7.81 (1.0×) 827 (1.0×) 1612 (1.0×)

SI-MNV3-Medium 71.43 1.38 6.61 (0.8×) 629 (0.8×) 1367 (0.8×)
MOSAIC MNV3-Large 74.54 1.83 10.51 (1.0×) 978 (1.0×) 1943 (1.0×)

SI-MNV3-Large 73.6 1.76 7.79 (0.7×) 723 (0.7×) 1628 (0.8×)
MOSAIC MHMN 75.67 1.83 20.81 (1.0×) 960 (1.0×) 2006 (1.0×)

SI-MHMN 75.44 2.31 14.86 (0.7×) 890 (0.9×) 1785 (0.9×)

8.3.3 Semantic Segmentation

We train segmentation models on the Cityscapes dataset to further demonstrate the

benefits of the spatial interpolation scheme. We implement the state-of-the-art se-

mantic segmentation model MOSAIC (Wang and Howard, 2021) for mobile devices.

We follow the publicly available implementation details to reproduce the baselines.

This architecture uses many ImageNet pre-trained backbones such as MobileNetV3

(Howard et al., 2019) and Multi-Hardware-MobileNet (Chu et al., 2021). For the Mo-

bileNetV3 architecture, we train three models (large, medium, and small) to show a

pareto frontier of the compute and performance characteristic curve. Note that we use

the segmentation variant of these models as described in the MobileNetV3(Howard

et al., 2019). It reduces the number of filters in the last few residual blocks and

reduces the output stride (see Appendix F.2 for full architecture details). For the

Multi-Hardware-MobileNet family, we use the MNMH architecture used in the MO-

SAIC paper.

Training Details. Following MOSAIC (Wang and Howard, 2021), we first

pre-train the backbones on the ImageNet classification task using the training setup

141

described in Sec. 8.3.2. Then, we remove the classification head attached to these

backbones during the segmentation training. We construct the segmentation model

using the MOSAIC encoder-decoder architecture. Similar to (Wang and Howard,

2021), we use the polynomial learning rate decay and minimize the cross-entropy

loss at the pixel level for the Cityscapes classes with a weight decay of 0.00001. We

minimize the loss using the SGD optimizer with 0.9 momentum and a learning rate

of 0.1 with a batch size of 32. We use four A100 GPUs to train this segmentation

model. We train all the models, including baselines up to 1000 epochs with a single

input image scale 1024× 2048. We use the standard data augmentations (Wang and

Howard, 2021; Howard et al., 2019) in all our experiments.

Results. Table 8.3 enlists the performance stats and the mIoU of various seg-

mentation models with varying degree of computational and storage requirements.

Below, we highlight the benefits of the spatial interpolation scheme on the semantic

segmentation.

(a) Computational Savings. Our spatially interpolated MobileNetV3 back-

bone yields similar computational benefits on the Cityscapes segmentation task as

the image classification task. The interpolated architectures achieve up to 1.4× re-

duction in compute without any significant loss in the mIoU metric. For instance,

segmentation model with MNMH backbone achieves 75.67mIoU with 20.81B MACs,

while the interpolated model achieves 75.44mIoU with 14.86B MACs.

(b) Lower Inference Times. We evaluate the inference time of various back-

bones with MOSAIC segmentation model on a single CPU core in Table 8.3. Inter-

polated architectures achieve up to 30% reduction in inference latency as compared

to their original counterparts.

(c) Similar Storage Footprint. Similar to image classification, spatially inter-

polated architectures require no additional storage to achieve the baseline mIoU at a

142

reduced computational footprint.

8.3.4 Ablations

In this section, we perform ablations to probe various aspects of the spatial interpo-

lation scheme.

(A) Baselines with smaller resolution. In the ImageNet experiments

(Sec. 8.3.2 and Table 8.2), we have shown that spatially interpolated architectures

dominate in the compute and accuracy trade-off. In this experiment, we match the

computational budget of the baselines to our interpolated variants by reducing their

input resolution. For instance, by reducing input resolution from 224 to 192, we

achieve MobileNetV3-large model that has a similar computational footprint as our

interpolated variant (see Table 8.4). Although we can reduce the budget, the inter-

polated architecture still outperforms this model by 1.4% Top-1 accuracy. A similar

observation holds true for the EfficientNet architecture. Thus, the proposed architec-

tures yield superior accuracy vs computational trade-off than the baselines.

Table 8.4: Baselines with lower resolution. We reduce the input resolutions for the
baseline architectures to measure the accuracy vs compute trade-off. It clearly shows
that there is a significant gap between spatially interpolated architectures and the
baselines with reduced computation.

Architecture Resolution Accuracy
(%)

Params
(M)

MACs
(M)

MobileNetV3-Large 224 75.2 5.4 219
MobileNetV3-Medium 224 73.3 4.0 155
MobileNetV3-Large 192 73.7 5.4 160

SI-MobileNetV3-Large 224 75.1 5.2 171
EfficientNet-B0 224 76.8 5.3 390
EfficientNet-B0 192 75.3 5.3 271

SI-EfficientNet-B0 224 76.8 5.4 264

(B) Hard 0-1 weights on Anchors and Cheaper block. In the interpolation

scheme, we learn coefficients α and β that combine the anchors and the cheaper

block features. In this ablation, we study the effect of each branch in isolation. We

use two configurations to study this: only anchors (α = 0, β = 1) and only cheaper

143

features(α = 1, β = 0). As a reference, (α = 1, β = 1) refers to the standard spatial

interpolation scheme used in the ImageNet and Cityscapes experiments. Table 8.5

shows the accuracy and resource usage for the MobileNetV3-large architecture for all

of these configurations. It shows that at a fixed computational budget, using only

anchors or only cheaper branch is not beneficial as compared to combining these two

feature branches.

Table 8.5: Only keep Anchors or Cheaper branch. Note that in the configuration
(1, 1) we learn the addition coefficients for Anchors and Cheaper. While in the the
other two configurations we only keep one branch or the other. It shows that at a fixed
computational budget, using only anchors or only cheaper branch is not beneficial as
compared to combining these two feature branches.

Architecture Anchors
Weight

Cheaper
Weight

Accuracy
(%)

Params
(M)

MACs
(M)

SI-MobileNetV3-Large 1 1 75.1 5.2 171
SI-MobileNetV3-Large 0 1 72.6 3.69 135
SI-MobileNetV3-Large 0 1 73.9 4.12 190
SI-MobileNetV3-Large 1 0 70.1 4.66 82
SI-MobileNetV3-Large 1 0 73.7 7.93 178

(C) Other Spatially Interpolated Blocks. So far, in the empirical evalua-

tions we have mainly focused on improving the inverted residual block. Since, our

interpolation scheme is generic as shown by the extension in Sec. 8.2.4, we apply

the interpolation scheme to reduce the computational footprint of the Bottleneck(He

et al., 2016) and Fused-MBConv (Tan and Le, 2021) residual blocks. We create in-

terpolated variants of the Resnet50 and EfficientNetV2-s architectures that utilize

Bottleneck and Fused-MBConv residual blocks respectively. We train these networks

on the ImageNet dataset using the training procedure described in (Wightman, 2019).

For EfficientNetV2-small architecture we follow a similar training setup as Efficient-

Net architectures in Sec. 8.3. We describe the training procedure for Resnet50 in Ap-

pendix F.3. We show the results in Table 8.6. It shows that the spatially interpolated

architectures achieve similar Top-1 accuracy at a 1.5× reduction in computational

cost.

144

Table 8.6: Spatially Interpolated ResNet-50 and EfficientNetv2-small.

Architecture Resolution Accuracy
(%)

Params
(M)

MACs
(B)

ResNet-50 224 79.51 25.56 4.09
ResNet-50 (ours) 224 79.19 27.51 2.67
EfficientNetv2-s 384 83.88 21.46 7.96

EfficientNetv2-s (ours) 384 83.45 21.84 4.93
EfficientNetv2-l 480 85.67 118.52 54.96

EfficientNetv2-l (ours) 480 85.23 140.1 36.35

(D) Effect of Anchors and Cheaper Block Features. In this ablation, we

study the impact of number of anchors and cheaper block features on the spatial

interpolation. We pick the MobileNetV3-large architecture and train networks with

different number of anchors and cheaper features. We pick the number of cheaper fea-

tures from the set {1, 1
2
, 1
3
}, which means the fraction of channels kept in the cheaper

branch as compared to the original MobileNetV3-large architecture. Similarly, we

pick the number of anchors from the set {1, 2, 3}, where x = 1 makes every pixel

as an anchor, and x = 2 reduces the image size into half, and so on. Note that

the configuration Anchors=1 and Cheaper=1 will be the most computationally and

storage wise expensive. Also note that changing number of anchors does not affect

the storage as it only impacts the computational aspects of the architecture.

We present these results in the Table 8.7. It shows that our design choice of

balancing anchors and cheaper features (see Sec. 8.2.2) provides a good trade-off

between accuracy, computation, and storage footprint.

(E) Choice of upsampling operator. In the anchor branch, there are multiple

choices for the upsampling operator. We tried out the following choices: proposed

nearest, bilinear, and bicubic interpolation. Table 8.8 shows that our default upsam-

pling operator fairs well in the accuracy vs latency trade-off.

145

Table 8.7: Vary number of anchors and cheaper features. Anchors (x=1,2,or 3
refers to the number of anchors selected at every x location. x = 1 simply means that
every pixel is an anchor, x = 2 means the image has been halved in the resolution
and so on.). Cheaper features (1

3
, 1

2
, 1) refers to the amount of reduction in the

number of channels as compared to the original Inverted Residual block configuration
in the MobileNetV3-large architecture. 1 means the same number of channels as in
the original architecture. 1

2
means that the number of channels have been halved,

and so on. Note that the configuration Anchors=1 and Cheaper=1 will be the most
computationally and storage wise expensive. Also note that changing number of
anchors does not affect the storage as it only impacts the computational aspects of
the architecture.

Architecture Anchors Cheaper Accuracy
(%)

Params
(M)

MACs
(M)

SI-MobileNetV3-Large 2 - 75.1 5.2 171
SI-MobileNetV3-Large 2 1

3 74.2 4.8 146
SI-MobileNetV3-Large 2 1

2 74.9 4.95 168
SI-MobileNetV3-Large 2 1 76.2 5.41 230
SI-MobileNetV3-Large 3 1

3 73.6 4.8 127
SI-MobileNetV3-Large 3 1

2 73.9 4.95 149
SI-MobileNetV3-Large 3 1 75.4 5.41 212
SI-MobileNetV3-Large 1 1

3 75.7 4.8 276
SI-MobileNetV3-Large 1 1

2 76.1 4.95 298
SI-MobileNetV3-Large 1 1 76.7 5.41 361

Table 8.8: Choice of Upsampling Operator. We tried out other upsampling schemes
in the anchor branch. This table clearly shows that more complex schemes yield
somewhat better performance but they fall behind in their accuracy vs latency trade-
off.

Architecture Upsampling Accuracy
(%)

CPU(1 thread)
Latency (ms)

SI-EfficientNet-B0 nearest 76.75 493
SI-EfficientNet-B0 bilinear 76.85 540
SI-EfficientNet-B0 bicubic 77.2 681

8.4 Discussion

In this work, our focus has been on leveraging spatial smoothness in convolutional

feature maps. This notion comes naturally to these features since the activations

have spatial dimensions. It is worth noting that the interpolation scheme is pretty

generic and is applicable to other architectures where an asymmetry exists. For

instance, in a transformer architecture, the bulk of the computation arises due to

long sequence lengths. In such cases, we can split this computation into anchors and

146

cheaper features in a similar logic. Anchors operate on partial sequences, and the

cheaper branch operates on the entire input sequence.

Due to a limited computational budget, many design choices were made to keep

the storage/compute costs low. It geared the experiments towards achieving similar

performance as the original architectures with a reduced model footprint. In the

presence of a large compute budget, these restrictions should be lifted to achieve

better accuracy at the same footprint. More so, neural architecture search should

be leveraged to find the optimal configurations in the anchor and cheaper feature

branches.

147

148

Chapter 9

Distributionally Constrained Learning

(DCL)

9.1 Introduction

The success of Deep Neural Networks (DNNs) in a wide range of applications has

motivated theoreticians to propose various complexity measures to bound the gap

between training and test error (generalization gap). These include carefully crafted

bounds such as PAC-Bayes bounds (Dziugaite and Roy, 2017), mutual-information

bounds (Bu et al., 2020), VC-dimension (Bartlett et al., 2019), Rademacher

complexity (Mohri et al., 2018), and path-norm bounds (Neyshabur et al., 2015).

Others have characterized generalizability by examining the quality of the realized

solution by virtue of training, such as convergence to flat-minima (Keskar et al.,

2017) or implicit regularization of stochastic gradient descent (SGD) (Neyshabur,

2017). In parallel, (Jiang et al., 2020) empirically examined the diverse set of

complexity measures and tabulated the correlation between these measures and the

generalization gap observed in DNNs trained with CE loss.

Distributionally Constrained Learning. Drawing upon insights from the aforemen-

tioned prior works, we propose to enforce data-dependent constraints during training,

so that both the solution trajectory as well as the loss landscape favors generalizabil-

ity. Specifically, we propose the following two constraints that are relatively easy to

optimize:

• Input-Variability constraint reduces variance in model predictions on inputs from

the same class.

• Model-Variability constraint reduces variance in model predictions due to training

on random data.

While input-variance and model-variance bound the generalization gap, a funda-

mental challenge arises in operationalizing these constraints during training. DNN

models tend to overfit training data (Zhang et al., 2017), and as such, the manifested

loss variances observed over inputs or models tend to be negligibly small.

Generalization Proxies. To overcome overfitting, we propose KL divergence mea-

sures in the logit space as proxies. First, we establish that our proposed divergence

measures are sound measures for generalization. Next, we show empirically that

at a suitable temperature parameter, the KL divergences on augmented training

data closely track the behavior of test data across epochs. These result in concrete

constraints during training yielding better generalization. As these constraints are

data-dependent, we refer to these constraints as distributional constraints.

Cosine-Scheduled Multi-Phase Constrained Training. Typically, neural net-

works incorporate constraints through a regularization term where a suitable hyper-

parameter imposes the penalty for constraint violation. This parameter balances a

trade-off between the primary objective (such as classification loss) and the constraint.

Such a strategy also requires careful and extensive tuning of the hyper-parameter to

achieve an optimal balance between the primary and side objective. We show that

such a strategy yields suboptimal performance (see empirical evaluations in Sec. 9.5).

To address this issue, we propose to enforce proxy constraints gradually. Specif-

ically, we design a cosine scheduled exploration strategy that promotes exploration

in the beginning while allowing for gradual hardening of constraints. Further, since

149

the budget for a constraint requires careful design, we develop a multi-phase strategy

to dynamically update the budget. The proposed strategy starts with a conservative

budget in the initial phase. It halves the budget every time the neural network sat-

isfies the constraint and starts the next phase with an updated budget and halved

learning rate. This process repeats till there is an improvement in performance. Such

a simple strategy yields superior performance and alleviates the burden of careful

budget hyper-parameter tuning.

Experimental Results. We ran experiments on several benchmark datasets

(CIFAR-100, TinyImageNet, ImageNet-1K) and architectures (ShuffleNetV2, Resnet-

18, Resnet-50, and ViT-Tiny) and show that our proposed input and model variability

proxies together with our multi-phase cosine scheduled exploration lead to improved

SOTA performance. In particular, on CIFAR-100, our results, obtained without any

pre-training, can realize performance gains similar to those that utilize pre-training.

In general, pre-training results in a computational bottleneck while adapting to target

data. Our proposed method suggests that we can overcome these bottlenecks through

cleverer training. On ImageNet-1K using the ViT-Tiny model, we gain roughly 2%

compared to standard CE training.

Contributions. We list the salient contributions of our paper.

• Distributional Constraints. We propose to train with data-dependent constraints.

Different from data independent constraints such as L2 norm on parameters, data-

dependent constraints adapt to the input distribution. We identify input-variability

and model-variability as critical components for enhancing generalizability.

• Cosine-scheduled Constrained Learning. In contrast to prior works that incorporate

side objectives by a fixed Lagrangian parameter, which is then hyperparameter

tuned, we adopt Cosine Scheduled Exploration that encourages exploration and

exploitation trade-offs during training while enforcing the constraints. Further, we

150

design a Multi-Phase Budget Update strategy to dynamically adjust per constraint

budget in phases, starting with a conservative budget and adaptively lowering it

until no further performance improvement is observed.

• We demonstrate SOTA performance on diverse benchmark datasets and

architectures. We show that training from scratch, without pretrain-

ing, can realize similar accuracies as models that incorporate pretrain-

ing, thereby overcoming the computational overhead of adapting pretrain-

ing to target data. Our PyTorch implementation is available at https:

//github.com/anilkagak2/DCL_Distributionally_Constrained_Learning

9.2 Related Works

Input-variability (IV). Prior works on semi-supervised learning have proposed

consistency loss (Volpi et al., 2018; Xie et al., 2020; Sohn et al., 2020; Laine and

Aila, 2017; Sajjadi et al., 2016) to inductively bias model predictions to be consistent

under reasonable modifications to the input. (Sajjadi et al., 2016) predicts the same

label amidst stochasticity in dropout, random max-pooling, and randomized affine

data augmentations. (Volpi et al., 2018) preserves predictions in the presence of

perturbations such as adversarial noise. (Xie et al., 2020) improves upon these works

to include advanced data augmentations (such as RandAugment(Cubuk et al., 2020))

as multiple viewpoints of the underlying input across which the model prediction

remains consistent. (Sohn et al., 2020) uses weak augmentation to preserve the label

information and maintains consistency by penalizing the model prediction on strong

data augmentation if it differs from weak augmentation prediction. Similarly, Π model

(Laine and Aila, 2017) penalizes when the model predictions differ between random

data augmentations and dropout for the same input, while Temporal Ensembling

(Laine and Aila, 2017) uses an average of predictions for various viewpoints of the

151

data during the training trajectory and this prediction is used as the target label.

The survey (Yang et al., 2022) presents an in-depth review.

Model-variability (MV). In parallel, (Tarvainen and Valpola, 2017; Grill et al.,

2020; Caron et al., 2021; Hochreiter and Schmidhuber, 1997a; Foret et al., 2021; Cha

et al., 2021; Chen et al., 2020b; He et al., 2020) have also explored variance arising

due to different model views. Mean-Teacher(Tarvainen and Valpola, 2017) regularizes

model predictions to be close to the teacher predictions, which is an exponential

moving average (EMA). Self-supervised learning (Caron et al., 2021; Grill et al., 2020)

explores a similar penalty in the absence of ground truth. Typically, the regularization

minimizes the difference between different views of the input forwarded through the

EMA and model. Although this requires careful design considerations to avoid rep-

resentation collapse, such a strategy successfully learns resilient latent feature space

without labels. In parallel, we can also view model invariability from the flat/wide

minima (Hochreiter and Schmidhuber, 1997a) perspective in the parameter space.

Many works have promoted this notion, such as sharpness-aware minimization(Foret

et al., 2021), averaging of the stochastic gradient models(Izmailov et al., 2018), etc.

In contrast to these prior works, we formalize the fact that IV and MV jointly

characterize generalizability. We develop distributional proxies for IV and MV and

prove that our proxies bound excess loss (see Sec.9.4.1). Then we propose a method

that individually penalizes both IV and MV.

Enforcing Constraints as Side Objective. While prior works have incorpo-

rated the above-described regularization measures, they are mostly enforced using

a fixed Lagrangian (hyper-parameter) that trades off the main objective (such as

classification loss) for the amount of violation in the regularization measure. Our

experiments in Sec. 9.5 demonstrate that such a strategy is sub-optimal. In a highly

non-convex domain such as DNN training, (Sun and Sun, 2021) does not recommend

152

the traditional ascent-descent mechanism in the constrained formulation. Inspired

by this, (Kag et al., 2023a) proposed using an epoch-varying Lagrange parameter

instead of a fixed one. (Kag et al., 2023a) empirically shows that dynamic parameter

leads to better results in knowledge distillation setting. We further extend the idea

by introducing training in phases to improve generalization. We encourage explo-

ration in early training rounds using a scheduler on the Lagrange parameter, where

we gradually increase its magnitude. We train our model using phases and a target

budget to recover generalizable minima smoothly.

9.3 Intuitive Justification

We present a synthetic example to motivate how distributional constraints lead to

generalization.

Example. Consider a regression problem with an average loss function depicted

in Figure 9·1. The loss for each data point, i, is a combination of two quadratic

functions (see G.1 for details). Figure 9·1 depicts individual losses for different data

points (ℓi(θ), shadow curves) and average loss (Eiℓi(θ), blue curve) where θ is the

parameter we would like to learn.

Generalizable Empirical Minima. Let us examine the different optima, depicted

as the black and red circles in Fig. 9·1. The loss corresponding to the black-circle

is lower than the loss suffered with the red-circle. Nevertheless, we may prefer the

red-circle as the more generalizable solution. This can be understood by considering

two uncertain components,

(A) Randomness in training data S. This leads to modification of the learner’s loss-

landscape relative to the ground-truth loss-landscape (blue-curve in Fig. 9·1) resulting

in a random trained model θS. The landscape around the red-optima being relatively

flat, the shifts due to stochasticity of training examples are relatively small.

153

(B) Randomness of test input instances, i ∼ ρ. This leads to randomness in

observed loss, ℓi(θ). The effect of this source of randomness are depicted as shadow-

curves in Fig. 9·1—the loss landscape for a single example. Comparing black vs. red

optima, we notice that the black-optima has a significantly higher loss variance, and

in particular, there is a 15% chance that a randomly chosen example will result in a

loss larger than 1000. On the other hand, the red-optima has only a 2.5% chance of

resulting in a similar loss.

Our goal is to minimize Ei,S[ℓi(θS)], and to do so, we can consider the divergence

of the empirical estimate from the true loss. Chebyshev’s inequality asserts that,

under the probability law, ρ, with probability greater than 1 − δ, Ei,S[ℓi(θS)] ≤
ℓi(θS)+

√
Var(ℓi(θS))

δ
. By appealing to the law of total variance(Weiss et al., 2005), we

can decompose the variance term as follows: In particular, w.p > 1− δ,

Ei,S[ℓi(θS)] ≤ ℓi(θS) +

√
ES[Ei,j|S(ℓi(θS)− ℓj(θS))2]

δ

+

√
ES,S′ [(Ei|Sℓi(θS)− Ei|S′ℓi(θS′))2]

δ

where S, S ′ are two training datasets; i, j are inputs; all sampled from unknown

distribution ρ.

Surrogate Objective. The three terms in the RHS correspond to training er-

ror, the loss variances induced by randomness of input examples and training data

respectively. However, for LHS to be meaningful we need to choose examples i to

be independent of S. While this leads to further simplification of terms in the RHS,

this expression is not tractable as a surrogate objective for training! We resolve this

issue by first bounding the variance terms in terms of KL divergences (see Lemma 1).

Second, we empirically verify (Fig. 9·3a, 9·3b, 9·3c) that divergence expressions and

154

use the Kullback-Leibler (KL) divergence as the distance measure by softening with

temperature τ).

We will use ℓ (y, f(θ,x)) to denote the loss of a datapoint, i.e., Cross-Entropy loss.

We consider the empirical risk minimization as minθ
1
N

∑
i ℓ (yi, f(θ,xi)).

9.4.1 Distributional Constraints

In Sec. 9.3, we describe distributional constraints that allow for control of the gener-

alization gap. However, imposing constraints on the loss variances is impractical. It

is due to:

1. Simulating Test-Data. Our notions of input and model variability are based

on evaluating examples that are independent of training data. Since we do not have

access to such examples, we need proxies, which are evaluated on training data but

simulate the effect of test data.

2. Overfitting. DNNs tend to overfit, so the loss variances observed for a model

on different inputs tend to be negligibly small. Therefore, we need proxies for the

loss variances.

KL Divergences as Proxies. As it turns out, at a suitable temperature setting

τ , KL divergences on the K-dimensional predictive probabilities, f(θ,x) satisfies our

criteria (1) and (2), namely, these divergences do not overfit and simulate the effect

of test data. Additionally, KL divergences serve as upper bounds for loss variances

(see Lemma 1). Below, we formally describe the constraints.

• Input-Variability. We define input variability Iv(x, θ) as the distance between

predictive probabilities of the two different data augmentations x1 and x2 correspond-

ing to the input x, i.e.,

Iv(x, θ) = ∆(f(θ,x1), f(θ,x2)) (9.1)

156

This metric measures the variability of the DNN predictions w.r.t. different augmen-

tations of the input. By enforcing Iv(x, θ) to be less than δ during DNN training,

we can ensure that the trained network will be robust to input perturbations up to a

certain degree. Thus, the training process will explore a more robust loss landscape.

In this work, we focus on standard data augmentations and leave augmentations such

as adversarial perturbations to future work.

• Model-Variability. Our input-variability constraint ensures that the network

explores a trajectory that is flat w.r.t. input perturbations. In contrast, model-

variability promotes flatness in the loss landscape w.r.t. network parameters. We

will track another set of parameters θ̂ to measure model-variability. These weights

could be an exponential moving average (EMA) of the DNN or a checkpoint from

earlier point in training trajectory. We define model-variabilityMv(x, θ) as

Mv(x, θ) = ∆(f(θ̂,x), f(θ,x)) (9.2)

Model-variability is related to flatness in the loss landscape w.r.t. parameters θ. As

such, by enforcingMv(x, θ) ≤ δ, the output does not change significantly within the

vicinity of the parameter θ. As a result, the constraint ensures that the trajectory

explores flat loss landscape.

One strategy is to set θ̂t as the EMA model defined as θ̂t = αθ̂t−1 + (1 − α)θt,

where α ∈ [0, 1] is the exponential decay parameter and θ̂0 is initialized randomly.

Another strategy is to set θ̂t = θt−1, i.e., the model from the previous iteration. In

batched training, one can use the previous epoch model.

We can collect many such constraints in the vector G(x, θ) and associate a budget

δ as follows

G(x, θ) =
[
Iv(x, θ)
Mv(x, θ)

]
; δ =

[
δIv
δMv

]
(9.3)

157

Next, we show that KL divergences are effective proxies for loss-variances.

Lemma 1. Suppose for each example (x, y) ∼ D, the ground-truth component of

networks with parameters θ and θ̂ satisfy 0 < ϵ ≤ fy(θ̂,x) < fy(θ,x), it follows that

|CE(θ̂)− CE(θ)| ≤
√

1

2ϵ2
Ex∼D[DKL(f(θ̂,x)∥f(θ,x))]

where, CE(·) is the average cross-entropy loss on D.

Remark. A similar result holds for the input-variability proxy described by Eq. 9.1

and is omitted. Note that the conditions in our Lemma are validated by the fact

that DNNs overfit on training data, and as such, the trained network f(θ,x) closely

fits the ground-truth label. The EMA model defined by, θ̂, tends to be somewhat

less confident in predicting ground-truth labels. We demonstrate empirically (see

Fig. 9·3a, 9·3b) that KL divergences on training examples, at a suitable temperature,

mimics test-data evaluations, and thus serve as effective proxies.

9.4.2 Constrained Learning

Having formalized the distributional constraints, we describe the constrained learning

objective. We can write the empirical risk associated with the DNN and the training

data as

L(D, θ) = 1

N

∑
i

ℓ(yi, f(θ,xi)) (9.4)

where ℓ(·, ·) is the cross-entropy loss. We can formally write the constrained objective

as follows:

min
θ
L(D, θ) s.t. G(D, θ) ≤ δ, (9.5)

where G(x, θ) defines constraints such as input and model variability, and δ is the

budget associated with these constraints.

158

Algorithms. We propose two variants to incorporate distributional constraints.

(A) Fixed Lagrangian (FL). We construct a Lagrangian that combines the empir-

ical risk and the distributional constraints with a fixed trade-off hyper-parameter λ

as L(D, θ) + λ∥G(D, θ)) − δ∥2. A grid search over various choices of λ is conducted

to find the optimal hyper-parameter.

(B) Distributionally Constrained Learning (DCL). Our experiments show that a

Fixed Lagrangian strategy yields sub-optimal performance (see Sec. 9.5). Similarly,

although it might be tempting to enforce constraints using ascent-descent schemes,

recent works(Sun and Sun, 2021; Kag et al., 2023a) have proposed alternatives to such

strategy in the non-convex regime. Inspired by this, we adopt the Cosine Scheduled

Exploration (Kag et al., 2023a) as it encourages exploration during the early epochs

in training and allows exploitation towards the end, where it enforces the constraint.

We extend this scheme by introducing a phase update strategy (explained below)

which adaptively updates the budget in phases. Thus, DCL dynamically adjusts the

trade-off parameter using a cosine schedule to balance exploration-exploitation of

the training trajectory and ramps up the trade-off significantly so that constraints

are strictly enforced at termination.

159

Algorithm 5 Distributionally Constrained Learning (DCL)

1: Input: Training data D = {(xi, yi)}Ni=1

2: Parameters: λmax, λT cosine period, Budget δ,
3: Parameters: Epochs E, Learning Rate η, α, τ
4: Initialize: Randomly initialize network θ, EMA θ̂
5: Set phase counter M = 0
6: repeat
7: Increase phase counter M by 1
8: for e = 1 to E do
9: Randomly Shuffle Dataset D

10: λ← λmax ×
(1−cos

e mod λT
λT

π)

2

11: // batched gradient descent to minimize
12: θ ← argminθ L(D, θ) + λ∥G(D, θ))− δ∥2
13: θ̂ ← αθ̂ + (1− α)θ
14: Compute current constraint value δ̂
15: δ ←

(
δ
2

if δ̂ < δ, i.e., Constraint is satisfied else δ̂
)

16: Half the learning rate η ← η
2

17: until convergence.
18: Return : θ, θ̂

Sensitivity to Budget. A crucial design point in the constrained objective in Eq. 9.5

is the budget δ that DCL requires. DCL can be sensitive to the choice of this hyper-

parameter. For instance, a large budget would end up simply ignoring the constraint

and would focus mainly on the cross-entropy term. In contrast, a small budget would

be inconsistent with the cross-entropy objective and might not be compatible with

any of its local minima. Thus, we need a scheme to carefully adjust the target budget

for the constraints.

Budget Update in Phases. We solve this issue by performing constrained learning

in multiple phases. In the initial phase, we start with a conservative budget, i.e.,

either the constraint budget achieved by the cross-entropy solution or any reasonably

high budget value. In the subsequent phases, we evaluate the constraint and verify if

the learning algorithm satisfies the earlier budget. In this case, we halved the budget.

In case, the budget is not satisfied, we set the budget as the current value of the

160

(a) (b)

O
b
j.

M
in

.

F
ix

ed
L
ag

.

C
os

in
e

L
ag

.

Feasible 24 69 86Best A
Infeasible 62 0 0B
Feasible 14 31 14C

(c)

(d) (e) (f)
Figure 9·2: 2D toy example with Gaussian distribution. Case study of cosine
scheduling in finding the optimal feasible minimum. 9·2a: Objective loss landscape
with three minima. 9·2b: Constraint function with two feasible sets. 9·2d,9·2e,9·2f:
Trajectory of different methods with different initializations. 9·2c: Convergence per-
centages to different minima for 100 differently initialized runs. Objective minimiza-
tion can converge to infeasible minima. Cosine scheduled Lagrangian converges to
the optimal feasible point more than the fixed Lagrangian.

distributional constraints. We start the next phase with the same hyper-parameters,

an updated budget, and halved learning rate. We run this multi-stage training till

the performance metric improves.

We provide the end-to-end pseudo code in the Algorithm 5. We provide some

intuition below.

Example 2. Consider a 2D function minimization problem. The objective plot

shown in Figure 9·2a consists of three Gaussian functions. Figure 9·2b shows the

corresponding constraint plot we want to satisfy in minimizing the objective. We

refer to Appendix for an explicit form of the functions. There are three local minima:

161

A- a feasible global minimum, B- an infeasible minimum, and C- a feasible local

minimum.

Comparison of methods. We compare direct function minimization, a fixed La-

grangian minimization, and a cosine scheduled Lagrangian minimization. We opti-

mize the methods using gradient descent for 200 iterations. Figure 9·2d, 9·2e, 9·2f

show the trajectories of the methods for 100 random initializations. Table 9·2c reports

the percentages of the convergence to different minima. As seen from the figure and

the plots, cosine scheduled Lagrangian converges to the best feasible point 86% of the

time, whereas the best competitor, .i.e, fixed Lagrangian, converges 69% probability.

Hence, our method can escape unwanted local minima and converges to the feasible

global minima more often than the competitors.

9.5 Experiments

In this section, we evaluate the proposed algorithms, FL and DCL on various datasets

and architectures. Additionally, we perform ablations to highlight their behavior.

9.5.1 Experimental Setup

Datasets. We consider publicly available image classification datasets: (a)

CIFAR-100 (Krizhevsky and Hinton, 2009) consists of 50K training and 10K test

images from 100 classes with size 32×32×3, (b) Tiny-ImageNet (Le and Yang, 2015)

contains 100K training and 10K test images from 200 classes with size 64 × 64 × 3,

and (c) ImageNet-1K (Russakovsky et al., 2015) consists of 1.2M training and 100K

test images from 1000 classes with size 224× 224× 3. We provide the dataset setup

in detail in Appendix A.1.

Baselines. We report the performance of following methods

• CE: Learning with standard cross-entropy loss function.

162

• DCL (ours): Learning with distributional constraints.

• FL (ours): DCL with fixed Lagrangian hyperparameter.

We include three constrained setups: (a) input-invariability, (b) model-invariability,

and (c) both. In addition, we list the performance of ImageNet pre-trained models

fine-tuned on the CIFAR-100 dataset. We enumerate the fine-tuning procedure in

Appendix J.3. Note that the ImageNet pre-trained baselines require input resolution

to be 224× 224× 3 while the rest of the baselines only require 32× 32× 3 resolution.

As a result, these baselines are computationally very expensive for inference.

Models. We evaluate ResNet(He et al., 2016) and ShuffleNetV2(Ma et al., 2018)

architectures on these datasets. In particular, we benchmark ResNet18, ResNet50,

and ShuffleNetV2-1× models. We provide their architectural details in Appendix J.3.

In addition, we list their resource requirements (storage and compute) in Table 13.2.

For ImageNet, due to compute limitations, we only train ResNet18, ShuffleNetV2,

and ViT-Tiny (Dosovitskiy et al., 2021) architectures with both constraints. We

mention model resource usage in Table 9.3. Note that our CE baselines are much

stronger than the known baselines in literature (Kag et al., 2023a).

Hyper-parameters. For the CIFAR-100 and Tiny-ImageNet datasets, we use

the SGD optimizer with a momentum of 0.9 and weight decay of 5e − 4. We train

these models up to 200 epochs with cosine learning rate decay with 0.1 as the initial

learning rate and batch size of 128. We run the ImageNet experiments for 90 epochs

with SGD optimizer with 0.9 as momentum and 0.1 as the learning rate with cosine

decay. We use the batch size of 256 for training with a weight decay term of 1e− 5.

We provide remaining hyper-parameter details in Appendix J.4.

163

Table 9.1: Model Statistics: We list the resource requirements (number of parame-
ters and multiply-addition operations) of various models trained on the CIFAR-100
and Tiny-ImageNet datasets.

Architecture CIFAR-100 Tiny-ImageNet
MACs Params MACs Params

Resnet18 555M 11.22M 2221M 11.27M
Resnet50 1298M 23.71M 5191M 23.91M

ShufflenetV2 44.5M 1.4M 177.8M 1.5M

Table 9.2: CIFAR-100 and Tiny-ImageNet: We benchmark DCL and FL against CE
and pre-trained baselines with various models. We report Gain as accuracy difference
between DCL and CE. It clearly shows that DCL significantly outperforms CE and FL
methods. In addition, it reaches accuracy of ImageNet pre-trained baseline without
any additional data and requires far less compute.

Architecture Constraint
Accuracy (%)

CIFAR-100 Tiny-ImageNet
CE Pre-trained FL DCL Gain CE FL DCL Gain

ResNet18
Input-Variability

79.7 82.2
81.3 82.6 2.9

65.1
65.6 66.4 1.3

Model-Variability 81.6 82.8 3.1 65.2 66.1 1.0
Both 81.7 83.4 3.7 65.4 66.7 1.6

ResNet50
Input-Variability

83.5 86.9
83.8 85.2 1.7

67.2
67.5 68.1 0.9

Model-Variability 83.2 84.9 1.4 67.3 67.9 0.7
Both 83.9 86.1 2.6 67.6 68.3 1.1

ShuffleNetV2
Input-Variability

75.7 80.4
77.5 80 4.3

54.5
54.7 55.6 1.1

Model-Variability 76.8 79.5 3.8 54.3 54.9 0.4
Both 77.9 80.4 4.7 54.7 55.9 1.4

9.5.2 Results

Table 13.2 compares the performance of different methods on CIFAR-100 and Tiny-

ImageNet datasets. Table 9.3 shows the performance of various baselines on the

ImageNet dataset. We report the accuracy of the EMA model in all the methods.

Below, we highlight the main takeaways points.

• DCL and FL achieve better generalization. We clearly see that enforcing

distributional objectives improves DNN generalization compared to baselines. For

instance, on CIFAR-100 with ResNet18 architecture, CE achieves 79.7% accuracy

while DCL achieves 83.4% accuracy. Similarly, on CIFAR-100 with ShuffleNetV2

architecture, CE achieves 75.7% accuracy, and FL achieves 77.5% accuracy, while

DCL significantly outperforms both of these methods and achieves 80% accuracy.

164

Table 9.3: ImageNet-1K: We train various architectures on the ImageNet dataset
and report their resource usage and Top-1 accuracy. It clearly shows that models
trained with DCL outperform the CE and FL baselines.

Architecture Params MACs CE FL DCL Gain
ResNet18 11.69M 1.8B 69.58 69.82 71.58 2.0

ShuffleNetV2 2.3M 146M 69.36 69.61 70.64 1.3
ViT-Tiny 5.72M 1.1B 75.45 76.73 77.29 1.8

• Easily scales to ImageNet dataset. Table 9.3 shows that DCL scales well

to large datasets such as ImageNet. In particular, it achieves better accuracy than

the baseline. For instance, with the ResNet18 architecture, the CE method achieves

69.58% accuracy while DCL achieves 71.58% accuracy.

• DCL trained-from-scratch is competitive with Pre-Trained Models.

Table 13.2 shows the performance of the ResNet50 model pre-trained on ImageNet

and fine-tuned on the CIFAR-100 dataset. It takes CIFAR-100 32 × 32 × 3 image

and scales to 224 × 224 × 3 image and runs the inference using this input. In

contrast, we trained the ResNet50 model with DCL using only CIFAR-100 data with

32 × 32 × 3 input. It achieves competitive performance as the pre-trained model.

This is important because pre-training is expensive. During inference DCL trained

model requires 1298M MACs which is much lower than the 4198M MACs required

by the ImageNet pre-trained model. In addition, the proposed method requires fewer

data to achieve this performance, i.e., only 100K CIFAR-100 images compared to

1.2M ImageNet images. Thus, DCL yields faster inference and requires less sample

complexity to achieve competitive performance as ImageNet pre-trained model.

• Small DCL models outperform large CE models. DCL enables small

models to compete with CE-trained large models. For instance, on CIFAR-100,

ResNet18 trained with DCL achieves similar accuracy as the much larger ResNet50

model trained with the cross-entropy method.

165

9.5.3 Ablations

(a) (b) (c)

Figure 9·3: 9·3a: Empirical model variability values for CIFAR-100 and ResNet18
experiment as a function of epochs for the train and test dataset. 9·3b: Empirical
input variability values for CIFAR-100 and ResNet18 experiment as a function of
epochs for the train and test dataset. 9·3c: Augmented train and test accuracy
with epochs. These plots validate our hypothesis that model/input variability and
accuracy on augmented data are good surrogates for test-time variability.

• Distributional Constraints. Below we analyze the behavior of the con-

straints during training.

– Input and Model variability proxies are good generalization surrogates. In

Figure 9·3a, we plot the model-variability metric (Sec. 9.4.1) for the training and

test set as a function of the number of training iterations. We note that this metric

on train set mimics test datset, validating our assumption that proposed metric is a

good generalization proxy. Input-variability plot for CIFAR-100 trained on ResNet18

(Figure 9·3b) leads to a similar observation.

– Exploration & Exploitation trade-off. In Figure 9·4a, we plot the empirical

model-variability metric along with the target budget value for this constraint while

training ResNet18 architecture on CIFAR-100 dataset. It can be clearly seen that

the constrained learning promotes constraint violations during the initial phase and

towards the end the constraint is satisfied with no violations. This strategy allows

exploration-exploitation trade-off during the training.

166

(a) (b)

Figure 9·4: 9·4a: Empirical Model-Variability and Target Budget for CIFAR-100
and ResNet18 experiment are plotted as a function of training iterations. Initially the
constraint is violated often, allowing for exploration, and at termination the constraint
is satisfied. 9·4b: Change in Empirical Model-Variability and Target budget during
various stages as defined in the Algorithm 5 for CIFAR-100 and ResNet18 experiment.
It demonstrates that even when the target budget is initialized to a conservative value
DCL adapts to a near optimal target budget during multi-stage training.

• Probing Multi-Stage strategy. Figure 9·4b shows the trajectory for

model-variability constraint and the target budget during different phases as defined

by the phase counter M in the Algorithm 5. It clearly shows that even if DCL

starts with a conservative budget δ for the constraint, during various M phases it

adjusts the target budget adaptively. In this process, the model is exposed to various

constraint violations during every stage, enabling a similar exploration-exploitation

trade-off as in the first phase.

9.6 Discussion

In this chapter, we explored input and model invariability as constraints during DNN

training. To enforce these constraints, we designed a multi-phase budget update

strategy coupled with the cosine scheduled exploration. A natural extension of this

chapter is a framework where instead of just input and model invariability, we can

include other constraints and different methods for enforcing such constraints. For

instance, the list of constraints may include entropy of the predictive distribution,

167

other notions of model invariability such as deep mutual learning, max-margin style

constraints, etc.

168

Part III

Input Hardness Adaptive Models

169

170

Chapter 10

Input Hardness Adaptive Models:

Background

In the first and second parts, we looked at neural architectures that are static in

resource allocation (with some exceptions in Chapter 4 and 8). Concretely, these

architectures utilize the same amount of resources irrespective of the input charac-

teristics. In a sense, these architectures are not dynamic or adaptive w.r.t. input

hardness. The reason why input hardness adaptivity is a desirable property in a

DNN is due to the fact that not all input instances are equally hard to predict for

a DNN. A model aware of the input hardness would spend considerably fewer re-

sources on easy inputs than difficult ones. In addition, it may even choose to discard

prediction on difficult instances due to its prediction confidence.

10.1 Intuition

Let us consider an image classification task with a low-capacity DNN. Since the model

has low capacity, it would be beneficial for the DNN to focus learning on the easier part

of the feature space. In this example, an image with the object placed in the center

under bright lighting and in distribution object would be considered an easy image

for classification. In contrast, an image with the object placed in a corner with bad

lighting and in the presence of many other objects would be considered difficult input

(a) (b) (c)

Figure 10·1: Easy vs Hard Inputs. We show three images for the ‘Golden Retriever‘
class in the ImageNet-1K dataset. Out of these three images, the first image should
be very easily classified by the model as the golden retriever, but the other two might
pose some difficulty. In particular, we would desire that the network spent as little
time to classify the first image as possible and spend some thoughts on the other
images and get the correct prediction.

for the low-capacity model. Even as humans, we exhibit this behavior. We would

easily and very quickly classify the first image and take a bit longer to recognize the

object in the second image. Thus, in this part, we will focus on integrating this input

hardness notion into the DNN architectures and training algorithms with the aim of

improving resource utilization.

Concretely, consider Figure 10·1, wherein we draw three images of the golden re-

trievers from the ImageNet-1K dataset. Image 10·1a should be very easily labelled as

the golden retriever class since it highlights key aspects of this dog breed. In contrast,

the other two images (Figure 10·1b and 10·1c) are somewhat difficult. Figure 10·1b

shows a golden retriever partly submerged underwater, while Figure 10·1c shows the

dog under bad lighting and camera conditions. Even as humans, we would be very

quick to classify the first image and would spend some time pondering over the other

two, before we label them as golden retrievers. Thus, it would be beneficial to expect

similar behavior in our neural networks.

171

10.2 Problems

There are many ways in which input hardness can be integrated into a DNN archi-

tecture. Below, we discuss problems relevant to this thesis and cover the related work

in the next section.

1. Selective Classification. One way to incorporate input hardness in a neural ar-

chitecture is to enable abstention, i.e., abstain from a prediction on some inputs.

This is also referred to as selective classification or learning with a reject option,

and such a classifier is referred to as the abstaining classifier. This problem aims

to improve DNN performance by abstaining from hard-to-predict examples. Fig-

ure 10·2 shows an abstaining classifier that classifies the easy input and abstains on

the difficult golden retriever image shown earlier (see Figure 10·1).

Figure 10·2: Selective Classification.

Consider a DNN learned to classify images between classes from the CIFAR-100

dataset. We show the histogram of the entropy of the predictive distribution in

Figure 10·3 along with the predictive entropies corresponding to the correct and

incorrect predictions. The higher entropy predictions correspond to low-confidence

predictions and there is a non-trivial overlap between high-entropy predictions and

incorrect predictions. Thus, it would have been beneficial for the neural network

172

to allocate as few resources to incorrect low-confidence predictions as possible and

focus the model capacity on the remaining feature space.

(a) (b) (c)

Figure 10·3: Entropy Histogram (ResNet18 model trained on CIFAR-100 data).
This figure plots the behavior of the entropy of the predictive distribution on the
training data. First figure shows the histogram of the entropy of the all the predic-
tions. Second figure only shows the histogram of the entropy corresponding to the
correct predictions, and the last one shows the same for the incorrect predictions.

2. Routing Abstaining Classifier to an Expert. For any application, an ab-

staining classifier would only cover a part of the feature space and learn to abstain

prediction on difficult instances. It leaves the question of what to do with the ab-

stained inputs. One strategy is to route these abstained instances to an expert

model. This opens the avenue of combining a low-capacity abstaining classifier with

a high-capacity expert classifier. Concretely, this raises the issue as to what is the

best way to combine an abstaining classifier with an expert model. Figure 10·4
shows an abstaining classifier that sends the difficult input to the expert model and

predict only on the easy input.

3. Integrating Input Hardness During Training. While the above two problems

require architectural changes to incorporate input hardness during inference, we

can also learn a DNN with a training algorithm that is aware of the input hardness

while keeping the inference static w.r.t. input hardness. For instance, consider a

training scheme wherein a network gets additional help on hard inputs, and it gets

173

Figure 10·4: Routing Abstaining Classifier to an Expert.

penalized less for mispredicting hard examples compared to easy examples. While

input hardness is very much data and model dependent and acquiring this additional

supervision is very expensive. With some modifications, it is possible to utilize the

popular knowledge-distillation (Hinton et al., 2015) setup to incrementally acquire

this supervision. Figure 10·5 shows that during training the student network receives

additional help on hard instances and it is not penalized for making mistakes on

such examples.

Figure 10·5: Leverageing Input Hardness during Training.

174

10.3 Related Works

10.3.1 Selective Classification

State of the Art (SOTA) methods: The SOTA, in terms of performance, for

SC is encapsulated by three methods. The Naïve method, i.e., rejecting when the

output of a soft classifier is non-informative (e.g. classifier margin is too small), and

this is surprisingly effective when implemented for modern model classes such as DNNs

((Geifman and El-Yaniv, 2017)). The only other methods that can (marginally) beat

this are due to (Liu et al., 2019b), who design a loss function for DNNs, and (Geifman

and El-Yaniv, 2019), who design a new architecture for DNNs that incorporates

gating.

Both (Liu et al., 2019b) and (Geifman and El-Yaniv, 2019) design methods are

based on the Gating formulation, mentioned earlier. This formulation was popu-

larised by (Cortes et al., 2016), although similar proposals appeared previously ((El-

Yaniv and Wiener, 2010; Wiener and El-Yaniv, 2011)). A number of papers have

since extended this approach, e.g. designing training algorithms via alternating min-

imisation, ((Nan and Saligrama, 2017a; Nan and Saligrama, 2017b)), designing loss

functions ((Liu et al., 2019b; Ni et al., 2019; Ramaswamy et al., 2018)), and model

classes, such as an architecturally augmented deep neural network (DNN) ((Geifman

and El-Yaniv, 2019)). In contrast, our work develops an alternate formulation that

directly solves SC without use of specialised losses or model classes.

The naïve method has its roots in the Direct SC formulation, which is based

on learning a function f : X → {1, . . . , K, ?} (where ? denotes rejection), and is

pursued by (Herbei and Wegkamp, 2006; Bartlett and Wegkamp, 2008; Wegkamp,

2007; Wegkamp and Yuan, 2011; Yuan and Wegkamp, 2010). The main disadvantage

of this formulation is that the methods emerging from it consider very restricted forms

of rejection decisions, e.g. {|ϕ − 1/2| < δ}, where ϕ is a softmax output of a binary

175

classifier.

An alternate Confidence Set formulation has been pursued in the statistics

literature by (Lei, 2014; Denis and Hebiri, 2019) (for the binary case), and involves

learning sets {Ck}k∈[1:K] such that
⋃ Ck = X , and each Ck covers class k in the sense

P(Ck|Y = k) is large1. Points which lie in two or more of the Cks are rejected, and

otherwise points are labelled according to which Ck they lie in. (Sadinle et al., 2019;

Denis and Hebiri, 2017; Chzhen et al., 2019) have subsequently extended this work

to the multiclass setting, but they study a ‘least ambiguous set-valued classification’,

which is a different problem from selective classification and does not express it well

(see the Appendix of (Gangrade et al., 2021)). A limitation of existing work in this

framework is their reliance on estimating the regression function η(x) := P(Y =

k|X = x). Proposals typically go via using non-parametric estimates of η, which

are then filtered. On a practical level, this reliance on estimation reduces statistical

efficiency, and on a principled level, this violates Vapnik’s maxim of avoiding solving

a more general problem as an intermediate step to solving a given problem ((Vapnik,

2000, §1.9)).

While our formulation is most closely related to the confidence set formulation,

and is equivalent to a change of variables of this (§11.2.3), it is directly motivated.

Furthermore, our framework naturally leads to relaxations to OSP that let us study

discriminative methods on high-dimensional datasets and large model classes, which

are unexplored in these works.

In passing, we mention the uncertainty estimation (UE), and budget learning (BL)

problems. UE involves estimating model uncertainty at any point ((Gal and Ghahra-
1More accurately, this precise formulation has not appeared for the multiclass setting, and only

appears for the binary problem in work by (Lei, 2014; Denis and Hebiri, 2019). Here we are expressing
the natural multiclass extension of this, that turns out to be equivalent to selective classification
(§11.2.3). The existing literature instead pursues the multiclass extension to LASV classification, as
mentioned above.

176

mani, 2016; Lakshminarayanan et al., 2017)), which can plug into both naïve clas-

sifiers, and the other methods. As such, UE is a vast generalisation of SC. BL is a

restricted form of SC that aims at reaching the accuracy of a complex model using

simple functions, and is relevant for efficient inference constraints.

We highlight a recent decoupling-based method for BL by (Acar et al., 2020) that

involves the first and last authors. The present work can be seen as considerable

extension of this paper to full SC. While the broad strategies of decoupling schemes

are similar, significant differences arise since much of the structure developed by

(Acar et al., 2020) does not generalise to SC, and development of new forms is nec-

essary. Additionally, our experiments study large multiclass models going beyond

best achievable standard accuracy, while (Acar et al., 2020) only study small binary

models getting to standard accuracy achievable by larger models.

10.3.2 Dynamic Computation

Split-Computation methods. (Kang et al., 2017) splits the model between the

edge and cloud device. More specifically, the initial part of the DNN is stored and

executed on the edge device. Then, the edge transmits the intermediate features to

the cloud, where the remaining computation of the DNN is performed. This split

takes into account the latency budget and the edge transmission cost. More recent

variants (Li et al., 2021; Odema et al., 2021) add a branch-out stage that allows

for classification on the edge device whenever the decision is deemed correct. A

fundamental issue is that requiring copies of the same model on server/edge severely

constrains practical use cases. For instance, in Table 12.1 server model is 9X of MCU

model. In this case, we could either use the maximum-size edge model and copy it

to the server or store a partial copy of the server model locally. The former leads to

topping accuracy at 63.5% (blue-line) at high latency, while the latter is plotted as

177

the red curves in Figure 12·2. While results improve in the dynamic setting, they are

not comparable to the other baselines. This fact is not surprising since the amount

of pre-processing gained by having a shared model is more than offset by allowing

models optimized to the edge. Since the MCUs are too small, only a tiny part of the

large DNN can be stored/executed on the edge device. The resulting intermediate

feature size is larger than the input size. Thus, cloud accuracy can only be achieved

by transmitting all examples to the cloud at a latency of an all-cloud solution.

Dynamic Neural Network methods are surveyed in (Han et al., 2022). These

methods budget more compute for hard instances. It includes (a) cascade-based early

exit networks (Park et al., 2015; Bolukbasi et al., 2017; Wang et al., 2018), where

the constituents are independently designed without feature sharing; and (b) early

exit networks (Teerapittayanon et al., 2017; Dai et al., 2020; Li et al., 2019a) where

classifiers are introduced at intermediate layers. These works generally disregard the

severely resource-constrained setting such as in Table 12.1. Within this framework,

we experimented with different approaches and found that (Bolukbasi et al., 2017;

Nan and Saligrama, 2017a; Li et al., 2021) serves as a good baseline. These allow

for different models optimized for the base and global, but the routing scheme is

designed post-hoc based on classifying locally depending on prediction uncertainty.

This is depicted as green-line in Figure 12·2.

10.3.3 Training Algorithms

Response Matching Knowledge Distillation. (Zeng and Martinez, 2000;

Bucila et al., 2006) distill the response of an ensemble of classifiers into a single

neural network by creating a pseudo-labeled dataset using the ensemble of classifiers.

(Ba and Caruana, 2014) extend this to the setting with the neural network as the

teacher. (Hinton et al., 2015) propose vanilla KD that distilled knowledge from an

178

ensemble of neural networks into a single network by matching their output logits.

This work provided a simple recipe for aligning the teacher and student predictive

distributions using the Kullback-Leibler (KL) divergence. Recently, (Beyer et al.,

2021) modify the KD procedure to include patient and consistent teacher resulting

in substantial gains. Knowledge consistency is enforced by using the same aggressive

data augmentation and image views in the student as in the teacher. Patience is

promoted using a very long training schedule. This results in a computationally very

expensive training process.

(Stanton et al., 2021) analyze response matching KD and suggests that difficulty

in optimization leads to poor knowledge distillation. Thus, the teacher and student

predictions do not always match, even on the training data. (Cho and Hariharan,

2019) study Vanilla KD through the lens of mismatched student and teacher capac-

ities. It shows that small students are unable to mimic complex teachers. They

proposed early stopping teacher training as to remedy to achieve a student-learnable

teacher. The above works provide marginal benefits when the gap between student

and teacher complexities is large. Specifically, the student cannot learn the complex

teacher decision boundaries primarily due to the small student capacity. It becomes

imperative to selectively choose only easy-to-learn data points and transfer the teacher

knowledge from these points and ignore the hard-to-learn data points during distilla-

tion. Thus, our proposal targets the problem of severe capacity gaps between student

and teacher models. Additionally, our experiments with standard student and teacher

configurations show that our proposed method is still competitive when the capacity

difference is small.

Further, (Iliopoulos et al., 2022) proposed a distillation variant in the logit space

wherein weights per data point are decided based on a heuristic between teacher and

student agreement and the teacher’s uncertainty about the prediction. It attempts

179

to debias the teacher’s predictions so that the student learns on the unbiased loss

function. This scheme discounts examples wherein the teacher is uncertain and far

from being an expert. In contrast, our proposal provides additional help on hard-to-

learn data points and learns this mapping iteratively while jointly accounting for the

teacher and student feature and logit space. In addition, this weighted distillation

does not yield as competitive performance as we achieve through our selective or

scaffolded distillation approach.

