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Currently, the analysis of human motion is one of the most interesting and active
research topics in computer science, especially in computer vision. The great interest in this
area is due to the wide range of promising applications in many fields, such as medicine,
surveillance systems, sports performance analysis, virtual reality, human–computer inter-
action, etc. Human motion analysis concerns the detection, tracking, and recognition of
people and their activities based on data recorded by various types of sensors. In these
studies, RGB and depth cameras are often used. Additionally, research aimed at developing
gait and action recognition methods often uses motion capture systems based on active
or passive markers and IMU sensors. These systems are challenging to develop, but also
offer possibilities to solve advanced research problems, especially when only visual data
are used. Other types of sensors that are used in motion analysis are pressure platforms
and EMG sensors.

The Special Issue (SI) entitled “Intelligent Sensors for Human Motion Analysis” focuses
on many aspects of human motion analysis. The Issue raised concerns of, among others,
pose estimation, action and gait recognition, fall detection, as well as EMG signal processing,
pressure platform construction, and issues related to improving motion capture acquisition.

As mentioned, the analysis of human movement is an important and extensive research
problem, with many potential applications. This is the subject of the paper [1], which
focuses on a review of the applications of pose estimation in human health and performance
throughout life. The authors provided many examples of the usage of this type of system,
but focused specifically on applications in the areas of human development, performance
optimization, injury prevention, and motor evaluation of people with neurologic damage
or disease. An extensive review of 125 scientific papers includes an overview of available
tools, their use in improving human health and performance, and a discussion of the
limitations and implementation problems associated with pose estimation. Moreover, the
authors anticipate that, despite the existence of many limitations, the applications of pose
estimation in human health and performance will continue to expand in the coming years,
and that these technologies will provide powerful tools to capture significant aspects of
human movement that have been difficult to register using conventional techniques.

The issues related to the estimation of the pose were also discussed in papers [2,3].
In [2], Rapczyński et al. investigated the commonly used datasets, discussed their biases
and used them in cross-database experiments. They also proposed a method to harmonize
the definitions of skeleton joints specific to the dataset and a scale normalization method
that significantly improves generalization across cameras, subjects, and databases by up
to 50%. The experiments carried out showed the negative effect of the biases of the
dataset on generalization, as well as the positive impact of the proposed method of scale
normalization. The authors also investigated the effect of using more or fewer cameras
(also virtual cameras), training with multiple datasets, and using the OpenPose library.

Sensors 2022, 22, 4952. https://doi.org/10.3390/s22134952 https://www.mdpi.com/journal/sensors1
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The more difficult challenge is to estimate the pose using a monocular camera. In [3], a
real-time framework is proposed for the estimation of 3D absolute poses of multiple people
using a monocular camera. The developed system, called Root-GAST-Net, combines a
human detector, a 2D pose estimator, a 3D root-relative pose reconstructor, and a root depth
estimator in a top-down approach. The framework is based on modified versions of the
RootNet and GAST-Net networks. In the experiments, the proposed method outperformed
the state-of-the-art method. Furthermore, real-time processing was achieved using the
Nvidia GeForce GTX 1080.

Another research area that has been widely studied is the problem of gait recognition.
In [4], hybrid methods are proposed that combine regularized discriminant analysis (RDA)
and swarm intelligence techniques for gait recognition. These techniques are utilized
to tune the observation weights and hyperparameters of the RDA method to minimize
the objective function. In the investigation, three well-known optimization algorithms
were used: particle swarm optimization (PSO), grey wolf optimization (GWO), and whale
optimization algorithm (WOA). The experiments carried out confirmed the usefulness of
the developed methods.

In turn, Moro et al. [5] presented an approach for markerless gait analysis based on
RGB video data and deep learning algorithms. To detect 2D feature points in the image,
the AdaFuse algorithm was used. Then, the acquired 2D points were used to determine
3D points and generate the human biomechanical skeleton models. The results obtained
by the proposed method were compared with the data registered by the marker motion
capture system.

Data augmentation is an important technique in machine learning, focusing on the
enhancement of the size and quality of training datasets. In [6], a new method for action
recognition time series augmentation is introduced. The method determines constraints on
the generated data using statistics for a class and its representatives. The method has been
compared with other approaches on eight datasets from the action recognition domain.

Recognizing and monitoring activities of daily living are an important part of under-
standing human behavior. Several approaches emerged to distinguish between activities of
daily living and falls, focusing mainly on camera-based and inertial measurements. Some
techniques analyze not only a person’s movement, but also their static pose, the correct
recognition of which can carry important cues for fall detection. In [7], the recognition of
the lying pose from a depth map is approached with a new hybrid FRSystem. Due to the
application of the LEM2 algorithm, it was possible to reduce the number of rules almost
twofold, making the inference system more interpretable by a human expert.

Detection is not the only research topic related to human falls another important issue
is the assessment of physical function and the risk of falls. An automated system proposed
in [8] predicts the patients’ score on the well-known Berg Balance Scale (BBS) using motion
data captured by a multiple camera system. Furthermore, machine learning methods were
used to develop fall risk predictors that reduce the number of tasks required to assess fall
risk, without compromising the accuracy of the classic BBS assessment.

Human motion analysis may be applied not only to individuals, but also to groups
and gatherings. In [9], different depth sensors (Kinect v2, Azure Kinect, and Zed 2)
were evaluated in terms of accuracy to assess body orientation angles to detect spaces
occupied by social groups using the F-Formations model. In addition, the advantages
and disadvantages per device in determining the body orientation were discussed, and an
experimental setup for such tasks was presented.

In [10], a deep learning approach is proposed for the human action recognition prob-
lem, utilizing existing architectures and transfer learning. The solution consists of multiple
steps, including feature mapping, feature fusion, and feature selection. Deep features are
fused using the Serial-based Extended (SbE) approach, and the best features are selected
using kurtosis-controlled weighted KNN.

In [11], the authors proposed a non-contact monitoring and classification system for
breathing patterns using the XGBoost classifier and Mel-frequency cepstral coefficient
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(MFCC) feature extraction. Breathing patterns are observed using FMCW radar technology
that can be used to develop non-contact medical devices. The authors discuss data analysis,
as well as the detailed implementation of hardware-based signal processing. The results of
the respiratory pattern classification were presented on a dataset consisting of 4000 samples
imitating five breathing patterns, where an 87.375% accuracy was achieved.

The most precise measurements of human movements are provided by optical motion
capture systems. The acquisition is based on the calibrated multicamera setup that tracks the
3D coordinates of markers attached to the human body. Although the registration accuracy
is high, motion capture systems are not error-free. In fact, occlusions can cause markers to
become undetectable. The time instants of a motion sequence with missing markers are called
gaps. They require some kind of post-processing to reconstruct missing data, a process that
can be performed manually by humans. However, it is a time-consuming operation, and it
can be completed only by the experienced and skilled staff of a motion capture laboratory.
Thus, automatic methods of gap reconstruction are highly demanded. In [12], feed-forward
neural networks, three variants of recurrent networks (gated recurrent unit, long-short-term
memory, and bidirectional LSTM), and interpolation techniques (linear, spline, modified Akima,
piecewise cubic Hermite, and polynomial), as well as low-rank matrix completion techniques,
are employed to predict trajectories of the lost markers.

The applied reconstruction techniques for mocap data and acquisition noise can result in
another issue—momentary systematic errors called artefact distortion. They introduce trajectory
modifications of different types and scales. In [13], four existing types of artefacts are detected,
classified, and removed. The proposed algorithm is based on the derivative, low-pass filtering,
mathematical morphology, loose predictor, and applicability analysis. In the validation, multiple
simulations using synthetically distorted sequences are used. The outcomes are compared to
human performance in the detection and removal of artefact distortion.

The optical marker-based motion capture acquisition has serious limitations as regards
its practical applications. The multicamera system has to be mounted in the laboratory
and calibrated prior to being used. Moreover, markers are attached to the human body
before registration. Thus, the research on the effective markerless acquisition of motion
data is of great importance. In [14], the challenge of three-dimensional human mesh
reconstruction from a single video is faced. The human pose refinement network based on
a non-local attention mechanism is applied to refine the noisy sequence of 3D human poses.
It consistently improves the performance of existing state-of-the-art methods.

Another widely studied research area is the problem of recognition of facial emotions,
which are expressed by human mimicry. In [15], grammatical facial expressions especially
important for sign languages are recognized. The proposed approach extracts time se-
quences containing selected action units and facial landmarks using the OpenFace library,
and classifies them by the chosen deep neural networks. Another contribution of the paper
is related to the collected LSE_GFE dataset. It contains isolated signs, expressive sentences,
interviews, and annotations for some grammatical facial expressions.

Human motion can also be described by EMG data. They describe the electrical activi-
ties of muscles in successive time instants. In [16], the human–machine interface based on
the EMG registration is designed and successfully applied to control the robotic manipula-
tor. The interface utilizes a multilayer neural network that identifies four different classes
of muscle contraction, and a state machine for the transition change of the manipulator.

In another variant, motion is represented by the ground reaction forces. They describe
the reaction of the ground to the body in contact. In [17], a low-cost wearable insole unit
is developed that measures plantar pressure. It is based on the principle of photoelectric
sensing and performs measurements for six selected key points of the human foot.

The SI entitled “Intelligent Sensors for Human Motion Analysis” comprises 17 articles
on numerous aspects related to human motion analysis, which were briefly overviewed
above. New techniques and methods for pose estimation, gait recognition, and fall detection
have been proposed and verified. Some of them will trigger further research, and some
may become the backbone of commercial systems.
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It can be noticed that human motion analysis and related matters are challenging and
important hot topics. There are still a lot of issues to be addressed, and so an exciting future
is expected for this research area.
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Abstract: The emergence of pose estimation algorithms represents a potential paradigm shift in the
study and assessment of human movement. Human pose estimation algorithms leverage advances
in computer vision to track human movement automatically from simple videos recorded using
common household devices with relatively low-cost cameras (e.g., smartphones, tablets, laptop
computers). In our view, these technologies offer clear and exciting potential to make measurement of
human movement substantially more accessible; for example, a clinician could perform a quantitative
motor assessment directly in a patient’s home, a researcher without access to expensive motion
capture equipment could analyze movement kinematics using a smartphone video, and a coach
could evaluate player performance with video recordings directly from the field. In this review, we
combine expertise and perspectives from physical therapy, speech-language pathology, movement
science, and engineering to provide insight into applications of pose estimation in human health and
performance. We focus specifically on applications in areas of human development, performance
optimization, injury prevention, and motor assessment of persons with neurologic damage or disease.
We review relevant literature, share interdisciplinary viewpoints on future applications of these
technologies to improve human health and performance, and discuss perceived limitations.

Keywords: pose estimation; movement tracking; computer vision; artificial intelligence; markerless
motion capture; assessment; kinematics; development; machine learning

1. Introduction

Humans have long been interested in quantitative measurement of our movements [1,2].
This is evident in many aspects of life: an Olympic judge scrutinizes and scores a figure
skater’s performance; a physical therapist measures a patient’s walking speed to assess
mobility; a running coach inspects and adjusts a distance runner’s foot-strike pattern to
prevent injury. We also interpret the movements of others to communicate (e.g., sign
language) or make inferences about emotional state (i.e., “reading body language”; [3–5]).

In this review, we focus on applications of human pose estimation, an emerging
technology for quantitative measurement of human movement kinematics [6–13]. Pose
estimation algorithms use computer vision to identify key landmarks on the body (e.g.,
fingertip, elbow, knee) from simple digital videos that can be recorded using common
household devices (example workflow and applications are shown in Figure 1A,B, respec-
tively). This simplicity offers exciting potential for measuring whole-body kinematics in
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nearly any setting, with minimal costs of money, time, and effort. We also see significant
opportunities for the ongoing maturation and validation of these approaches to offer ro-
bust supplements or alternatives to subjective visual motor assessments and to improve
accessibility to measurement of movement kinematics by removing long-standing barriers.
The ability to capture quantitative, whole-body kinematics using a household device could
substantially reduce reliance on traditional methods that are inaccessible or data-limited,
such as expensive research-grade motion capture systems or wearable devices.

 

Figure 1. (A) Basic workflow for using pose estimation to measure movement kinematics from video; (B) Example
applications of using pose estimation to quantify spatiotemporal and kinematic gait parameters (top) and frequencies of
repetitive upper and lower extremity movements (bottom). These applications are described in greater detail in [14,15]. The
gait images shown in (B) are taken from the GPJATK dataset [16].

We focus specifically on applications of human pose estimation for improving human
health and performance. We note that pose estimation algorithms are used for many
other applications (e.g., intelligent video surveillance [17], activity recognition [18], sign
language translation [19]), and prior reviews have discussed technical aspects of various
algorithms and their perceived advantages and disadvantages [20–22]. Here, we focus
less on the technical aspects of pose estimation and instead discuss applications of these
algorithms, both in terms of current applications and those that we perceive may be possible
in the future. We cover areas of application across the human lifespan, including human
development, human performance optimization, musculoskeletal injury prevention, and
motor assessment of persons with neurologic damage or disease.

We also integrate the clinical perspective on pose estimation applications. Much
prior work on human pose estimation (including our own) has suggested promise for
clinical application. However, in our view, the clinician’s (i.e., end user) viewpoint on
these potential applications has not received adequate consideration or representation, and
applications of pose estimation have not been contextualized within current models of
clinical care. We aim to address these issues by providing an interdisciplinary perspective
that integrates views from physical therapy, speech-language pathology, movement science,
and engineering.
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2. What Is Pose Estimation?

Markerless human pose estimation relies on recent advances in computer vision
to automatically track anatomical landmarks—so-called keypoints—of the human body
from digital videos. Examples of possible tracked keypoints include the ankle, knee,
hip, wrist, elbow, shoulder, foot (e.g., heel, big toe, and small toe), hand (e.g., tip and
three joints of every finger), and face (e.g., ears, eyes, nose, and mouth). Current state-
of-the-art algorithms used to track human poses have been trained on large datasets of
digital images and/or videos of human movement in which keypoints have been manually
annotated [23,24]. The trained algorithms can then track new, unlabeled videos of humans.
This enables automated, video-based human movement tracking, with the greatest accuracy
achieved for movements similar to those in the training dataset.

The primary output from pose estimation is a series of two-dimensional pixel coor-
dinates of the tracked keypoints, as they appear projected onto the image sensor of the
camera. From the two-dimensional pixel coordinates, different approaches of analyzing
and processing data have been reported, and fall into three broad categories. First, some
studies use the output to represent planar two-dimensional kinematics of human move-
ment, from which specific metrics of interest can be calculated [15,25–28]. An example of
an instance in which this approach may be appropriate is capturing a video of the sagittal
view of human locomotion and subsequently calculating sagittal gait kinematics (e.g.,
lower limb joint angles). Second, it is possible to reconstruct three-dimensional kinematics
of human movement if capturing videos from multiple viewpoints using at least two
cameras [29–31]. This approach offers significant advantages over a single camera view, in
part because occlusions occur and out-of-plane motions are not well-captured by a single
camera; however, this approach also has potential drawbacks associated with setup and
computational complexity. Last, it is also possible to use the pose estimation output as
an input for further processing by neural networks designed to predict specific metrics
of interest [32–34]. Subsequent processing by neural networks may be appropriate when
predicting a scalar value such as peak knee flexion during walking or clinical ratings,
but this approach may be less accurate when predicting frame-by-frame time-series data.
This inaccuracy is commonly due to the fact that most algorithms do not aim to minimize
frame-to-frame variation when performing pose estimation with video data.

These diverse approaches to data analysis of pose estimation of human movement
make it possible to obtain many parameters associated with movement. For example, pose
estimation has been used to study human locomotion [15,34,35] and provide kinematic
measures such as lower limb joint angles; spatiotemporal measures such as gait speed, step
length, and step time; and clinical ratings such as the Gait Deviation Index in patients with
cerebral palsy or MDS–UPDRS gait scores for persons with Parkinson’s disease. Other
studies have used pose estimation to assess neuromotor risk and development in human
infants [36,37]. These areas of application are introduced briefly here, but will be covered
in greater detail in later sections of this manuscript.

3. What Tools Are Available?

Several different algorithms for pose estimation have been published over the past
decade (e.g., OpenPose [13], DeepLabCut [12], DeepPose [10], DeeperCut [8], Alpha-
Pose [38], ArtTrack [7]). Using these algorithms, it is possible to take advantage of pre-
trained networks that are freely available, or train new networks customized for various
research or clinical needs. For example, a commonly used pretrained network is the
human pretrained demo of OpenPose that includes keypoints of the body, feet, hands,
and face [13,39] and has been used in several recent studies for quantitative analysis of
human movement [15,26,29,31,34,40].

The computations needed for training a new network and tracking new videos often
require intensive computing capabilities. Therefore, the computing power of a graphics
processing unit (GPU) may be necessary in order for processing times to reach accept-
able limits (many algorithms provide documentation with hardware recommendations,
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as in [11]). If a user does not have their own GPU, some computing environments (e.g.,
Google Colaboratory) provide GPU access for faster processing; however, these may not be
suitable for applications involving protected health information because the processing
occurs externally. Processing without a GPU is slower but may be sufficient depending on
the user’s time constraints and processing needs (e.g., length of videos, number of people
tracked, number of keypoints tracked). Furthermore, it is also possible to use pose estima-
tion for real-time movement tracking (as is available with OpenPose, for example [39]). This
capability may be particularly useful to some users, as it could be implemented to provide
real-time biofeedback for various applications. Beyond these increasingly popular deep
learning approaches, other approaches also use optimization [41–43] and filtering [44,45]
techniques to perform pose estimation.

4. How Can These Tools Be Used to Improve Human Health and Performance?

In the following subsections, we will focus on three specific areas of application
across the human lifespan: (1) human development, (2) performance optimization and
injury prevention, and (3) motor assessment of persons with neurologic damage or disease
(Figure 2). Certainly, many additional areas of application exist beyond the scope of this
review. We focus on these applications due to the emerging nature of the relevant literature
and the expertise of the authors. We expect that many of the principles discussed below
are likely to generalize to other applications and/or populations of interest.

 

Figure 2. In this manuscript, we focus on three general areas of applications of pose estimation in human health and
performance across the lifespan: tracking of motor and non-motor development in young children (orange), performance
optimization and injury prevention in athletes and other populations that are primarily young or middle-aged adults
(green), and clinical examinations of persons with neurologic damage or disease who are primarily older adults (blue).

4.1. Tracking General Motor Development

Developmental scientists study the emergence of specific behaviors from infancy
to adolescence in many different settings, including the laboratory, home environment,
clinic, and classroom. Accordingly, video recordings are an integral component of most,
if not all, developmental research programs. Video-based approaches have been used to
study multiple domains of development, including gross and fine motor development as
well as social, language, and play development [46–49]. One major limitation of current
video-based approaches is the time-intensive but necessary process of manually coding
child behaviors of interest by clinicians and researchers. Pose estimation technologies offer
a much-needed opportunity to accelerate video coding to capture specific behaviors of
interest in such developmental investigations. Due to the extensive manual video coding
that has been done in the field over decades, there are large existing video databases that
have already undergone human coding/reliability checks and can provide a valuable
source of ground truth data for training and validation of machine learning models of de-
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velopment (e.g., [50]). Such approaches could further help decrease reliance on assessment
tools that require the expertise and time of trained clinicians for interpretation and, in turn,
offer cost-effective and scalable alternatives to more subjective measures of typical and
atypical development.

Although in the early stages of application, pose estimation approaches are begin-
ning to be applied to the study of general motor development [36,51] (Figure 3A). For
example, pose estimation has been used to detect normal writhing movements (i.e., typical
spontaneous movements produced by newborns) vs. abnormal movements from video
recordings of newborns in their first days of life [51]. Preliminary findings are promising
and suggest that normal vs. abnormal writhing movements can be automatically classified
with 80% accuracy, a percentage comparable to expert human classification.

 

Figure 3. (A) Example applications of pose estimation to quantify early motor developmental milestones (left), including
writhing movements (e.g., [51]), crawling, and cruising (e.g., [36]); and (B) other motor-driven domains of development,
including emotional regulation, social reciprocity, and communicative gestures. Overlap between (A,B) denotes that these
areas of development are intimately linked with one another. Arrow indicates that application of pose estimation is not
restricted to these examples and can be applied to quantify later motor and motor-driven developmental milestones.

As infants progress in their gross motor development, the onsets of crawling and
walking—gross motor advances that allow infants to explore and learn from their
environment—have been found to be intimately linked with growth in other develop-
mental domains [52,53]. Indeed, findings from developmental science literature suggest
that delays in the onset of walking may result in limited opportunities for exploration and
input from caregivers and family members, leading to subsequent delays in language and
social communication development [48,54,55]. As a result, it is critical to improve the early
detection of delays in locomotor development in order to intervene prior to any cascading
effects on other domains of development.

Researchers have begun to implement pose estimation as a useful tool for quantitative
tracking of infant locomotor development. For example, Ossmy and Adolph [36] used a
combination of pose estimation, machine learning, and time-series analyses to examine the
role of experience in infant acquisition of interlimb coordination based on video recordings
of the infants “cruising” (i.e., side-stepping with support of the upper extremities)—which
is the transitional behavior between crawling and walking—at 11 months of age. More
specifically, the authors used pose estimation to track frame-by-frame body movements
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and subsequently calculated the distance between the limbs (i.e., the distance between
the hands and the distance between the feet) for each tracked video frame to extract
the coordination pattern for cruising. The results of this study provided insight into
the mechanisms by which infants learn to optimally cruise and, as a result, may hold
implications for future work aiming to investigate early detection and intervention for
delays in locomotor development.

4.2. Clinical Use in Pediatric Populations

Early detection of atypical development is critical for the diagnosis of congenital
movement-based disorders (e.g., cerebral palsy) and neurodevelopmental disorders (e.g.,
autism spectrum disorder) to ensure timely access to early intervention services to improve
motor outcomes (e.g., coordination, postural support) and other domains of development
(e.g., social, language). Advances in pose estimation approaches and the emergence of novel
machine learning-based models offer exciting potential for the assessment of movement-
based predictors of clinical disorders. For example, pose estimation is beginning to be
applied, not only to measure predictors of later motor-based disorders, but also predictors
of other motor-driven domains of development (social communication; Figure 3B). In this
subsection, we provide examples of these advances.

Cerebral palsy (CP) is the most common movement disorder in childhood, caused
by abnormal neural development or injury that impairs the ability to control movement
and posture [56]. Diagnosis of CP using conventional assessments typically occurs be-
tween age 12 and 24 months; however, using a combination of standardized assessments
and neonatal magnetic resonance imaging (MRI), CP can be accurately predicted before
6 months corrected age [57]. Yet, there remain significant drawbacks to this approach: stan-
dardized assessments are based on subjective human observation that requires substantial
training and clinical expertise, and neonatal MRI is expensive and often inaccessible in
low-resource areas [58].

Recent research efforts have attempted to address these shortcomings by aiming
to use video recordings to implement low-cost, automatic, objective alternatives for the
detection of CP risk. Such investigations have succeeded in predicting CP based on auto-
matic movement assessment from infant video recordings with performance comparable
to standardized CP risk measures [59–61]. For example, in a multi-site cohort investi-
gation, an automated, objective, movement assessment of infant video recordings was
compared to standard risk assessment measures (i.e., the General Movement Assessment
and neonatal neuroimaging) at 9–15 weeks corrected age to predict CP status and motor
function at approximately 3.7 years of age. The results of this investigation found that
the automated, video-based approach exhibited sensitivity and specificity comparable to
standard measures used to predict CP [61].

There are also clear applications for pose estimation to potentially improve the early
identification of neurodevelopmental disorders, such as the early detection of autism
spectrum disorder (ASD). Although parents often report first concerns about ASD when
their child is between 12 to 14 months of age [62,63] and reliable ASD diagnosis is possible
by age 2, the majority of children with ASD remain undiagnosed until 4 years of age [64].
Shortages of ASD expert clinicians and limited capacities at autism tertiary diagnostic
centers contribute to the long wait times for families [65]. Families living in rural and
low-resource communities are often required to travel long distances to receive diagnostic
services, placing them at an even greater disadvantage in accessing services. Indeed, a
recent report indicates that approximately 84% (2635/3142) of U.S. counties do not have
the necessary ASD diagnostic resources [66]. Given these barriers to a timely diagnosis, a
significant portion of children with ASD are missing a critical window for early intervention
services, as evidence shows that intervention before the age of 2 significantly improves
behavioral and developmental outcomes for children with ASD [67–69]. The detrimental
impact of diagnostic delays has resulted in federal prioritization of early identification of
ASD and an urgency to develop accessible and accurate early screening methods [64].
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Leveraging advances in machine learning, efforts have been made to develop scalable,
video-based ASD screeners to improve access to diagnostic and early intervention services.
For example, Crippa et al. developed an algorithm to examine the predictive value of
motor behavioral biomarker measures in ASD to discriminate preschool children with
ASD from children with typical development using a simple upper-limb reach-to-drop
task [70]. The resulting model showed an accuracy rate of 96.7%, suggesting that video-
based approaches combined with machine learning can be a useful method of classification
and discrimination in the diagnostic process [70].

The emerging evidence supporting the application of automated, video-based assess-
ments to monitor general gross motor development and promote early detection of both
motor-based and neurodevelopmental disorders is promising. In order to establish the
clinical utility of pose estimation, future work is needed to examine the feasibility and
acceptability of clinician use of such techniques.

4.3. Human Performance Optimization, Injury Prevention, and Safety

Numerous applications of pose estimation exist within optimization of human perfor-
mance and safety, with these applications spanning injury risk assessment, rehabilitation,
and enhancing human performance. This application space commonly consists of some
type of instructor, such as a coach, trainer, or clinician, attempting to assess an individual’s
movement patterns to determine whether the individual is at an increased risk for injury,
is moving differently from a healthy, uninjured individual, or is moving with some level of
inefficiency that can be modified to improve performance. Within injury assessment, com-
mon applications of pose estimation have been to evaluate an individual’s risk for specific
musculoskeletal injuries and to perform a post-hoc analysis following the occurrence of
an injury. For example, two-dimensional pose estimation techniques have been applied to
develop proof-of-concept screening technologies that detect abnormal gait patterns during
walking and running [71–75], fall detection [76–78], abnormal movements that are indica-
tive of injury risk in manual labor work environments [79–81], and risk of sports-related
injury, such as anterior cruciate ligament rupture [82–84]. Post-hoc analysis following an
injury has primarily been targeted towards sports performance applications and focused
on understanding mechanisms of injury, with the ultimate goal of developing techniques
to mitigate injury risk [85,86].

Applications of pose estimation to rehabilitation following injury or surgery typically
focus on using these techniques to monitor an individual’s return to normal movement
patterns and to guide the motion of rehabilitation technology that is designed to interface
with a patient. Pose estimation techniques have been used to measure a patient’s range of
motion and movement during functional exercises and assess their progression towards a
healthy range of motion [87–89]. In particular, there has been an emphasis on the use of
pose estimation to monitor rehabilitation progress outside of the clinic, such as in home or
on an athletic field [90–93]. Additionally, many technologies have been designed to actively
interface with an individual to either support their movement during rehabilitation or
to help provide a mechanical stimulus to enhance rehabilitation. These technologies are
commonly referred to as rehabilitation robotics, and techniques have been developed that
leverage pose estimation to inform the movement of these systems [94–97].