Feature Matching Knowledge Distillation. In response matching, teacher

supervision is limited to its logits. We can enforce intermediate layer feature match-

ing for refined teacher supervision. FitNets (Romero et al., 2015) extend the KD

by including the feature matching in the middle layers. (Zagoruyko and Komodakis,

2017) used feature map attention as the teacher supervision. (Tung and Mori, 2019)

preserve pairwise similarity in feature maps amongst data points during the distilla-

tion. (Chen et al., 2022) modify the student by projecting the student features onto

the teacher feature space and by reusing the teacher classifier. While our work focuses

primarily on selective distillation in Vanilla KD for simplicity. We can easily extend

the proposed framework to incorporate it into feature-matching distillation. We refer

the reader to (Gou et al., 2021) for a comprehensive survey on knowledge distillation.

Privileged Information. (Vapnik and Izmailov, 2015) propose the ‘learning

under privileged information‘ (LUPI) framework wherein a support vector machine

is trained using privileged information unavailable during the inference stage. Later,

(Lopez-Paz et al., 2016) unified LUPI and Vanilla KD into generalized distillation,

wherein the teacher is learned using the privileged information. Next, the student

is trained using the ground truth and the teacher’s labels. These works rely on

privileged information in the application domain and are shown to work on toy setups.

Since our guide function, g is available only during training, it can be thought of as

180

privileged information from a teacher. We use the teacher’s privileged knowledge

during training to predict which part of the input space is hard for the student to

learn and provide additional help on this space. This strategy enables us to account

for the residual margin, i.e., the difference between the teacher and student in the

predictive probability space. It also helps to update the student loss landscape such

that the student can learn closer to their capacity. By predicting the best margin for

the student, the teacher allows the student to reach the local minimum with the best

approximation error.

Curriculum Learning & Hard Instance Mining. Curriculum Learning (CL)

(Bengio et al., 2009; Hacohen and Weinshall, 2019; Graves et al., 2017) sorts the

data based on their hardness as measured by some scoring function (ex., predictive

entropy, softmax margin score, etc.). It presents the data points during training

in the order of increasing hardness. Similarly, Hard Instance Mining (HIM) (Zhou

et al., 2020) reduces the weight of the easy example and increases the weight on

hard inputs to promote hard-example learning. We point out that our method is only

conceptually related to these works via input hardness. Our method helps the student

with hard examples by providing explicitly discounted help g. We learn the helper

function g (through teacher representation) that decides whether the student needs

help on a given input. Thus, we do not prioritize learning hard examples keeping in

mind the fact that student capacity is much smaller than the teacher.

181

182

Chapter 11

Selective Classification via One Sided

Predictions (OSP)

11.1 Introduction

Selective Classification is a classical problem that goes back to the work of (Chow,

1957; Chow, 1970). The setup allows a learner to classify a query into a class, or to

abstain from doing so (we also call this ‘rejecting’ the query). This abstention models

real-world decisions to gather further data/features, or engage experts, all of which

may be costly. Such considerations commonly arise in diverse settings, including

healthcare1, security, web search, and the internet of things ((Xu et al., 2014; Zhu

et al., 2019)), all of which require very low error rates (lower even than the Bayes

risk of standard classification). The challenge of SC is to attain such low errors while

keeping coverage (i.e., the probability of not rejecting a point) high. This is a difficult

problem because any choice of what points to reject is intimately coupled with the

classifiers chosen for the remaining points.

The most common SC method is via ‘gating,’ in which rejection is explicitly

modelled by a binary-valued function γ, and classification is handled by a function π.

An instance, x, is predicted as π(x) if γ(x) = 1, and otherwise rejected. Within this
1For example, when deciding if a mammary mass is benign or malignant, a general physician may

predict based on ultrasound imaging tests, and, in more subtle cases, abstain and refer the patient
to a specialist.

formulation, recent work has proposed a number of methods, ranging from alternating

minimisation based joint training, to the design of new surrogate losses, and of new

model classes to accommodate rejection. Despite this increased complexity, these

methods lack power, as shown by the fact that they do not significantly outperform

naïve schemes that rely on abstaining on the basis of post-hoc uncertainty estimates

for a trained standard classifier. This represents a significant gap in the practical

effectiveness of selective classification.

Our Contributions. We describe a new formulation for the SC problem, that

comprises of directly learning disjoint classification regions {Sk}k∈Y , each of which

corresponds to labelling the instance as k respectively. Rejection is implicitly defined

as the gap, i.e., the set R = X \⋃Sk. We show that this formulation is equivalent

to earlier approaches, thus retaining expressivity.

The principal benefit of our formulation is that it admits a natural relaxation,

via dropping the disjointness constraints, into decoupled ‘one-sided prediction’ (OSP)

problems. We show that at design error ε, this relaxation has the coverage optimality

gap bounded by ε itself, and so the relaxation is statistically efficient in the practically

relevant high target accuracy regime.

We pose OSP as a standard constrained learning problem, and due to the decou-

pling property, they can be approached by standard techniques. We design a method

that efficiently adjusts to inter-class heterogeneity by solving a minimax program,

controlled by one parameter that limits overall error rates. This yields a powerful

SC training method that does not require designing of special losses or model classes,

instead allowing use of standard discriminative tools.

To validate these claims, we implement the resulting SC methods on benchmark

vision datasets - CIFAR-10, SVHN, and Cats & Dogs. We empirically find that the

OSP-based scheme has a consistent advantage over SOTA methods in the regime of

183

low target error. In particular, we show a clear advantage over the naïve scheme

described above, which in our opinion is a significant first milestone in the practice

of selective classification.

11.2 Formulation and Methods

Notation. Probabilities are denoted as P, random variables are capitalised let-

ters, while their realisations are lowercase (X and x). Sets are denoted as calligraphic

letters, and classes of sets as formal script (S ∈ S). Parameters are denoted as greek

letters. For a set S ⊂ X , P(S) is shorthand for P(X ∈ S).
We adopt the supervised learning setup - data is distributed according to an

unknown joint law P on X × Y , and we observe n i.i.d. points (Xi, Yi) ∼ P. For K

classes, we set Y = [1 : K], where K is a constant independent of |X |. We use S to

denote the class of sets from which we learn classifiers.

11.2.1 Formulation of SC

We set up the SC problem (Fig. 11·1(top) illustrates binary case) as that of directly

recovering disjoint classification regions, {Sk}k∈[1:K] from a class of sets S , under the

constraint that the error rate is smaller than a given level ε, which we call the target

error. Each such K-tuple of sets induces two events of interest - the rejection event,

and the error event.

R{Sk} :=
{
X ∈

(⋃
Sk
)c}

E{Sk} :=
⋃
{X ∈ Sk, Y ̸= k}.

We will usually suppress the dependence of R, E on {Sk}. Notice further that E
decomposes naturally into events that depend only on one of the Sks. We will call

184

these ‘one-sided’ error events

EkSk
= {X ∈ Sk, Y ̸= k}.

With the above notation, we pose the problem as a maximisation program. The value

of this is said to be the coverage at target error level ε, denoted C(ε;S).

C(ε;S) = max
{Sk}k∈[1:K]∈S

K∑
k=1

P(Sk) (SC)

s.t. P(E{Sk}) ≤ ε,

P(
⋃

k,k′ ̸=k

Sk ∩ Sk′) = 0,

where the final constraint is expressing the fact that the Sks must be pairwise disjoint.

Note that if ε equals the Bayes risk of standard classification with S , then (SC)

recovers the standard solution and coverage 1.

Example. Consider the case of K = 2 where PX is uniform on [0, 1], P(Y = 1|X =

x) = x, and S consists of single threshold sets {x > t}, {x ≤ t} for t ∈ [0, 1]. The

Bayes risk of standard classification is 1/4. For any ε < 1/4, the coverage at level ε is

C(ε;S) = 2
√
ε, which is attained by S1 = {x > 1−√ε},S2 = {x ≤

√
ε}.

Design choices

We outline alternate ways to set up the SC problem that we don’t pursue in this

paper.

Form of constraints. In (SC), we maximise coverage, while controlling error,

which is error-constrained SC. Alternately one can pursue the equivalent coverage

constrained SC problem - minimising P(E) subject to P(R) ≤ ϱ.

As illustrated in the starting example, our interest in SC is driven by the desire

185

to attain very small error rates. We thus find the error constrained form of SC more

natural, and since we needed to select one of the two for the sake of brevity, we

adopt it in the rest of the paper.2 We note that our method is also effective for

coverage-constrained SC, as shown empirically in §11.4.

Error criterion. In (SC), we constrain the raw error P(E). This has the benefit of

being both natural, since it directly controls the standard error metric, and further,

simple. Alternate forms of the error metric have been studied in the literature -

e.g. (Geifman and El-Yaniv, 2019) condition on acceptance (P (E|Rc)); (Lei, 2014)

separately constrain class conditionals (P (E|Y = k) ≤ εk). Most of the development

below can be adapted to these settings with minimal changes, and we restrict attention

to P(E) for concreteness.

11.2.2 Relaxation and One-sided Prediction

(SC) couples the Sks via the P-a.s. disjointness constraint. We now develop a decou-

pling relaxation.

To begin, note that we may decouple the error constraint by introducing variables

that trades off the one-sided error rates as below. This program is equivalent to (SC)

in the sense that they have the same optimal value, and the same {Sk} achieve this

value.

max
{Sk}∈S ,{αk}∈[0,1]

K∑
k=1

P(Sk) (SC-expanded)

s.t. ∀k : P(EkSk
) ≤ αkε,

∑
αk ≤ 1,

P(
⋃

k,k′ ̸=k

Sk ∩ Sk′) = 0.

Our proposed relaxation is to simply drop the final constraint. The resulting
2This is not to imply that the coverage constrained form cannot be more appropriate for some

settings. Which one to use in practice is ultimately a problem specific choice.

186

program may be decoupled, via a search over the variables αk into K one-sided

prediction (OSP) problems:

Lk(εk;S) = max
Sk∈S

P(Sk) s.t. P(EkSk
) ≤ εk (OSP-k)

Notice that the above OSPk problem demands finding the largest set Sk that has a

low false alarm probability for the null hypothesis Y ̸= k. Structurally this is the

opposite to the more common Anomaly Detection problem, which demands finding

the smallest set with a low missed detection probability.

We note that while we decouple the SC problem completely above, the main bene-

fit is the removal of the intersection constraint, which is the principal difficulty in SC.

The sum error constraint is benign, and for reasons of efficiency we will reintroduce

it in §11.3.

Continuing, observe that the sets recovered from the above problems may overlap,

which introduces an ambiguous region. This overlap region is necessarily of small mass

(Prop. 1), and so may be dealt with in any convenient way. Theoretically we break

ambiguities in the favour of the smallest label. These sets need not belong to S

anymore, and so this is an (weakly) improper classification scheme.

Overall this gives the following infinite sample scheme:

• For each feasible α ∈ [0, 1]K , solve for {Lk(αkε)} for each k ∈ [1 : K]. Let {T α
k } be

the recovered sets.

• Let Sα
k = T α

k \
(⋃

k′<k T α
k′

)
.

• Return the {Sα
k } that maximises

∑
k P(Sα

k) over α.

At small target error levels, which is our intended regime of study, the resulting

sets are guaranteed to not be too lossy, as in the following statement. The above is

shown (in §H.1.1) by arguing that the mass of the overlap between the OSP solutions

(the Tk) is at most 2ε. Empirically this is even lower, see Table 11.4.

187

Proposition 1. If {Sk} are the sets recovered by the procedure above, then these are

feasible for (SC). Further, their optimality gap is at most 2ε, i.e.

∑
k∈[1:K]

P(Sk) ≥ C(ε;S)− 2ε.

11.2.3 Equivalence of SC formulations

We show that the prior gating and confidence frameworks are equivalent to ours,

based on transforming feasible solutions of one framework into an other.

Gating : Denote the acceptance set of gating as Γ = {γ = 1}, and let the pre-

dictions be Πk = {π = k}. Taking Sk = Πk ∩ Γ yields disjoint sets that can serve

for SC under our formulation that have the same decision regions for each class, and

the same rejection region, since (
⋃Sk)c = Γc. Conversely, for disjoint decision sets

Sk, the gate Γ =
⋃Sk, and the predictor Πk = Sk form the corresponding gating

solution.

Confidence set : Take confidence sets {Ck} which cover X , and have the rejection

set B =
⋃

k ̸=k′ Ck ∩Ck′ . Then we produce the disjoint sets Sk = Ck \ (
⋃

k′ ̸=k Ck′), which

retain the same decision regions. These also have the same rejection region because

we may express Sk = Ck ∩ Bc, and thus
⋂Sc

k = (
⋂

k Cck) ∪ B, and
⋂ Cck = ∅ since the

Ck cover the space. Conversely, for disjoint {Sk}, the sets Ck = (
⋃

k′ ̸=k Sk′)c = Sk ∪R
cover the space, and have the rejection region R since Ck ∩ Ck′ = R for any pair

k ̸= k′.

Figure 11·1 illustrates these equivalences. Notice that due to the simplicity of

the reductions, these equivalences are fine-grained in that the joint complexity of

the family of sets used is preserved in going from one to the other. Given these

equivalences, we again distinguish our approach from the existing ones.

First, the structure of solutions is markedly different. The gating formulation takes

188

be analysed in a similar way (Appx. H.1.2), but we focus on the OSP problem, since

this underlies the method we pursue.

We show asymptotic feasibility of solutions, that is, we show that we can, with

high probability, recover a set S for OSP such that P(S) ≥ L1(ε) − o(1) and

P(E1S) ≤ ε + o(1), where the o are as the sample size diverges. This is in contrast

to exact feasibility, i.e., insisting on S ′ such that P(E1S′) ≤ ε with high probability.

Exactly satisfying constraints via ERM whilst maintaining that the objective is also

approaching the optimum is a subtle problem, and was shown to be impossible in cer-

tain cases by (Rigollet and Tong, 2011). On the other hand, plug-in methods along

with an ‘identifiability’ condition which imposes that the law of η(X) is not varying

too fast at any point can be employed to give exact constraint satisfaction along with

a small excess risk - the technique was developed by (Tong, 2013), and has been used

in SC contexts by, e.g., (Shekhar et al., 2019). However, since the applicability of

plug-in methods to large datasets in high dimensions is limited, we do not pursue this

avenue here.

One-Sided Learnability

Definition 1. We say that a class S is one-sided learnable if for every ε ≥ 0 and

(δ, σ, ν) ∈ (0, 1)3, there exists a finite m(δ, σ, ν) and an algorithm A : (X×[1 : K])m →
S such that for any law P, given m i.i.d. samples from P, A produces a set S1 ∈ S

such that with probability at least 1− δ over the data,

P(S1) ≥ L1(ε;S)− σ, and P(E1S1
) ≤ ε+ ν.

The characterisation we offer is

Proposition 2. A class S is one-sided learnable iff it has finite VC dimension. In

particular, given n samples, we can obtain a set S1 that, with probability at least 1−δ,

190

satisfies

P(S1) ≥ L1(ε;S)−
√
CK

(vc(S) log n+ log(CK/δ))

n

P(E1S1
) ≤ ε +

√
CK

(vc(S) log n+ log(CK/δ))

n
,

where CK is a constant that depends only on the number of classes K.

The proof of the necessity of finite VC dimension is via a reduction to standard

learning, while the upper bounds on rates above follow from uniform convergence due

finite VC dimension. See §H.1.3. The scheme attaining these is a direct ERM that

replaces all Ps in (OSP-k) by empirical distributions.

On the whole, applying the above result for each of the K OSP problems tells

us that if we can solve the empirical OSP problems for the indicator losses and

constraints, then we can recover a SC scheme that, with high probability, incurs error

of at most ε+O(1/
√
n) and has coverage of at least C(ε;S)− 2ε−O(1/√n).

11.3 Method

In this section, we derive an efficient scheme, first by replacing indicator losses with

two differentiable surrogate variants, and then propose OSP relaxations. A summary

of the method expressed as pseudo-code is included in Appx. H.2. Throughout,

S is set to be level sets of the soft output of a deep neural network (DNN), i.e.,

S = {f(·; θ) > t}, where f(·; θ) : X → [0, 1] is a DNN parametrised by θ. The bulk

of the exposition concerns learning θs. In this and the following section, {(xi, yi)}ni=1

refers to a training dataset with n labelled data points.

Relaxed losses. To solve the OSP problem, we follow the standard approach of

191

replacing indicator losses by differentiable ones. This sets up the relaxed problem

min
θk

∑
i ℓ(f(xi; θk))

n
s.t.
∑

i:yi ̸=k ℓ
′(f(xi; θk))

n̸=k

≤ φk

where θk parametrises the DNN, φk denote relaxed values of the constraints, and

ℓ, ℓ′ are surrogate losses that are small for large values of their argument, and n̸=k =

|{i : yi ̸= k}|. In the experiments we use ℓ(z) = − log(z) and ℓ′(z) = − log(1 − z),
essentially giving a weighted cross entropy loss. We refer to the objective of the above

problem as L̃k(θk), and the constraint as C̃k(θk).

A more stable loss. Practically, the loss L̃k suffers from instability due to the fact

that the first term sums over all instances. This can seen clearly when ℓ = − log,

for which the objective includes the sum
∑

i:yi ̸=k− log(f(xi; θk)). Since for negative

examples we expect f(x; θk) to be small, this sum is very sensitive to perturbations

in these values, which reduces the quality of the solutions. To ameliorate this, we

formulate the following ‘restricted’ loss, where the objective instead sums over only

the positively labelled samples

min
θk

∑
i:yi=k ℓ(f(xi; θk))

nk

s.t. C̃k(θk) ≤ φk. (11.1)

Notice that the constraint C̃k is the same as before. We refer to the restricted objective

above as L̃res.
k (θk). This loss underlies all further methods, and §11.4.

Note that the above program remains sound w.r.t. the OSP task, since it is a

surrogate for the following

max
Sk∈S

P(X ∈ Sk, Y = k) s.t. P(X ∈ Sk, Y ̸= k) ≤ ε.

Comparing (OSP-k) and the above, the constraints are the same, and the objectives

differ by P(Sk) − P(Sk, Y = k) = P(Sk, Y ̸= k), which, due to the constraint, is

at most ε. Thus, the programs are equivalent up to a small gap (that is, optimal

solutions for the above attain a value for (OSP-k) that is ε-close to the optimal value

for it). For the same reason, we can use the solutions of the above one-sided problem

in the scheme of §11.2.2 to yield solutions feasible for (SC) that satisfy an analogue

192

of Prop. 1 with an optimality gap of 3ε instead of 2ε.

Joint Optimisation and normalisation. A naïve approach with the above relax-

ations in hand is to optimise the k OSP problems separately. However, this leads to

an exponential in K rise in complexity in the model selection process, since different

values of (φ1, . . . , φK) need to be selected - if Φ such values are searched over for each

φk, then this amounts to a prohibitive grid search over ΦK values. In addition, due

to class-wise heterogeneity, the values of φks need not be calibrated across programs,

and thus simple solutions like pinning all the φks to the same value are not viable. A

final issue is that a naïve implementation of this setup results in training K separate

DNNs, which leads to a K-fold increase in model complexity.

We make two modifications to handle this situation. First, we normalise function

outputs by adopting the following architecture: we consider DNNs with K output

nodes, each representing one of the fk. The backbone layers of the network are shared

across all OSP problems. Further, we take

f(x) = (f1(x), . . . , fK(x)) = softmax(⟨wk, ξθ(x)⟩),

where ξθ denotes the backbone’s output, and recall that (softmax(v))k = exp vk/
∑

exp vk.

This normalisation and restricted model handles both the class-wise heterogeneity,

and the blowup in model complexity.

For the sake of succinctness, we define w = (w1, w2, . . . , wK), and φ =

(φ1, . . . , φK).

Next, in order to ameliorate the search, we propose jointly optimising the various

OSP problems, by enforcing a joint constraint on the sum of the various constraint

values via a single value φ. This mimics the structure of (SC), where the constraint

limits the sum of the one-sided errors. The relaxation thus amounts to dropping the

disjointness constraint, and softening the indicators in (SC). The resulting problem

193

is

min
θ,w,φ

∑
k

L̃res.
k (θ,w) (11.2)

s.t. ∀k : C̃k(θ,w) ≤ φk,
∑

φk ≤ φ,

where recall L̃res., C̃k from above, which are functions of (θ,w) since the backbone θ

is shared, and since all fk depend on all wks due to the softmax normalisation.

Finally, we propose optimising (11.2) via stochastic gradient ascent-descent. We

note that one tunable parameter - µ - remains in the problem, corresponding to the

sum constraint on the φks, while λks are multipliers for the C̃k constraints. We again

denote λ = (λ1, . . . , λK). The resulting Lagrangian is

M̃ res.(θ,w,φ,λ, µ) (11.3)

=
∑
k

L̃res.
k (θ,w) + λk(C̃k(θ,w)− φk) + µφk,

and we solve the problem

min
(θ,w,φ)

max
λ:∀k,λk≥0

M̃ res.(θ,w,φ,λ, µ), (11.4)

treating µ as the single tunable parameter.

We note that the Lagrangian above bears strong resemblance to a one-versus-all

(OVA) multiclass classification objective. The principal difference arises from the fact

that the losses are weighted by the λk terms, and the optimisation trades these off,

which are typically not seen in one-versus-all approaches (of course, we also use the

resulting functions very differently).

Thresholding and resulting SC solution. The outputs of the classifiers learned

with any given µ yield soft signals for the various OSP problems. To harden these

194

into a decision, we threshold the outputs of the soft classifier at a common level

t ∈ [0, 1]. This crucially relies on the earlier normalisation of the soft scores to make

them comparable. Finally, to deal with ambiguous regions, we use the soft signals fk,

and assign the label to the one with the largest score. Overall, this leads to the SC

solution

Sk(θ,w, t) ={x : fk(x; θ,w) ≥ t} (11.5)

∩ {x : k = argmax
k′

fk′(x; θ,w)}.

Model Selection. The above setup has two scalar hyperparameters - µ from (11.4),

and threshold t at which hard decisions are produced in (11.5), and each choice of

these yields a different solution. Our final model is one that performs the best on the

validation dataset among all hyperparameter tuples (µ, t). Concretely, let P̂V denote

the empirical law on a validation dataset. Denote the solutions from (11.4) with a

choice of µ as (θ(µ),w(µ)). Let M,T respectively be discrete sets of µ’s and t’s. The

procedure is

• For each (µ, t) ∈ M × T, and each k, compute Sk(µ, t) = Sk(θ(µ),w(µ), t) as

defined in (11.5).

• For each (µ, t) ∈ M × T, evaluate ĈV (µ, t) =
∑

k P̂V (Sk(µ, t)) and ÊV (µ, t) =∑
k P̂V (EkSk

).

• Let (µ∗, t∗) = argmaxM×T ĈV (µ, t) subject to ÊV (µ, t) ≤ ε.

• Return (θ(µ∗), {wk(µ
∗)}, t∗).

195

Dataset Num. of Samples Std. ErrorTrain. Test Val.
CIFAR-10 45K 10K 5K 9.58%
SVHN-10 65.9K 26K 7.3K 3.86%

Cats & Dogs 18K 5K 2K 5.72%

Table 11.1: Dataset sizes and standard classification error

11.4 Experiments

11.4.1 Experimental Setup and Baselines

Datasets and Model Class. We evaluate all methods on three benchmark

vision tasks: CIFAR-10 (A.1.4), SVHN-10 (A.1.2) (10 classes), and Cats & DogsA.1.3

(binary). All models implemented below are DNNs with the RESNET-32 architecture

((He et al., 2016)), which is a standard model class in vision tasks. 20% of the

training data is reserved for validation in each dataset. All models are implemented

in the tensorflow framework. The samples sizes and the best standard classification

performance is presented in Table 11.1.

Baselines. We benchmark against three state of the art methods. The ‘selective

net’ and ‘deep gamblers’ methods also require hyperparameter and threshold tuning

as in our setup, and we do this in a brute force way on validation data, as in ours.

Softmax Response Thresholding (SR) involves training a neural network for stan-

dard classification, and then thresholding its soft output to decide to reject. More

formally, the decision is to reject if {softmax(f1, . . . , fK) < t}, where f is the soft

output, and t is tuned on validation data. This simple scheme is known to have near-

SOTA performance ((Geifman and El-Yaniv, 2017; Geifman and El-Yaniv, 2019)).

Selective Net (SN) is a DNN meta-architecture for SC due to (Geifman and El-

Yaniv, 2019). The network provides three soft outputs - (f, γ, π), where f is an aux-

iliary classifier used to aid featurisation during training, and γ, π is a gate-predictor

196

pair. Selective net prescribes a loss function that trades off coverage and error via

a multiplier c, and by fine-tuning a threshold on γ to reject. We use the publicly

available code3 to implement this, and a comprehensive sweep over the coverage and

threshold hyper-parameters. We use 40 valued grid for the parameter c (with 10

equally spaced values in the range [0.0, 0.65) and remaining 30 values in the range

[0.65, 1.0]). For the gating threshold γ, we use 100 thresholds equally spaced in the

range [0, 1], the same as for our scheme.

Deep Gamblers (DG) is a loss function for SC within the gating framework due to

(Liu et al., 2019b). The NNs have K + 1 outputs - f1, . . . , fK , f?. The cross-entropy

loss is modified to
∑

log ((fyi(xi) + O−1f?(xi)) , where O ∈ [1, K) is a hyperparameter

that trades-off coverage and accuracy. Hard decisions are obtained by tuning the

threshold of f? on a validation set. We adapt the public torch code4 for this method

to the Tensorflow framework. We used 40 values of O spaced equally in the range

[1, 2)5, and 100 values of thresholds in [0, 1].

11.4.2 Training One-Sided Classifiers

Loss Function. We use the loss function M̃ res. developed in §11.3. In particular

for L̃res.
k , we use ℓ(z) = − log(z), and for C̃k, ℓ

′(z) = − log(1− z).
Training of Backbones. As previously discussed, our models share a common

backbone and have a separate output node for each OSC problem. We intialise this

backbone with a base network trained using the cross-entropy loss (i.e. a ‘warm start’).

Note that this typically yields a strong featurisation for the data, and exploiting this
3https://github.com/geifmany/selectivenet
4https://github.com/Z-T-WANG/NIPS2019DeepGamblers/
5We initially made a mistake and scanned O in [1, 2) instead of [1, 10). We then redid the

experiment. with 40 values in [1, 10), and found that performance deteriorated. This is because the
optimal O for these datasets lies in [1, 2), and the wider grid leads to a less refined search in this
domain. Thus, values from the original experiment are reported. See Tables H.2, H.3 in §H.3 for
the values with a scan over [1, 10).

197

structure requires us to not move too far away from the same. At the same time, due

to the changed objective, it is necessary to at least adapt the final layer significantly.

We attain this via a two-timescale procedure: the loss is set to the OSP Lagrangian,

and the backbone is trained at a slower rate than the last layer. Concretely, the last

layer is updated at every epoch, while the backbone is updated every 20 epochs. This

stabilises the backbone, while still adapting it to the particular OSP problem that

the network is now trying to solve.

Hyper-parameters. All of the methods were trained using the train split and

the model selection was performed on the validation set. The results are reported on

the separate test data (which is standard for all three of the models considered). The

minimax program on the Lagrangian was optimised using a two-timescale stochastic

gradient descent-ascent, following the recent literature on nonconvex-concave min-

imax problems ((Lin et al., 2020b)). In particular, we used Adam optimizer for

training with initial learning rates of (10−3, 10−5) for the min and the max problems

respectively for CIFAR-10 and SVHN-10, and of (10−3, 10−4) for Cats & Dogs.6 These

initial rates were reduced by a factor of 10 after 50 epochs, and training was run for

200 epochs. The batch size was set to 128.

We searched over 30 values of µ for each of our experiments - 10 values equally

spaced in [0.01, 1], and remaining 20 equally spaced in [1, 16]. We further used

100 values of thresholds equally spaced in [0, 1]. We have released our implementa-

tion at https://github.com/anilkagak2/SelectiveClassification_One_Sided_

Prediction.
6These rates were selected as follows: the standard classifier was trained with the rate 10−4,

which is a typical value in vision tasks. We then picked one value of µ, and trained models using
rates in (10−k, 10−j) for (j, k) ∈ [2 : 6]× [2 : 6], tuned thresholds for models at 0.5% target accuracy
using validation data, and chose the pair that yielded the best validation coverage. Performance
tended to be similar as long as j ̸= k, and curiously, we found it slightly better to use a smaller rate
for the max problem, which goes against the suggestions of (Lin et al., 2020b).

198

Dataset Target OSP-based SR SN DG
Error Cov. Error Cov. Error Cov. Error Cov. Error

CIFAR-10
2% 80.6 1.91 75.1 2.09 73.0 2.31 74.2 1.98
1% 74.0 1.02 67.2 1.09 64.5 1.02 66.4 1.01

0.5% 64.1 0.51 59.3 0.53 57.6 0.48 57.8 0.51

SVHN-10
2% 95.8 1.99 95.7 2.06 93.5 2.03 94.8 1.99
1% 90.1 1.03 88.4 0.99 86.5 1.04 89.5 1.01

0.5% 82.4 0.51 77.3 0.51 79.2 0.51 81.6 0.49

Cats & Dogs
2% 90.5 1.98 88.2 2.03 84.3 1.94 87.4 1.94
1% 85.4 0.98 80.2 0.97 78.0 0.98 81.7 0.98

0.5% 78.7 0.49 73.2 0.49 70.5 0.46 74.5 0.48

Table 11.2: Performance at Low Target Error. The OSP-based scheme is our pro-
posal. SR, SN, DG correspond to softmax-response, selective net, deep gamblers.
Errors are rounded to two decimals, and coverage to one.

11.4.3 Results

The key takeaway of our empirical results is the significant increase in performance of

our SC scheme when compared to the baselines. We also include some observations

about the structure of the solutions obtained.

Performance

Dataset Target OSP-based SR SN DG
Coverage Cov. Error Cov. Error Cov. Error Cov. Error

CIFAR-10
100% 100 9.74 99.99 9.58 100 11.07 100 10.81
95% 95.1 6.98 95.2 8.74 94.7 8.34 95.1 8.21
90% 90.0 4.67 90.5 6.52 89.6 6.45 90.1 6.14

SVHN-10
100% 100 4.27 99.97 3.86 100 4.27 100 4.03
95% 95.1 1.83 95.1 1.86 95.1 2.53 95.0 2.05
90% 90.1 1.01 90.0 1.04 90.1 1.31 90.0 1.06

Cats & Dogs
100% 100 5.93 100 5.72 100 7.36 100 6.16
95% 95.1 2.97 95.0 3.46 95.2 5.1 95.1 4.28
90% 90.0 1.74 90.0 2.28 90.2 3.3 90.0 2.50

Table 11.3: Performance at High Target Coverage. Same notation as Table 11.2.

Performance at Low Target Error is presented in Table 11.2, which reports

coverage at three (small) targeted values of error - 1/2, 1, and 2 percent - that are

in line with the low target error regime that is the main focus of the paper. Notice

that these target error values are far below the best error obtained for standard

classification (Table 11.1). We observe that the performance of our SC methods is

199

Dataset Target Error Overlap

CIFAR-10
2% 0.09%
1% 0.01%

0.5% 0.00%

SVHN-10
2% 0.05%
1% 0.01%

0.5% 0.00%

Cats & Dogs
2% 0.07%
1% 0.01%

0.5% 0.00%
Table 11.4: Size of overlap between OSP sets in Table 11.2

significantly higher than the SOTA methods, especially in the case of CIFAR-10 and

Cats & Dogs, where we gain over 4% in coverage at the 0.5% design error. The effect

is weaker in SVHN, which we suspect is due to saturation of performance in this

simpler dataset.

Performance at High Target Coverage is presented in Table 11.3. This

refers to the coverage constrained SC formulation discussed in §11.2.1. For these

experiments, we use the same µ values (to avoid retraining), but choose thresholds

such that the coverage of the resulting model exceeds the stated target, and the models

with the lowest error at this threshold are chosen. We observe that at target coverage

100%, the SR solution outperfoms all others. This is expected, since 100% coverage

corresponds to standard classification, and the SR objective is tuned to this, while

the others are not. Surprisingly, for coverage below 100%, our OSP-based relaxations

deliver stronger performance than the benchmarks. Note that this is not due to the

low target error performance, because (besides SVHN), the errors attained at these

coverage are signficantly above the low target errors investigated in Table 11.2. This

shows that our formulation is also effective in the high-coverage regime.

Coverage-Error Curves for the CIFAR-10 dataset are shown in Fig. 11·2. These

curves plot the best coverage obtained by training at a given target error level using

each of the methods discussed.7 We find that the coverage obtained by our method
7In particular, we train models at target errors εi = (i/2)% for i ∈ [1 : 20]. We then obtain

200

uniformly outperform DG and SN, and also outperform SR for the bulk of target

errors, except those very close to the best standard error attainable. This illustrates

that our scheme is effective across target error levels. We find this rather surprising

since we designed our method with explicit focus on the low target error regime.

Tables 11.2 and 11.3 can be seen as detailed looks at the left (error < 2) and the

upper (coverage > 90) ends of these curves.

Observations regarding baselines. Tables 11.2,11.3, and Figure 11·2 all show

that across regimes, DG and SN perform similarly to SR, and are frequently beaten

by it. This observation is essentially consistent with the results presented in ((Geif-

man and El-Yaniv, 2019; Liu et al., 2019b)), and supports our earlier claims that

the prior SOTA methods for selective classification do not meaningfully improve on

naïve methods. To alleviate concerns about implementation, we emphasise that we

performed a comprehensive hyperparameter search for both SN and DG, and the only

change is to use RESNETs instead of VGG.

Structure of the Solutions

Overlap of OSP solutions is small. Table 11.4 shows the probability mass

of the ambiguous regions for our raw OSP solutions (i.e., the raw sets {x : fk > t}
without the max-assignment Sk = {x : fk > t}∩{x : k = argmax fk}) for the models

of Table 11.2. We find that this overlap is very small - much smaller than the 2ε

bound in Prop. 1. Empirically, these sets are essentially disjoint, and so the training

process is close to tight for the SC problem. We believe that this effect is mainly due

to the simple tuning enabled by the softmax normalisation of OSP problem outputs

described in §11.3.

Consistency of rejection regions. We say that a sequence of models trained

the achieved test error rates ε̂i and coverages ci for these models. The curves linearly interpolate
between (ε̂i, ci) and (ε̂i+1, ci+1).

201

dataset for SVHN has size > 7000, this is a tiny empirical probability of inconsistency

of < 0.03%.

11.5 Discussion

One of the drawbacks of the proposed scheme is the mix-n-match of one-sided clas-

sifiers with different thresholds after training OSP models for multiple µs. This step

is computationally expensive. With some modifications, it should be possible to im-

prove this training cost by only learning one model with one µ and scanning for the

same threshold for one-sided classifiers for all classes.

Other works were published on selective classification post our OSP paper. (Huang

et al., 2020) proposed self-adaptive training wherein an additional class label repre-

sents the abstention signal, and the training proceeds with distillation loss using the

exponential moving average (EMA) of the network as the teacher. We can easily ap-

ply this strategy to our OSP formulation by incorporating the EMA teacher through

knowledge distillation loss functions (such as logit or feature matching). In addi-

tion, we can leverage the DiSK (Chapter 13) to replace the distillation loss in such a

framework. (Rabanser et al., 2022) captures multiple checkpoints during the training

trajectory, and during inference, it computes the agreement between various check-

points. Their abstention logic is to reject examples with a low agreement between

checkpoints. One immediate drawback of such a scheme is the additional storage and

compute overhead associated with maintaining many checkpoints from the training

trajectory.

only in the thresholds (this did not occur for SVHN and Cats v/s Dogs). While this obviously
implies consistency of the rejection regions, it is unexpected, and suggests that there may be room
to improve in our training methodology.

203

204

Chapter 12

Efficient Edge Inference by Selective Query

(Hybrid Models)

12.1 Introduction

We are in the midst of a mobile and wearable technology revolution with users in-

teracting with personal assistants through speech and image interfaces (Alexa, Apple

Siri etc.). To ensure an accurate response, the current industrial practice has been

to transmit user queries to the cloud-server, where it can be processed by powerful

Deep Neural Networks (DNNs). This is beginning to change (see (Kang et al., 2017;

Kumar et al., 2020)) with the advent of high-dimensional speech or image inputs.

As this interface gains more traction among users, cloud-side processing encumbers

higher latencies due to communication and server bottlenecks. Prior works propose a

hybrid system whereby the edge and cloud-server share processing to optimize average

latency without degrading accuracy.

Proposed Hybrid Learning Method. Our paper focuses on learning aspects

of the hybrid system. We propose an end-to-end framework to systematically train

hybrid models to optimize average latency under an allowable accuracy-degradation

constraint. When a user presents a query, the hybrid learner (see Fig. 12·1) decides

whether it can respond to it on-device (eg. "Can you recognize me?") or that the

query posed is difficult (eg. "Play a song I would like from 50’s"), and needs deeper

Table 12.1: Device & Model Characteristics: Edge (STM32F746 MCU), Cloud
(V100 GPU). It takes 2000ms to communicate an ImageNet image from the edge to
the cloud (see Appendix §I.1)

Device
Device

Characteristics
Model

Performance
Memory Storage Accuracy Size Latency

MCU 320KB 1MB 51.1% 0.6MB 200ms
GPU 16GB 1TB 79.9% 9.1MB 25ms

cloud-processing. We emphasize that due to the unpredictable nature (difficulty and

timing) of queries coupled with the fact that on-device storage/run-time footprint

is relatively small, hard queries inevitably encumber large latencies as they must be

transmitted to the cloud.

Fundamental Learning Problem: What queries to cover? While, at a systems level,

communications and device hardware are improving, the overall goal of maximizing

on-device processing across users (as a way to reduce server/communication loads)

in light of unpredictable queries is unlikely to change. It leads to a fundamental

learning problem faced by the hybrid learner. Namely, how to train a base, a router,

and the cloud model such that, on average, coverage on-device is maximized without

sacrificing accuracy. In this context, coverage refers to the fraction of queries inferred

by the base model.

Figure 12·1: Hybrid Model. Cheap base (b) & routing models (r) run on a
micro-controller; Expensive global model (g) runs on a cloud. r uses x and features
of b to decide if g is evaluated or not.

205

Novel Proxy Supervision. Training routing models is difficult because we do

not a priori know what examples are hard to classify on edge. More importantly,

we only benefit from transmitting those hard-to-learn examples that the cloud model

correctly predicts. In this context, we encounter three situations, and depending on

the operational regime of the hybrid system, different strategies may be required.

To expose these issues, consider an instance-label pair (x, y), and the three typical

possibilities that arise are: (a) Edge and Cloud are both accurate, b(x) = g(x) = y;

(b) Edge and Cloud are both inaccurate, b(x) ̸= y and g(x) ̸= y; and (c) Edge is

inaccurate but Cloud is accurate b(x) ̸= g(x) = y.

Our objective is to transmit only those examples satisfying the last condition. It

improves coverage by ceasing data transfers when cloud predictions are bound to be

incorrect. However, the limited capacity of the router (deployed on the MCU) limits

how well one can discern which of these cases are true, and generalization to the

test dataset is difficult. As such, the routing would benefit from supervision, and we

introduce a novel proxy supervision (see Sec. 12.2.1) to learn routing models while

accounting for the base and global predictions.

Latency. Coverage has a one-to-one correspondence with average latency, and as

such our method can be adopted to maximizes accuracy for any level of coverage

(latency), and in doing so we characterize the entire frontier of coverage-accuracy

trade-off.

Contributions. In summary, we list our contributions below.

• Novel End-to-End Objective. We are the first to propose a novel global objective

for hybrid learning that systematically learns all of the components, base, router,

global model, and architectures under overall target error or dynamic target latency

constraints.

• Proxy Supervision. We are the first to provably reduce router learning to binary

206

classification and exploit it for end-to-end training based on novel proxy supervision

of routing models. Our method adapts seamlessly and near optimally across different

latency regimes (see knee in Fig. 12·2).

• Hardware Agnostic. Our method is hardware agnostic and generalizes to any edge

device (ranging from micro-controllers to mobile phones), any server/cloud, and

any communication scenarios. Our experiments include (a) MCU and GPU (see

Sec. 12.3.1), (b) Mobile Devices and GPUs (see Sec. 12.3.1), (c) on the same device

(see Sec. 12.3.2, Appendix I.10.1).

• SOTA Performance on Benchmark Datasets. We run extensive experiments on

benchmark datasets to show that the hybrid design reduces inference latency as well

as energy consumption per inference. Our code is available at https://github.

com/anilkagak2/Hybrid_Models.

Motivating Example: ImageNet Classification on an MCU. Let us

examine a large-scale classification task through the lens of a tiny edge device. This

scenario will highlight our proposed on-device coverage maximization problem. We

emphasize that the methods proposed in this paper generalize to any hardware and

latencies (see Section 12.3). Table 12.1 displays accuracy and processing latencies on

a typical edge (MCU) model and a cloud model (see Appendix §I.1). The cloud has

GPUs, and its processing speed is 10x relative to MCU processing. In addition, the

cloud has a much larger working memory and model storage space compared to the

MCU.

Impact of Cloud-Side Bottlenecks. If latency were negligible (either due to com-

munication speed or server occupancy), we would simply transfer every query to the

cloud. In a typical system with NB-IoT communication (see Sec. I.1), data transfer

to the cloud can take about 2s—about 100× the processing time on a GPU—and

207

(a) (b)

Figure 12·2: ImagetNet Classification: Accuracy vs Energy/Latency plot: (a) Con-
stant Communication Latency (2000ms), and (b) Dynamic Communication latency
[200, 2000]ms. It clearly shows that the proposed hybrid model pareto dominates the
baselines while getting significantly closer to the upper-bound in hybrid setup.

Table 12.2: Comparing features of our proposal against baseline. E.-to-E. stands
for ‘End-to-End’, and Arch. for ‘Architecture’.

Method Low
Latency

Deploy.
on Edge

E.-to-E.
Training

Arch.
Search

High
Accuracy

On-Device ✓ ✓ - ✓ ✗
On-Cloud ✗ ✗ - ✓ ✓

Split-Comp. ✗ ✗ ✓ ✗ ✗
Dynamic. ✓ ✓ ✗ ✗ ✗
Hybrid ✓ ✓ ✓ ✓ ✓

thus, to reduce communication, one should maximize MCU utilization for classifica-

tion. The argument from an energy utilization viewpoint is similar; it costs 20× more

for transmitting than processing. In general, communication latency is dynamically

changing over time. For instance, it could be as large as 10x the typical rate. In this

case, we would want the MCU unit to dynamically adapt its processing so that at

fast rates, much of the processing happens on the cloud, and for slow rates, the MCU

must still decide what examples to process locally.

208

12.1.1 Prior Works with Empirical Comparisons on MCU

We use Table 12.1 as a running example to survey prior works, but our inferences

here, as seen in Sec. 12.3 hold generally. Our goal is to illustrate key differences

through this practical scenario. We refer the reader to Appendix I.1 for more ex-

perimental details. We consider two communication contexts: (a) Fixed but large

latency (2000ms); (b) Dynamic Latency: A random variable uniformly distributed in

the interval [200, 2000]ms.

All-Cloud Solution. Here, the edge device transmits all examples to the cloud.

It incurs a communication cost in addition to the cloud inference latency. This so-

lution is sub-optimal as seen by the orange circle with 80% accuracy and inference

latency of 2025ms in Figure 12·2(a). Our goals are:

(i) To understand the trade-off between latency and accuracy;

(ii) To compare prior methods by the latency level at which cloud-accuracy is achieved.

All-Edge Solution. While we can leverage various methods (Howard et al.,

2019; Hinton et al., 2015; Cai et al., 2020; Kag and Saligrama, 2022), MCUnet (Lin

et al., 2020a) is the most suitable deployable model for this micro-controller. 1 All-

edge baseline is blue curve in Figure 12·2(a). The smallest MCUNet model achieves

51.1% accuracy with 200ms inference latency. In contrast, the largest MCUNet model

achieves 63.5% accuracy with 1400ms inference latency; models any larger cannot be

deployed due to the MCU hardware limitations listed in Table 12.1. Thus, cloud-

accuracy is unachievable with an all-edge solution for any latency.

Split-Computation methods. (Kang et al., 2017) splits the model between the

edge and cloud device. More specifically, the initial part of the DNN is stored and

executed on the edge device. Then, the edge transmits the intermediate features to
1Although (Lin et al., 2021) improves upon MCUNet, their pre-trained models are not available

publicly. Besides, any improvement in the edge model would yield improvements in all the hybrid
baselines.

209

the cloud, where the remaining computation of the DNN is performed. This split

takes into account the latency budget and the edge transmission cost. More recent

variants (Li et al., 2021; Odema et al., 2021) add a branch-out stage that allows for

classification on the edge device whenever the decision is deemed correct. We employ

this method in our comparisons. A fundamental issue is that requiring copies of the

same model on server/edge severely constrains practical use cases. For instance, in

Table 12.1 server model is 9X of MCU model. In this case, we could either use the

maximum-size edge model and copy it to the server or store a partial copy of the

server model locally. The former leads to topping accuracy at 63.5% (blue-line) at

high latency, while the latter is plotted as the red curves in Figure 12·2. While results

improve in the dynamic setting, they are not comparable to the other baselines. This

fact is not surprising since the amount of pre-processing gained by having a shared

model is more than offset by allowing models optimized to the edge. Since the MCUs

are too small, only a tiny part of the large DNN can be stored/executed on the edge

device. The resulting intermediate feature size is larger than the input size. Thus,

cloud accuracy can only be achieved by transmitting all examples to the cloud at a

latency of an all-cloud solution.

Dynamic Neural Network methods are surveyed in (Han et al., 2022). These

methods budget more compute for hard instances. It includes (a) cascade-based early

exit networks (Park et al., 2015; Bolukbasi et al., 2017; Wang et al., 2018), where

the constituents are independently designed without feature sharing; and (b) early

exit networks (Teerapittayanon et al., 2017; Dai et al., 2020; Li et al., 2019a) where

classifiers are introduced at intermediate layers. These works generally disregard the

severely resource-constrained setting such as in Table 12.1. Within this framework,

we experimented with different approaches and found that (Bolukbasi et al., 2017;

Nan and Saligrama, 2017a; Li et al., 2021) serves as a good baseline. These allow

210

for different models optimized for the base and global, but the routing scheme is

designed post-hoc based on classifying locally depending on prediction uncertainty.

This is depicted as green-line in Figure 12·2.

Proposed hybrid method, in contrast to Dynamic Networks, globally optimizes

all of the parts (base, router, and cloud) and is the purple line in Figure 12·2. It is

evidently close to the upper bound, which is derived in Appendix I.1 based on the

practical assumption that the base model is agnostic to what examples are classified

by cloud correctly. Prior works including dynamic networks and split-computation

methods general miss key details, namely, (a) no explicit accounting number of ex-

amples required to be covered locally, (b) no supervision for the router, which makes

them myopic, and (c) evaluations only on small datasets (see Appendix §I.6 for de-

tails), etc.

Selective Classification. Recently, (Liu et al., 2019b; Gangrade et al., 2021;

Geifman and El-Yaniv, 2019) proposed learning with a reject option, wherein a

model abstains from predicting uncertain instances. Although we obtain a selective

classifier by ignoring the global model (see §12.3.2), we focus on improving the

hybrid system, which is a different objective compared to this line of research.

12.2 Method

Notation. Let X be a feature space and Y a set of labels. Hybrid design consists

of the following:

• A base model b : X → Y , deployed on an edge device.

• A global model g : X → Y deployed on the cloud.

• A routing model r : X → {0, 1} deployed on the edge.
We will treat these models as soft classifiers, outputting |Y|-dimensional scores

{by} and {gy}, and two scores r0 and r1 for the routing model. The hard output for

211

the base is the top entry b(x) = argmaxy by(x), and similarly for g. In this paper, r is

realized by the a 2-layer DNN with input by(x) - this is intentionally chosen to have

minimal implementation complexity. r further admits a scalar tuning parameter t,

and assigns x to the global model if r1 > r0 + t, i.e.

r(x; t) = 1{r1(x) > t+ r0(x)}.

Varying t (Alg. 12) trades-off accuracy and resource usage, and allows us to avoid

retraining r at each resource level by locally tuning a router. By default t = 0. The

hybrid prediction for an instance x is

ŷ(x) := (1− r(x))b(x) + r(x)g(x). (12.1)

Evaluation Metrics. Hybrid accuracy is the accuracy of the hybrid predictions,

defined as

A(r, b, g) = P(ŷ(X) = Y) = P(r(X) = 0, b(X) = Y) + P(r(X) = 1, g(X) = Y).

This accuracy is fundamentally traded-off with the coverage of the hybrid models,

which is the fraction of instances that are processed by the cheap base model only,

i.e.

C(r, b, g) := P(r(X) = 0).

Modeling Resource Usage. Coverage offers a generic way to model the resource

usage of hybrid inference as follows. The resource cost of most models is mainly a

function of the architecture. We let α denote a generic architecture and say that

f ∈ α if the function f is realizable by the architecture. Then the resource cost of f

is denoted R(α). Our hybrid design always executes the base and the router, and so

the mean resource usage of the hybrid model (r, b, g) with b ∈ αb and g ∈ αg is

R(r, b, g) := Rr +R(αb) + (1− C(r, b, g))R(αg), (12.2)

where Rr is a small fixed cost of executing r.

212

This generic structure can model many resources such as energy usage or total

FLOPs used. Our paper is mainly concerned with inference latency. To model this,

we take R(αb) to be the mean time required to execute a base model on the edge,

and R(αg) to be the sum of the mean computational latency of executing g on

the cloud and the mean communication latency of sending examples to the cloud.

In the previous example of Table 12.1, these numbers would be 200ms and 2025ms

respectively.

Overall Formulation. Let Ab and Ag be sets of base and global architectures

that incorporate implementation restrictions, and ϱ a target resource usage level. Our

objective is

max
αb∈Ab,αg∈Ag

max
r,b∈αb,g∈αg

A(r, b, g) s.t. R(r, b, g) ≤ ϱ. (12.3)

The outer max over (αb, αg) in (12.3) amounts to an architecture search, while the

inner max over (r, b, g) with a fixed architecture corresponds to learning a hybrid

model.

Below, we describe our method for solving (12.3). Briefly, we propose to de-

couple the inner and outer optimization problems in (12.3) for efficiency. We train

hybrid models by an empirical risk minimisation (ERM) strategy. Furthermore, in

Sec. 12.3.3, we perform architecture search using fast proxies for the accuracy attain-

able by a given pair of architectures without directly training hybrid models.

12.2.1 Learning Hybrid Models

This section trains hybrid models for fixed architectures αb, αg, i.e., the inner min-

imisation problem

max
r,b∈αb,g∈αg

A(r, b, g) s.t. R(r, b, g) ≤ ϱ. (12.4)

213

Algorithm 6 Training Hybrid Models
1: Input: Training data D = {(xi, yi)}Ni=1

2: Hyper-parameters: λr, Number of epochs E
3: Initialize: random r0, pre-trained b0, g0.
4: for e = 1 to E do
5: Randomly Shuffle D
6: Generate oracle dataset Do;(b,g) using Eq. 12.6
7: re = argminr Lrouting(r, b

e−1, ge−1)
8: ge = argming Lglobal(r

e, be−1, g)
9: be = argminb Lbase(r

e, b, ge)
10: Return : (rE, bE, gE)

Since architectures are fixed in (12.4), the resource constraint amounts to a con-

straint on the hybrid coverage C(r, b, g). As is standard, we will approach (12.4) via

an ERM over a Lagrangian of relaxed losses. However, several design considerations

and issues need to be addressed before such an approach is viable. These include: (a)

cyclical non-convexity in (12.4), (b) supervision for the router, and (c) relaxed loss

functions. We discuss these below and summarise the overall scheme in Algorithm 7.

Alternating optimisation. Problem (12.4) has a cyclical non-convexity. A

given r affects the optimal b and g (since these must adapt to the regions assigned

by r), and vice-versa. We approach this issue by alternating optimisation. First, we

train global and base models with standard methods. Then, we learn a router r under

a coverage penalty. The resulting r feeds back into the loss functions of b and g, and

these get retrained. This cycle may be repeated.

Modularity of training. The scheme allows modularisation by varying which, and

to what extent, steps 7,8,9 in Alg.7 are executed. It helps train a cheap routing

model to hybridise a given pair of pre-trained b and g; or in using an off-the-shelf

global model that is too expensive to train. Finally, we can learn each component to

different degrees, e.g., we may take many more gradient steps on g than r or b in any

training cycle.

214

Learning Routers via Proxy Supervision. Given a base and global pair (b, g),

Eqn.(12.4) reduces to

max
r
E[(1− r(X))1{b(X) = Y }+ r(X)1{g(X) = Y }] s.t. E[r(X)] ≤ Cϱ,

(12.5)

where Cϱ is the coverage needed to ensure R ≤ ϱ. While a naïve approach is to

relax r and pursue ERM, we instead reformulate the problem. Observe that (12.5)

demands that

r(X) =

0 if b(X) = Y, g(X) ̸= Y

1 if b(X) ̸= Y, g(X) = Y .

Further, while b(X) = g(X) is not differentiated, the coverage constraint promotes

r(X) = 0. Thus, the program can be viewed as a supervised learning problem of

fitting the routing oracle, i.e.

o(x; b, g) = 1{b(x) ̸= g(x) = y}. (12.6)

Indeed, o is the ideal routing without the coverage constraint. For any given (b, g)

and dataset D = {(xi, yi)}, we produce the oracle dataset Do;(b,g) := {(xi, o(xi; b, g))}.
It serves as supervision for the routing model r. This allows us to utilise the standard

machine learning tools for practically learning good binary functions, thus gaining

over approaches that directly relax the objective of (12.5).

The oracle o does not respect the coverage constraint, and we would need to

assign some points from the global to base to satisfy the same. From a learnability

perspective, we would like the points flipped to the base to promote regularity in

the dataset. However, this goal is ill-specified, and unlikely to be captured well by

simple rules such as ordering points by a soft loss of g. We handle this issue indirectly

by imposing a coverage penalty while training the routing model and leave it to the

215

penalised optimisation to discover the appropriate regularity.

Focusing competency and loss functions. To improve accuracy while control-

ling coverage, we focus the capacity of each of the models on the regions relevant to it

- so, b is biased towards being more accurate on the region r−1({0}), and similarly g

on r−1({1}). Similarly, for the routing network r, it is more important to match o(x)

on the regions where it is 1, since these regions are not captured accurately by the

base and thus need the global capacity. We realise this inductive bias by introducing

model-dependent weights in each loss function to emphasise the appropriate regions.

Routing Loss consists of two terms, traded off by a hyperparameter λr. The first

penalises deviation of coverage from a given target (cov), and the second promotes

alignment with o and is biased by the weight Wr(x) = 1 + 2o(x) to preferentially

fit o−1({1}). Below, ℓ denotes a surrogate loss (such as cross entropy), while (·)+ is

the ReLU function, i.e., (z)+ = max(z, 0). Sums are over training data of size N .

Empirically, we find that λr = 1 yields effective results.

Lrouting(r; o) = λr

(
cov−

(
1− 1

N

∑
x

(r1(x)− r0(x))+

))
+

+
∑
x

Wr(x)ℓ(o(x), r(x)). (12.7)

Base Loss and Global Loss are weighted variants of the standard classification

loss, biased by the appropriate weights to emphasise the regions assigned to either

model by the routing network - Wb(x) = 2− r(x) and Wg(x) = 1 + r(x).

Lbase(b; r, g) =
∑

Wb(x)ℓ(y, b(x)); Lglobal(b; r, g) =
∑

Wg(x)ℓ(y, g(x)).

12.3 Experiments

In this section, first, we train hybrid models for resource-constrained MCU devices,

thus demonstrating the effectiveness of hybrid training. Next, we show that hybrid

216

models can be adapted to resource-rich edge devices such as mobile phones. Next, we

probe various aspects of our framework through ablations, including (A) validation

on other datasets, (B) sensitivity of the solution to small communication latencies,

and (C) effectiveness as an abstaining classifier for situations when a global model

may be unavailable. Finally, we discuss a simple joint architecture search method for

finding hybrid architectures with better performance than off-the-shelf architectures

(see Appendix I.2, I.3 for details).

Experimental Setup. We focus on the large-scale ImageNet

dataset(Russakovsky et al., 2015), consisting of 1.28M train and 50K valida-

tion images. We follow standard data augmentation (mirroring, resize and crop) for

training and single crop for testing. We borrow the pre-trained baselines from their

public implementations (see Sec. J.3). Appendix I.5.1 lists our hyperparameters

settings.

Throughout, we use the largest model in the OFA space (Cai et al., 2020) as our

global model and henceforth refer to it as MASS-600M (which needs 600M MACs

for evaluation). This model has an accuracy of 80%, and a computational latency

of about 25ms on a V100 GPU. There are three main reasons for using this model.

Firstly, this model is SOTA at its required computational budget. Secondly, this

model is small enough for training to be tractable under our computational limitations

(unlike larger models such as EfficientNet-B7, which needs 37B MACs). Finally, since

it is the largest model in our architecture search space, it yields a consistent point of

comparison across experiments.

To expose gains from the different hybrid components we consider: (a) ‘Hybrid-

(r)’ - training routing models with a pre-trained base and global model, (b) ‘Hybrid-

(rb)’ - training routing and base models with a pre-trained global model, and (c)

‘Hybrid-(rbg)’ - training all three components. Unless explicitly stated, we create

217

models by training routing and base, i.e., ’Hybrid-rb’ since training the global model

is computationally expensive. We train hybrid models to achieve a similar coverage as

the oracle. Post-training, we tune the threshold t to generate r with varying coverage

(Alg. 12).

Baseline Algorithms. We investigated prior methods (Kang et al., 2017; Nan and

Saligrama, 2017a; Bolukbasi et al., 2017; Li et al., 2021; Teerapittayanon et al., 2017),

and the entropy thresholding, which we report here, dominates these methods across

all datasets. This fact has also been observed in other works (Gangrade et al., 2021;

Geifman and El-Yaniv, 2019). It is not surprising since they lack proxy supervision

(2nd term in Eq. 12.7), and the routing model does not get instance-level supervision.

Coverage as Proxy. As discussed in Sec. 12.2, for simplicity, we use coverage as

the proxy for communication latency, the major contributor to the inference latency.

We explicitly model latency in Sec. 12.3.1, where we define the latency of the hybrid

system as the sum of three latencies: (a) on-device inference, (b) communication for

the examples sent to the cloud, and (c) on-cloud inference.

12.3.1 Hybrid Models for Resource-Limited Edge Devices

In this section, we train hybrid models with off-the-shelf architectures using Algo-

rithm 7. First, we delve into the illustrative experiment in Figure 12·2. Next, we

study a similar problem for a resource-rich edge device, specifically mobile phones,

and train hybrid models at various base complexities.

Resource Constrained MCU. Proposed hybrid method with MCUs for Ima-

geNet task is near optimal (close to upper bound); realizes 25% latency/energy re-

duction while maintaining cloud performance, and at accuracy loss of less than 2%

realizes 30% latency/energy reduction.

Recall from Sec. 12.1 that we deployed an ImageNet classifier on a tiny STM32F746

218

MCU (320KB SRAM and 1MB Flash), the same setting as MCUNets (Lin et al.,

2020a). Using their TFLite model (12.79M MACs, 197ms latency, 51.1% accuracy)

as the base, we create a hybrid model by adding the MASS-600 as the global model.

We provide additional setup details in the Appendix §I.1.

Figure 12·2 shows the accuracy vs latency and energy. Table 12.3 shows the

latency and energy of the hybrid approach against baselines. Deploying hybrid model

on an MCU results in following benefits:

• Pareto Dominance over on-device model. Hybrid model provides 10% accuracy gains

over the best on-device model with similar latency. It achieves the best on-device

accuracy with half the latency.

• Pareto Dominance over other baselines. Hybrid model achieves 5% higher accuracy

than the dynamic networks that use the entropy thresholding baseline (see Fig-

ure 12·2). In passing we recall from our earlier discussion that entropy thresholding

dominates prior methods in this context.

• Significant latency reduction to achieve SOTA accuracy. The hybrid model achieves

near SoTA accuracy with 25% reduction in latency and energy consumption.

• Micro-controller Implementation. We deployed base and router on the MCU with

negligible (∼ 2%) slowdown (see Appendix I.9 for details).

Although our setup in Figure 12·2(a) assumes a constant communication latency of

2000ms, we can easily modify it to incorporate dynamic communication latency shown

in Figure 12·2(b). We refer the reader to Appendix I.11 for the exact formulation.

Resource Constrained Mobile Device. Gains of hybrid method are consistent,

near-optimal, and dominate prior methods, across diverse devices, including large

footprint devices.

To show this, we choose the popular MBV3 (Howard et al., 2019) architectures as the

base since they have been heavily deployed on mobile devices with resource constraints

219

Table 12.3: Hybrid models on STM32F746 MCU: Accuracy achieved by different
methods at various latency.

Accuracy (%) v/s Resource Usage
Latency (ms) 200 600 1000 1400 1600 2000
Energy (mJ) 11 53 96 140 161 216
On-Cloud - - - - - 79.9
On-Device 51.1 - 60.9 63.5 - -
Entropy - 59.9 67.4 74.7 76.93 -
Hybrid-r - 61.1 69.5 76.3 78.68 -
Hybrid-rb - 62.0 70.8 77.7 79.3 -
Hybrid-rbg - 62.3 71.2 77.9 79.5 -

Upper-Bound - 62.8 74.7 79.9 79.9 -

such as storage and compute. We create hybrid models using the following base

models in the MBV3 family: MBV3-48 (2.54M params, 48M MACs), MBV3-143

(4M params, 143M MACs), and MBV3-215 (5.48M params, 215M MACs). We use

MASS-600 as the global model and operate the base model at a fixed coverage level.

Table 12.4: Results for hybrid models with base at various coverages. MASS-600
model achieving ≈ 80% Top1 accuracy is used as global model. Base model belongs
to MBV3 space. Upper bounds (Appendix §I.1) are also reported and nearly match
hybrid.

Base
MACs

Base
Acc.(%)

Method Acc. (%) at Cov.
90% 80% 70%

48M 67.6
Entropy 70.7 73.3 74.9
Hybrid 71.6 74.6 76.8

Upper Bnd 72.0 75.2 78.9

143M 73.3
Entropy 75.1 76.8 77.6
Hybrid 75.9 77.8 79.0

Upper Bnd 75.9 78.2 79.9

215M 75.7
Entropy 77.1 78.3 78.9
Hybrid 77.6 79.0 79.6

Upper Bnd 77.6 79.1 79.9

Table 12.4 shows the hybrid accuracy at three coverage levels: 90%, 80% and 70%.

Hybrid models operating at a fixed coverage provide the following benefits:

• Up to 70% latency reduction to achieve SOTA. Hybrid model with MBV3-215M

base achieves 79.59% (near SOTA) with 70% coverage. It communicates with global

220

Table 12.5: Joint evolutionary search for hybrid models base constraints: 75M,
150M, & 225M. Table shows hybrid and base accuracies at different coverages. Up-
per bounds are reported in Appendix §I.1. Excess gains represent improved neural-
network architecture.

Base
MACs

Base
Acc.(%)

Method Acc. (%) at Cov.
90% 80% 70%

74M 70.8
Entropy 73.2 75.3 76.8
Hybrid 74.0 76.4 78.2

Upper Bnd 73.9 77 79.9

149M 74.5
Entropy 76.1 77.6 78.2
Hybrid 76.9 78.5 79.4

Upper Bnd 76.6 78.7 79.9

225M 76.5
Entropy 77.4 78.3 79.1
Hybrid 78.3 79.6 80.2

Upper Bnd 77.8 79.4 79.9

model for only 30% inputs.

• Hybrid models outperform the entropy thresholding. Hybrid model with MBV3-48M

achieves nearly 2% higher accuracy than entropy thresholding baseline.

• Hybrid model with a smaller base model achieves performance of larger models at

various coverage levels. Using MBV3-48M base, the hybrid model exceeds the accu-

racy of MBV3-143M at 80% coverage. Similarly, it exceeds the accuracy of MBV3-

215M at 70% coverage.

12.3.2 Ablative Experiments.

We refer the reader to Appendix I.10 for the ablation setup. Below we summarize

our findings.

(A) Other Datasets. We train hybrid models on CIFAR-100 (Krizhevsky and

Hinton, 2009) and IMDb (Maas et al., 2011) (reported in Appendix), and observe

similar gains.

CIFAR-100. We use the efficient version of the Resnet-32 (He et al., 2016) from

(Dong and Yang, 2019) as the global model (35M MACs, 0.5M params, 67.31%

221

accuracy). The base is a tiny pruned Resnet model (2.59M MACs, 0.02M params,

52.56% accuracy). Table 12.6 shows the performance of the hybrid models and the

entropy thresholding baseline at various coverage levels. It shows that hybrid models

provide similar benefits on the CIFAR-100 dataset.

Figure 12·3: Plot for hybrid MACs vs accuracy. Base & Global models on same
device.

(B) Other communication regimes. We train hybrid models in a setup with

no communication delay. It arises when both the base and global models reside on

the same hardware. In such a setup, we use a simple evaluation metric for inference

latency, i.e., hybrid MACs, i.e., the amount of multiply-add operations required to ex-

ecute the hybrid model. We pick up an architecture family and create a hybrid model

using the smallest and largest architecture. For convenience, we use MobileNetV3

(MBV3) (Howard et al., 2019) family. From MBV3, we pick the smallest model (48M

MACs, 67.6% accuracy) as the base and largest model (215M MACs, 75.7% accu-

racy) as global to create the Hybrid-MBV3 model. Figure 12·3 shows the hybrid

model achieves SOTA accuracy at 30% lower latency than entropy thresholding.

(C) Abstaining classifier. When a global model is unavailable, the hybrid

system can serve as an abstaining classifier on the device, i.e., it rejects a few inputs

222

and provides predictions on the rest. We create abstaining classifiers with the hybrid

setup in Sec. 12.3.1. We show the accuracy of the base model at various coverage

levels in Table 12.7. It shows that the abstaining base significantly outperforms

the base at full coverage and the abstaining classifier from the entropy thresholding

baseline, which demonstrates that our method is competitive against prior works on

classification with abstention.

Table 12.6: Hybrid models for CIFAR-100 at various coverages.

Base
MACs

Base
Acc.(%)

Accuracy(%) at Cov.
80% 70% 40%

Entropy 52.56 57.77 59.95 65.1
Hybrid-r 52.56 58.43 61.18 66.9
Hybrid-rb 52.56 59.32 62.48 67.4

Table 12.7: Abstaining Classifier with hybrid models from Sec. 12.3.1. Results for
hybrid models with base at various coverage levels.

Base
MACs

Base
Acc.(%)

Accuracy(%) at Cov.
90% 80% 70%

Base Entropy Base Entropy Base Entropy
48M 67.6 73.3 71.7 78.6 75.6 83.4 80.5
143M 73.3 79.0 77.6 83.9 81.7 88.4 85.4
215M 75.7 81.3 78.6 86.1 82.0 90.1 86.6

(D) Router validation. We evaluate the performance of the router against the

oracle supervision and show that the router learnt using the Algorithm 7 generalizes

well on the test dataset.

12.3.3 Joint Neural Architecture Search for Hybrid Models.

This section proposes a joint neural architecture search (NAS) scheme to resolve the

outer max problem of (12.3). NAS methods are strongly dependent on two aspects

Architecture Search Space. Our method is designed for implementation on a

Marked Architecture Search Space (MASS). It is a set of architectures A such that

223

each architecture α ∈ A is associated with a known set of canonical parameters θα,

which are known to be representative of the models under this architecture. That

is, for most tasks, fine-tuning θα returns a good model with this architecture. Such

search spaces have been proposed by, for instance, (Cai et al., 2020) and (Yu et al.,

2019). We use (Cai et al., 2020) as search space as it contains a range of architectures

of varying capacities.

Proxy Score Function. Given a pair of base and global architectures (αb, αg),

the search process requires access to the value of the program (12.4). The score

function estimates the accuracy of the hybrid model under a given resource con-

straint. Since training a hybrid model using these architectures would be slow, we

use the proposed oracle supervision as a proxy for the router. Thus, the routing

oracle o(·, αb, αg) in conjunction with the canonical parameters (θαb
, θαg) serves as

an efficient proxy score function for evaluating the architecture pair (αb, αg).

Search Algorithm. Given these above two components, NAS reduces to a com-

binatorial optimization and can be approached by any standard heuristic. Due to

its simplicity and prevalence, we use a simple evolutionary algorithm for this (Elsken

et al., 2019; Liu et al., 2021) to yield a concrete method. Algorithm 10 summarizes

the search scheme (see Appendix I.2 for details).

Empirical Validation. We evaluate the proposed architecture search scheme

against the off-the-shelf architectures in Table 12.5 as well as Appendix I.3. It shows

that evolutionary search yields higher accuracy hybrid models than off-the-shelf clas-

sifiers.

12.4 Discussion

Edge devices offer a range of predictive services to end users. These services require

access to cloud resources to guarantee state-of-the-art performance since the edge-

224

deployable model is very restrictive. Such a cloud interaction has many downsides,

including (a) increased inference latency, (b) increased battery usage on edge, (c)

additional cost for cloud resources, (d) end-user privacy concerns, and (e) increased

carbon footprint due to cloud usage.

The proposed hybrid design aims to address these issues in the existing on-cloud

solutions by only selectively querying the cloud on inputs that are hard to classify

locally. Our proposal engages the cloud only when it is sufficiently confident that the

cloud usage would result in correct classification. As a result, it increases the coverage,

i.e., the number of inputs locally predicted by the base model without invoking the

cloud model. Thus, the overall cloud utilization is reduced significantly as seen from

our empirical evaluations. Note that, in the worst case, when the input is hard to

predict locally, the router engages the cloud and gets hit with on-cloud latency.

Our hybrid design, as much as possible, helps the existing predictive services to

selectively querying the cloud. As a result, we get the following benefits as compared

to the existing on-cloud solutions:

1. Decreased inference latency on the edge device due to communication delay

2. Decreased battery/energy usage on the edge device due to data transmission

3. Reduced cost for access to cloud resources

4. Reduced carbon footprint due to less resource usage

5. End-user privacy concerns are addressed in two ways. First, by selectively

querying the cloud, only a small fraction of the data is sent to the cloud. Second,

the hybrid design allows the base model to operate as the abstaining classifier, and it

enables the practitioners to ask for user consent by showing the base model prediction

and router confidence in those predictions. Such a design gives the users informed

consent on whether they are satisfied with the inference results or if they would like to

send the data to the cloud as their local models cannot correctly classify the inputs.

225

226

Chapter 13

Distilling Selective/Scaffolded Knowledge

(DiSK)

13.1 Introduction

A fundamental problem in machine learning is to design efficient and compact models

with near state-of-the-art (SOTA) performance. Knowledge Distillation (KD) (Zeng

and Martinez, 2000; Bucila et al., 2006; Ba and Caruana, 2014; Hinton et al., 2015)

is a widely used strategy for solving this problem wherein the knowledge from a large

pre-trained teacher model with SOTA performance is distilled onto a small student

network.

Vanilla KD. (Hinton et al., 2015) proposed the popular variant of KD by match-

ing the student soft predictions, s(x) with that of the pre-trained teacher, t(x) on

inputs x. Informally, during student training, an additional loss term, DKL(t(x), s(x))

is introduced that penalizes the difference between student and teacher predictive dis-

tributions using Kullback-Leibler (KL) divergence. This promotes inter-class knowl-

edge learned by the teacher. We will henceforth refer to Vanilla KD as KD.

Capacity mismatch between student and teacher. One of the primary issues

in Vanilla KD is that the loss function is somewhat blind to the student’s capacity to

interpolate. In particular, when the student’s capacity is significantly lower than the

teacher’s, we expect the student to follow the teacher only on those inputs realizable

by the student.

We are led to the following question: What can the teacher provide by way of

predictive hints for each input, so that the student can leverage this information to

learn to its full capacity?

Our Proposal: Scaffolding a Student to Distill Knowledge (DiSK). To

address this question, we propose that the teacher, during training, not only set a

predictive target, t(x), but also provide hints on hard to learn inputs. Specifically,

the teacher utilizes its model to output a guide function, g(x), such that the student

can selectively focus only on those examples that it can learn.

• if g(x) ≈ 1, teacher discounts loss incurred by the student on the input x.

• if g(x) ≈ 0, teacher signals the input x as learnable by student.

With this in mind we modify the KL distance in the KD objective and consider,

DKL(t(x), ϕ(s(x), g(x))), where ϕ(s, g), which will be defined later, is such that,

ϕ(s, 0) = s if g offers no scaffolding. We must impose constraints on the guide function

g to ensure that only hard-to-learn examples are scaffolded. In the absence of such

constraints, the guide can declare all examples to be hard, and the student would no

longer learn. We propose to do so by means of a budget constraint B(s, g) ≤ δ to

ensure that the guide can only help on a small fraction of examples.

While more details are described in Sec. 13.3, we note that, in summary, our

proposed problem is to take the empirical linear combination of the aforementioned

KL distance and a cross-entropy term as the objective, and minimize it under the

empirical budget constraint.

We emphasize that g(x) is used only during training. The inference logic for the

student remains the same as there is no need for g(x) during inference. The guide

function supported student training has three principal benefits. The benefits are

explored in Sec. 13.2.

227

• Censoring Mechanism. Our guide function censors examples that are hard

to learn for the student. In particular, when there is a large capacity gap, it is obvious

that the student cannot fully follow the teacher. For this reason, the teacher must not

only set an expectation for the student to predict, but also selectively gather examples

that the student has the ability to predict.

• Smoothen the Loss landscape. We also notice in our synthetic experiments

that whenever scaffolding is powerful, and can correct student’s mistakes, the loss

landscape undergoes a dramatic transformation. In particular, we notice fewer local

minima in the loss viewed by the guided student.

• Good Generalization. The solution to our constrained optimization problem

in cases where the guide function is powerful can ensure good student generalization.

Specifically, we can bound the statistical error in terms of student complexity and

not suffer additional complexity due to the teacher.

Contributions. We summarize our main results.

• We develop a novel approach to KD that exploits teacher representations to

adjust the predictive target of the student by scaffolding hard-to-learn points. This

novel scaffolding principle has wider applicability across other KD variants, and is of

independent interest.

• We design a novel response-matching KD method (Gou et al., 2021) which

is particularly relevant in the challenging regime of large student-teacher capacity

mismatch. We propose an efficient constrained optimization approach that produces

powerful training scaffolds to learn guide functions.

• Using synthetic experiments, we explicitly illustrate the structural benefits of

scaffolding. In particular, we show that under our approach, guides learn to cen-

sor difficult input points, thus smoothening the student’s loss-landscape and often

eliminating suboptimal local minima in it.

228

• Through extensive empirical evaluation, we demonstrate that the proposed

DiSK method;

– yields large and consistent accuracy gains over vanilla KD under large student-

teacher capacity mismatch (upto 5% and 2% on CIFAR-100 and Tiny-ImageNet).

– produces student models that can get near-teacher accuracy with significantly

smaller model complexity (e.g. 8× computation reduction with ∼ 2% accuracy

loss on CIFAR-100).

– improves upon KD even under small student-teacher capacity mismatch, and is even

competitive with modern feature matching approaches.

13.2 Illustrative Examples

We present two synthetic examples to illustrate the structural phenomena of the

censoring mechanism and smoothening of student’s loss landscape enabled by the

scaffolding approach DiSK, which lead to globally optimal test errors. We defer exact

specification of the algorithm to Sec.13.3.

Example 1 (1D Intervals). Consider a toy dataset with one dimensional fea-

tures x ∈ [0, 9] and binary class labels y ∈ {Red,Blue} as shown in Figure 13·1.

There are two Blue labelled clusters as in [2, 3] and in [5, 7]. The remaining points are

labelled as Red. We sample 1000 i.i.d. data points as the training set and 100 data

points as the test set with balanced data from both classes. We describe the details

of the experiment setup such as models and learning procedure in Appx. J.1.

Teacher T belongs to the 2-interval function class, and the capacity-constrained

student S belongs to the 1-interval function class. Since teacher capacity is sufficient

to separate the two classes without error, it learns the correct classifier (see Fig-

ure 13·1). In contrast, the best possible student hypothesis cannot correctly separate

the two classes. Hence, the student will have to settle onto one of the many local

229

Table 13.1: The number of times each method lands on various local minima in two
toy problems for 100 runs.

Dataset 1D Intervals 2D Gaussians
Minima A B C (Global) A B C D (Global)

Accuracy 67% 83% 87% 70% 80% 90% 100%

Cross-Entropy 35 64 1 73 12 9 6
KD 30 67 3 1 11 31 57

DiSK 9 1 90 0 0 3 97

minima. We show these minima and the contour plot for the student in Figure 13·1.

We present the results of training student models with different initializations in

Table 13.1.

KD suffers from bad local minima. KD loss landscape contains many local minima

(see Figure 13·1). Due to a big gap between student and teacher capacity, it is unable

to help the student discern between these minima. Hence, KD fails to distinguish

between the different minima (see Table 13.1).

DiSK censors interval [2, 3] and in addition focuses training on learnable data-

points. If we analyze the guide function at the end of the training, we see that it

covers (censors) the first Blue cluster. Indeed, both clusters are not simultaneously

learnable with the available student capacity. Once we censor the interval [2, 3],

then the problem becomes realizable for the student model. The guide function thus

captures the excess capacity of the data.

DiSK smoothens loss landscape. The guide function and the budget constraint

enable our method to have a smooth loss landscape thanks to the guide-function

censoring points, which eliminate the local minima. Hence, DiSK solution lands in

the global minimum with high probability.

Example 2 (2D Gaussians). Consider another toy dataset with two dimen-

sional features x ∈ R2 and three class labels y ∈ {Red,Green,Blue}. Here we wish

to show that DiSK can allow for globally optimal solutions reaching 100% accuracy,

230

(a) (b) (c)

Figure 13·1: (a): 1D Intervals. Data distribution on x-axis [0, 9]. Teacher T learns
the correct decision boundary with 2-intervals and it is the global minima for this
binary classification task. Student S has many bad local minima, and one global
minima that best describes the decision boundary with 1-interval. (b): KD training.
Loss contour plot shows the various local minima exist. (c): DiSK training. Loss
contour plot shows the bad local minima no longer exist.

which appears unachievable with cross-entropy minimization regardless of data size.

Figure 13·2.a shows the labelled data. There are six cluster centers, two with each

class label. Data points are drawn using Gaussian balls around the cluster centers

with small radii. We sample 1000 i.i.d. data points as the training set and 1000 data

points as the test set with equal representation from all three classes. We provide

details (hypothesis classes, learning procedure, etc.) in Appx. J.2.

The teacher is a 3-layer neural network with 8, 16, and 3 neurons. The student

is a 2-layer neural network with 2 and 3 neurons. We point out that the teacher

being an over-parameterized network in this feature space, easily learns the correct

decision boundary. While the student being severely constrained network suffers in

learning the task. Different training runs lead to different local minima. We show

teacher solution and student local minima in Figure 13·2.a. The contour plots for the

student models under KD loss and DiSK loss are shown in Figure 13·2.b-13·2.c using

(Li et al., 2018a).

The results are similar to the 1D example - KD converges to a poor local minimum

231

with at least 43% of the initializations, while in contrast, DiSK escapes these by

focusing on the learnable part of the input space (Fig. 13·2.c), converging to the

global minimum nearly always (Table 13.1).

To conceptualize our findings in these examples, let us attempt to intuitively infer

the example-censoring, landscape-smoothening, and good generalization, by utilizing

the following conditions that appear to be satisfied for these synthetic examples.

Realizability. Suppose we are in a situation where the guide function g ∈ G is suf-

ficiently powerful that there is a student and guide function capable of interpolation,

i.e., predictions supported by the guide function, ϕ(S, g), interpolates to mimic the

labels.

Example: For instance, consider a binary classification problem with the labels

y ∈ {−1, 1}. Let ϕ(s, g) = y(s + g) with s(x) ∈ [−1, 1]. Our realizability condi-

tion is that we always satisfy y(s(x)+ g(x)) > 0. As such, this leads to the condition

that if ys(x) ≤ 0, then yg(x) > 0. Therefore, E[1[ys(x)<0]] ≤ E[1[ys(x)<0,yg(x)>0]] ≤
E[1[yg(x)>0]].

Small Guide Function Capacity. In addition to realizability suppose the class of

guide functions g ∈ G has a small capacity (for instance, small VC dimension). For

our case this condition is satisfied because our guidance function is obtained by using

an MLP on teacher’s last layer features.

Example: Continuing with the example above, say we now have m training in-

stances, (xi, yi), i ∈ [m], ĝ(x) is guide function output of DiSK. We can infer by

standard statistical learning results (Shalev-Shwartz and Ben-David, 2014) that,

for the estimated function ĝ ∈ G, it follows with probability greater than 1 − η

that E[1[yĝ(x)>0]] ≤ 1
m

∑m
i=1 1[yiĝ(xi)>0] +

√
V C(G)+log 1

η

m
. As a result, we can say

that if there is a student, s(x) (not necessarily that output by DiSK), which com-

plements ĝ(x) and satisfies realizability, then with probability greater than 1 − η:

232

E[1[ys(x)<0]] ≤ 1
m

∑m
i=1 1[yiĝ(xi)>0] +O

(√
V C(G)+log 1

η

m

)
.

(a) (b) (c)

Figure 13·2: (a): 2D Gaussians. Data distribution on R2. Teacher T learns the
correct decision boundary with 3 layer NN and it is the global minima for this three-
way classification task. While student S has many bad local minima, and one global
minima that best describes the decision boundary with 2 layer NN. (b): KD training.
Loss contour plot shows the various local minima in the loss landscape. (c): DiSK
training. Loss contour plot shows the bad local minima no longer exist (wider minima,
join two adjust minima, remove bad local minima).

Remarks. The key point is that the student capacity is considerably larger since

we typically train an entire DNN, and student complexity-based bound can be vac-

uous. While the guidance function does bound the student generalization error in

terms of guide function complexity, there are strong caveats— we require the strong

assumption of realizability on the entire domain, and additionally, while the guide

function can witness student error, we are not in a position to precisely estimate it

without additional training data. Furthermore, the RHS is a relaxed bound on the

student training error. This motivates having a budget constraint to ensure that

student learns with small training error.

233

13.3 Definitions and Formulations

Notation. Let X and Y = {1, . . . , C} be the feature and label spaces respectively,

focusing on a C-class classification task. We assume that we have a training set of

N i.i.d. data points D = {xi, yi}Ni=1, where xi ∈ X and yi ∈ Y . We use symbols S

and T to denote the student and teacher models respectively. Let lS(x) ∈ R|Y| and

lT (x) ∈ R|Y| be the score vector, logits, predicted by S and T on input x. We use τ

as the temperature used to soften the probability distribution. We write the resulting

softened student and teacher probabilities as sτ (x) and tτ (x), i.e.,

sτ (x) = softmax

(
lS(x)

τ

)
; tτ (x) = softmax

(
lT (x)

τ

)

The standard prediction probabilities correspond to s1(x) and t1(x). We will use

sτy(x) to denote the yth coordinate in sτ (x), and similarly tτy(x). The hard prediction

of the student is pS(x) = argmaxy∈Y s1y(x), and similarly pT (x) = argmaxy∈Y t1y(x)

for the teacher.

We use g(x) ∈ [0, 1] to denote the helper guide function for the student and teacher

pair (S, T). Guide takes input x and any other feature processed by (S, T) pair and

decides whether or not the student needs help on the input x. Finally, we define

ReLU activation as (·)+ = max(0, ·).

13.3.1 Vanilla Knowledge Distillation

KD relaxes the 0−1 error between the student predictions and the true labels y using

the cross-entropy loss LCE. Then, KD denotes the distance between the student and

teacher softened probability distributions using the KL divergence. We summarize

the corresponding losses as,

LCE(s) = −
1

N

N∑
i=1

log s1yi(xi); Lτ
KL(s) = −

1

N
τ 2

N∑
i=1

∑
y

tτy(xi) log
sτy(xi)

tτy(xi)

234

For hyperparameters α ∈ [0, 1], τ > 0, KD minimizes a mixture of the above losses,

as shown below

Lτ,α
KD(s) = αLCE(s) + (1− α)Lτ

KL(s). (13.1)

13.3.2 Selective Knowledge Distillation.

KD attempts to transfer the knowledge from the teacher to the student on all training

data points, which is a sub-optimal objective when there is a capacity mismatch be-

tween the student and the teacher. Instead, we propose distilling selective knowledge

(DiSK) to allow the student to selectively ignore some hard-to-learn data points dur-

ing training, transferring the teacher’s knowledge only on easy-to-learn inputs, and

matching the learning to student capacity. Our objective is to minimize

min
s,g,δ

1

N

N∑
i=1

distance(t(xi);ϕ(s, g)(xi))︸ ︷︷ ︸
Distance between T and S with help of g

subject to.
1

N

N∑
i=1

g(xi)1{yi ̸=argmaxy sy(xi)} ≤ δ︸ ︷︷ ︸
Support budget constraint on g

(13.2)

where ϕ interpolates student predictions based on the guide’s help. The divergence

term helps in minimizing the distributional distance between the teacher and student

probabilities after the guide g is included. While the budget term in the optimization

constrains the helper g to provide help only when necessary, the amount of help given

to the student should be within the budget δ ∈ [0, 1].

Function g Construction. As previously stated, we use the teacher’s last layer

features and soft predictions as input to the guide g. The guide is structured as a

light-weight three-layer neural network with these inputs, with a sigmoid activation

at the last layer. We re-emphasise that g is not used at inference time, and only aids

training. More details are left to Appx.J.3.

Relaxed Losses, Lagrangian & Optimization Algorithm. We relax Eq.

235

13.2 and construct a Lagrangian by integrating the constraint into the minimization.

Budget constraint relaxation. We relax the indicator loss in the budget to a cross-

entropy, and treat δ as a hyperparameter to get

Lδ
budget(s, g) =

[
− 1

N

N∑
i=1

g(xi) log s
1
yi
(xi)− δ

]
+

(13.3)

We view the scaffold as a way for the student to interpolate the uncensored data. It

suggests that a good initialization for the budget is the error of cross-entropy trained

model when the student does not have the teacher supervision. Thus, we scan the

budget in a small interval around this initialization.

Distillation objective. Motivated from KL loss, we construct a distance loss with

guide function as,

Lτ,K
dist(s, g) = −

1

N
ττt,s,D

N∑
i=1

∑
y

tτy(xi) log
(
sτt,s,Dy (xi) + 1y∈topK(tτ (xi))g(xi)

)
(13.4)

We point out two modifications in the distillation loss. First, Ldist explicitly adds

guide value to softened student probabilities in selected class indices. The class indices

guide function adds value are picked as topK classes based on the teacher probabilities

for any input xi where K is a hyperparameter of our method. The rest of the class

indices do not get any value from g. Second, we use different temperature parameters

for teacher and student. Temperature parameter for teacher, τ , is a hyperparameter.

The student temperature is found by minimizing the KL loss between teacher softened

probabilities and the student softened probabilities over the training dataset, .i.e

τt,s,D = argminτ ′
∑

iKL(t
τ (xi), s

τ ′(xi)).

Similar to KD, we incorporate standard cross entropy loss between student model

predictions and the ground truth labels for stability. We construct our Lagrangian

236

Algorithm 7 DiSK: Distilling Selective Knowledge.
1: Input: Training data D = {(xi, yi)}Ni=1, Teacher t,
2: Parameters: τ , K, α, λmin, λmax, Number of iterations R, λT cosine period,

Budget δ,
3: Initialize: s, randomly initialize g, λ = λmin,
4: for r = 1 to R do
5: Randomly Shuffle Dataset D
6: g ← argming Lτ,K,δ,α

DiSK (s, g, λ)

7: s← argmins αLCE(s) + (1− α)Lτ,K
dist(s, g)

8: λ← λmin + (λmax − λmin)×
(1−cos

r mod λT
λT

π)

2

9: Return : s

by combining Eq. 13.3 and 13.4 as,

Lτ,K,δ,α
DiSK (s, g, λ) = αLCE(s) + (1− α)Lτ,K

dist(s, g) + λLδ
budget(s, g) (13.5)

where α is a hyper-parameter and λ is the dual parameter of DiSK.

We optimize Obj. 13.5 using a primal dual update scheme as explained in Algo-

rithm 7.

Primal Parameter Updates (s, g). We learn the student s and the guide function

g using alternating minimization. We approximate argmin with running SGD for

a small number of epochs on the full dataset. In each iteration, we first learn the

guide function g to select the data partition from which the knowledge needs to be

distilled. Next, given the function g, we learn the student using the help g. We

empirically found that not optimizing the student model on budget loss gives more

stable results. Hence, we minimize the student model only on the distillation and

cross-entropy losses.

Dual Parameter Update (λ) Intuition. Although it is tempting to optimize the

above via a dual ascent and primal descent scheme (wherein the dual parameter λ

is increased by residual term in the constraint until constraint satisfaction), recent

237

Table 13.2: Model Statistics. We compute the storage (number of parameters) and
computational requirements (number of multiply-addition operations) of the models
used in this work.

Architecture CIFAR-100 Tiny-ImageNet Architecture CIFAR-100
MACs Params MACs Params MACs Params

Teacher
ResNet10-ℓ 64M 1.25M 255M 1.28M
ResNet10 253M 4.92M 1013M 5M ResNet32x4 1083M 7.4M
ResNet18 555M 11.22M 2221M 11.27M Wide-ResNet-40-2 327M 2.25M
ResNet34 1159M 21.32M 4637M 21.38M

Student

ResNet10-xxs 2M 13K 8M 15K ResNet8x4 177M 1.2M
ResNet10-xs 3M 28K 12M 31K ShuffleNetV2 44.5M 1.4M
ResNet10-s 4M 84K 16M 90K Wide-ResNet-16-2 101M 700K
ResNet10-m 16M 320K 64M 333K Wide-ResNet-40-1 83M 570K

MobileNetV2x2 22M 2.4M

work, (Sun and Sun, 2021), has proposed to decrease the λ in the non-convex

regime. Inspired by this, we update the dual parameter by a fixed schedule between

[λmin, λmax]. λmin encourages exploration and allows student model to distill knowl-

edge from all points. On the other hand, λmax enforces the constraint and forces

the student model to learn on uncensored inputs. We choose R ≈ 4λT , so that the

algorithm is exposed to a few exploratory periods. For the final period, we increase

λ monotonically so that budget is more strictly enforced at termination.

Computational Efficiency. Algorithm 7 trains both student and guide networks.

The guide network being small (three-layer MLP) relative to the student (CNN

model), the additional cost in training the guide is relatively insignificant, and as

such DiSK efficiency is similar to KD.

13.4 Experiments

We evaluate DiSK in various capacity mismatch scenarios on benchmark datasets.

Our code is available at https://github.com/anilkagak2/DiSK_Distilling_

Scaffolded_Knowledge

Datasets. We use publicly available CIFAR-100 (Krizhevsky and Hinton, 2009),

Tiny-ImageNet (Le and Yang, 2015) datasets. CIFAR-100 contains 50K training and

10K test images from 100 classes with size 32×32×3. While Tiny-ImageNet contains

238

100K training and 10K test images from 200 classes with size 64×64×3. We provide

the dataset setup and data augmentations used in detail in Appx. A.1.

Models. We evaluate standard convolutional models on these datasets includ-

ing ResNet(He et al., 2016), Wide-ResNet(Zagoruyko and Komodakis, 2016), Mo-

bileNet(Sandler et al., 2018), and ShuffleNet(Ma et al., 2018). Table 13.2 shows the

storage and computational requirements of all the models used in this work. We

provide explicit model configurations in Appx. J.3, including the tiny models we

generate from the ResNet architectures.

Methods. We study performance against standard cross-entropy (CE) based

learning and the vanilla KD methods. For each method, we train models for 200

epochs using SGD as the optimizer with 0.9 momentum and 0.1 learning rate. See

Appx. J.4 for more training details. We have recorded the mean in our results as the

variance of 3 trials in our experiments is not larger than 0.1 in most cases.

We perform evaluations in different settings. Below, we explain individual setups.

Large Capacity Mismatch Setting. We distill knowledge from a teacher model

into a student model where the student has much less capacity compared to the

teacher model. We use four large capacity ResNet teachers and five tiny ResNet

students and train these students using CE, KD, and DiSK methods. Performances,

and the gains of DiSK are reported in Table 13.3.

Small Capacity Mismatch Setting. While DiSK has been designed for the

scenario when student capacity is very low, we further evaluate it in the setting where

teacher and student capacities are similar, to probe how far the power of the method

extends. The model classes used are the standard choice for this scenario (Chen et al.,

2022; Tung and Mori, 2019). Performance is reported in Table 13.4.

Table 13.4 further reports the results of the feature matching distillation methods:

FitNets (Romero et al., 2015), SemCKD (Chen et al., 2021a), and SimKD (Chen et al.,

239

2022). Such methods can often outperform response matching KD on large students,

due to student representations that are more aligned with the teacher, but typically at

an increased training cost. While feature matching methods are not the main focus of

our work (and in principle scaffolding idea can be extended to them), we observe that

DiSK often improves upon their performance without any direct feature matching.

Experiment results. Below, we highlight salient features of DiSK based on

empirical data.

DiSK outperforms the baselines uniformly across all datasets and student sizes.

As shown by Table 13.3, DiSK significantly improves the student performance in

CIFAR-100 and the (more challenging) Tiny-ImageNet dataset, respectively showing

accuracy gains of up to 5% and 2% compared to KD. These gains are consistent across

a wide range of student and teacher capacities.

DiSK achieves better performance with worse teachers than KD does with even

the best teachers. In Table 13.3, we point out that the student performance increases

for KD as the teacher complexity is increased for a given student. But note that for

the same student, DiSK achieves much better performance with even worse teacher.

For instance, for the ‘ResNet10-m‘ student, KD accuracy increases from 66.96% to

68.09% by using high capacity teachers. But ‘ResNet10-m‘ trained with even the

worst teacher (‘ResNet10-ℓ‘) achieves 70.03% accuracy. This saves a lot of resources

in any application as large teacher requires more training time, and larger compute

resources.

DiSK is competitive even in small capacity difference setting. As shown by Ta-

ble 13.4, DiSK does not loose its competitive edge over the KD even when the student

is relatively similar sized as teachers, and shows gains of up to 2.5% relative to KD. We

conjecture that the observed gains arise from the fact that DiSK provides scaffolding

for hard points to the student in initial training stages, which promotes the student

240

to learn easy examples first. As training progresses, DiSK removes the discounted

help from hard inputs. As a result, the student evolves from simpler hypothesis to

the ones consistent with both easy and hard inputs. This justifies our dual parameter

(λ) update in Algorithm 7, wherein we periodically increase and decrease λ to enforce

and relax the budget constraint.

DiSK students achieve near teacher accuracy while saving up to 8× MACs &

5× Params. As reported in Table 13.3, student (‘ResNet10-m‘) trained with the

teacher (‘ResNet10-ℓ‘) achieves close to the teacher accuracy of 71.99%. In this

process, it saves 4× compute and requires 4× less parameters. Similarly, student

(‘ShuffleNetV2‘) trained with the teacher (‘ResNet32x4‘) achieves close to the teacher

accuracy of 81.45%. In this process, it saves 24× compute and requires 5× less pa-

rameters.

DiSK cleverly selects a subset of datapoints and smoothens the loss landscape. As

illustrated in Figure 13·1 and 13·2, DiSK judiciously selects a subset of hard-to-learn

data points for the students and provide discounted help to the student focus on

easily learnable inputs. As a result, it eliminates some bad local minima in the

student loss-landscape, and smoothens tihs surface.

DiSK enables the student to reach saturation capacity. In Table 13.3, the perfor-

mance of KD often suffers as the teacher size is increased, e.g., student (‘ResNet10-

s’) accuracy decreases substantially with the teacher ‘ResNet34’ versus the teacher

‘ResNet18’. In contrast, DiSK saturates the student performance across different

teachers. For instance, student (‘ResNet10-m‘) accuracy is ≈ 70% for all the teach-

ers. Thus, we point out that DiSK enables the student to reach saturation. This may

be due to the fact that guide g identifies the same set of ‘easy’ points across different

teachers.

241

Table 13.3: DiSK performance under large capacity mismatch on CIFAR-100 &
Tiny-ImageNet: We draw mismatched teachers and students from the ResNet family,
and report accuracy of CE trained teachers and students, performance of students
distilled using KD and DiSK, and gains of the latter relative to KD.

Architecture
CIFAR-100 Tiny-ImageNet

Accuracy (%) Accuracy (%)
Teacher Student Teacher CE KD DiSK Gain Teacher CE KD DiSK Gain

ResNet10-ℓ
ResNet10-xxs

71.99

32.05 32.64 37.56 4.92
52.14

17.44 17.59 18.62 1.03
ResNet10-s 52.16 54.92 58.14 3.22 34.65 35.77 37.43 1.66
ResNet10-m 65.24 66.96 70.03 3.07 44.74 46.01 48.03 2.02

ResNet10
ResNet10-xxs

75.25

32.05 34.25 37.84 3.59
56.04

17.44 17.96 18.55 0.59
ResNet10-s 52.16 54.95 58.36 3.41 34.65 36.11 37.37 1.26
ResNet10-m 65.24 67.27 70.15 2.88 44.74 46.08 48.19 2.11

ResNet18
ResNet10-xxs

76.56

32.05 34.16 37.8 3.64
62.48

17.44 17.47 18.53 1.06
ResNet10-s 52.16 55.76 58.11 2.35 34.65 35.59 37.5 1.91
ResNet10-m 65.24 68.09 69.86 1.77 44.74 45.91 47.7 1.79

ResNet34
ResNet10-xxs

80.46

32.05 33.93 37.78 3.85
63.06

17.44 17.67 18.91 1.24
ResNet10-s 52.16 54.19 58.02 3.83 34.65 35.43 37.68 2.25
ResNet10-m 65.24 66.78 69.89 3.11 44.74 45.89 47.6 1.71

13.5 Exploratory Experiments

Scaling upto ImageNet setting. We show that DiSK scales easily to the large-

scale ImageNet-1K dataset. We train three configurations with DiSK, namely (a)

ResNet18(He et al., 2016) student and ResNet50 teacher, (b) ViT-Tiny(Dosovitskiy

et al., 2021) student and ViT-Large teacher, and (c) DeiT-Tiny(Touvron et al., 2021)

student and ViT-Large teacher. We borrow these models from the timm(Wightman,

2019) library. Table 13.5 shows the DiSK performance on these configurations along

with the baseline. It clearly shows that DiSK scales well to ImageNet-1K setup and

achieves significant improvements over the baselines.

Less Labelled Data Regime. We explore the performance of all three methods

(CE, KD, DiSK) when the amount of labelled data is low. We pick up a teacher

(ResNet18 model) trained on full CIFAR-100 data, i.e., 50K data points, and use this

to train the different distillation setups. We use four data configurations (number of

labelled data: 50K, 37.5K, 25K, 12.5K). Figure 13·3 show the two student models

242

Table 13.4: DiSK performance with small capacity mismatch on CIFAR-100. We
pick standard student and teacher configurations used in the KD literature, and report
accuracies and gains similarly to Table 13.3. Feature matching KD baselines are due
to (Chen et al., 2022).

Architecture
CIFAR-100

Response Matching KD Feature Matching KD
Accuracy (%) Accuracy (%)

Teacher Student Teacher CE KD DiSK Gain FitNet SemCKD SimKD*

ResNet32x4

ResNet8x4

81.45

73.89 76.25 76.92 0.67 74.32 76.23 78.08
ShuffleNetV2 73.74 79.13 80.23 1.1 75.82 77.62 78.39

Wide-ResNet-16-2 74.26 76.28 77.67 1.39 74.70 75.65 77.17
MobileNetV2x2 69.24 76.05 77.24 1.19 73.09 73.98 75.43

Wide-ResNet-40-2

ResNet8x4

78.41

73.89 75.15 76.05 0.9 75.02 75.85 76.75
ShuffleNetV2 73.74 75.81 78.33 2.52 - - -

Wide-ResNet-40-1 72.81 74.44 75.92 1.48 74.17 74.4 75.56
MobileNetV2x2 69.24 73.92 76.32 2.40 - - -

*SimKD accuracy is not emphasized as it employs additional layers beyond the
given student architecture and thus not directly comparable to other methods.

Table 13.5: ImageNet-1K: We pick some student and teacher configurations to show
that we can scale DiSK to the ImageNet dataset with significant improvements in Top-
1 accuracy. We borrow model definitions from timm(Wightman, 2019) repository
including the convolutional and transformer vision models.

Teacher Student CE KD DiSK
ResNet50 ResNet18 69.73 71.29 72.35

ViT-Large (Patch 16, Res. 384) ViT-Tiny (Patch 16, Res. 224) 75.45 76.61 77.86
ViT-Large (Patch 16, Res. 384) DeiT-Tiny (Patch 16, Res. 224) 72.2 74.5 75.59

(ResNet10-s, ResNet10-m) trained in this setup. It shows that the gap between DiSK

and KD starts to bridge when there are few labelled data points, but the gap starts

to increase between KD and DiSK as soon as the number of labelled data points

increases. It is due to the fact that when more data is available, the likelihood of

hard data points increases for a model.

Self-Distillation. In this setup, we use the same teacher and student architec-

tures (referred to as the self-distillation in the literature). We want to analyze how

KD and DiSK fare when the student and teacher are same capacities. We train four

different models (ResNet18, Wide-ResNet-40-2, ShuffleNetV2, and MobileNetV2x2)

243

(a) (b)

Figure 13·3: CIFAR-100 Less Labelled Data. Comparing CE, KD, and DiSK, all
trained on the same amount of labelled data points (50K, 37.5K, 25K, 12.5K). The
teacher is the ResNet18 model trained with CE loss on all labelled data. (a) ResNet10-
s (4M MACs) student, and (b) ResNet10-m (16M MACs).

on the full CIFAR-100 dataset. Table 13.6 shows the performance of student models

trained using the same teacher architecture. Note that the CE column denotes the

teacher’s performance (since this checkpoint is used as the teacher’s). This experiment

shows that DiSK still achieves better performance than KD in the self-distillation

setup.

Table 13.6: Self-Distillation (CIFAR-100 dataset): We pick the same student and
teacher configurations to show that we can utilize DiSK even in the self-distillation
literature. The teacher model is the cross-entropy checkpoint in both KD and DiSK.

Teacher=Student CE KD DiSK
ResNet18 76.56 78.78 80.02

ShuffleNetV2 73.74 74.61 76.03
MobileNetV2x2 69.23 70.63 71.1

Wide-ResNet-40-2 78.42 78.72 80.41

Low-Capacity Teacher + High-Capacity Student. Conventionally, in a

knowledge distillation setup, the teacher has a higher model capacity than the stu-

dent. In this experiment, we probe this aspect and choose the student network to be

much larger compared to the teacher. We pick ShuffleNetV2 as the teacher and four

244

student models (ResNet18, Wide-ResNet(40-2, 16-2), ResNet32x4). We train these

models on the CIFAR-100 dataset using CE, KD, and DiSK schemes. We report their

performance in Table 13.7. It shows that, in most cases, the gains are marginal com-

pared to the cross-entropy method (except ResNet18 architecture). Further, DiSK

has a much better performance than KD in this setup. Concretely, KD does not

surpass the CE accuracy, while DiSK surpasses the CE performance.

Table 13.7: Low-Capacity Teacher + High-Capacity Student: We pick the student
model to be larger than the teacher network. We use the ShuffleNetV2 model as the
teacher. It achieves 73.74% accuracy on the CIFAR-100 dataset.

Student CE KD DiSK
ResNet18 76.56 75.94 80.79

Wide-ResNet-16-2 74.26 73.45 74.67
Wide-ResNet-40-2 78.42 76.33 79.57

ResNet32x4 81.52 80.21 82.39

DiSK + Hybrid-Models. We apply DiSK as the training scheme while learning

hybrid models. We pick the student network as ResNet10-s (4M MACs) model that

achieves close to 52% accuracy with cross-entropy training. We use the teacher as a

ResNet10 − ℓ (64M MACs) model that achieves close to 72% accuracy with cross-

entropy training. We train a hybrid model using these two models (where the student

routes low-confidence predictions to the teacher). We use the training procedure

described in Chapter 12. Table 13.8 shows the performance of traditional hybrid

architecture and the impact of the DiSK procedure in such training setup. Thus,

DiSK improves the performance of models in the hybrid setup as well.

13.6 Discussion

In this section, we discuss potential extension of our method beyond Vanilla KD to

feature based distillation as well as self-supervised distillation.

Feature based KD methods. Let fs and ft denote the features for the student

245

Table 13.8: Hybrid models (trained with the DiSK objective) for CIFAR-100 at
various coverages. Note that Entropy and Hybrid methods are borrowed from Chap-
ter 12, we add the other methods by training Hybrid models with the DiSK objective.
Since DiSK has a guide installed during training that decides the hard input instances
during training for the student network, we have two guide functions one utilizing
student and the other utilizing teacher features.

Algorithm Base
Acc.(%)

Accuracy(%) at Cov.
80% 70%

Entropy 52.16 57.77 59.95
Hybrid 52.16 59.32 62.48

Hybrid+DiSK (student guide) 57.16 62.04 64.58
Hybrid+DiSK (teacher guide) 58.14 62.54 64.83

and teacher respectively and Ψ denote the operator such that Ψ(fs) lies in the same

feature space as ft . Commonly used feature transfer strategy is to minimize the

distance between these two representations via loss function such as mean-squared

error as shown below by the loss Lft.

Lft = −
1

N

N∑
i=1

∥Ψ(fs(xi))−ft(xi)∥2; Lft−g = −
1

N

N∑
i=1

(1−g(xi))∥Ψ(fs(xi))−ft(xi)∥2

(13.6)

A simple extension of this feature alignment loss to the selective distillation is shown

by the loss Lft−g that weighs each data point with the helper function decision.

Table 13.9 shows this feature matching extension for the SimKD(Chen et al., 2022)

scheme. We leave question of finding better selective distillation losses in feature

alignment to future work.

Self-Supervision. We can substitute the teacher with a moving average of the

student to help guide in the distillation process (a surrogate that helps in learning

the hints).

Other Domains. Although our work focuses mainly on models in the vision do-

main. We point out that conceptually the function g is applicable on models in other

domains albeit with some modifications. For instance, we can utilize the censoring

246

Table 13.9: DiSK performance against feature matching KD on CIFAR-100: Similar
setup as in Table 13.4. We integrate DiSK within SimKD (Chen et al., 2022). The
gains of using DiSK over KD and using SimKD + DiSK over SimKD are reported.
Feature matching KD baselines are due to (Chen et al., 2022).

Architecture Response Matching KD Feature Matching KD
Accuracy (%) Accuracy (%)

Teacher Student Teacher CE KD DiSK Gain FitNet SemCKD SimKD SimKD + DiSK Gain

Wide-ResNet-40-2 ResNet8x4 78.41 73.89 75.15 76.05 0.9 75.02 75.85 76.75 77.13 0.38
Wide-ResNet-40-1 72.81 74.44 75.92 1.48 74.17 74.4 75.56 76.21 0.65

mechanism in sequential decision making with recurrent neural networks (Kag et al.,

2020; Kag and Saligrama, 2021a). We already show that DiSK can be applied to the

vision transformers in the Table 13.5. We leave the application and modifications to

DiSK for transformers in language domain for future research.

247

Part IV

Conclusion & Future Directions

248

249

Chapter 14

Conclusions and Future Directions

14.1 Conclusion

In this thesis, we studied various ways to reduce the resource footprint of deep neu-

ral networks. The central theme revolved around addressing challenges in existing

architecture and algorithmic design.

In the first part (Chapter 2-5), we designed low-complexity RNNs by addressing

various challenges such as vanishing/exploding gradients, noise amplifications, and

BPTT complexity.

First, drawing inspiration from Continuous RNNs, we developed discrete time

incremental RNN (iRNN) (Chapter 3). Leveraging the equilibrium properties of

CTRNN, iRNN solves exploding/vanishing gradient problem. We show that iRNN

improved gradients directly correlate with improved test accuracy. Several experi-

ments demonstrate iRNN’s responsiveness to long-term dependency tasks. In addi-

tion, due to its smooth low-dimensional trajectories, it has a lightweight footprint

that can be leveraged for IoT applications.

Next, we designed time adaptive RNN (TARNN) (Chapter 4) for learning com-

plex patterns in sequential data. By modifying the time constants of an ODE-RNN,

it learns to skip uninformative inputs while focusing on informative input segments.

Additionally, we develop parameter constraints, which lead to lossless information

propagation from informative inputs by mitigating gradient explosion or decay. Our

empirical evaluation validates our approach against competitors with similar complex-

ity. Indeed, we realize competitive performance with a lighter memory footprint and

faster training time without suffering performance degradation or increased inference

time.

Finally, we proposed a novel forward-propagation-through-time (FPTT) (Chap-

ter 5) algorithm for training RNNs based on sequentially updating parameters forward

through time. At a time t, it involves taking a gradient step of an instantaneously

constructed regularized risk, where the regularizer evolves dynamically based on the

history. Our method exhibits a lightweight footprint and improves LSTM trainability

for benchmark long-term dependency tasks, bypassing vanishing/exploding gradient

issues encountered while training LSTMs with BPTT. As a result, we show that

LSTMs have sufficient capacity and often realize results competitive to much higher

capacity models.

In the second part (Chapter 6-9), we propose new convolutional residual layers

and a new training algorithm to improve CNN architectures.

First, we developed a novel feature layer that couples the input and output fea-

ture map with PDE constraints. The proposed Global layer (Chapter 7) is readily

deployable across many existing architectures. We show that the architectures with

Global layers are more compact, shallower, and require less compute for inference and

training. Empirical evaluations demonstrate that the proposed layer provides 2− 5×
storage and computational savings.

Next, we constructed a novel spatial interpolation (SI) (Chapter 8) scheme that

exploits spatial smoothness in convolutional residual blocks. We show that it can be

easily integrated with popular convolutional blocks, resulting in novel architectures

with significantly reduced computational footprint despite little loss in performance.

Our SI-MobileNetV3 and SI-EfficientNet architectures can get nearly the same accu-

250

racy as the baseline architectures while reducing the computational cost by up to 40%.

Also, crucially, our architecture can be seamlessly implemented using the standard

set of operators/hardware. Our empirical evaluations demonstrated the effectiveness

of the proposed scheme on object classification and semantic segmentation tasks.

Finally, we proposed Distributionally Constrained Learning (DCL) (Chapter 9),

a novel training method for improving DNN generalization. DCL enforces data-

dependent constraints using a cosine-scheduled multi-phase constrained training. We

propose two distributional constraints, an input-variability constraint, which pe-

nalizes the KL divergences of model outputs on different input examples, and a

model-variability constraint that de-sensitizes model variations arising from randomly

sampled batches. We conduct experiments on several benchmark datasets (CIFAR-

100, Tiny-ImageNet, ImageNet-1k) and diverse architectures (ShuffleNet, Resnet-18,

Resnet-50, and ViT-Tiny) and demonstrate SOTA performance. On CIFAR-100, our

method surprisingly matches ImageNet pre-trained networks.

In the last part (Chapter 10-13), we explore the notion of input hardness and

design input adaptive architectures and algorithms.