The use of pose estimation for enhancing human performance remains a challenging
application, given the large range of joint articulation, out of plane motion, and fast move-
ments that can be difficult to capture with the relatively slow sampling rates of common
video recording devices and risk of occlusion that occurs in these applications [98,99].
However, a number of proof-of-concept systems have been developed to inform pose
of an athlete during training, particularly for sports in which success for the athlete is
directly linked to pose (e.g., gymnastics and skiing) [100–102]. Development of new pose
estimation techniques for human performance applications have focused on achieving high
accuracy with ‘in the wild’ pose estimations, given the importance of performing these
measurements outside of the lab in these applications [11,103,104]. While this previous
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research has demonstrated applications that may be made possible with pose estimation,
very few of these proof-of-concept technologies have made the transition to regular use in
a clinical, athletic, or other relevant environments. This likely derives from the fact that
many unique requirements arise when attempting to apply these techniques to human
performance applications outside of the laboratory.

For pose estimation to influence the broader human performance community, in-
cluding non-clinical populations, research must drive towards robust ‘in the wild’ pose
estimation encompassing a range of environments and populations. To this end, we will
define desirable components of an ideal dataset for pose estimation algorithm development,
training, and validation. Future studies should focus on capturing and making available
these datasets to expand the application space of pose estimation or define functional
limitations of the current hardware or software technology.

Many injury and performance evaluations are based on highly dynamic motion
analysis [85,86,105], requiring that any pose estimation validation datasets should include
accurate ground truth measurements of human joint kinematics for as many degrees of
freedom as feasible. Ideally, this will include kinematics of complex joints, such as the
ankle, wrists, intervertebral joints, and scapular motion—all of which play a key role in
many injuries and are not estimated in most existing pose estimation techniques. Linear
kinematics of the various body components should also be reported on, especially in
relation to conditions that result from impact injuries (e.g., traumatic brain injury, chronic
traumatic encephalopathy) [106]. Optical motion tracking is currently the gold standard
for such ground truth measurements, but further accuracy (and cost) improvements are
desirable due to artifacts arising from relative marker motion with respect to the underlying
bony anatomy [107]. Therefore, researchers should aim to account for these artifacts within
the pose estimation process.

Validation datasets should be captured outside of laboratory environments and in-
clude complexities such as partial occlusion (self-occlusion, inter-subject occlusion, envi-
ronmental occlusion), various illuminations, loose-fitting clothing, and multiple camera
standoffs or viewing angles. Recent examples of pose estimation outside of the lab are
primarily based on monocular RGB images [108–111]. However, these techniques are gen-
erally less accurate—especially in three dimensions—when compared to laboratory pose
estimation. The fusion of other pose estimation modalities, including inertial measurement
units and infrared imaging, with single or multi-view RGB images is a promising direction
for improved pose estimation [112], and should be included in validation datasets, such as
those provided by Malleson et al. [113].

As new pose estimation algorithms are developed for human performance applica-
tions, special consideration should be given to the evaluation metrics reported. Motion type
classification is of limited usefulness for in-depth biomechanical analysis and, instead, joint
kinematic errors should be reported for each degree of freedom. Furthermore, estimation
accuracies should be reported under varying conditions, including differences between
lab-based and outdoor estimations. Finally, the computational cost per frame of pose
estimation should be reported to understand applicability to real-time, highly dynamic
application spaces [113].

4.4. Clinical Motor Assessment in Adult Neurologic Conditions

Clinical assessments and the resulting outcome measures are critical to motor reha-
bilitation in adults with neurologic conditions. These clinical assessments are typically
administered to capture either a patient’s status at a specific point in time or to track their
motor function longitudinally. When administered at a single time point, assessments are
used to classify the severity of an individual’s deficits. When administered longitudinally,
assessments are commonly used to track disease progression/regression, measure recovery,
or evaluate the effectiveness of an intervention.

The International Classification of Functioning, Disability and Health (ICF) is a com-
mon, widely accepted framework developed by the World Health Organization for describ-
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ing health and disability at individual and population levels [114]. It provides standard
language and has a wide range of uses across different sectors by identifying three primary
levels of human functioning:

1. Body structures and functions are anatomical parts of the body and physiological
functions of the body systems, respectively. The term impairment refers to problems
in body structure or function.

2. Activity is the execution of a task or action by an individual. The term activity limitation
describes difficulties with completion of an activity.

3. Participation is involvement in a life situation. Participation restrictions are problems
that an individual encounters during participation in real-world situations.

To provide a concrete example of how this framework is used, consider a person who
has experienced a stroke. This person might experience changes in all three levels of human
functioning: the impairment of left-sided hemiparesis (body structures and functions level),
the activity limitation of difficulty walking (activity level), and the participation restriction
of inability to attend their desired religious activities (participation level). One can quickly
observe that, while the three levels may be related to one another, there are independent
needs for quantitative measurement within each level. In other words, there are needs for
quantitative measurement of the hemiparesis, daily walking activity, and the inability to
attend religious activities in this particular example.

Clinical outcome measures for each level of the ICF are administered as a part of rou-
tine clinical practice. Current measures of impairment involve a skilled clinician observing
a patient as they perform a series of movements designed to expose deficits in body structure
and function. For instance, one item on the Fugl–Meyer Assessment—a widely used quanti-
tative measure of motor impairment after stroke—involves asking the patient to move their
hand from the contralateral knee to ipsilateral ear while individual elements (e.g., shoulder
retraction, shoulder elevation, elbow flexion, forearm supination) of this movement are
scored subjectively from 0 to 2 [115]. Measures of activity limitations involve the patient
performing one or more tasks that simulate activities encountered in daily life. An example
of an ecologically valid task is the water pouring item of the Action Research Arm Test—an
extensively used activity level measure for people with stroke [116]—where the person
pours water from one glass to another. Lastly are measures of participation restrictions,
which are often self-reported measures of the person’s perceptions of their movement
abilities and resulting impact on their quality of life (e.g., the Stroke Impact Scale [117], a
self-report questionnaire that evaluates disability and health-related quality of life after
stroke) and daily participation. The data gathered from existing outcome measures are
valuable for their use in diagnosing movement disorders, establish rehabilitation goals,
and track changes in patient status.

Pose estimation tools have the potential to address two important challenges that exist
within current clinical assessments spanning all three levels of the ICF (Figure 4). First,
they can increase the accuracy, precision, and frequency with which movement kinematics
are measured and assessed. Presently, body structure/function and activity level assessments
primarily rely on visual observation of movement or task performance, and many are
scored on ordinal scales that require a clinic visit or other similarly time-consuming in-
teraction for both patients and their providers. Pose estimation offers the potential to
provide precise, quantitative, and continuous data about single joint or whole-body move-
ments through short video recordings that could be recorded in virtually any setting with
much higher frequency. This opportunity to obtain frequent, quantitative motor assess-
ments could significantly enhance the abilities of clinicians to detect and track impairments
and activity limitations in their patients longitudinally. Second, current assessments of
participation restrictions are almost exclusively self-reported. The self-report format has
been necessary due to the difficulty of measuring movement kinematics in the home,
but many self-report measures lack reliability and often do not correlate with clinically-
administered motor assessments. There is clear potential for the propagation of telereha-
bilitation and pose estimation tools to make a significant impact in this area by providing
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significantly improved accessibility for clinicians and researchers to obtain quantitative
data about how people move and participate in their home and community environments.

 

Figure 4. Depiction of potential applications of pose estimation for movement tracking during clinical assessments across
the domains of the International Classification of Functioning, Disability and Health (ICF) model. For instance, finger–nose
coordination testing the body structures and functions domain (left), walking assessment in the activity domain (middle),
and playing tennis in the participation domain (right).
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The uses of pose estimation in clinical populations are expanding, but ultimately
remain in the beginning stages. At the body structure/function level, early work has involved
detecting hallmark motor signs in persons with Parkinson’s disease (PD). For instance,
dyskinesia is an involuntary movement of the head, arm, leg, or entire body. Dyskinesia is
commonly seen in persons with PD, often as a side effect of long-term levodopa treatment.
A number of recent studies have used pose estimation to assess dyskinesias in persons with
PD and found similar or superior performance with standard clinical assessments [118–120].
Bradykinesia, or slowness of movement, is another cardinal motor sign of PD. Liu et al.
report that their computer vision-based method was 89.7% accurate in quantifying bradyki-
nesia severity in people with PD as they performed repetitive movements including finger
tapping, hand clasping, and alternating hand pronation/supination movements [121].

There are also a number of studies that have begun to use pose estimation to measure
activity-level behaviors. Gait assessment, in particular, has been an early clinical target
for these evolving tools. Video-based tools have been used to successfully capture gait
parameters such as step lengths, step width, step time, stride length, gait velocity, and
cadence in people with stroke [122], PD [25,123] or dementia [124]. Beyond gait, the timed
up and go is a widely accepted assessment of functional mobility in patients with a range
of neurological disorders or disease. Li et al. recently validated and used a video-based
activity classification to automatize timed-up-and-go sub-task segmentation (sit-to-stand,
walk, turn, walk-back, sit-back) in people with PD [125].

Future work should focus on further validation of pose estimation with gold standard
kinematic tools and interpretability alongside standard clinical assessments. Additional
patient populations with a wide range of different movement patterns should be included
in these investigations in order to develop algorithms that are broadly applicable. The po-
tential of video-based analysis and pose estimation to quantitatively measure participation-
level data in the home and the community should also be a top priority. Precise data
captured in the real world not only will provide clinicians with important data from which
they can make clinical decisions, but this may also facilitate early diagnosis of movement
disorders and the ability to track movement patterns throughout a disease course.

We summarize many of the applications discussed in Section 4 in Table 1 below.

Table 1. Summary of example applications of pose estimation in human health and performance across the lifespan.

Domain Behavior/Movement Pattern Tracked References

Motor and non-motor development
Infant cruising (early locomotion) [36]

Infant play/general movement [37]
Infant writhing [51]

Human performance optimization,
injury prevention, and safety

Healthy repetitive movements [14]
Healthy gait [15,26,29–31,35,40]

Sign language [19]
Healthy running [27,35]

Bilateral squat [28]
Healthy gait/jumping/throwing [29]

Lifting [79,84]
Various unsafe working behaviors [80,81]

ACL injury risk [82,85,86]
Handcart pushing and pulling [83]
Ergonomic postural assessment [87]

Remotely-delivered rehabilitation [88,91–93]
Healthy finger movements [90]

Rehabilitation robotics [94–97]
Athletic training [100,101]

Swimming [102]

Clinical motor assessment

Gait in Parkinson’s disease [25,33,123]
Knee kinetics in osteoarthritis [32]

Gait in cerebral palsy [34]
Simulated abnormal gait [72,74]

Gait in older adults [73]
Fall detection [76–78]

Dyskinesias in Parkinson’s disease [118–120]
Gait in older adults with dementia [124]

Timed up-and-go in Parkinson’s disease [125]
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5. What Are the Limitations of Pose Estimation?

While many of our perspectives on the limitations of human pose estimation algo-
rithms with regard to applications in human health and performance are embedded within
the sections above, we considered that it may be helpful to include a condensed summary
section here. As mentioned previously, technical limitations have been discussed exten-
sively in prior reviews [20,21]. Here, we list perceived limitations in two general areas:
application limitations and barriers to implementation. We consider application limitations
to be those associated with obtaining high quality, usable data from video recordings via
pose estimation (some are also discussed in [21]) and barriers to implementation to be
limitations associated with the uptake and implementation of pose estimation approaches
for common use among clinicians and researchers (with an emphasis on implementation
in clinical settings).

5.1. Application Limitations

• Occlusions: these occur when one or more of the anatomical locations desired to be
tracked are not visible. This may be due to occlusion by other body segments, by other
people in the frame, or by inanimate objects (e.g., assistive devices—canes, walkers,
crutches, orthoses, robotics; clinical objects—beds, hospital gowns, medical devices;
sporting equipment—helmets, balls, bats, sticks).

• Limited training data: networks that are trained on sets of images that lack diversity
(e.g., clothing, poses, illuminations, viewpoints, unusual postures associated with
clinical conditions) may not perform well in applications where the videos are quite
different from those included in the training set. Applications of current techniques
that require a training dataset may require creation of a new training dataset if move-
ments/images of a patient population are substantially different from those included
in the existing training dataset (e.g., abnormal hand postures after stroke). This is
particularly important given that most training datasets are biased toward healthy
movement patterns.

• Capture errors: pose estimation algorithms may identify and track unwanted human
or human-like figures in the field of view (e.g., people in the background, images on
posters or artwork).

• Positional errors: tracking may be difficult when conditions introduce uncertainty
into the positions of anatomical locations within the image (e.g., wearing a dress,
hospital gown, athletic uniform or padding). This may also occur when attempting to
track a movement from a suboptimal viewpoint (e.g., measuring knee flexion from a
frontal view).

• Limitations of recording devices: use of devices with low sampling rates (e.g., the
sampling rate of common video recording devices is often approximately 30 Hz) may
be unable to capture accurate movement kinematics of movements that occur at high
speeds or high frequencies. The aperture and shutter speed of recording devices can
also impact image quality and introduce blurring, which can impact the quality of the
tracking achieved through pose estimation.

Examples of application limitations are depicted in Figure 5.

5.2. Barriers to Implementation

• User-friendliness: we currently lack plug-and-play options for pose estimation. While
we certainly understand and acknowledge the many reasons for this, pose estimation
is unlikely to be used widely in clinical settings in particular until user-friendliness
improves. We outline several relevant components to user-friendliness below:

� Set up time: in our experience, many users want point-and-click capability. They
want to be able to carry a recording device in their pocket, use it to record a quick
video of their patient or research participant when needed, and ultimately obtain
meaningful information about movement kinematics. Alternatively, they want
a reserved space where a recording device could be permanently mounted and
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easily started and stopped (e.g., a tablet mounted to a wall). Any configuration
that requires multi-camera calibration or prolonged set up time is unlikely to be
adopted for widespread clinical use.

� Delayed results: many users want results in near real-time. There is a need for
fast, automated approaches that immediately process the pose estimation outputs,
calculate relevant movement parameters, and return interpretable data.

� Programming and training requirements: some existing pose estimation options
are very easy to download, install, and use for users with basic technical expertise.
However, even these can remain prohibitively daunting for clinicians and re-
searchers without technical backgrounds. Technologies that require any amount
of programming or significant training are unlikely to reach widespread use in
clinical settings.

• Outcome measure challenges: in some cases, users want to use movement data to
improve clinical or performance-related decision-making, but it is not immediately
clear what parameters of the movement will lead to improved outcomes (e.g., a
user may express interest in measuring “walking” but is not sure which specific
gait parameters are most relevant to their research study or clinical intervention).
Therefore, there is a desire to collect kinematic data, but how these data should be
used is not well-defined. Similarly, in the case of clinical assessments, there needs to
be a clear link to relevant clinical and translational outcomes—the users should have
input as to what output metrics are important.

• Limited hardware infrastructure: as described above, some applications of pose esti-
mation for human movement tracking require significant computational power. Some
clinical and research settings are unlikely to have access to the hardware (e.g., GPUs)
needed to execute their desired applications in a timely manner.

• Technology challenges: many technologies that promise potential for clinical or hu-
man performance impact are made available before they are fully developed. This
can lead to buggy software and frequent updating, which harms trust and credibility
among users. This can, in turn, exacerbate the hesitancy in adopting new technologies
present in some clinical and research communities, especially in artificial intelligence
technologies (such as pose estimation) that are purported to supplement or even
replace expert human assessment.

• Lack of validation and feasibility data: there is a need for large-scale studies to val-
idate pose estimation outputs against ground truth measures in a wide range of
different populations. This may be accomplished in a variety of ways, including
(but not limited to) comparisons with three-dimensional motion capture, wearable
devices with proven accuracy, expert clinical ratings and/or assessments, or even
possibly other pose estimation algorithms. The error (relative to the ground truth
measurement) that is deemed acceptable is likely to depend on the use case and the
metrics being used. In our experience, users who study very specific movements of
joints or other anatomical landmarks (e.g., biomechanics or motor control researchers)
are likely to seek greater accuracy than, for example, a clinician who may wish to
incorporate a video-based assessment of walking speed as part of a larger clinical
examination. It may be desirable to begin to develop field-specific accuracy standards
for some applications.

There is also a need for testing of sensitivity, specificity, feasibility, and reliability. When
a new clinical outcome measure is developed, a first step should be to establish criterion-
validity or construct validity between the pose estimated measures and age-concurrent,
clinician-coded, gold-standard clinical measures. Next, using receiver operating character-
istic (ROC) analysis, sensitivity and specificity should be compared to assess the ability of
the new pose estimated measure in predicting dichotomous outcomes (e.g., motor impaired
vs. motor unimpaired). Area under the curve (AUC) should further be computed as a
measure of the ability to distinguish between groups. Finally, it is important to evaluate
the feasibility and acceptability of the new pose estimation protocol. One way to assess
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feasibility is to assess the number of completed and submitted usable videos by patients
(i.e., the total number of videos submitted divided by the number expected, multiplied by
100). One way to assess acceptability is through satisfaction questionnaires/surveys. For
example, after video submission, patients, families of patients (if patients are children), and
clinicians can complete a brief satisfaction questionnaire/survey regarding their experience
using the pose estimation protocol.

These potential pitfalls along the path to implementation are shown in Figure 6.

 

Figure 5. Common application limitations with current pose estimation algorithms and challenges with using these
algorithms outside of the laboratory. These applications commonly require three-dimensional kinematics of multiple
people moving at relatively high speeds to be tracked in environments with background figures (e.g., irrelevant people and
objects shaped similarly to people). This leads to challenges with segment occlusion, unintentional capture of background
figures, and registration of multiple cameras. Additionally, using current algorithms for scenarios different than the training
dataset (e.g., different movements, different types of clothing or equipment being worn, different lighting) may lead to
reduced accuracy in the predicted kinematics or, potentially, failure of the algorithm. Finally, most algorithms do not predict
kinematic metrics that are required for some applications (e.g., head acceleration to assess concussion risk), and limitations
with using current algorithms on time-series data make it challenging to accurately derive these metrics.
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Figure 6. Common pitfalls that must be avoided on the path to widespread implementation of pose estimation applications
for human health and performance. These are covered in greater detail in the “What are limitations of pose estimation?”
section of the manuscript.

6. Conclusions

The emergence and continued development of human pose estimation approaches of-
fer exciting potential for making quantitative assessments of human movement kinematics
significantly more accessible. Pose estimation algorithms directly address an important and
widespread need for low cost, easy to use, accessible technologies that enable human move-
ment tracking in virtually any environment, including the home, clinic, classroom, playing
field, and other ‘in the wild’ settings. Applications in health and human performance have
begun to emerge in the literature, but we perceive that these technologies are still in their
relative infancy with regard to the potential for research and clinical implementation. Many
limitations persist, and it is important that users are aware of these and adjust expectations
accordingly. However, we anticipate that applications of pose estimation in human health
and performance will continue to expand in coming years, and these technologies will
provide powerful tools for capturing meaningful aspects of human movement that have
been difficult to capture with conventional techniques.

Author Contributions: Conceptualization: J.S., K.M.C.-A., C.O.P., R.D.R., M.F.V. and R.T.R.; writing—
original draft preparation: J.S., K.M.C.-A., C.O.P., R.D.R., M.F.V. and R.T.R.; writing—review and
editing: J.S., K.M.C.-A., C.O.P., R.D.R., M.F.V. and R.T.R.; funding acquisition: C.O.P., R.D.R., M.F.V.
and R.T.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by a Kennedy Krieger Institute Goldstein Innovation Grant to
RDR, NIH grant R21 AG059184 to RTR.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the Janney Program within the Johns Hopkins University
Applied Physics Laboratory for providing partial funding for this work, which nurtures a culture of
discovery, embraces risk, and welcomes being at the center of a vibrant innovation ecosystem.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results. All authors have read and agreed to the published version of
the manuscript.

19



Sensors 2021, 21, 7315

References

1. Mündermann, L.; Corazza, S.; Andriacchi, T.P. The Evolution of Methods for the Capture of Human Movement Leading to
Markerless Motion Capture for Biomechanical Applications. J. NeuroEng. Rehabil. 2006, 3, 6. [CrossRef]

2. Baker, R. The History of Gait Analysis before the Advent of Modern Computers. Gait Posture 2007, 26, 23–28. [CrossRef] [PubMed]
3. Roether, C.L.; Omlor, L.; Christensen, A.; Giese, M.A. Critical Features for the Perception of Emotion from Gait. J. Vis. 2009, 9,

1–32. [CrossRef] [PubMed]
4. Michalak, J.; Troje, N.F.; Fischer, J.; Vollmar, P.; Heidenreich, T.; Schulte, D. Embodiment of Sadness and Depression-Gait Patterns

Associated with Dysphoric Mood. Psychosom. Med. 2009, 71, 580–587. [CrossRef] [PubMed]
5. Kendon, A. Movement Coordination in Social Interaction: Some Examples Described. Acta Psychol. 1970, 32, 101–125. [CrossRef]
6. Martinez, G.H.; Raaj, Y.; Idrees, H.; Xiang, D.; Joo, H.; Simon, T.; Sheikh, Y. Single-Network Whole-Body Pose Estimation. In

Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 6982–6991.
[CrossRef]

7. Insafutdinov, E.; Andriluka, M.; Pishchulin, L.; Tang, S.; Levinkov, E.; Andres, B.; Schiele, B. ArtTrack: Articulated Multi-
Person Tracking in the Wild. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, HI, USA, 21–26 July 2017; pp. 6457–6465. [CrossRef]

8. Insafutdinov, E.; Pishchulin, L.; Andres, B.; Andriluka, M.; Schiele, B. Deepercut: A Deeper, Stronger, and Faster Multi-Person
Pose Estimation Model. In Computer Vision—ECCV 2016; Lecture Notes in Computer Science (Including Subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer International Publishing: Cham, Switzerland, 2016;
pp. 34–50. [CrossRef]

9. Pishchulin, L.; Insafutdinov, E.; Tang, S.; Andres, B.; Andriluka, M.; Gehler, P.; Schiele, B. DeepCut: Joint Subset Partition and
Labeling for Multi Person Pose Estimation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4929–4937. [CrossRef]

10. Toshev, A.; Szegedy, C. DeepPose: Human Pose Estimation via Deep Neural Networks. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1653–1660.
[CrossRef]

11. Nath, T.; Mathis, A.; Chen, A.C.; Patel, A.; Bethge, M.; Mathis, M.W. Using DeepLabCut for 3D Markerless Pose Estimation across
Species and Behaviors. Nat. Protoc. 2019, 14, 2152–2176. [CrossRef] [PubMed]

12. Mathis, A.; Mamidanna, P.; Cury, K.M.; Abe, T.; Murthy, V.N.; Mathis, M.W.; Bethge, M. DeepLabCut: Markerless Pose Estimation
of User-Defined Body Parts with Deep Learning. Nat. Neurosci. 2018, 21, 1281–1289. [CrossRef] [PubMed]

13. Cao, Z.; Simon, T.; Wei, S.E.; Sheikh, Y. Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. In Proceedings of
the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1302–1310.
[CrossRef]

14. Cornman, H.L.; Stenum, J.; Roemmich, R.T. Video-Based Quantification of Human Movement Frequency Using Pose Estimation.
bioRxiv 2021. [CrossRef]

15. Stenum, J.; Rossi, C.; Roemmich, R.T. Two-Dimensional Video-Based Analysis of Human Gait Using Pose Estimation. PLoS
Comput. Biol. 2021, 17, e1008935. [CrossRef]

16. Kwolek, B.; Michalczuk, A.; Krzeszowski, T.; Switonski, A.; Josinski, H.; Wojciechowski, K. Calibrated and Synchronized
Multi-View Video and Motion Capture Dataset for Evaluation of Gait Recognition. Multimed. Tools Appl. 2019, 78, 32437–32465.
[CrossRef]

17. Wang, L.; Tan, T.; Ning, H.; Hu, W. Silhouette Analysis-Based Gait Recognition for Human Identification. IEEE Trans. Pattern
Anal. Mach. Intell. 2003, 25, 1505–1518. [CrossRef]

18. Holte, M.B.; Cuong, T.; Trivedi, M.M.; Moeslund, T.B. Human Pose Estimation and Activity Recognition from Multi-View Videos:
Comparative Explorations of Recent Developments. IEEE J. Sel. Top. Signal Process. 2012, 6, 538–552. [CrossRef]

19. Isaacs, J.; Foo, S. Hand Pose Estimation for American Sign Language Recognition. In Proceedings of the Thirty-Sixth Southeastern
Symposium on System Theory, Atlanta, GA, USA, 16 March 2004; pp. 132–136. [CrossRef]

20. Cronin, N.J. Using Deep Neural Networks for Kinematic Analysis: Challenges and Opportunities. J. Biomech. 2021, 123, 110460.
[CrossRef] [PubMed]

21. Seethapathi, N.; Wang, S.; Saluja, R.; Blohm, G.; Kording, K.P. Movement Science Needs Different Pose Tracking Algorithms.
arXiv 2019, arXiv:1907.10226.

22. Arac, A. Machine Learning for 3D Kinematic Analysis of Movements in Neurorehabilitation. Curr. Neurol. Neurosci. Rep. 2020, 20,
29. [CrossRef]

23. Andriluka, M.; Pishchulin, L.; Gehler, P.; Schiele, B. 2D Human Pose Estimation: New Benchmark and State of the Art Analysis.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA,
23–28 June 2014; pp. 3683–3693. [CrossRef]

24. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in
Context. In Computer Vision—ECCV 2014; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics); Springer International Publishing: Cham, Switzerland, 2014; pp. 740–755.
[CrossRef]

20



Sensors 2021, 21, 7315

25. Sato, K.; Nagashima, Y.; Mano, T.; Iwata, A.; Toda, T. Quantifying Normal and Parkinsonian Gait Features from Home Movies:
Practical Application of a Deep Learning–Based 2D Pose Estimator. PLoS ONE 2019, 14, e0223549. [CrossRef]

26. Chambers, C.; Kong, G.; Wei, K.; Kording, K. Pose Estimates from Online Videos Show That Side-by-Side Walkers Synchronize
Movement under Naturalistic Conditions. PLoS ONE 2019, 14, e0217861. [CrossRef]

27. Cronin, N.J.; Rantalainen, T.; Ahtiainen, J.P.; Hynynen, E.; Waller, B. Markerless 2D Kinematic Analysis of Underwater Running:
A Deep Learning Approach. J. Biomech. 2019, 87, 75–82. [CrossRef]

28. Ota, M.; Tateuchi, H.; Hashiguchi, T.; Kato, T.; Ogino, Y.; Yamagata, M.; Ichihashi, N. Verification of Reliability and Validity of
Motion Analysis Systems during Bilateral Squat Using Human Pose Tracking Algorithm. Gait Posture 2020, 80, 62–67. [CrossRef]

29. Nakano, N.; Sakura, T.; Ueda, K.; Omura, L.; Kimura, A.; Iino, Y.; Fukashiro, S.; Yoshioka, S. Evaluation of 3D Markerless Motion
Capture Accuracy Using OpenPose With Multiple Video Cameras. Front. Sports Act. Living 2020, 2, 50. [CrossRef]

30. Zago, M.; Luzzago, M.; Marangoni, T.; De Cecco, M.; Tarabini, M.; Galli, M. 3D Tracking of Human Motion Using Visual
Skeletonization and Stereoscopic Vision. Front. Bioeng. Biotechnol. 2020, 8, 181. [CrossRef] [PubMed]

31. D’Antonio, E.; Taborri, J.; Palermo, E.; Rossi, S.; Patanè, F. A Markerless System for Gait Analysis Based on OpenPose Library. In
Proceedings of the 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Dubrovnik,
Croatia, 25–28 May 2020; pp. 1–6. [CrossRef]
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Abstract: In the gait recognition problem, most studies are devoted to developing gait descriptors
rather than introducing new classification methods. This paper proposes hybrid methods that
combine regularized discriminant analysis (RDA) and swarm intelligence techniques for gait
recognition. The purpose of this study is to develop strategies that will achieve better gait recognition
results than those achieved by classical classification methods. In our approach, particle swarm
optimization (PSO), grey wolf optimization (GWO), and whale optimization algorithm (WOA) are
used. These techniques tune the observation weights and hyperparameters of the RDA method to
minimize the objective function. The experiments conducted on the GPJATK dataset proved the
validity of the proposed concept.