First, we presented a novel method for selective classification that was motivated

by relaxing a new formulation (Chapter 11) of the problem. The formulation is

natural, equivalent to prior proposals, and amenable to standard statistical analyses.

The OSP-based relaxation is theoretically efficient in the low target error regime, and

the resulting method is efficiently trainable via standard techniques and outperforms

SOTA methods across target error levels. Further, it is the first method to non-

trivially outperform naïve post-hoc solutions and thus represents a significant step in

the practical approaches to selective classification.

Next, we proposed a novel hybrid design (Chapter 12) where an edge-device se-

lectively queries the cloud only on those hard instances that the cloud can classify

251

correctly to optimize accuracy under latency and edge-device constraints. We pro-

pose an end-to-end method to train neural architectures, base predictors, and routing

models. We use novel proxy supervision for training routing models. Our method

adapts seamlessly and near optimally across different latency regimes. Empirically,

on the large-scale ImageNet classification dataset, our proposed method, deployed

on an MCU, exhibits a 25% reduction in latency compared to cloud-only processing

while suffering no excess classification loss.

Finally, we developed a new knowledge distillation algorithm (Chapter 13) that

utilizes teacher predictions in novel ways combining predictive targets with scaffolding

the student on hard-to-learn points through a guide function. Our method is partic-

ularly relevant when there is a large gap between student and teacher capacities. We

show that it allows convergence to better minima based on two key properties. Our

guide function allows for censoring hard-to-learn examples, and the predictive targets

set by the teacher on remaining points allow for eliminating bad local minima and

smoothening the resulting student loss landscape. Against vanilla KD, we achieve

improved performance and are comparable to more intrusive techniques that leverage

feature matching on benchmark datasets.

To summarize, we explored two avenues to improve DNN resource efficiency. In

the first direction, we designed new architectures and training algorithms to improve

performance at a fixed budget. These low-complexity DNNs (both convolutional and

recurrent) achieve superior performance. Since these architectures are static in nature

(i.e., they utilize the same amount of resources irrespective of the input hardness),

they give us the second direction to explore. In this direction, we introduced the

notion of input hardness and enabled the abstention capabilities in neural networks.

These networks allow sending complex examples to expert models as well as designing

training algorithms that incorporate input hardness.

252

14.2 Future Research Directions

Before discussing future research work, let us compare GPT-3(Brown et al., 2020), a

SOTA DNN, and the human brain. (Huang, 2022) notes that GPT-3 has twice the

number of neurons compared to the human brain, yet, it can only solve language

processing tasks compared to the myriad tasks performed by the human brain (audio,

video, language, sentiment, creativity, etc.). In addition, training this network alone

requires 50× more energy than an average human consumes over their entire lifespan.

Thus, current SOTA DNNs are inefficient, unspecialized, and underperforming

compared to the human brain. It should put in perspective how far behind the field

is in the efficiency and specialization of the DNNs. Below we lay down a few future

research directions to improve this efficiency and specialization viewpoint. Below, I

have listed some concrete ideas that tackle this issue.

• Efficient Transformers. Transformers(Vaswani et al., 2017) have emerged as a

one-stop solution for many learning tasks in language, vision, and speech domains.

They evolved from their simple siblings like RNNs, and do not inherit long-range

dependency learning issues. But, this improvement comes with many challenges:

(a) large model size and inference complexity as it requires access to dependency

calculation that scales quadratically in sequence length, and (b) long training times

and high working memory. Ideas from low-complexity RNNs can be extended to

generate efficient transformers with significantly less resource consumption. In

addition, the FPTT algorithm for RNNs can be modified to reduce transformer

training time. Similarly, input hardness can be incorporated into the transformer

architectures by adaptively invoking a low-capacity transformer for simple inputs

and routing to a high-capacity transformer for complex inputs.

• Context Aware DNNs. Traditional DNNs rely on a single feature generation

253

pipeline that focuses on the input and outputs the predictions. In addition, the

human brain relies on tangential observations to infer the context, speeding up

the inference and predictive performance. DNNs should follow a similar strategy

for the low-complexity and input hardness-aware architectures. Side information

should help improve the DNN generalization. In the visual or textual domain,

a context can be as simple as the prominent feature locations, objects, or actor

information. It will enable a DNN to parse useful features before delving into the

details or effectively censoring unnecessary information. I believe some logic that

efficiently infers contextual information will benefit any neural architecture.

• Enforcing Constraints During Training. In this thesis, we proposed selective

distillation (DiSK) and distributionally constrained learning (DCL), wherein we de-

signed a simple primal-dual scheme that gradually enforces constraints during train-

ing. We have only explored the tip of the iceberg. In the DNN literature, a better

generalizing minimum has various characteristics. I believe many characterizations

should be enforced as constraints during the training to yield efficient DNNs.

• Applications. We can deploy abstaining and hybrid models in many mobile

applications, such as Android/iOS cameras, Alexa/Siri, Oculus, etc. In this setup,

the low-capacity abstaining model resides on the device and infers as many queries

as it can confidently. Once the edge model decides the uncertainty about user input,

it can provide the user with its low-confident prediction and an option for the user

to consent to the cloud model in case the user wants high-quality predictions. It

includes image classification, sentiment prediction, object detection, semantic seg-

mentation, conversations, etc. Similarly, the proposed low-complexity architectures

improve computational and storage requirements for all resource constraints. Thus,

they can be easily scaled and deployed in existing machine learning applications, in-

cluding cloud devices with lots of resources and edge devices with limited resources.

254

Part V

Appendix: Datasets, Experiment

Details and Proofs

255

256

Appendix A

Datasets

In this chapter, we consolidate all the publicly available datasets used in this thesis

since many of these datasets are used across different chapters and parts. We defer

the toy examples discussion to the individual chapters for self containment.

A.1 Vision Datasets

In this section, we list all the vision datasets used in this work. We will include the

train/test split as well as the data augmentation strategies used in various experi-

ments.

A.1.1 MNIST-10 (LeCun et al., 2010)

This dataset consists of 10 classes with grayscale images of 28× 28 pixels. There are

60, 000 images in the training set and 10, 000 images in the test set. We normalize

the data to be mean 0 and variance 1.

A.1.2 SVHN-10 (Netzer et al., 2011)

This is a real-world image dataset consisting of 10 digits (digits 1 → 9 are labelled

from 1 → 9 and digit 0 is labelled as 10). It has RGB images of size 32 × 32 × 3.

This dataset is similar to MNIST-10(A.1.1), but the data is more realistic since the

images are captured from natural scene images. The training set consists of 73, 257

images and the test set consists of 26, 032 images.

A.1.3 Cats & Dogs

This is binary classification dataset for distinguishing dogs and cats. It is available at

https://www.kaggle.com/c/dogs-vs-cats. This dataset consists of 25, 000 images

in the training set.

A.1.4 CIFAR-10/100 (Krizhevsky and Hinton, 2009)

This dataset consists of RGB images of 32 × 32 pixels. It contains 50, 000 training

and 10, 000 test images. It has two variants: (a) CIFAR-10 images are drawn from

10 classes, and (b) CIFAR-100 images are drawn from 100 classes. Unless explicitly

stated, we follow standard data augmentation techniques (mirroring/shifting) used

in earlier works (He et al., 2016; Huang et al., 2017), followed by normalization to a

standard gaussian across channels.

A.1.5 ImageNet-1K (Russakovsky et al., 2015)

It is the popular ILSVRC 2012 classification dataset. This 1000 way classification

dataset consists of 1.28 million training and 50, 000 validation images. We follow

the standard data augmentation (mirroring, resize and crop to shape 224 × 224) for

training and single crop for testing. Similar to previous works, we report results on

the validation set.

A.1.6 Tiny-ImageNet (Le and Yang, 2015)

It is a trimmed down version of the ImageNet-1K dataset. It contains 100K training

and 10K test images from 200 classes with size 64 × 64 × 3. We use the standard

257

Table A.1: Dataset Statistics & Long Term Dependence

Dataset Avg. Activity
Time

Input
Time

Sequence
Ratio #Train #Fts #Steps #Test

Google-30 25ms 1000ms 3/99 51,088 32 99 6,835
HAR-2 256ms 2560ms 13/128 7,352 9 128 2,947

Noisy-MNIST 28 1000 7/250 60,000 28 1000 10,000
Noisy-CIFAR 32 1000 4/125 60,000 96 1000 10,000
Pixel-MNIST 60,000 1 784 10,000

Permuted-MNIST 60,000 1 784 10,000

data augmentations including ‘RandomCrop‘, ‘RandomHorizontalFlip‘, ‘AutoAug-

ment‘(Cubuk et al., 2019), ‘Cutout‘ (DeVries and Taylor, 2017), and ‘Mean-Std-

Normalization‘.

A.1.7 Cityscapes (Cordts et al., 2016)

This dataset corresponds to a semantic segmentation task. It consists of images of size

1024× 2048 pixels, along with high-quality pixel-level annotations for 19 foreground

classes and one background class in the city street setup. It consists of 5000 images

split into the train (2975 images), validation (500 images), and test (1525 images)

splits. Additionally, it consists of 20K coarsely annotated images. In our experiments,

we only use the fine annotations and report the mIoU (mean intersection over union)

metric on the test set.

A.2 Sequential & Long Range Dependency Datasets

In this section, we list all the sequential datasets used in this work, including the long

range dependency datasets. Table A.1 provides the statistics for these datasets.

258

A.2.1 Google-12 & Google-30 (Warden, 2017)

Google Speech Commands dataset contains 1 second long utterances of 30 short

words (30 classes) sampled at 16KHz. Standard log Mel-filter-bank featurization

with 32 filters over a window size of 25ms and stride of 10ms gave 99 timesteps of

32 filter responses for a 1-second audio clip. For the 12 class version, 10 classes used

in Kaggle’s Tensorflow Speech Recognition challenge1 were used and remaining two

classes were noise and background sounds (taken randomly from remaining 20 short

word utterances). Both the datasets were zero mean - unit variance normalized during

training and prediction.

A.2.2 HAR-2 (Anguita et al., 2013)

2 Human Activity Recognition (HAR) dataset was collected from an accelerometer

and gyroscope on a Samsung Galaxy S3 smartphone. The features available on the

repository were directly used for experiments. The 6 activities were merged to get

the binarized version. The classes Sitting, Laying, Walking_Upstairs and Standing,

Walking, Walking_Downstairs were merged to obtain the two classes. The dataset

was zero mean - unit variance normalized during training and prediction.

A.2.3 Permute-Pixel MNIST and Pixel-CIFAR-10

These are sequential variants of the popular image classification datasets: MNIST

(Lecun et al., 1998) and CIFAR-10 (Krizhevsky and Hinton, 2009). MNIST consists

of images of 10 digits with shape 28 × 28 × 1, while CIFAR-10 consists of images

with shape 32 × 32 × 3. The input images are flattened into a sequence (row-wise).

At each time step, 1 and 3 pixels are presented as the input for MNIST and CIFAR
1https://www.kaggle.com/c/tensorflow-speech-recognition-challenge
2https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+

smartphones

259

datsets respectively. This construction results in Pixel MNIST and CIFAR datasets

with 784 and 1024 length sequences respectively. While Permute-MNIST is obtained

by applying a fixed permutation on the Pixel MNIST sequence. This creates a harder

problem than the Pixel setting since there are no obvious patterns to explore. MNIST

dataset has 60, 000 training and 10, 000 test images while CIFAR-10 dataset has

50, 000 training and 10, 000 test images.

A.2.4 PTB-300

It is a word level language modelling task with the difficult sequence length of 300

and has been studied in many previous works to study long range dependencies in

language modeling (Zhang et al., 2018a; Kusupati et al., 2018). This dataset consists

of 929K training words, 73K validation words, and 82K test words with 10K vocab-

ulary. An example in this dataset consists of a sentence, where the RNN receives an

input at timestep t and has to predict the next word (which will be available on the

next timestep). Perplexity is used as the evaluation metric on this dataset, where

lower values corresponds to better performance. Validation set is used for tuning the

hyper-parameters and once the right set of parameters have been found, evaluation

is performed on the test set.

A.2.5 PTB-w (McAuley and Leskovec, 2013)

It is the traditional word level language modelling variant of the PTB dataset. It

uses 70 as sequence length and we follow (Yang et al., 2018) to setup this experiment.

This dataset consists of 929K training words, 73K validation words, and 82K test

words with 10K vocabulary. Although this is a small scale dataset for studying

language modelling, it has been extensively used by previous works (Merity et al.,

2018; Yang et al., 2018; Bai et al., 2019b). We follow (Merity et al., 2018) to setup

260

our experiments for BPTT and FPTT.

A.2.6 PTB-c (McAuley and Leskovec, 2013)

It is the character level modelling task that uses 150 sequence length. It contains 5M

characters for training, 396K for validation, and 446K for testing, with an alphabet

size of 50. The evaluation metric used for this dataset is bits per character (bpc).

Similar to perplexity, the lower value of bpc corresponds to better performance.

A.2.7 NTU RGB-d Skeleton based Action Recognition (Shahroudy

et al., 2016)

Skeleton based action recognition is performed on the NTU RGB-d dataset with 60

action classes. We follow (Li et al., 2019b; Li et al., 2018b) in order to create the cross-

subject (CS) and cross-view (CV) datasets. After eliminating the spurious entries,

CS dataset contains 40,091 train and 16,487 test samples, while CV dataset contains

37, 646 train and 18,932 test samples. In this dataset, 5% of the train data is used

for hyper-parameter selection.

A.2.8 Noisy-MNIST

To introduce more long-range dependencies to the Pixel-MNIST task, we define a

more challenging task called the Noisy-MNIST, inspired by the noise padded experi-

ments in (Chang et al., 2019). Instead of feeding in one pixel at one time, we input

each row of a MNIST image at every time step. After the first 28 time steps, we

input independent standard Gaussian noise for the remaining time steps. Since a

MNIST image is of size 28 with 1 RGB channels, the input dimension is m = 28. The

total number of time steps is set to T = 1000. In other words, only the first 28 time

steps of input contain salient information, all remaining 972 time steps are merely

261

random noise. For a model to correctly classify an input image, it has to remember

the information from a long time ago. This task is conceptually more difficult than

the pixel-by-pixel MNIST, although the total amount of signal in the input sequence

is the same.

A.2.9 Noisy-CIFAR

This is exactly replica of the noise paded CIFAR task mentioned in (Chang et al.,

2019). Instead of feeding in one pixel at one time, we input each row of a CIFAR-

10 image at every time step. After the first 32 time steps, we input independent

standard Gaussian noise for the remaining time steps. Since a CIFAR-10 image is of

size 32 with three RGB channels, the input dimension is m = 96. The total number

of time steps is set to T = 1000. In other words, only the first 32 time steps of input

contain salient information, all remaining 968 time steps are merely random noise.

For a model to correctly classify an input image, it has to remember the information

from a long time ago. This task is conceptually more difficult than the pixel-by-pixel

CIFAR-10, although the total amount of signal in the input sequence is the same.

A.2.10 Addition Task (Hochreiter and Schmidhuber, 1997b)

We closely follow the adding problem defined in (Arjovsky et al., 2016; Hochreiter

and Schmidhuber, 1997b) to explain the task at hand. Each input consists of two

sequences of length T. The first sequence, which we denote x, consists of numbers

sampled uniformly at random U [0, 1]. The second sequence is an indicator sequence

consisting of exactly two entries of 1 and remaining entries 0. The first 1 entry is

located uniformly at random in the first half of the sequence, whilst the second 1

entry is located uniformly at random in the second half. The output is the sum of

the two entries of the first sequence, corresponding to where the 1 entries are located

262

in the second sequence. A naive strategy of predicting 1 as the output regardless of

the input sequence gives an expected mean squared error of 0.167, the variance of the

sum of two independent uniform distributions.

A.2.11 Copying Task (Hochreiter and Schmidhuber, 1997b)

Following a similar setup to (Arjovsky et al., 2016; Hochreiter and Schmidhuber,

1997b), we outline the copy memory task. Consider 10 categories, {ai}9i=0. The

input takes the form of a T + 20 length vector of categories, where we test over a

range of values of T. The first 10 entries are sampled uniformly, independently and

with replacement from {ai}7i=0, and represent the sequence which will need to be

remembered. The next T − 1 entries are set to a8, which can be thought of as the

’blank’ category. The next single entry is a9, which represents a delimiter, which

should indicate to the algorithm that it is now required to reproduce the initial 10

categories in the output. The remaining 10 entries are set to a8. The required output

sequence consists of T + 10 repeated entries of a8, followed by the first 10 categories

of the input sequence in exactly the same order. The goal is to minimize the average

cross entropy of category predictions at each time step of the sequence. The task

amounts to having to remember a categorical sequence of length 10, for T time steps.

A simple baseline can be established by considering an optimal strategy when

no memory is available, which we deem the memoryless strategy. The memoryless

strategy would be to predict a8 for T + 10 entries and then predict each of the final

10 categories from the set {ai}7i=0 i=0 independently and uniformly at random. The

categorical cross entropy of this strategy is 10 log(8)
T+20

263

A.2.12 DSA-19

3 This dataset is based on Daily and Sports Activity (DSA) detection from a resource-

constrained IoT wearable device with 5 Xsens MTx sensors having accelerometers,

gyroscopes and magnetometers on the torso and four limbs. The features available

on the repository were used for experiments. The dataset was zero mean - unit

variance normalized during training and prediction.

A.2.13 Yelp-5

Sentiment Classification dataset based on the text reviews4. The data consists of

500,000 train points and 500,000 test points from the first 1 million reviews. Each

review was clipped or padded to be 300 words long. The vocabulary consisted of

20000 words and 128 dimensional word embeddings were jointly trained with the

network.

A.2.14 IMDb (Maas et al., 2011)

This is a sentiment classification dataset with two classes (positive and negative). It

consists of raw text of movie reviews. There are 25K train and 25K test data points.

We borrow text parsers and tokenizers from the models available in the HuggingFace5

library.

3https://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities
4https://www.yelp.com/dataset/challenge
5https://huggingface.co

264

265

Appendix B

Appendix to iRNNs

B.1 Multi-Layer Deep RNN Networks.

We point out in passing that our framework readily admits deep multi-layered net-

works within a single time-step. Indeed our setup is general; it applies to shallow

and deep nets; small and large time steps. As a case in point, the Deep Transition

RNN (Pascanu et al., 2013a):

hm+1 = fh(hm, xm+1) = ϕh(WLϕL−1(WL−1 . . .W1ϕ1(Uhm +Wxm+1))

is readily accounted by Theorem 1 in an implicit form:

hm+1 = fh(hm+1 + hm, xm+1)− hm.

So is Deep-RNN (Hermans and Schrauwen, 2013). The trick is to transform hm →
hm + hm+1 and hm+1 → hm + hm+1. As such, all we need is smoothness of fh, which

has no restriction on # layers. On the other hand, that we do not have to limit

the number of time steps is the point of Theorem 1, which asserts that the partial

differential of hidden states (which is primarily why vanishing/exploding gradient

arises (Pascanu et al., 2013b) in the first place) is identity!!

Algorithm 8 Pseudo Code for computing iRNN hidden states for one input sequence
Input: Sequence {xm}Tm=1

Input: Number of recursion steps K
Initialize: Model parameters

(
U,W, b, α, {ηkm}

)
Initialize: Hidden state h0 = 0
for m = 1 to T do

Initialize: g0 to zero or hm−1

for k = 1 to K do
Update : gk = gk−1 + ηkm

(
ϕ(U(gk−1 + hm−1) +Wxm + b)− α(gk−1 + hm−1)

)
Set: : hm = gK

Return : Hidden states {hm}Tm=1

B.2 Pseudo Code and Implementation

Given an input sequence and iRNN model parameters, the hidden states can be

generated with the help of subroutine 8. This routine can be plugged into standard

deep learning frameworks such as Tensorflow/PyTorch to learn the model parameters

via back-propagation.

B.3 Convergence Guarantees for General Learning Rates.

Theorem 3 (Local Convergence with Linear Rate). Assume that the function

F (gi) ≜ ϕ(U(gi + hk−1) + Wxk + b) − (gi + hk−1) and the parameter η
(i)
k in Eq.

3.5 satisfies

[η
(i)
k]2∥∇F (gi)F (gi)∥2 + 2η

(i)
k F (gi)

⊤∇F (gi)F (gi) < 0,∀k, ∀i. (B.1)

Then there exists ϵ > 0 such that if ∥g0 − heq∥ ≤ ϵ where heq denotes the fixed point,

the sequence gi generated by the Euler method converges to the equilibrium solution

in Meq(hk−1, xk) locally with linear rate.

The proof is based on drawing a connection between the Euler method and inexact

Newton methods, and leverages Thm. 2.3 in (Dembo et al., 1982). See appendix

266

Sec. B.7.1 Thm. 4 and Sec. B.6.5 (for proof, empirical verification).

Corollary 1. If ∥I + η
(i)
k ∇F (gi)∥ < 1, ∀k,∀i, the forward propagation (Eq. B.4) is

stable and the sequence {gi} converges locally at a linear rate.

The proof is based on Thm. 2.3 in (Dembo et al., 1982), Thm. 3 and Prop. 2 in

(Chang et al., 2019). See appendix B.7.1 Corollary. 2

B.4 Baseline Justification

In our experiments section, we stated that some of the potential baselines were re-

moved due to experimental conditions enforced in the setup. Here we clearly justify

our choice. Mostly the reasoning is to avoid comparing complementary add-ons and

compare the bare-bone cells.

• (Cooijmans et al., 2017) is removed since its an add-on and can be applied to

any method. Besides its pixel-mnist results involve dataset specific heuristics.

• (Gong et al., 2018) is also an add-on and hence can be applied to any method.

• (Zilly et al., 2017; Pascanu et al., 2013a; Mujika et al., 2017) denote deep

transitioning methods. They are add-ons for any single recurrent block and

hence can be applied to any recurrent cell.

• Gating variants of single recurrent cells (Chang et al., 2019; Kusupati et al.,

2018) have also been removed. Since iRNN can be extended to a gating variant

and hence its just an add-on.

B.5 Hyper-parameters for reproducibility

We report various hyper-parameters we use in our experiments for reproduciblity.

As mentioned earlier we mainly use ’ReLU’ as the non-linearity and Adam as the

267

Table B.1: Various hyper-parameters to reproduce results

Dataset Hidden Units
Google-30 80
HAR-2 80

Pixel-MNIST 128
Permuted-MNIST 128

Noisy-MNIST 128
Noisy-CIFAR 128
Addition Task 128
Copying Task 128

PTB 256

optimizer. Apart from this, other hyper-parameters are mentioned in table C.1.

B.6 Additional Experiments

Table B.2: Other Dataset Statistics & Long Term Dependence

Dataset Avg. Acitivity
Time

Input
Time

Sequence
Ratio #Train #Fts #Steps #Test

Google-12 25ms 1000ms 3/99 22,246 32 99 3,081
DSA-19 500ms 5000ms 13/125 4,560 45 125 4,560
Yelp-5 20 300 1/15 500,000 128 300 500,000
PTB 929,589 300 300 82,430

B.6.1 Copying and Addition Tasks

Figure B·1 shows the results for remaining experiments for the addition task for length

100, 400.

B.6.2 Traditional Datasets

Table B.3 shows the results including left out baselines for Pixel-MNIST and permute-

MNIST task. Here we also include star rating prediction on a scale of 1 to 5 of Yelp

reviews (Yelp, 2017). Table B.4 shows the results for this dataset.

268

0 250 500 750 1000 1250 1500 1750 2000
Training Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

Sequence length = 100
RNN
LSTM
FastRNN
Antisymmetric
iRNN

(a)

0 250 500 750 1000 1250 1500 1750 2000
Training Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

Sequence length = 400
RNN
LSTM
FastRNN
Antisymmetric
iRNN

(b)

Figure B·1: Mean Squared Error shown for the Add Task (Sequence Length) : (c)
100 (d) 400

B.6.3 Activity Recognition Datasets

We also include activity recognition tasks: (a)Google-12 (Warden, 2018) , i.e. detec-

tion of utterances of 10 commands plus background noise and silence and (b) DSA-19

(Altun et al., 2010), Daily and Sports Activity (DSA) detection from a resource-

constrained IoT wearable device with 5 Xsens MTx sensors having accelerometers,

gyroscopes and magnetometers on the torso and four limbs. Table C.3 shows re-

sults for these activities along with some other baselines for activity recognition tasks

mentioned in Sec. 3.3.3 and described in Sec. A.2.

B.6.4 PTB Language Modelling

We follow (Kusupati et al., 2018; Zhang et al., 2018a) to setup our PTB experiments.

We only pursue one layer language modelling, but with more difficult sequence length

(300). Table B.6 reports all the evaluation metrics for the PTB Language modelling

task with 1 layer as setup by (Kusupati et al., 2018), including test time and number

of parameters.

269

Table B.3: Results for Pixel-by-Pixel MNIST and Permuted MNIST datasets. K
denotes pre-defined recursions embedded in graph to reach equillibrium.

Data set Algorithm Accuracy
(%)

Train
Time (hr) #Params

Pixel-MNIST FastRNN 96.44 15.10 33k
FastGRNN-LSQ 98.72 12.57 14k

RNN 94.10 45.56 14k
SpectralRNN 97.7 6k

LSTM 97.81 26.57 53k
URNN 95.1 16k

Antisymmetric 98.01 8.61 14k
iRNN (K=1) 97.73 2.83 4k
iRNN (K=2) 98.13 3.11 4k

iRNN (K=3) 98.13 2.93 4k
Permute-MNIST FastRNN 92.68 9.32 8.75k

SpectralRNN 92.7 8.5k
LSTM 92.61 19.31 35k
URNN 91.4 12k

Antisymmetric 93.59 4.75 14k
iRNN (K=1) 95.62 2.41 8k

B.6.5 Linear Rate of Convergence to Fixed Point

Empirically we verify the local convergence to a fixed point with linear rate by com-

paring the Euclidean distance between the approximate solutions, h(k)
t , using Eq. B.2

with g0 = 0 and the fixed points, ht, computed using fsolve from scipy. The learn-

able parameters are initialized suitably and then fixed. We illustrate our results in

Fig. B·2, which clearly demonstrates that the approximate solutions tend to converge

with linear rate.

gi = gi−1 + ηit(ϕ(U(gi−1 + ht−1) +Wxt + b)− α(gi−1 + ht−1)) (B.2)

hKt = gK

B.6.6 Theoretical Verification

Here we include some experiments to show that our theoretical assumptions hold

true.

270

Table B.4: Results for Yelp Dataset.

Data set Algorithm Accuracy
(%)

Model
Size (KB)

Train
Time (hr)

Test
Time (ms) #Params

Yelp-5 FastRNN 55.38 130 3.61 0.4 32.5k
FastGRNN-LSQ 59.51 130 3.91 0.7 32.5k

FastGRNN 59.43 8 4.62
RNN 47.59 130 3.33 0.4 32.5k

SpectralRNN 56.56 89 4.92 0.3 22k
EURNN 59.01 122 72.00
LSTM 59.49 516 8.61 1.2 129k
GRU 59.02 388 8.12 0.8 97k

Antisymmetric 54.14 130 2.61 0.4 32.5k
UGRNN 58.67 258 4.34

iRNN(K=1) 58.16 97.67 0.31 0.4 25k
iRNN(K=2) 59.01 98.84 0.31 0.7 25k
iRNN(K=3) 59.34 100 1.16 1.0 25k

Non-Singularity of the matrix D For our iRNN parametrization to satisfy the

conditions of having equillibrium points to be locally asymptotically stable, the eigen

values of the matrix D = (∇ϕ(·)U − γI) should be negative. We plot a histogram of

the eigenvalues of D for all the points in the HAR-2 dataset. As illustrated in the

figure B·3, all the eigenvalues are negative.

B.6.7 Identity Gradient comparison iRNN vs RNN

To verify Theorem. 1 empirically, we train RNN and iRNN on the HAR-2 data set

(see more details in Sec. 3.3), respectively, and plot in Fig. B·4 the magnitude of

gradient of the last layer hT w.r.t. the first layer h1 in log scale to confirm that

our approach leads to no vanishing or exploding gradients when the error is back-

propagated through time. We also conducted experiments to verify that the gradient

of iRNN is norm preserving (see Sec. B.6.8 and Figure 3·3). As we see clearly, RNN

suffers from serious vanishing gradient issue in training, while iRNN’s backpropagated

gradients is close to 1, and the variance arises mainly our approximation of fixed points

and stochastic behavior in training networks, demonstrating much better training

271

1 2 3 4 5 6 7

k

0.036

0.037

0.038

0.039

0.04

0.041

||
h

t(k
)
 -

 h
t||

(a)

Figure B·2: Linear convergence in iRNN.

stability of iRNN.

B.6.8 Gradient norm w.r.t. loss ∥ ∂L
∂h1
∥

In addition to the gradient ratio we plot in Sec.3.3.2, we also show in figure B·5,

the more popular quantity captured in earlier works (Arjovsky et al., 2016; Zhang

et al., 2018a), i.e. the gradient norm w.r.t. loss ∥ ∂L
∂h1
∥. We emphasize that this quan-

tity alone is misleading in the context of resolving the issue of vanishing/exploding

gradients. Since ∥ ∂L
∂h1
∥ = ∥ ∂L

∂hT
∥ ∗ ∥∂hT

∂h1
∥. The long term component controlling the

gradients is ∥∂hT

∂h1
∥, but the other component, ∥ ∂L

∂hT
∥ could become zero by the virtue

that the loss is nearly zero. This happens in our addition task experiment, because

MSE is close to zero, we experience nearly 0 value for this quantity. But this is clearly

because the MSE is 0. Also note that none of our graphs have log scale, which is not

the case in earlier works. The conclusion that can be drawn from the loss-gradient is

that it is somewhat stable, and can inform us about quality of convergence.

We also plot ∥ ∂hT

∂hT−1
∥ in figure B·5 in order to show that indeed iRNN achieves

272

(a)

Figure B·3: Histogram of the eigenvalues of ∇ϕU− I for iRNN on HAR-2 dataset.

identity gradients everywhere in the time horizon, since fig. 3·3 had shown that the

ratio of ∥∂hT

∂h1
∥ and ∥ ∂hT

∂hT−1
∥ equals 1 for iRNN.

B.6.9 Different Activation Function

We also performed some experiments for sigmoid activation on HAR-2 dataset. The

results for this variant also follow similar pattern as we saw in ReLU variant.

B.7 Proofs

B.7.1 Local Convergence with Linear Rate

Recall that we rewrite the fixed-point constraints in our iRNN as the following ODE:

g′k(t) = F (gi)
def
= ϕ(U(gi + hk−1) +Wxk + b)− (gi + hk−1); g(0) = 0. (B.3)

Then based on the Euler method, we have the following update rule for solving

273

Figure B·4: Comparison between RNN and iRNN on the magnitudes of gradients.

0 200 400 600 800 1000
Training Steps

1

0

1

2

3

4

5

Gr
ad

ie
nt

 n
or

m
 |

L h 1
|

Sequence length = 200
LSTM
FastRNN(eta=0.01)
FastRNN(eta=0.001)
Antisym(g=0.01,e=0.1)
Antisym(g=0.01,e=0.001)
iRNN(K=1)
iRNN(K=5)
iRNN(K=10)

(a)

0 200 400 600 800 1000
Training Steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Gr
ad

ie
nt

 n
or

m
 |

h T
h T

1
|

Sequence length = 200
LSTM
FastRNN(eta=0.01)
FastRNN(eta=0.001)
Antisym(g=0.01,e=0.1)
Antisym(g=0.01,e=0.001)
iRNN(K=1)
iRNN(K=5)
iRNN(K=10)

(b)

Figure B·5: Exploratory experiments for the Add task : (a) Gradient norms w.r.t.
loss ∥ ∂L

∂h1
∥, (b) Gradient norms ∥ ∂hT

∂hT−1
∥. This together with Figure 3·3 shows that

the gradients are identity everywhere for K = 10

fixed-points:

gi+1 = gi + η
(i)
k F (gi) (B.4)

= gi + η
(i)
k [ϕ(U(gi + hk−1) +Wxk + b)− (gi + hk−1)]. (B.5)

Inexact Newton methods (Dembo et al., 1982) refer to a family of algorithms that

aim to solve the equation system F (z) = 0 approximately at each iteration using the

274

following rule:

zi+1 = zi + si, ri = F (zi) +∇F (zi)si, (B.6)

where ∇F denotes the (sub)gradient of function F , and ri denotes the error at the

i-th iteration between F (zi) and 0.

By drawing the connection between Eq. B.4 and Eq. B.6, we can set zi ≡ gi and

si ≡ η
(i)
k F (gi). Then based on Eq. B.6 we have

ri = F (gi) + η
(i)
k ∇F (gi)F (gi). (B.7)

Lemma 2 (Thm. 2.3 in (Dembo et al., 1982)). Assume that

∥ri∥
∥F (zi)∥

≤ τ < 1, ∀k, (B.8)

where ∥ · ∥ denotes an arbitrary norm and the induced operator norm. There exists

ε > 0 such that, if ∥z0 − z∗∥ ≤ ε, then the sequence of inexact Newton iterates {zi}
converges to z∗. Moreover, the convergence is linear in the sense that ∥zi+1 − z∗∥∗ ≤
τ∥zi − z∗∥∗, where ∥y∥∗ = ∥∇F (z∗)y∥.

Theorem 4 (Local Convergence with Linear Rate). Assume that the function F in

Eq. B.3 and the parameter η(i)k in Eq. B.4 satisfy

[η
(i)
k]2∥∇F (gi)F (gi)∥2 + 2η

(i)
k F (gi)

⊤∇F (gi)F (gi) < 0,∀i,∀k. (B.9)

Then there exists ϵ > 0 such that if ∥g0 − heq∥ ≤ ϵ where heq denotes the fixed point,

the sequence {gi} generated by the Euler method converges to the equilibrium solution

in Meq(hk−1, xk) locally with linear rate.

275

Proof. By substituting Eq. B.7 into Eq. B.8, to prove local convergence we need to

guarantee

∥F (gi) + η
(i)
k ∇F (gi)F (gi)∥ < ∥F (gi)∥. (B.10)

By taking the square of both sides in Eq. B.10, we can show that Eq. B.10 is

equivalent to Eq. B.9. We then complete our proof.

Corollary 2. Assume that ∥I + η
(i)
k ∇F (gi)∥ < 1,∀i, ∀k holds. Then the forward

propagation using Eq. B.4 is stable and our sequence {gi} converges locally with

linear rate.

Proof. By substituting Eq. B.7 into Eq. B.8 and based on the assumption in the

corollary, we have

∥ri∥
∥F (gi)∥

=
∥F (gi) + η

(i)
k ∇F (gi)F (gi)∥
∥F (gi)∥

≤ ∥I+ η
(i)
k ∇F (gi)∥∥F (gi)∥
∥F (gi)∥

< 1. (B.11)

Further based on Prop. 2 in (Chang et al., 2019) and Thm. 3, we then complete our

proof.

276

Table B.5: Results for Activity Recoginition Datasets.

Data set Algorithm Accuracy
(%)

Model
Size (KB)

Train
Time (hr)

Test
Time (ms) #Params

HAR-2 FastRNN 94.50 29 0.063 0.01 7.5k
FastGRNN-LSQ 95.38 29 0.081 0.03 7.5k

FastGRNN 95.59 3 0.10
RNN 91.31 29 0.114 0.01 7.5k

SpectralRNN 95.48 525 0.730 0.04 134k
EURNN 93.11 12 0.740
LSTM 93.65 74 0.183 0.04 16k
GRU 93.62 71 0.130 0.02 16k

Antisymmetric 93.15 29 0.087 0.01 7.5k
UGRNN 94.53 37 0.120

iRNN(K=1) 95.32 17 0.061 0.01 4k
iRNN(K=3) 95.52 17 0.081 0.02 4k
iRNN(K=5) 96.30 18 0.018 0.03 4k

DSA-19 FastRNN 84.14 97 0.032 0.01 17.5k
FastGRNN-LSQ 85.00 208 0.036 0.03 35k

FastGRNN 83.73 3.25 2.10m
RNN 71.68 20 0.019 0.01 3.5k

SpectralRNN 80.37 50 0.038 0.02 8.8k
LSTM 84.84 526 0.043 0.06 92k
GRU 84.84 270 0.039 0.03 47k

Antisymmetric 85.37 32 0.031 0.01 8.3k
UGRNN 84.74 399 0.039

iRNN(K=1) 88.11 19 0.015 0.01 3.5k
iRNN(K=3) 85.20 19 0.020 0.02 3.5k
iRNN(K=5) 87.37 20 0.005 0.03 3.5k

Google-12 FastRNN 92.21 56 0.61 0.01 12k
FastGRNN-LSQ 93.18 57 0.63 0.03 12k

FastGRNN 92.10 5.5 0.75
RNN 73.25 56 1.11 0.01 12k

SpectralRNN 91.59 228 19.0 0.05 49k
EURNN 76.79 210 120.00
LSTM 92.30 212 1.36 0.05 45k
GRU 93.15 248 1.23 0.05 53k

Antisymmetric 89.91 57 0.71 0.01 12k
UGRNN 92.63 75 0.78

iRNN(K=1) 93.93 36 0.20 0.01 8.1k
iRNN(K=3) 94.16 37 0.33 0.03 8.1k
iRNN(K=5) 94.71 38 0.17 0.05 8.1k

Google-30 FastRNN 91.60 96 1.30 0.01 18k
FastGRNN-LSQ 92.03 45 1.41 0.01 8.5k

FastGRNN 90.78 6.25 1.77
RNN 80.05 63 2.13 0.01 12k

SpectralRNN 88.73 128 11.0 0.03 24k
EURNN 56.35 135 19.00
LSTM 90.31 219 2.63 0.05 41k
GRU 91.41 257 2.70 0.05 48.5k

Antisymmetric 90.91 64 0.54 0.01 12k
UGRNN 90.54 260 2.11

iRNN(K=1) 93.77 44 0.44 0.01 8.5k
iRNN(K=3) 91.30 44 0.44 0.03 8.5k
iRNN(K=5) 94.23 45 0.44 0.05 8.5k

277

Algorithm Test Perplexity Model
Size (KB)

Train
Time (min)

Test
Time (ms) #Params

FastRNN 127.76 513 11.20 1.2 52.5k
FastGRNN-LSQ 115.92 513 12.53 1.5 52.5k

FastGRNN 116.11 39 13.75
RNN 144.71 129 9.11 0.3 13.2k

SpectralRNN 130.20 242 - 0.6 24.8k
LSTM 117.41 2052 13.52 4.8 210k

UGRNN 119.71 256 11.12 0.6 26.3k
iRNN(K=1) 115.71 288 7.11 0.6 29.5k

Table B.6: PTB Language Modeling: 1 Layer. To be consistent with our other
experiments we used a low-dim U; For this size our results did not significantly
improve with K. This is the dataset of (Kusupati et al., 2018) which uses sequence
length 300 as opposed to 30 in the conventional PTB.

Data set Algorithm Accuracy
(%)

Model
Size (KB)

Train
Time (hr) Activation #Params

HAR-2 iRNN(K=1) 95.32 17 0.061 ReLU 4k
iRNN(K=3) 95.52 17 0.081 ReLU 4k

iRNN(K=5) 96.30 18 0.018 ReLU 4k
iRNN(K=1) 92.16 17 0.065 Sigmoid 4k
iRNN(K=3) 93.35 17 0.078 Sigmoid 4k

iRNN(K=5) 95.30 18 0.020 Sigmoid 4k

Table B.7: HAR-2 dataset (Sigmoid, ReLU activations): K denotes pre-defined
recursions embedded in graph to reach equillibrium.

278

279

Appendix C

Appendix to TARNNs

C.1 Proofs

Proposition 6. Consider the ODE in Eq. 4.5 and assumptions on A described above.

Suppose we have ∥U∥ < α/2, and ϕ(·) is 1-Lipshitz function, it follows that, for any

given, β, um, an equilibrium point exists and is unique.

To prove the proposition, we must find a solution to the non-linear equation

Az+Bum+ϕ(Uz+Wum) = 0 and show that it is unique. We do this by constructing

a fixed-point iterate, and show that the iteration is contractive.

To this end, define Γ(z) = z+ η(Az+Bum + ϕ(Uz+Wum)), and note that for

any two z, z′ ∈ RD, we find,

∥Γ(z)− Γ(z′)∥ ≤ ∥(I + ηA)(z− z′)∥+ η∥ϕ(Uz+Wum))− ϕ(Uz′ +Wum))∥

≤ ∥(I + ηA)(z− z′)∥+ η∥U(z− z′)∥

≤ σmax(I + ηA)∥(z− z′)∥+ η∥U(z− z′)∥

≤ σmax(I + ηA)∥z− z′∥+ η∥U∥∥z− z′∥

=⇒ ∥Γ(z)− Γ(z′)∥ ≤
(
σmax(I + ηA) + η∥U∥

)
∥z− z′∥ = γ∥z− z′∥ (C.1)

If the constant γ < 1, then the above inequality proves that Γ is a contraction. The

result then follows by invoking the Banach fixed point theorem (contraction-mapping

theorem). All that remains to show is that γ = σmax(I + ηA) + η∥U∥ < 1. From

assumptions we have, σmax(I + ηA) ≤ 1− αη and ∥U∥ < α, where α > 0; =⇒ γ <

1− αη + αη ≤ 1.

Proposition 7. With the setup in Proposition 3, and regardless of β, the equilibrium

point is globally asymptotically stable, and the discrete Euler recursion converges to

the equilibrium solution at a linear rate.

Let z∗ be the equilibrium solution, i.e. Az∗ + Bum + ϕ(Uz∗ + Wum) = 0. We

consider the Lyapunov function V (z(t)) = ∥z(t)− z∗∥2 and show that it is monoton-

ically decreasing along the ODE system trajectories. Observe that, as per our setup,

components where (β)j = 0 does not pose a problem, because those states remain

frozen, and serve as an additional exogenous input in our ODE. Consequently, we can

assume without loss of generality that (β)j = 1 for all j ∈ [D]. The gradient of the

Lyapunov function along the ODE system trajectories can be written as

dV (z(t))

dt
= (ż(t))⊤(z(t)− z∗) + (z(t)− z∗)⊤ż(t)

=(Az(t) +Bum + ϕ(Uz(t) +Wum))⊤(z(t)− z∗)

+(z(t)− z∗)⊤(Az(t) +Bum + ϕ(Uz(t) +Wum))

=(A(z(t)− z∗) +B(um − um) + ϕ(Uz(t) +Wum)− ϕ(Uz∗ +Wxm))⊤(z(t)− z∗)

+ (z(t)− z∗)⊤(A(z(t)− z∗) +B(um − um) + ϕ(Uz(t) +Wum)− ϕ(Uz∗ +Wum))

=(A(z(t)− z∗) + ϕ(Uz(t) +Wum)− ϕ(Uz∗ +Wum))⊤(z(t)− z∗)

+ (z(t)− z∗)⊤(A(z(t)− z∗) + ϕ(Uz(t) +Wum)− ϕ(Uz∗ +Wum))

=(z(t)− z∗)⊤(A+A⊤)(z(t)− z∗) + 2(ϕ(Uz(t) +Wum)− ϕ(Uz∗ +Wum))⊤(z(t)− z∗)

280

We now invoke Cauchy-Schwartz inequality to bound the second term, namely,

|(ϕ(Uz(t) +Wum)− ϕ(Uz∗ +Wum))⊤(z(t)− z∗)|

≤ ∥(ϕ(Uz(t) +Wum)− ϕ(Uz∗ +Wum))∥∥z(t)− z∗∥

≤ ∥U∥∥z(t)− z∗∥∥z(t)− z∗∥ < ∥z(t)− z∗∥2

where in the last inequality we used the fact that ϕ(·) is 1-Lipshitz and ∥U∥ <
α ≤ 1. As a result, we have,

dV (z(t))

dt
< (λmax(A+AT) + 1)∥z− z∗∥2 ≤ 0

where the last inequality follows because, we have (λmax(A+AT) ≤ −1). This shows

that the ODE is globally asymptotically stable and converges to a unique equilibrium

point. To show a linear rate of convergence we note that K-fold iterations of the Euler

method (see Prop 3), zk = Γ(zk−1) = zk−1 + η(Azk−1 + Bum + ϕ(Uzk−1 +Wum)),

results in,

∥zK − z∗∥ ≤ γK∥z0 − z∗∥

which follows directly from the fact that zK = Γ(zK−1), z∗ = Γ(z∗), and Γ is a

contraction as obtained by Eq. C.1. This establishes the linear-rate of convergence.

Proof of Theorem 2

Note that, when βi = 0, sm(i) = sm−1(i). On the other hand when βi > 0, the system

is in equilibrium, and for those components, j, we have

(ż(t))j = (F (z(t),um))j = 0, where F (z(t),um) = β(um)◦(Az(t)+Bum+ϕ(Uz(t)+Wum))

Now (F (sm,um))k = 0 regardless of βk. This is because if βk(um) > 0 we reach

equilibrium, and ż(t) = 0, and on the other have if βk = 0 then (F (sm,um))k = 0 in

281

any case. With this in mind, define D = diag[1βj(um)>0]. We then write the vector

sm = Dsm + (I − D)sm−1. Let Jm,m−1 denote the Jacobian of sm with respect to

sm−1. Taking derivatives we get,

0 = ∇F (sm,um) =β(um) ◦ (A(DJm,m−1 + (I −D)) +B2)

+ β(um) ◦ (∇ϕ(U(DJm,m−1 + (I −D)) +W2))

+D∇σ(Ussm−1 +Wxum)(Asm +Bum + ϕ(Usm +Wum))

First, note that the third term is always zero, due to the fact we noted earlier, namely,

if a component is active, then the corresponding state reaches equilibrium, and there

is nothing to do if the component is otherwise inactive. Now noting that A = B2 and

U = W2, we get,

∇F (sm,um) = β(um) ◦ (AD)(Jm,m−1 − I) +∇ϕ(·)UD(Jm,m−1 − I)

Collecting the common terms, we have,

∇F (sm,um) = β(um) ◦ (A−∇ϕU)D(Jm,m−1 − I)

Now for the case in hand, ∥∇ϕU∥ < 1, and since ∥A∥ ≥ 1, the middle term is

non-zero. This implies that for all the active components, (Jm,m−1)kk = 1.

For the other case, the proof follows in an identical manner. Specifically, for the

non-zero rows of B the proof is identical, and the claims hold for those associated

state components. For the rows with zero rows since,

282

C.2 Implementation Details

We acquired the publicly available code for the baselines except Antisymmetric RNN

(Chang et al., 2019) and Incremental RNN(Kag et al., 2020). We write the RNN

cell implemntation for Antisymmetric RNN and Incremental RNNs from the pseudo

code provided in their papers. Before running our grid search, we ensured that we

were able to reproduce the publicly reported results. Following which we run our

experiments for suggested hidden states as per the previous works for each dataset.

In order to avoid non-determinism in the experiments, we initialize both the

numpy and tensorflow random library with the same seed number, 1234. Our pa-

rameter matrices are initialized with a random normal initializer with mean 0 and

standard deviation 0.1 while our time-constant biases are initialized with −3.0 and

remaining biases are initialized with 0.

We provide the pseudo code in Algorithm 1 to generate the hidden states of the

TARNN. In order to implement this routine on a deep learning framework, we need to

elaborate a bit more about the ODESolve function. We implement the Euler iterations

described in the practical implementations in the method section. Following the

recommendation from (Kag et al., 2020) and the fact that many of these datasets are

slowly time varying, we use theK = 5 in the Euler recursions to reach the equilibrium.

Table C.1 provides the number of hidden units used for different datasets.

Our experiments use hidden size as suggested by (Kusupati et al., 2018; Chang

et al., 2019) i.e. 128. We point out that this is not the setting used by (Kerg et al.,

2019; Lezcano-Casado and Martínez-Rubio, 2019) as their best results are achieved

with much larger state space i.e. 512 state dimension, thus requiring much larger

models. Thus, in order to provide fair comparison we only allow state space as 128

dimensions.

In order to enable grid search on the baseline methods, we use the method specific

283

Table C.1: Various hyper-parameters to reproduce results

Dataset Hidden
Dimension

Learning
Rate

L2
regularization Init η Epochs τ Batch

Size
Pixel-MNIST 128 1e−2 4.5e−6 0.08 30 5 128

Permuted-MNIST 128 1e−2 4.5e−6 0.0008 30 5 128
Noisy-MNIST 128 1e−2 4.5e−5 0.0008 30 5 512
Noisy-CIFAR 128 1e−2 4.5e−5 0.001 30 5 256
Addition Task 128 1e−2 1.0e−5 0.001 2 - 128
Copying Task 128 1e−2 1.0e−6 0.45 - - 128

PTB 256 - - 0.001 100 -

hyper-parameter values suggested in the respective baselines. We allow the methods

to pick the non-linearity from the set { ReLU, tanh, sigmoid }. For Antisymmetric

RNN, as per their recommendation we step size from the set {0.01, 0.1, 1} and diffusion

parameter γ ∈ {0.001.0.01, 0.1, 1.0}. For nnRNN and expRNN methods, we follow

the hyper-parameter search grid as suggested in (Kerg et al., 2019).

We use grid search for tuning the hyper-parameters for the methods. We used

the values [4.5E− 6, 4.5E− 5, 4.5E− 4, 1E− 6, 1E− 5, 1E− 4] for L2 regularization.

We searched over [1e − 2, 1e − 3, 1e − 4] as the base learning rates which are halved

after each τ = [5, 10, 20] epochs have passed. We allowed the methods to train for

[30, 50, 100, 300] epochs. We use ReLU as the non-linearity for all of our experiments

except in Copy and PTB tasks where we use tanh as the non-linearity (performs

better than ReLU).

We point out that we set A = −I for all our experiments except Pixel-MNIST

and Permute-MNIST tasks where we use A to be the blocked triangular identity

matrix as mentioned in the analysis Section 4.2.1. This allows us to couple the linear

part resulting in better performance on these tasks in comparison to the A = −I
configuration.

Note that the settings used for PTB dataset corresponds to the small configuration

with 300 as the sequence length. We piggy back on the configuration changes used

284

in (Kusupati et al., 2018; Kag et al., 2020; Zhang et al., 2018a) which describes the

learning rate along with the learning rate schedule and the number of epochs all the

methods are trained. Thus, we do not list these hyper-parameters in the table C.1.

C.3 Unitary RNNs do not solve vanishing gradients.

(Lezcano-Casado and Martínez-Rubio, 2019; Kerg et al., 2019) and others propose

to “cheaply” design orthonormal transition matrices (OTM), appealing to (Arjovsky

et al., 2016) for justification. (Arjovsky et al., 2016) (Eq. 4) only shows an upper-

bound with ReLU + OTM. This solves exploding gradients, but the more pernicious

vanishing gradients remains (RELU+OTM is discussed in (Pennington et al., 2017)

[PSG17]). In (Arjovsky et al., 2016)’s notation with Dk binary diagonal arising from

ReLU activations, W unitary, we would need, ∥∂C/∂hT (
∏T−1

s=t DsW
⊤)∥ ≥ ∥∂C/∂hT∥.

This is generally not true due to matrix non-commutativity. E.g. for t = T − 2, this

is possible if ∥DT−1W
⊤DT−2W

⊤∥ = ∥DT−1W
⊤DT−2∥ ≥ 1. Unless, DT−1 = DT−2 is

identity, DT−1WDT−2 is a submatrix of W , and generically has norm less than one.

C.4 Relationship to existing Recurrent architectures.

We will now briefly discuss other recurrent architectures in the literature to gain

intuition into our framework. We will refer to the ODE Eq. 4.5

(a) Vanilla RNNs: Setting β = 1, A = −I, B1 = 0;B2 = 0, results in the ODE,

ż(t) = −z(t) + ϕ(Uz(t) + Wxm); z(t0) = sm−1. Euler discretization of this ODE

with only one step results in Vanilla RNNs.

(b) Fast/Antisymmetric RNNs: Setting β = 1, A = 0, B1 = 0;B2 = 0, results in

the ODE, ż(t) = ϕ(Uz(t) +Wxm); z(t0) = sm−1. Euler discretization of this ODE

with only one step results in (Kusupati et al., 2018; Chang et al., 2019).

285

(c) Incremental RNNs: Setting β = 1, A = −I, B1 = 0;B2 = I, results in the

ODE, ż(t) = −z(t) + ϕ(Uz(t) +Wxm); z(t0) = sm−1. Since the initial state of the

ODE, z(t0) = sm−1, we can write it into ż(t) = −(z(t)− sm−1) + ϕ(U(z(t)− sm−1) +

Wxm) with z(t0) = 0. This ODE is equivalent to (Kag et al., 2020).

C.5 Additional plots for Toy Example.

We add additional figures for the toy example in order to describe the following

properties: (a) TARNN achieves faster convergence than the baselines, (b) TARNN

time constants activate at the correct locations where the markers are placed and

hence we get the hidden state transitions at these locations, and finally (c) we plot

a the hidden state norms in order to demonstrate that SkipLSTM does focus at the

input markers while TARNN ends up changing the hidden states at these locations.

C.6 Toy Example with larger state space.

In our main experiments with Toy example we have used a very small state space to

demonstrate that TARNN outperforms the baselines even with such small state space.

Note that forcing training and inference on a small state dimension leads to a difficult

problem. This is because in our setup we have 16-length real-valued input traces. As

such a large state dimension could in principle commit the entire input trace to

memory, and good performance would not be surprising (indeed as Table C.2 shows).

The purpose of our example was to motivate our key intuition (a) that trainability

of an RNN is limited by vanishing/exploding gradients; and (b) Sequential data

consists of uninformative/noisy data segments, which if not suppressed can lead to

performance degradation. See Caption of Fig 4·1 main text. For good performance

we need both lossless hidden-state gradients (for informative input segments), and

286

0 200 400 600 800 1000 1200 1400 1600
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cr
os

sE
nt

ro
py

Sequence length = 16

LSTM
FastRNN
Antisymmetric
SkipLSTM
TARNN

(a)

0 2 4 6 8 10 12 14
Time Steps : m

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Va
lu

e

Class: (t=4)=1, (t=12)=1)
input
s1

m

s2
m

(b)

0 2 4 6 8 10 12 14
Time Steps : m

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

St
at

e
No

rm
 o

r I
np

ut
 V

al
ue

Class: (t=4)=1, (t=12)=1)

Input
TARNN
SkipLSTM

(c)

Figure C·1: Toy Example. (a) TARNN converges quickly to the 0.0 cross-entropy
error. (b) shows time constant β along with the input, at locations t = 4, 12, both the
input and time constants are in sync resulting in the state update while everywhere
else the time constant does not allow the state to update (see s1m state which captures
the update or skip state part). (c) shows the norm of the hidden state for SkipLSTM
and TARNN.

skipping (uninformative inputs).

C.7 Gradient Norm Plot for Add-Task.

TARNN works exactly as in the toy example, on other datasets as well. As evidence,

we plot gradient norm for the add-task in Figure C·2, and as expected TARNN is

able to better maintain gradient norms near unity. The plots for other datasets follow

a similar trend.

287

Table C.2: Toy Example: Accuracy for various hidden state sizes.

Algorithm Hidden Dimension
2 4 8 16 32 64

FastRNN 45 47 52 69 82 96
Antisymmetric 37 39 41 59 73 90

LSTM 45 54 67 82 96 100
SkipLSTM 60 66 72 91 98 100
TARNN 100 100 100 100 100 100

C.8 Google-30, HAR-2 datasets

In order to verify that our method works well for IoT tasks, we use popular datasets

from previous works ((Kusupati et al., 2018)). These datasets primarily focus on

detecting activitiy embedded in a longer sequence. We pick two datasets namely: (a)

HAR-2 (Anguita et al., 2012), i.e. Human Activity Recognition from an accelerometer

and gyroscope on a Samsung Galaxy S3 smartphone, and (b) Google-30 (Warden,

2018), i.e. detection of utterances of 30 commands plus background noise and silence.

For these tasks, light footprint of the model also becomes extremely important given

that these models are deployed on resource constrained IoT devices.

Table C.3 shows accuracy, model size, training time, inference time, and the num-

ber of parameters. TARNN beats the baselines in terms of test accuracy. TARNN

has smaller model size, while its inference time comparable to iRNN and hence well

suited for IoT tasks.

Table C.3: Results for Activity Recoginition (IoT) Datasets.

Data set Algorithm Accuracy
(%)

Model
Size (KB)

Train
Time (hr)

Test
Time (ms) #Params

HAR-2 FastRNN 94.50 29 0.063 0.01 7.5k
LSTM 93.65 74 0.183 0.04 16k

Antisymmetric 93.15 29 0.087 0.01 7.5k
iRNN 96.30 18 0.018 0.03 4k

TARNN 96.59 17 0.03 0.02 3.7k
Google-30 FastRNN 91.60 96 1.30 0.01 18k

LSTM 90.31 219 2.63 0.05 41k
Antisymmetric 90.91 64 0.54 0.01 12k

iRNN 94.23 45 0.44 0.05 8.5k
TARNN 94.93 20 0.38 0.01 9k

288

C.9 Inference time

As the table C.3 shows that the inference time for TARNN is similar to FastRNN

and about at least one-half of the inference time for the LSTMs.

C.10 Impact of larger K on the results

Our choice of K is inspired by previous ODE discretization works (Kag et al., 2020).

Small K suffices for many datasets because inputs are slowly varying (small drift).

Furthermore, our dynamical system is exponentially stable (Proposition 2), allowing

for rapid convergence to equilibrium. As shown in Table D.2, larger values of K lead

to increased inference time, and there is an inherent tradeoff between seeking exact

equilibria and inference time. We will elaborate this in the revision.

Table C.4: PTB Language Modeling: Larger K values.

Algorithm Hidden
Dimension K Test

Perplexity
Train Time

(min)
Inference Time

(ms)
TARNN 128 1 104.15 27 1
TARNN 128 3 102.42 40 1.7
TARNN 128 5 101.21 65 3.2
TARNN 128 7 101.01 91 5.3
TARNN 128 10 100.91 123 8.1

289

0 200 400 600 800 1000 1200 1400 1600
Training Steps

10 13

10 11

10 9

10 7

10 5

10 3

10 1

101

lo
g

of
 ra

tio
 o

f |
s T s 1

| &
 |

s T
s T

1
|

Sequence length = 200
LSTM
FastRNN
Antisymmetric
SkipLSTM
TARNN

Figure C·2: Add Task Gradient Norm for 200 length sequences.

290

291

Appendix D

Appendix to FPTT

D.1 Experiment Details.

We refer the reader to Appendix A.2 for dataset details. Below we describe the details

of the various experiments along with hyper-parameter tuning. We use a mixture of

language modelling tasks (corresponds to sequence modelling regime) and terminal

prediction tasks (corresponds to long range dependency tasks). Language modelling

tasks include variants of the popular Penn Tree Bank (McAuley and Leskovec, 2013)

dataset. Terminal prediction tasks include the synthetic Add-Task along with Sequen-

tial vision tasks. These together corresponds to the long range dependency datasets.

Add-Task A.2.10. For both the algorithms (BPTT and FPTT), we use episodic

training where a train batch size of 128 is presented to the RNN to update its pa-

rameters and evaluated using an independently drawn test set.

Our main text uses four different sequence lengths : (a) T = 200 used in the

ablative experiment (see Figure 5·2), (b) T = 500 used in the Toy example (see

Figure 5·1), (c) the difficult sequence lengths T = 750 and T = 1000 shown in

Figure 5·3. As used in earlier works (Kag et al., 2020), our experiments set hidden

state size as 128. Our architecture is one-layer LSTM followed by one classifier layer.

We use 1e−3 as the learning rate for this experiment. We have used Adam optimizer

for this task. For smaller sequence lengths T = 200, 500, we run the experiment for

5000 training iterations while for the larger sequence lengths T = 750, 1000 we run

the experiments for 10000 training iterations. We use K = 10 in this task for the

proposed algorithm and the default α = 0.01 was used in this experiment.

Permute-Pixel MNIST and Pixel-CIFAR-10 A.2.3. Neural network used

for this task is one-layer LSTM followed by a classifier layer. Our LSTMs use the

hidden state size as 128 and are trained for 200 epochs. We set aside 10% training

data for hyper-parameter tuning and once the hyper-parameters are fixed, we use

the full data for training and report the performance on the test set. We use the

the grid with learning rate choices : {0.01, 0.005, 0.001, 0.0001, 0.0005}, batch sizes

{B = 64, 128, 256} and for FPTT we have α choices {0.1, 0.5, 0.05, 0.01, 0.001}. For

the proposed algorithm we use K = 20 for this experiment. Note that we use the

learning rate schedule defined in (Bai et al., 2019b), i.e. we decay the learning rate

by a factor of 1
2

at fixed intervals, i.e. {60, 90, 120} epochs. Our ablative experiment

which use the CIFAR-10 dataset keep the same experimental setup described here.

The corresponding hyper-parameter tuning details are same as the main experiment.

PTB-300 A.2.4. We used the known small configuration to setup this task for

PTB word level task except that sequence length has been changed to 300 to model

long range dependencies. We only use 1−layer LSTM with hidden state size of 256.

The embedding dimension has been set to the hidden state in accordance to earlier

works (Kusupati et al., 2018; Zhang et al., 2018a). We train both BPTT and FPTT

to 100 epochs and learning rate is decayed by half at every epoch where validation

perplexity plateaus. We use SGD optimizer as per the configuration and use initial

learning rate of 20. We use K = 10 for FPTT. Note that α values are tuned using

the grid search with values {0.5, 0.1, 0.05, 0.01, 0.005, 0.001}.
PTB-w A.2.5. We follow (Merity et al., 2018) to setup our experiments for

BPTT and FPTT. We use three layer LSTM model for this task with embedding

dimensions 280. As recommended our hidden states for three layers are 1150. All the

292

other hyper-parameter settings (learning rate, batch size, dropout, other regularizers,

dynamic evaluation parameters, etc.) have been borrowed from (Yang et al., 2018)

and they are ideal for the BPTT LSTM experiment since this has been tuned by

previous works. We report the results with dynamic evaluation(Krause et al., 2018)

on the trained model. We use the same architecture and training setup to train

LSTMs with both BPTT and FPTT. We use K = 10 in our experiments and tune

the α values in the grid {0.5, 0.1, 0.05, 0.01, 0.005, 0.001} using the validation dataset.

PTB-c A.2.6. We utilize (Merity et al., 2018) to setup the character level task.

We use 3-layer LSTM models as recommended with hidden size 1000 and embedding

dimension 200. Remaining hyper-parameters have been kept as it is and they are

well tuned for BPTT training as per previous work. We train this model with both

BPTT and FPTT with the same setting. We perform similar parameter tuning as in

the PTB-w experiment to find α values and set K = 10 for this dataset.

D.2 Training Time Comparison.

In this section, we demonstrate that training recurrent neural networks with the

proposed method is not computationally expensive than back-propagation through

time. Table D.1 shows the training time in minutes as measured by the time utility in

the python language. Note that this refers to the wall-clock time and we ensure that

the system is running only one experiment during this process in order to perform fair

comparison. As evident from the table, the proposed method fares well in training

time when compared to BPTT.

293

Table D.1: Training time comparison (reported in hours).

Dataset BPTT FPTT
PTB-300 1.01 1.12

Pixel-MNIST 3.29 2.68
Permute-MNIST 3.41 2.97
Pixel-CIFAR-10 3.57 3.25

Add-Task 0.31 0.18

D.3 Impact of α hyper-parameter.

We explore the sensitivity to the α hyper-parameter in the Algorithm 3. We use

the PTB-300 language modelling dataset. In this experiment we train FPTT on

the following α values: {1.0, 0.8, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001}. Table D.2 lists the

validation accuracy for these α values. It shows that FPTT is insensitive to α ≤ 0.5.

Note that very small value of α, i.e. α→ 0 would lead FPTT to ignore the regularizer

and would only optimize the instantaneous loss at every step resulting in diverging

iterates. While very high value of α would lead FPTT to only optimize the regularizer

and hence very poor generalization performance.

Table D.2: PTB-300 language modelling (validation perplexity) : various α values.

α Validation
Perplexity

1.0 265
0.8 115
0.5 110
0.1 112
0.05 116
0.01 112
0.005 113
0.001 114

D.4 Comparison with Online Gradient Descent.

Our parameter update equations perform gradient descent with dynamic regularizer

in order to constraint the iterates to be nearby. In this experiment we show that such

an additional regularizer is required to achieve better generalization error. We train

LSTMs on the PTB-300 dataset with following training algorithms : (a) BPTT : the

294

standard back-propagation through time method, (b) FPTT (OGD) : the proposed

algorithm without incorporating the dynamic regularizer, (c) FPTT : the proposed

algorithm with dynamic regularizer. Table D.3 shows results for these three settings

along with the known baselines for this dataset. It can be inferred that incorporating

the dynamic regularizer improves the performance of the proposed algorithm.

Table D.3: Ablative results for PTB word level language modelling : Sequence
length (300), 1-Layer LSTM. Comparing the FPTT scheme with and without the
dynamic regularizer.

Dataset PTB-w
Perplexity #Params

FastGRNN (Kusupati et al., 2018) 116.11 53K
IncrementalRNN (Kag et al., 2020) 115.71 30K
SpectralRNN (Zhang et al., 2018a) 130.20 31K

LSTM (Zhang et al., 2018a) 130.21 64K
LSTM (Kusupati et al., 2018) 117.41 210K

LSTM 117.09 210K
FPTT (OGD) LSTM 113.74 210K

FPTT LSTM 106.27 210K

D.5 Convergence Wt − W̄t .

In order to show that the proposed algorithm converges to a single average iterate

towards the end of the training phase, we show the convergence plot for ∥Wt − W̄t∥2
and the gradient norm for the training steps. Figure D·1 shows these plots for the

Add-Task with sequence length T = 200. As evident from these plots, the gap between

Wt and W̄t closes as the training progresses. During the initial training steps, one can

observe that there’s a significant difference between Wt and W̄t and as the training

progresses this difference goes to 0. Similarly, the gradient norm reaches 0 by the end

of the training phase.

295

D.7 Proofs

Proposition 8. In the Algorithm 3, suppose, the sequence Wt is bounded and con-

verges to a limit point W∞. Further assume the loss function ℓt is β−Smooth and

γ−Lipschitz. Let the cumulative loss be F = 1
T

∑T
t=1∇ℓt(W∞) after T iterations 1.

It follows that W∞ is a stationary point of Eq. 2.3, i.e., limL→∞
∂F
∂W

(W∞) = 0.

Rewriting the first equation in Eq. 5.4 as:

Wt+1 = W̄t +
1

α
(∇ℓt−1(Wt)−∇ℓt(Wt+1)) (D.1)

We assumed that the sequence Wt is bounded and converges to a limit point W∞.

By Cesaro mean2 argument

Wt+1 → W∞ =⇒ 1

T

T∑
t=1

Wt+1
T→∞−→ W∞ (D.2)

Summing Eq. D.1 over t

1

T

T∑
t=1

Wt+1 =
1

T

T∑
t=1

W̄t +
1

T

T∑
t=1

1

α
(∇ℓt−1(Wt)−∇ℓt(Wt+1))

=⇒ 1

T

T∑
t=1

Wt+1 =
1

T

T∑
t=1

W̄t −
1

αT
∇ℓT (WT+1) Telescoping Sum

Since loss functions are γ−Lipschitz, we get that ∇ℓT (WT+1) term is bounded,

i.e. ∥∇ℓT (WT+1)∥ ≤ γ. Hence, 1
T
∇ℓT (WT+1)

T→∞−→ 0.

=⇒ 1

T

T∑
t=1

W̄t
T→∞−→ W∞ (D.3)

1For simplicity in exposition, we concatenate all the losses ℓt into a single online stream and get
rid of the index N , that gets repeated to provide T iterations of the gradient updates

2https://www.ee.columbia.edu/~vittorio/CesaroMeans.pdf

298

Summing second equation in Eq. 5.4 over t, we get

1

T

T∑
t=1

W̄t+1 =
1

2T

T∑
t=1

(W̄t +Wt+1)−
1

2αT

T∑
t=1

∇ℓt(Wt+1)

=⇒ 1

2αT

T∑
t=1

∇ℓt(Wt+1) =
1

2T

T∑
t=1

(W̄t +Wt+1)−
1

T

T∑
t=1

W̄t+1

=
1

2T

T∑
t=1

Wt+1 +
1

2T

T∑
t=1

W̄t −
1

T

T∑
t=1

W̄t+1

=
1

2T

T∑
t=1

Wt+1 −
1

2T

T∑
t=1

W̄t +
1

T
(W̄1 − W̄T+1)

=⇒ lim
T→∞

1

2αT

T∑
t=1

∇ℓt(Wt+1) = lim
T→∞

(1

2T

T∑
t=1

Wt+1 −
1

2T

T∑
t=1

W̄t +
1

T
(W̄1 − W̄T+1)

)

Note that the quantity (W̄1 − W̄T+1) is finite. Hence, limT→∞
1
T
((W̄1 − W̄T+1)) = 0.

From the Eq. D.2 and Eq. D.3, the other two terms have limits that exists. Plugging

in these values in the above expression we get,

=⇒ lim
T→∞

1

2αT

T∑
t=1

∇ℓt(Wt+1) =
1

2
W∞ −

1

2
W∞ + 0 = 0 (D.4)

From β−smoothness assumption on the loss function, we have that

=⇒ ∥∇ℓt(Wt+1)−∇ℓt(W∞)∥ ≤ β∥Wt+1 −W∞∥

=⇒ ∥ 1

2αT

T∑
t=1

∇ℓt(Wt+1)−
1

2αT

T∑
t=1

∇ℓt(W∞)∥ ≤ β

2αT

T∑
t=1

∥Wt+1 −W∞∥

299

Note Wt+1 → W∞ =⇒ ∀δ > 0,∃tδ s.t. ∀t > tδ, ∥Wt+1 −W∞∥ < δ

=⇒ ∥ 1

2αT

T∑
t=1

∇ℓt(Wt+1)−
1

2αT

T∑
t=1

∇ℓt(W∞)∥ ≤ β

2αT
(T − tδ)δ

+
β

2αT

tδ∑
t=1

∥Wt+1 −W∞∥

As T →∞, both terms on the right hand becomes arbitrarily close to 0, i.e. we have

sequence of vectors { 1
2αT

∑T
t=1∇ℓt(Wt+1)− 1

2αT

∑T
t=1∇ℓt(W∞)}∞T=1 that converge to

the 0 vector.

=⇒ lim
T→∞

∥ 1

2αT

T∑
t=1

∇ℓt(Wt+1)−
1

2αT

T∑
t=1

∇ℓt(W∞)∥ = 0

From Eq. D.4, we know that 1
2αT

∑T
t=1∇ℓt(Wt+1)

T→∞−→ 0

=⇒ 1

2αT

T∑
t=1

∇ℓt(W∞)
T→∞−→ 0

This is the proposed stationarity condition, and our claim follows.

300

301

Appendix E

Appendix to Global Layered CNNs

E.1 Experiments with other PDEs.

In this section, we explore few additional PDEs, namely with first order and Laplace

differential operators. Our objective is to demonstrate that the Global layer can be

naturally extended to any other PDE that is amenable to an iterative solver, thus

yielding an efficient update equation.

First Order
∂

∂x
H(x, y) +

∂

∂y
H(x, y) = f(I(x, y)) (E.1)

Second Order
∂2

∂x2
H(x, y) +

∂2

∂y2
H(x, y) = f(I(x, y)) (E.2)

Similar to advection-diffusion PDE, these PDEs can be discretized by replacing the

differential operators with finite differences. Yielding the following update equations.

For simplicity, we take δx = δy = δ,

H(x, y)−H(x− δ, y)
δ

+
H(x, y)−H(x, y − δ)

δ
= f(I(x, y))

=⇒ H(x, y) =
1

2

[
H(x− δ, y) +H(x, y − δ) + δ ∗ f(I(x, y))

]
(E.3)

Similarly, the Laplace operator yields the following update

H(x+ δ, y) +H(x− δ, y)− 2H(x, y)

δ2
+

H(x, y + δ) +H(x, y − δ)− 2H(x, y)

δ2
= f(I(x, y))

=⇒ H(x, y) =
1

4

[
H(x+δ, y)+H(x−δ, y)+H(x, y+δ)+H(x, y−δ)−δ2∗f(I(x, y))

]
(E.4)

Table E.1 shows the Global layer performance when we use the first order or second

order differential operators. It also shows the performance of the update equation

when the training and inference use different number of updates (i.e., the hyper-

parameter K). For example, while training with large K yields good performance,

during inference we can trade-off some accuracy for less number of updates, yielding

faster inference.

Table E.1: Ablative Experiments on CIFAR-10 : Training with different iterative
steps in the solver and inference with varying steps.

Training Accuracy with Inference@K
PDE Initial Guess K=1 K=5 K=7 K=10

K=1 90.71 75.44 61.87 43.02
K=5 19.2 92.2 90.97 86.75

(First Order) 1-conv K=7 10.01 88.41 92.23 90.19
K=10 13.52 72.84 89.7 92.47
K=1 93.17 72.15 62.24 28.56
K=5 15.26 93.86 93.03 89.4

(First Order) 2-conv K=7 23.21 92.16 93.87 92.79
K=10 19.87 84.86 92.45 93.89
K=1 91.05 72.62 66.57 59.5
K=5 12.13 91.84 90.65 87.45

(Second Order) 1-conv K=7 16.95 89.38 92.34 91.51
K=10 10.51 65.98 89.13 92.18
K=1 93.08 73.34 64.71 55.49
K=5 21.9 93.55 92.76 90.66

(Second Order) 2-conv K=7 17.66 90.14 93.54 93.25
K=10 18.15 69.72 90.27 94.01

E.2 Discretizing the Diffusion PDE.

In this section, we discretize the following Advection-Diffusion PDE.

∂

∂t
H(x, y, t) +

∂

∂x

(
u(x, y, t)H(x, y, t)

)
+

∂

∂y

(
v(x, y, t)H(x, y, t)

)

302

=
∂

∂x

(
Dx

∂

∂x
H(x, y, t)

)
+

∂

∂y

(
Dy

∂

∂y
H(x, y, t)

)
+ f(I(x, y)) (E.5)

Assume the discrete steps for x, y and t by δx, δy and δt respectively. Following

(Hutomo et al., 2019), we replace the partial differential operators with their finite

difference, resulting in

Ht
x,y −Ht−1

x,y

2δt
+
(ux+1,y − ux−1,y

2δx
Ht

x,y + u
Ht

x+1,y −Ht
x−1,y

2δx

)
+
(vx,y+1 − vx,y−1

2δy
Ht

x,y + u
Ht

x,y+1 −Ht
x,y−1

2δy

)

= Dx

Ht
x+1,y −Ht+1

x,y −Ht−1
x,y +Ht

x−1,y

δ2x
+Dy

Ht
x,y+1 −Ht+1

x,y −Ht−1
x,y +Ht

x,y−1

δ2y
+ f(I(x, y))

Thus, re-arranging the above equation, we obtain

LHk+1
x,y = (1− 2Bx − 2By)H

k−1
x,y − 2EHk

x,y + 2δtf(I(x, y))

+ (−Ax + 2Bx)H
k
x+1,y + (Ax + 2Bx)H

k
x−1,y

+ (−Ay + 2By)H
k
x,y+1 + (Ay + 2By)H

k
x,y−1 (E.6)

where L = (1 + 2Bx + 2By), and

ux =
ux+1,y − ux−1,y

2δx
; vy =

vx,y+1 − vx,y−1

2δy
;E = (ux + vy)δt

Ax =
uδt
δx

;Ay =
vδt
δy

;Bx =
Dxδt
δ2x

;By =
Dyδt
δ2y

;

E.3 MNIST Experiments.

Architecture details.

• Resnet baseline from Neural ODEs (Chen et al., 2018) and NeuPDE(Sun et al.,

2020). This network begins with a full convolutional layer with (64 output

303

channels, 3 × 3 kernel, stride 1). It is followed by the batch norm and ReLU

non-linearity. This is followed by another full convolutional layer (64 output

channels, 3 × 3 kernel, stride 2), batch norm and ReLU non-linearity and full

convolutional layer (64 output channels, 3×3 kernel, stride 2. Finally, there are

6 basic residual blocks (each consisting of 2 conv layers), followed by average

pooling and the classifier layer.

• Neural ODE architecture. This network follows the exact same early layers

as the above Resnet architecture except the residual layers are now replaced

with one ODE layer. Thus, yielding gains in the parameter storage, but the

computational footprint goes up, as the number of ODE updates are typically

much larger than 6.

• NeuPDE architecture. This architecture replaces the residual block with 6 finite-

difference layers introduced in (Sun et al., 2020).

• Resnet-Global (136K params). We use the same Resnet architecture described

above and replace the 6 residual blocks with one Global layer discussed in

Sec. 7.2.2. We use constant diffusion coefficients (Dx = Dy = 1) and use identity

as the function f . We set the velocity (u, v) as the depthwise convolutional layers

followed by batch norm and ReLU non-linearity.

• Resnet (33K params). This network begins with a full convolutional layer with

(16 output channels, 3×3 kernel, stride 1). It is followed by the batch norm and

ReLU non-linearity. This is followed by 5 basic residual blocks (each consisting

of 2 conv layers), followed by average pooling and the classifier layer.

• Resnet-Global (10K params). This networks uses the earlier Resnet architecture

(33K params) and replaces the residual layers with one Global layer.

304

Hyper-parameter details. For all the MNIST experiments, we minimize the

cross-entropy loss on the training data using the SGD optimizer with learning rate 0.1

and momentum 0.9. We use weight decay of 1e− 4 and batch size of 128. Following

(Sun et al., 2020; Chen et al., 2018), we train the model for 160 epochs with learning

rate decay by 1
10

after 60, 100 and 140 epochs.

E.4 CIFAR Experiments.

Architecture details.

• Resnet32, Resnet56. These architectures come from the initial Residual Net-

works paper (He et al., 2016). First, it has a full convolution layer (16 output

channels, 3 × 3 kernel, stride 1), followed by basic residual blocks (16 output

channels) repeated m times. This is followed by a downsampling convolutional

layer (16 output channels, 3 × 3 kernel, stride 2). This process is repeated

again, i.e. m basic residual blocks followed by downsampling layer but with 32

channels, and finally one last time m basic residual blocks with 64 channels. Re-

maining network consists of average pooling followed by fully connected layer.

We obtain Resnet32 with m = 5 and Resnet56 with m = 6.

• Resnet-Global (m = 1, 2). We get the global variants of the above described

Resnet architectures by replacing the repeated basic residual blocks with one

Global layer. We get the Resnet-Global(m = 1) by keeping only one Residual

block as the initialization of the PDE and Resnet-Global (m = 2) by keeping

two Residual blocks.

• WideResnet. This architecture is similar to the Resnet32 and Resnet56, except

two changes, i.e. m = 6 and the width of the feature maps is multiplied with

305

4. Thus, feature sizes grow as (64, 128, 256) in the network. This is commonly

referred to as the WRN-40-4 (Zagoruyko and Komodakis, 2016).

• WideResnet-Global. Similar to the Global variants of the Resnet32 and

Resnet56, we create the WideResnet-Global by replacing the repitions in the

WideResnet with a Global layer.

• Densenet. We used the Densenet-BC variant from the Densenet paper (Huang

et al., 2017) for its cost efficiency. We refer the reader to the original paper for

detailed architecture setup. Here we provide minimal details to replicate this

architecture Densenet-BC (k = 12, L = 100). We use the growth-rate 12 and 3

dense blocks with 16 dense layers. This network begins with a full convolution

(16 output channels, 3 × 3 kernel, stride 1). This is followed by a dense block

consisting of 16 dense layers, and a transition layer (batch-norm, ReLU, full

conv (same output channels, 1×1 kernel, stride 1), then average pooling to down

sample the feature map). This process is repeated two more times, yielding

three dense blocks. Note that a Densenet concatenates all the feature maps

within a dense block. Finally, a batch norm is applied on the resulting before

forwarding to a classifier.

• Densenet-Global. Note that Densenet is not exactly repeating the same layer

in each block (since the feature maps are concatenated). In each dense block,

there are 16 dense layers and all the feature maps are forwarded as the output

of this block. We cut down the size of this network by using only 8 dense layers

in each dense block and apply a Global layer followed by the original transition

layer. Thus, yielding Densenet-Global architecture.

• DARTS. (Liu et al., 2019a) search for architecture cells using their differential

architecture search. They found two optimized cells for the CIFAR dataset,

306

namely, a normal and a reduction cell. A reduction cell transforms the feature

map into a downsampled version of the feature map (similar to the operation

performed by the transition layer in Densenet or the stride 2 convolution in

Resnet). While a normal cell transforms the feature map into another fea-

ture map of the same dimension. We refer the user to their implementation

(https://github.com/quark0/darts) for the details of these two cells. The final

DARTS architecture used in our works is the same in their implementation, that

consists of 20 such cells. First is a full convolution with 36 output channels,

after which they apply their normal cells and have reduction cells after nearly

every 6 normal cells. Followed by the classifier layer.

• DARTS-Global. We create the DARTS-Global variant by replacing all but repe-

titions of the normal cell with two and applying a Global layer at each resolution.

We use identity as the function f . We set the velocity (u, v) and diffusion coef-

ficients (Dx, Dy) as the depthwise convolutional layers followed by batch norm

and ReLU non-linearity.

• Budget-Resnet. We use the same architecture as the Resnet32 but with reduced

feature maps, i.e. instead of (16, 32, 64) we have (6, 8, 8) as the feature maps and

same repetitions, i.e. m = 5. This yields a Resnet model with 13K parameters

and nearly 3.4M MAcs.

• Budget-Resnet-Global. We use similar architectural setup as the Resnet-Global

but we constrain the feature map sizes to be within 3.5M MACs. Instead of

using (16, 32, 64), we use (10, 9, 16) as the feature map sizes. Note that this

configuration is not a result of any architecture search, but instead a simply

random allocation of the feature map to yield a model within similar compute

characteristics of the Budget-Resnet model. Since our aim in the budget exper-

307

iments is to show that with similar compute as the original model, the proposed

model achieves much better performance, this configuration suffices. One can

resort to architectural search schemes to find the optimized model with best

performance, but that is beyond the scope of this work.

• Budget-WideResnet. This model is similar as the WideResnet model (m = 6

repetitions) except the number of feature maps go from (64, 128, 256) to (8, 8, 8).

• Budget-WideResnet-Global. Similar to WideResnet-Global (m = 1 repetitions)

except the number of channels reduce from (64, 128, 256) to (12, 16, 12).

• Budget DARTS. Similar to the DARTS model with number of initial channels

reduced from 36 to 3.

• Budget DARTS-Global. Similar to the DARTS-Global model with number of

initial channels reduced from 36 to 5.

Hyper-parameter details. We follow the recommendations of the related

works for various training strategies. We do only use the standard data augmentation

discussed in the main text. For all our experiments, we use the SGD optimizer with

momentum 0.9. All our models are trained for 300 epochs with pre-defined learning

rate decay of 1
10

at 150 and 225 epochs.

We search of other hyper-parameters (batch size and weight decay) whenever

no recommendation is available from the baseline. We use the batch size of 64 for

Densenet experiments while the rest of the experiments we use the batch size of 32.

We use a weight decay of 1e − 4 for Resnet and Wide-Resnet experiments. While

for the Global variants of these architecture we found 5e− 5 to yield best validation

performance.

Note that for the DARTS and DARTS-Global experiments, we follow the setup

described in (Liu et al., 2019a), it includes cutout data augmentation, auxiliary losses

308

from each reduced cell blocks with weight 0.4, a path dropout of 0.2 and a cosine

learning rate scheduler. For computational purposes, we run both the baseline and

Global variant only up to 300 epochs as opposed to the recommended 600 epochs.

As per their setup, we use a batch size of 96 and weight decay of 3e − 4. For the

DARTS-Global experiments, we use a weight decay of 8e− 4.

E.5 ImageNet Experiments.

Architecture details.

• MobileNetV2. We used the MobileNetV2 (Sandler et al., 2018) architecture

with width multiplier 1.0 (see Table 2 in MobileNetV2 paper). This network

has nearly 3.4M parameters and 300M MACs.

• MobileNetV2-Global. We create the Global variant of the MobileNetV2 archi-

tecture by replacing the repetitions in all resolutions (112, 56, 28, 14) except

the last repeated block. We learn the velocity and diffusion coefficients with

depthwise convolutions.

• MobileNetV2-Global-s (2× less MACs). We modify the earlier MobileNetV2-

Global variant by fixing the diffusion coefficients to be constants and even re-

moving the repetitions in the last resolution.

• MobileNetV3. We used the MobileNetV3-Large (Howard et al., 2019) archi-

tecture with width multiplier 1.0 (see Table 1 in MobileNetV3 paper). This

network has nearly 5.4M parameters and 219M MACs.

• MobileNetV3-Global. We create the Global variant of the MobileNetV3-Large

architecture by replacing the repetitions in all resolutions (56, 28, 14) except

309

the last repeated block. We learn the velocity and diffusion coefficients with

depthwise convolutions.

• MobileNetV3-Global-s (2× less MACs). We modify the earlier MobileNetV3-

Global variant by fixing the diffusion coefficients to be constants and even re-

moving the repetitions in the last resolution.

• EfficientNet-B0. We used the EfficientNet-B0 (Tan and Le, 2019) architecture

with width multiplier 1.0 (see Table 1 in EfficientNet paper). This network has

nearly 5.3M parameters and 390M MACs.

• EfficientNet-B0-Global. We create the Global variant of the EfficientNet-B0

architecture by replacing the repetitions in all resolutions (112, 56, 28, 14) except

the last repeated block. We learn the velocity and diffusion coefficients with

depthwise convolutions.

• EfficientNet-B0-Global-s (2× less MACs). We modify the earlier EfficientNet-

B0-Global variant by fixing the diffusion coefficients to be constants and even

removing the repetitions in the last resolution.

Hyper-parameter details. We used RMSProp optimizer with momentum

0.9 for all the ImageNet experiments as per the experimental setup recommended by

the baselines (Howard et al., 2019; Tan and Le, 2019). We used weight decay 1e− 5.

For both MobileNetv3 and EfficientNet-B0, we used dropout 0.2. We also used an

exponential moving average (ema) with the decay of 0.9999. As recommended in the

EfficientNet-B0, we use AutoAugment policy along with stochastic depth of 0.8. We

used a batch size of 512 and learning rate 0.05, with the learning rate decay of about

0.97 every 2.4 epochs. We train these models for 300 epochs.

Inference and Training time comparison. Table E.2 compares the infer-

ence and training time for various ImageNet models used in the main text. Global

310

architecture shows up to 2× reduction in inference and train time.

Table E.2: ImageNet: Train & Inference times (cost of one pass through train and
test dataset on a V100 GPU).

Architecture Accuracy Train
Time(s)

Inference
Time(s)

MobileNetV2 72.0 2181s 91s
MobileNetV2-Global 69.03 1414s 58s

MobileNetV3 75.2 1714s 71s
MobileNetV3-Global 71.89 1090s 45s

EfficientNet-B0 77.1 2667s 111s
EfficientNet-B0-Global 74.53 1311s 54s

E.6 Discussion.

Comments about MDEQ Empirical Evaluations. MDEQ did an unfair com-

parison with Resnet. They added auxiliary losses at various input resolutions for the

deep equilibrium features but fail to add such auxiliary losses to the Resnet train-

ing routine. It has been shown in the literature that adding auxiliar losses improves

performance in neural networks (Liu et al., 2019a; Kag and Saligrama, 2021b; Trinh

et al., 2018) . They should have enabled such auxiliary losses in the Resnet experi-

ments as well for fair comparison.

E.7 Advantages of the Global layer over Neural ODEs and

NeuPDE.

• As authors of NeuPDE point out (see Line 2-3 on pg 367 http://proceedings.

mlr.press/v107/sun20a/sun20a.pdf), they are unable to scale-up to large-

scale datasets such as ImageNet. That Neural ODE is not scalable to ImageNet

datasets is well-known. For instance, see MDEQ https://arxiv.org/pdf/

2006.08656.pdf Sec. 2, para 3, where this point is discussed. For reference,

we repeat their point; even to handle MNIST, with input resolution 28×28×1,

Neural ODE must downsample to 7×7, and that its lack of scalability to realistic

311

vision tasks arises from numerical instability. In fact, MDEQ while reporting

ImageNet results, leaves out Neural ODEs.

• MDEQ, which we compare extensively, can be thought of as the “scalable”

version of Neural ODEs. Our reported results are significantly better than

MDEQ (see Table 7.3 & 7.5).

• We emphasize that NeuPDE suffers the same scalability since they are really

Neural ODEs but with the input replaced by a larger feature input such as

monomials of the input, or a collection of partial derivatives of the input (see Eq.

1 or Eq. 9 in http://proceedings.mlr.press/v107/sun20a/sun20a.pdf).

This is like substituting linear features with polynomial features in SVMs. Our

approach has no connection to NeuPDEs. We learn a PDE and solve it to

equilibrium (more in the spirit of DEQ/MDEQ).

E.8 Illustrative Example Visualizations.

Similar to the illustration in the method section, we add another representation for

the letter 3 for a different input in the Figure E·1. Here also, it is evident that

Global layer representation highlights the corners very brightly in contrast to the

representation from other feature backbones.

We show the velocity vectors associated with this new example in the Figure E·2.

One can clearly notice that there is some non-zero activity along the corners of the

digit 3.

312

Figure E·1: Another example to demonstrate the visual differences between different
representation for the MNIST input letter 3

Figure E·2: This represents the velocity vectors associated with the example in
Figure E·1. Note that there is some non-zero activity along the corners (represented
by the very bright or very dark spots on the edges of the letter 3).

313

314

Appendix F

Appendix to SI-CNNs

F.1 Toy Example: CIFAR-10 Dataset

In this section, we provide training setup and architectural details for the toy example

discussed in the Sec. 8.1.

Dataset. We use the CIFAR-10 dataset (Krizhevsky and Hinton, 2009). It

consists of 32×32 RGB images of 10 classes. It has 50K train and 10K test splits. We

follow the standard data augmentation techniques including: (a) random horizontal

flip, (b) random crop, (c) auto-augment (Cubuk et al., 2019), (d) cutout (DeVries

and Taylor, 2017), and (e) standard mean-variance normalization.

Table F.1: Toy Example Architecture Details.

Stage Input Operator Stride # In
Channels

Out
Channels

0 32× 32× 3 Conv2d, 3× 3 1 3 32
1 30× 30× 32 (Spatially Interpolated) Inverted Residual 1 32 16
2 28× 28× 16 Conv2d, 1× 1 1 16 32
3 28× 28× 32 Global Pool & Classifier 1 32 10

Models. We create a simple convolutional architecture with the structure defined

in Table F.1. We use either inverted residual or its spatially interpolated variant

yielding the following two architectures.

1. ConvNet-IR. Stage 1 in Table F.1 uses Inverted Residual block with expansion

ratio 6.

2. SI-ConvNet-IR. Stage 1 in Table F.1 uses Spatially Interpolated Inverted Resid-

ual block with expansion ratio 2 in the cheaper branch and 4 in the anchors

branch.

Training Details. We learn both these architectures for 200 epochs using the

training set and report the accuracy on the test set. We use a batch size of 256 and

minimize the standard cross-entropy loss using SGD optimizer with momentum 0.9

and learning rate of 0.1. We also include the weight decay term with value 1e − 5.

We use the cosine schedule for the learning rate decay.

F.2 Classification and Segmentation Architecture Details

F.2.1 Classification Architectures and ImageNet backbones for Segmen-

tation.

We describe our ImageNet classification architectures in this section. First, we de-

scribe the mobilenet architectures including MobileNetV3-large, MobileNetV3-small

and Multi-HardwareMobileNet model. Table F.2 and Table F.3 describe the mo-

bilenetv3 large and its spatially interpolated variant, SI-MobileNetV3-large.

Note that similar to the baseline architecture we replicate the residual block and

other layer details in these tables such as input size, number of input-output channels,

stride and the number of expansion channels. Other details such as type of non-

linearity and squeeze-excite operator are same as the baselines and we refer the reader

to the original paper for explicit details. We will release our implementation in the

final version for the model definition as well as the pre-trained model weights for

reproduction. Since Spatially-Interpolated variants include additional details such as

the anchors and cheaper feature computation, we provide these details in the extra

columns namely: anchor resolution (i.e. the input to the anchor feature branch),

number of cheaper features (this is the number of expansion channels for the cheaper

315

feature branch), number of anchor channels (this is the number of expansion channels

for the anchor feature branch), and number of cheaper groups (refers to the number

of groups in the cheaper feature used for further reduction in the computation).

Table F.4 and Table F.5 provide the architecture definition for the MobileNetV3-

small and SI-MobileNetV3-small models. Finally, Table F.6 and Table F.7

lists the architecture definition for the Multi-HardwareMobileNet and SI-Multi-

HardwareMobileNet. Note that we borrow the MobileNetV3 (Howard et al., 2019)

and Multi-HardwareMobileNet (Chu et al., 2021) architecture definitions from their

papers for completeness. Similar to the MobileNetV3 convention, we refer the

MobileNetV3-large architecture with width (number of features) multiplied by 0.75

as the MobileNetV3-large architecture.

We borrow the EfficientNet-B0 definition from (Tan and Le, 2019) and show the

same in the Table F.8. We create its spatially interpolated variant, SI-EfficientNet-

B0 in the Table F.9. Similar to the EfficientNet scaling, we create the B1, B2, B3

variants and the corresponding spatially interpolated variants, SI-B1, SI-B2, SI-B3.

Table F.2: MobileNetV3-Large model.

Input Operator Stride # In
Channels

Out
Channels

Exp
Channels

224× 224× 3 Conv2d, 3× 3 2 3 16 -
112× 112× 16 Inverted Residual 3× 3 1 16 16 16
112× 112× 16 Inverted Residual 3× 3 2 16 24 64
56× 56× 24 Inverted Residual 3× 3 1 24 24 72
56× 56× 24 Inverted Residual 5× 5 2 24 40 72
28× 28× 40 Inverted Residual 5× 5 1 40 40 120
28× 28× 40 Inverted Residual 5× 5 1 40 40 120
28× 28× 40 Inverted Residual 3× 3 2 40 80 240
14× 14× 80 Inverted Residual 3× 3 1 80 80 200
14× 14× 80 Inverted Residual 3× 3 1 80 80 184
14× 14× 80 Inverted Residual 3× 3 1 80 80 184
14× 14× 80 Inverted Residual 3× 3 1 80 112 480
14× 14× 112 Inverted Residual 3× 3 1 112 112 672
14× 14× 112 Inverted Residual 5× 5 2 112 160 672
7× 7× 160 Inverted Residual 5× 5 1 160 160 960
7× 7× 160 Inverted Residual 5× 5 1 160 160 960
7× 7× 160 Conv2d, 1× 1 1 160 960 -
7× 7× 960 Global Pool 7× 7 - 960 960 -
1× 1× 960 Conv2d 1× 1 1 960 1280 -
1× 1× 1280 Conv2d 1× 1 1 1280 1000 -

316

Table F.3: Spatially Interpolated MobileNetV3-Large model. Legends used in the
table: (a) Anchor Channels (Anc. Chan.), (b) Cheaper Channels (Cheap Chan.), (c)
Cheaper Groups (Cheap Grp).

Input Operator Stride # In
Ch.

Out
Ch.

Anc.
Chan.

Anchors
Resolution

Cheap
Chan.

Cheap
Grp.

224× 224× 3 Conv2d, 3× 3 2 3 16 - - - -
112× 112× 16 IR 3× 3 1 16 16 16 - - -
112× 112× 16 SI-IR 3× 3 2 16 24 64 56× 56× 16 32 1
56× 56× 24 SI-IR 3× 3 1 24 24 72 28× 28× 24 48 2
56× 56× 24 SI-IR 5× 5 2 24 40 72 28× 28× 24 36 1
28× 28× 40 SI-IR 5× 5 1 40 40 120 14× 14× 40 60 2
28× 28× 40 SI-IR 5× 5 1 40 40 120 14× 14× 40 60 2
28× 28× 40 SI-IR 3× 3 2 40 80 240 14× 14× 40 240 2
14× 14× 80 SI-IR 3× 3 1 80 80 200 7× 7× 80 160 2
14× 14× 80 SI-IR 3× 3 1 80 80 184 7× 7× 80 160 2
14× 14× 80 SI-IR 3× 3 1 80 80 184 7× 7× 80 128 2
14× 14× 80 SI-IR 3× 3 1 80 112 480 7× 7× 80 400 1
14× 14× 112 SI-IR 3× 3 1 112 112 672 7× 7× 112 560 2
14× 14× 112 IR 5× 5 2 112 160 672 - - -
7× 7× 160 IR 5× 5 1 160 160 960 - - -
7× 7× 160 Conv2d, 1× 1 1 160 960 - - - -
7× 7× 960 Pool 7× 7 - 960 960 - - - -
1× 1× 960 Conv2d 1× 1 1 960 1280 - - - -
1× 1× 1280 Conv2d 1× 1 1 1280 1000 - - - -

F.2.2 Segmentation Architectures

For segmentation experiments, we follow the MOSAIC (Wang and Howard, 2021)

setup to create the baselines. We replicate their architecture definition with our Im-

ageNet pre-trained backbones as discussed in the previous section. For MobileNetV3

backbones, we create the segmentation ready backbones by halving the number of

channels in the last few residual blocks as described in the segmentation evaluations

Table F.4: MobileNetV3-Small model.

Input Operator Stride # In
Channels

Out
Channels

Exp
Channels

224× 224× 3 Conv2d, 3× 3 2 3 16 -
112× 112× 16 Inverted Residual 3× 3 2 16 16 16
56× 56× 16 Inverted Residual 3× 3 2 24 24 72
28× 28× 24 Inverted Residual 3× 3 1 24 24 88
28× 28× 24 Inverted Residual 5× 5 2 24 40 96
14× 14× 40 Inverted Residual 5× 5 1 40 40 240
14× 14× 40 Inverted Residual 5× 5 1 40 40 240
14× 14× 40 Inverted Residual 5× 5 1 40 48 120
14× 14× 48 Inverted Residual 5× 5 1 48 48 144
14× 14× 48 Inverted Residual 5× 5 2 48 96 288
7× 7× 96 Inverted Residual 5× 5 1 96 96 576
7× 7× 96 Inverted Residual 5× 5 1 96 96 576
7× 7× 96 Conv2d, 1× 1 1 96 576 -
7× 7× 576 Global Pool 7× 7 - 576 576 -
1× 1× 576 Conv2d 1× 1 1 576 1024 -
1× 1× 1024 Conv2d 1× 1 1 1024 1000 -

317

Table F.5: Spatially Interpolated MobileNetV3-Small model. Legends used in the
table: (a) Anchor Channels (Anc. Chan.), (b) Cheaper Channels (Cheap Chan.), (c)
Cheaper Groups (Cheap Grp).

Input Operator Stride # In
Ch.

Out
Ch.

Anc.
Chan.

Anchors
Resolution

Cheap
Chan.

Cheap
Grp.

224× 224× 3 Conv2d, 3× 3 2 3 16 - - - -
112× 112× 16 IR 3× 3 2 16 16 16 - - -
56× 56× 16 IR 3× 3 2 24 24 72 28× 28× 16 24 1
28× 28× 24 SI-IR 3× 3 1 24 24 88 14× 14× 24 36 1
28× 28× 24 SI-IR 5× 5 2 24 40 96 14× 14× 24 48 1
14× 14× 40 SI-IR 5× 5 1 40 40 240 7× 7× 40 80 1
14× 14× 40 SI-IR 5× 5 1 40 40 240 7× 7× 40 120 1
14× 14× 40 SI-IR 5× 5 1 40 48 120 7× 7× 40 60 2
14× 14× 48 SI-IR 5× 5 1 48 48 144 7× 7× 48 144 1
14× 14× 48 SI-IR 5× 5 2 48 96 288 7× 7× 48 144 2
7× 7× 96 SI-IR 5× 5 1 96 96 576 3× 3× 96 576 2
7× 7× 96 SI-IR 5× 5 1 96 96 576 3× 3× 96 192 2
7× 7× 96 Conv2d, 1× 1 1 96 576 - - - -
7× 7× 576 Pool 7× 7 - 576 576 - - - -
1× 1× 576 Conv2d 1× 1 1 576 1024 - - - -
1× 1× 1024 Conv2d 1× 1 1 1024 1000 - - - -

in (Howard et al., 2019). For the Multi-HardwareMobileNet experiment, we use the

pre-trained backbones from the ImageNet experiment. For both these architecture

families, after pre-training with ImageNet dataset, we discard the classification head

and add the segmentation head as described in (Wang and Howard, 2021). Note

that the MOSAIC segmentation decoder utilizes the expanded feature maps in the

inverted residual blocks. For MobileNetV3 and Multi-HardwareMobileNet architec-

tures, this corresponds to the expanded feature maps after the depthwise stage. For

Spatially Interpolated (SI) variants, we concatenate the Anchors and Cheaper feature

branches and forward the same to the decoder. This does not incorporate heavy stor-

age or computational overhead, and is correctly reflected in our storage and compute

characteristics in the Table 8.3.

F.3 ImageNet Classification (Training Procedure & Hyper-

parameters)

In this section, we describe our training procedure and the hyper-parameters includ-

ing data augmentations used in learning different architectures. We point out that

318

Table F.6: Multi-Hardware MobileNet model.

Input Operator Stride # In
Channels

Out
Channels

Exp
Channels

224× 224× 3 Conv2d, 3× 3 2 3 32 -
112× 112× 32 Inverted Residual 3× 3 2 32 32 96
56× 56× 32 Inverted Residual 3× 3 1 32 32 64
56× 56× 32 Inverted Residual 5× 5 2 32 64 160
28× 28× 64 Inverted Residual 3× 3 1 64 64 192
28× 28× 64 Inverted Residual 3× 3 1 64 64 128
28× 28× 64 Inverted Residual 3× 3 1 64 64 192
28× 28× 64 Inverted Residual 5× 5 2 64 128 384
14× 14× 128 Inverted Residual 3× 3 1 128 128 384
14× 14× 128 Inverted Residual 3× 3 1 128 128 384
14× 14× 128 Inverted Residual 3× 3 1 128 128 384
14× 14× 128 Inverted Residual 3× 3 1 128 160 768
14× 14× 160 Inverted Residual 3× 3 1 160 160 640
14× 14× 160 Inverted Residual 3× 3 1 160 192 960
14× 14× 192 Inverted Residual 5× 5 1 192 96 384
14× 14× 96 Inverted Residual 5× 5 1 96 96 384
14× 14× 96 Inverted Residual 5× 5 1 96 96 384
14× 14× 96 Conv2d, 1× 1 1 96 480 -
14× 14× 480 Global Pool 14× 14 - 480 480 -
1× 1× 480 Conv2d 1× 1 1 480 1280 -
1× 1× 1280 Conv2d 1× 1 1 1280 1000 -

our ImageNet architecture codebase is built on top of the timm library (Wightman,

2019). We follow their recommended hyper-parameter and data augmentation strate-

gies that yield results similar to the publicly available results (Top-1 accuracy, number

of parameters, MACs, etc.) from various baselines. For a fair comparison, we use

the same setup for baseline and our spatially interpolated architectures. Below, we

list training procedure for various architecture families for the ImageNet dataset. In

terms of the data augmentation, as recommended by the previous works (Wightman,

2019; Tan and Le, 2019; Tan and Le, 2021), we use the rand augment strategy along

with the random horizontal flips, random crop to 224 size and standard mean-variance

normalization. For the segmentation experiments, we pre-train the backbones using

the exact same procedure described below. Post pre-training, the segmentation ex-

periments follow the training procedure described in the main text (see Sec. 8.3.3).

We use half-precision to train all the architectures (baseline as well as the proposed

spatially interpolated architectures).

MobileNet (MobileNetV3, Multi-HardwareMobileNet) and Efficient-

Net Architectures (EfficientNet-B0-B3, EfficientNetV2-small). For all the

319

Table F.7: Spatially Interpolated Multi-Hardware MobileNet model. IR stands
for Inverted Residual block. Legends used in the table: (a) Anchor Channels (Anc.
Chan.), (b) Cheaper Channels (Cheap Chan.), (c) Cheaper Groups (Cheap Grp).

Input Operator Stride# In
Ch.

Out
Ch.

Anc.
Chan.

Anchors
Resolution

Cheap
Chan.

Cheap
Grp.

224× 224× 3 Conv2d, 3× 3 2 3 32 - - - -
112× 112× 32 SI-IR 3× 3 2 32 32 96 56× 56× 32 64 1
56× 56× 32 SI-IR 3× 3 1 32 32 64 28× 28× 32 64 2
56× 56× 32 SI-IR 5× 5 2 32 64 160 28× 28× 32 80 1
28× 28× 64 SI-IR 3× 3 1 64 64 192 14× 14× 64 96 2
28× 28× 64 SI-IR 3× 3 1 64 64 128 14× 14× 64 96 2
28× 28× 64 SI-IR 3× 3 1 64 64 192 14× 14× 64 96 2
28× 28× 64 SI-IR 5× 5 2 64 128 384 14× 14× 64 384 1
14× 14× 128 SI-IR 3× 3 1 128 128 384 7× 7× 128 96 2
14× 14× 128 SI-IR 3× 3 1 128 128 384 7× 7× 128 96 2
14× 14× 128 SI-IR 3× 3 1 128 128 384 7× 7× 128 96 2
14× 14× 128 SI-IR 3× 3 1 128 160 768 7× 7× 128 640 1
14× 14× 160 SI-IR 3× 3 1 160 160 640 7× 7× 160 320 2
14× 14× 160 SI-IR 3× 3 1 160 192 960 7× 7× 160 320 2
14× 14× 192 IR 5× 5 1 192 96 384 - - -
14× 14× 96 IR 5× 5 1 96 96 384 - - -
14× 14× 96 Conv2d, 1× 1 1 96 480 - - - -
14× 14× 480 Pool 14× 14 - 480 480 - - - -
1× 1× 480 Conv2d 1× 1 1 480 1280 - - - -
1× 1× 1280 Conv2d 1× 1 1 1280 1000 - - - -

MobileNet and EfficientNet architectures, we use the following training procedure.

We use the RMSProp optimizer with momentum 0.9 and learning rate 0.064 and

weight decay of 1e− 5. We use a batch size of 1024. We use 5 linear warm up epochs

from 1e− 6 to the learning rate 0.064. Thereafter, we decay the learning rate by 0.97

for every 2.4 epochs. We use a drop-out of 0.2 for MobileNet and EfficientNet-B0-B1

architectures and increase this to 0.3 for EfficientNet-B2-B3 architectures as per the

paper recommendations (Tan and Le, 2019). We train the EfficientNet architectures

for 450 epochs and train the MobileNet architectures for 600 epochs. These hyper-

parameters have been successfully employed by the timm library (Wightman, 2019)

to reproduce the original paper results.

Resnet50 Architecture. We minimize the standard cross-entropy loss with

SGD optimizer with momentum of 0.9 and learning rate 0.4 for a batch size of 768.

We include a weight decay term of 1e− 4 and decay the learning rate with the cosine

scheduler for 200 epochs. Note that we include warm-up epochs (10) for the learning

rate, starting from 1e− 4.

320

Table F.8: EfficientNet-B0 model.

Input Operator Stride # In
Channels

Out
Channels

Exp
Channels

224× 224× 3 Conv2d, 3× 3 1 3 32 -
112× 112× 32 Inverted Residual(Exp=1) 3× 3 1 32 16 -
112× 112× 16 Inverted Residual(Exp=6) 3× 3 2 16 24 96
56× 56× 24 Inverted Residual(Exp=6) 3× 3 1 24 24 144
56× 56× 24 Inverted Residual(Exp=6) 5× 5 2 24 40 144
28× 28× 40 Inverted Residual(Exp=6) 5× 5 1 40 40 240
28× 28× 40 Inverted Residual(Exp=6) 3× 3 2 40 80 240
14× 14× 80 Inverted Residual(Exp=6) 3× 3 1 80 80 480
14× 14× 80 Inverted Residual(Exp=6) 3× 3 1 80 80 480
14× 14× 80 Inverted Residual(Exp=6) 5× 5 1 80 112 480
14× 14× 112 Inverted Residual(Exp=6) 5× 5 1 112 112 672
14× 14× 112 Inverted Residual(Exp=6) 5× 5 1 112 112 672
14× 14× 112 Inverted Residual(Exp=6) 5× 5 2 112 192 672
7× 7× 192 Inverted Residual(Exp=6) 5× 5 1 192 192 1152
7× 7× 192 Inverted Residual(Exp=6) 5× 5 1 192 192 1152
7× 7× 192 Inverted Residual(Exp=6) 5× 5 1 192 192 1152
7× 7× 192 Inverted Residual(Exp=6) 3× 3 1 192 320 1152
7× 7× 320 Conv 1× 1, Global-Pooling, Classifier 1 320 1280 -

F.4 Other Residual Blocks (Implementation)

Table F.10 shows the EfficientNetV2-small architecture used in the ablations. We cre-

ate the spatially interpolated variant, SI-EfficientNetV2-small as per the Table F.11.

Similarly, we create the interpolated variant of Resnet50 (see Table F.12) in the Ta-

ble F.13. Note that we borrow these baseline implementations from the publicly

available timm library (Wightman, 2019).

F.5 Discussion on Optimal Configuration between anchor and

cheaper feature branch

While there are various ways to balance the computation between anchors and cheaper

block features, a more computational approach to finding such a configuration requires

an expensive architecture search over the number of anchors and cheaper block pro-

jection dimensions. In this work, we follow a simple and widely applicable guideline

that enables us to achieve substantial computational benefits without any significant

loss in performance metrics such as accuracy. As a general rule in spatial interpo-

321

Table F.9: Spatially Interpolated EfficientNet-B0 model. IR stands for Inverted
Residual block. Clf refers to classifier layer. Pool refers to adaptive global pooling.
Legends used in the table: (a) Anchor Channels (Anc. Chan.), (b) Cheaper Channels
(Cheap Chan.), (c) Cheaper Groups (Cheap Grp).

Input Operator Stride# In
Ch.

Out
Ch.

Anc.
Chan.

Anchors
Resolution

Cheap
Chan.

Cheap
Grp.

224× 224× 3 Conv2d, 3× 3 1 3 32 - - - -
112× 112× 32 IR(Exp=1) 3× 3 1 32 16 - - - -
112× 112× 16 IR(Exp=6) 3× 3 2 16 24 96 56× 56× 16 48 1
56× 56× 24 SI-IR(Exp=6) 3× 3 1 24 24 144 28× 28× 24 48 1
56× 56× 24 SI-IR(Exp=6) 5× 5 2 24 40 144 28× 28× 24 72 1
28× 28× 40 SI-IR(Exp=6) 5× 5 1 40 40 240 14× 14× 40 80 1
28× 28× 40 SI-IR(Exp=6) 3× 3 2 40 80 240 14× 14× 40 160 1
14× 14× 80 SI-IR(Exp=6) 3× 3 1 80 80 480 7× 7× 80 320 2
14× 14× 80 SI-IR(Exp=6) 3× 3 1 80 80 480 7× 7× 80 320 2
14× 14× 80 SI-IR(Exp=6) 5× 5 1 80 112 480 7× 7× 80 320 1
14× 14× 112 SI-IR(Exp=6) 5× 5 1 112 112 672 7× 7× 112 448 2
14× 14× 112 SI-IR(Exp=6) 5× 5 1 112 112 672 7× 7× 112 448 2
14× 14× 112 SI-IR(Exp=6) 5× 5 2 112 192 672 7× 7× 112 448 1
7× 7× 192 SI-IR(Exp=6) 5× 5 1 192 192 1152 7× 7× 192 768 2
7× 7× 192 SI-IR(Exp=6) 5× 5 1 192 192 1152 3× 3× 192 768 2
7× 7× 192 SI-IR(Exp=6) 5× 5 1 192 192 1152 3× 3× 192 768 2
7× 7× 192 IR(Exp=6) 3× 3 1 192 320 1152 - - -
7× 7× 320 1× 1, Pool, Clf 1 320 1280 - - - -

lation, we one-third the number of channels in the cheaper branch that uses full

input resolution, and down-sample the input to half the resolution for processing the

anchor features with the same number of channels as in the original architecture.