Keywords: gait recognition; biometrics; regularized discriminant analysis; particle swarm
optimization; grey wolf optimization; whale optimization algorithm

1. Introduction

Biometric authentication (also known as biometrics) refers to identifying or verifying individuals
based on their biological or behavioral traits [1]. There are many different biometric traits among which
can be distinguished the face, iris, fingerprint, palm print, voice, signature, or gait. Typically, gait is a
manifestation of an individual’s walking style; hence, its recognition means identifying a person by
his/her way of walking. The major advantages of gait are: noninvasive, can be captured at a distance,
hard to conceal, and non-cooperative. These advantages make it an ideal trait for visual surveillance
systems [2]. However, the recognition performance of existing methods is limited by the influence of a
large number of covariate factors affecting both appearance and dynamics of the gait, e.g., variations
in footwear and clothing, viewpoint variations, changes in the characteristics of the surface on which
movement occurs, various carrying conditions, injuries affecting movement, and so on. These are the
reasons why gait recognition has been extensively studied in recent years.

Gait recognition methods [3] can be categorized as model-free (appearance-based) [2,4–12]
and model-based [13–22]. Most gait recognition studies are based on model-free approaches that
employ the whole motion pattern of the human body. Several techniques were proposed to characterize
this motion pattern, such as the gait energy image (GEI) [2,5,7,10], which is a spatio-temporal gait
representation, GEI region bounded by legs (RBL) [8], human body contours [9], and dense optical
flow field [4]. These methods are strongly based on silhouette extraction and therefore are not resistant
to changing clothes or carrying luggage. It is also worth noting that most of them can only achieve
correct results from a specific point of view, usually side view [4,5,7–9,16]. The recent research on
model-free methods has focused on eliminating these drawbacks [6,10–12]. Model-based methods
infer gait signature directly by modeling the underlying kinematics of human motion. The methods
of this approach initially focused on using only static body parameters for recognition, such as
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stride length, which were updated over time [13,14]. Yam et al. [14] have extended this concept by
analyzing the movement of the legs and the angles between them. In Ref. [15], the authors proposed a
method that uses a motion-based model and elliptic Fourier descriptors to extract the key features of
gait. Deng et al. [18] proposed a method that combines spatio-temporal and kinematic gait features.
The fusion of two different features gives a comprehensive characterization of gait dynamics, which is
less sensitive to walking conditions. In [21], the authors presented a gait recognition method that uses
a 3D model of the human body and particle swarm optimization to obtain gait features. The number
of obtained features was reduced using the multilinear principal component analysis (MPCA).

In the recognition process, various classification techniques are used; most often, they are classical
methods such as k-nearest neighbors (kNN) [2,4,10,14–17,19,23], multilayer perceptron (MLP) [21],
support vector machine [9,16,24] linear discriminant analysis (LDA) [16], and radial basis function
neural networks [18]. The main focus in these papers is on developing descriptors that better describe
gait features, rather than introducing new classification methods with better recognition ability. This is
a traditional approach that is based on a clear separation between the descriptors and classifier model.
On the other hand, in the papers of recent years, the introduction of new classification methods such
as deep learning [11,20,22] or hybrid methods [12], in which the description and classification steps
cannot be easily distinguished, is increasingly visible. In [20], the authors utilized a 3D convolutional
neural network (CNN) and long short-term memory neural networks for training the classification
models. They then used a grey wolf optimizer to tune the fusion parameters of each modality to
boost the recognition performance of the system. Chao et al. [11] proposed a deep learning model
called GaitSet. In this method, the CNN is used to extract frame-level features from each silhouette
independently. Next, an operation called set pooling is used to aggregate frame-level features into
a single set-level feature. In the end, a structure called horizontal pyramid mapping is used to map
the set-level feature into a more discriminative space to obtain the final representation. The proposed
method can extract spatial and temporal information more effectively than other methods regarding
gait as a template or sequence. In turn, in the paper [12], the authors used a hybrid approach and
combine the improved local coupled extreme learning machine and PSO for the classification process.
A Gabor filter was used to extract gait features from the GEI and linear discriminant analysis was used
to dimensionality reduction.

From the literature review, it is seen that most studies considering the traditional approach are
devoted to developing gait descriptors, rather than introducing new classification methods. In this
paper, we propose hybrid methods that combine the RDA and swarm intelligence techniques for gait
recognition. In our approach, the PSO, GWO, and WOA are used to tune the observation weights and
hyperparameters of the RDA model. To the best of our knowledge, the GWO and WOA algorithms
have not been used before for this purpose. In the learning process, the confusion value is used as
an objective function. The proposed methods are tested on a database of 414 gait cycles belonging to
32 different persons [21]. Summarizing, the main contributions of this paper can be stated as:

• proposing a combination of regularized discriminant analysis and particle swarm optimization
for gait recognition,

• proposing a combination of regularized discriminant analysis and grey wolf optimization,
• proposing a combination of regularized discriminant analysis and whale optimization algorithm,
• comparing and improving the results obtained in the paper [21].

The structure of this article is as follows: Section 2 contains the description of the dataset and
methods used in the recognition process. In particular, the structure of the gait recognition system,
building classification models, and swarm intelligence methods are described. The experimental
results are presented in Section 3. The results obtained by eight methods are presented, of which
three were proposed by the authors. Section 4 contains the discussion of the achieved results.
Finally, the conclusions are given in Section 5.
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2. Material and Methods

2.1. Gait Dataset

The publicly available gait dataset (GPJATK) was used in the experiments [21]. The dataset
consists of 166 data sequences (414 gait cycles) representing 32 people (10 women and 22 men).
The sequences are divided into three subsets: 128 sequences (325 gait cycles) in which each
of 32 individuals was dressed in his/her clothes; 24 sequences (58 gait cycles) in which 6 of
32 individuals (person #26–#31) changed clothes; and 14 sequences (31 gait cycles) in which 7 of
the individuals (person #26–#32) had a backpack on his/her back. Each sequence contains video data
(960x540@25fps) recorded using four calibrated and synchronized cameras and data from a markerless
and marker-based motion capture systems. The synchronization between videos and motion capture
data has been realized using Vicon MX Giganet. Our research is based on data obtained by a markerless
motion capture system [25], which uses the annealed PSO algorithm in the motion capture process
and data from four synchronized and calibrated cameras.

2.2. Gait Recognition System

A typical model-based system for gait recognition is presented in Figure 1. Such a system
consists of gait capture, a feature extraction module, and a classifier. The objective of the system is to
determine the identity of a gait sample using a database consisting of gait patterns from a set of known
subjects. In the first step, one or more video-cameras are used to register the user’s image in a scene.
In a preprocessing phase, image processing, i.e., background subtraction, body silhouette extraction,
and edges extraction, is performed. The kinematic model of human motion is used in the next step to
extract gait features that will define a gait signature. In the used gait dataset [21], each gait cycle is
treated as a data sample represented by a third-order tensor with the dimension 32 × 11 × 3. The first
dimension, equal to 32, is the average time of the gait cycle. The motion data was filtered using a
moving average of length nine samples to the original data. The second dimension of the tensor is
equal to the number of bones (excluding pelvis), i.e., 10 plus one element for storing a person height
and distance between ankles. The third dimension relates to three angles, except the 11th vector that
contains a person’s height, distance between ankles, and value of zero to maintain alignment with
the rest of the vectors. Such a gait signature is then reduced using the MPCA algorithm [26]. The last
element of the system is the classifier block that we focus in this article.

Classi er

Gait
database

Feature
extraction

 

 

Identity

Preprocessing

Figure 1. Structure of a gait recognition system.
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2.3. Building Classification Model for Gait Recognition

Building a gait classification model involves two main stages, which include training the model
and testing it. For this purpose, the gait sequence database is divided into three sets: the training
set, validation set, and test set (Figure 2). These three datasets are commonly used in different stages
of the model building. Separating the dataset into these three subsets is used to avoid overfitting of
the model. Initially, the model is fit on the training set, which is a set of observations used to fit the
parameters of the RDA model. It should be noted that, in [21], only two sets were defined: training
and testing. However, in the proposed approach, due to the optimization of the classifier parameters,
an additional validation set is separated from the training data. The validation dataset is used for an
evaluation of the fitted model while training the model’s hyperparameters. After building the model,
the test set is used for testing, that is, for predicting the classifier’s output for data that has never been
used in the training phase. Model training is carried out using one of the hybrid methods, in which
swarm intelligence techniques optimize the observation weights and hyperparameters of the RDA.
This problem is well suited for swarm optimization techniques because it creates a large search space
to be explored. This search space is determined by the number of observation weights, the number
of hyperparameters, and by the fact that all these variables are real values in the specified intervals.
During the optimization, the following objective function, expressed as the confusion value, is used:

objective function (confusion) =
number of samples misclassified

number of all samples
(1)

where the samples are taken from the validation set. This objective function is minimized using one of
the swarm intelligence methods, i.e., particle swarm optimization, grey wolf optimization, or whale
optimization algorithm.

Figure 2. The idea of building the RDA classification model.

After building the RDA classifier, it is used to determine the correct classified ratio (CCR). The CCR
is a ratio of correctly classified samples to the total number of samples in the test subset.
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2.4. Regularized Discriminant Analysis

Linear discriminant analysis was developed by Sir Ronald Fisher in 1936 [27]. The original method
proposed by Fisher was described for a 2-class problem, and it was in 1948 generalized as multi-class
problems by Rao [28]. The LDA is a transformation technique used in statistics and machine learning
to find linear combinations of features that separate classes of objects. The combinations obtained by
this method may be used as:

• dimensionality reduction and feature extraction before classification,
• a linear classifier (considered in this paper).

The LDA consists of statistical properties of data calculated for each class. For a single variable,
these are the mean and the variance of the variable. For multiple variables, these are the means and
the covariance matrix. These statistical properties are estimated from the data and used to formulate
an equation for making predictions. It should be emphasized that the use of the LDA is not associated
with problems when the number of observations is greater than the dimension of each observation.
Problems arise when the opposite is true, which makes the covariance matrix singular and cannot be
inverted. To resolve this problem, instead of using the covariance matrix directly, a regularization of
this matrix is used. This approach is applied to the regularized discriminant analysis method, in which
the regularized covariance matrix Σ̂γ is given by [29]:

Σ̂γ = (1− γ)Σ̂ + γI (2)

where Σ̂ is the covariance matrix, I is the identity matrix, and γ ∈ [0, 1] is the amount of regularization.
The RDA introduces regularization into the covariance matrix estimate, enabling a solution to be
obtained and allowing different influences of variables on the classification model. In addition to the
parameter γ, the RDA model uses the parameter δ that acts as a threshold: if a model coefficient has
the magnitude smaller than δ, the RDA sets this coefficient to zero, and the corresponding predictor
can be eliminated from the model.

The output of the RDA classifier ŷ is calculated so as to minimize the classification cost [30]:

ŷ = arg min
y=1,...,K

K

∑
k=1

P̂(x|k)C(y|k) (3)

where K is the number of classes, P̂(x|k) is the posterior probability of class k for observation x, C(y|k)
is the cost of classifying an observation as y when its true class is k. The RDA used in this paper
constructs weighted classifiers using the following scheme. Suppose M is an N-by-K class membership
matrix such that Mnk = 1 if observation n is from class k, Mnk = 0, otherwise. The estimate of the class
mean for weighted data with positive weights wn is [30]

μ̂k =
∑N

n=1 Mnkwnxn

∑N
n=1 Mnkwn

(4)

The estimate of the covariance matrix is

Σ̂ =
∑N

n=1 ∑K
k=1 Mnkwn(xn − μ̂k)(xn − μ̂k)

T

1−∑K
k=1

W(2)
k

Wk

(5)

where Wk = ∑N
n=1 Mnkwn is the sum of the weights for class k, and W(2)

k = ∑N
n=1 Mnkw2

n is the sum of
squared weights per class.
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2.5. Particle Swarm Optimization

A particle swarm optimization algorithm was developed by Kennedy and Eberhart [31].
This algorithm is based on the social behavior of organisms living in large groups. In the PSO, a group
of agents called particles forms a swarm, where each particle represents a point in a multidimensional
space. The particles explore this space in order to find the optimal solution. Each particle in the swarm
is attracted both to its best position and the best position found by other particles. The best solution is
obtained by minimizing the objective function.

Each particle has its position (x) and velocity (v). The velocity vk of the kth particle is determined
using the following equation [31]:

vk(t + 1) = ωvk(t) + c1r1(pbestk(t)− xk(t)) + c2r2(gbest(t)− xk(t)) (6)

where t is the current iteration number, ω is the inertia weight, r1, r2 are vectors of random numbers in
the range [0,1], c1 is the cognitive coefficient, and c2 is the social coefficient. It is seen that the update
of the velocity is a weighted sum of the previous velocity vk(t), the difference between the current
position and the personal best position (pbest), and the difference between the current position and
the global best position (gbest). The position xk of the kth particle is updated according to the equation

xk(t + 1) = xk(t) + vk(t) (7)

After updating the velocity and the position, the objective function is calculated to determine the
personal and global positions.

2.6. Grey Wolf Optimization

A grey wolf optimizer is another swarm intelligence technique used to solve optimization
problems [32]. The GWO algorithm is inspired by the behavior and hierarchy of grey wolves in
nature, searching for the optimal way to attack their prey. In the hierarchy of grey wolves, the most
dominating is alpha (α), which leads the entire group. The other wolves are beta (β) and delta (δ),
which help to control the rest of the wolves considered as omega (ω). The omega wolves have the
lowest ranking in the hierarchy. The main phases of grey wolf hunting are: (a) tracking, chasing, and
approaching; (b) chasing, encircling, and harassing; (c) attacking.

2.6.1. Encircling Prey

Grey wolves encircle the prey during the hunt, which can be mathematically modeled by the
following equation [32]:

X(t + 1) = Xp(t)−A ·D (8)

where
D = |C · Xp(t)− X(t)| (9)

and X(t) is the current position of a grey wolf at iteration t, Xp(t) is the position of the prey, and “·” is
an element-by-element multiplication. The coefficient vectors A, C are determined as follows:

A = 2a · r1 − a (10)

C = 2r2 (11)

where components of a are linearly decreased from 2 to 0 through iterations and r1, r2 are random
vectors in [0, 1].
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2.6.2. Hunting

In the GWO, we assume that the α, β, and δ are the best solutions for the entire population.
Therefore, the other wolves should update their position according to the positions of the three agents.
The following formula is used to calculate the positions of search agents [32]:

X(t + 1) =
1
3
(X1(t) + X2(t) + X3(t)) (12)

where

X1 = Xα(t)−A1 ·Dα (13)

X2 = Xβ(t)−A2 ·Dβ (14)

X3 = Xδ(t)−A3 ·Dδ (15)

and

Dα = |C1 · Xα − X| (16)

Dβ = |C2 · Xβ − X| (17)

Dδ = |C3 · Xδ − X| (18)

The vectors A1, A2, A3 are obtained using Equation (10), while C1, C2, C3 are obtained using
Equation (11).

2.6.3. Attacking Prey (Exploitation) and Search for Prey (Exploration)

The grey wolves start the attack, once the prey stops moving. To model the process of approaching
the prey, the GWO linearly decrease all the values of a from 2 to 0 according to the equation [32]

a = 2− 2t
Tmax

(19)

where Tmax is the total number of iterations of the algorithm. The change of a affects the coefficient
vector A, which controls the behavior of search agents. If |A| < 1, the wolf will move towards the
prey; on the other hand, if |A| > 1, the wolf will diverge from the prey in order to find new better prey.
In addition, the vector C which contains a random value in the range [0,2] is employed to help the
algorithm to avoid being trapped in the local optima.

2.7. Whale Optimization Algorithm

The whale optimization algorithm is a nature-inspired metaheuristic technique for solving
optimization problems [33]. This algorithm mimics the social behavior of humpback whales realized
in the bubble-net hunting strategy. The WOA is based on three operators to simulate the search for
prey, encircling prey, and bubble-net foraging.

2.7.1. Encircling Prey

Humpback whales encircle pray after recognizing its position. In this phase, the search agents
attempt to change their locations towards the best search agents. This behavior is expressed by the
following formula [33]:

X(t + 1) = X∗(t)−A ·D (20)

where
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D = |C · X∗(t)− X(t)| (21)

and X(t) is the current position vector at iteration t, X∗(t) is the best position obtained so far, “·” is an
element-by-element multiplication. The coefficient A, C are determined from the formulas:

A = 2a · r1 − a (22)

C = 2r2 (23)

where components of a are linearly decreased from 2 to 0 through iterations and r1, r2 are random
vectors in [0, 1].

2.7.2. Bubble-Net Attacking (Exploitation Phase)

In this phase, humpback whales swim around the prey within a helix-shaped path. To model
this behavior, it is assumed that there is a 50% chance to choose between the shrinking encircling or
spiral movements [33]:

X(t + 1) =

{
X∗(t)−A ·D if p < 0.5

D∗ · exp(bk) · cos(2πk) + X∗(t) if p ≥ 0.5
(24)

where D∗ = |X∗(t)− X(t)| is the distance of the ith whale to the prey, b defines the shape of the spiral,
k is a random number in [−1, 1], and p is a random number in [0, 1].

2.7.3. Search for Prey (Exploration Phase)

In this phase, humpback whales search the pray according to the position of each other.
The location of a search agent is calculated according to randomly selected search agent rather than the
best search agent as in the exploitation phase. The mathematical model is determined as follows [33]:

X(t + 1) = Xrand(t)−A ·D (25)

where
D = |C · Xrand(t)− X(t)| (26)

and Xrand is the random position vector chosen from the current population.

2.8. Integration of Swarm Intelligence Techniques with Regularized Discriminant Analysis

The idea of integrating swarm intelligence methods with the RDA classifier is shown in Figure 3.
This figure presents in the form of a block diagram main stages of optimization of the RDA model
using swarm algorithms and the method of determining the objective function. The task of particle
swarm optimization, grey wolf optimization, or whale optimization algorithm is to select the RDA
parameters, which are [30]:

• w1, w2, . . . , wn — the observation weights,
• δ — the linear coefficient threshold,
• γ — the parameter for regularizing the covariance matrix of the predictors,

where n is the number of observations in the training set. For this purpose, the observation weights and
two hyperparameters δ, γ are placed as elements of the agent (candidate) vector, which has the form
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| w1 | w2 | . . . | wn | δ | γ | (27)

At the beginning of the algorithm, the agents are initialized. In the next step, the value of
the objective function for all agents is calculated. Then, the stop condition is checked, if it is not
reached, the agents are updated and the value of the objective function is recalculated. The swarm
optimization algorithm generates many hypothetical solutions (which are represented by agents) and
the best solution is selected in the optimization process. These operations are repeated until the stop
condition is reached. In the objective function block, the RDA model is determined for the parameters
proposed by the agent and for the training data. The output of this model is then calculated on the
validation data and the value of the objective function is determined based on formula (1). The weights
w1, w2, . . . , wn, hyperparameters δ and γ of the RDA classifier are limited during optimization in given
ranges (see Section 3). The algorithm returns the optimal parameters of the RDA classifier in the best
agent vector. This result is included in the block ’Return the global best solution’ in Figure 3. On this
basis, the objective function value for the test data are calculated.

Figure 3. The idea of integration of swarm intelligence techniques with the RDA.

All the proposed hybrid methods have been implemented in Matlab equipped with additional
toolboxes. Using the function fitcdiscr from the Statistics and Machine Learning Toolbox [30],
the RDA classifier model is created, while the function predict from the same package is used to
determine class predictions (Figure 3). The PSO method has been implemented using the function
particleswarm from the Global Optimization Toolbox [34] and the GWO and WOA methods using
software developed by Mirjalili [32,33].

3. Results

The division of the gait dataset into training, validation, and test sets in four experiments is
presented in Table 1. In the first experiment (Set #1) and the fourth experiment (Set #4), all persons
in the collection were wearing clothes number 1. In the second experiment (Set #2), persons in the
training and validation sets were in clothing number 1, while in the test set in clothing number 2.
In the third experiment (Set #3), persons in the training and validation sets were in clothing number 1,
while in the test set they wore a backpack. The number of identities in training/validation/test subsets
was: in Set #1—32/32/32, Set #2—32/32/6, Set #3—32/32/7, and Set #4—32/32/32. The samples
were not repeated in the subsets. The procedure of separating the samples from the training set to the
validation set was as follows: for Sets #1 and #4, one sample was taken for each class (the last sample
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was always taken), for Sets #2 and #3, two samples were taken for each class because there were more
training data (the last two samples for each class were taken). Experiments 1–3 were performed in
such a way that the classification model and its testing error were determined 10 times, and then the
average of the results was calculated. In the fourth experiment (Set #4), the 10-fold cross-validation
was performed to obtain an average score. In this method, the original dataset is partitioned into 10
equal size subsets. A single subset is retained as the test data, and the remaining nine subsets are used
as training data. The cross-validation process is repeated 10 times (the folds) for the test data, and the
10 results are averaged. In the RDA-PSO, RDA-GWO, and RDA-WOA methods, the number of agents
was equal to 30, and the number of iterations was equal to 25. These parameters of optimization
techniques were selected experimentally. The weights of the observations were limited to the range
[10−8, 1], while the hyperparameters δ and γ were limited to the range [0, 1].

Table 1. Division of the gait dataset into training, validation, and test sets.

Experiment Subset Classical Methods Hybrid Methods

1: Set #1 train 169 137
validation – 32
test 156 156

2: Set #2 train 325 261
validation – 64
test 58 58

3: Set #3 train 325 261
validation – 64
test 31 31

4: Set #4 train 90% (≈293) 80% (≈261)
validation – 10% (≈32)
test 10% (≈32) 10% (≈32)

Table 2 contains the correct classified ratio of the gait recognition for the considered methods.
These are four classical methods (kNN [35], NB [35], support vector machines with sequential
minimal optimization (SMO) [36], and MLP [35]) taken from [21], linear discriminant analysis
(non-regularized) [27], and three proposed hybrid methods. Figure 4 presents the confusion matrices
for the best models in the considered experiments. These matrices show the percentage of correct class
recognition by the arrangement of the colored elements. The closer the color is to dark red on the
diagonal, the more accurate the class recognition. The colors changing from dark red to white mean
worse and worse recognition.

Table 2. Correct classified ratio [%].

Experiment kNN [21] NB [21] SMO [21] MLP [21] LDA RDA-PSO RDA-GWO RDA-WOA

1: Set #1 47.44 55.77 67.95 80.13 45.51 87.05 86.28 86.92
2: Set #2 37.93 56.90 63.79 75.86 79.31 85.34 84.48 84.48
3: Set #3 38.71 70.97 67.74 77.42 93.55 88.39 93.55 93.55
4: Set #4 56.92 79.69 84.31 89.85 91.99 95.07 95.39 95.09

The best result is marked in bold font.
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Figure 4. Confusion matrices for best models in each experiment.

4. Discussion

To compare the results, the classical methods taken from the paper [21] and the LDA were
considered. This comparison with the methods proposed by the authors (RDA-PSO, RDA-GWO,
RDA-WOA) is provided in Table 2. It can be seen that, in Experiment 1 and Experiment 2, the RDA-PSO
method proposed by the authors has the highest CCR index. In Experiment 3, which considered
clothing with a backpack, three of the analyzed methods (LDA, RDA-GWO, RDA-WOA) achieved the
same CCR at the level of 94%. In the final fourth experiment, the method proposed by the authors was
again the best, in this case combining RDA with GWO. It should also be noted that the LDA obtained
the worst result of all methods for Experiment 1; this is most likely due to insufficient training data.
However, the proposed methods obtained very good results for this experiment, at the level of about
86–87%. The use of the regularized discriminant analysis combined with swarm intelligence techniques
improved the quality of gait recognition. The developed methods outperformed the classical methods
and improved the recognition results achieved by the best of them (MLP) by 6 to 16%, depending on
the experiment. When comparing the proposed hybrid methods between each other, it should be noted
that the results are inconclusive and it seems that these methods are equivalent in this application.

When analyzing the confusion matrix shown in Figure 4, it can be seen that most people
are recognized with high accuracy, but there are classes with which the methods have difficulties.
For example, in Experiment 1 (RDA-PSO method) for classes 6, 15, 20, 21, and 25, the recognition
efficiency drops to 40–60%. It is most likely caused by too little training data (about five gait cycles for
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each class). When 10-fold cross-validation is used (about nine gait cycles for each class), the recognition
efficiency increases significantly. It should also be noted that the data used in experiments were
recorded with a markerless motion capture system, which is not perfect and generates noise [21].
It certainly has an impact on the achieved results. For Experiment 2, for which learning and testing
were performed on the sequences for which the clothes were changed, a significant deterioration in
the results for persons #30 and #31 can be observed. When analyzing these video sequences, it can be
noticed that the heavy shoes changed to sandals. This could be the cause of the deterioration in the
results in this experiment. On the other hand, for person #29, there was a change of footwear from
sports shoes to shoes with a heel, and still 100% detection rate was achieved.

5. Conclusions

The hybrid methods that combine regularized discriminant analysis and swarm intelligence
techniques for gait recognition have been proposed. In the presented approach, particle swarm
optimization, grey wolf optimization, and whale optimization algorithm are used. These techniques
optimize the observation weights and hyperparameters of the regularized discriminant analysis.
The proposed methods were compared with five methods found in the literature. In the learning
process, the confusion value was used as an objective function. The conducted experiments on the
GPJATK dataset proved the validity of the proposed concept. Future work will focus on improving the
proposed concept by replacing the MPCA method with another method of dimensionality reduction.
Moreover, some work will be carried out to add new features to gait signatures.
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Abstract: During the pandemic of coronavirus disease-2019 (COVID-19), medical practitioners
need non-contact devices to reduce the risk of spreading the virus. People with COVID-19 usually
experience fever and have difficulty breathing. Unsupervised care to patients with respiratory
problems will be the main reason for the rising death rate. Periodic linearly increasing frequency
chirp, known as frequency-modulated continuous wave (FMCW), is one of the radar technologies
with a low-power operation and high-resolution detection which can detect any tiny movement.
In this study, we use FMCW to develop a non-contact medical device that monitors and classifies
the breathing pattern in real time. Patients with a breathing disorder have an unusual breathing
characteristic that cannot be represented using the breathing rate. Thus, we created an Xtreme
Gradient Boosting (XGBoost) classification model and adopted Mel-frequency cepstral coefficient
(MFCC) feature extraction to classify the breathing pattern behavior. XGBoost is an ensemble machine-
learning technique with a fast execution time and good scalability for predictions. In this study,
MFCC feature extraction assists machine learning in extracting the features of the breathing signal.
Based on the results, the system obtained an acceptable accuracy. Thus, our proposed system could
potentially be used to detect and monitor the presence of respiratory problems in patients with
COVID-19, asthma, etc.