This strategy seems to provide similar benefits across different architecture families

such as EfficientNet and MobileNetV3. We leave the problem of neural architecture

search over various design trade-offs (number of anchors, cheaper block dimensions,

interpolation strategies, feature merging, etc.) to future work.

Table F.10: EfficientNetV2-Small model.

Stage Operator Stride # In
Channels

Out
Channels # Layers

0 Conv2d, 3× 3 2 3 24 1
1 Fused-MBConv (Exp=1) 3× 3 1 24 24 2
2 Fused-MBConv (Exp=4) 3× 3 2 24 48 4
3 Fused-MBConv (Exp=4) 3× 3 2 48 64 4
4 Inverted Residual (Exp=4) 3× 3 2 64 128 6
5 Inverted Residual (Exp=6) 3× 3 1 128 160 9
6 Inverted Residual (Exp=6) 3× 3 2 160 256 15
7 Conv 1× 1, Global-Pooling, Classifier 1 256 1280 1

322

Table F.11: Spatially Interpolated EfficientNetV2-Small model. IR stands for In-
verted Residual block.

Stage Operator Stride In
Ch.

Out
Ch. Layers

0 Conv2d, 3× 3 2 3 24 1
1 Fused-MBConv (Exp=1) 3× 3 1 24 24 2
2 SI-Fused-MBConv (Anchor Exp=4, Cheaper Exp=2) 3× 3 2 24 48 4
3 SI-Fused-MBConv (Anchor Exp=4, Cheaper Exp=2) 3× 3 2 48 64 4
4 SI-IR (Anchor Exp=4, Cheaper Exp=3, Cheaper Groups=2) 3× 3 2 64 128 6
5 SI-IR (Anchor Exp=6, Cheaper Exp=3, Cheaper Groups=2) 3× 3 1 128 160 9
6 SI-IR (Anchor Exp=6, Cheaper Exp=3, Cheaper Groups=2) 3× 3 2 160 256 15
7 Conv 1× 1, Global-Pooling, Classifier 1 256 1280 1

Table F.12: Resnet50 model.

Stage Operator Stride In
Ch.

Out
Ch. Layers

0 Conv2d, 7× 7 2 3 64 1
1 MaxPool, 3× 3 2 - - 1
2 Bottleneck (1× 1, 64) → (3× 3, 64) → (1× 1, 256) 2 64 256 3
3 Bottleneck (1× 1, 128) → (3× 3, 128) → (1× 1, 512) 2 256 512 4
4 Bottleneck (1× 1, 256) → (3× 3, 256) → (1× 1, 1024) 2 512 1024 6
5 Bottleneck (1× 1, 512) → (3× 3, 512) → (1× 1, 2048) 2 10242048 3
7 AveragePooling, Classifier 1 20481000 1

F.6 Mean and Standard Deviations

We report the mean and standard deviations for the ImageNet classification experi-

ments discussed in the Sec. 8.3.2. Table F.15 reports the mean and standard devia-

tions of three different runs and shows that our empirical evaluation is stable between

different runs.

Table F.13: Spatially Interpolated Resnet50 model.

Stage Operator Stride In
Ch.

Out
Ch. Layers

0 Conv2d, 7× 7 2 3 64 1
1 MaxPool, 3× 3 2 - - 1

2
SI-Bottleneck

Anchors (1× 1, 64) → (3× 3, 64) → (1× 1, 256)
Cheaper (1× 1, 16) → (3× 3, 16) → (1× 1, 256)

2 64 256 3

3
SI-Bottleneck

Anchors (1× 1, 128) → (3× 3, 128) → (1× 1, 512)
Cheaper (1× 1, 32) → (3× 3, 32) → (1× 1, 512)

2 256 512 4

4
SI-Bottleneck

Anchors (1× 1, 256) → (3× 3, 256) → (1× 1, 1024)
Cheaper (1× 1, 64) → (3× 3, 64) → (1× 1, 1024)

2 512 1024 6

5 Bottleneck (1× 1, 512) → (3× 3, 512) → (1× 1, 2048) 2 10242048 3
7 AveragePooling, Classifier 1 20481000 1

323

Table F.14: Resnet50 and EfficientNetv2-small. Spatially Interpolated Bottleneck
and Fused-Inverted Residual Blocks.

Architecture Resolution Accuracy
(%)

Params
(M)

MACs
(B)

Resnet50 224 79.51 25.56 4.09
Resnet50 (ours) 224 79.19 27.51 2.67
EfficientNetv2-s 384 83.88 21.46 7.96

EfficientNetv2-s (ours) 384 83.45 21.84 4.93

324

T
ab

le
F
.1

5:
M

ea
n

&
St

an
da

rd
D

ev
ia

ti
on

ov
er

3
ru

ns
:

Im
ag

eN
et

C
la

ss
ifi

ca
ti

on
.

W
e

co
m

pa
re

M
ob

ile
N

et
V

3
an

d
E

f-
fic

ie
nt

N
et

ar
ch

it
ec

tu
re

s
w

it
h

th
e

pr
op

os
ed

Sp
at

ia
lly

In
te

rp
ol

at
ed

(S
I)

va
ri

an
ts

.
It

cl
ea

rl
y

sh
ow

s
th

at
SI

-M
ob

ile
N

et
V

3
an

d
SI

-E
ffi

ci
en

tN
et

ac
hi

ev
e

up
to

40
%

co
m

pu
te

re
du

ct
io

n
w

it
ho

ut
an

y
si

gn
ifi

ca
nt

lo
ss

in
ac

cu
ra

cy
.

In
ad

di
ti

on
,

th
is

im
pr

ov
em

en
t

do
es

no
t

co
m

e
w

it
h

ad
di

ti
on

al
st

or
ag

e
ov

er
he

ad
.

A
rc

h
it

ec
tu

re
Im

ag
e

S
iz

e
A

cc
u
ra

cy
P
ar

am
s

M
A

C
s

(S
av

in
gs

)
C

P
U

(4
th

re
ad

s)
L
at

en
cy

(m
s)

C
P

U
(1

th
re

ad
)

L
at

en
cy

(m
s)

M
ob

ile
N

et
V

3-
La

rg
e

22
4
×
22

4
75

.2
±

0.
16

%
5.

4M
21

9M
(1

.0
×

)
15

0
±

8
(1

.0
×

)
30

5
±

12
(1

.0
×

)
SI

-M
ob

ile
N

et
V

3-
La

rg
e

22
4
×
22

4
75

.1
±

0.
12

%
5.

2M
17

1M
(0

.8
×

)
11

0
±

10
(0

.7
×

)
24

0
±

8
(0

.8
×

)
E

ffi
ci

en
tN

et
-B

0
22

4
×
22

4
76

.8
4
±

0.
08

%
5.

3M
39

0M
(1

.0
×

)
29

0
±

12
(1

.0
×

)
62

6
±

14
(1

.0
×

)
SI

-E
ffi

ci
en

tN
et

-B
0

22
4
×
22

4
76

.7
5
±

0.
06

%
5.

4M
26

4M
(0

.7
×

)
22

0
±

11
(0

.8
×

)
49

3
±

16
(0

.8
×

)
E

ffi
ci

en
tN

et
-B

1
24

0
×
24

0
78

.8
3
±

0.
09

%
7.

8M
70

0M
(1

.0
×

)
46

7
±

15
(1

.0
×

)
95

0
±

20
(1

.0
×

)
SI

-E
ffi

ci
en

tN
et

-B
1

24
0
×
24

0
78

.8
4
±

0.
11

%
7.

8M
47

7M
(0

.7
×

)
32

0
±

18
(0

.7
×

)
78

0
±

15
(0

.8
×

)
E

ffi
ci

en
tN

et
-B

2
26

0
×
26

0
80

.0
9
±

0.
15

%
9.

2M
1B

(1
.0
×

)
73

0
±

20
(1

.0
×

)
14

57
±

24
(1

.0
×

)
SI

-E
ffi

ci
en

tN
et

-B
2

26
0
×
26

0
79

.8
1
±

0.
11

%
9.

2M
0.

7B
(0

.7
×

)
48

0
±

15
(0

.6
×

)
11

09
±

24
(0

.8
×

)
E

ffi
ci

en
tN

et
-B

3
30

0
×
30

0
81

.5
±

0.
06

%
12

.3
M

1.
9B

(1
.0
×

)
13

77
±

25
(1

.0
×

)
28

19
±

25
(1

.0
×

)
SI

-E
ffi

ci
en

tN
et

-B
3

30
0
×
30

0
81

.2
±

0.
12

%
12

.4
M

1.
3B

(0
.7
×

)
99

8
±

30
(0

.7
×

)
24

65
±

26
(0

.9
×

)

325

326

Appendix G

Appendix to DCL

G.1 Toy Examples

Example 1. The loss for one data point is

ℓ(θ, n1, n2) =

(
750 +

1

2
(θ + 15 + n1)

2

)
(1− σ(θ)) + 10

2
(θ − 15 + n2)

2 σ(θ)

where σ(x) = 1
1+exp(−x)

is sigmoid function. Each data point has (n1, n2) arguments

which are independent Gaussian noises n1, n2 ∼ N (0, 10). The average loss plot in

Figure 9·1 is calculated by averaging 10000 datapoint losses which is large enough to

approximate the expectation.

Example 2. The objective function plotted in Figure 9·2a is

f(θ) =− exp

[
−1

2

(
(θ1 + 3)2 + (θ2 + 2)2

)]
− exp

[
−1

2

(
(θ1 − 3)2 + (θ2 − 4)2

)]
− exp

[
−1

4

(
θ21 + θ22

)]
+ 2.25

The constraint function plotted in Figure 9·2b is

g(θ) = 3.75− 4 exp

[
−1

8

(
(θ1 + 3)2 + (θ2 + 2)2

)]
− 4 exp

[
−1

8

(
(θ1 − 3)2 + (θ2 − 4)2

)]

where the feasible set is defined as g(θ) ≤ 0.

Objective minimization. We minimize only f(θ) without constraint function.

Fixed Lagrangian. We minimize f(θ) + λg(θ).

Cosine Scheduled Lagrangian. We minimize f(θ) + λcosineg(θ) where λcosine goes

from 0 to a maximum value based on a cosine scheduling.

We use learning rate of 0.1× 0.9z where z is the largest non-positive number that

decreases the current Lagrangian for Lagrange based methods or objective for CE

training. We use full gradients in each iterate and run the methods for 200 iterates.

We pick best performing λ parameters out of {.5, 1, 1.5, 2} for each initialization and

method pair.

G.2 Proof of Lemma 1

The proof follows from the total-variation inequality (Csiszár and Shields, 2004),

which states that for two probability vectors P1, P2 on the K-dimensional simplex, we

have the following variational characterization for functions g : [K]→ R:

∥P1 − P2∥1 =
1

α
sup

∥g∥∞≤α

EP1g(Z)− EP2g(Z)

Pinsker’s inequality (Csiszár and Shields, 2004) says that,

∥P1 − P2∥1 ≤
√

1

2
DKL(P1 | P2)

For a given example (x, y) we choose,

g(i) =
log P2(i)

P1(i)

P1(i)− P2(i)
1y=i.

Next, we substitute EMA for P1 = f(θ̂,x) and the current model for P2 = f(θ,x). We

note that log(x)/(x− 1), x > 0 is a positive monotonically decreasing sequence and

327

bounded from above by 1/x. It follows that, ∥g∥∞ ≤ P2(y)
P1(y)

. Putting these together,

combining with the total-variation inequality and Pinsker’s inequality, and summing

over all the data, we obtain:

1

N

N∑
i=1

∑
j∈[K]

1yi=j log(fj(θ,xi))−
1

N

N∑
i=1

∑
j∈[K]

1yi=j log(fj(θ̂,xi))

≤ 1

N

N∑
i=1

P2(yi)

P1(yi)

√
1

2
DKL(P1 | P2)

We note that LHS is the difference of cross entropy losses, and the conditions of our

Lemma ensure positivity of LHS. Therefore, squaring both sides and using the fact

that P1(yi) ≥ ϵ, the result follows using Jensen’s inequality, i.e.,

1

N

N∑
i=1

√
1

2
DKL(P1 | P2) ≤

√√√√ 1

N

N∑
i=1

1

2
DKL(P1 | P2)

G.3 Architecture & Baseline Details

In this section, we enumerate the definitions of the architectures used in the main text.

Table 13.2 and Table 9.3 shows the resource usage of the ResNet18, ResNet50, and

ShuffleNetV2 architectures. Below, we describe individual model for completeness.

• CIFAR-100 & Tiny-ImageNet. We borrow the ShuffleNetV2 (Ma et al.,

2018) definitions from https://github.com/kuangliu/pytorch-cifar. ResNet

models share a similar structure except their building blocks. Their architecture

described in sequence consists of a convolutional block, followed by four residual

block stages, followed by the adaptive average pooling layer and the classifier layer.

ResNet18 uses ‘BasicBlock‘ (He et al., 2016) as the building block while ResNet50

uses ‘Bottleneck‘ (He et al., 2016). Different capacity models in this family differ only

in the number of repetitions of the residual block and the number of filters in each

328

stage. Below, we write the different of repetitions and the number of filters for the

four different residual stages.

– Resnet18 has [64, 128, 256, 512] filters and repeats the ‘BasicBlock‘ [2, 2, 2, 2] times.

– Resnet50 has [64, 128, 256, 512] filters and repeats the ‘Bottleneck‘ [3, 4, 6, 3] times.

• ImageNet. Architectural definitions for ImageNet datasets differ only in the

first convolutional block that is adapted to the input resolution 224 × 224 × 3

which is larger than the CIFAR-100’s 32 × 32 × 3. We use the ResNet18 and

ResNet50 definitions from the popular timm repository (Wightman, 2019) while

we borrow the ShuffleNetV2 definition from the official PyTorch repository https:

//pytorch.org/hub/pytorch_vision_shufflenet_v2/. For the CIFAR-100 pre-

training experiment, we borrow the pre-trained weights available from the respective

repositories.

We point out that all our models match their publicly available implementations

and achieve similar accuracy as these public implementations. For the pre-training

baseline reported in the Table 13.3, we borrow the respective model’s ImageNet def-

inition along with their pre-trained weights. Then, we scale the 32 × 32 × 3 image

to the ImageNet resolution 224 × 224 × 3 and fine-tune this updated model on the

CIFAR-100 dataset with similar setup as the other CIFAR-100 experiments except

with reduced learning rate 0.01 and 30 epochs since the model is already pre-trained

and has learnt good representations.

G.4 Hyper-parameters

For all our experiments (both CE, FL, and DCL), we use the popular cosine learning

rate scheduler for the SGD optimizer with 0.1 learning rate, 0.9 momentum and 5e−4
weight decay. We use 128 as the batch size and 0.996 as the EMA hyper-parameter.

We report the EMA accuracy for all our methods including the baselines. We point

329

out that for fair comparison, similar to DCL, we use EMA for the baselines as well

and include the similar multi-stage training for the baselines (CE and FL). Each

stage consists of 200 epochs. In the absence of a validation set, we tuned various

hyper-parameters described below using the augmented train accuracy as a proxy.

For DCL, we scan the different hyper-parameters in the following ranges: (a)

τ ∈ {1, 3.5, 4}, (b) λmin ∈ {0.01, 0.1}, (c) λmax ∈ {1, 2, 5, 10}, (d) Budget δ ∈
{0.01, 0.02, 0.05, 0.1}, and (e) λT ∈ {50, 200}. We replace the argmin in the Al-

gorithm 5, with stochastic gradient descent over the entire dataset.

For FL, we scan the different hyper-parameters in the following ranges: (a)

τ ∈ {1, 3.5, 4}, and (b) λ ∈ {0.01, 0.1, 1, 2, 5, 10}. We replace the argmin in the

Algorithm 5, with stochastic gradient descent over the entire dataset.

Note that the default hyper-parameters: τ = 4, λmin = 0.1, λmax = 5, δ = 0.05,

and λT = 200, work well in most of our experiments.

We run the ImageNet experiments for 90 epochs with SGD optimizer with 0.9 as

momentum and 0.1 as the learning rate with cosine decay. We use the batch size of

256 for training with a weight decay term of 1e− 5. For ViT-Tiny model, we follow

setup (hyper-parameters, data augmentations, etc.) described in the (Wightman,

2019) repository.

330

331

Appendix H

Appendix to OSP

H.1 Appendix to §11.2

H.1.1 Proof of Proposition 1

Proof. We recall the notation. α ∈ [0, 1]K is such that
∑
αk ≤ 1. The T α

k are the

optimising solutions to the OSP problems at error αkε, i.e.

T α
k ∈ argmax P(T) s.t. P(X ∈ T , Y ̸= k) ≤ αkε,

while the Sα
k are produced by removing the smaller overlap with smaller labels in T α

k ,

i.e.

Sα
k = T α

k \
⋃
k′<k

T α
k′ .

We first argue that the total overlap of the T s is small.

Lemma 3. Let T α
k be generated as above. Then

∑
k

P(
⋃
k′ ̸=k

T α
k ∩ T α

k′) ≤ 2ε.

Since the total overlap is
⋃

k

(
T α
k ∩

⋃
k′ ̸=k T α

k′

)
, this also controls the probability of the

total overlap, that is,

P(
⋃

k,k′ ̸=k

T α
k ∩ T α

k′) ≤ 2ε.

This lemma is sufficient to show the claim, since

∑
k

P(Sk) =
∑
k

P(T α
k \

⋃
k′<k

T α
k′)

≥
∑
k

P(T α
k)−

∑
k

P(T α
k ∩

⋃
k′<k

T α
k′)

≥
∑
k

P(T α
k)−

∑
k

P(T α
k ∩

⋃
k′ ̸=k

T α
k′)

≥ C(ε;S)−
∑
k

P(T α
k ∩

⋃
k′ ̸=k

T α
k′)

≥ C(ε;S)− 2ε,

where we have used that
∑

k P(T α
k) ≥ C(ε;S), which holds because the T α

k optimise

a relaxation of (SC), and the final inequality is due to the above lemma.

We conclude by proving the above lemma

Proof of Lemma 3. Since the labels of Y are mutually, exclusive,

∑
k

P(
⋃
k′ ̸=k

T α
k ∩ T α

k′) =
∑
k

∑
j

P(
⋃
k′ ̸=k

T α
k ∩ T α

k′ , Y = j).

Applying Fubini’s theorem, and recalling that the probability of an intersection

of events is smaller than the probability of either of the events, we see that

∑
k

P(
⋃
k′ ̸=k

T α
k ∩ T α

k′) =
∑
k

∑
j

P(T α
k ∩ (

⋃
k′ ̸=k

T α
k′), Y = j)

≤
∑
k

(∑
j ̸=k

P(T α
k , Y = j)

)
+ P(

⋃
k′ ̸=k

T α
k′ , Y = k),

332

Now, notice that the sum in the brackets is simply P(T α
k , Y ̸= k). Taking the union

bound over the second probability, we find the upper bound

∑
k

P(
⋃
k′ ̸=k

T α
k ∩ T α

k′) ≤
∑
k

P(T α
k , Y ̸= k) +

∑
k

∑
k′ ̸=k

P(T α
k′ , Y = k)

=
∑
k

P(T α
k , Y ̸= k) +

∑
k′

∑
k ̸=k′

P(T α
k′ , Y = k)

=
∑
k

P(T α
k , Y ̸= k) +

∑
k′

P(T α
k′ , Y ̸= k′)

= 2
∑
k

P(T α
k , Y ̸= k)

≤ 2
∑

αkε = 2ε,

where the first equality is by Fubini’s theorem again, the second equality is by the

disjointness of the values of Y , and the final inequality is due to the constraints of

the OSP problems.

H.1.2 Asyptotically Feasible Finite Sample Analysis for SC

In parallel to the OSP problems, one can directly give finite sample analyses for the

SC problem. We begin by defining the solution concept here.

Definition 2. We say that a class S is learnable with abstention if for every

(δ, ζ, σ, ν) ∈ (0, 1)4, there exists a finite m(δ, σ, ν, ζ) and an algorithm A : (X ×
{+,−})m → S K such that for any law P, and ε > 0, given n i.i.d. samples drawn

from P, the algorithm produces sets {Sk} from S such that with probability at least

333

1− δ over the data,

∑
k

P(Sk) ≥ C(ε;S)− σ

P(E{Sk}) ≤ ε+ ν

P(
⋃

k,k′ ̸=k

Sk ∩ Sk′) ≤ ζ.

Notice that the recovered sets need not be disjoint, which may be amended by by

eliminating the overlap from one of the sets as in §11.2.2. The resulting (improper)

sets attain coverage of at least C − ζ − ν with high probability.

The main point characterisation here is similar,

Proposition 4. A class S is learnable with abstention if and only if it has finite VC

dimension, and further,

m(δ, σ, ν, ζ) = Õ(poly(K)max(σ−2, ν−2, ζ−1)vc(S)).

The proof of the necessity of finite VC dimension follows from observing that if

the data is realisable, i.e., corresponds to Y = 21{X ∈ S} − 1 for some S ∈ S then

at least one of the recovered sets is a good classifier, at which point standard lower

bounds for realisable PAC learning apply. The sufficiency follows from utilising the

finite VC property to uniformly bound errors incurred by empirical means. The proof

is presented in §H.1.3.

H.1.3 Proofs of Propositions 2 and 4

Proofs of Necessity of Finite VC dimension

In both cases, we reduce the problems to realisable PAC learning, and invoke standard

bounds for the same, for instance the one of (Mohri et al., 2018, Ch.3). To this

334

end, suppose δ ≤ 1/100, and consider the restricted class of joint laws P such that

P(Y = k|X = x) = 1{X ∈ Sk,∗} for some disjoint {Sk,∗} ∈ S that together cover

X .1

Proof for One-Sided Prediction. Notice that S∗
1 is feasible for OSP-1 for any value of

ε. If we can solve OSP-1, then we would have found a set S such that

P(S) ≥ P(S1,∗)− σ

P(X ∈ S ∩ Sc
1,∗) = P(X ∈ S, Y = 2) ≤ ε+ ν.

Further,

P(Sc) = P(Sc ∩ S1,∗) + P(Sc ∩ Sc
1,∗)

= P(Sc ∩ S1,∗) + P(Sc
1,∗)− P(S ∩ Sc

1,∗).

But P(Sc) = 1− P(S) ≤ 1− P(S1,∗) + σ ≤ P(Sc
1,∗) + σ.

Thus, we have

P(Sc ∩ S1,∗) + P(Sc
1,∗)− P(S ∩ Sc

1,∗) ≤ P(Sc
1,∗) + σ

=⇒ P(Sc ∩ S1,∗) ≤ σ + P(S ∩ Sc
1,∗) ≤ ε+ σ + ν.

But then, viewed as a standard classifier for the problem separating the class {1}
from [2 : K], S has risk at most 2ε + σ + ν. Consequently, an algorithm for solving

OSP yields an algorithm for realisable PAC learning for this problem. Thus, invoking
1Strictly speaking, this requires that S is rich enough to express such a class. This is a very

mild assumption. For the purposes of the lower bound, in fact, this can be weakened still - all we
really need is a binary law, and that if S ∈ S , then Sc ∈ S . Then we can take P(Y = 1|X = x) =
1{X ∈ S},P(Y = 2|X = x) = 1{X ∈ Sc}, and the entirety of the following argument goes through
without change.

335

the appropriate standard lower bound, we conclude that

mOSP ≥
vc(S)− 1

32(2ε+ σ + ν)
.

Proof for Learning With Abstention. Notice that {Sk,∗} serve as a feasible solution

for any ε, and have total coverage 1. Thus, if SC is possible, we may recover sets

{Sk} such that

∑
P(Sk) ≥ 1− σ

P(E{Sk}) ≤ ε+ ν

P

(⋃
k

(Sk ∩
⋃
k′ ̸=k

Sk′)
)
≤ ν.

Now notice that S1,∗ and Sc
1,∗ correspond to the realisable classifiers for the binary

classification problem separating {1} from [2 : K].2 But, in the same way, we may

view S1 and Sc
1 as binary classifiers for this problem. Now notice that for this binary

classification problem, S1 incurs small error. Indeed, denoting S ̸=1 =
⋃

k′ ̸=1 Sk′ , we

find that

P(X ∈ S1, Y ̸= 1) + P(X ∈ Sc
1, Y = 1) = P(X ∈ S1, Y ̸= 1) + P(X ∈ S̸=1 ∩ Sc

1, Y = 1)

+ P(X ∈ Sc
̸=1 ∩ Sc

1, Y = 1)

≤ P(X ∈ S1, Y ̸= 1) + P(X ∈ S̸=1, Y = 1)

+ P(X ∈ Sc
1 ∩ Sc

̸=1)

≤ P(E{Sk}) + (1− P(S1 ∪ Sc
̸=1)))

≤ ε+Kν + σ + ζ, .

where the second line’s inequality is just non-negativity of probabilities, and the
2Again, this needs that S is rich enough to include Sc1,∗.

336

third line’s inequality is due the fact that P(E) is controlled, and the following

inclusion-exclusion argument, first note that

P(S1 ∪ S ̸=1) = P(
⋃
Sk) =

∑
k

P(Sk)−
∑
k

P(Sk ∩
⋃
k′>k

Sk′).

Next, observe that if j > k, Sj ⊂
⋃

k′>k Sk′ , and similarly
⋃

k′>j Sk′ ⊂
⋃

k′>k Sk.
Thus,

P(S1 ∪ S ̸=1) = P(
⋃
Sk) ≥

∑
k

P(Sk)−KP(S1 ∩
⋃
k′>1

Sk′).

Now invoking the SC solution conditions, the first sum is at least 1 − σ, while the

second probability is bounded by the probability of overlap, giving

P(S1 ∪ S ̸=1) ≥ 1− σ −Kν.

Thus, a SC yields a realisable PAC learner for the binary classifier problem sepa-

rating {1} from [2 : K], giving the bound

mSC ≥
vc(S)− 1

32(ε+ σ +Kν + ζ)
.

Note that these bounds are likely loose. The problems have plenty of structure

that is not exploited in either of the above statements, and tighter inequalities would

be of interest. However the point we intend to pursue - that assuming finiteness of

VC dimensions in the upper bound analyses is not lossy, is sufficiently made above.

Proofs of the Upper Bounds

We mainly make use of the following uniform generalisation bound on the suprema

of empirical processes due to the finiteness of VC dimension. This is again standard,

and may be seen in (Mohri et al., 2018).

337

Lemma 5. Let S have finite VC dimension. Then for any distribution P, if P̂m

denotes the empirical law induced by m i.i.d. samples from P, then with probability

at least 1− δ over these samples,

sup
S∈S ,k∈[1:K]

|P̂m(X ∈ S, Y = k)−P(X ∈ S, Y = k)| ≤ CK

√
vc(S) logm+ log(C/δ)

m
,

where CK is a constant independent of S , δ,P,m.

Notice that by summing over the values of Y , this also controls the error in the

objects P(X ∈ S) and P(X ∈ S, Y ̸= k), possibly with an error blowup of K, which

can be absorbed into CK .

For the purposes of the following, let ∆m,S (δ) be the value of the upper bound

above.

Proof of Upper Bound for OSP. For α ∈ [0, 1], define Sα ⊂ S to be the subset of

Ss that have P(E1S) ≤ α, and let σ, ν be quantities that we will choose.

We give a two phase scheme - first we collect all sets S such that P̂m(E1S) ≤ ε+ν/2

into the set Ŝε+ν/2. Notice that as long as ν/2 > ∆m,S (δ/2), we have w.p. at least

1− δ/2 that

Sε ⊂ Ŝε+ν/2 ⊂ Sε+ν .

Due to the upper inclusion, with probability at least 1− δ/2, every set in Ŝε+ν/2

has error level at most ε+ ν.

Next, we choose the S ∈ Ŝε+ν/2 that has the biggest coverage. If Sε ⊂ Ŝε+ν/2,

and σ > ∆m,S (δ/2), we are again assured that the selected answer will be at least

supS∈Sε
P(S)−∆m,S (δ/2) > Lk − σ with probability at least 1− δ/2. By the union

bound, these will hold simultaneously with probability at least 1− δ. Since we want

the smallest σ, ν, but for the arguments to follow we need that these are bigger than

338

2∆m,S (δ/2), we can set

ν = σ = 4∆m,S (δ/2) = 4C

√
vc(S) logm+ log(2C/δ)

m
,

concluding the proof.

Proof of Upper Bound for SC. This proceeds similarly to the above. To neatly

present this, we let R = {S : S =
⋃

k,k′ ̸=k Sk∩Sk′ , {Sk}) ∈ S } be the class of sets ob-

tained by taking pairwise intersection of k-tuples in S . Note that VC dimesnsion of

the sets obtained by taking pairwise intersection of sets in S at most doubles the VC

dimesnsion, while taking the
(
K
2

)
unions in turn blows it up by a factor of O(K2 logK

by Lemma 3.2.3 of (Blumer et al., 1989). Thus vc(R) = O(K2vc(S) logK). Now

we may proceed as above, first by filtering the pairs of sets that satisfy the intersection

constraint with value ζ/2 on the empirical distribution, and then similarly checking

the sum-error constraints and finally optimising the sum of their masses. The bounds

are the same as the above, except with vc(S) replaced by O(K2vc(S) logK).

Analyses not pursued here

We first point out that there is nothing special about the VC theoretic analysis here

- alternate methods like Rademacher complexity or a covering number analysis may

replace Lemma 5. Similarly, the same analysis could be extended, via Rademacher

complexities, to the setting of indicators relaxed to Lipschitz surrogates by exploiting

Talagrand’s lemma.

We note a few further analyses that we do not pursue here - firstly, using the

technique of (Rigollet and Tong, 2011), it should be possible to give analyses for SC

under convex surrogates of the indicator losses and a slight extension of the class S

while directly attaining the constraints (instead of asymptotically) with high prob.

339

Additionally, a number of papers concentrate on deriving fast rates for the excess

risks under the assumption of realizability (i.e., under the assumption that level sets

of η can be expressed via S), and that Tsybakov’s noise condition holds at the level

relevant to the optimal solution.

H.2 Algorithmic rewriting of Section 11.3

We specify the conclusions of §11.3 without any of the justifying development.

Model class and Architecture We use a DNN with the following structure:

• A ‘backbone’, parametrised by θ, which may have any convenient architecture.

• A ‘last layer’ with K outputs, denoted fk, and associated weights wk for each.

We denote w = (w1, . . . , wK).

• Let ξθ(x) denote the backbone’s output on a point x. The DNN’s outputs are

f(x; θ,w) = (f1, . . . , fk)(x; θ,w) = softmax(⟨w1, ξθ(x)⟩, . . . , ⟨wK , ξθ(x)⟩).

Objective function and Training We use the following objective function, where

the {(xi, yi)}ni=1 comprise the training dataset, θ,w are model parameters, {φk}
are autotuned hyperparameters, {λk} are autotuned multipliers, and µ is the sin-

gle externally tuned parameter. Similarly to w, we define φ := (φ1, . . . , φK) and

λ = (λ1, . . . , λK).

M̃ res.(θ,w,φ,λ, µ) =
K∑
k=1

∑
i:yi=k− log fk(xi; θ,w)

nk

+ λk

(∑
i:yi ̸=k− log(1− fk(xi; θ,w)

n ̸=k

− φk

)
+ µφk,

where nk := |{i : yi = k}|, n̸=k := |{i : yi ̸= k}|.

340

The minimax problem we propose is

min
θ,w,φ

max
λ:∀k,λk≥0

M̃ res.(θ,w,φ,λ, µ), (H.1)

which is optimised via SGDA in §11.4.

Overall Scheme and Model Selection is presented in Algorithm 9. The subroutine

involving the minimax solution requires training data, but this is not mentioned in

the same since the focus is on model selection. The training procedure is described

in §11.4. P̂V refers to the empirical law on the validation dataset.

Algorithm 9 OSP-Based Selective Classifier: Model Selection
1: Inputs: Validation data {V }, List of µ values M, List of t values T, Target Error
ε.

2: for each µ ∈M, do
3: (θ(µ),w(µ))← minimax solution of the program (H.1) with this value of µ.
4: for each (µ, t) ∈M×T, do
5: Sk(µ, t)← {x : k = argmaxj fj(x; θ(µ),w(µ))} ∩ {x : fk(x; θ(µ),w(µ)) > t}.
6: ÊV (µ, t)← P̂V (E{Sk(µ,t)}).

7: ĈV (µ, t)←
∑

k P̂V (X ∈ Sk(µ, t)).
8: (µ∗, t∗) = argmaxM×T ĈV (µ, t) s.t. ÊV (µ, t) ≤ ε.
9: Return: {Sk(µ∗, t∗)}.

H.3 Experimental Details

The table below presents the values of the various hyperparameters used for the

entries of Table 11.2.

The following two tables update the numbers for Deep Gamblers to the case where

we scan for 40 values of O in the set [1, 10) (as intended in the specifications) instead

of [1, 2).

341

Dataset Algorithm Hyper-parameters

CIFAR-10
Softmax Response t = 0.0445

Selective Net λ = 32, c = 0.51, t = 0.24
Deep Gamblers o = 1.179, t = 0.03

OSP-Based µ = 0.49, t = 0.8884

SVHN-10
Softmax Response t = 0.0224

Selective Net λ = 32, c = 0.79, t = 0.86
Deep Gamblers o = 1.13, t = 0.23

OSP-Based µ = 1.67, t = 0.9762

Cats v/s Dogs
Softmax Response t = 0.029

Selective Net λ = 32, c = 0.7, t = 0.73
Deep Gamblers o = 1.34, t = 0.06

OSP-Based µ = 1.67, t = 0.9532

Table H.1: Final hyper-parameters used for all the algorithms (at the desired 0.5%
error level) in Table 11.2.

Dataset Target OSP-based SR SN DG
Error Cov. Error Cov. Error Cov. Error Cov. Error

CIFAR-10
2% 80.6 1.91 75.1 2.09 73.0 2.31 72.9 1.99
1% 74.0 1.02 67.2 1.09 64.5 1.02 63.5 1.01

0.5% 64.1 0.51 59.3 0.53 57.6 0.48 56.1 0.51

SVHN-10
2% 95.8 1.99 95.7 2.06 93.5 2.03 94.7 2.01
1% 90.1 1.03 88.4 0.99 86.5 1.04 89.7 0.99

0.5% 82.4 0.51 77.3 0.51 79.2 0.51 81.4 0.51

Cats & Dogs
2% 90.5 1.98 88.2 2.03 84.3 1.94 87.4 1.94
1% 85.4 0.98 80.2 0.97 78.0 0.98 81.7 0.98

0.5% 78.7 0.49 73.2 0.49 70.5 0.46 74.5 0.48
Table H.2: Performance at Low Target Error. This repeats Table 11.2, except that
the hyperparameter scan for the DG method is corrected, and the entries in the DG
columns are updated to show the resulting values. Notice that the performance in
the last column is worse than in Table 11.2.

Dataset Target OSP-based SR SN DG
Coverage Cov. Error Cov. Error Cov. Error Cov. Error

CIFAR-10
100% 100 9.74 99.99 9.58 100 11.07 100 10.95
95% 95.12 6.98 95.24 8.74 94.71 8.34 95.01 8.29
90% 90.02 4.67 90.51 6.52 89.56 6.45 90.01 6.28

SVHN-10
100% 100 4.27 99.97 3.86 100 4.27 100 4.01
95% 95.05 1.83 95.06 1.86 95.14 2.53 95.01 2.07
90% 90.09 1.01 89.99 1.04 90.14 1.31 90.01 1.06

Cats & Dogs
100% 100 5.93 100 5.72 100 7.36 100 6.16
95% 95.13 2.97 95.02 3.46 95.21 5.1 95.1 4.28
90% 90.01 1.74 90.02 2.28 90.18 3.3 90.02 2.5

Table H.3: Performance at High Target Coverage. Similarly to the previous table,
this repeats Table 11.3 but with the scan for the DG method corrected. Again note
the reduced performance in the final column relative to Table 11.3.

342

343

Appendix I

Appendix to Hybrid Models

I.1 Illustrative Example Details

Edge and Cloud devices. We use a V100 GPU as the cloud device. It has

a 16GB VRAM and the server associated with this GPU has 1TB storage. We use

STM32F746 1, an ARM Cortex-M7 MCU as the edge device. It has 320KB SRAM

and 1MB Flash storage.

On-Cloud Baseline. We use the MASS-600 (Cai et al., 2020) as the global

model in this experiment. It achieves 79.9% Top1 accuracy on the ImageNet dataset.

This model has a computational footprint of 595M MACs. As per our benchmarking,

the inference latency of this model on a V100 GPU is 25ms.

On-Device Baselines. (Lin et al., 2020a) have explored deploying tiny MCUNet

models on the STM32F746 MCU. We borrowed their pre-trained MCUNet models

from their github repository 2 3. There are three different models with varying infer-

ence latencies and accuracies, namely: (a) model-A (12M MACs, 0.6M parameters,

200ms latency, 51.1% accuracy), (b) model-B (81M MACs, 0.74M parameters, 1075ms

latency, 60.9% accuracy), and (c) model-C (170M MACs, 1.4M parameters, 1400ms

latency, 63.5% accuracy). We use the smalled model, i.e., model-A as the base model

in training the hybrid model. This model has the least latency as well as the least
1https://www.st.com/en/microcontrollers-microprocessors/stm32f746ng.html
2https://github.com/mit-han-lab/tinyml/tree/master/mcunet
3https://github.com/rouyunpan/mcunet

accuracy among the three models. Note that this model has the input resolution of

96× 96× 3 and as a result the input size becomes nearly 28KB.

While we are aware of the updated version of MCUNet, i.e., MCUNetV2 (Lin

et al., 2021), we point out that MCUNetV2 models are not publicly available for us

to include in the empirical evaluation. Besides, our hybrid framework is completely

agnostic to what the base and global model choices are. One can use any base

and global model in the above setup and observe the relative gap between various

baselines.

Energy Profile Base Model Execution and Communication Cost. We

assume that the MCU device operates at 200MHz clock speed and is connected to a

3.6V power supply. It has an active mode current characteristics of 72µA per MHz.

Thus, it consumes = 3.6× 72× 200 = 51.84 mW (i.e. mili Joules per second) energy

in active mode. As a result, the energy consumed by the base model (200ms latency)

on this edge device is = 51.84×0.2 = 10.368 mili Joules. Similar calculation yield the

energy consumption the on-device models: model-B (60mJ) and model-C (80mJ).

We use the NB-IoT (Chen et al., 2017) communication protocol with 110kbps

transmission rate and a transmission current characteristics of 30mA. Thus, it con-

sumes = 30×3.6 = 108 mili Joules per second in transmission mode. Let us calculate

the time taken to transfer the input image from the base model on the edge device to

the global model on cloud. The base model input has size 28KB and the transmission

rate is 110kbps. Thus, it takes = 28∗8
110
≈ 2 seconds to transfer this image from the

edge device to the cloud. As a result, the energy consumed by the edge device in

transmitting this image is = 108 ∗ 2 = 216mJ.

Split-Computation Baseline. We use this term to refer methods (Kang et al.,

2017; Teerapittayanon et al., 2017) wherein the initial part of the global model exe-

cutes on-device while the remaining executes on-cloud. The initial network allows for

344

an early exit classifier for easy examples. Split into early layers results in high com-

munication cost but split in later layers results in higher base computation latency,

making it ineffective in the edge-cloud setup.

We trained the BranchyNet (Teerapittayanon et al., 2017) method to represent

this baseline. We create an exit classifier after the first MBConv layer in the global

model and train such an exit classifier. This split results in spending 48M MACs in

the base computation and then features are transferred to the global model in case the

exit classifier sends the example to further layers. Note that in this case the feature

cost is more than twice the input size and thus, this baseline suffers much worse from

the communication delay than others. This method can always ditch the processing

on the edge and send all examples to the cloud, thus achieving global accuracy with

same latency and energy consumption as the on-cloud solution.

NAS+Partition Baseline. We use this baseline to represent methods such as

LENS(Odema et al., 2021) that extend split-computation by performing a neural

architecture search to find the best split under the communication delay constraint.

To be consistent with our evolutionary search experiments, we use the MASS to find

the best split with the communication latency mentioned earlier. This search space

contains architectures ranging from small to large across diverse target accuracies.

Dynamic Neural Networks. This baseline refers to various recent methods

(Nan and Saligrama, 2017a; Bolukbasi et al., 2017; Li et al., 2021) that propose

dynamic computation and includes base-model based entropy or margin threshoding.

Hybrid Model training. We use the MCUNet model-A as the base model and

the MASS-600 as the global model. We train the hybrid models using these base and

global architecture pairs. Let c be the coverage of the base model, i.e. c fraction

of examples are inferred on the base and 1 − c fraction of examples are sent to the

global model. At c = 100%, we obtain the on-device performance. Although hybrid

345

models trivially achieve on-cloud performance by sending all examples to the global

model, i.e. at c = 0%, our hybrid training procedure obtains the on-cloud solution

at with less communication. Let ℓb denote the inference latency on the edge (in this

case it is 200ms), while ℓg denote the inference latency on the cloud (in this case

it is the sum of communication cost and inference latency of the global model, i.e.

2000 + 25 = 2025ms). Thus, we can write the inference latency of the hybrid model

at a coverage c as follows:

Hybrid Latency@c = ℓb + (1− c)ℓg

Similarly, using we can compute the energy consumption for the hybrid inference as

follows:

Hybrid Energy@c = µb + (1− c)µg

where µb and µg are the edge device energy consumption for on-device and on-cloud

inference. In this case, µb = 10.37mJ and µg = 216mJ.

Upper Bound. Let us develop an upper-bound on achievable accuracy as a

function of latency. Recall from Table 12.1 that communication latency dominates

processing time. Also recall the notion of coverage, c, which denotes the fraction of

examples locally processed. Note that there is a one-to-one correspondence between

coverage and latency of the hybrid system. Suppose αb, αg denotes base accuracy

and cloud accuracy. The base predictor predicts (1 − αb) fraction incorrectly, and

among these suppose we make the reasonable assumption that the router is agnostic

to which of those are correctly classified at the cloud. Then an upper bound on the

target hybrid accuracy is given by the expression:

Hybrid Acc@c ≤ min

{
αg − αb

1− αb

∗ (1− c) + αb, αg

}
Notice that c = 0, c = 1, we recover global and base accuracies, and c = αb, is the

cut-off point, namely cloud accuracy is achieved at the latency associated with the

coverage c.

346

Intuition on the Upper Bound. The expression cαb+(1− c)αg is an underes-

timate of the best possible accuracy - operationally, one can see this by the fact that

this is achieved simply by abstaining randomly at the rate c. Quantitatively, note

that cαb + (1 − c)αg ≤ αg under the natural assumption that αg ≥ αb, and further

that cαb + (1− c)αg = αb + (1− c)(αg −αb) ≤ αb +
1−c
1−αb

(αg −αb). Let us explain our

upper bound in detail:

• Let c ≥ αb. If the router were perfect, then it would assign every point that the

base model gets correct to the base - this gives us accuracy of 1 on an αb fraction

of inputs.

• Now we need to consider how the remaining 1 − αb points are assigned. Here, we

make the assumption that since the router is small and cannot model the accuracy

of the global model perfectly, it randomly spreads these points across the base an

global models. In this case, to get overall coverage 1− c, it must assign a fraction of

(c−αb)/(1−αb) of these remaining points to the base (in which case it we get none

of these points wrong), and (1−c)/(1−αb) of the remaining points to the global. We

will now upper bound the accuracy of the global model on these remaining points.

• Here we use a second assumption - that every point that the base gets right is also

gotten right by the global model. This is true to a good approximation, mainly due

to the strong capacity difference between the models.

• This means that the conditional accuracy of the global model on the points that the

base gets wrong is severly depressed - in particular, this is at most αg−αb

1−αb
(imagine

that there were N ≫ 1 test points. The global gets αgN correct. We remove the

αbN that the base gets right to get that there are (αg−αb)N points that the global

gets right and the base doesn’t. Now normalise by the (1 − αb)N points that the

base got wrong).

347

• This gives us the overall accuracy

αb · 1 + (1− αb)

(
(c− αb)

1− αb

· 0 + 1− c
1− αb

· αg − αb

1− αb

)
,

which is exactly our upper bound (well, this, or αg, whichever is smaller, since the

global dominates the base and so we can never get more than αg accuracy).

• To sum up, the upper bound arises under the assumptions that the global model

strictly dominates the base model, and that conditionally on the base model getting

a query point wrong, the router is unable to meaningfully discriminate between

whether the global model gets queries right or wrong.

I.2 Joint Neural Architecture Search (NAS) for Hybrid Mod-

els.

Algorithm 10 Evolutionary Joint Architecture Search
1: Input: Data D = {(xi, yi)}Ni=1, Architecture Search Space A (e.g. (Cai et al.,

2020)).
2: Hyper-parameters: Number of generations G, Resource Constraint φ.
3: Hyper-parameters: Number of popular architecture pairs Npop, .
4: Hyper-parameters: Number of popular parent architecture pairs Npar, .
5: Initialize: Set of popular architecture pairs Ωpop = {(αi

b, α
i
g)}Npop

i=1 within con-
straints

6: for g = 1 to G do
7: Ωpar ← Npar highest score (Eq. I.1) pairs from Ωpop {Obtain the parent set

Ωpar}
8: Ωchild ← ∅ {Initialize children set Ωchild}
9: for n = 1 to Npop do

10: Randomly pick (αi
b, α

i
g) from Ωpar {Pick base & global pair}

11: (αm
b , α

m
g)← Mutate(αi

b, α
i
g) {Add mutations on width, depth, etc. }

12: Compute the oracle oϱ for θαm
b
, θαm

g
. {Compute proxy oracle supervision}

13: if R(oϱ, θαm
b
, θαm

g
) > φ then GOTO 9. {Repeat if constraint not satisfied}

14: Add (αm
b , α

m
g) to Ωchild {Add as promising child pair}

15: Ωpop = Ωpar
⋃

Ωchild {Add children to popular set }
16: Return : Ωpop {Return promising architecture pairs }

348

This section proposes a joint neural architecture search (NAS) scheme to resolve

the outer max problem of (12.3). NAS methods are strongly dependent on two aspects

• A favourable architecture space which contains a range of architectures of vary-

ing capacities, and

• Fast scoring proxies that produce estimates of the overall accuracy of the best

model realized by a given architecture without training the same (which would be

very slow).

Given these two, NAS problems can be reduced to combinatorial optimisation and

approached by any standard heuristic. In our case, we will define a favourable prop-

erty of the architecture space and then proxy scores for accuracy at a given resource

consumption. These are plugged into a simple evolutionary search to yield a concrete

method.

Architecture Search Space. Our method is designed for implementation on a

Marked Architecture Search Space (MASS). It is a set of architectures A such that

each architecture α ∈ A is associated with a known set of canonical parameters θα,

which are known to be representative of the models under this architecture. That

is, for most tasks, fine-tuning θα returns a good model with this architecture. Such

search spaces have been proposed by, for instance, (Cai et al., 2020) and (Yu et al.,

2019).

Proxy Score Function. We denote the value of program (12.4) for a given

pair of architectures αb, αg as A(αb, αg; ϱ). It requires a (slow) maximisation over

b ∈ αb, g ∈ αg, as well as training a router to attain the resource constraint. Below,

we describe how to construct fast viable estimates for a MASS.

Substitute for optimisation over (b, g). MASS gives canonical models θα for each

architecture α. Since these represent the actual performance, we take the simple

approach of using the base model b̂ = θαb
and ĝ = θαg to compute scores. This is the

349

main reason we invoke the MASS concept itself.

Substitute for optimisation over r. To quickly approximate the result of training

over r, we use the routing oracle o to design a constraint-aware score.

Suppose we are given a pair of models b, g. Let Ao(b, g) and Co(b, g) be the

empirical accuracy and coverage of the oracle model (ob,g, b, g). If Co ≥ Cϱ then o can

serve as the appropriate oracle. On the other hand, if Co < Cϱ, we observe that we

can increase the coverage of this hybrid model by simply taking a subset of o−1({1})
of relative size Cϱ − Co, and flipping their assignment to 0.

Importantly, which points are flipped this way is irrelevant when it comes to

determining the resulting accuracy - indeed, from the perspective of o, switching the

label of any point from 1 to 0 incurs the same error. Further, the accuracy that

results is an upper bound on the optimal accuracy of a hybrid system satisfying the

resource constraints. This gives the following proxy score for given b, g:

So(b, g; ϱ) := Ao(b, g)− (Cϱ − Co(b, g))+ .

Overall Score. Plugging in the canonical models into the above we get the score

S(αb, αg; ϱ) = So(θαb
, θαg ;Cϱ), (I.1)

which is effective under the assumptions that the architectures admit canonical models

as above, and that the oracle accuracy Ao induces the same ordering on base-global

pairs as the routing optimisation.

Search Algorithm. Finally, we have a scoring function and a space in hand,

and so can instantiate a search algorithm. Due to its simplicity and prevalance, we

propose using an evolutionary algorithm for this (Elsken et al., 2019; Liu et al., 2021).

Algorithm 10 summarizes the search scheme.

I.3 Empirical Validation of Joint NAS over Hybrid Systems

End-to-end optimization across Edge/Cloud neural architectures, predictors, and rout-

350

ing models achieves 80% latency reduction with an Edge model 1/4th the size of Cloud

model.

So far, we have trained hybrid models using off-the-shelf architectures not tuned to

maximize hybrid performance. Here, we search for optimised base and global pairs

using the proposed evolutionary search Algorithm 10. We use the OFA space (Cai

et al., 2020) as our MASS. We constrain the search to operate at fixed base MACs and

coverage level 70% (on average, only 30% may be queried). Recall that coverage is a

surrogate for latency in high communication latency regime. After finding base and

global pairs from the evolutionary search, we create hybrid models with the newly

found architectures. We perform this experiment for three edge device constraints

as in the previous section: 75M, 150M, and 225M. Note that the smallest model in

the MASS is close to 75M MACs. Hence, we cannot search for a model below these

constraints.

Figure I·1 plots the operating curves for the hybrid models found using the NAS.

as well as using existing base architectures (MBV3-215M, MASS-240M). Table 12.5

shows the hybrid performance at the various coverage levels. Evolutionary search

based hybrid models provide the following benefits:

• Evolutionary search yields higher accuracy hybrid models than off-the-shelf classi-

fiers. As illustrated in Figure I·1, evolutionary architecture search based hybrid

models pareto dominate the hybrid models using the best known base models in

MBV3 and MASS family of architectures.

• Up to 80% latency reduction to achieve SoTA accuracy. Using a base with 225M

MACs and 76.5% accuracy, the hybrid model achieves 79.6% accuracy at 80% cov-

erage.

• Hybrid models outperform entropy thresholding.

351

Figure I·1: Comparing hybrid models trained with Off-the-Shelf architectures vs
architectures found using Joint NAS (Algorithm 10).

I.4 Algorithms

We summarise the methodological proposals as algorithms. The overall method is

to begin with training a super-net in the sense of (Cai et al., 2020), for which the

methods of their paper can be utilised. This produces a set of architectures A ,

with associated canonical models for each α ∈ A. The overall procedure then is

summarised as Algorithm 11. This uses the two main procedures of architecture

search (Algorithm 10) and hybrid training (Algorithm 7) as subroutines, which in

turn may be executed in a modular way as discussed at length in the main text.

In addition, we frequently tune a given router r and base and global models to

locally trade-off resource usage levels and accuracy (which saves on retraining on

each different value of ϱ that one may be interested in. This is realised by finding a

value t adjusted to the constraint, and using the routing function r(x; t) = 1{ro(x) ≥
r1(x) + t}. Such a t may be found as in Algorithm 12.

352

Algorithm 11 End-to-end Hybrid Procedure
1: Input: Training data B = {(xi, yi)}Ni=1, Validation data V = {(xj, yj)}Mj=1, re-

source constraint ϱ.
2: Train supernet using the method of (Cai et al., 2020). (Architecture Search)
3: A ← resulting set of algorithms.
4: (αb, αg)← output of Algorithm 10 with V, ϱ,A .
5: Train initial models b0 ∈ αb, g

0 ∈ αg using B (Hybrid Training)
6: (r, b, g)← output of Algorithm 7 instantiated with B, b0, g0, and with appropriate

hyperparameters.
7: Return: (r, b, g)

Algorithm 12 Tuning Routing Model
1: Input: Validation data V = {(xj, yj)}Mj=1, target resource level ϱ, Hybrid model

(r, b, g).
2: T ← {r0(x)− r1(x) : x ∈ V }.
3: c∗ ← min c : Rr +R(αb) + (1− c)Rg ≤ ϱ.
4: t∗ ← c∗th quantile of T .
5: Return: t∗.

I.5 Implementation Details

I.5.1 Hyper-parameter Settings.

We use SGD with momentum as the default optimizer in all our experiments. We

initialize our hybrid models from the corresponding pre-trained models and use a

learning rate of 1e − 4 for learning base and global models. We use a learning rate

of 1e− 2 for learning the routing network. We decay the learning rate using a cosine

learning rate scheduler. As recommended in the earlier works, we use a weight decay

of 1e − 5. We set the number of epochs to be 50. We use a batch size of 256 in our

experiments.

353

I.5.2 Model Details

Entropy Thresholding Baseline. As per recommendation in the literature

(Teerapittayanon et al., 2017; Gangrade et al., 2021) we compute the entropy H of

the base prediction probability distribution by(x). This baseline allows access to a

tunable threshold t. Predictions with entropy below this threshold are kept with the

base model while the predictions with entropy above this threshold are sent to the

cloud model. We use similar tuning as Algorithm 12 to trade-off resource usage.

Routing Model. Our routing model uses predictions from the base model and

creates a 2-layer neural network from these predictions. We create meta features from

these predictions to reduce the complexity of the network, by (a) adding entropy as

a feature, (b) and adding correlations between top 10 predictions, resulting in a 101

dimensional input feature vector. The feed-forward network has 256 neurons in the

first and 64 neurons in the second layer. The final layer outputs a two dimensional

score leading to binary prediction for the routing r. Note that the routing network

described in this manner contributes to less than 2% compute budget of the base

model and hence its compute cost is negligible in comparison to the base and global

models.

MBV3. We have used the MobileNetV3 (Howard et al., 2019) models as base

in the hybrid models designed for mobile devices (see Sec. 12.3.1). We borrowed

pre-trained models from publicly available implementation 4. Table I.1 lists the per-

formance and compute characteristics of these borrowed models.

MASS. We borrowed the pre-trained (Cai et al., 2020) models from the official

public repository 5. Table I.2 lists the accuracy, number of parameters and MACs for

these models. We note that these models have been specialized by the authors with

fine-tuning to achieve the reported performance.
4https://github.com/rwightman/pytorch-image-models
5https://github.com/mit-han-lab/once-for-all

354

Table I.1: MBV3 models in our setup.

Top1 Accuracy #Params #MACs
MBV3-48 67.613 2.54M 48.3M
MBV3-143 73.3 3.99M 143.4M
MBV3-112 71.7 - 112M
MBV3-91 70.4 - 91M
MBV3-215 75.721 5.48M 215.3M

Table I.2: Once-for-All Pre-trained models in our setup.