Keywords: FMCW; vital sign; XGBoost; MFCC; COVID-19

1. Introduction

On 30 January 2020, the World Health Organization (WHO) officially confirmed that
the spread of COVID-19 had caused a global pandemic for countries around the world [1,2].
This pandemic was caused by the SARS-CoV-2 virus [3], which is highly contagious and
causes rapid spread through droplets [4,5]. The droplets can spread through the eyes,
mouth, or nose within a radius of one or two meters from a person with COVID-19 [6]. The
biggest challenge for this pandemic is to control the spread of the virus, and the best strategy
to reduce the virus is by preventing direct contact and ensuring social distancing [7,8].

People with COVID-19 usually experience fever and have difficulty in breathing
that causes coughing with rapid and short breath (tachypnoea) [9–13]. Therefore, one
of the critical conditions that needs to be monitored is the respiration pattern [14–18].
Since pandemic issues, hospitals are always busy and full of patients. Limited medical
personnel cause unsupervised care in a hospital [18], whereas some patients suffering from
a respiration problem need special or supervised care. Hence, a non-contact respiration
monitoring device that can be accessed from a central room in real time is necessary. Thus,
radar technology, which provides non-contact detection, has a great opportunity to be
developed in the medical field.

Radar sensor has attractive advantages over camera-based systems in terms of light
and privacy [18–27]. Periodic linearly increasing frequency chirp, known as FMCW, is
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one of the radar technologies that uses a wide frequency bandwidth without requiring
wideband processing. FMCW has a simple transceiver architecture, low sampling-rate
requirements, low power operation, easier proximity detection, high resolution, and the
ability to detect small movements [19,20,28–31]. Therefore, FMCW radar is capable of
detecting the vibration of chest displacement [19,20], which is the result of the lungs’ and
heart′s mechanical activity [22].

Several studies have been conducted to obtain an accurate respiration rate [32,33]
from chest displacement information. However, patients with a respiration disorder or
COVID-19 have an unusual respiration characteristic pattern [13] that cannot be represented
by using the respiration rate. Therefore, machine-learning assistance in classifying the
breathing pattern plays an important role in detecting respiratory disorder. The addition of
machine learning will significantly contribute to the automation of a more sophisticated
and more intelligent system. Thus, we tried to incorporate radar technology with machine
learning to build a system that can detect and classify the breathing pattern disorder.

Based on the background mentioned earlier, we propose a non-contact breathing
pattern detection using FMCW radar with XGBoost classifier and MFCC feature extraction
in an indoor environment. Some signal processing steps are implemented to extract the
breathing information from chest displacement information. XGBoost classifier and MFCC
feature extraction are used to classify the breathing class. XGBoost is often used in machine-
learning problems because it combines boosting and gradient boosting so that it can
process data quickly [34,35]. Moreover, MFCC feature extraction [36,37] helps the XGBoost
to identify, minimize and capture important parts of the signal.

The proposed system will not be a perfect substitute for a professional doctor. How-
ever, it is hoped that our research can help to screen and monitor patients infected
by COVID-19.

The classification model was evaluated and obtained a reasonable accuracy—87.375%.
The implementation of the proposed system was tested for a real-time operation and
successfully detected five different classes of breathing waveform.

The rest of the chapter is summarized as follows: Section 2 describes the related work,
Section 3 explains the proposed method, Section 4 demonstrates the experimental result,
and Section 5 concludes the work.

2. Related Work

The listening technique to listen to the breath sounds using a stethoscope is known
as the auscultation technique. The auscultation technique is the basic technique used by
doctors to evaluate breath sounds. This technique is quite simple and inexpensive but has
a weakness; the analysis results are subjective [38]. Due to these factors, misdiagnosis may
occur if the auscultation procedure is not performed properly.

Several studies have been conducted to detect and monitor human body conditions
without physical touch, such as using CT scan, X-ray, camera, thermal camera, photo-
plethysmography technology [39], ultrasound technology, Wi-Fi [40–42], radar [43–49],
thermography, etc. [50,51].

CT scan [52] and X-ray technology [53] have a high image precision and resolution,
but it is quite expensive. CT scanners and X-ray machines are quite large and not portable.
It takes a professional to analyze the images. Furthermore, the negative impact is that the
patients are exposed to radiation, which is bad for their bodies.

Depth camera technology can be used to observe the chest displacements by recording
video footage of the chest movements [13,14,54–56]. However, the camera has limitations
in terms of light and privacy [18,21–26].

In thermography, infrared radiation is commonly used to measure the human body
temperature [57]. An infection will usually cause the body temperature to be abnor-
mal. [58]. Additionally, in general, COVID-19 patients have a body temperature above
37 degrees Celsius [59,60].
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In [39], non-contact photoplethysmography technology is used to monitor oxygen
saturation in the blood (SpO2). In estimating SpO2, real-time face video monitoring of
the patient is carried out with a camera. An abnormal SpO2 value is a sign of potential
COVID-19 infection.

Another study developed ultrasonic waves for monitoring the movements of or-
gans [61]. The disadvantage of this technology is that patients are not allowed to eat for
several hours before the monitoring process is carried out [62].

The breathing rate measurement using Wi-Fi was successfully conducted by using
peak detection and with CSI amplitude [41], CSI phase [42], and RSS [40]. Unfortunately,
RSS and the amplitude of CSI are not sensitive to the chest motion [40,41]. Furthermore,
the measurement accuracy decreases dramatically if the patient location is outside of the
specified distance [40,42].

Radar sensor has attractive advantages in monitoring the breathing pattern [63] over
camera-based systems in terms of light and privacy [18,21–26]. In [63], non-contact vital-
sign detection using radar has been developed, and Lee et al. [64] used radar to observe the
different breathing patterns. They [63,64] used Doppler radar to capture various breathing
patterns, but did not classify them. Ultra-wideband radar (UWB) [65–68], continuous
wave (CW) [21,68–71], and FMCW are the radar technologies that can be used to develop
non-contact medical devices [72,73]. UWB radar has a high resolution and low level of
radiation [74]. However, high power is required to transmit the signal during a short
pulse period. Meanwhile, CW is unable to detect vibration, making it difficult to detect
a small movement. In [21], Doppler radar-based continuous-wave (CW) was used for
the automatic breathing pattern classification system using the SVM classifier. The CW
radar can measure the relative velocity accurately at a very low transmit power and tiny
equipment size. When operating at low transmit power, the range is limited. CW has a
weakness in measuring tiny position changes because the signal is not modulated. Besides,
other moving objects in front of and behind the target will interfere with the CW signal,
making it difficult to distinguish the target from the disturbing object [75].

As mentioned earlier, FMCW has a low-power operation and easier proximity detec-
tion [30]. It has a high-resolution speed and the ability to detect tiny movements [76]. One
of the advantages of using FMCW is that it has the ability to filter interrupting objects in the
range domain. All targets ahead of and behind the selected range can be eliminated through
the monitoring process in the frequency domain. The FMCW radar can measure small
movements as the signal is modulated. The respiration rate detector with FMCW performs
the measurement based on the variation of the phases due to the chest displacement [47–49].
Initially, frequency analysis was applied to estimate the distance between the subject and
the FMCW radar. Furthermore, feature detection and frequency analysis of phase variance
at estimated distances are implemented. In a frequency analysis-based method, the breath-
ing rate is estimated by detecting the peaks due to respiration over a spectrum [46]. The
studies on estimating the breathing rate using radar have been investigated extensively
with Doppler radar [21,43,45,46] and FMCW radar [47–49]. Previous studies on Doppler
and FMCW radar provide an accurate estimation of respiration rate [43–49].

The current state-of-art literature shows that CT scan and X-ray have a good preci-
sion but are expensive and cannot be used in real time; cameras, thermal cameras, and
photoplethysmography can be used in real time but are not good in terms of privacy and
require good lighting; ultrasound technology and Wi-Fi technology are less sensitive and
not easy to use; UWB and CW radars are sensitive but require a lot of power. Thus, the
aforementioned solutions are less applicable for real-time monitoring of the condition of
COVID-19 patients in quarantines or hospitals.

On the other hand, FMCW radar technology allows real-time and non-contact mea-
surement, maintains privacy, is not affected by light, has a simple transceiver architecture,
has a wide frequency with low power consumption, has a low sampling-rate requirement,
has easier proximity detection, can filter interrupt objects, and has a high resolution, which
is very important for detecting vibration.
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For this reason, the most suitable sensor to overcome all of the aforementioned prob-
lems is to use FMCW radar technology. FMCW is a good choice for implementing non-
contact respiration detection for COVID-19 patients.

3. Proposed System

This section explains how the non-contact monitoring and classification of breathing
patterns using the XGBoost classifier and MFCC feature extraction using FMCW works.
Before we begin, we start by formally defining five classes of breathing patterns as follows:

• Class 1—normal breathing: normal breathing has a constant breathing waveform and
similar pattern during the time, shown in Figure 1a.

• Class 2—deep and quick breathing: deep and quick breathing has a large amplitude
with a high frequency (high respiration rate), shown in Figure 1d.

• Class 3—deep breathing: deep breathing has a large amplitude with a normal respira-
tion rate, shown in Figure 1c.

• Class 4—quick breathing: quick breathing has a small amplitude (short breath) with
high frequency (high respiration rate), shown in Figure 1d.

• Class 5—holding the breath: the breathing waveform is almost disappeared, and the
amplitudes are close to zero, shown in Figure 1e.

   
(a) (b) (c) 

  
(d) (e) 

Figure 1. Breathing waveform in the time domain for (a) normal breathing; (b) deep and quick breathing; (c) deep breathing;
(d) quick breathing; (e) holding the breath, recorded by TI-IWR 1443.

Class 1 shows us the normal breathing of an adult. In general, 12 to 20 breaths per
minute is the average respiration rate for a relaxed adult. For class 2 to 5, we chose
those four breathing patterns because each class has similarities with the symptoms of
several diseases.

Breathing pattern disorders are abnormal breathing patterns associated with exces-
sive breathing. They range from simple upper-chest breathing to the most extreme scale,
hyperventilation (HVS) [77]. Usually, hyperventilation sufferers experience deep and rapid
breathing such as class 2, deep and quick breathing. In general, sufferers of this respiration
pattern disorder experience chronic or recurring changes in their breathing patterns that
cannot be attributed to a specific medical diagnosis. When ventilation exceeds metabolic
requirements, it results in chemical and hemodynamic changes that lead to a breathing
pattern disorder. Class 2 (deep and quick breathing) can be found in Kussmaul and Biot
patients. The Kussmaul and Biot breathing occur in patients who experience deep and
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rapid breathing. This indicates that the organs are becoming too acidic. It is caused by
kidney failure, metabolic acidosis, and diabetic ketoacidosis. The body breathes quickly
and deeply to release carbon dioxide, which is an acidic compound in the blood [78].

In the medical field, class 3 (deep breathing) is known as hyperpnea. Hyperpnea is an
increasing depth of breath at normal frequencies.

Asthma starts with a cough or a wheeze. Usually, the chest feels tight, the breathing
speeds up, and it becomes shallower. It will cause the person to feel short of breath. These
are common symptoms of an asthma attack, which is related to class 4—quick breathing.
COVID-19 and tachypnoea patients sometimes have unexpectedly short breathing at
unexpected times related to class 4, quick breathing, or short breathing. This kind of patient
needs supervised care because short breathing may occur suddenly. This critical condition
is very risky for their life.

Bradypnea is a decreased frequency of breath or slowed breathing related to class 5—
holding the breath. This situation is found in respiratory center depression. Bradypnea is
usually found in patients who use alcohol or narcotics and in patients with tumors. Besides,
patients who have difficulties in breathing and are about to die also have a breathing
waveform such as class 5.

Now, we will explain how our proposed system works. Figure 2 illustrates the system
model that detects and classifies the breathing pattern based on FMCW radar. In general,
we have three modules. The first module is the FMCW module that generates and receives
the FMCW signal. The first module is explained in the first sub-section. The second module,
which is presented in the second sub-section, is the signal processing module that processes
and extracts the signal into a breathing waveform. The third sub-section explains the last
module, the machine learning module. The machine learning module trains and tests the
data and generates the machine-learning model for classification.

Figure 2. Block diagram of the proposed system.

3.1. FMCW Module
3.1.1. Signal Processing in Hardware

In this part, we explain the signal processing step for generating the FMCW signal
and obtaining the reflected signal. The steps are described in the following sub-paragraph.

• The process begins when the user instructs the microcontroller unit (MCU).
• The instruction is transmitted through a serial peripheral interface (SPI), serial com-

munication for short-distance communication.
• FMCW uses a continuous signal that has modulated frequency. Thus, we need a

frequency synthesizer that generates the modulated frequency signal.
• A phase-locked loop (PLL) is a feedback control system that compares the phase of

two input signals in a frequency synthesizer. It produces an error signal proportional
to the difference between their steps.

• The error signal is then passed through the low-pass filter (LPF) and is used to drive
the voltage control oscillator (VCO).

• The VCO produces the output frequency. VCO increases the frequency by increasing
the voltage.
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• Bandpass filter (BPF) is then used to filter the signal. The signal is passed through a
BPF so that only the main frequency is used and the harmonic frequency is ignored.

• The splitter is used to split the signal for the mixer and the transmitter.
• A power amplifier (PA) amplifies the signal before being transmitted by the transmitter

antenna (Tx).
• Tx emits a modulated signal s(t) towards the object. The object will reflect the signal,

and the receiver will receive the reflection.
• The signal r(t) received by the receiver will have a difference in frequency compared

to the signal emitted by the transmitter. This difference describes the time for the
signal to travel from the transmitter to the object. The object distance is obtained from
the traveling time.

• As the received signal is very weak, we use a low noise amplifier (LNA) that amplifies
the received signal r(t).

• The mixer will mix the transmitted signal s(t) and received signal r(t).
• We only need the signal with low frequency; we pass the signal through LPF to obtain

the low-frequency signal and remove the high-frequency signal.
• PGA is a programmable gain amplifier that can control the gain.
• Finally, the data is transmitted to the MCU.
• The analog-to-digital converter (ADC) will convert the analog signal to the digital signal.

This study uses a TI-IWR 1443 mm-Wave sensor from Texas Instruments [79] to
measure the chest displacements. This study was carried out using FMCW radar with a
starting frequency of 77 GHz and a chirp frequency of 4 GHz.

As mentioned in the previous section, FMCW has the ability to detect the presence of
very small displacements. Usually, the chest displacement has an amplitude below 10 mm
with a low frequency of less than 4 Hz. Therefore, there is no large phase change during
the time (fast time). Phase changes can be seen from successive chirps (slow time). In
Equation (12) of paper [44], if an object is at a distance R, then:

φb = φc +
4πR

λ
, (1)

where φb is the phase shift at the receiver; φc is the phase, which is constant for a fixed
object; and λ is the wavelength. From Equation (1), it is shown that a smaller λ will result in
a larger phase change. This explains why 77 GHz, the smaller wavelength millimeter-wave
radar (≈3.9 mm), can measure ten-micron vibrations caused by the lungs and heart. For an
object with static angles placed at a fixed distance, they [44] experimentally determined
the phase sensitivity by measuring the phase variation across the object-bin range as a
function of time. Their study showed that at SNR >40 dB, phase sensitivity <7 milli-
radians corresponds to a displacement sensitivity of ≈2 microns. Thus, we know that
77 GHz wave radar has greater sensitivity in measuring small displacements. This gives
us confidence that using the same device, the system is capable of measuring 10-micron
vibrations for breathing measurements. In order to detect the small scale of displacement,
the sensor measures the change in phase of the FMCW signal. The sensor detects the chest
displacement when it is located nearby the person sitting around the sensor.

3.1.2. FMCW Signal Model

In theory, the FMCW signal model has been explored in several previous studies [80].
This part will briefly explain the basic FMCW signal model that we use in the system.
FMCW signal transmits a signal with periodic frequency modulation. The frequency
increases linearly over the length of the sweep time T, as shown in Figure 3.
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Figure 3. FMCW basic concept.

Based on similar triangles in Figure 3, we have the received time td = 2R
c , so td

T = fb
B ,

where R is the distance, fb is the beat frequency, c is the light speed and B is the sweep
bandwidth. The distance R = cT fb

2B can be obtained from fb = 1
T . The distance resolution is

dR = c
2B . Note that frequency 1

2π
d
dt

(
2π fct + π B

T t2
)
= fc +

B
T t . The transmitted FMCW

signal is expressed as follows:

s(t) = AT cos
(

2π fct + 2π
B
T

∫ t

−∞
τ dτ + φ(t)

)
= AT cos

(
2π fct + π

B
T

t2 + φ(t)
)

, (2)

where AT is the transmitted signal power, fc is the starting frequency of the chirp, and
φ(t) is the phase. The received signal is the delay time of the transmitted signal defined as:

r(t) = αAT cos (2π fc(t− td) + π
B
T
(t− td)

2 + φ(t− td)), (3)

with α as the resized scale. The mixer output is:

s(t)r(t) = α(AT)
2 cos

(
2π fct + π B

T t2 + φ(t)
)

cos
(

2π fc(t− td) + π B
T (t− td)

2 + φ(t− td)
)

= α(AT)
2

2

(
cos

(
4π fct− 2π Btd

T t + 2π B
T t2 + π B

T (td)
2 − 2π fctd + φ(t) + φ(t− td)

)
+ cos

(
2π Btd

T t + 2π fctd − π B
T (td)

2 + φ(t)− φ(t− ttd)
)) (4)

The LPF output is:

b(t) = LPF(s(t)r(t)) =
α(AT)

2

2
cos

(
2π

Btd
T

t + 2π fctd − π
B
T
(td)

2 + Δφ

)
, (5)

where Δφ is the residual phase noise. Suppose that the target is stationary, let td = 2R
c ,

fc =
c
λ into b(t)

= α(AT)
2

2 cos
(

2π B
T

2R
c t + 2π fc

2R
c − π B

T

(
2R
c

)2
+ Δφ

)
≈ α(AT)

2

2 cos
(

2π B
T

2R
c t + 4π fcR

c + Δφ
)

= α(AT)
2

2 cos
(

2π B
T

2R
c t + 4πR

λ + Δφ
)
= α(AT)

2

2 cos(2π fbt + Δφ).
(6)

Note that frequency: fb = 1
2π

d
dt

(
2π B

T
2R
c t + 4πR

λ

)
= B

T
2R
c . The beat signal means the

receiving signal, which is the result of mixer and LPF filter. Thus, we have:

b(t) ≈ α(AT)
2

2
cos

(
2π

B
T

2R
c

t +
4πR

λ
+ Δφ

)
=

α(AT)
2

2
cos(2π fbt + φb + Δφ), (7)
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where φb is the phase of the beat signal. The beat signal b(t) contains information about
the frequency difference, determining the distance R between the radar and the target. The
maximum detection range of FMCW is Rmax = cT fb

2B and the minimum detection range of
FMCW is Rmin = c

2B .

3.2. Signal Processing Module
3.2.1. Range FFT

After passing through the low-pass filter mentioned above, the beat signal is sampled
in the fast time-frequency. Then, the fast Fourier transformation (FFT) range is implemented
to obtain the spectrum. The peak value of the signal spectrum defines the target distance.
Peak detection is performed to determine the difference in frequency and distance between
the radar and the target. Chest movements caused by heart and lung activity can be
observed when the body is in a constant state. The phase change Δφb of the beat signal can
represent the small-scale vibration ΔR because it has a positive linear relationship.

FFT ranges are referred to as complex span profiles. These FFT ranges are aggregated
in a slow-span time matrix for each time T. The variation in the distance from the radar to
the chest surface is proportional to the change in phase received by the receiver. The slow
time span matrix is then sent to the processor on the PC, and signal extraction is performed,
as shown in Figure 2.

The chest surface displacement due to vital organ vibrations has a small amplitude
ranging from <12 mm with a low frequency of <4 Hz. This indicates no drastic change in
phase during the span of the chirp time (fast time axis) so that the chest movement can be
observed by measuring the phase change between successive chirps (slow time axis).

This paragraph describes the slow-time axis sampling rate considerations. Following
the Nyquist criteria [44] of the theory, the sampling rate must be twice the sampling rate
of maximum frequency to prevent noise aliasing. As the observed range of vibrations is
between 0.1 and 4 Hz, the used sampling rate is 20 Hz. On the other hand, the sampling
rate must be large to cover up the phase redundancy. In theory, for an object vibrating with
A sin (2π fmt), the selected slow-axis sample must satisfy Fs > 8π fm A

λ . A is the amplitude
and fm is the vibration frequency. For the chirp duration, we chose 50 μs for one chirp
range. Based on the theory, SNR and displacement sensitivity are better achieved when the
chirp duration is higher.

3.2.2. Extraction and Unwrapping

To obtain information on the value of the displacement distance, arctangent and
unwrapping operation on the phase value are calculated as ϕ (m) = unwrap

[
tan−1 Q

I

]
.

I and Q are measured signals of I channel and Q channel, respectively.
The obtained phase is in radian. This phase information can be any real value wrapped

into the interval 2π with domain ]−π, π] by the arctan operator. This information is limited
between −π and π. This condition causes a phase ambiguity for calculating the phase
cycle. To solve this problem, an unwrapping process, a process to eliminate the phase
ambiguity, should be carried out so that an absolute phase is obtained. Phase unwrapping
reconstructs a continuous signal by removing some 2π ambiguity.

To measure tiny vibrations, the change of the signal within time is measured. From
Equation (7), if an object changes position along ΔR, then the phase change between
successive measurements is given by:

Δφb =
4πΔR

λ
(8)

where Δφb is the phase change of the beat signal, ΔR is the change of the distance, and
λ. is the wavelength. The phase can be measured by taking the FFT of signal b(t) and
calculating the phase over the object range. The distance can be calculated by the equation
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R = λ (φ + k) where k is the phase ambiguity that must be obtained through the phase
unwrapping process in order to obtain the absolute phase.

“Itoh’s condition” theory [81], adopted by most phase unwrapped strategies [82], is
that the absolute value of the phase difference between adjacent neighbors in a continuous
phase signal is less than π for unambiguous phase wrapping. When Itoh’s condition is
not violated, it is possible to obtain absolute and constant values easily. Let us define the
wrapper operator W (·) that wraps any phase φ. into ]−π, π] by

W : R �−→ ]π, π]
φ ↪→ φ− 2πk,

(9)

where k ∈ Z, such that it follows the following rule:

φ(t− 1, t) =

⎧⎨⎩
Δφt, i f |Δφt| < π
Δφt + 2π i f Δφt ≤ −π
Δφt − 2π i f Δφt ≥ −π

(10)

Δφt = φ(t)− φ(t− 1), (11)

where φ(t) is the current phase and φ(t− 1) is the previous phase. Thus, Itoh’s condi-
tion [81] can be represented by:

|Δφt| ≤ π. (12)

Then, we have:
m

∑
t=1

Δφt = φ(m)− φ(0). (13)

From Equation (9), we have W(φ(t)) = φ(t)− 2πkt, with kt ∈ Z, so:

ΔW(φ(t)) = φ(t)− φ(t− 1)− 2π(kt − kt−1), (14)

where kt − kt−1 ∈ Z. Then, we can write Equation (11) as:

W[ΔW(φ(t))]︸ ︷︷ ︸
p

= Δφt−2π(kt − kt−1)− 2πk︸ ︷︷ ︸
q

, (15)

where kt, kt−1, k ∈ Z, and 2πk is the proper 2π multiple to bring p into the principal interval.
From Equation (12) and |p| ≤ π, we have q = 0, so that we can write:

W[ΔW(φ(t))] = Δφt (16)

Finally, from Equations (13) and (16), we obtain:

φ(m) =
m

∑
t=1

W[ΔW(φ(t))] + φ(0). (17)

From Equation (17), we can obtain the unwrapped phase at any time t from the
wrapped phase value, with its absolute phase value φ(0). Thus, we can calculate the
absolute phase value for each time when Itoh′s condition is met. Lastly, the phase difference
between successive unwrapped phases is calculated.

3.2.3. Noise Removal

Noise-induced phase wrapping error might corrupt the un-wrapped differential phase
a (m), especially in phases around −π or π. By calculating the phase difference backwards
a (m)− a (m− 1) and forwards a (m)− a (m + 1), impulse-like noise can be eliminated. If
the phase exceeds a certain limit, the a (m) value is replaced with an interpolation value.

47



Sensors 2021, 21, 3172

3.2.4. IIR BPF Using Cascaded Bi-Quad

The chest displacement due to cardiac and breathing activity is represented by two
overlapping sinusoidal signals, where one represents the heart waveform and the other
represents the respiratory waveform. Generally, the adult chest moves due to the process
of respiration activity with an amplitude of 4 to 12 mm at a frequency between 0.1 and
0.5 Hz, and cardiac activity with a frequency between 0.8 and 4 Hz with an amplitude of
0.2 to 0.5 mm [83]. Chest surface fluctuations caused by pulmonary and cardiac motion are
modeled as a signal [22], as follows:

x(t) =
J

∑
i=1

ari cos(2πi frt + θri) +
K

∑
i=1

ahi cos(2πi fht + θhi). (18)

The amplitude of respiration and heart waveform for the i-th harmonic component is
denoted as ari and ahi, respectively. fr is the base frequency of the respiratory waveform
and fh is the base frequency of the heart waveform. The harmonic phase sequences of
the respiratory and heart signal are θri and θhi, respectively. Finally, J and K are the total
numbers of components.

As mentioned earlier, the respiration and heart waveform have different frequency
bands so that suitable frequency filters can separate them. In this study, a fourth-order
IIR cascade Bi-quad BPF was used to obtain a respiratory signal in the frequency range
between 0.1 and 0.5 Hz.

The BPF is a frequency filter that passes signals within a certain frequency range.
The signal is passed between the lower limit frequency to the upper limit frequency.
In other words, this BPF will reject or attenuate frequency signals that are outside the
specified range.

Increasing the Butterworth filter order allows for faster roll-off around the cutoff
frequency while maintaining flatness in the stopband and passband. However, direct
application of a high-order recursive filter will cause different coefficients in many order
quantities. Besides, this makes the practical application difficult [84]. Thus, a cascaded
bi-quad is used to avoid the use of a high-order filter.

In this section, we explain how the Bi-quad BPF works. The pole-zero form of the BPF
response [85] is described as follows:

H(z) = K
(z + 1)N(z− 1)N

(z− p1)(z− p2) . . . (z− p2N)
. (19)

N is the order of the BPF. Next, H(z) is converted into cascaded sections (bi-quads).
Thus, H(z) can be written as the product of N sections with complex-conjugate poles
as follows:

H(z) = K1
(z + 1)(z− 1)

(z− p1)
(
z− p∗1

) .K2
(z + 1)(z− 1)

(z− p2)
(
z− p∗2

) . . . . . KN
(z + 1)(z− 1)

(z− pN)
(
z− p∗N

) . (20)

p∗k is the complex conjugate of pk. At each bi-quad, a zero is assigned at z = +1 and
z = −1. We label each term in the equation as biquadratic because it has a quadratic
numerator and denominator. Furthermore, we can extend the numerator and denominator
of the k-th bi-quad section as follows:

Hk(z) = Kk
z2 − 1

z2 − (pk + p∗k
)
z + pk p∗k

= Kk
z2 − 1

z2 + a1z + a2
. (21)
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a1 = −2 ∗ real(pk) and a2 = |pk|2. After dividing the numerator and denominator by
z2, we form the following equation:

Hk(z) = Kk
1− z−2

1 + a1z−1 + a2z−2 . (22)

Since the same zero is assigned for each bi-quad, the feed-forward (numerator coeffi-
cient) b = [1 0 −1] will be the same for all N bi-quads. So, we get:

a =
[
1 − 2 ∗ real(pk) |pk|2

]
, b = [1 0 − 1]. (23)

A pair of complex conjugate poles is not sufficient to define a second-order polynomial.
For a BPF, after bilinear transformation, the output has to be scaled to achieve unity gain
in the passband [85]. Each bi-quad is allowed to have a gain of 1 at the filter geometric
mean frequency f0. for finding the gain Kk. Then, Hk(z) is evaluated at f0 and Kk [85], set
as follows:

Kk =
1

|H( f0)| . (24)

To find f0, we define f1 = fcenter – bw
2 and f2 = fcenter +

bw
2 . Thus, f0 =

√
f1 ∗ f2. For

a narrowband filter, f0 is close to fcenter. In theory, we can arrange the sequence of the
bi-quad freely. However, to reduce and minimize the possibility of clipping, a bi-quad with
the peaking response should be put at the end.

As our system uses a fourth-order IIR cascaded Bi-quad BPF, we need to cascade two
IIR bi-quad BPF, as shown in Figure 4. Based on Equations (23) and (24), we have the
denominator coefficient a, nominator coefficient b and the gain Kk, respectively, as follows:

a =

[
1 a1,1 a1,2
1 a2,1 a2,2

]
=

[
1 −1.963 0.964
1 −1.85 0.868

]
, b = [b0 b1 b2] = [1 0 − 1] (25)

K =
[

0.116 0.031
]

(26)

Figure 4. Fourth order of IIR BPF using cascaded bi-quad.

Figure 5a presents the pole-zero plot, and Figure 5b illustrates the frequency response
of the fourth-order IIR cascaded Bi-quad BPF for frequency 0.1 to 0.5 Hz.

One of the measurement samples shows the unwrapped phase after the phase differ-
ences operation, and noise removal is represented in Figure 6a as the chest displacement.
Then, the signal is passed through the fourth-order of IIR BPF using a cascaded bi-quad.
Note that the breathing waveform becomes more obvious, as shown in Figure 6b.
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(a) (b) 

Figure 5. (a) Pole-zero plot, and (b) frequency response for fourth-order IIR cascaded Bi-quad BPF.

 

(a) (b) 

Figure 6. (a) Unwrapped phase after the phase difference and noise removal, labelled as the chest displacement; (b) the
output of IIR BPF is the breathing waveform.

3.2.5. Respiration Rate

In order to verify that the breathing waveform is correct, we also calculate the breath-
ing rate. The breathing waveform was passed through a spectrum estimation, autocorrela-
tion, and interpeak distance block to estimate the breathing rate. The BPF is employed to
eliminate the noise. Peak detection is performed to determine the difference in frequency
and the distance between the radar and the target. The respiration rate value is obtained
by calculating the distance between the respiratory wave signal peaks in the time domain.

3.3. Machine Learning (Classification Method) Module

The proposed method uses the XGBoost model as the classifier and MFCC as the
feature extraction. We explain the machine-learning module as several parts as follows.

3.3.1. Pre-Processing

When recording the respiratory data, some pieces of data have 0 values or missing
values. Besides, some data do not represent the desired class. For example, when the
system started to record, the subject had not started imitating the suitable breath class.
Thus, data that does not represent the suitable class has 0 value or missing values and is
discarded from the data set.

Data sets contain some features that differ in unit and range. Before the data processed
by a machine-learning algorithm, data sets must be converted into a proper format. If
standardization is not implemented, large numbers and a wide range of features will reach
more weight than features with a small number and small range. It means that features
with a large number and range will obtain more priority. Therefore, to suppress all these
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effects, it is necessary to scale the feature with a standardization process. Standardization
facilitates faster convergence of loss functions for some algorithms.

z =
x− μ

σ
(27)

For each piece of data, we limit each window to 5 s and segment it with 85 step size.

3.3.2. MFCC Feature Extraction

The Mel-frequency cepstral coefficient (MFCC) is a feature extraction introduced by
Davis and Mermelstein around 1980 [36,37]. In order to improve the classification accuracy,
MFCC feature extraction converts signal waves into cepstral coefficients. It converts the
signal into several vectors to generate vector features [86]. The MFCC of a signal is a
small set of features with a value between 10 and 20, representing a spectral envelope
of the overall shape. The advantage of MFCC is that it can minimize and capture the
important parts of the signal. MFCC works based on the differences in frequency [87,88].
MFCC is widely used in audio/speech recognition. We adopt MFCC because the breathing
waveform is similar to the audio signal, which has a three-dimensional signal in time,
amplitude, and frequency, as shown in Figure 7. Most of the audio recognition studies use
MFCC because it has the best performance in extracting the signal. The study in [89] shows
good training and test results in speech recognition using MFCC [89]. Thus, in our study,
we employ MFCC to assist machine learning in extracting the breathing waveform.

Figure 7. Component of breathing waveform.

MFCC stages, shown in Figure 8, start from frame blocking, windowing, FFT, Mel-
frequency wrapping (MFW), discrete cosine transform (DCT), and cepstral liftering.

Figure 8. MFCC feature extraction technique.

1. Frame Blocking

Frame blocking divides the signal into several frames then makes the frames overlap
each other. The signal is divided into U samples and shifted by V samples so that U = 2V
with V < U. The width of the frames is denoted by U, while the width of each frame is
shifted as V. The overlap width is calculated as the difference of U −V.

2. Windowing

Windowing is necessary because the effect of frame blocking on signals causes discon-
tinuity. One way to avoid a discontinuity at the end of the window is to tap the signal to
zero or near zero, thereby reducing errors.
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3. Fast Fourier Transform (FFT)

After passing through frame blocking and windowing, FFT is applied to the signal.
FFT converts the signal from the time domain to the frequency domain as the spectrum.

4. Mel-frequency Wrapping (MFW)

Mel-frequency wrapping is processed based on a filter bank and produces a mel
spectrum. A filter bank is a filter to determine the amount of energy from a certain frequency
band. The mel frequency scale is a linear frequency scale at frequencies below 1000 Hz
and is a logarithmic scale at frequencies above 1000 Hz. This block wraps the resulting
spectrum from FFT so that it becomes a mel scale. The inner frequency range is very wide,
and the signal does not follow a linear scale, so the computed spectrum of data is mapped
in mel scale using overlapping triangular filters. MFW calculation [36] follows:

Y[i] =
G

∑
j=1

T[j]Hi[j]. (28)

Y[i] is the calculation result of the mel frequency wrapping at i-th, where 1 ≤ i ≤ E;
E is the number of filter bank channels. G is the total magnitude spectrum; T [j] is the result
of FFT; Hi [j] is the filter bank coefficient at frequency j. In this case, mel uses a frequency
with the mel scale [90] that follows:

mel( f ) = 2595 log10

(
1 +

f
700

)
, (29)

with f as the frequency.

5. Discrete Cosine Transform (DCT)

The DCT produces septrum mel. DCT is assumed to replace the inverse Fourier
transform in the MFCC feature extraction process. DCT has the aim of creating septrum
mel to improve the quality of recognition. DCT [36] uses the following equation:

Cm =
K

∑
k=1

(log10 Y[k] cos (m
(

k− 1
2

)
π

K
)), (30)

where m = 1, 2, . . . , K. Cm is the coefficient, Y [k] is the output of the filter bank process on
the index k, m is the number of coefficients, and K is the number of expected coefficients.

6. Cepstral Liftering

Cepstral liftering is the last MFCC process that converts the frequency domain signal
into the time domain. The cepstral coefficient uses the following equation:

w(b) = 1 +
C
2

sin
bπ

C
, (31)

where b = 1, 2, . . . , C.w(b) is the window function to the cepstral features, C is the cepstral
coefficients, and b is the cepstral coefficients index. The cepstral liftering is obtained in the
form of frames and cepstral coefficients.

3.3.3. Classification Using XGBoost Classifier

One technique that can be used to improve the performance and the confidence level
of learning outcomes is using more than one learning algorithm. In ensemble learning,
similar learning algorithms generate several hypotheses, and the results are combined
to make the predictions. This combination method can minimize learning errors caused
by noise, bias, and variations. Usually, these errors occur in learning processes that use
unstable classifiers, such as decision trees [91]. XGBoost, which stands for extreme gradient
boosting, is an ensemble machine learning technique that uses a gradient enhancement

52



Sensors 2021, 21, 3172

framework for machine learning predictions [34]. XGBoost has a fast execution time and
good scalability. XGBoost is a special implementation of gradient boosting. It is called
gradient boosting because gradient descent is used. It minimizes errors when forming a
new model. By adding the boosting method, it is expected that the classifier performance
will increase. Improving the boosting technique at the training stage helps to optimize the
weight gain process in machine learning [91].

To understand how XGBoost works, first, we need to understand how the adaptive
boosting (AdaBoost) and gradient boosting machine (GBM) algorithms work, which are
the basis of XGBoost. AdaBoost works by constructing a weak learner model, namely a
tree, and giving each observation the same weight [91]. The obtained tree is then evaluated
to see its predictive ability. There will be some incorrect observations for the prediction
tree. The weight of incorrect observation will be increased in the next iteration. Thus, we
hope that it will be able to predict in the next iteration model accurately. The procedure is
repeated so that 10 to hundreds of weak learners are obtained. The final model is decided
by combining various trees obtained by a certain weighting mechanism. This AdaBoost
approach is classified as a sequential learning process because it sequentially changes
the weak learner model. It does not process the parallel tree, such as the random forest
algorithm [91]. The GBM algorithm also performs the iterative and sequential method as
well as AdaBoost. The prediction of one iteration is obtained by combining the models
from the previous iterations.

Furthermore, in each iteration, the model attempts to correct the previous error. The
residue of the previous prediction model is used as the response variable for the next
model. At each iteration, a loss function is minimized according to the needs of the user
for obtaining a classification model. For modeling the regression, the loss function can be
estimated by calculating the error sum of squares, whereas, in the general classification,
the logarithmic loss function is used. The final prediction is determined by combining all
model predictions from all iterations. XGBoost is an extension of the GBM algorithm with
several additional features that are useful in speeding up the computation process and
preventing overfitting. XGboost can optimize memory and cache usage on a computer so
that it can work efficiently, even dealing with large data sizes [34,35]. This feature allows
XGboost to run faster than other advanced models such as deep learning and random
forest. Meanwhile, the prevention of overfitting is carried out by providing a penalty
component to the loss function. In this way, the algorithm will avoid too complex models
but poorly perform in predicting events with new data.

In this part, we explain the choice of our machine learning algorithm. In [35], six
different classification algorithms were compared for emotion recognition from Electroen-
cephalography (EEG) signals. The EEG signal used was a one-dimensional signal that
changed with the time, as well as our breathing waveform. In their paper, they explained
that the algorithm they needed was a fast and accurate algorithm for a real-time prediction.
From the Naive Bayes, KNN, C4.5, Decision Tree, Random Forest, and XGBoost algorithms,
XGboost achieves the best accuracy for classifying four classes compared to five other classi-
fication algorithms [35]. Additionally, in [92], the performance between XGBoost and Light
GBM was tested, showing that XGboost has shown much better accuracy and outperforms
existing boosting algorithms [92]. XGBoost combines several algorithm techniques that
can minimize the learning error. As mentioned in the previous paragraph, XGboost uses
the concept of AdaBoost and GBM. It does not process parallel trees such as random for-
est [91,93]. It uses a sequential learning process that sequentially changes the weak learner
model, and the final prediction is determined by combining all model predictions from
all iterations. Tianqi Chen claims that XGBoost has better performance because it has an
overfitting control feature [34]. As time goes by, XGBoost has often become a champion in
various data science competitions. Based on the explanation above, our system requires an
algorithm that is able to classify accurately and quickly in real time. The suitable algorithm
that meets our system requirement is XGBoost. Thus, we employ the XGBoost algorithm
for classifying the breathing waveform in a real-time system.
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4. Experimental and Analysis Results

The first part of this section provides selected parameters on the FMCW sensor. The
second part describes the data collection and labeling. The last part is the experimental
result and data analysis.

4.1. Experimental Setup

This study was carried out using an FMCW IWR 1443 mmWave radar platform from
Texas Instruments (TI) [79] with a starting frequency of 77 GHz and a chirp frequency
of 4 GHz. The chirp duration is 50 μs with the chirp rate 2 MHz and 250 samples per
chirp. Each frame is configured to have two chirps. The details are shown in Table 1.

Table 1. Radar parameter setting.

Starting
Frequency

Bandwidth Chirp Rate
Samples

Per-Chirp
Chirps

Per-Frame
Chirp

Duration
Frame

Duration
Range

Resolution
Max Unambiguous

Range

77 GHz 4 GHz 2 MHz 250 samples 2 50 μs 50 ms 0.0375 9 m

The experiments were conducted in a small room—3 × 3 m. The subject sat on a chair,
and the radar was placed 1 m in front of the subject. The radar was positioned parallel
to the chest at a height of about 1 m in the detectable area. The data was collected in
binary format. We labeled these samples according to five different respiration classes. The
participants were asked to imitate five breathing patterns. Observations were made on each
subject with a duration ranging from 5 to 15 s for each class. During data recording, the
subjects were not allowed to make any movement to reduce the random body movements
that cause noise. The estimated frequency and amplitude will be better if the observation
time is larger. However, the observation time is generally limited to the range of 5 to 15 s
due to the inherent time-frequency sacrifice.

4.2. Data Collection and Labelling

In this study, we used the breathing waveforms as our data set. Through experiments,
we collected 4000 breathing waveforms as the training and testing data. The system ran-
domly divides the data set without following any rules into 80–20% train–test splits for
experimental purposes. The collected breathing waveform consists of five classes: nor-
mal breathing, deep and quick breathing, deep breathing, quick breathing, and holding
the breath.

Before training the data, the pre-processing step is necessary to normalize and elimi-
nate the ambiguous and redundant data from the dataset. In data records, some pieces of
data have missing values. To resolve the data, we removed data with missing values from
the dataset. We cleaned the noise from the data for better performance and accuracy. The
accuracy depends on the input data. We split the breathing waveforms into several data
for every 5 s. For each data, we limit the window to 85 steps size. After pre-processing,
finally, we had data set with details shown in Table 2.

Table 2. Data set for training and testing.

Class Training Samples Testing Samples

Normal breathing 640 160
Deep and quick breathing 640 160

Deep breathing 640 160
Quick breathing 640 160

Holding the breath 640 160
Total 3200 800
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The data set was used in the training process to train the classifier model. Dur-
ing the training process, the computer will learn and understand the data to obtain the
expected model.

4.3. Experiment and Analysis Results

Before we conducted the experiment, the proposed method was implemented on hard-
ware. The data was collected and labeled as the training datasets. To verify the accuracy
of the proposed system, we conducted three experiments for detecting five respiration
patterns. The first experiment was conducted without additional feature extraction. The
second experiment was conducted using statistical feature extraction, and the third experi-
ment was conducted using MFCC feature extraction.

The statistical feature extraction is used to identify the statistical character of data.
In this study, the statistical features were derived from the statistical distribution of the
respiratory signal data, such as the mean, median, maximum, variance, standard deviation,
absolute deviation, kurtosis, and skewness.

• The mean is the average value of the population.
• The median or middle value is a measure of data centering. If the data is sorted, the

observed value is in the middle.
• Maximum describes a greater value than or equal to all values in data.
• Variance presents a square of the average distance between each quantity and mean.
• Standard deviation is used to measure the amount of variation or dispersion of data.

The standard deviation describes how far the sample deviates from the mean.
• Absolute deviation represents the absolute difference between each data point and

the average. This explains the variability of the data set.
• Kurtosis defines the degree of “tailedness” of a distribution.
• Skewness is known as a measure of slope, which is a number that can indicate whether

the curve shape is slanted or not.

Before we trained our data, we plotted it, which has been extracted using feature
extraction, into a two-dimensional diagram of linear discriminant analysis (LDA) [94]. The
aim is to see the effect of adding MFCC feature extraction. LDA is a classical statistical
technique that can reduce the dimensions [94]. With LDA, we can also divide data into
several groups (clustering) [94].

Based on the LDA results, Figure 9 describes that MFCC makes the scattering point
of one class to be closer and the scattering point for five different classes to be farther.
Thus, it shows that MFCC feature extraction helps the classifier in clustering the data. As a
comparison, we also show the effect of data extraction using statistical methods. We can
see in Figure 9 that the scattering point of the data with the MFCC extraction feature has
the least number of overlapping classes.

   

(a) (b) (c) 

Figure 9. LDA data scattering point for (a) raw data, (b) data with statistic feature extraction, and (c) data with MFCC
feature extraction.
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In the next step, the datasets were used to train the XGBoost model. After the en-
tire training phase ends, the resulting model must be tested again using a test set. The
evaluation/testing step aims to decide whether the model is good enough or not.

One of the problems in building a learning model is finding the optimal hyperpa-
rameter. For example, we need to decide the optimal batch size, the optimal epoch for
running a deep-learning model, and the best optimizer for deep-learning models. Many
other hyperparameters can be optimized, such as the dropout, number of nodes, number
of layers, activation functions, and others. It is time-consuming to use trial and error, trying
to change the parameters manually, one by one, to find the best model. One solution to this
problem is to use GridSearchCV.

Grid search, as the name implies, looks for parameters in a given “grid”—for example,
the number of epochs =—then, we need to decide which of the two values gives the best
result. In this study, we used the following parameters:

• n estimators: [200 300 400], n estimators represent the number of sequential trees
modelled in XGBoost.

• Max depth: [3 4 5], max depth means the maximum number of terminal nodes
in a tree.

• Learning rate: [0.1, 0.01, 0.001], the learning rate is the learning parameters that control
the change value in estimating the prediction. A smaller value causes a stronger model
with specific characteristics of the tree. However, lower values will require a larger
number of trees to model all relations and do a lot of computation.

The way the Grid Search works is by combining the values inputted in the hyperpa-
rameters. An example is when we want to find a combination of hyperparameters A = [1, 2]
and B = [3, 4], then the Grid Search will look for all combinations of A and B, namely [1, 3],
[1, 4], [2, 3], [2, 4] and choose the best combination based on the value of the highest CV
Score. We found the best combinations to obtain higher accuracy. The process was carried
out by brute force and reported which parameter has the best accuracy. As we have three
parameters with three grids for each, we thus have 27 combinations.

CV, at the end of the word GridSearchCV, stands for cross-validation. This means that
our input data will be divided by GridSearchCV into several folds to reduce the bias. In
our study, we used five-fold cross-validation. It divided a set of samples randomly into five
independent subsets, to do five repetitions for training and testing. For each test, a subset
was left for testing and another subset for training. The degree of accuracy is calculated
by dividing the total number of correct classifications by the sum of all instances in the
initial data.

XGBoost model performance is calculated through a confusion matrix. The confusion
matrix presents the amount of data classified correctly and incorrectly. The effectiveness
and performance of a machine learning model can be measured by calculating its accuracy.
Finally, the result is shown in Figure 10, Figure 11 and Table 3.

   

(a) (b) (c) 

Figure 10. Confusion matrix for (a) raw data, (b) data with statistic feature extraction, and (c) data with MFCC feature
extraction on training stage.
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(a) (b) (c) 

Figure 11. Confusion matrix for (a) raw data, (b) data with statistic feature extraction, and (c) data with MFCC feature
extraction on testing stage.

Table 3. Training and testing accuracy for the raw data set, data set with statistic feature extraction,
and with MFCC feature extraction.

Feature Extraction Training Accuracy Testing Accuracy

without feature extraction (raw data) 100% 82.125%
statistic 100% 81.375%
MFCC 95% 87.375%

In the confusion matrix, most misclassifications come from predicting deep quick
breathing to be deep breathing, normal breathing to be quick breathing, and vice versa.
A possible reason is that these two classes have almost the same pattern but are different
in the depth of breathing, shown in the amplitude of the waveform. This might happen
because the amplitude of the respiratory signal is sensitive to the time window in the
normalization process. Besides, the accuracy of the model depends on the input data,
whereas chest displacement waves have different variations depending on several factors
such as the state of health, location of measurement, variation between people, etc.

Based on the experiments above, we showed that adding MFCC feature extraction
gives a better result than without and with statistical feature extraction. Thus, we imple-
mented our proposed system in real time by using MFCC feature extraction.

Let us define X as a disease name. Then, we have four definitions as follows.
From Table 4, there is one important case that needs special attention—false positive.

When the system does not detect the patient′s disease, in reality the patient is suffering
from the disease. This is very dangerous. For example, if the patient has COVID-19 but the
system detects that the patient′s condition is normal, then the patient will not immediately
receive the right treatment. On the other hand, true negatives and false negatives also need
attention. If the system detects that a patient is suffering from disease A, but in reality, the
patient is suffering from disease B, then the patient will not receive the right treatment.
However, if the system detects that the patient suffers from X disease, but the patient is
normal, the condition is not dangerous.

Precision is defined as Precision = TP
TP+FP . High precision shows that the class can be

classified well or have a low FP. Recall is defined as Recall = TP
TP+FN . High recall indicates

that the class has a low FN. The f1-score is the average of precision and recall that takes
these two metrics into f 1 score = 2 precision ∗ recall

precision + recall . From the confusion matrix in Figure 11,
we thus have the classification report shown in Table 5.

As mentioned before, since a false-positive result is the most dangerous condition,
we need to achieve a better precision than recall. To detect deep quick, and quick class,
XGBoost with MFCC feature extraction achieves the best precision. However, for the deep
class, XGBoost with statistic feature extraction gives the best precision. For the normal and
hold class, XGBoost without feature extraction has the best precision.
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Table 4. Confusion matrix 2× 2.

True Positive (TP) True Negative (TN)

• Prediction: the system detects that the patient suffers
from X disease

• Reality: the patient suffers from X disease

Prediction: the system detects that the patient suffers
from X disease
Reality: the patient does not suffer from X disease

False-Positive (FP) False-Negative (FN)

• Prediction: the system does not detect that the patient
suffers from X disease

• Reality: the patient suffers from X disease

Prediction: the system does not detect that the patient suffers
from X disease
Reality: the patient does not suffer from X disease

Table 5. Classification report for confusion matrix in Figure 11.

Class.
Raw (without Feature Extraction) With Statistic Feature Extraction With MFCC Feature Extraction

Precision Recall f1-Score Precision Recall f1-Score Precision Recall f1-Score

Normal 0.873 0.644 0.741 0.728 0.688 0.707 0.807 0.731 0.767
Deep quick 0.728 0.719 0.723 0.738 0.775 0.756 0.886 0.875 0.881

Deep 0.815 0.994 0.9 0.87 1 0.93 0.844 0.981 0.908
Quick 0.741 0.75 0.745 0.758 0.606 0.674 0.874 0.781 0.825
Hold 0.958 1 0.979 0.947 1 0.973 0.952 1 0.976

Patients with COVID-19 usually have a quick and short breath at unexpected times.
This condition is related to class 4, quick breathing, or short breathing. Thus, if we need to
detect patient with COVID-19, it is better to use XGBoost with MFCC feature extraction
because it achieves the best precision in detecting quick/short breathing.

We ran the system into a real-time experiment. We conducted five measurements with
an object located approximately 1 m in front of the sensor. The results for the detection and
classification of breathing waveforms in real time can be seen in Table 6. Table 6 shows the
estimated range of the target, chest displacement waveform, estimated breathing rate, and
breathing waveform. Five figures in the first left column are the azimuth heat map that
shows the range and angle estimation for the object in front of the sensor. It illustrated
that the sensor detects 0.1 to 0.5 Hz vibration at approximately 1 m. The figure in the
next column shows real-time chest displacement, and the figure in the right column is a
real-time breathing waveform.

To clarify whether the breathing waveform was accurate or not, we tried to estimate the
respiration rate calculation. The estimated value of the respiration rate was then compared
with counting the breathing rate manually. The respiration rate calculation was performed
by counting the number of inhalation and exhalation cycles in one minute. The result of
the breathing rate is shown in the last two columns of Table 6.

The first experiment was detecting the normal breath, shown in the first row in Table 6.
The results show us that the object was detected at about 1.20 m with an angle of 30 degrees.
The breathing waveform has a constant breathing waveform and similar pattern during
the time. The estimated breathing rate was 20.51 breaths/min.

The second measurement was detecting the deep quick breath, shown in the second
row in Table 6. The object was detected at the range of 1.23 m and 30 degrees from the
sensor with a breathing rate of 23.44 breath/min. The breathing waveform presents a
big amplitude with a higher frequency (higher respiration rate) compared to the normal
breathing rate.

The third observation was conducted for a deep breath, shown in the third row in
Table 6. The vibration was detected at 1.17 m from the sensor. The detected breathing rate
was 17.58 breaths/min. Deep breathing waveform shows a big and large amplitude with a
lower respiration rate compared to normal breath.
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The fourth experiment detected the quick breath, shown in the fourth row in Table 6.
The breathing waveform was detected at 1.88 m from the sensor with a small amplitude and
high frequency (high respiration rate). The detected breathing rate was 23.51 breaths/minute.

The last experiment measured the holding breath class. The results show us that the
object was detected at about 1.08 m with an angle of 30 degrees. The breathing waveform
is almost disappeared, and the amplitudes are close to zero. The estimated breathing rate
was 0 breaths/min.

Based on our real-time experiment, Table 6 presents that our real-time implementation
can successfully classify five different breathing waveform classes. This shows us that the
proposed system can be used to monitor and classify the breathing waveform in real-time.
Besides, the breathing rate result shows that our respiration rate has a close value to the
manual calculation of the breathing rate, as shown in Table 6.

5. Conclusions

In this paper, we have proposed a non-contact monitoring and classification system
for breathing patterns using XGBoost classifier and MFCC feature extraction. Based on
the results, the system reached 87.375% accuracy. We also compared the impact of adding
MFCC feature extraction to statistical feature extraction and without feature extraction.
The results show that the XGBoost classifier with the MFCC feature extraction achieves the
best accuracy in classifying five breathing patterns. Thus, we implemented our proposed
system in real time by using MFCC feature extraction. Our real-time experiment verifies
that our system successfully classifies five different classes of breathing waveform. This
shows us that the proposed system can be used to monitor and classify the breathing
waveform disorder in real time.

The proposed system will not be a perfect substitute for a professional doctor. It is
hoped that this assistance will help practitioners to monitor and analyze the patients. In
some cases, the practitioner may make mistakes, pay little attention to the patients, or
perform poor report analyses. Thus, it will act as a better solution for now.

In the future, more breathing patterns and classification algorithms will be investi-
gated, and a larger data set will be built. It is hoped that the detection of multiple subjects
can be carried out, and the classification model can also be optimized. Since this sensor can
be connected to the computer, it also allows us to monitor the breathing waveform with a
centralized system. Hence, the supervision of breathing patterns with a centralized system
can be developed. In addition, FMCW can also be used to conduct measurements behind
interrupted objects such as curtains, walls and others. Therefore, the development of this
study is not only useful for the medical field but also for other fields that require detection
without physical contact, such as searching for and locating people trapped under rubble.
Thus, it would be very helpful for saving lives during a disaster.

Under a controlled environment, all the mentioned methods can work properly.
However, monitoring and measuring the breathing pattern in a noisy environment is
a challenge that needs to be overcome to make the system stronger and more reliable
in the future.
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Abstract: Vision-based 3D human pose estimation approaches are typically evaluated on datasets
that are limited in diversity regarding many factors, e.g., subjects, poses, cameras, and lighting.
However, for real-life applications, it would be desirable to create systems that work under ar-
bitrary conditions (“in-the-wild”). To advance towards this goal, we investigated the commonly
used datasets HumanEva-I, Human3.6M, and Panoptic Studio, discussed their biases (that is, their
limitations in diversity), and illustrated them in cross-database experiments (for which we used a
surrogate for roughly estimating in-the-wild performance). For this purpose, we first harmonized
the differing skeleton joint definitions of the datasets, reducing the biases and systematic test errors
in cross-database experiments. We further proposed a scale normalization method that significantly
improved generalization across camera viewpoints, subjects, and datasets. In additional experiments,
we investigated the effect of using more or less cameras, training with multiple datasets, applying
a proposed anatomy-based pose validation step, and using OpenPose as the basis for the 3D pose
estimation. The experimental results showed the usefulness of the joint harmonization, of the scale
normalization, and of augmenting virtual cameras to significantly improve cross-database and in-
database generalization. At the same time, the experiments showed that there were dataset biases
that could not be compensated and call for new datasets covering more diversity. We discussed our
results and promising directions for future work.