Accuracy Params MACs
MASS-600 (’flops@595M_top1@80.0_finetune@75’) 79.9 9.1M 595M
MASS-482 (’flops@482M_top1@79.6_finetune@75’) 79.6 9.1M 482M
MASS-389 (’flops@389M_top1@79.1_finetune@75’) 79.1 8.4M 389M

MASS-240 (’LG-G8_lat@24ms_top1@76.4_finetune@25’) 76.4 5.8M 230M
MASS-151 (’LG-G8_lat@16ms_top1@74.7_finetune@25’) 74.6 5.8M 151M
MASS-101 (’note8_lat@31ms_top1@72.8_finetune@25’) 72.8 4.6M 101M
MASS-67 (’note8_lat@22ms_top1@70.4_finetune@25’) 70.4 4.3M 67M

I.6 Difference between AppealNet and our Hybrid design.

Below we highlight main difference between AppealNet ((Li et al., 2021)) and our

proposal.

• AppealNet formulation does not explicitly model any coverage constraint that en-

ables the base model to operate at a tunable coverage level. In contrast, we explicitly

model a coverage penalty.

• Jointly learning the routing without any supervision is a hard problem. Instead, we

relax this formulation by introducing the routing oracle that specializes in a routing

network for a given base and global pair. With this oracle, the task of learning

routing reduces to a binary classification problem with the routing labels obtained

from the oracle. This also decouples the routing task from the base and global

entanglement.

• AppealNet does not use supervision like us, and as such such strategies ultimately

resemble thresholding on examples whose anticipated loss exceeds some threshold.

355

To see this consider Algo. 1 line 7 (Li et al., 2021) for m examples. Taking the

derivative wrt q yields β 1
m

∑
x

1
1−q(0|x) = 1

m

∑
x ℓ(f1(x), y) − ℓ(f0(x), y). The RHS

is the excess loss. For small values of q(0|x), we can approximate the LHS to

yield: β 1
m

∑
x(1 + q(0|x)) ≈ Excess-Loss. Simplifying we get: 1

m

∑
x q(0|x) ≈

1
β
Excess-Loss − 1. This expression suggests a relaxed objective that we should

enforce the fact that examples sent to the cloud is broadly proportional to excess

loss, and as such represents very weak supervision.

• In addition, we propose a neural architecture search that finds a pair of base and

global architectures that optimise the hybrid accuracy at any given combined re-

source usage.

• Empirically, AppealNet does not have any evaluations for the ImageNet scale

dataset. The closest comparison we can find is with the Tiny-ImageNet dataset

(one-tenth of the size of the ImageNet). While we cannot compare the two directly,

since we solve a much harder problem than Tiny-ImageNet, we can make the follow-

ing observations. At 70% coverage level, for AppealNet, the minimum performance

difference between the hybrid model and the global model is ≈ 1.2% (see AppealNet,

Fig. 5(d)), while our closest to the global in case of the MobileNet baseline is 0.3%

(see our paper Table 1, row 3). Note that AppealNet performance will go down on

ImageNet in comparison to Tiny-ImageNet due to the hardness of the problem.

• We compare Entropy Thresholding, AppealNet, and the proposed Hybrid model

on the CIFAR-100 dataset. Table I.3 shows that entropy thresholding outperforms

AppealNet. In addition, the proposed Hybrid model outperforms these baselines

substantially.

356

Table I.3: Hybrid models for CIFAR-100 at various coverages.

Scheme Base
Acc.(%)

Accuracy(%) at Cov.
80% 70% 40%

Entropy 52.56 57.77 59.95 65.1
AppealNet 52.56 57.65 59.89 64.9
Hybrid-r 52.56 58.43 61.18 66.9
Hybrid-rb 52.56 59.32 62.48 67.4

I.7 Difference between LENS and our Hybrid design.

Although below we highlight main difference between LENS ((Odema et al., 2021))

and our proposal, we emphasize that LENS studies the edge-cloud interactions purely

from systems perspective and as such does not dwelve into the learning aspects and

the trade-off required in routing the inputs in severely resource constrained edge

devices as well as their limited communication capabilities.

• (A) Our Objective: On large-scale tasks (such as ImageNet), for the given WiFi

rate, our goal is to realize the accuracy of an arbitrarily large DNN model (deployable

on the cloud) by means of a hybrid method deployed on edge. We selectively route

difficult inputs on the edge to the cloud, maintaining top-accuracy, while consuming

minimal energy/latency.

Our Edge. Our edge device only has CPU or MCU compute capabilities (see

Sec. 12.3.1). In addition, these edge device are severely resouce constrained, namely

they only allow low powered transmission as well as low transmission rates. These

constraints limits the model that can be deployed on the edge to be very low foot-

print. For instance, our illustrative example only has 110Kbps transmission rate

(see Sec. I.1).

This together with our desired accuracy places stringent constraints on edge to

crisply learn hard-to-predict examples, and characterizes fundamental limits of

hybrid ML.

357

• (B) Circuit/Systems Prior Works (ex: LENS or Neurosurgeon). Their goal

for a given dataset is to split/partition computation of a (suitably optimized) DNN

to minimize latency/energy in response to changing wireless conditions.

LENS Edge. (Odema et al., 2021) has GPU compute capabilities on the edge device.

As a result, even large DNNs can be comfortably executed on this device without

a significant delay as compared to the on-cloud solution. In addition, their edge

device leverage high transmission rate (up to 25Mbps). As a result, LENS explores

a different setting agnostic to data. They leverage low transmission latency to

compensate the difference in edge and cloud GPU times, motivating partitioning.

• (C) Objective (B) is suboptimal for objective (A). (B) requires the same

network model on the edge and the cloud, which artificially constrains DNNs to fit

into edge’s specifications, while hoping to realize cloud-server gains on the parti-

tioned parts. For large-scale tasks (ImageNet), high-accuracy can only be achieved

by large DNNs (even with NAS optimization (Cai et al., 2020)), which are not

edge-deployable, and using different architectures on edge/cloud is fundamental in

(A).

• (D) LENS baselines are too weak. Direct comparisons are difficult due to

different system choices(see (B)). Still we can note that LENS:

– reports results on small CIFAR-10 dataset, which is not representative

– uses VGG-16 based architecture(large DNN)—typically not edge-deployable

– with all-cloud processing, achieves 82%, significantly lower than VGG16 pub-

lished results (93.56% see https://github.com/geifmany/cifar-vgg);

– with optimal NAS+partitioning gets 77% under 25% energy reduction (see Fig.

6)

358

In contrast, for CIFAR-10 we trained standard (tiny) models (see MCUNet model

described as On-Device baseline in Sec. I.1) deployable on MCUs.

– MCUNet (Lin et al., 2020a) is deployable on the resource constrained MCUs.

– VGG-16 on CPU has 280X worse latency w.r.t. our model

– With all-edge processing we get 91.7% accuracy consuming 11mJ, and 85%

under 25% energy reduction.

This shows using same model on cloud/edge is suboptimal (see (C)).

• (E) Large-scale Task: LENS code is unavailable; Direct Evaluation is

difficult. LENS employs GP-based bayesian optimization to NAS, which is known

to produce poor results (see (White et al., 2021)), which is also evident from (D).

Due to lack of publicly avaiable codebase, we created a similar baseline to see the

performance gap between our proposal and LENS on the illustrative example in

the introduction (see Figure 12·2). We optimized NAS+partitioning method by

optimizing over OFA models/architectures (Cai et al., 2020). These architectures

range from small to large models across diverse target accuracies. Hybrid methods

overwhelmingly dominate NAS+partitioning methods (pink in Figure I·2), again

reinforcing our point (C).

I.8 Once-for-All Search Experiments

For our evolutionary search experiments, we used the (Cai et al., 2020) as the MASS.

In this space, there are two MobileNetV3 backbones available: (a) one with width

multiplier 1 and (b) another with width multipler 1.2. The range of models in these

two space together is around 75−600M MACs. MASS allows searching over expansion

factor options [3,4,6], width multiplier [1, 1.2], convolutionarl kernel sizes [3,5,7], block

depths [2,3,4], and resolutions [144, 160, 176, 192, 208, 224].

359

Figure I·2: Image recognition on the ImagetNet dataset: Accuracy vs Energy and
Latency plot. This clearly shows that the hybrid design pareto dominates on-device
as well as other baselines while getting significantly closer to the upper-bound in
hybrid design.

360

To perform a mutation, each optimization variable is modified with probability

0.1, where modification entails re-sampling the variable from a uniform distribution

over all of the options. The population size is set to 100, and the parent set size is

set to 25.

Table I.4 shows the characteristics of the base and global models found using this

search. Similar to (Cai et al., 2020) we fine tune these models further for 50 epochs

with their setup to achieve the final accuracy.

Table I.4: Joint Evolutionary Architecture Search: Models found at three different
base MAC constraints (75M, 150M, 225M).

Top1 Accuracy #Params #MACs
Search-MASS-225 76.5 5.8M 225M
Search-MASS-149 74.5 5.3M 149M
Search-MASS-75 70.8 4.5M 75M

I.9 MCUNet Router Deployment Overhead

We deploy both MCUNet and our base with routing model on the MCU using the Ten-

sorFlow Lite for Microcontrollers (TFLM) runtime. Due to lack of operator support

for reductions and sorting in TFLM, we replace the relevant operators with supported

operations whose compute and memory complexity upperbounds the un-supported

operations. Table I.5 compares the performance energy profile of the hybrid model

and the baseline when deployed on the micro-controller (STM32F746) with 320KB

SRAM & 1MB Flash. It clearly shows that there is a negligible cost of deploying the

proposed routing scheme and only results in < 2% slowdown.

361

Table I.5: Profiling the on device latency and energy overhead associated with
deploying the Hybrid model (MCUNet + router) as compared to deploying the plain
MCUNet model on the MCU.

Model Latency SRAM Energy
MCUNet 0.25368s 156708 bytes 0.1112 joules

Hybrid-MCUNet 0.25951s 158036 bytes 0.1134 joules

I.10 Ablative Experiments

I.10.1 Base and Global on same device

So far we have focused on a setup where base and global models are deployed on

separate hardware. In this experiment, we deploy the base and global models on the

same device. As a result, there is no communication delay in the setup. In such

a setup, we can use a simpler evaluation metric for inference latency, i.e., hybrid

MACs, i.e., the amount of multiply-add operations required to execute the hybrid

model. We pick up an architecture family and create a hybrid model using the

smallest and largest architecture. For convenience, we perform this experiment for

a known family, namely MobileNetV3 (MBV3) (Howard et al., 2019). From MBV3,

we pick the smallest model (48M MACs, 67.6% accuracy) as the base and largest

model (215M MACs, 75.7% accuracy) as global to create the Hybrid-MBV3 model.

Figure I·3 shows the hybrid model performance against the intermediate points in the

MBV3 space.

Figure I·3 shows the hybrid model performance against the intermediate points in

the MBV3 space as well as entropy thresholding baseline. These experiments provide

evidence for the following properties of hybrid models:

• Hybrid achieves SOTA w.r.t a global model with up to 40% lower latency. Global

model in MBV3 achieves 75.7% accuracy by off-loading every example to the cloud

while hybrid model achieves same accuracy by sending only 60% examples to the

362

Figure I·3: MBV3: Plot for hybrid MACs vs accuracy.

cloud. Thus, saving 40% communication cost.

• Training a Hybrid model for intermediate latency is inexpensive. To achieve a single

model at any latency, we find an architecture with this constraint and train it to

non-trivial performance. Hybrid model with extreme points trades off latency for

accuracy and save compute for training models for any intermediate constraint.

• Hybrid models dominate entropy thresholding baseline used in dynamic neural net-

works. Hybrid models outperform entropy thresholding at every coverage level

with up to 1.5% accuracy gains.

I.10.2 Router validation

We evaluate the performance of the router against the oracle supervision and show

that the router learnt using the procedure described in Sec. 12.2.1 generalizes well.

For instance, while training a hybrid model with pre-trained MBV3-small and MBV3-

large models, on the oracle labels, the router achieves a training accuracy of ≈ 87%

and this translates into a validation accuracy of ≈ 84%. In contrast, entropy

thresholding on the validation dataset achieves ≈ 77% accuracy on the oracle labels.

363

I.10.3 IMDb Experiments

We also learn hybrid model in the NLP domain. We train a sentiment classifier on

the IMDb dataset (Maas et al., 2011). We pick-up off-the-shelf pre-trained classifiers,

namely (a) albert-base-v1 (Lan et al., 2019) (11M params, 91% accuracy) as the

base and (b) bert-large (Devlin et al., 2019) (340M params, 96% accuracy) as the

global. We use the hidden state from the last timestep in the sequence along with

the classifier logits and entropy as the feature for the routing model. In order to

save computation, we learn the hybrid model by training only the router. Table I.6

shows the performance of the hybrid models and the entropy thresholding baseline

at various coverage levels. It shows that hybrid models provide similar benefits on

IMDb dataset. We note that, for further model footprint reduction, similar hybrid

models can be constructed using efficient recurrent neural networks (Kag et al., 2020;

Kag and Saligrama, 2021a) as the base model and large transformer models as the

global model.

Table I.6: Hybrid models for IMDb at various coverages.

Base
MACs

Base
Acc.(%)

Cov.=97%
Acc. (%)

Cov.=95%
Acc. (%)

Cov.=93%
Acc. (%)

Entropy 91 93.78 94.38 95.25
Hybrid 91 94.31 95.45 96.01

I.10.4 MCUNet experiment with EfficientNet-B7

In the main text, due to limited compute resources, we restricted our global model

to be the MASS-600 (Cai et al., 2020) model. In this ablation, we explore the effect

of deploying a significantly expensive model on the cloud. We choose the best per-

forming model in the EfficientNet (Tan and Le, 2019) family, i.e., EfficientNet-B7.

This model has 37B MACs and stores 66M network parameters. We borrow the im-

364

plementation from the timm repository 6 that achieves an accuracy of 86.5% on the

ImageNet classification task. In contrast, the MASS-600 model has ≈ 600M MACs,

9.1M parameters and achieves ≈ 80% accuracy. For simplicity, we assume the cloud

resources render the inference on EfficientNet-B7 to be similar to MASS-600. In this

experiment, we train a hybrid-r model with MCUNet base used in the Sec. 12.3.1.

Thus, we can compare the performance of the hybrid models across different global

models. Table I.7 compares the accuracies obtained by the hybrid models with two

different global models (MASS-600 and EfficientNet-B7). It clearly shows the follow-

ing benefits:

• Deploying a better global model improves the hybrid performance and with cloud

resources such large models do not affect the energy consumption on the edge device.

• Assuming that the cloud has access to large compute pool, the inference latency on

the edge device does not suffer as well.

• It shows that our algorithm procedure to train hybrid models works across global

models in different architecture families.

Table I.7: EfficientNet-B7 as Global model: Hybrid models on STM32F746 MCU:
Accuracy achieved by different methods at various latency constraints. Base model
is the MCUNet model with 12M MACs and 200ms latency.

Method Accuracy (%) at Latency (ms)
200 600 1000 1400 1600 2000

On-Cloud (MASS-600) - - - - - 79.9
On-Cloud (EfficientNet-B7) - - - - - 86.5

On-Device 51.1 - 60.9 63.5 - -
Hybrid (Global=MASS-600) - 62.3 71.2 77.9 79.5 -

Hybrid (Global=EfficientNet-B7) - 64.9 76.2 82.8 85.7 -

6EfficientNet-B7-ns model from https://github.com/rwightman/pytorch-image-models

365

I.11 Dynamic Communication Latency

Although our setup in Figure 12·2 assumes a constant communication latency, we

can easily modify the setup to incorporate dynamic latency delay. Assuming the

base processing latency B, global processing latency G, communication delay D, and

router coverage C, we can use the following constraint on the coverage C to achieve

a target average latency L,

B + (1− C) ∗ (D +G) ≤ L

As per the main text, B = 200ms, G = 25ms and the communication delay D =

2000ms. In case the communication delay D has a high variation and ranges between

[Dmin, Dmax], we can store a lookup table on the edge device to use a different coverage

threshold for different observed latency, by solving the above constraint at pre-defined

communication delay intervals.

For the illustrative example, we simulate this setting by drawing communication

latencies uniformly at random between [Dmin, Dmax]. Figure I·4 compares the dynamic

communication with the constant communication cost setting. It has three dynamic

ranges [200, 2000], [1000, 3000], [500, 3500], where the last two range keep the mean

communication cost same as the constant setting. It can be clearly seen that proposed

hybrid models outperform all the baselines in each setting.

I.12 Algorithm Convergence Analysis

In this ablation, we show that the Algorithm 7 for training hybrid models convergences

empirically. We pick up the base and global model as described in the setup in the

Figure 12·3. We plot the training losses for the three components (router, base,

global models) in the Figure I·5. It shows that base and global models convergence

366

(a) (b)

(c) (d)

Figure I·4: Setup is same as Figure 12·2: (a) Constant Communication Latency (b)
Dynamic Communication latency [400, 2400] (c) Dynamic Communication latency
[1000, 3000] (d) Dynamic Communication latency [500, 3500]

to a stable loss towards the end of the training cycle.

367

(a) (b) (c)

Figure I·5: Algorithm Convergence. We show the training losses for the three
components in the Algorithm 7: (a) router, (b) base, and (c) global model.

368

369

Appendix J

Appendix to DiSK

J.1 Details for Illustrative Example (1D Intervals)

Dataset Overview. We generate a synthetic toy dataset with one dimensional

features x ∈ [0, 9] and binary class labels y ∈ {Red,Blue}. We use σ(x) to denote

the sigmoid function with a scaled by parameter κ > 0, i.e., σ(x) = 1
1+exp(−κx)

.

Function Classes. Let H be the 1-interval function class parametrized by two

variables {a, b}, i.e., for h ∈ H

h(x; a, b) = σ(x− a)− σ(x− b); 0 < a < b < 9

Similarly, let F be the 2-interval family parametrized by four variables {a, b, c, d},
i.e., for f ∈ F

f(x; a, b, c, d) = h(x; a, b) + h(x; c, d); 0 < a < b < c < d < 9

Note that any function in H behaves as an indicator for the interval (a, b). Similarly,

any function in F behaves as an indicator for two exclusive intervals {(a, b), (c, d)}.
Data Generation. We assume that the data is generated using the function

f ∗ ∈ F with parameters (a∗, b∗, c∗, d∗). Dataset is sampled with balanced data from

both classes. We label x as red if f ∗(x) < 0.5, otherwise we label the point as blue.

We sample 1000 i.i.d. data points as the training set and 100 data points as the test

set. Figure 13·1 shows the train data. We draw an independent validation set of 100

data points for hyper-parameter tuning.

Large Capacity Teacher T belongs to the 2-interval function class F and is

learnt with all the training data points. We learn the teacher with cross-entropy loss.

We use the SGD optimizer with momentum 0.9, learning rate 0.1, weight decay 0.01,

and minimize the loss for 200 epochs. Note that the teacher recovers the underlying

function f ∗ as shown by the two intervals in Figure 13·1.

Capacity Constrained Student S belongs to the 1-interval function class H
and it has access to all the training dataset. Note that best possible hypothesis in H
cannot recover the performance of the function f ∗ and hence the student will have to

settle on one of the many local minima. We show these minima as well the contour

plot for the student in the Figure 13·1. We learn the student with three different loss

functions (cross-entropy LCE, vanilla KD Lτ,α
KD(s) , and DiSK Algorithm 7). We use

similar training setup as the teacher in terms of the optimizer and training steps. For

DiSK method, our guide function g has similar capacity as the student but utilizes

the teacher features to learn the decision as to which points are hard-to-learn for the

student. For both, KD and DiSK, we scan the α hyper-parameter over the range

{0.0, 0.1, 0.5, 0.9, 1.0}. Similarly, we scan the temperature τ in the range {1, 2, 4}.
For DiSK, we scan the different hyper-parameters in the following ranges: (a)

τs ∈ {1, 2, 4}, (b) K ∈ {1, 2, 3}, (c) λmin ∈ {0.01, 0.1, 1, 5, 10}, (d) λmax ∈
{1, 5, 10, 20, 50, 100, 1000}, (e) Budget δ ∈ {0.1, 0.05, 0.0}, and (f) λT ∈ {20, 50}.
We replace the argmin in Algorithm 7, with three gradient steps.

Note that although the hyper-parameter scan looks daunting, the default hyper-

parameters: τs = τ (teacher temperature), K = 2, λmin = 0.1, λmax = 50, δ = 0.0

(approximate error of the global minima), λT = 50, work well in this setup as well as

370

the 2D gaussian example described below.

Vanilla KD suffers from local minima. The loss landscape of the Vanilla KD

contains many local minima (see Figure 13·1(b)). Since there is a big gap between

student and teacher capacity, the teacher is unable to help the student discern between

these bad minima. Hence, Vanilla KD leads to one of the bad local minima with high

probability (see Table 13.1).

DiSK removes bad local minima. In contrast, DiSK deletes harder points from

the landscape and as a result settles onto the global minima for S with high proba-

bility (see Figure 13·1(c) and Table 13.1 where one cluster of blue points have been

removed). Note that this also removes bad minima from the S loss landscape. Finally,

DiSK learns the student that has the best performance.

J.2 Details for Illustrative Example (2D Gaussians)

Dataset Overview & Data Generation. We generate a synthetic toy dataset

with two dimensional features x ∈ R2 and three class labels y ∈ {Red,Green,Blue}.
We generate six cluster centers. We assign a color to each cluster center and spread

input features around these centers. Below we list the cluster centers along with their

class labels.

• (0, 0), Red

• (1.5, 0), Blue

• (3, 0), Green

• (0, 1.5), Blue

• (1.5, 1.5), Green

• (3, 1.5), Red

371

Given a cluster center c , we draw input features x using a Gaussian ball with

radius r = 0.05 around the center using multi-variate Gaussian N (c, rI), where I is

the Identity matrix.

Figure 13·2.a shows the labelled data. We sample 1000 i.i.d. data points as the

training set and 1000 data points as the test set with equal representation from all

three classes.

Function Classes. We use two feed-forward neural networks as function classes

in this example. Let ϕ(·) denote the Batch-Norm followed by ReLU operation.

Let H be the two feed-forward layer neural network. Any h ∈ H can be written

as

h(x) = W2ϕ(W1x)

where W1 ∈ R2×2 and W2 ∈ R3×2. Note that h has only two neurons and hence a

very small network.

Let F be the three feed-forward layer neural network. Any f ∈ F can be written

as

f(x) = Ŵ3ϕ(Ŵ2ϕ(Ŵ1x))

where Ŵ1 ∈ R8×2, Ŵ2 ∈ R16×8 and Ŵ3 ∈ R3×2.

Note that f has 8 neurons in first and 16 neurons in the second layer. The final

layer in above networks is the classifier layer that transforms the features into the

class probabilities.

Large Capacity Teacher T is a 3 layer neural network with 8, 16 and 3 neurons.

In between each feed-forward layer, we have batch-norm and ReLU activation non-

linearity. We point out that the teacher being an over-parameterized network in this

feature space, easily learns the correct decision boundary. We show this decision

boundary in the Figure 13·2.a. We learn the teacher with cross-entropy loss. We use

the SGD optimizer with momentum 0.9, learning rate 0.1, weight decay 0.01, and

372

minimize the loss for 200 epochs.

Capacity Constrained Student S is a 2 layer neural network with 2 and 3

neurons. Similar to the teacher, we have batch-norm and ReLU non-linearity in

between the feed-forward layers. Since the student is severely constrained as compared

to the teacher, it suffers in learning the task. Different training runs lead to some

popular local minima. We show the teacher solution as well as the student local

minima in Figure 13·2. For DiSK method, our guide function g has similar capacity

as the student but utilizes the teacher features to learn the decision as to which points

are hard-to-learn for the student. The contour plots for the student models under KD

loss and DiSK loss are shown in Figure 13·2.b-13·2.c using the visualization toolkit

described in (Li et al., 2018a). We following similar setup for hyper-parameter tuning

as in Sec. J.1.

We see a similar result as in 1D example. KD suffers from bad local minima and

converges to the global minima with only 43% of the initializations. Differently, DiSK

escapes the local minima solutions and focus on the learnable part of the input space

as shown in Figure 13·2.c. Our method converges to the global minima with very

high probability (see Table 13.1).

J.3 Model Details

In this section, we list the model characteristics as well as their accuracy obtained

using standard cross-entropy (CE) loss. Table J.1 lists all the models used in large

capacity mismatch setting. While Table J.2 lists all the models in the small capacity

mismatch setting. Below, we describe individual model for completeness.

Large Student-Teacher Capacity Mismatch All models in the Table J.1 be-

long to the same ResNet family and use the standard ‘BasicBlock‘ as the building

block. It consists of a convolutional block, followed by four residual block stages, fol-

373

lowed by the adaptive average pooling layer and the classifier layer. Different capacity

models in this family differ only in the number of repetitions of the residual block

and the number of filters in each stage. Below, we write the different of repetitions

and the number of filters for the four different residual stages.

• ResNet34 has [64, 128, 256, 512] filters and repeats the ‘BasicBlock‘ [3, 4, 6, 3] times.

• ResNet18 has [64, 128, 256, 512] filters and repeats the ‘BasicBlock‘ [2, 2, 2, 2] times.

• ResNet10 has [64, 128, 256, 512] filters and repeats the ‘BasicBlock‘ [1, 1, 1, 1] times.

• ResNet10-ℓ has [32, 64, 128, 256] filters and repeats the ‘BasicBlock‘ [1, 1, 1, 1] times.

• ResNet10-m has [16, 32, 64, 128] filters and repeats the ‘BasicBlock‘ [1, 1, 1, 1] times.

• ResNet10-s has [8, 16, 32, 64] filters and repeats the ‘BasicBlock‘ [1, 1, 1, 1] times.

• ResNet10-xs has [8, 16, 16, 32] filters and repeats the ‘BasicBlock‘ [1, 1, 1, 1] times.

• ResNet10-xxs has [8, 8, 16, 16] filters and repeats the ‘BasicBlock‘ [1, 1, 1, 1] times.

Small Student-Teacher Capacity Mismatch Definitions of all models in the

Table J.2 are borrowed from (Chen et al., 2022). We refer the reader to their official

github repository (https://github.com/DefangChen/SimKD.git) for the exact def-

inition. We trained these models on our end using the data augmentations mentioned

above and found that our cross-entropy baseline as well as the vanilla KD baselines

are much better than the ones reported in their work.

Guide Function Our guide function g is a three layer feed-forward network. It

uses the last layer features and logits of the teacher as the input. It has 64, 128, and

1 neurons in the three layers. We include batch-norm followed by ReLU non-linearity

between these layers. The final layer contains a sigmoid activation to contain the

scaler output in the range [0, 1].

Warm Start We note that we warm start each student model by first training

them with cross entropy loss without teacher. We observe that the warm start benefits

both DiSK and KD. Note that, we do not change the algorithms. We only start from

374

a CE pre-trained student model.

Table J.1: Models used in large capacity mismatch setting along with storage and
computational requirements.

Architecture CIFAR-100 Tiny-Imagenet
CE Acc. MACs Params CE Acc. MACs Params

Teacher
ResNet10-ℓ 71.99 64M 1.25M 52.14 255M 1.28M
ResNet10 75.25 253M 4.92M 56.04 1013M 5M
ResNet18 76.56 555M 11.22M 62.48 2221M 11.27M
ResNet34 80.46 1159M 21.32M 63.06 4637M 21.38M

Student
ResNet10-xxs 32.05 2M 13K 17.44 8M 15K
ResNet10-xs 42.99 3M 28K 25.89 12M 31K
ResNet10-s 52.16 4M 84K 34.65 16M 90K
ResNet10-m 65.24 16M 320K 44.74 64M 333K

Table J.2: Models used in in small capacity mismatch setting along with storage
and computational requirements.

Architecture CIFAR-100
CE Acc. MACs Params

Teacher ResNet32x4 81.45 1083M 7.4M
Wide-ResNet-40-2 78.41 327M 2.25M

Student

ResNet8x4 73.89 177M 1.2M
ShuffleNetV2 73.74 44.5M 1.4M

Wide-ResNet-16-2 74.29 101M 700K
Wide-ResNet-40-1 72.81 83M 570K
MobileNetV2x2 69.24 22M 2.4M

J.4 Hyper-parameters

For both, KD and DiSK, we scan the α hyper-parameter over the range

{0.0, 0.1, 0.5, 0.9, 1.0}. As per recommendations from previous works(Chen et al.,

2022; Cho and Hariharan, 2019; Tung and Mori, 2019), we use τ = 4 as the temper-

ature in Eq. 13.1.

For DiSK, we scan the different hyper-parameters in the following ranges: (a)

τs ∈ {1, 2, 4}, (b) K ∈ {1, 3, 5, 10, 20, 50}, (c) λmin ∈ {0.01, 0.1, 1, 5, 10}, (d) λmax ∈
{1, 5, 10, 20, 50, 100, 1000}, (e) Budget δ within 0.2 distance from the cross-entropy

trained student model’s error, and (f) λT ∈ {20, 50}. We replace the argmin in the

Algorithm 7, with three SGD steps over the entire dataset. For all our experiments

(both KD and DiSK), we use the popular cosine learning rate scheduler for the SGD

375

optimizer 0.1 learning rate, 0.9 momentum and 5e − 4 weight decay. We use 200 as

the batch size.

Note that the default hyper-parameters: τs = τ (teacher temperature), K = 20,

λmin = 0.1, λmax = 50, δ = approximate error of the global minima (replaced by the

cross-entropy error), λT = 50, work well in most of our experiments.

We point out that the denominator N in the budget constraint should be cali-

brated for the correct numerical implementation. Instead of N we use the number of

wrong student predictions as the normalizer, i.e.,
∑N

i=1 yi ̸= argmaxy sy(xi) as this is

the term that appears in the Eq. 13.2 alongside the g term in the budget constraint.

We note that we use similar parameters to train with CE in ResNet based models.

Improving CE training would improve DiSK and KD as well since both are initialized

with the CE trained model.

376

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,
G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané,
D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,
B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas,
F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng,
X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems.
Software available from https://www.tensorflow.org/.

Acar, D. A. E., Gangrade, A., and Saligrama, V. (2020). Budget learning via brack-
eting. In International Conference on Artificial Intelligence and Statistics, pages
4109–4119. URL: https://proceedings.mlr.press/v108/acar20a.html.

Acar, D. A. E., Zhao, Y., Matas, R., Mattina, M., Whatmough, P., and Saligrama,
V. (2021). Federated learning based on dynamic regularization. In Interna-
tional Conference on Learning Representations. URL: https://openreview.net/
forum?id=B7v4QMR6Z9w.

Altun, K., Barshan, B., and Tunçel, O. (2010). Comparative study on classifying hu-
man activities with miniature inertial and magnetic sensors. Pattern Recognition,
43(10):3605–3620. URL: http://dx.doi.org/10.1016/j.patcog.2010.04.019.

Anguita, D., Ghio, A., Oneto, L., Parra, X., and Reyes-Ortiz, J. L. (2012). Human
activity recognition on smartphones using a multiclass hardware-friendly support
vector machine. In Proceedings of the 4th International Conference on Ambient
Assisted Living and Home Care, IWAAL’12, pages 216–223, Berlin, Heidelberg.
Springer-Verlag. URL: http://dx.doi.org/10.1007/978-3-642-35395-6_30.

Anguita, D., Ghio, A., Oneto, L., Parra, X., and Reyes-Ortiz, J. L. (2013). A public
domain dataset for human activity recognition using smartphones. In ESANN :
European Symposium on Artificial Neural Networks. URL: https://www.esann.
org/sites/default/files/proceedings/legacy/es2013-84.pdf.

Arjovsky, M., Shah, A., and Bengio, Y. (2016). Unitary evolution recurrent neural
networks. In Balcan, M. F. and Weinberger, K. Q., editors, Proceedings of The
33rd International Conference on Machine Learning, volume 48 of Proceedings of
Machine Learning Research, pages 1120–1128, New York, New York, USA. PMLR.
URL: http://proceedings.mlr.press/v48/arjovsky16.html.

377

Ba, J. and Caruana, R. (2014). Do deep nets really need to be deep? In
Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., and Weinberger, K., ed-
itors, Advances in Neural Information Processing Systems, volume 27. Curran
Associates, Inc. URL: https://proceedings.neurips.cc/paper/2014/file/
ea8fcd92d59581717e06eb187f10666d-Paper.pdf.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization.
arXiv:1607.06450 URL: https://arxiv.org/abs/1607.06450.

Bai, S., Kolter, J. Z., and Koltun, V. (2019a). Deep equilibrium models. In Wallach,
H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R.,
editors, Advances in Neural Information Processing Systems (NeurIPS), volume 32.
Curran Associates, Inc. URL: https://proceedings.neurips.cc/paper_files/
paper/2019/file/01386bd6d8e091c2ab4c7c7de644d37b-Paper.pdf.

Bai, S., Kolter, J. Z., and Koltun, V. (2019b). Trellis networks for sequence
modeling. In International Conference on Learning Representations. URL:
https://openreview.net/forum?id=HyeVtoRqtQ.

Bai, S., Koltun, V., and Kolter, J. Z. (2020). Multiscale deep equilibrium models. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., editors, Advances
in Neural Information Processing Systems (NeurIPS), volume 33, pages 5238–5250.
Curran Associates, Inc. URL: https://proceedings.neurips.cc/paper_files/
paper/2020/file/3812f9a59b634c2a9c574610eaba5bed-Paper.pdf.

Balduzzi, D. and Ghifary, M. (2016). Strongly-typed recurrent neural networks. In
Balcan, M. F. and Weinberger, K. Q., editors, Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pages 1292–1300, New York, New York, USA. PMLR. URL: https:
//proceedings.mlr.press/v48/balduzzi16.html.

Banbury, C., Zhou, C., Fedorov, I., Matas, R., Thakker, U., Gope, D.,
Janapa Reddi, V., Mattina, M., and Whatmough, P. (2021). Mi-
cronets: Neural network architectures for deploying tinyml applications on
commodity microcontrollers. Proceedings of Machine Learning and Systems,
3. URL: https://proceedings.mlsys.org/paper_files/paper/2021/file/
c4d41d9619462c534b7b61d1f772385e-Paper.pdf.

Baradel, F., Wolf, C., and Mille, J. (2017). Pose-conditioned spatio-temporal atten-
tion for human action recognition. arXiv:1703.10106 URL: https://arxiv.org/
abs/1703.10106.

Bartlett, P. L., Harvey, N., Liaw, C., and Mehrabian, A. (2019). Nearly-tight vc-
dimension and pseudodimension bounds for piecewise linear neural networks. The

378

Journal of Machine Learning Research, 20(63):1–17. URL: https://jmlr.org/
papers/v20/17-612.html.

Bartlett, P. L. and Wegkamp, M. (2008). Classification with a reject option using
a hinge loss. Journal of Machine Learning Research, 9(Aug):1823–1840. URL:
http://jmlr.org/papers/v9/bartlett08a.html.

Bengio, Y., Boulanger-Lewandowski, N., and Pascanu, R. (2013). Advances in opti-
mizing recurrent networks. 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 8624–8628. URL: https://doi.org/10.
1109/ICASSP.2013.6639349.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning.
In Proceedings of the 26th Annual International Conference on Machine Learning,
ICML ’09, page 41–48, New York, NY, USA. Association for Computing Machinery.
URL: https://doi.org/10.1145/1553374.1553380.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependen-
cies with gradient descent is difficult. IEEE Transactions on Neural Networks,
5(2):157–166. URL: http://dx.doi.org/10.1109/72.279181.

Beyer, L., Zhai, X., Royer, A., Markeeva, L., Anil, R., and Kolesnikov, A. (2021).
Knowledge distillation: A good teacher is patient and consistent. URL: https:
//arxiv.org/abs/2106.05237.

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. K. (1989). Learnability
and the vapnik-chervonenkis dimension. Journal of the ACM (JACM), 36(4):929–
965. URL: https://doi.org/10.1145/76359.76371.

Bolukbasi, T., Wang, J., Dekel, O., and Saligrama, V. (2017). Adaptive neural
networks for efficient inference. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, Proceedings of Machine Learning Research, pages
527–536. URL: http://proceedings.mlr.press/v70/bolukbasi17a.html.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed
optimization and statistical learning via the alternating direction method of mul-
tipliers. Foundations and Trends(R) in Machine Learning, 3(1):1–122. URL:
https://dl.acm.org/toc/ftml/2011/3/1.

Bradbury, J., Merity, S., Xiong, C., and Socher, R. (2016). Quasi-recurrent neural
networks. CoRR, abs/1611.01576. URL: http://arxiv.org/abs/1611.01576.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakan-
tan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger,
G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse,

379

C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., Mc-
Candlish, S., Radford, A., Sutskever, I., and Amodei, D. (2020). Language models
are few-shot learners. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and
Lin, H., editors, Advances in Neural Information Processing Systems, volume 33,
pages 1877–1901. Curran Associates, Inc. URL: https://proceedings.neurips.
cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Broyden, C. G. (1965). A class of methods for solving nonlinear simultaneous
equations. Journal of Mathematics and Computation. 19(92):577–593. URL:
https://doi.org/10.1090/S0025-5718-1965-0198670-6.

Bu, Y., Zou, S., and Veeravalli, V. V. (2020). Tightening mutual information-based
bounds on generalization error. IEEE Journal on Selected Areas in Informa-
tion Theory, 1(1):121–130. URL: https://buyuheng.github.io/Journal/Gen_
bound.pdf.

Bucila, C., Caruana, R., and Niculescu-Mizil, A. (2006). Model compression. In Pro-
ceedings of the 12th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’06, page 535–541, New York, NY, USA. Association
for Computing Machinery. URL: https://doi.org/10.1145/1150402.1150464.

Cai, H., Gan, C., Wang, T., Zhang, Z., and Han, S. (2020). Once for all: Train one
network and specialize it for efficient deployment. In International Conference on
Learning Representations. URL: https://arxiv.org/pdf/1908.09791.pdf.

Cai, H., Zhu, L., and Han, S. (2019). ProxylessNAS: Direct neural architecture
search on target task and hardware. In International Conference on Learning
Representations. URL: https://arxiv.org/pdf/1812.00332.pdf.

Campos, V., Jou, B., i Nieto, X. G., Torres, J., and Chang, S.-F. (2018). Skip RNN:
Learning to skip state updates in recurrent neural networks. In International Con-
ference on Learning Representations. URL: https://openreview.net/forum?id=
HkwVAXyCW.

Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., and
Joulin, A. (2021). Emerging properties in self-supervised vision transformers. In
Proceedings of the International Conference on Computer Vision (ICCV). URL:
https://openaccess.thecvf.com/content/ICCV2021/html/Caron_Emerging_
Properties_in_Self-Supervised_Vision_Transformers_ICCV_2021_paper.
html.

Cha, J., Chun, S., Lee, K., Cho, H.-C., Park, S., Lee, Y., and Park, S. (2021). Swad:
Domain generalization by seeking flat minima. In Ranzato, M., Beygelzimer, A.,
Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural Infor-
mation Processing Systems, volume 34, pages 22405–22418. Curran Associates,

380

Inc. URL: https://proceedings.neurips.cc/paper_files/paper/2021/file/
bcb41ccdc4363c6848a1d760f26c28a0-Paper.pdf.

Chang, B., Chen, M., Haber, E., and Chi, E. H. (2019). AntisymmetricRNN: A
dynamical system view on recurrent neural networks. In International Confer-
ence on Learning Representations. URL: https://openreview.net/forum?id=
ryxepo0cFX.

Chang, S., Zhang, Y., Han, W., Yu, M., Guo, X., Tan, W., Cui, X., Witbrock,
M., Hasegawa-Johnson, M. A., and Huang, T. S. (2017). Dilated recurrent
neural networks. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fer-
gus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Infor-
mation Processing Systems, pages 77–87. Curran Associates, Inc. URL: http:
//papers.nips.cc/paper/6613-dilated-recurrent-neural-networks.pdf.

Chen, D., Mei, J.-P., Zhang, H., Wang, C., Feng, Y., and Chen, C. (2022).
Knowledge distillation with the reused teacher classifier. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
11933–11942. URL: https://openaccess.thecvf.com/content/CVPR2022/
html/Chen_Knowledge_Distillation_With_the_Reused_Teacher_Classifier_
CVPR_2022_paper.html.

Chen, D., Mei, J.-P., Zhang, Y., Wang, C., Wang, Z., Feng, Y., and Chen, C. (2021a).
Cross-layer distillation with semantic calibration. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 7028–7036. URL: https:
//doi.org/10.1609/aaai.v35i8.16865.

Chen, M., Miao, Y., Hao, Y., and Hwang, K. (2017). Narrow band internet of things.
IEEE Access, 5:20557–20577.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto, H. P., Kaplan, J.,
Edwards, H., Burda, Y., Joseph, N., Brockman, G., Ray, A., Puri, R., Krueger,
G., Petrov, M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder,
N., Pavlov, M., Power, A., Kaiser, L., Bavarian, M., Winter, C., Tillet, P., Such,
F. P., Cummings, D., Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A.,
Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang, J., Babuschkin, I., Balaji,
S., Jain, S., Saunders, W., Hesse, C., Carr, A. N., Leike, J., Achiam, J., Misra,
V., Morikawa, E., Radford, A., Knight, M., Brundage, M., Murati, M., Mayer,
K., Welinder, P., McGrew, B., Amodei, D., McCandlish, S., Sutskever, I., and
Zaremba, W. (2021b). Evaluating large language models trained on code. URL:
https://arxiv.org/pdf/2107.03374.pdf.

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. (2018). Neu-
ral ordinary differential equations. In Bengio, S., Wallach, H., Larochelle, H.,

381

Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, Advances in Neural In-
formation Processing Systems, volume 31, pages 6571–6583. Curran Associates,
Inc. URL: https://proceedings.neurips.cc/paper_files/paper/2018/file/
69386f6bb1dfed68692a24c8686939b9-Paper.pdf.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020a). A simple framework for
contrastive learning of visual representations. In III, H. D. and Singh, A., editors,
Proceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pages 1597–1607. PMLR. URL:
https://proceedings.mlr.press/v119/chen20j.html.

Chen, X., Fan, H., Girshick, R., and He, K. (2020b). Improved baselines with
momentum contrastive learning. arXiv preprint arXiv:2003.04297. URL: https:
//arxiv.org/abs/2003.04297.

Cho, J. H. and Hariharan, B. (2019). On the efficacy of knowledge distillation.
In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages
4793–4801. URL: https://openaccess.thecvf.com/content_ICCV_2019/html/
Cho_On_the_Efficacy_of_Knowledge_Distillation_ICCV_2019_paper.html.

Cho, K., van Merriënboer, B., Bahdanau, D., and Bengio, Y. (2014a). On the prop-
erties of neural machine translation: Encoder–decoder approaches. In Proceedings
of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical
Translation, pages 103–111, Doha, Qatar. Association for Computational Linguis-
tics. URL: https://aclanthology.org/W14-4012.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., and Bengio, Y. (2014b). Learning phrase representations using rnn encoder–
decoder for statistical machine translation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 1724–1734.
URL: http://www.aclweb.org/anthology/D14-1179.

Chow, C. (1957). An optimum character recognition system using decision functions.
IRE Transactions on Electronic Computers, EC-6(4):247–254.

Chow, C. (1970). On optimum recognition error and reject tradeoff. IEEE Transac-
tions on Information Theory, 16(1):41–46.

Chu, G., Arikan, O., Bender, G., Wang, W., Brighton, A., Kindermans, P.-J., Liu, H.,
Akin, B., Gupta, S., and Howard, A. (2021). Discovering multi-hardware mobile
models via architecture search. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, pages 3022–3031.
URL: https://openaccess.thecvf.com/content/CVPR2021W/ECV/html/Chu_
Discovering_Multi-Hardware_Mobile_Models_via_Architecture_Search_
CVPRW_2021_paper.html.

382

Chung, J., Ahn, S., and Bengio, Y. (2016). Hierarchical multiscale recurrent neural
networks. CoRR, abs/1609.01704. URL: http://arxiv.org/abs/1609.01704.

Chzhen, E., Denis, C., and Hebiri, M. (2019). Minimax semi-supervised confidence
sets for multi-class classification. arXiv preprint arXiv:1904.12527. URL: https:
//arxiv.org/abs/1904.12527.

Clark, K., Luong, M.-T., Manning, C. D., and Le, Q. (2018). Semi-supervised
sequence modeling with cross-view training. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing, pages 1914–1925,
Brussels, Belgium. Association for Computational Linguistics. URL: https:
//aclanthology.org/D18-1217.

Collins, J., Sohl-Dickstein, J., and Sussillo, D. (2017). Capacity and trainability in
recurrent neural networks. In International Conference on Learning Representa-
tions. URL: https://openreview.net/forum?id=BydARw9ex.

Cooijmans, T., Ballas, N., Laurent, C., Gülçehre, Ç., and Courville, A. (2017). Re-
current batch normalization. In International Conference on Learning Represen-
tations. URL: https://openreview.net/forum?id=r1VdcHcxx.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Be-
nenson, R., Franke, U., Roth, S., and Schiele, B. (2016). The
cityscapes dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). URL: https://www.cv-foundation.org/openaccess/content_cvpr_
2016/papers/Cordts_The_Cityscapes_Dataset_CVPR_2016_paper.pdf.

Cortes, C., DeSalvo, G., and Mohri, M. (2016). Learning with rejection. In Interna-
tional Conference on Algorithmic Learning Theory, pages 67–82. Springer. URL:
https://cs.nyu.edu/~mohri/pub/rej.pdf.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning,
20(3):273–297.

Csiszár, I. and Shields, P. (2004). Information theory and statistics: A tutorial.
Foundations and Trends® in Communications and Information Theory, 1(4):417–
528. URL: http://dx.doi.org/10.1561/0100000004.

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le, Q. V. (2019). Au-
toaugment: Learning augmentation strategies from data. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
URL: https://openaccess.thecvf.com/content_CVPR_2019/html/Cubuk_
AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_
paper.html.

383

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. (2020). Randaugment: Practical
automated data augmentation with a reduced search space. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., editors, Advances in Neural In-
formation Processing Systems, volume 33, pages 18613–18624. Curran Associates,
Inc. URL: https://proceedings.neurips.cc/paper_files/paper/2020/file/
d85b63ef0ccb114d0a3bb7b7d808028f-Paper.pdf.

Dai, X., Kong, X., and Guo, T. (2020). EPNet: Learning to Exit with Flexible Multi-
Branch Network, page 235–244. Association for Computing Machinery, New York,
NY, USA. URL: https://doi.org/10.1145/3340531.3411973.

Dai, X., Wan, A., Zhang, P., Wu, B., He, Z., Wei, Z., Chen, K., Tian, Y., Yu, M.,
Vajda, P., and Gonzalez, J. E. (2021). Fbnetv3: Joint architecture-recipe search
using predictor pretraining. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 16276–16285. URL:
https://openaccess.thecvf.com/content/CVPR2021/html/Dai_FBNetV3_
Joint_Architecture-Recipe_Search_Using_Predictor_Pretraining_CVPR_
2021_paper.html.

Dembo, R. S., Eisenstat, S. C., and Steihaug, T. (1982). Inexact newton methods.
SIAM Journal on Numerical analysis, 19(2):400–408.

Denis, C. and Hebiri, M. (2017). Confidence sets with expected sizes for multiclass
classification. Journal of Machine Learning Research, 18(1):3571–3598. URL:
http://jmlr.org/papers/v18/16-596.html.

Denis, C. and Hebiri, M. (2019). Consistency of plug-in confidence sets for classifica-
tion in semi-supervised learning. Journal of Nonparametric Statistics, pages 1–31.
URL: https://doi.org/10.1080/10485252.2019.1689241.

Dennis, D., Acar, D. A. E., Mandikal, V., Sadasivan, V. S., Saligrama, V.,
Simhadri, H. V., and Jain, P. (2019). Shallow rnn: Accurate time-series
classification on resource constrained devices. In Advances in Neural In-
formation Processing Systems 32, pages 12916–12926. Curran Associates,
Inc. URL: http://papers.nips.cc/paper/9451-shallow-rnn-accurate-
time-series-classification-on-resource-constrained-devices.pdf.

Desislavov, R., Martínez-Plumed, F., and Hernández-Orallo, J. (2023). Trends in ai
inference energy consumption: Beyond the performance-vs-parameter laws of deep
learning. Sustainable Computing: Informatics and Systems, 38:100857. URL:
https://www.sciencedirect.com/science/article/pii/S2210537923000124.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of

384

the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational
Linguistics. URL: https://aclanthology.org/N19-1423.

DeVries, T. and Taylor, G. W. (2017). Improved regularization of convolutional
neural networks with cutout. arXiv preprint arXiv:1708.04552. URL: https:
//arxiv.org/abs/1708.04552.

Dietterich, T. G. (2000). An experimental comparison of three methods for construct-
ing ensembles of decision trees: Bagging, boosting, and randomization. Machine
Learning, 40(2):139–157. URL: https://doi.org/10.1023/A:1007607513941.

Doimo, D., Glielmo, A., Goldt, S., and Laio, A. (2022). Redundant representations
help generalization in wide neural networks. In Oh, A. H., Agarwal, A., Belgrave,
D., and Cho, K., editors, Advances in Neural Information Processing Systems.
URL: https://openreview.net/forum?id=lC5-Ty_0FiN.

Dong, X. and Yang, Y. (2019). Network pruning via transformable ar-
chitecture search. In Proceedings of the 33rd International Confer-
ence on Neural Information Processing Systems (NeurIPS). Curran Associates
Inc. URL: https://proceedings.neurips.cc/paper_files/paper/2019/file/
a01a0380ca3c61428c26a231f0e49a09-Paper.pdf.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. (2021). An image is worth 16x16 words: Transformers for image recognition
at scale. In International Conference on Learning Representations. URL: https:
//openreview.net/forum?id=YicbFdNTTy.

Dreuning, H., Bal, H. E., and Nieuwpoort, R. V. v. (2022). Mcap: Memory-centric
partitioning for large-scale pipeline-parallel dnn training. In Euro-Par 2022: Par-
allel Processing: 28th International Conference on Parallel and Distributed Com-
puting, Glasgow, UK, August 22–26, 2022, Proceedings, page 155–170, Berlin, Hei-
delberg. Springer-Verlag. URL: https://doi.org/10.1007/978-3-031-12597-
3_10.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for on-
line learning and stochastic optimization. Journal of Machine Learning Research,
12(61):2121–2159. URL: http://jmlr.org/papers/v12/duchi11a.html.

Dupont, E., Doucet, A., and Teh, Y. W. (2019). Augmented neural odes. In
Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett,
R., editors, Advances in Neural Information Processing Systems, volume 32, pages

385

3140–3150. Curran Associates, Inc. URL: https://proceedings.neurips.cc/
paper/2019/file/21be9a4bd4f81549a9d1d241981cec3c-Paper.pdf.

Dziugaite, G. K. and Roy, D. M. (2017). Computing nonvacuous generalization
bounds for deep (stochastic) neural networks with many more parameters than
training data. arXiv preprint arXiv:1703.11008. URL: https://arxiv.org/abs/
1703.11008.

El-Yaniv, R. and Wiener, Y. (2010). On the foundations of noise-free selective
classification. Journal of Machine Learning Research, 11(May):1605–1641. URL:
http://jmlr.org/papers/v11/el-yaniv10a.html.

Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural architecture search: A
survey. The Journal of Machine Learning Research, 20(1):1997–2017. URL:
https://jmlr.org/papers/v20/18-598.html.

Erichson, N. B., Azencot, O., Queiruga, A., Hodgkinson, L., and Mahoney, M. W.
(2021). Lipschitz recurrent neural networks. In International Conference
on Learning Representations. URL: https://openreview.net/forum?id=-
N7PBXqOUJZ.

Filipovic, J., Madzin, M., Fousek, J., and Matyska, L. (2015). Optimizing CUDA
code by kernel fusion: application on BLAS. The Journal of Supercomputing,
71(10):3934–3957. URL: https://doi.org/10.1007%2Fs11227-015-1483-z.

Fojo, D., Campos, V., and i Nieto, X. G. (2018). Comparing fixed and adaptive
computation time for recurrent neural networks. URL: https://openreview.
net/forum?id=SkZq3vyDf.

Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B. (2021). Sharpness-aware
minimization for efficiently improving generalization. In International Confer-
ence on Learning Representations. URL: https://openreview.net/forum?id=
6Tm1mposlrM.

Funahashi, K. and Nakamura, Y. (1993). Approximation of dynamical systems by
continuous time recurrent neural networks. Neural Networks, 6(6):801 – 806. URL:
http://www.sciencedirect.com/science/article/pii/S089360800580125X.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian approximation: Rep-
resenting model uncertainty in deep learning. In Balcan, M. F. and Weinberger,
K. Q., editors, Proceedings of The 33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning Research, pages 1050–1059,
New York, New York, USA. PMLR. URL: https://proceedings.mlr.press/
v48/gal16.html.

386

Gangrade, A., Kag, A., and Saligrama, V. (2021). Selective classification via one-
sided prediction. In Banerjee, A. and Fukumizu, K., editors, Proceedings of The
24th International Conference on Artificial Intelligence and Statistics, volume 130
of Proceedings of Machine Learning Research, pages 2179–2187. PMLR. URL:
https://proceedings.mlr.press/v130/gangrade21a.html.

Geifman, Y. and El-Yaniv, R. (2017). Selective classification for deep neu-
ral networks. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fer-
gus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural In-
formation Processing Systems, volume 30, pages 4878–4887. Curran Associates,
Inc. URL: https://proceedings.neurips.cc/paper_files/paper/2017/file/
4a8423d5e91fda00bb7e46540e2b0cf1-Paper.pdf.

Geifman, Y. and El-Yaniv, R. (2019). SelectiveNet: A deep neural network with
an integrated reject option. In Chaudhuri, K. and Salakhutdinov, R., editors,
Proceedings of the 36th International Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pages 2151–2159. PMLR. URL:
https://proceedings.mlr.press/v97/geifman19a.html.

Gholami, A., Keutzer, K., and Biros, G. (2019). ANODE: unconditionally accurate
memory-efficient gradients for neural odes. CoRR, abs/1902.10298. URL: http:
//arxiv.org/abs/1902.10298.

Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M. W., and Keutzer, K. (2021).
A survey of quantization methods for efficient neural network inference. URL:
https://arxiv.org/abs/2103.13630.

Gholami, A., Kwon, K., Wu, B., Tai, Z., Yue, X., Jin, P., Zhao, S., and
Keutzer, K. (2018). Squeezenext: Hardware-aware neural network design.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops. URL: https://openaccess.thecvf.com/
content_cvpr_2018_workshops/w33/html/Gholami_SqueezeNext_Hardware-
Aware_Neural_CVPR_2018_paper.html.

Gong, C., He, D., Tan, X., Qin, T., Wang, L., and Liu, T.-Y. (2018). Frage:
frequency-agnostic word representation. In Advances in Neural Information
Processing Systems, pages 1334–1345. URL: https://proceedings.neurips.
cc/paper_files/paper/2018/file/e555ebe0ce426f7f9b2bef0706315e0c-
Paper.pdf.

Gou, J., Yu, B., Maybank, S. J., and Tao, D. (2021). Knowledge distillation: A
survey. International Journal of Computer Vision, 129(6):1789–1819. URL:
https://doi.org/10.1007%2Fs11263-021-01453-z.

387

Graves, A. (2016). Adaptive computation time for recurrent neural networks. CoRR,
abs/1603.08983. URL: http://arxiv.org/abs/1603.08983.

Graves, A., Bellemare, M. G., Menick, J., Munos, R., and Kavukcuoglu, K. (2017).
Automated curriculum learning for neural networks. In Precup, D. and Teh, Y. W.,
editors, Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pages 1311–1320. PMLR.
URL: https://proceedings.mlr.press/v70/graves17a.html.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya,
E., Doersch, C., Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., Piot, B.,
kavukcuoglu, k., Munos, R., and Valko, M. (2020). Bootstrap your own la-
tent - a new approach to self-supervised learning. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H., editors, Advances in Neural Infor-
mation Processing Systems, volume 33, pages 21271–21284. Curran Associates,
Inc. URL: https://proceedings.neurips.cc/paper_files/paper/2020/file/
f3ada80d5c4ee70142b17b8192b2958e-Paper.pdf.