Keywords: 3D human pose estimation; deep learning; generalization

1. Introduction

Three-dimensional human body pose estimation is useful for recognizing actions
and gestures [1–8], as well as for analyzing human behavior and interaction beyond
this [9]. Truly accurate 3D pose estimation requires multiple cameras [10–12], special depth-
sensing cameras [13–15], or other active sensors [16–18], because with a regular camera,
the distance to an object cannot be measured without knowing the object’s actual scale.
However, many recent works have shown that 2D images suffice to estimate the 3D pose in
a local coordinate system of the body (e.g., with its origin in the human hip). Applications
such as the recognition of many actions and gestures do not require the accurate position of
the body in the 3D world, so local (also called relative) 3D pose estimation from 2D images
can be very useful for them.

Due to the challenges of obtaining accurate 3D ground truths, most prior works
used one or two of the few publicly available databases for 2D-image-based 3D pose
estimation, such as: Human3.6M [19,20], HumanEva-I and HumanEva-II [21,22], Panoptic
Studio [10,11], MPI-INF-3DHP [23], or JTA [24]. All these databases were either recorded in
a laboratory (a few sequences of MPI-INF-3DHP were recorded outdoors, but the diversity
is still very limited) or synthesized and do not cover the full diversity of possible poses,
peoples’ appearances, camera characteristics, illuminations, backgrounds, occlusions, etc.
However, for real-life applications, it would be desirable to create 3D pose estimation
systems that work under arbitrary conditions (“in-the-wild”) and are not tuned to the
characteristics of a particular limited dataset. Reaching this goal requires much effort, prob-
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ably including the creation of new datasets. However, one step towards better in-the-wild
performance is discussing dataset biases and measuring cross-database performance, that
is training with one database and testing with another one [25]. This step was addressed in
our paper.

Our key contributions are as follows:

1. We reviewed the literature (Section 2) and discussed biases in the commonly used
datasets Human3.6M, HumanEva-I, and Panoptic Studio (Section 3), which we also
used for our cross-dataset experiments;

2. We proposed a method for harmonizing the dataset-specific skeleton joint definitions
(see Section 4.1). It facilitates cross-dataset experiments and training with multiple
datasets while avoiding systematic errors. The source code is available at https:
//github.com/mihau2/Cross-Data-Pose-Estimation (accessed on 27 May 2021);

3. We proposed a scale normalization method that significantly improves generalization
across cameras, subjects, and databases by up to 50% (see Section 4.2). Although
normalization is a well-known concept, it has not been consistently used in 3D human
pose estimation, especially with the 3D skeletons;

4. We conducted cross-dataset experiments using the method of Martinez et al. [26]
(Section 5), showing the negative effect of dataset biases on generalization and the
positive impact of the proposed scale normalization. Additional experiments investi-
gated the effect of using more or less cameras (including virtual cameras), training
with multiple datasets, applying a proposed anatomy-based pose validation step, and
using OpenPose as the basis for the 3D pose estimation. Finally, we discussed our
findings, the limitations of our work, and future directions (Section 6).

2. Related Work

Since the work of Shotton et al. [13] and the development of the Kinect sensor, enor-
mous research efforts have been made in the field of human pose estimation. While the
work at that time was often based on depth sensors, approaches developed in recent years
have focused primarily on estimating the human pose from RGB images. In addition to the
high availability of the corresponding sensors, which allows for the generation of extensive
datasets in the first place, this is primarily due to the development in the area of deep
neural networks, which are very successful in processing visual information. Therefore, all
current approaches are based on deep neural networks, but, according to their objectives,
can be roughly divided into three categories.

The quantitative results of prior works are summarized in Tables 1–3 for reference.

2.1. 2D Human Pose Estimation

The first class of approaches aims to predict the 2D skeleton joint positions from an
RGB input image. In their approach called convolutional pose machines [27], the authors
proposed a network architecture of cascading convolutional networks to predict belief maps
encoding the 2D joint positions, where each stage refines the prediction of the previous
stage. This approach was extended by Newell et al. [28] by replacing the basic convolutional
networks with repeated bottom-up, top-down processing networks with intermediate
supervision (stacked hourglass) to better consolidate features across all scales and preserve
spatial information at multiple resolutions. In [29], the pose estimation problem was split
into two stages. A base network with a pyramidal structure aimed to detect the 2D joint
positions, while a refinement network explicitly learned to predict the “hard-to-detect”
keypoints, i.e., keypoints that were not detected by the base network during the training
process. In addition to 2D keypoints, the network in the part affinity field approach [30]
learns to predict the orientation and location of several body parts (limbs), resulting in
superior keypoint detection. This is particularly helpful when it comes to associating
multiple detected joint positions with individuals in multi-person scenarios. This approach
was later integrated into the OpenPose framework [31]. In [32], the authors replaced the
discrete pixelwise heat map matching with a fully differentiable spatial regression loss.
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This led to an improved pose estimation, as the low resolution of the predicted heat maps
no longer limited the spatial precision of the detected keypoints. Furthermore, several
regularization strategies increasing the prediction accuracy were proposed. Human pose
estimation in multi-person scenarios poses a particular challenge. Top-down approaches
(e.g., [33]) perform a person detection (bounding boxes) followed by a single-person pose
estimation, but typically suffer from partial or even complete overlaps. In contrast, bottom-
up approaches [34] first detect all joint positions and then attempt to partition them into
corresponding person instances. However, this requires solving an NP-hard partitioning
problem. The authors in [35] addressed this problem by simultaneously modeling person
detection and joint partitioning as a regression process. For this purpose, the centroid of
the associated person was predicted for each pixel of the input image. In [36], the authors
first identified similarities among the several approaches for human pose estimation and
provided a list of best practices. In their own approach, the authors achieved a state-of-
the-art performance by replacing upsample layers with deconvolutional filters and adding
optical flow for tracking across multiple images. Whereas all other approaches obtain
high-resolution representations by recovering from low-resolution maps using some kind
of upscaling networks, Sun et al. [37] proposed HRNet, a network architecture that is able
to maintain high-resolution representations throughout all processing steps, leading to
superior performance on 2D human pose estimation.

Table 1. Mean per-joint position error (MPJPE) for state-of-the-art approaches on H36M.

Method (Reference) MPJPE (mm) Method (Reference) MPJPE (mm)

Ionescu et al. [20] 162.1 Habibie et al. [38] 65.7
Pavlakos et al. [39] 115.1 Zhou et al. [40] 64.9
Chen and Ramanan [41] 114.2 Sun et al. [42] 64.1
Zhou et al. [43] 113.0 Luo et al. [44] 61.3
Tome et al. [45] 88.4 Rogez et al. [46] 61.2
Martinez et al. [26] 87.3 Nibali et al. [47] 55.4
Pavlakos et al. [48] 75.9 Luvizon et al. [49] 53.2
Wang et al. [50] 71.9 Dabral et al. [51] 52.1
Tekin et al. [52] 69.7 Li et al. [53] 50.9
Chen et al. [54] 68.0 Lin and Lee [55] 46.6
Katircioglu et al. [56] 67.3 Chen et al. [57] 44.1
Benzine et al. [58] 66.4 Wu and Xiao [59] 43.2
Sárándi et al. [60] 65.7 Cheng et al. [61] 42.9

Table 2. Mean per-joint position error (MPJPE) for state-of-the-art approaches on the PAN dataset.

Method (Reference) MPJPE (mm)

Popa et al. [62] 203.4
Zanfir et al. [63] 153.4
Zanfir et al. [64] 72.1
Benzine et al. [58] 68.5

Table 3. Mean per-joint position error (MPJPE) for state-of-the-art approaches on the HumanEva-
I dataset.

Method (Reference) MPJPE (mm)

Radwan et al. [65] 89.5
Wang et al. [50] 71.3
Yasin et al. [66] 38.9
Moreno-Noguer [67] 26.9
Pavlakos et al. [68] 25.5
Martinez et al. [26] 24.6
Pavlakos et al. [39] 18.3
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2.2. 3D Human Pose Estimation from 2D Images

The next class of approaches predicts 3D skeleton joint positions using raw 2D RGB
images as the input. Li and Chan [69] used a multitask learning approach to simultaneously
train a body part detector and a pose regressor using a fully connected network. In
contrast to the direct regression of a pose vector, Pavlakos et al. [68] transferred the idea
of the heat map-based 2D pose estimation into the 3D domain and predicted per-joint 3D
heat maps using a coarse-to-fine stacked hourglass network, where each voxel contains
the probability that the joint is located at this position. Each refinement stage increases
the resolution of the z-prediction. Tekin et al. [52] proposed fusing features extracted
from the raw image with features extracted from 2D heat maps to obtain a 3D pose
regression vector. A similar approach was developed in [40], but instead of deriving
features from an already predicted heat map, the authors utilized latent features from
the 2D pose regression network. Their end-to-end trainable approach allows for sharing
common representations between the 2D and the 3D pose estimation tasks, leading to
an improved accuracy. Dabral et al. [51] utilized the same architecture as in [40], but
introduced anatomically inspired loss functions, which penalize pose predictions with
illegal joint angles and non-symmetric limb lengths. In LCR-Net [46], the pose estimation
problem was split into three subtasks: localization, classification, and regression. During
localization, candidate boxes and a list of pose proposals are generated using a region
proposal network. The proposals are then scored by a classifier and subsequently refined by
regressing a set of per-anchor-pose vectors. The subnets share layers so that the complete
process can be trained end-to-end. Kanazawa et al. [70] took a slightly different approach.
Instead of keypoints, the authors aimed to predict a full 3D mesh by minimizing the
reconstruction error. Since the reconstruction loss is highly underconstrained, the authors
proposed an adversary training to learn whether a predicted shape is realistic or not.
Sun et al. [42] evaluated the performance of the differentiable soft-argmax operation as
an alternative to the discrete heat map loss in greater detail and verified its effectiveness.
Their approach achieved state-of-the-art results on Human3.6M by splitting the volumetric
heat maps into separate x-, y- and z-maps, which allowed for mixed training from both
2D and 3D datasets. Instead of directly dealing with joint coordinates, Luo et al. [44]
modeled limb orientations to represent 3D poses. The advantage is that orientations are
scale invariant and less dependent on the dataset. Their approach achieved good results on
several datasets and generalized well to unseen data. In [49], the authors combined action
recognition with human pose estimation. The proposed multitask architecture predicted
both local appearance features, as well as keypoint positions, which were then fused to
obtain the final action label. The actual pose estimation was based on heat maps and the
soft-argmax function. The approach showed state-of-the art results on both pose estimation
and action recognition. Another multitask approach was presented by Trumble et al. [71]. It
simultaneously estimates 3D human pose and body shape using a symmetric convolutional
autoencoder. However, the approach relies on multi-view camera inputs. Approaches
that adapt a kinematic skeleton model to the input data typically rely on the detection of
corresponding points. This task has been mostly addressed in scenarios where a depth
sensor was available. In contrast to this, DensePose [72] maps an input image to the 3D
surface of the human body by regressing body part-specific UV coordinates from each RGB
input pixel. The approach showed good results, but one has to keep in mind that identifying
correspondences is not yet a complete pose estimation due to possible 2D/3D ambiguities
and model constraints. All aforementioned approaches learned a direct mapping between
the input data and the pose to be estimated. This must be distinguished from approaches
that initially learn a latent representation of either the input or the output data [56,73].
In [56], an overcomplete autoencoder network was used to learn a high-dimensional latent
pose representation. The input image was then mapped to the latent space, leading to a
better modeling of the dependencies among the human joints. In contrast, Rhodin et al. [73]
trained a latent representation of the input data by utilizing an autoencoder structure to
map one camera view to another. The pose was then regressed from the latent state space.
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The approaches showed good, but not the best results. Sárándi et al. [60] demonstrated
the effectiveness of data augmentation. By occluding random positions in the RGB image
with samples from the Pascal VOC dataset, the mean per-joint position error (MPJPE)
can be reduced by up to 20%, making this approach the ECCV pose estimation challenge
winner in 2018. The occlusion acts as a regularizer, forcing the network to learn joint
positions from several visual cues. The authors used ResNet as the backbone architecture
to generate volumetric heat maps. As high-resolution volumetric heat maps are quite
memory intensive, the authors of MargiPose [47] proposed to learn three distinct heat maps
instead. The maps represent the xy-, xz-, and yz-plane and can be seen as projections of
the volumetric heat map. Their approach, which was based on the Inception v4 model,
achieved good results and provided a memory-efficient alternative to volumetric heat
maps. Habibie et al. [38] contributed by integrating 3D features in the latent space of the
learning process. The regressed 3D pose is back-projected to 2D before the loss is computed
and thus allows a 3D pose estimation based on 2D datasets. However, there is no explicit
supervision of the hidden feature maps that encode the 3D pose cues. A recent work by
Wu and Xiao [59] proposed to model the limbs explicitly. Their approach was somewhat
similar to OpenPose [31], but extended it to the 3D domain. Next to 2D keypoints from
2D heat maps, the network learned to predict densely-generated limb depth maps. Latent
features from the 2D pose estimator and the depth map estimation, as well as 3D specific
additional features were then fused to lift the 2D pose to 3D. Their approach significantly
outperformed all other methods on the Human3.6M and MPI-INF-3DHP datasets.

2.3. 3D Human Pose Estimation from the 2D Pose

The last class of approaches attempts to predict the 3D pose from an earlier pre-
dicted 2D pose, a process typically known as lifting. A big advantage of separating the
lifting from the 2D pose estimation is that it can be pre-trained using synthetic poses.
Martinez et al. [26] directly regressed 3D poses from 2D poses using only fully connected
layers. Their approach achieved excellent results, at least when using 2D ground truth joint
positions as the input. In [41], the authors built a huge library of 3D poses and matched
it against a detected 2D pose. Using also the stored camera parameters, the best 3D pose
was then scaled in a way that it matched the 2D pose. Pavllo et al. [74] exploited temporal
information by using dilated temporal convolutions on 2D keypoint sequences. Hossain
and Little [75] designed an efficient sequence-to-sequence network taking a sequence of 2D
keypoints as the input to predict temporally consistent 3D poses. Their approach achieved
state-of-the-art results for every action class of the Human3.6M dataset. While CNNs are
suitable for processing grid-like input data (e.g., images), graph convolutional networks
(GCNs) can be seen as a generalization of CNNs acting on graphs. In [76], Zhao et al.
exploited the hierarchical structure of skeletons by describing both 2D and 3D skeletons as
graphs and used CGNs to obtain 3D poses from 2D poses. The aforementioned approaches
reported excellent results, in particular when temporal information was used. However,
they heavily relied on the quality of the underlying 2D pose estimator. If no 2D ground
truth was used, the accuracy was typically similar to approaches that obtained 2D and 3D
poses directly from the image.

2.4. Cross-Dataset Generalization

Comprehensive datasets are required in order to train methods for pose estimation.
In contrast to 2D pose estimation, reliable 3D pose data cannot be obtained by manually
annotating images taken in-the-wild, but are acquired with the help of motion capture
systems (e.g., VICON [77], The Captury [78], IMU). This typically limits the acquisition to
controlled in-the-lab environments with low variations in terms of subjects, camera view
points, backgrounds, occlusions, lighting conditions, etc. This raises the questions how
well these approaches (a) perform across multiple controlled datasets and (b) generalize to
unconstrained in-the-wild data. Work in this area is still limited. The typical approach is
to combine in-the-wild 2D pose data with in-the-lab 3D pose data. Mehta et al. [23] used
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transfer learning to transfer knowledge from a pre-trained 2D pose network to a 3D pose
regression network [23]. They further provided the MPI-INF-3DHP dataset, an augmented
in-the-wild 3D pose dataset, by utilizing a marker-less multi-camera system [78] and
chroma keying (green screen). The best results on Human3.6M were achieved using
transfer learning and including additional data from MPI-INF-3DHP. Zhou et al. [40]
mixed 2D and 3D data per batch to learn common representations between 2D and 3D
data by computing additional depth regression and anatomical losses for 3D training
samples [40]. When additional 2D pose data from the MPII dataset were included, errors
on the Human3.6M dataset were reduced by up to 15 mm, and the proportion of correctly
estimated joints (PCKs) increased from 37.7% to 69.2% on the MPI-INF-3DHP dataset.
This indicated that the constrained setting of Human3.6M is insufficient to generalize
to in-the-wild data. The authors also concluded that adding additional 2D data did not
improve the accuracy of the 2D pose prediction, but mostly benefited the depth regression
via shared feature representations. As mentioned above, Habibie et al. [38] circumvented
the problem of missing 3D pose labels by learning both view parameters and 3D poses. The
3D poses were then back-projected to 2D (using a trainable network) before applying the
2D loss. Their approach showed high accuracy and generalized well to in-the-wild scenes.
Other approaches attempt to generate 3D labels from existing 2D datasets. Wang et al. [79]
achieved this by first mapping a 2D pose to 3D using a “stereo-inspired” neural network
and then refined the 3D pose using a geometric searching scheme so that the determined
3D pose matched the 2D pose with pixel accuracy. In [80], which was an updated version
of [46], Rogez et al. [46] created pseudo 3D labels for 2D datasets by looking for the 3D
pose that best matched a given 2D pose in a large-scale 3D pose database. Further work
addressed the problem of missing 3D pose labels by generating synthetic datasets by
animating 3D models [81,82] or rendering textured body scans [83]. While rendering may
seem promising, both integrating human models in existing images, as well as rendering
realistic scenes are not trivial and often require a domain adaption to generalize from
synthetic to real images [81,83,84]. Therefore, Rogez and Schmid [85] proposed to build
mosaic pictures of real images from 2D pose datasets. While artificial looking, the authors
showed that CNNs can be trained on these image and generalize well to real data without
the need for any fine-tuning and domain adaption.

While many authors combined multiple training datasets, work on cross-dataset eval-
uation is still limited. To the best of our knowledge, the very recent work of Wang et al. [86]
was the first to systematically examine the differences among existing pose datasets and
their effect on cross-database evaluation. However, they focused on systematic differ-
ences of camera viewpoints and conducted their experiment with another set of databases,
compared to our work.

2.5. Non-Vision-Based Approaches

All approaches listed so far were based on optical sensors, i.e., cameras. We would like
to point out to the reader that besides visual methods, other ranges of the electromagnetic
spectrum can also be used to estimate the human pose. The major advantage of these
approaches is that they are independent of lighting, background, as well as clothing and
even allow for person detection and pose estimation through walls and foreground objects.
Moreover, privacy issues can be avoided in contrast to camera-based approaches. The most
prominent examples are microwaves and millimeter waves. In [16], the authors proposed
a radar-based approach (operating in the 5.56–7.25 GHz range) for indoor person location,
obtaining a spatial resolution of 8.8 cm. In RFPose [17], the authors utilized radio frequency
(RF) signals (20 kHz–300 GHz) and visual information to extract 2D skeleton positions.
The approach was later extended to 3D [87], where the authors reported a mean per-joint
localization error of 4.2 cm, 4.0 cm, and 4.9 cm for the X-, Y-, and Z-axes, respectively.
However, a major disadvantage of this approach is the very specific and high hardware
requirements (synchronized 16 + 4 T-shaped antenna array with frequency-modulated
continuous waves), which severely limit its possible applications. There are also LIDAR-
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based approaches (e.g., [18]), but these are usually expensive and power consuming. More
recently, WiFi-based approaches were proposed. In [88], Wang et al. [88] developed a
human pose estimation system, which reconstructed 2D skeletons from WiFi by mapping
the WiFi data to 2D joint heat maps, part affinity fields, and person segmentation masks.
The authors reported an average percentage of correctly detected keypoints (PCK) of 78.75%
(89.48% for OpenPose [31]). However, their approach performed significantly worse in
untrained environments (mPCK = 31.06%). This is a main challenge for all WiFi-based
approaches, as WiFi signals exhibit significantly different propagation patterns in different
environments. To address this issue and achieve cross-environment generalization, the
authors of WiPose [89] proposed to utilize 3D velocity profiles obtained from WiFi signals
in order to separate posture-specific features from the static background objects. Their
approach achieved an accuracy of up to 2.83 cm (mean per-joint position error), but is
currently limited to a single non-moving person.

Camera-based approaches are passive methods, as they capture the ambient light
reflected by an object. In contrast, RF-based methods can be considered as active methods,
since an illumination signal is actively emitted and interacts with the objects in the scene
before being reflected and measured by the receiver. Here, the active illumination signal
is often based on appropriately modulated waves or utilizes stochastic patterns. A major
drawback of this approach is that the active signal is not necessarily ideal for the specific
task, i.e., it is not possible to distinguish between relevant and irrelevant information
during the measurement process.

This leads to the idea of learned sensing [90], in which the measurement process
and the processing of the measurement data are optimized in an overall system. This
requires the availability of programmable transmitter hardware whose configuration is
determined using machine learning methods in such a way that the emitted illumination
signal is optimal for the respective measurement process. This approach has recently been
successfully implemented for person recognition, gesture recognition, and human pose
estimation tasks. See [91,92] for further details. The idea of learned sensing was also applied
in the optical domain in order to determine optimal illumination patterns for specific
microscopy tasks [93].

For human pose estimation, the learned sensing approach cannot easily be transposed
to optical sensors. This is mainly due to the fact that changes in the active illumination
signal can be perceived by humans, which is typically undesirable in real-world scenar-
ios. Nevertheless, we suspect that the method can be transferred to approaches that use
special (infrared) photodiodes to determine the pose [94]. Furthermore, there may be
an application opportunity in multi-camera scenarios. These are often associated with a
costly measurement process (high energy consumption, data volume, latency), whereas
only a specific part of the measured data is actually required to resolve potentially occur-
ring ambiguities.

3. Datasets

In the following subsections, we describe the three 3D human pose estimation datasets
that we used in this article: HumanEva-I, Human 3.6M, and Panoptic. Afterwards, we
compare the datasets and discuss dataset biases.

3.1. HumanEva-I (HE1)

In 2006 and 2010, Sigal et al. [21,22] published the HumanEva-I and HumanEva-
II datasets to facilitate the quantitative evaluation and comparison of 3D human pose
estimation algorithms. We used HumanEva-I, which is larger and more diverse than
HumanEva-II. In HumanEva-I, each of four subjects performs six actions (walking, jogging,
gesturing, throwing/catching a ball, boxing, and a sequence of several actions) while being
recorded with seven cameras. The ground truth positions of the 15 provided skeleton joints
were obtained with a motion capture system using reflective markers.
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3.2. Human3.6M (H36M)

Ionescu et al. [19,20] collected and published Human3.6M, which is comprised of
3.6 million frames showing diverse body poses of actors performing 15 everyday actions
including conversations, eating, greeting, talking on the phone, posing, sitting, smoking,
taking photos, waiting, and walking. It total, eleven actors were involved, but they
performed individually one after another (i.e., only one person was visible in each video).
The data were recorded with four color video cameras and a marker-based motion capture
system, providing thirty-two skeleton joint positions.

3.3. Panoptic (Pan)

Aiming at analyzing social interaction, Joo et al. [10,11] recorded the Panoptic Stu-
dio dataset. In its current state (Version 1.2), it is comprised of 84 sequences with more
than 100 subjects. The sequences are very diverse, among others covering: social games
(Haggling, Mafia, and Ultimatum) with up to eight subjects; playing instruments; dancing;
playing with toddlers; and covering range of motion. In contrast to the other datasets, there
is no categorization or segmentation of the actions (beyond the above-mentioned categories
of sequences). To record the dataset, Joo and colleagues built the Panoptic Studio, a special
dome with more than 500 cameras in its walls. Using these cameras, Joo et al. [10,11]
developed an algorithm for obtaining multi-person 3D skeleton joint ground truths with-
out markers. Their algorithm was based on 2D body pose estimation providing “weak”
proposals, triangulation and fusion of the proposals, and temporal refinement.

3.4. Comparison and Dataset Biases

Computer vision datasets are created for quantitatively measuring and comparing
the performance of algorithms. However, “are the datasets measuring the right thing, that
is, the expected performance on some real-world task?,” Torralba and Efros asked in their
article on dataset biases [25]. We were interested in the task of relative 3D human body
pose estimation in the real world, not only in a specific laboratory. Therefore, we may
ask if the error in estimating poses on a specific dataset resembles the expected error in
real-world application. Are these datasets representative samples of real-world data or are
they biased in some way?

Currently, most “in-the-wild” datasets are collected from the Internet, including
datasets commonly used for 2D human body pose estimation [95,96]. Although these
datasets are very diverse, they may still suffer from biases compared to the real world, e.g.,
capture bias (pictures/videos are often taken in similar ways) or selection bias (certain
types of images are uploaded or selected for datasets more often) [25].

The datasets of 3D pose estimation are less diverse. They are typically recorded in
a laboratory, because (1) multi-view camera systems are state-of-the-art for measuring
accurate 3D ground truths and (2) building, installing, and calibrating these systems
requires much effort (making it hard to move the systems). All three datasets, HumanEva-
I, Human3.6M, and Panoptic, were recorded in such an indoor laboratory with very
controlled conditions; see Figure 1 for some example images. The datasets differ in size
and diversity, as summarized in Table 4. Compared to in-the-wild data, the three datasets
suffer from several biases:

• Lighting: The recordings are homogeneously lit, typically without any overexposed
or strongly shadowed areas. Further, there is no variation in lighting color and color
temperature. Real-world data are often more challenging, e.g., consider an outdoor
scene with unilateral sunlight or a nightclub scene with colored and moving lighting;

• Background: The backgrounds are static and homogeneous. Real-world data often
include cluttered and changing backgrounds, which may challenge the computer
vision algorithms more;

• Occlusion: In real-world data, people are often partially occluded by their own body
parts, other people, furniture, or other objects; or parts of the body are outside the
image. Self-occlusion is covered in all three databases. Human3.6M is comprised
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of more self-occlusions than the other datasets (and also some occlusions by chairs),
because it includes many occlusion-causing actions such as sitting, lying down, or
bending down. Occlusions by other people are common in Panoptic’s multi-person
sequences. Additionally, parts of the bodies are quite frequently outside of the cameras’
field of view in Panoptic;

• Subject appearance: Human3.6M and especially HumanEva-I suffer from a low num-
ber of subjects, which restricts variability in body shapes, clothing, hair, age, ethnicity,
skin color, etc. Although Panoptic includes many more and quite diverse subjects, it
may still not sufficiently cover the huge diversity of real-world human appearances;

• Cameras: In-the-wild data are recorded from different viewpoints with varying res-
olutions, noise, motion blur, fields of view, depths of field, white-balance, camera-
to-subject distance, etc. Within the three databases, only the viewpoint is varied
systematically, and the other factors are mostly constant. With more than 500 cameras,
Panoptic is the most diverse regarding viewpoint (also using three types of cameras).
In contrast to the others, it also includes high-angle and low-angle views (down-
and up-looking cameras). If only a few cameras are used, as in Human3.6M and
HumanEva-I, there may be a bias in the body poses, because people tend to turn
towards one of the cameras (also see [86] on this issue);

• Actions and poses: HumanEva-I and Human3.6M are comprised of the acted behavior
of several action categories, whereas the instructions in Human3.6M allowed quite
free interpretation and performance. Further, the actions and poses in Human3.6M
are much more diverse than in HumanEva-I, including many everyday activities and
non-upright poses such as sitting, lying down, or bending down (compared to only
upright poses in HumanEva-I). However, some of the acted behavior in Human3.6M
used imaginary objects and interaction partners, which may cause subtle behavioral
biases compared to natural interaction. Panoptic captured natural behavior in real
social interactions of multiple people and interactions with real objects such as musical
instruments. Thus, it should more closely resemble real-world behavior;

• Annotated skeleton joints: The labels of the datasets, the ground truth joints provided,
differ among the datasets in their number and meaning. Most obviously, the head,
neck, and hip joints were defined differently by the dataset creators. In Section 4.1,
we discuss this issue in detail and propose a way to handle it.

Figure 1. Example images of the HumanEva-I (left), the Human3.6M (middle), and the Panoptic databases (right).

Table 4. Quantitative comparison of the datasets.

HumanEva-I Human3.6M Panoptic

Subjects 4 11 >100
Actions 6 15 many
Multi-person - - �
Recording duration 10 min 298 min 689 min
Cameras 7 4 >500
Total frames 0.26 M 3.6 M >500 M
Skeleton joints 15 32 19
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Although all the datasets have been and still are very useful to advance the state-of-
the-art, we expect that many of these datasets’ biases will degrade real-world performance
in 3D human pose estimation. As all the datasets were sampled from the real world, we
used training and testing with different databases as a surrogate for roughly estimating the
expected in-the-wild performance. Such cross-database evaluation is a common practice or
a targeted goal in many other domains of computer vision [25,97–102].

Some of the biases, such as lighting, background, as well as subject ethnicity, clothing,
and hair, only affect the images, but not the position of body joints. A limited diversity in
these factors may be acceptable in 3D pose estimation datasets, because it is no problem for
training a geometry-based approach that estimates the 3D pose from the 2D joint positions,
given the used 2D pose estimation model has been trained with a sufficiently diverse 2D
pose estimation dataset. Other factors, especially cameras and poses, heavily influence
the position of body joints and must be covered in great diversity in both 2D and 3D
pose datasets.

4. Methods

4.1. Joint Harmonization

As mentioned before, the skeleton joint positions provided in the datasets differed in
their number and definition. To be able to conduct cross-dataset experiments, we selected
a common set of 15 joints based on HumanEva-I. One keypoint was the central hip joint,
which is the origin of the local body coordinate system, i.e., it is always at (0, 0, 0). Thus,
we excluded it from the training and error evaluation. The remaining 14 joints are listed
in Table 5. The first problem we faced was that there was no head keypoint in Panoptic,
because this has not been annotated in the MS COCO dataset [96], which is used for training
OpenPose [27,31] and other 2D pose estimators. However, there are MS COCO keypoints
for the left and right ear. We calculated the center of gravity of these two points (Number
17 and 18 in Panoptic and OpenPose) in order to get a keypoint at the center of the head.

Table 5. Our joint definitions for the different datasets and OpenPose. The numbers in the table
correspond to the joint number in the datasets’ original joint definition. The joints marked with *
were repositioned in the harmonization process.

Joint HumanEva-I Human3.6M Panoptic OpenPose

R Hip 1 * 1 * 12 9
R Knee 2 2 13 10
R Ankle 3 3 14 11
L Hip 4 * 6 * 6 12
L Knee 5 7 7 13
L Ankle 6 8 8 14
Neck 7 13 * 0 1
Head 8 * 15 * (17 + 18)/2 (17 + 18)/2
L Shoulder 9 17 3 5
L Elbow 10 18 4 6
L Hand 11 19 5 7
R Shoulder 12 25 9 2
R Elbow 13 26 10 3
R Hand 14 27 11 4

After this step, we had keypoints for all the joints listed in Table 5. However, there
were still obvious differences in some of the joints’ relative placements, as illustrated in
Figure 2a,c,e. The different skeleton joint definitions introduced systematic errors into the
cross-dataset experiments. To counter these effects, we harmonized the joint positions,
using Panoptic (and thus the MS COCO-based joints) as the reference. This facilitated
combining the 3D pose estimation with MS COCO-based 2D pose estimators, which is a
promising research direction, and comparing future results with ours.
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(a) orig. joints, HE1 (b) harm. joints, HE1 (c) orig. joints, H36M (d) harm. joints, H36M (e) orig. joints, PAN

Figure 2. Examples showing the skeleton of HumanEva-I (HE1) and Human3.6M (H36M) before (“original” = orig.) and after
the harmonization (harm.) of the head, neck, and hip joints. Panoptic (PAN) was used as the reference for harmonization.

We adjusted the obvious differences in the head, neck, and hip positions in the
HumanEva-I (HE1) and Human3.6M (H36M) datasets: (1) the head joint was moved to in
between the ears in both HE1 and H36M; (2) the neck was placed between the shoulders in
the H36M; and (3) the hip width (distance between the left and right hip keypoints) was
expanded in HE1 and reduced in H36M.

To be more precise, the positions of the head and hip joints of the HE1 dataset were
harmonized as follows: To move the head closer to the neck, we multiplied the direction
vector between the neck and the head joint by a factor of 0.636. We calculated the factor
from the ratio of the means of the neck-to-head length of the HE1 (316.1 mm) and the
Panoptic (PAN) test datasets (201.1 mm). The hip joint distance was increased from the
common center point by a factor of 2.13, again based on scaling the direction vector by the
ratio of the mean distances (PAN 205.2 mm, HE1 96.3 mm). Figure 2a,b illustrates the effect
of our adjustment.

The joint harmonization of the H36M dataset changed the position of the neck, head,
and hip joints. The neck joint, which was defined at a higher position than in the other
datasets, was moved to the center between the shoulder joints. To move the head point
closer to the neck, we multiplied the direction vector between the repositioned neck joint
and the head joint by a factor of 0.885. The factor was calculated from the ratio of the
means of the neck-to-head length of the H36M (227.3 mm) and the PAN test datasets
(201.1 mm). The hip joint distance was reduced from the common center point to 0.775
of the original value, based on the mean distances (PAN 205.2 mm, H36M 264.9 mm).
Figure 2c,d illustrates the effect of the adjustment.

We provided the Python source code for harmonizing the joints at https://github.
com/mihau2/Cross-Data-Pose-Estimation/ (accessed on 27 May 2021).

4.2. Scale Normalization

People differ in their heights and limb lengths. On the one hand, this is a problem for
2D-image-based 3D pose estimation, because, in the general case, the real height and limb
lengths of a person (as well as the distance from the camera) cannot be measured from a
single 2D image; therefore, accurate estimation of 3D joint positions is only possible up to
an unknown scaling factor. Nevertheless, most state-of-the-art methods train their relative
pose estimation models in a way that forces them to implicitly predict this scale, because
they train the models to predict 3D joint coordinates, which implicitly contain the overall
scale and the body proportions. This imposes a burden that encourages the models to learn
dataset-specific heuristics, such as the height of individual subjects, the mean height of the
subjects, the characteristics of the camera used, or the expected height/depth depending
on the position and/or size of the person in the image. We expect that this way of training
worsens generalization to in-the-wild data and in cross-dataset evaluations. On the other
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hand, knowing the scaling factor (the real height and limb lengths of the person) is not
necessary for many applications that only require relative joint positions. Normalizing the
joint positions from absolute to relative coordinates is common practice. We went a step
further and proposed to normalize the scale of the skeletons, in order to remove the (often
unnecessary) burden of predicting the scale and to improve the cross-dataset performance.

The absolute joint coordinates pi of each pose sample were normalized individually
based on the skeleton’s relative joint positions in relation to the center hip point p0, which
was in the origin of the local coordinate system. We quantified the scale s by calculating
the mean of the Euclidean distances between the origin and all N joint positions:

s =
1
N

N

∑
i=1
‖pi − p0‖ (1)

Afterwards, we resized the skeleton by dividing all joint position coordinates by the
scale, yielding a normalized scale of 1. The normalized joint positions p̂i were calculated
as follows:

p̂i =
1
s
(pi − p0) (2)

This normalized all poses to a similar coordinate scale. This transformation was
applied individually in both the 3D target data (with pi ∈ R3) and the 2D input data (with
pi ∈ R2).

4.3. Baseline Model and Training

We performed our experiments with the “Baseline” neural network architecture
proposed by Martinez et al. [26]. We decided to use an existing method rather than
developing a completely new approach, because the focus of our work was on cross-
dataset evaluation and proposing improvements that can be applied in many contexts. The
approach by Martinez et al. did not rely on images, but mapped 2D skeleton joint positions
to relative 3D joint positions, which is also called “lifting”. Thus, it can be combined with
any existing or future 2D body pose estimation method. This way, the results can benefit
from advances in 2D pose estimation, which are faster than in 3D pose estimation, because
in-the-wild 2D pose datasets are much easier to create than their counterparts with 3D
ground truths. Other advantages include: (1) The approach is independent of image-related
issues, such as lighting, background, and several aspects of subject appearance, which are
covered with great diversity in 2D pose datasets. By decoupling the 2D pose estimation
from the “lifting”, we avoided overfitting the 3D pose estimation to the quite restricted
diversity of the 3D pose datasets regarding lighting, background, and subject appearance.
(2) The approach allowed augmenting the training data by creating synthetic poses and
virtual cameras, which can massively increase the variability of the available data and
lead to better generalization. (3) No images were needed, so additional sources of training
data may be exploited, such as motion capture data recorded in sports, biomechanics, or
entertainment. (4) The source code is available. Therefore, it is easy to reproduce the results,
apply the method with other data, and start advancing the approach.

The architecture by Martinez et al. [26] was a deep neural network consisting of fully
connected layers and using batch normalization, ReLU, dropout, and residual connections.
The first layer maps the 2D coordinates (2n = 28 dimensions) to a 1024-dimensional
space. It is followed by two residual blocks, each including two fully connected layers.
Finally, there is another linear layer that maps the 1024-dimensional space to the 3n = 42-
dimensional 3D coordinate output.

The model, training, and testing were implemented in the TensorFlow2 deep learning
framework using the Keras API. The networks were trained with the Adam optimizer,
minimizing the mean squared error loss function. The training set was separated into
training and validation data with a 90/10% split, and the training data were shuffled before
each epoch. We used a batch size of 512 and a dropout rate of 0.5. The training of each
neural network started with a learning rate of 10−3, which was reduced during the training
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by a factor of 0.5 if the loss on the validation set did not decrease for 3 epochs. The training
was stopped if the validation loss did not decrease for 10 epochs or the learning rate was
reduced below 10−6. The model with the lowest validation loss was saved for testing.

4.4. Anatomical Pose Validation

We proposed an optional pose validation step, which assessed the predicted poses
using the constraints of human anatomy. The human body is usually symmetrical regard-
ing the length of the left and right extremities and has, according to Pietak et al. [103],
stable ratios regarding the lengths of the upper and lower limbs with little variation
between individuals.

For every pose, the ratios of each upper and lower extremity, as well as its left and
right counterpart were calculated. The ratios were measured as the difference in length in
%, based on the shorter of the two compared limbs. Therefore, a ratio of 2:1 and 1:2 would
both result in a difference of +100%. If one of the 8 calculated ratios was greater than 100%,
the pose was rejected by the validation.

The effect of this approach is analyzed in Section 5.7. All the other experiments were
conducted without applying this validation step, because it led to the exclusion of rejected
poses from the error calculation and thus limited the comparability of the error measures
(which may be based on different subsets of the data).

4.5. Use of Datasets

Each dataset was split into training and test data based on the sessions/subjects and
cameras, as illustrated in Figure 3. No single camera or session was used for both the
test and training set. Although parts of the datasets were unused, we selected this way
of splitting because our focus was to measure the generalization across subjects, camera
viewpoints, and datasets rather than reaching the highest in-dataset performance. The
cameras were assigned to the test set and the reduced and full training set, as illustrated
in Figure 4 and detailed below. Further, because the number of cameras was quite low in
Human3.6M (only 4), we generated synthetic camera views as described in Section 4.5.2.
After the main split, the training data was further randomly split into 90%, which were used
as the actual training set by the optimizer, and 10%, which were used as the validation set.

Figure 3. Separation of the training and test sets for the subject sessions and camera sets (blue:
reduced training camera set; blue and green: full training camera set; red: test camera set; white:
unused data).
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(a) HE1 (b) H36M (c) PAN

Figure 4. Camera positions and an example pose for the used datasets (grid at z = 0 with 1 meter cell size; blue: reduced
training camera set; blue and green: full training camera set; red: test camera set).

4.5.1. Dataset Split Details

For HumanEva-I (HE1), Subjects 0 and 1 were used as the training set and Subject 2 as
the test set. The camera “BW1” was used for the test set. We used the other black-and-white
and color cameras for the training set. The reduced camera set only contained the black-
and-white cameras. For the evaluation using the OpenPose 2D joint positions, we used all
videos of Subject 2 that contained the corresponding video and motion capture data. This
reduced the OpenPose test dataset, in comparison to the standard test set, because only a
subset of the sessions included both motion capture and video files.

For Human3.6M (H36M), Subjects 1, 5, 6, 7, and 8 were used for the training set and
Subjects 9 and 11 for testing. We used Camera 3 as the test camera. Cameras 0, 1, and 2
were the reduced camera training set. The full camera training set contained Cameras 0, 1,
and 2 and their modified synthetic copies (see Section 4.5.2). For the evaluation using the
generated OpenPose 2D joint estimations, we used all videos of Subjects 9 and 11.

For Panoptic (PAN), the Range of Motions sessions (sequence names: 171026_pose1,
171026_pose2, 171026_pose3, 171204_pose1, 171204_pose2, 171204_pose3, 171204_pose4,
171204_pose5, 171204_pose6) were used for testing and all other sessions for training. Of
each panel, we only used VGA Camera No. 1. The cameras on Panels 9 and 10 were used
for testing. The cameras on Panels 1–8 were the reduced camera training set, and the
cameras on Panels 1–8 and 11–20 were the full training set.

Table 6 shows the resulting sample sizes for the different databases and successfully
mapped OpenPose (OP) samples.

Table 6. Sample sizes in thousands of poses.

Training Set Testing Set
Reduced Full

HE1 113 225 17.8
H36M 1169 2312 137.7
PAN 4131 9809 292.0
HE1 (OP) - - 1.7
H36M (OP) - - 52.1

4.5.2. Virtual Camera Augmentation

The H36M dataset was recorded with only 4 cameras. In order to make the ratio of
training and test cameras in the databases more similar, three more camera were added.
For this purpose, we virtually copied the training Cameras 0, 1, and 2 by rotating their
extrinsic camera parameters by 90◦ around the world coordinate center in the middle of
the recording space without changing the intrinsic camera parameters. This can be seen in
Figure 4b, where the blue points represent the original training camera positions, and the
newly created cameras are shown in green.
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4.6. Implementation Details

First, the original 3D pose data in the world coordinate space were loaded. If a pose
contained a non-valid joint position, usually (0, 0, 0), the pose was discarded. Further, we
used the jointwise confidence score provided in the PAN dataset to remove unreliable data.
If the score of any of the 14 used joints was <0.1, we discarded the corresponding pose.
Next, the 3D pose data were transformed to the camera coordinates for each camera of the
used set.

If scale normalization was applied, the scale of the 3D joint positions was normalized
to a mean distance of 1 from the center of the hips. After that, the pose was repositioned to
the camera coordinates (0, 0, 50) for the projection step. All pose transformations described
in this section used the center of the hips as the reference point.

In the next step, the 3D pose was projected onto the camera 2D image plane including
the distortion parameters. Poses with at least one joint outside the projected camera image
(1000× 1000 px in H36M and 640× 480 px in HE1 and PAN) were discarded. This was
necessary due to the nonlinear components in the distortion model, which could result
in extremely outlying projected points in the image plane if the 3D joint positions were
not in the original image frame for which the distortion parameters were calibrated. Next,
an additional pose validation step was performed. The limb lengths (for left and right:
upper arm, lower arm, upper leg, lower leg, shoulder-to-neck; also the hip width and
neck-to-head distance) were calculated once using the original joint descriptions for every
database on its complete training set. From that data, the mean length μ and standard
deviation σ of the noted limbs were determined. Irregular poses, where at least one limb
length deviated more than 3σ from μ, were discarded in the full and reduced training set.
These two data validation checks were only done for the projection with the original joint
descriptions and without the use of scale normalization, to keep the differently processed
datasets comparable. The validity status for each sample was saved and applied if the
scale normalization and/or the harmonized joint descriptions were used, to ensure the same
subset of samples was used regardless of the preprocessing steps.

If the scale normalization was applied, then the 2D joints of the pose were also normal-
ized to a mean distance of 1 to the center of the hips, and the pose was moved to (0, 0). The
2D poses in the image coordinates were used as training inputs, and the 3D poses in world
coordinates, moved to (0, 0, 0), were used as training targets. The data were normalized to
a mean of 0 and a standard deviation of 1 for every net input and output channel.

For the evaluation of a model, the 2D inputs of the test dataset were normalized with
the models’ normalization values calculated on the training set, and the resulting prediction
outputs were denormalized analogously. If scale normalization was used, the output pose
was first scaled up to the scale of the ground truth pose before calculating the joint errors.

5. Results

In this section, we summarize the results of our cross-dataset and in-dataset evaluation.
All experiments were repeated five times, that is each reported result was the average
performance of five independently trained models. The error was calculated as the mean of
the sum of all joint Euclidean distances between the output and the corresponding ground
truth pose in mm.

We calculated two error types for the evaluation: The first was a no-alignment error,
where the data of the predicted output pose were not post-processed and directly compared
to the relative 3D ground truth pose, with the center of the hips at (0, 0, 0). The no-alignment
error was used for most of the results. Second, we calculated the Procrustes error, where
the output pose was moved, scaled, and rotated, minimizing the joint distances between
the prediction and ground truth. Some Procrustes error values are presented in Table 12
for comparison with the no-alignment errors. The other Procrustes error tables for the
presented data can be found in the Supplemental Materials.

If not explicitly mentioned otherwise, the results reported in the following were
obtained with harmonized joints and the full camera set.
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The prediction speed on the trained models was tested using an NVIDIA GeForce
RTX 2080 TI graphics card. A batch with a size of 256 samples was calculated in around
30 milliseconds, which would result in 8533 pose estimations per second. The proposed
model can therefore calculate 3D poses from 2D points in real time.

5.1. Joint Harmonization

Table 7 shows the mean and standard deviation of the errors for the evaluation over
all datasets with and without joint harmonization. All entries in a row share the same
training database; those in a column share the same test database. On the main diagonal
are the in-database errors, which were significantly lower than the cross-database error
(off the main diagonal). This difference showed the presence of dataset biases and their
negative effect on cross-dataset generalization

The joint harmonization improved the results significantly from an overall mean
error of 133.7 mm to 120.0 mm (p = 0.040, paired t-test). The impact differed among the
individual training and test dataset combinations. As to be expected, the estimation error
was mainly reduced in the cross-database results, where it was decreased by up to −29%.
The greatest effect can be seen for HE1, which was the smallest dataset and whose joint
definition deviated most from those of the other datasets.

The high absolute errors of the models trained with the HE1 were especially prominent
in the ankle and knee joints. The errors can be attributed to the low diversity of poses
in HE1, which did not include wide arm movements and no non-standing poses, which
however were very common in H36M and PAN.

Table 7. Errors with original vs. harmonized joints (no-alignment errors in mm, mean± std. deviation).

Training Data Test Data
HE1 H36M PAN

original joints (mean 133.7)
HE1 95.9 ± 2.9 299.7 ± 9.5 148.8 ± 4.9
H36M 142.1 ± 3.9 67.6 ± 0.6 95.1 ± 3.2
PAN 166.7 ± 2.4 143.6 ± 1.2 43.9 ± 0.3

harmonized joints (mean 120.0)
HE1 91.7 ± 1.9 254.1 ± 5.8 125.4 ± 4.3
H36M 141.7 ± 3.8 67.0 ± 0.6 98.3 ± 2.2
PAN 117.8 ± 2.4 140.4 ± 1.3 43.7 ± 0.2

mean error change
HE1 −4.3% −15.2% −15.7%
H36M −0.2% −0.9% 3.4%
PAN −29.3% −2.3% −0.6%

One-sided paired-sample t-test p = 0.040.

5.2. Number of Cameras

We compared the estimation error for the full camera set with a reduced camera set.
For this purpose, the amount of used cameras was halved. Details about the used camera
sets and their placement can be found in Section 4.5 and Figure 4.

Table 8 shows the results. The use of more cameras, and therefore more viewpoints
and pose samples, changed the individual testing errors by in between 6.8% and −28.8%.
Overall, the mean error decreased from 132.6 mm to 120.0 mm, which was a statistically
significant difference (p = 0.031 in a one-sided paired t-test). The increase in the number of
cameras had a positive impact on the testing results when training with the HE1 or H36M
dataset, which both only had three camera views in the reduced camera set, with changes
in the error of −5.1% up to −28.8%.
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Table 8. Errors with the reduced vs. the full camera set (no-alignment errors in mm, mean ± std.
deviation).

Training Data Test Data
HE1 H36M PAN

reduced camera set (mean 132.6)
HE1 96.6 ± 1.9 270.6 ± 11.5 176.2 ± 5.4
H36M 166.4 ± 7.7 75.1 ± 0.4 105.2 ± 5.5
PAN 129.5 ± 2.1 131.4 ± 0.7 42.2 ± 0.3

full camera set (mean 120.0)
HE1 91.7 ± 1.9 254.1 ± 5.8 125.4 ± 4.3
H36M 141.7 ± 3.8 67.0 ± 0.6 98.3 ± 2.2
PAN 117.8 ± 2.4 140.4 ± 1.3 43.7 ± 0.2

mean error change
HE1 −5.1% −6.1% −28.8%
H36M −14.8% −10.7% −6.6%
PAN −9.0% 6.8% 3.4%

One-sided paired-sample t-test p = 0.031.

5.3. Scale Normalization

Table 9 shows the mean error and the standard deviation for the evaluation with
and without scale normalization. Scale normalization significantly decreased the pose
estimation error, from on average 120.0 mm to 90.1 mm (p = 0.015 in a one-sided sample-
paired t-test). For the in-database evaluation, the error decreased between −13.2% and
−24.6%. Cross-database testing resulted in even bigger reductions up to −42.9%.

The results of the models trained on HE1 and H36M and tested on the PAN dataset
showed less improvement or even a worse result when using scale normalization. This
error increase can be attributed to the test samples with a low camera viewing angle, which
was not contained in the HE1 and H36M datasets.

Table 9. Error with and without scale normalization (no-alignment errors in mm, mean ± std.
deviation).

Training Data Test Data
HE1 H36M PAN

no scale normalization (mean 120.0)
HE1 91.7 ± 1.9 254.1 ± 5.8 125.4 ± 4.3
H36M 141.7 ± 3.8 67.0 ± 0.6 98.3 ± 2.2
PAN 117.8 ± 2.4 140.4 ± 1.3 43.7 ± 0.2

with scale normalization (mean 90.1)
HE1 69.2 ± 0.7 170.3 ± 4.0 152.7 ± 2.7
H36M 86.0 ± 1.2 55.2 ± 0.5 89.2 ± 0.7
PAN 67.3 ± 1.0 83.1 ± 0.6 37.9 ± 0.4

mean error change
HE1 −24.6% −33.0% 21.8%
H36M −39.3% −17.7% −9.3%
PAN −42.9% −40.8% −13.2%

One-sided paired-sample t-test p = 0.015.

Interestingly, the scale normalization error when training on PAN and testing on HE1
decreased below the in-database error of HE1. The training set of PAN was larger and
more diverse than that of HE1, which helped the cross-dataset generalization outperform
the in-dataset generalization in this case.

Figure 5 shows the jointwise errors with and without scale normalization of only the
cross-database evaluation as a box plot. The median error decreased for all joints, most for
the leg joints. Most of the high-error outliers occurring with the original representation
disappeared when using scale normalization.
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Figure 5. Jointwise error of all cross-dataset results with and without scale normalization. Box
plot with median (circle with dot), 1’st/3’rd quartile (bottom/top of thick bar), and outliers (circles,
default settings of MATLAB 2017b).

In order to illustrate the need for scale normalization, we calculated the scale dif-
ferences without the normalization as the ratio of the Frobenius norms, of all joints, of
the predicted and ground truth poses, after moving the centroid of the poses to (0, 0, 0).
Table 10 shows the scale differences for the test sets. Several systematic prediction errors of
up to 16% can be seen in the scale ratios, especially in the cross-dataset experiments when
testing on HE1 and H36M. We found an interesting in-database result (main diagonal) with
HE1: The scale of the predicted HE1 test poses (0.89) was significantly smaller than the
absolute scale of the ground truth, while the PAN (1.0) and H36M (0.99) model predicted
their own scale from their training data with greater accuracy.

Table 10. Mean scale ratios between ground truth and prediction without scale normalization.

Training Data Test Data
HE1 H36M PAN

scale error (full cam set)
HE1 0.89 1.09 0.97
H36M 0.90 0.99 1.01
PAN 0.84 0.90 1.00

This difference in the size of the ground truth poses can be attributed to the distances
between the cameras and the recorded subjects. The camera positions in the HE1 were
set up in a rectangle of around 8 × 9 m with a capture space of 2 × 3 m in the center of
that. Our randomly chosen test camera was at one of the corners and therefore one of the
most distant cameras in the dataset. The H36M dataset had its cameras in a 5 × 10 m setup
and used a capture space of 3 × 4 m. We virtually copied and rotated the three training
cameras so that the cameras were positioned close to circularly around the subjects. The
PAN dataset had a capture space with diameter of 5 m in which the subjects could act
freely, but due to the curvature of the dome and the constraint that the pose had to be fully
captured in the camera view, only a limited range of distances could be used for training.

Therefore, the positioning of the cameras and the capture spaces led to different
distances from the recorded subjects and systematic differences in the pose scale in the
training data. Figure 6 shows the relative distribution of all joint-to-camera distances for
some of the training and test datasets. It can be seen that the training poses of all datasets
and testing poses of HE1 differed strongly in the distance to the cameras, which probably
resulted in the failure to predict the true scale of the presented 2D pose. Other factors that
can lead to this effect are the camera field-of-view/focal length, the camera resolution, and
systematic biases in the body size of the subjects. The presence and effect of such dataset
biases illustrate the importance of scale normalization for improving the cross-dataset and
in-the-wild performance of 3D pose estimation.
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Figure 6. Relative distribution of all joint-to-camera distances for the HE1 test set and all training
sets (full camera set).

5.4. Multi-Database Training

In order to improve the cross-dataset generalization, we tried to increase the diversity
in the training data by combining datasets. We used a leave-one-out approach for the
training and testing, that is we always left out one database for cross-database testing and
used the other two for training. The training sets were combined by concatenating the data
(and new normalization parameters for the nets inputs and outputs were derived).

Table 11 shows the generalization errors with and without scale normalization. Scale
normalization improved the pose estimation error in the multi-database training, with a
value of p = 0.003 in a paired t-test. For cross-database training and test cases, the error
decreased between −0.6% and −50.1%. Similar to the single-database training in Table 9,
the effect was bigger on the HE1 and H36M test set than on PAN. The error for the cases, in
which the model was tested on one of the training databases, decreased between −10.8%
and −41.5%.