Gu, A., Goel, K., and Re, C. (2022). Efficiently modeling long sequences with
structured state spaces. In International Conference on Learning Representations.
URL: https://openreview.net/forum?id=uYLFoz1vlAC.

Gu, A., Johnson, I., Goel, K., Saab, K. K., Dao, T., Rudra, A., and Re, C. (2021).
Combining recurrent, convolutional, and continuous-time models with linear state
space layers. In Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W.,
editors, Advances in Neural Information Processing Systems. URL: https://
openreview.net/forum?id=yWd42CWN3c.

Gu, F., Askari, A., and Ghaoui, L. E. (2020). Fenchel lifted networks: A lagrange
relaxation of neural network training. In Chiappa, S. and Calandra, R., editors,
Proceedings of the Twenty Third International Conference on Artificial Intelligence
and Statistics, volume 108 of Proceedings of Machine Learning Research, pages
3362–3371. PMLR. URL: http://proceedings.mlr.press/v108/gu20a.html.

Gutmann, M. and Hyvärinen, A. (2010). Noise-contrastive estimation: A new es-
timation principle for unnormalized statistical models. In Teh, Y. W. and Tit-
terington, M., editors, Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learn-
ing Research, pages 297–304, Chia Laguna Resort, Sardinia, Italy. PMLR. URL:
https://proceedings.mlr.press/v9/gutmann10a.html.

Hacohen, G. and Weinshall, D. (2019). On the power of curriculum learning in
training deep networks. In Chaudhuri, K. and Salakhutdinov, R., editors, Pro-
ceedings of the 36th International Conference on Machine Learning, volume 97

388

of Proceedings of Machine Learning Research, pages 2535–2544. PMLR. URL:
https://proceedings.mlr.press/v97/hacohen19a.html.

Han, S., Mao, H., and Dally, W. J. (2016). Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. URL:
https://arxiv.org/abs/1510.00149.

Han, Y., Huang, G., Song, S., Yang, L., Wang, H., and Wang, Y. (2022). Dynamic
neural networks: A survey. volume 44, pages 7436–7456, Los Alamitos, CA,
USA. IEEE Computer Society. URL: https://doi.ieeecomputersociety.org/
10.1109/TPAMI.2021.3117837.

Hansen, C., Hansen, C., Alstrup, S., Simonsen, J. G., and Lioma, C. (2019). Neural
speed reading with structural-jump-LSTM. In International Conference on Learn-
ing Representations. URL: https://openreview.net/forum?id=B1xf9jAqFQ.

Hardt, M., Ma, T., and Recht, B. (2018). Gradient descent learns linear dynamical
systems. Journal of Machine Learning Research, 19(1):1025–1068. URL: https:
//jmlr.org/papers/v19/16-465.html.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick, R. (2022). Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 16000–16009.
URL: https://openaccess.thecvf.com/content/CVPR2022/html/He_Masked_
Autoencoders_Are_Scalable_Vision_Learners_CVPR_2022_paper.html.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. (2020). Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). URL:
https://openaccess.thecvf.com/content_CVPR_2020/html/He_Momentum_
Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_
paper.html.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 770–778. URL: https://openaccess.thecvf.com/content_
cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html.

Hendrycks, D. and Gimpel, K. (2016). Gaussian error linear units (gelus). arXiv
preprint arXiv:1606.08415. URL: https://arxiv.org/abs/1606.08415.

Herbei, R. and Wegkamp, M. (2006). Classification with reject option. The Canadian
Journal of Statistics/La Revue Canadienne de Statistique, pages 709–721.

389

Hermans, M. and Schrauwen, B. (2013). Training and analysing deep recurrent
neural networks. In Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z., and
Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 26,
pages 190–198. Curran Associates, Inc. URL: http://papers.nips.cc/paper/
5166-training-and-analysing-deep-recurrent-neural-networks.pdf.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neu-
ral network. arXiv preprint arXiv:1503.02531. URL: https://arxiv.org/abs/
1503.02531.

Hochreiter, J. (1991). Untersuchungen zu dynamischen neuronalen netzen. Master’s
thesis. Institut für Informatik, Technische Universität München. URL: http://
people.idsia.ch/~juergen/SeppHochreiter1991ThesisAdvisorSchmidhuber.
pdf.

Hochreiter, S. and Schmidhuber, J. (1997a). Flat minima. Neural computation,
9(1):1–42.

Hochreiter, S. and Schmidhuber, J. (1997b). Long short-term memory. Neural
computation, 9(8):1735–1780.

Hori, C., Hori, T., Lee, T.-Y., Zhang, Z., Harsham, B., Hershey, J. R., Marks,
T. K., and Sumi, K. (2017). Attention-based multimodal fusion for video de-
scription. In International Conference on Computer Vision (ICCV), pages 4203–
4212. URL: https://openaccess.thecvf.com/content_ICCV_2017/papers/
Hori_Attention-Based_Multimodal_Fusion_ICCV_2017_paper.pdf.

Howard, A., Sandler, M., Chu, G., Chen, L., Chen, B., Tan, M., Wang, W., Zhu,
Y., Pang, R., Vasudevan, V., Le, Q. V., and Adam, H. (2019). Searching for mo-
bilenetv3. CoRR, abs/1905.02244. URL: http://arxiv.org/abs/1905.02244.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,
Andreetto, M., and Adam, H. (2017). Mobilenets: Efficient convolutional neu-
ral networks for mobile vision applications. CoRR, abs/1704.04861. URL:
http://arxiv.org/abs/1704.04861.

Hu, J., Shen, L., and Sun, G. (2018). Squeeze-and-excitation networks. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7132–
7141. URL: https://openaccess.thecvf.com/content_cvpr_2018/html/Hu_
Squeeze-and-Excitation_Networks_CVPR_2018_paper.html.

Huang, G. (2022). Spatially and temporally adaptive neural networks. URL: https:
//icml.cc/virtual/2022/workshop/13451#wse-detail-19404.

390

Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. (2017).
Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). URL:
https://openaccess.thecvf.com/content_cvpr_2017/html/Huang_Densely_
Connected_Convolutional_CVPR_2017_paper.html.

Huang, L., Zhang, C., and Zhang, H. (2020). Self-adaptive training: be-
yond empirical risk minimization. In Larochelle, H., Ranzato, M., Had-
sell, R., Balcan, M., and Lin, H., editors, Advances in Neural Informa-
tion Processing Systems, volume 33, pages 19365–19376. Curran Associates,
Inc. URL: https://proceedings.neurips.cc/paper_files/paper/2020/file/
e0ab531ec312161511493b002f9be2ee-Paper.pdf.

Hutomo, G. D., Kusuma, J., Ribal, A., Mahie, A. G., and Aris, N. (2019). Numerical
solution of 2-d advection-diffusion equation with variable coefficient using du-fort
frankel method. Journal of Physics: Conference Series, 1180(1):012009. URL:
https://doi.org/10.1088/1742-6596/1180/1/012009.

Iandola, F. N., Moskewicz, M. W., Ashraf, K., Han, S., Dally, W. J., and Keutzer, K.
(2016). Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb
model size. CoRR, abs/1602.07360. URL: http://arxiv.org/abs/1602.07360.

Idelbayev, Y. and Carreira-Perpinan, M. A. (2020). Low-rank compression of
neural nets: Learning the rank of each layer. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 8046–8056. URL:
https://openaccess.thecvf.com/content_CVPR_2020/html/Idelbayev_Low-
Rank_Compression_of_Neural_Nets_Learning_the_Rank_of_Each_CVPR_2020_
paper.html.

Iliopoulos, F., Kontonis, V., Baykal, C., Menghani, G., Trinh, K., and Vee, E. (2022).
Weighted distillation with unlabeled examples. In Oh, A. H., Agarwal, A., Bel-
grave, D., and Cho, K., editors, Advances in Neural Information Processing Sys-
tems. URL: https://openreview.net/forum?id=M34VHvEU4NZ.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Bach, F. and Blei, D., editors,
Proceedings of the 32nd International Conference on Machine Learning, volume 37
of Proceedings of Machine Learning Research, pages 448–456, Lille, France. PMLR.
URL: https://proceedings.mlr.press/v37/ioffe15.html.

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D. P., and Wilson, A. G. (2018).
Averaging weights leads to wider optima and better generalization. In Confer-
ence on Uncertainty in Artificial Intelligence. URL: http://auai.org/uai2018/
proceedings/papers/313.pdf.

391

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam,
H., and Kalenichenko, D. (2018). Quantization and training of neural
networks for efficient integer-arithmetic-only inference. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 2704–
2713. URL: https://openaccess.thecvf.com/content_cvpr_2018/html/
Jacob_Quantization_and_Training_CVPR_2018_paper.html.

Jaeger, H., Lukosevicius, M., Popovici, D., and Siewert, U. (2007). Optimization and
applications of echo state networks with leaky-integrator neurons. Neural networks
: the official journal of the International Neural Network Society, 20:335–52.

Jaiswal, A., Babu, A. R., Zadeh, M. Z., Banerjee, D., and Makedon, F. (2021). A
survey on contrastive self-supervised learning. Technologies, 9(1). URL: https:
//www.mdpi.com/2227-7080/9/1/2.

Jernite, Y., Grave, E., Joulin, A., and Mikolov, T. (2017). Variable computation in
recurrent neural networks. In International Conference on Learning Representa-
tions. URL: https://openreview.net/forum?id=S1LVSrcge.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama,
S., and Darrell, T. (2014). Caffe: Convolutional architecture for fast feature em-
bedding. In Proceedings of the 22nd ACM international conference on Multimedia,
pages 675–678.

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., and Bengio, S. (2020). Fan-
tastic generalization measures and where to find them. In International Confer-
ence on Learning Representations. URL: https://openreview.net/forum?id=
SJgIPJBFvH.

Jiao, L., Zhang, F., Liu, F., Yang, S., Li, L., Feng, Z., and Qu, R. (2019). A survey
of deep learning-based object detection. IEEE Access, 7:128837–128868. URL:
https://doi.org/10.1109%2Faccess.2019.2939201.

Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M.,
and Soljačić, M. (2017). Tunable efficient unitary neural networks (EUNN)
and their application to RNNs. In Precup, D. and Teh, Y. W., editors, Pro-
ceedings of the 34th International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages 1733–1741. PMLR. URL:
http://proceedings.mlr.press/v70/jing17a.html.

Kag, A., Acar, D. A. E., Gangrade, A., and Saligrama, V. (2023a). Scaffolding a
student to instill knowledge. In The Eleventh International Conference on Learning
Representations. URL: https://openreview.net/forum?id=N4K5ck-BTT.

392

Kag, A., Acar, D. A. E., and Saligrama, V. (2023b). Improving dnn generalization
through data-dependent regularizers. In Submission. URL: https://github.
com/anilkagak2/DCL_Distributionally_Constrained_Learning.

Kag, A., Fedorov, I., Gangrade, A., Whatmough, P., and Saligrama, V. (2023c).
Efficient edge inference by selective query. In The Eleventh International Confer-
ence on Learning Representations. URL: https://openreview.net/forum?id=
jpR98ZdIm2q.

Kag, A. and Saligrama, V. (2021a). Time adaptive recurrent neural
network. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 15149–15158. URL:
https://openaccess.thecvf.com/content/CVPR2021/html/Kag_Time_
Adaptive_Recurrent_Neural_Network_CVPR_2021_paper.html.

Kag, A. and Saligrama, V. (2021b). Training recurrent neural networks via for-
ward propagation through time. In Meila, M. and Zhang, T., editors, Pro-
ceedings of the 38th International Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, pages 5189–5200. PMLR. URL:
https://proceedings.mlr.press/v139/kag21a.html.

Kag, A. and Saligrama, V. (2022). Condensing cnns with partial differen-
tial equations. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 610–619. URL:
https://openaccess.thecvf.com/content/CVPR2022/html/Kag_Condensing_
CNNs_With_Partial_Differential_Equations_CVPR_2022_paper.html.

Kag, A., Wadhwa, G., Saligrama, V., and Jain, P. (2023d). Spatially interpolated
inverted residual block. In Submission. URL: https://github.com/anilkagak2/
Spatial_Interpolation.

Kag, A., Zhang, Z., and Saligrama, V. (2020). Rnns incrementally evolving on an
equilibrium manifold: A panacea for vanishing and exploding gradients? In Inter-
national Conference on Learning Representations. URL: https://openreview.
net/forum?id=HylpqA4FwS.

Kang, Y., Hauswald, J., Gao, C., Rovinski, A., Mudge, T., Mars, J., and Tang,
L. (2017). Neurosurgeon: Collaborative intelligence between the cloud and mo-
bile edge. SIGPLAN Notices, 52(4):615–629. URL: https://doi.org/10.1145/
3093336.3037698.

Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y.,
and Lajoie, G. (2019). Non-normal recurrent neural network (nnrnn): learning
long time dependencies while improving expressivity with transient dynamics. In
Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett,

393

R., editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc. URL: https://proceedings.neurips.cc/paper/2019/file/
9d7099d87947faa8d07a272dd6954b80-Paper.pdf.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and Tang, P. T. P.
(2017). On large-batch training for deep learning: Generalization gap and
sharp minima. In International Conference on Learning Representations. URL:
https://openreview.net/forum?id=H1oyRlYgg.

Khalil, H. (2002). Nonlinear Systems. Pearson Education. Prentice Hall. URL:
https://books.google.com/books?id=t_d1QgAACAAJ.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In
International Conference on Machine Learning (ICML). URL: https://arxiv.
org/abs/1412.6980.

Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S. (2017). Self-
normalizing neural networks. In Guyon, I., Luxburg, U. V., Bengio, S.,
Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc. URL: https://proceedings.neurips.cc/paper_files/paper/2017/file/
5d44ee6f2c3f71b73125876103c8f6c4-Paper.pdf.

Krause, B., Kahembwe, E., Murray, I., and Renals, S. (2018). Dynamic eval-
uation of neural sequence models. In Dy, J. and Krause, A., editors, Pro-
ceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages 2766–2775. PMLR. URL:
http://proceedings.mlr.press/v80/krause18a.html.

Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny
images. Master’s thesis, Department of Computer Science, University of Toronto.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classi-
fication with deep convolutional neural networks. In Pereira, F., Burges,
C. J. C., Bottou, L., and Weinberger, K. Q., editors, Advances in Neural
Information Processing Systems, volume 25, pages 1097–1105. Curran As-
sociates, Inc. URL: https://proceedings.neurips.cc/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

Kumar, R., Rodehorst, M., Wang, J., Gu, J., and Kulis, B. (2020). Building a robust
word-level wakeword verification network. In INTERSPEECH.

Kusupati, A., Singh, M., Bhatia, K., Kumar, A., Jain, P., and Varma, M. (2018).
Fastgrnn: A fast, accurate, stable and tiny kilobyte sized gated recurrent neural
network. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi,

394

N., and Garnett, R., editors, Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc. URL: https://proceedings.neurips.cc/
paper/2018/file/ab013ca67cf2d50796b0c11d1b8bc95d-Paper.pdf.

Kuznetsov, V. and Mohri, M. (2015). Learning theory and algorithms
for forecasting non-stationary time series. In Cortes, C., Lawrence,
N., Lee, D., Sugiyama, M., and Garnett, R., editors, Advances in
Neural Information Processing Systems, volume 28. Curran Associates,
Inc. URL: https://proceedings.neurips.cc/paper_files/paper/2015/file/
41f1f19176d383480afa65d325c06ed0-Paper.pdf.

Kuznetsov, V. and Mohri, M. (2016). Time series prediction and online learning.
In Feldman, V., Rakhlin, A., and Shamir, O., editors, 29th Annual Conference on
Learning Theory, volume 49 of Proceedings of Machine Learning Research, pages
1190–1213, Columbia University, New York, New York, USA. PMLR. URL: https:
//proceedings.mlr.press/v49/kuznetsov16.html.

Laine, S. and Aila, T. (2017). Temporal ensembling for semi-supervised learn-
ing. In International Conference on Learning Representations. URL: https:
//openreview.net/forum?id=BJ6oOfqge.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017). Simple and scalable pre-
dictive uncertainty estimation using deep ensembles. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors,
Advances in Neural Information Processing Systems, volume 30, pages 6402–6413.
Curran Associates, Inc. URL: https://proceedings.neurips.cc/paper_files/
paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. (2019).
ALBERT: A lite BERT for self-supervised learning of language representations.
CoRR, abs/1909.11942. URL: http://arxiv.org/abs/1909.11942.

Larsson, G., Maire, M., and Shakhnarovich, G. (2017). Fractalnet: Ultra-deep neural
networks without residuals. In International Conference on Learning Representa-
tions. URL: https://openreview.net/forum?id=S1VaB4cex.

Le, Y. and Yang, X. (2015). Tiny imagenet visual recognition challenge. Dept. of
Statistics, Stanford University. URL: https://vision.stanford.edu/teaching/
cs231n/reports/2015/pdfs/yle_project.pdf.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

LeCun, Y., Cortes, C., and Burges, C. (2010). Mnist handwritten digit database.
ATT Labs [Online]. Available: http: // yann. lecun. com/ exdb/ mnist , 2.

395

Lei, J. (2014). Classification with confidence. Biometrika, 101(4):755–769. URL:
https://doi.org/10.1093/biomet/asu038.

Lei, T., Zhang, Y., Wang, S. I., Dai, H., and Artzi, Y. (2018). Simple recurrent units
for highly parallelizable recurrence. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 4470–4481.
Association for Computational Linguistics. URL: https://aclanthology.org/
D18-1477.

Lezcano-Casado, M. and Martínez-Rubio, D. (2019). Cheap orthogonal constraints in
neural networks: A simple parametrization of the orthogonal and unitary group. In
Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 3794–3803. PMLR. URL: http://proceedings.mlr.press/v97/
lezcano-casado19a.html.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T. (2018a). Vi-
sualizing the loss landscape of neural nets. In Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, Ad-
vances in Neural Information Processing Systems, volume 31. Curran Associates,
Inc. URL: https://proceedings.neurips.cc/paper_files/paper/2018/file/
a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf.

Li, H., Zhang, H., Qi, X., Yang, R., and Huang, G. (2019a). Improved
techniques for training adaptive deep networks. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV). URL:
https://openaccess.thecvf.com/content_ICCV_2019/html/Li_Improved_
Techniques_for_Training_Adaptive_Deep_Networks_ICCV_2019_paper.html.

Li, M., Li, Y., Tian, Y., Jiang, L., and Xu, Q. (2021). Appealnet: An efficient and
highly-accurate edge/cloud collaborative architecture for dnn inference. In 2021
58th ACM/IEEE Design Automation Conference (DAC), pages 409–414. URL:
https://ieeexplore.ieee.org/document/9586176.

Li, S., Li, W., Cook, C., Gao, Y., and Zhu, C. (2019b). Deep independently recurrent
neural network (indrnn). URL: https://arxiv.org/abs/1910.06251.

Li, S., Li, W., Cook, C., Zhu, C., and Gao, Y. (2018b). Independently re-
current neural network (indrnn): Building a longer and deeper rnn. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5457–
5466. URL: https://openaccess.thecvf.com/content_cvpr_2018/html/Li_
Independently_Recurrent_Neural_CVPR_2018_paper.html.

Li, Z., Liu, F., Yang, W., Peng, S., and Zhou, J. (2022). A survey of convolutional
neural networks: Analysis, applications, and prospects. IEEE Transactions on
Neural Networks and Learning Systems, 33(12):6999–7019.

396

Liang, T., Glossner, J., Wang, L., Shi, S., and Zhang, X. (2021). Pruning and
quantization for deep neural network acceleration: A survey. Neurocomputing,
461:370–403. URL: https://www.sciencedirect.com/science/article/pii/
S0925231221010894.

Lin, J., Chen, W.-M., Cai, H., Gan, C., and Han, S. (2021). Mcunetv2: Memory-
efficient patch-based inference for tiny deep learning. In Annual Conference on
Neural Information Processing Systems (NeurIPS), volume 34, pages 2346–2358.
Curran Associates, Inc. URL: https://proceedings.neurips.cc/paper/2021/
hash/1371bccec2447b5aa6d96d2a540fb401-Abstract.html.

Lin, J., Chen, W.-M., Lin, Y., cohn, j., Gan, C., and Han, S. (2020a).
Mcunet: Tiny deep learning on iot devices. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H., editors, Advances in Neural In-
formation Processing Systems, volume 33, pages 11711–11722. Curran As-
sociates, Inc. URL: https://proceedings.neurips.cc/paper/2020/hash/
86c51678350f656dcc7f490a43946ee5-Abstract.html.

Lin, T., Jin, C., and Jordan, M. (2020b). On gradient descent ascent for nonconvex-
concave minimax problems. In III, H. D. and Singh, A., editors, Proceed-
ings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages 6083–6093. PMLR. URL:
https://proceedings.mlr.press/v119/lin20a.html.

Linsley, D., Karkada Ashok, A., Govindarajan, L. N., Liu, R., and Serre, T.
(2020). Stable and expressive recurrent vision models. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H., editors, Advances in
Neural Information Processing Systems, volume 33, pages 10456–10467. Curran
Associates, Inc. URL: https://proceedings.neurips.cc/paper/2020/file/
766d856ef1a6b02f93d894415e6bfa0e-Paper.pdf.

Lipton, Z. C., Berkowitz, J., and Elkan, C. (2015). A critical review of recurrent neu-
ral networks for sequence learning. URL: https://arxiv.org/abs/1506.00019.

Liu, C., Zoph, B., Shlens, J., Hua, W., Li, L., Fei-Fei, L., Yuille, A. L., Huang,
J., and Murphy, K. (2017a). Progressive neural architecture search. CoRR,
abs/1712.00559. URL: http://arxiv.org/abs/1712.00559.

Liu, H., Simonyan, K., and Yang, Y. (2019a). DARTS: Differentiable architecture
search. In International Conference on Learning Representations. URL: https:
//openreview.net/forum?id=S1eYHoC5FX.

Liu, M., Liu, H., and Chen, C. (2017b). Enhanced skeleton visualization for view
invariant human action recognition. Pattern Recognition, 68:346 – 362. URL:
http://www.sciencedirect.com/science/article/pii/S0031320317300936.

397

Liu, Y., Sun, Y., Xue, B., Zhang, M., Yen, G. G., and Tan, K. C. (2021). A survey on
evolutionary neural architecture search. IEEE Transactions on Neural Networks
and Learning Systems.

Liu, Z., Wang, Z., Liang, P. P., Salakhutdinov, R. R., Morency, L.-P., and
Ueda, M. (2019b). Deep gamblers: Learning to abstain with portfolio the-
ory. In Advances in Neural Information Processing Systems, pages 10622–
10632. URL: https://proceedings.neurips.cc/paper_files/paper/2019/
file/0c4b1eeb45c90b52bfb9d07943d855ab-Paper.pdf.

Lopez-Paz, D., Bottou, L., Schölkopf, B., and Vapnik, V. (2016). Unifying distillation
and privileged information. In International Conference on Learning Representa-
tions (Poster). URL: http://arxiv.org/abs/1511.03643.

Luo, W. and Yu, F. (2019). Recurrent highway networks with grouped auxiliary
memory. IEEE Access, 7:182037–182049. URL: https://ieeexplore.ieee.org/
document/8932404.

Ma, N., Zhang, X., Zheng, H.-T., and Sun, J. (2018). Shufflenet
v2: Practical guidelines for efficient cnn architecture design. In
Proceedings of the European Conference on Computer Vision (ECCV).
URL: https://openaccess.thecvf.com/content_ECCV_2018/html/Ningning_
Light-weight_CNN_Architecture_ECCV_2018_paper.html.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., and Potts, C. (2011).
Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Tech-
nologies, pages 142–150, Portland, Oregon, USA. Association for Computational
Linguistics. URL: http://www.aclweb.org/anthology/P11-1015.

Martens, J. and Sutskever, I. (2011). Learning recurrent neural networks with
hessian-free optimization. In Proceedings of the 28th International Conference
on Machine Learning (ICML-11), pages 1033–1040.

McAuley, J. and Leskovec, J. (2013). Hidden factors and hidden topics: Understand-
ing rating dimensions with review text. In Proceedings of the 7th ACM Conference
on Recommender Systems, RecSys ’13, pages 165–172, New York, NY, USA. ACM.
URL: http://doi.acm.org/10.1145/2507157.2507163.

McMahan, H. B., Holt, G., Sculley, D., Young, M., Ebner, D., Grady, J., Nie, L.,
Phillips, T., Davydov, E., Golovin, D., Chikkerur, S., Liu, D., Wattenberg, M.,
Hrafnkelsson, A. M., Boulos, T., and Kubica, J. (2013). Ad click prediction: a
view from the trenches. In Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD).

398

Menick, J., Elsen, E., Evci, U., Osindero, S., Simonyan, K., and Graves, A. (2021).
Practical real time recurrent learning with a sparse approximation. In Interna-
tional Conference on Learning Representations. URL: https://openreview.net/
forum?id=q3KSThy2GwB.

Merity, S., Keskar, N. S., and Socher, R. (2018). Regularizing and optimizing LSTM
language models. In International Conference on Learning Representations. URL:
https://openreview.net/forum?id=SyyGPP0TZ.

Mhammedi, Z., Hellicar, A., Rahman, A., and Bailey, J. (2017). Efficient orthogo-
nal parametrisation of recurrent neural networks using householder reflections. In
Precup, D. and Teh, Y. W., editors, Proceedings of the 34th International Con-
ference on Machine Learning, volume 70 of Proceedings of Machine Learning Re-
search, pages 2401–2409. PMLR. URL: http://proceedings.mlr.press/v70/
mhammedi17a.htm.

Miller, J. and Hardt, M. (2019). Stable recurrent models. In International Confer-
ence on Learning Representations. URL: https://openreview.net/forum?id=
Hygxb2CqKm.

Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., and Terzopoulos, D.
(2022). Image segmentation using deep learning: A survey. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(7):3523–3542.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2018). Foundations of Machine
Learning. Adaptive Computation and Machine Learning series. MIT Press. ISBN:
9780262039406.

Mujika, A., Meier, F., and Steger, A. (2017). Fast-slow recurrent neu-
ral networks. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach,
H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances
in Neural Information Processing Systems, volume 30. Curran Associates,
Inc. URL: https://proceedings.neurips.cc/paper_files/paper/2017/file/
e4a93f0332b2519177ed55741ea4e5e7-Paper.pdf.

Mujika, A., Meier, F., and Steger, A. (2018). Approximating real-time recur-
rent learning with random kronecker factors. In Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, Ad-
vances in Neural Information Processing Systems, volume 31, pages 6594–6603.
Curran Associates, Inc. URL: https://proceedings.neurips.cc/paper/2018/
file/dba132f6ab6a3e3d17a8d59e82105f4c-Paper.pdf.

Müller, R., Kornblith, S., and Hinton, G. (2019). When does label smooth-
ing help? In Proceedings of the 33rd International Conference on Neu-
ral Information Processing Systems, Red Hook, NY, USA. Curran Associates

399

Inc. URL: https://proceedings.neurips.cc/paper_files/paper/2019/file/
f1748d6b0fd9d439f71450117eba2725-Paper.pdf.

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltz-
mann machines. In Proceedings of the 27th International Conference on Ma-
chine Learning, ICML’10, page 807–814, Madison, WI, USA. Omnipress. URL:
https://www.cs.toronto.edu/~fritz/absps/reluICML.pdf.

Nan, F. and Saligrama, V. (2017a). Adaptive classification for prediction un-
der a budget. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fer-
gus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural In-
formation Processing Systems, volume 30, pages 4727–4737. Curran Associates,
Inc. URL: https://proceedings.neurips.cc/paper_files/paper/2017/file/
d9ff90f4000eacd3a6c9cb27f78994cf-Paper.pdf.

Nan, F. and Saligrama, V. (2017b). Dynamic model selection for prediction under a
budget. arXiv preprint arXiv:1704.07505. URL: https://arxiv.org/abs/1704.
07505.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011).
Reading digits in natural images with unsupervised feature learning. In NIPS
Workshop on Deep Learning and Unsupervised Feature Learning 2011. URL: http:
//ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf.

Neyshabur, B. (2017). Implicit regularization in deep learning. arXiv preprint
arXiv:1709.01953. URL: https://arxiv.org/abs/1709.01953.

Neyshabur, B., Tomioka, R., and Srebro, N. (2015). Norm-based capacity control in
neural networks. In Conference on Learning Theory, pages 1376–1401. PMLR.

Ni, C., Charoenphakdee, N., Honda, J., and Sugiyama, M. (2019). On the cali-
bration of multiclass classification with rejection. In Wallach, H., Larochelle, H.,
Beygelzimer, A., d’Alché Buc, F., Fox, E., and Garnett, R., editors, Advances
in Neural Information Processing Systems 32, pages 2586–2596. Curran Asso-
ciates, Inc. URL: http://papers.nips.cc/paper/8527-on-the-calibration-
of-multiclass-classification-with-rejection.pdf.

Niu, M. Y., Horesh, L., and Chuang, I. (2019). Recurrent neural networks in the
eye of differential equations. arXiv preprint arXiv:1904.12933. URL: https:
//arxiv.org/abs/1904.12933.

Odema, M., Rashid, N., Demirel, B. U., and Faruque, M. A. A. (2021). Lens: Layer
distribution enabled neural architecture search in edge-cloud hierarchies. In 2021
58th ACM/IEEE Design Automation Conference (DAC), pages 403–408.

400

Ollivier, Y. and Charpiat, G. (2015). Training recurrent networks online without
backtracking. CoRR, abs/1507.07680. URL: http://arxiv.org/abs/1507.
07680.

OpenAI (2023). Gpt-4 technical report. arXiv:2303.08774 URL: https://arxiv.
org/abs/2303.08774.

Park, E., Kim, D., Kim, S., Kim, Y.-D., Kim, G., Yoon, S., and Yoo, S. (2015).
Big/little deep neural network for ultra low power inference. In 2015 In-
ternational Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), pages 124–132.

Pascanu, R., Gulcehre, C., Cho, K., and Bengio, Y. (2013a). How to construct
deep recurrent neural networks. arXiv preprint arXiv:1312.6026. URL: https:
//arxiv.org/abs/1312.6026.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013b). On the difficulty of training recur-
rent neural networks. In Dasgupta, S. and McAllester, D., editors, Proceedings of
the 30th International Conference on Machine Learning, volume 28 of Proceedings
of Machine Learning Research, pages 1310–1318, Atlanta, Georgia, USA. PMLR.
URL: https://proceedings.mlr.press/v28/pascanu13.html.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala,
S. (2019). Pytorch: An imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems 32, pages 8024–8035. Cur-
ran Associates, Inc. URL: http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf.

Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L.-M., Rothchild, D., So,
D., Texier, M., and Dean, J. (2021). Carbon emissions and large neural network
training. URL: https://arxiv.org/abs/2104.10350.

Pennington, J., Schoenholz, S., and Ganguli, S. (2017). Resurrecting the sigmoid
in deep learning through dynamical isometry: theory and practice. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and
Garnett, R., editors, Advances in Neural Information Processing Systems 30, pages
4785–4795.

Rabanser, S., Thudi, A., Hamidieh, K., Dziedzic, A., and Papernot, N. (2022).
Selective classification via neural network training dynamics. URL: https:
//arxiv.org/abs/2205.13532.

401

Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey, C., and Sutskever,
I. (2022). Robust speech recognition via large-scale weak supervision. URL:
https://arxiv.org/abs/2212.04356.

Ramaswamy, H. G., Tewari, A., and Agarwal, S. (2018). Consistent algorithms for
multiclass classification with an abstain option. Electronic Journal of Statistics,
12(1):530–554. URL: https://doi.org/10.1214/17-EJS1388.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M. (2022). Hierarchical
text-conditional image generation with clip latents. URL: https://arxiv.org/
abs/2204.06125.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. (2019). Regularized evolution
for image classifier architecture search. Proceedings of the AAAI Conference on
Artificial Intelligence, 33(01):4780–4789. URL: https://ojs.aaai.org/index.
php/AAAI/article/view/4405.

Rigollet, P. and Tong, X. (2011). Neyman-pearson classification, convexity and
stochastic constraints. Journal of Machine Learning Research, 12(Oct):2831–2855.

Romero, A., Kahou, S. E., Montréal, P., Bengio, Y., Montréal, U. D., Romero, A.,
Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., and Bengio, Y. (2015). Fitnets:
Hints for thin deep nets. In International Conference on Learning Representations
(ICLR). URL: https://arxiv.org/abs/1412.6550.

Rosenblatt, F. (1962). Principles of neurodynamics. Spartan Books, Washington,
D.C.

Rubanova, Y., Chen, R. T. Q., and Duvenaud, D. (2019). Latent odes for irregularly-
sampled time series. CoRR, abs/1907.03907. URL: http://arxiv.org/abs/
1907.03907.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747. URL: https://arxiv.org/abs/1609.04747.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning Internal
Representations by Error Propagation, page 318–362. MIT Press, Cambridge,
MA, USA.

Rusch, T. K. and Mishra, S. (2021a). Coupled oscillatory recurrent neural network
(cornn): An accurate and (gradient) stable architecture for learning long time
dependencies. In International Conference on Learning Representations. URL:
https://openreview.net/forum?id=F3s69XzWOia.

402

Rusch, T. K. and Mishra, S. (2021b). Unicornn: A recurrent model for learning
very long time dependencies. In Proceedings of the 38th International Confer-
ence on Machine Learning, volume 139 of Proceedings of Machine Learning Re-
search, pages 9168–9178. PMLR. URL: http://proceedings.mlr.press/v139/
rusch21a.html.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015).
ImageNet Large Scale Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252.

Ruthotto, L. and Haber, E. (2020). Deep neural networks motivated by partial differ-
ential equations. Journal of Mathematical Imaging and Vision. 62, pages:352–364.
URL: https://doi.org/10.1007/s10851-019-00903-1.

Sadinle, M., Lei, J., and Wasserman, L. (2019). Least ambiguous set-valued classi-
fiers with bounded error levels. Journal of the American Statistical Association,
114(525):223–234. URL: https://doi.org/10.1080/01621459.2017.1395341.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E., Ghasemipour, S.
K. S., Ayan, B. K., Mahdavi, S. S., Lopes, R. G., Salimans, T., Ho, J., Fleet, D. J.,
and Norouzi, M. (2022). Photorealistic text-to-image diffusion models with deep
language understanding. URL: https://arxiv.org/abs/2205.11487.

Sajjadi, M., Javanmardi, M., and Tasdizen, T. (2016). Regularization with stochas-
tic transformations and perturbations for deep semi-supervised learning. In
Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and Garnett, R., editors, Ad-
vances in Neural Information Processing Systems, volume 29. Curran Associates,
Inc. URL: https://proceedings.neurips.cc/paper_files/paper/2016/file/
30ef30b64204a3088a26bc2e6ecf7602-Paper.pdf.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018).
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). URL: https://openaccess.thecvf.com/content_cvpr_2018/html/
Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html.

Schroff, F., Kalenichenko, D., and Philbin, J. (2015). Facenet: A uni-
fied embedding for face recognition and clustering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
815–823. URL: https://openaccess.thecvf.com/content_cvpr_2015/html/
Schroff_FaceNet_A_Unified_2015_CVPR_paper.html.

Sennrich, R., Haddow, B., and Birch, A. (2016). Improving neural machine trans-
lation models with monolingual data. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers),

403

pages 86–96, Berlin, Germany. Association for Computational Linguistics. URL:
https://aclanthology.org/P16-1009.

Shahroudy, A., Liu, J., Ng, T.-T., and Wang, G. (2016). Ntu rgb+d: A large scale
dataset for 3d human activity analysis. In IEEE Conference on Computer Vision
and Pattern Recognition.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding Machine Learning -
From Theory to Algorithms. Cambridge University Press.

Shekhar, S., Ghavamzadeh, M., and Javidi, T. (2019). Binary classification with
bounded abstention rate. arXiv preprint arXiv:1905.09561. URL: https://
arxiv.org/abs/1905.09561.

Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-
scale image recognition. In International Conference on Learning Representations.
URL: http://arxiv.org/abs/1409.1556.

Sohn, K. (2016). Improved deep metric learning with multi-class n-pair loss objective.
In Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and Garnett, R., editors, Ad-
vances in Neural Information Processing Systems, volume 29. Curran Associates,
Inc. URL: https://proceedings.neurips.cc/paper_files/paper/2016/file/
6b180037abbebea991d8b1232f8a8ca9-Paper.pdf.

Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C. A., Cubuk,
E. D., Kurakin, A., and Li, C.-L. (2020). Fixmatch: Simplifying semi-
supervised learning with consistency and confidence. In Larochelle, H., Ran-
zato, M., Hadsell, R., Balcan, M., and Lin, H., editors, Advances in Neural In-
formation Processing Systems, volume 33, pages 596–608. Curran Associates,
Inc. URL: https://proceedings.neurips.cc/paper_files/paper/2020/file/
06964dce9addb1c5cb5d6e3d9838f733-Paper.pdf.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: A simple way to prevent neural networks from overfit-
ting. Journal of Machine Learning Research, 15(56):1929–1958. URL: http:
//jmlr.org/papers/v15/srivastava14a.html.

Srivastava, R. K., Greff, K., and Schmidhuber, J. (2015). Highway networks. CoRR,
abs/1505.00387. URL: http://arxiv.org/abs/1505.00387.

Stanton, S. D., Izmailov, P., Kirichenko, P., Alemi, A. A., and Wilson, A. G. (2021).
Does knowledge distillation really work? In Beygelzimer, A., Dauphin, Y., Liang,
P., and Vaughan, J. W., editors, Advances in Neural Information Processing Sys-
tems. URL: https://openreview.net/forum?id=7J-fKoXiReA.

404

Sun, K. and Sun, A. (2021). Dual descent alm and admm. arXiv:2109.13214 URL:
https://arxiv.org/abs/2109.13214.

Sun, Y., Zhang, L., and Schaeffer, H. (2020). NeuPDE: Neural network based or-
dinary and partial differential equations for modeling time-dependent data. In
Lu, J. and Ward, R., editors, Proceedings of The First Mathematical and Scientific
Machine Learning Conference, volume 107 of Proceedings of Machine Learning Re-
search, pages 352–372, Princeton University, Princeton, NJ, USA. PMLR. URL:
http://proceedings.mlr.press/v107/sun20a.html.

Talathi, S. S. and Vartak, A. (2015). Improving performance of recurrent neural
network with relu nonlinearity. arXiv preprint arXiv:1511.03771. URL: https:
//arxiv.org/abs/1511.03771.

Tallec, C. and Ollivier, Y. (2018). Unbiased online recurrent optimization. In Inter-
national Conference on Learning Representations. URL: https://openreview.
net/forum?id=rJQDjk-0b.

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A.,
and Le, Q. V. (2019). Mnasnet: Platform-aware neural architec-
ture search for mobile. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). URL: https:
//openaccess.thecvf.com/content_CVPR_2019/html/Tan_MnasNet_Platform-
Aware_Neural_Architecture_Search_for_Mobile_CVPR_2019_paper.html.

Tan, M. and Le, Q. (2019). EfficientNet: Rethinking model scaling for convolutional
neural networks. In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 6105–6114, Long Beach, California, USA.
PMLR. URL: http://proceedings.mlr.press/v97/tan19a.html.

Tan, M. and Le, Q. (2021). Efficientnetv2: Smaller models and faster training. In
Meila, M. and Zhang, T., editors, Proceedings of the 38th International Confer-
ence on Machine Learning, volume 139 of Proceedings of Machine Learning Re-
search, pages 10096–10106. PMLR. URL: https://proceedings.mlr.press/
v139/tan21a.html.

Tarvainen, A. and Valpola, H. (2017). Mean teachers are better role
models: Weight-averaged consistency targets improve semi-supervised deep
learning results. In Guyon, I., Luxburg, U. V., Bengio, S., Wal-
lach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances
in Neural Information Processing Systems, volume 30. Curran Associates,
Inc. URL: https://proceedings.neurips.cc/paper_files/paper/2017/file/
68053af2923e00204c3ca7c6a3150cf7-Paper.pdf.

405

Tay, Y., Dehghani, M., Bahri, D., and Metzler, D. (2022). Efficient transformers:
A survey. ACM Computing Survey, 55(6). URL: https://doi.org/10.1145/
3530811.

Teerapittayanon, S., McDanel, B., and Kung, H. T. (2017). Branchynet: Fast in-
ference via early exiting from deep neural networks. URL: https://arxiv.org/
abs/1709.01686.

The Theano Development Team, Al-Rfou, R., Alain, G., Almahairi, A., Angermueller,
C., Bahdanau, D., Ballas, N., Bastien, F., Bayer, J., Belikov, A., Belopolsky, A.,
Bengio, Y., Bergeron, A., Bergstra, J., Bisson, V., Bleecher Snyder, J., Bouchard,
N., Boulanger-Lewandowski, N., Bouthillier, X., de Brébisson, A., Breuleux, O.,
Carrier, P.-L., Cho, K., Chorowski, J., Christiano, P., Cooijmans, T., Côté, M.-A.,
Côté, M., Courville, A., Dauphin, Y. N., Delalleau, O., Demouth, J., Desjardins, G.,
Dieleman, S., Dinh, L., Ducoffe, M., Dumoulin, V., Ebrahimi Kahou, S., Erhan,
D., Fan, Z., Firat, O., Germain, M., Glorot, X., Goodfellow, I., Graham, M.,
Gulcehre, C., Hamel, P., Harlouchet, I., Heng, J.-P., Hidasi, B., Honari, S., Jain,
A., Jean, S., Jia, K., Korobov, M., Kulkarni, V., Lamb, A., Lamblin, P., Larsen, E.,
Laurent, C., Lee, S., Lefrancois, S., Lemieux, S., Léonard, N., Lin, Z., Livezey, J. A.,
Lorenz, C., Lowin, J., Ma, Q., Manzagol, P.-A., Mastropietro, O., McGibbon, R. T.,
Memisevic, R., van Merriënboer, B., Michalski, V., Mirza, M., Orlandi, A., Pal, C.,
Pascanu, R., Pezeshki, M., Raffel, C., Renshaw, D., Rocklin, M., Romero, A., Roth,
M., Sadowski, P., Salvatier, J., Savard, F., Schlüter, J., Schulman, J., Schwartz,
G., Vlad Serban, I., Serdyuk, D., Shabanian, S., Simon, É., Spieckermann, S.,
Ramana Subramanyam, S., Sygnowski, J., Tanguay, J., van Tulder, G., Turian,
J., Urban, S., Vincent, P., Visin, F., de Vries, H., Warde-Farley, D., Webb, D. J.,
Willson, M., Xu, K., Xue, L., Yao, L., Zhang, S., and Zhang, Y. (2016). Theano:
A Python framework for fast computation of mathematical expressions. arXiv
e-prints, page arXiv:1605.02688. URL: https://ui.adsabs.harvard.edu/abs/
2016arXiv160502688T.

Tian, Y., Krishnan, D., and Isola, P. (2020). Contrastive multiview coding. In
Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XI, page 776–794, Berlin, Heidelberg. Springer-
Verlag. URL: https://doi.org/10.1007/978-3-030-58621-8_45.

Tieleman, T., Hinton, G., et al. (2012). Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude. COURSERA: Neural networks for
machine learning, 4(2):26–31.

Tong, X. (2013). A plug-in approach to neyman-pearson classification. Journal of
Machine Learning Research, 14(56):3011–3040. URL: http://jmlr.org/papers/
v14/tong13a.html.

406

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., and Jegou, H. (2021).
Training data-efficient image transformers & distillation through attention. In
Meila, M. and Zhang, T., editors, Proceedings of the 38th International Confer-
ence on Machine Learning, volume 139 of Proceedings of Machine Learning Re-
search, pages 10347–10357. PMLR. URL: https://proceedings.mlr.press/
v139/touvron21a.html.

Trinh, T., Dai, A., Luong, T., and Le, Q. (2018). Learning longer-term depen-
dencies in RNNs with auxiliary losses. In Dy, J. and Krause, A., editors, Pro-
ceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages 4965–4974. PMLR. URL:
http://proceedings.mlr.press/v80/trinh18a.html.

Tung, F. and Mori, G. (2019). Similarity-preserving knowledge distillation. In 2019
IEEE/CVF International Conference on Computer Vision (ICCV), pages 1365–
1374, Los Alamitos, CA, USA. IEEE Computer Society. URL: https://doi.
ieeecomputersociety.org/10.1109/ICCV.2019.00145.

van den Oord, A., Li, Y., and Vinyals, O. (2019). Representation learning with
contrastive predictive coding. URL: https://arxiv.org/pdf/1807.03748.pdf.

Vapnik, V. and Izmailov, R. (2015). Learning using privileged information: Sim-
ilarity control and knowledge transfer. Journal of Machine Learning Research,
16(61):2023–2049. URL: http://jmlr.org/papers/v16/vapnik15b.html.

Vapnik, V. N. (2000). The Nature of Statistical Learning Theory. Springer,
New York. ISBN: 9781441931603 URL: https://doi.org/10.1007/978-1-4757-
3264-1.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L. u., and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg,
U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R.,
editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc. URL: https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Volpi, R., Namkoong, H., Sener, O., Duchi, J. C., Murino, V., and Savarese, S. (2018).
Generalizing to unseen domains via adversarial data augmentation. In Bengio, S.,
Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R.,
editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc. URL: https://proceedings.neurips.cc/paper_files/paper/
2018/file/1d94108e907bb8311d8802b48fd54b4a-Paper.pdf.

407

Vorontsov, E., Trabelsi, C., Kadoury, S., and Pal, C. (2017). On orthogonal-
ity and learning recurrent networks with long term dependencies. In Inter-
national Conference on Machine Learning (ICML), pages 3570–3578. URL:
http://proceedings.mlr.press/v70/vorontsov17a.html.

Wang, W. and Howard, A. (2021). Mosaic: Mobile segmentation via decoding aggre-
gated information and encoded context. URL: https://arxiv.org/abs/2112.
11623.

Wang, X., Luo, Y., Crankshaw, D., Tumanov, A., Yu, F., and Gonzalez, J. E. (2018).
Idk cascades: Fast deep learning by learning not to overthink. URL: https:
//arxiv.org/abs/1706.00885.

Wang, Y., Yao, Q., Kwok, J., and Ni, L. M. (2020). Generalizing from a few examples:
A survey on few-shot learning. URL: https://arxiv.org/abs/1904.05046.

Warden, P. (2017). Speech commands: A public dataset for single-word speech
recognition. Dataset available from http://download.tensorflow.org/data/
speech_commands_v0.01.tar.gz.

Warden, P. (2018). Speech Commands: A Dataset for Limited-Vocabulary Speech
Recognition. arXiv e-prints, page arXiv:1804.03209. URL: https://arxiv.org/
abs/1804.03209.

Wegkamp, M. (2007). Lasso type classifiers with a reject option. Electronic Journal
of Statistics, 1:155–168. URL: https://doi.org/10.1214/07-EJS058.

Wegkamp, M. and Yuan, M. (2011). Support vector machines with a reject option.
Bernoulli, 17(4):1368–1385. URL: https://doi.org/10.3150/10-BEJ320.

Weiss, N., Holmes, P., and Hardy, M. (2005). A Course in Probability. Pearson
Addison Wesley.

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE, 78(10):1550–1560.

White, C., Neiswanger, W., and Savani, Y. (2021). Bananas: Bayesian optimiza-
tion with neural architectures for neural architecture search. In Proceedings of
the AAAI Conference on Artificial Intelligence. URL: https://arxiv.org/abs/
1910.11858.

Wiener, Y. and El-Yaniv, R. (2011). Agnostic selective classification. In Shawe-
Taylor, J., Zemel, R., Bartlett, P., Pereira, F., and Weinberger, K., editors, Ad-
vances in Neural Information Processing Systems, volume 24, pages 1665–1673.
Curran Associates, Inc. URL: https://proceedings.neurips.cc/paper_files/
paper/2011/file/4b6538a44a1dfdc2b83477cd76dee98e-Paper.pdf.

408

Wightman, R. (2019). Pytorch image models. https://github.com/rwightman/
pytorch-image-models.

Williams, R. J. and Peng, J. (1990). An efficient gradient-based algorithm for on-
line training of recurrent network trajectories. Neural Computation, 2(4):490–501.
URL: https://doi.org/10.1162/neco.1990.2.4.490.

Williams, R. J. and Zipser, D. (1989). A learning algorithm for continually running
fully recurrent neural networks. Neural Computation, 1(2):270–280.

Wisdom, S., Powers, T., Hershey, J., Le Roux, J., and Atlas, L. (2016). Full-
capacity unitary recurrent neural networks. In Lee, D. D., Sugiyama, M.,
Luxburg, U. V., Guyon, I., and Garnett, R., editors, Advances in Neu-
ral Information Processing Systems 29, pages 4880–4888. Curran Associates,
Inc. URL: http://papers.nips.cc/paper/6327-full-capacity-unitary-
recurrent-neural-networks.pdf.

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia,
Y., and Keutzer, K. (2019). Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 10734–10742. URL:
https://openaccess.thecvf.com/content_CVPR_2019/papers/Wu_FBNet_
Hardware-Aware_Efficient_ConvNet_Design_via_Differentiable_Neural_
Architecture_Search_CVPR_2019_paper.pdf.

Wu, Y. and He, K. (2018). Group normalization. URL: https:
//openaccess.thecvf.com/content_ECCV_2018/html/Yuxin_Wu_Group_
Normalization_ECCV_2018_paper.html.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M.,
Cao, Y., Gao, Q., Macherey, K., et al. (2016). Google’s neural machine translation
system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144. URL: https://arxiv.org/abs/1609.08144.

Wu, Z., Xiong, Y., Yu, S. X., and Lin, D. (2018). Unsupervised
feature learning via non-parametric instance discrimination. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3733–
3742. URL: https://openaccess.thecvf.com/content_cvpr_2018/html/Wu_
Unsupervised_Feature_Learning_CVPR_2018_paper.html.

Xie, Q., Dai, Z., Hovy, E., Luong, T., and Le, Q. (2020). Unsupervised data aug-
mentation for consistency training. Advances in neural information processing
systems, 33:6256–6268. URL: https://proceedings.neurips.cc/paper/2020/
file/44feb0096faa8326192570788b38c1d1-Paper.pdf.

409

Xu, Z. E., Kusner, M. J., Weinberger, K. Q., Chen, M., and Chapelle, O. (2014).
Classifier cascades and trees for minimizing feature evaluation cost. Journal of
Machine Learning Research, 15:2113–2144. URL: http://jmlr.org/papers/v15/
xu14a.html.

Yang, X., Song, Z., King, I., and Xu, Z. (2022). A survey on deep semi-supervised
learning. IEEE Transactions on Knowledge and Data Engineering, pages 1–20.
URL: https://arxiv.org/abs/2103.00550.

Yang, Z., Dai, Z., Salakhutdinov, R., and Cohen, W. W. (2018). Breaking the
softmax bottleneck: A high-rank RNN language model. In International Confer-
ence on Learning Representations. URL: https://openreview.net/forum?id=
HkwZSG-CZ.

Yelp, I. (2017). Yelp dataset challenge. URL: https://www.yelp.com/dataset/
challenge.

You, Y., Gitman, I., and Ginsburg, B. (2017). Large batch training of convolutional
networks. URL: https://arxiv.org/abs/1708.03888.

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli, S., Song, X., Dem-
mel, J., Keutzer, K., and Hsieh, C.-J. (2020). Large batch optimization for deep
learning: Training bert in 76 minutes. In International Conference on Learning
Representations. URL: https://openreview.net/forum?id=Syx4wnEtvH.

Yu, A. W., Lee, H., and Le, Q. V. (2017). Learning to skim text. CoRR,
abs/1704.06877. URL: http://arxiv.org/abs/1704.06877.

Yu, J., Yang, L., Xu, N., Yang, J., and Huang, T. (2019). Slimmable neural
networks. In International Conference on Learning Representations. URL:
https://openreview.net/forum?id=H1gMCsAqY7.

Yuan, M. and Wegkamp, M. (2010). Classification methods with reject option based
on convex risk minimization. Journal of Machine Learning Research, 11(5):111–
130. URL: http://jmlr.org/papers/v11/yuan10a.html.

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo, Y. (2019).
Cutmix: Regularization strategy to train strong classifiers with localiz-
able features. In International Conference on Computer Vision (ICCV).
URL: https://openaccess.thecvf.com/content_ICCV_2019/html/Yun_
CutMix_Regularization_Strategy_to_Train_Strong_Classifiers_With_
Localizable_Features_ICCV_2019_paper.html.

Zagoruyko, S. and Komodakis, N. (2016). Wide residual networks. In British Ma-
chine Vision Conference (BMVC). URL: https://bmva-archive.org.uk/bmvc/
2016/papers/paper087/index.html.

410

Zagoruyko, S. and Komodakis, N. (2017). Paying more attention to attention:
Improving the performance of convolutional neural networks via attention trans-
fer. In International Conference on Learning Representations. URL: https:
//openreview.net/forum?id=Sks9_ajex.

Zeng, X. and Martinez, T. R. (2000). Using a neural networks to approximate an
ensemble of classifiers. In Neural Processing Letters, page 2000. URL: https:
//doi.org/10.1023/A:1026530200837.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2017). Understand-
ing deep learning requires rethinking generalization. In International Confer-
ence on Learning Representations. URL: https://openreview.net/forum?id=
Sy8gdB9xx.

Zhang, J., Lei, Q., and Dhillon, I. (2018a). Stabilizing gradients for deep neural
networks via efficient SVD parameterization. In Dy, J. and Krause, A., editors,
Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages 5806–5814. PMLR. URL:
http://proceedings.mlr.press/v80/zhang18g.html.

Zhang, X., Zhou, X., Lin, M., and Sun, J. (2018b). Shufflenet: An ex-
tremely efficient convolutional neural network for mobile devices. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
6848–6856. URL: https://openaccess.thecvf.com/content_cvpr_2018/html/
Zhang_ShuffleNet_An_Extremely_CVPR_2018_paper.html.

Zhang, Y., Xiang, T., Hospedales, T. M., and Lu, H. (2018c). Deep mutual learn-
ing. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 4320–4328. URL: https://openaccess.thecvf.com/content_cvpr_2018/
html/Zhang_Deep_Mutual_Learning_CVPR_2018_paper.html.

Zhao, Z.-Q., Zheng, P., Xu, S.-T., and Wu, X. (2019). Object detection with deep
learning: A review. URL: https://doi.org/10.1109/tnnls.2018.2876865.

Zhou, T., Wang, S., and Bilmes, J. (2020). Curriculum learning by dynamic instance
hardness. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin,
H., editors, Advances in Neural Information Processing Systems, volume 33, pages
8602–8613. Curran Associates, Inc. URL: https://proceedings.neurips.cc/
paper/2020/file/62000dee5a05a6a71de3a6127a68778a-Paper.pdf.

Zhu, P., Acar, D. A. E., Feng, N., Jain, P., and Saligrama, V. (2019). Cost aware in-
ference for iot devices. In Chaudhuri, K. and Sugiyama, M., editors, Proceedings of
the Twenty-Second International Conference on Artificial Intelligence and Statis-
tics, volume 89 of Proceedings of Machine Learning Research, pages 2770–2779.
PMLR. URL: https://proceedings.mlr.press/v89/zhu19d.html.

411

Zilly, J. G., Srivastava, R. K., Koutník, J., and Schmidhuber, J. (2017). Re-
current highway networks. In Precup, D. and Teh, Y. W., editors, Proceed-
ings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 4189–4198. PMLR. URL:
https://proceedings.mlr.press/v70/zilly17a.html.

Zoph, B. and Le, Q. V. (2016). Neural architecture search with reinforcement learn-
ing. CoRR, abs/1611.01578. URL: http://arxiv.org/abs/1611.01578.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018). Learn-
ing transferable architectures for scalable image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). URL: https://openaccess.thecvf.com/content_cvpr_2018/html/
Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html.

412

CURRICULUM VITAE

413

414

415