In Table 11, single-database training results are added for easier comparison to multi-
database. When testing on the HE1 dataset, combining H36M and PAN for training
improved the cross-database results from 67.3 mm (PAN only) to 64.9 mm, which was
significantly below using HE1 for training (69.2 mm). Further, combining HE1 and PAN
for training reduced the error slightly below using PAN only. Apart from that, the multi-
database training did not reduce the test errors in comparison to single-database training;
Training with the bigger dataset alone achieved a similar or slightly better result than
training with the combination of two datasets.

Table 11. Error of multi-database training with and without scale normalization (no-alignment errors
in mm, mean ± std. deviation).

Training Data Test Data
HE1 H36M PAN

no scale normalization (mean 103.0)
H36M + PAN 130.2 ± 2.9 103.8 ± 1.6 43.0 ± 0.3
HE1 + PAN 115.0 ± 1.3 143.0 ± 2.2 45.5 ± 1.6
HE1 + H36M 135.5 ± 1.2 75.1 ± 1.1 103.7 ± 4.3

with scale normalization (mean 69.0)
H36M + PAN 64.9 ± 0.5 63.0 ± 0.4 38.3 ± 0.3
HE1 + PAN 67.2 ± 0.7 83.2 ± 0.8 38.3 ± 0.7
HE1 + H36M 100.4 ± 1.2 62.6 ± 0.8 103.0 ± 2.1
HE1 69.2 ± 0.7 170.3 ± 4.0 152.7 ± 2.7
H36M 86.0 ± 1.2 55.2 ± 0.5 89.2 ± 0.7
PAN 67.3 ± 1.0 83.1 ± 0.6 37.9 ± 0.4

mean error change
H36M + PAN −50.1% −39.3% −10.8%
HE1 + PAN −41.5% −41.8% −15.9%
HE1 + H36M −25.8% −16.6% −0.6%

One-sided paired-sample t-test p = 0.003.
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5.5. OpenPose Evaluation

In order to test the generalization of the 3D pose estimation with a widely used 2D
pose estimator, we conducted experiments with OpenPose [31].

First, the test set videos of the HE1 and the H36M datasets were processed with
OpenPose. The videos of the Panoptic database could not be obtained on several occasions,
due to availability issues with the host file server. The obtained 2D joint coordinates were
used as inputs for the trained models to predict 3D joint positions, which were compared
to the ground truth pose data. Note that the models were not fine-tuned with points
provided by OpenPose. A noticeable difference between the two OpenPose datasets was
the underlying image quality. While the HE1 was recorded at 640× 480 px, the H36M
dataset had a higher resolution of 1000× 1000 px and better image quality. The video
frames and motion-capture joint poses were synchronized for the OpenPose evaluation.
The synchronization was manually corrected for the HE1 with an offset of 10 frames. The
3D pose evaluation error for every frame was calculated to the timewise closest motion-
capture pose if that corresponding pose was valid.

Table 12 shows the test results for the OpenPose (OP) data and, for better comparison,
the standard evaluation results. The errors are given for the no-alignment case and after
the Procrustes alignment. As in the previous sections, the test results were generally better
when training and testing with the same dataset, except for HE1. When testing on HE1
and HE1 (OP), the cross-database training on PAN outperformed the in-database training
on HE1 in both the no-alignment and Procrustes error. On HE1 (OP) with Procrustes error,
also, cross-dataset training with H36M performed better than in-dataset training with HE1.

Table 12. Error (no alignment vs. Procrustes) with OpenPose 2D joints (OP) and ground truth joint
projection, with scale normalization (errors in mm, mean ± std. dev.).

Training Data Evaluation Data
HE1 (OP) H36M (OP) HE1 H36M PAN

no alignment
HE1 138.3 ± 1.3 184.4 ± 4.0 69.2 ± 0.7 170.3 ± 4.0 152.7 ± 2.7
H36M 151.3 ± 1.7 108.6 ± 0.7 86.0 ± 1.2 55.2 ± 0.5 89.2 ± 0.7
PAN 126.1 ± 1.2 130.8 ± 1.1 67.3 ± 1.0 83.1 ± 0.6 37.9 ± 0.4

Procrustes alignment
HE1 105.8 ± 0.6 109.5 ± 1.3 57.8 ± 0.7 105.0 ± 2.3 104.6 ± 1.9
H36M 103.1 ± 0.8 65.6 ± 0.6 61.4 ± 0.6 41.5 ± 0.2 48.6 ± 0.9
PAN 93.4 ± 0.7 71.9 ± 0.5 55.0 ± 0.8 55.4 ± 0.3 28.2 ± 0.3

mean error change
HE1 −23.5% −40.6% −16.4% −38.3% −31.5%
H36M −31.8% −39.6% −28.6% −24.8% −45.5%
PAN −26.0% −45.0% −18.3% −33.3% −25.6%

The no alignment error for the H36M (OP) test dataset was, excluding the HE1-trained
models, consistently around 50 mm higher compared to the projected H36M data. This
increase was evenly distributed over most of the joints, with the exception of the hip joints,
for the models trained on both the H36M itself and the PAN datasets. The models trained
on HE1 achieved an error reduction on certain joints (R knee, R ankle) and increased in the
others, which was probably due to the lack of training data and the higher error rates to
begin with. Similar effects can be seen for the results of the HE1 (OP) dataset, where the
error increase was also distributed over all joints for all test cases, with slightly lower error
increases for the hip, neck, and shoulder joints.

The Procrustes calculation minimized the errors in the scaling, rotation, and posi-
tioning of the skeleton. Therefore, the errors were smaller than without this alignment
step in all cases. Analogous to the no alignment error, the results for the testing on the
H36M (OP) dataset were, excluding the HE1 trained models, consistently around 20 mm
higher compared to the projected H36M data. The results for the HE1 (OP) dataset were
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around 40 mm higher than for the projected HE1 data. For the projected test datasets, the
error reductions for the same training and test database cases were between −16.4% and
−25.6%, and the the cross-database results improved by up to −45.5% The absolute errors
for the pose estimation were reduced to a range between 28 mm and 61 mm using the
bigger training datasets (H36M, PAN) and 105 mm for the smaller HE1.

The Procrustes error changes of the individual joints are shown in Figure 7. It can be
seen that rotation and repositioning during the Procrustes optimization increased the error
in the hip joints, but decreased the error for all other joints. The effect increased with the
distance to the skeletal root between the hips, because the joints further away from the
center tended to have a greater impact on the Procrustes distance and minimization.
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Figure 7. Jointwise no-alignment and Procrustes error of all single-database training results. Box
plot with median (circle with dot), 1’st/3’rd quartile (bottom/top of thick bar), and outliers (circles,
default settings of MATLAB 2017b).

5.6. Rotation Errors

Due to the separation of the cameras into training and test sets, the test camera
viewpoints were not used for the training and were novel to the models. This often led
to skeleton predictions with rotation errors. We calculated the rotation error from the
Procrustes alignment as the magnitude of the minimal rotation in 3D space needed to
minimize the joint distances between the ground truth and prediction. Table 13 shows the
rotation errors for the OpenPose and projected test sets, using both camera sets and with
or without scale normalization.

Table 13. Mean rotation corrections of the Procrustes alignment for different camera sets and scale
normalization.

Training Data Test Data
HE1 (OP) H36M (OP) HE1 H36M PAN

rotation error (reduced cam set, no scale norm)
HE1 23.2◦ 35.2◦ 9.3◦ 31.3◦ 20.2◦
H36M 28.5◦ 11.2◦ 22.7◦ 8.2◦ 11.0◦
PAN 22.3◦ 18.6◦ 15.3◦ 17.1◦ 4.2◦

rotation error (full cam set, no scale norm)
HE1 21.3◦ 35.1◦ 10.1◦ 30.6◦ 13.6◦
H36M 26.7◦ 10.9◦ 18.1◦ 7.2◦ 10.2◦
PAN 19.8◦ 18.6◦ 12.1◦ 18.7◦ 4.1◦

rotation error (full cam set, using scale norm)
HE1 24.8◦ 24.3◦ 8.9◦ 20.9◦ 24.1◦
H36M 18.1◦ 12.5◦ 8.8◦ 6.5◦ 9.3◦
PAN 18.9◦ 14.8◦ 7.7◦ 8.9◦ 4.7◦

The rotation error generally decreased with the addition of new camera positions,
which we saw when comparing the first part of the table (reduced cam set) with the second
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part (full cam set). The effect was especially strong (−6.6◦) when training on HE1 and
testing on PAN.

The additional use of scale normalization decreased the error for most of the combina-
tions even further, up to −9.7◦ and −9.3◦ for the HE1 and H36M cross-dataset evaluations.
The PAN-trained models also had better rotation accuracy with the cross-database test
results decreasing from −4.4◦ to −9.8◦. The effects were smaller (−1.2◦ HE1 and −0.7◦
H36M) or even slightly worse (+0.6◦ PAN) for in-database training and testing. An outlying
increase of the rotation error can be seen for the HE1 trained models, when evaluated on
the PAN dataset. This was probably due to the introduction of bigger camera-to-pose view
angles by the repositioning of the poses before the 3D to 2D projection.

5.7. Anatomical Pose Validation

Table 14 compares the pose estimation results with and without the anatomical pose
validation that we proposed in Section 4.4. The validation approach successfully identified
many wrongly estimated poses, which was revealed by the decreasing error in all tested
database combinations.

For the testing on the projected ground truth data (HE1, H36M, and PAN), the de-
creases were smaller for in-database, with decreases from−0.5% to−2.5%. Bigger improve-
ments can be seen in the results for the cross-database testing. The error rates decreased
here from −1.3% to −9.3%.

The biggest impact of the pose validation was on the models trained with the HE1
dataset. It had the biggest error reduction, and up to 20.7% of the poses were rejected, while
the rate for the other datasets was between 0.3% and 3.3%. Many poses that occurred in
H36M and PAN test data were not part of the small HE1 dataset, e.g., HE1 only contained
upright poses and only a limited range of arm and leg movements. Training with this
dataset resulted in poor generalization to completely unseen poses, leading to many
anatomically impossible skeletons. The other two datasets reached a lower cross-database
pose rejection in the range from 1.1% to 3.3%, which showed better generalization.

All datasets had high pose rejection rates on the HE1 (OP) testing set. This effect
was not present for the H36M (OP) dataset, where only the HE1-trained models showed
a higher pose rejection rate, which was similar to the rate for the ground truth projection
H36M dataset. This correlated with the low sample size of the training data and poor video
quality of the HE1 dataset, which led to higher pose errors for all models.

Table 14. Error with and without anatomical pose validation, with scale normalization (no-alignment
errors in mm, mean ± std. deviation).

Training Data Test Data
HE1 (OP) H36M (OP) HE1 H36M PAN

no validation
HE1 138.3 ± 1.3 184.4 ± 4.0 69.2 ± 0.7 170.3 ± 4.0 152.7 ± 2.7
H36M 151.3 ± 1.7 108.6 ± 0.7 86.0 ± 1.2 55.2 ± 0.5 89.2 ± 0.7
PAN 126.1 ± 1.2 130.8 ± 1.1 67.3 ± 1.0 83.1 ± 0.6 37.9 ± 0.4

using validation
HE1 125.8 ± 2.4 166.1 ± 4.3 67.5 ± 0.8 155.4 ± 6.6 138.6 ± 2.3
H36M 142.4 ± 1.9 108.3 ± 0.7 84.9 ± 1.3 54.9 ± 0.6 88.9 ± 0.7
PAN 113.9 ± 1.1 130.4 ± 1.0 65.9 ± 1.0 81.8 ± 0.5 37.6 ± 0.4

mean error change
HE1 −9.0% −9.9% −2.5% −8.8% −9.3%
H36M −5.8% −0.3% −1.3% −0.5% −0.3%
PAN −9.7% −0.3% −2.1% −1.6% −0.7%

rate of rejected poses
HE1 15.8% 15.7% 1.8% 13.8% 20.7%
H36M 12.2% 1.3% 1.1% 0.3% 2.2%
PAN 15.6% 2.9% 1.3% 3.3% 0.6%
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6. Discussion

In this article, we conducted cross-dataset experiments and discussed dataset biases
as a step towards better cross-database generalization and in-the-wild performance of 3D
human pose estimation systems.

The used datasets, HumanEva-I, Human3.6M, and Panoptic datasets, differed in their
ground truth skeleton joint definitions, which impeded using these datasets together. Thus,
we proposed a joint harmonization approach that facilitated cross-dataset experiments
and reduced the biases among the datasets. In-the-wild performance would benefit from
unifying the ground truth of additional datasets. However, a limitation of our approach
was that it needed to be parameterized manually for each new dataset. For future works, it
may be promising to develop generalized, automatic, and more accurate harmonization
methods for post-processing existing datasets and to agree on a standardized skeleton joint
model for collecting new datasets.

We analyzed the impact of the number of camera viewpoints used for the training. For
databases with a small number of cameras such as H36M and HE1, adding more cameras
improved the pose estimation significantly for in-database and cross-database evaluation.
This showed that a certain coverage of viewpoints was needed for good generalization.
With approaches that lift 2D poses to 3D poses, such as the one of Martinez et al. [26],
datasets may be augmented by projecting the 3D ground truth to new virtual cameras, as
was tested on the H36M dataset, improving the evaluation error up to −14%.

Many prior works expected the pose estimation model to learn the correct 3D scale
from single-image 2D data, which is an impossible task in the general case. This imposed
a burden that encouraged the models to learn dataset-specific heuristics and, as a conse-
quence, to overfit to the dataset. We showed that the used databases were biased regarding
the parameters, positions, and distances of the used cameras, which resulted in system-
atic scale errors in the output of the trained poses. Our proposed scale normalization step
reduced the pose estimation error on the test datasets significantly, in 17 of 18 test cases
and in the best case by more than −50% (see Tables 9 and 11). We investigated the one case
in which the scale normalization decreased the performance. In this case, the repositioning
of test poses in the preprocessing step increased the relative rotation of the pose to the
camera, which led to higher prediction errors because these rotations were not present
in the training dataset. However, this weakness could be compensated by augmenting
the training dataset using virtual cameras with additional viewing angles, as mentioned
above. Another limitation of the presented scale normalization approach is that the effects
of camera distortions cannot be trained, because the position and scale are normalized in
both 2D and 3D space. This error was not relevant in comparison to other factors in our
experiments, but could become an issue for cameras with a very wide field of view.

Several of the dataset biases could be compensated in future works by adding virtual
cameras, as described in Section 4.5.2, with various camera elevations, angles, and distances.
We see this as a promising and more general augmentation approach for all available
pose datasets. This approach could generate more training data for camera-to-subject
distances and view angles with variation of the extrinsic camera calibration parameters.
More camera types can also be added by variation of the intrinsic camera parameters,
such as the focal length, to create data with different angles-of-view and enable better
generalization. Additionally, this idea may be used with arbitrary motion capture data,
including data for which no images are available, but probably requires advancing the
proposed harmonization approach as mentioned above.

The presented anatomical pose validation achieved a high rate of pose rejection for
the small HE1 dataset, catching malformed poses originally not contained in the training
dataset. It also identified many invalid poses predicted with OpenPose from low-quality
video. Most of the rejected poses had big shifts in the depth component (distance from
the camera) of one or multiple joints, probably because there was no similar pose in the
training set. Next to such a validation step, a promising alternative direction for all future
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works would be to include anatomical constraints in the model training to avoid such
errors in the first place, e.g., as proposed in [40,51].

The evaluated multi-dataset training could not consistently improve the results com-
pared to single database training, probably due to the big differences in the sample size
of the used datasets (by a factor of approximately 10 to 40). A combination of databases
is probably most beneficial if the datasets contain different poses and motions that can
add new information, while more camera viewing angles may be created artificially, as
stated above.

The prior work that is most similar to our work was published recently by Wang et al. [86].
They systematically examined the differences among existing pose datasets and their effect
on cross-database evaluation. However, compared to our work, they focused on the sys-
tematic differences of camera viewpoints and conducted their experiment with another
set of databases. Quantitative comparison to other works is difficult, because our evalu-
ation protocol was designed for cross-dataset experiments that have not been published
before. Nevertheless, the improvement by methodological advancements can be measured
in comparison with the approach of Martinez et al. [26], which we used as the starting
point. Table 15 shows that the proposed modifications (joint harmonization, scale normal-
ization, and virtual camera augmentation (tested when training with H36M)) improved
generalization across subjects, camera viewpoints, and datasets. The proposed anatomical
pose validation (APV) reduced the error further. Joint harmonization, scale normalization,
and APV can be applied with other 3D pose estimation approaches, and we see this as a
promising direction for improving generalization. Virtual camera augmentation can be
applied for all 2D to 3D pose lifting approaches, which may easily benefit from motion
capture data and synthesized data and avoid overfitting to image-related dataset biases.

Table 15. No alignment errors of the proposed method compared with Martinez et al. [26]. The proposed method extended
Martinez et al. [26] by joint harmonization, scale normalization, some virtual camera augmentation, and, optionally,
anatomical pose validation (APV).

Training Data → HE1 H36M PAN

Test Data → HE1 H36M PAN HE1 H36M PAN HE1 H36M PAN Mean

Martinez et al. [26] 95.9 299.7 148.8 146.0 78.7 107.8 166.7 143.6 43.9 136.8
Proposed 69.2 170.3 152.7 86.0 55.2 89.2 67.3 83.1 37.9 90.1
Proposed + APV 67.5 155.4 138.6 84.9 54.9 88.9 65.9 81.8 37.6 86.2

As a promising direction for improving the cross-database performance (and testing
of the proposed approaches), we suggest a multi-task training combining in-the-wild 2D
datasets with 3D datasets, integrating a pretrained 2D-to-3D pose lifting network. Further, a
logical advancement of our work is evaluating cross-database performance with additional
datasets, especially new “in-the-wild” datasets, in order to gain additional insights about
dataset biases and about how to improve 3D pose estimation so that it works well on
arbitrary data.
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.3390/s21113769/s1, Table S1: Errors with original vs. harmonized joints, corresponding to Table 7,
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with and without scale normalization, corresponding to Table 11.
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Abstract: Accurately perceiving and predicting the parameters related to human walking is very
important for man–machine coupled cooperative control systems such as exoskeletons and power
prostheses. Plantar pressure data is rich in human gait and posture information and is an essential
source of reference information as the input of the exoskeleton control system. Therefore, the proper
design of the pressure sensing insole and validation is a big challenge considering the requirements
such as convenience, reliability, no interference and so on. In this research, we developed a low-cost
modular sensing unit based on the principle of photoelectric sensing and designed a plantar pressure
sensing insole to achieve the purpose of sensing human walking gait and posture information. On
the one hand, the sensor unit is made of economy-friendly commercial flexible circuits and elastic
silicone, and the mechanical and electrical characteristics of the modular sensor unit are evaluated by
a self-developed pressure-related calibration system. The calibration results show that the modular
sensor based on the photoelectric sensing principle has fast response and negligible hysteresis. On
the other hand, we analyzed the area where the plantar pressure is densely distributed. One benefit
of the modular sensing unit design is that it is rather convenient to fabricate different insole solutions,
so we fabricated and compared several pressure-sensitive insole solutions in this preliminary study.
During the dynamic locomotion experiments of wearing the pressure-sensing insole, the time series
signal of each sensor unit was collected and analyzed. The results show that the pressure sensing
insole based on the photoelectric effect can sense the distribution of the plantar pressure by capturing
the deformation of the insole caused by the foot contact during locomotion, and provide reliable gait
information for wearable applications.

Keywords: optical sensing principle; modular sensing unit; plantar pressure measurement;
gait parameters

1. Introduction

In recent years, much research on lower limb exoskeleton robots has been carried
out [1–4] to help with human activities and enhance the functions of the human body.
Among many exoskeleton/prosthetic assist devices, the primary task is to provide the
wearer with assistance in walking motions. The detection and sensing of data information
related to human motion is the basis of and key to the compliance control of the lower limb
wearable device [5,6]. The human wearer is the controlling center of an exoskeleton system.
The real-time information on the human body is the primary source of the exoskeleton
man-machine coupling control system, which accurately senses and predicts the state of
human walking. An exoskeleton controller can detect the intent of the motion and control
the corresponding parts of the drive module by sensors. At the same time, the comparison
between the human body and the exoskeleton motion is analyzed to provide feedback
to ensure that the exoskeleton can respond to human action quickly and accurately. It
is also vital to provide a safety guarantee for the human body in the human–machine
coupling system.
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The interactive contact between the feet and the ground is the most intuitive manifes-
tation of human motion dynamic information. Plantar pressure data contains abundant
human gait and posture information [7]. In the initial stage, the fixed system [8,9] (such
as motion capture system, force measurement platform system, etc.) is used to provide
a simple and effective way to explore the basic biomechanical laws walking process.
However, these non-mobile systems can only be used in limited space and usually have
expensive construction and maintenance costs [7]. In practical applications, when people
need to wear mobile assistive devices to cope with various environments or terrains in an
outdoor environment, the motion perception system requires efficiency and portability.
Thus, pressure-sensitive insoles/socks provide a better trade-off. They usually use flexi-
ble materials as their medium (such as silicone [10], fabric [11], composite materials [12],
etc.), employing different sensing principles (for example, piezoresistive, capacitive, piezo-
electric, etc.) for the portable wearable plantar pressure measurement system to collect
information on the movement of the portable robot. Powerful technical support is provided
in the wearable application.

There are some commercialized sensing insoles based on different sensing princi-
ples. The F-Scan system (Tekscan®, South Boston, MA, USA) [13] uses FSR (Force-sensing
resistors) sensors, the ParoTech system (Paromed®, Neubauer, Germany) [14] uses piezore-
sistive sensors and the Pedar system (Novel® GmbH, Munich, Germany) [15] uses an
embedded capacitive sensor. In addition to the commercial insole design, researchers are
still trying to innovate in structural layout and processing algorithms. Liu et al. [16] de-
signed a pressure-sensitive foot for the lower extremity exoskeleton. The pressure-sensitive
foot can measure plantar pressure to sense the contact with the ground and reflect the
wearer’s behavioral intentions. Lim et al. [17] compared the three flexible pressure sensors
of FSR, FlexiForce and capacitive sensors. They chose the FlexiForce sensor to design the
pressure insole and detect the gait phase based on the threshold segmentation method
of the pressure center. Wu et al. [18] used an insole made of three FSR sensors to detect
four gait sub-phases. Chen et al. [19] used FlexiForce sensors to design a pair of insoles
with eight sensors to identify walking patterns. Zhang et al. [11] developed a simple,
low-cost and highly integrated insole based only on fabric for measuring plantar pressure,
the principle of which mainly relies on the capacitive mechanism. However, as emphasized
in the paper [20], it is precisely because of the light, thin and soft characteristics of these
sensing units that they will produce unpredictable distortion and deformation on the
contact surface, making the sensing response unable to be accurately estimated. What is
more, this type of sensor usually needs to go through an additional modulation circuit to
amplify the signal.

In addition to those plantar pressure-sensing insole solutions based on membrane-
based sensor units mentioned above, the research teams tried to develop their pressure-
sensing insoles to provide more reliable plantar pressure information sensing solutions.
Park et al. [21] showed a novel use of high-sensitivity crack-based strain sensors to make
plantar pressure insoles. The technical solution based on photoelectric induction has
attracted the attention of many researchers. Leal et al. [12,22] grasped the characteristics of
polymer optical fiber (POF), such as lightweight, anti-magnetic and electrical isolation, and
initially designed and integrated four POF of the sensing unit [12] to monitor the ground
reaction force during the gait, and the follow-up research work [22], combined with the
advantages of 3D printing technology rapid prototyping, developed customizable pressure
sensing insoles and increased the number of POF sensors to 15. The research team from
Santa Ana [20,23,24] used the light-emitting unit and the photosensitive unit arranged
on the same side and realized the sensing of pressure to electric signal with the help of
an elastic rubber cover covering the sensor element, and applied this technology to the
outside, in the interactive signal perception between the bones and the human body in
the ring. These technical solutions paved the way for the research on a more stable and
comprehensive plantar pressure sensing system.
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In this paper, we mainly completed the following work: firstly, a modular pressure
sensor based on photoelectric sensing technology is properly designed and fabricated.
The components of the sensor are from commercially available materials. Its structural
design is novel, and no additional signal amplifier is needed in the sensing acquisition
circuit to capture the sensing signal. In the manuscript, we introduced how to use easily
accessible, low-cost manufacturing methods and materials to make such a modular sensor
so that other researchers can easily reproduce technology and further carry out related
research work. Secondly, the designed modular pressure sensor is implemented on a
specially designed programmable control calibration instrument [25,26]. The mechanical
and electrical characteristic evaluation experiment proved that the modular sensor has
specific applicability in pressure sensing. Thirdly, based on the analysis of the pressure
distribution area, two different sensor layout schemes were specified, and the modular
pressure sensor was integrated into the pressure sensing insole. The performance of two
insole solutions were compared in the preliminary experiment. Finally, combined with
the dynamic walking experiment, the performance of the manufactured pressure sensing
insole in the application of collecting plantar pressure was explored, and the results showed
that the insole system could monitor in real-time plantar pressure and provide reliable gait-
related parameters, which provides potential value in wearable walking robot equipment,
exoskeleton, power prosthetics and other applications.

2. Materials and Methods

2.1. Modular Pressure Sensing Unit
2.1.1. Sensing Principle

The sensor technology used in this research mainly relies on the photoelectric effect.
That is, the photoresistor exhibits different resistance characteristics under different ambient
light intensities. The resistance of the photoresistor decreases as the incident light (visible
light) increases. Under normal conditions, its resistance can reach 10,000 to 10 million
ohms while, under photosensitive conditions (such as 100 Lux), its resistance is only a few
hundred to a few thousand ohms.

Generally, when the walking foot touches the ground, the sole exerts a force on the
ground through the insole and the shoehorn. During this period, the insole undergoes a
certain degree of deformation in the direction perpendicular to the contact surface. We hope
to use this tiny deformation relationship to induce the induction between the photodiode
and the photoresistor. In other words, during the deformation process, the distance between
the light emitter (light-emitting diode) and the light receiver (photoresistor) changes to
cause a change in light, which in turn triggers a change in the resistance of the photoresistor,
as shown in Figure 1. We use photoelectric technology to capture the slight deformation
of the insole caused by plantar pressure. It is crucial to design an appropriate design
structure to integrate the light-emitting diode and photoresistor into a narrow space with
the limited thickness of the insole and provide a light-transmitting medium with suitable
material properties.

 

Figure 1. Photoelectric sensing principle diagram.
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2.1.2. Design and Manufacturing

Compared with the overall layout, the modular sensing solutions are convenient for
customizing. Therefore, we designed a modular sensing unit based on the sensing principle
introduced above, adjusting the sensor layout according to different foot sizes to embed
pressure sensing insoles. The designed modular sensing unit is mainly composed of three
parts: (1) a flexible circuit board containing a photodiode and a photoresistor; (2) an elastic
light-transmitting silica gel medium used to absorb the applied pressure and recover when
the pressure is removed; (3) some necessary electrical connections.

(a) Flexible circuit board

Optical transmitters and optical receivers play an essential role in optical sensing
technology. In this article, we introduce a low-cost method to use this technology. The light-
emitting element and the photosensitive element are obtained by modifying the commercial
LED strip (Telesky, Shenzhen, China), as shown in the figure. The LED strip is based on a
flexible printed circuit board (FPC), a photodiode powered by 5 V and a corresponding
current limiting resistor. Each light-emitting diode is independently powered and can
normally work when the anode and cathode are connected to a 5 V power supply. It is
worth noting that the applicable model of the photodiode is 5050 (5 mm × 5 mm), which
means that the LED footprint can fully accommodate the 1206 SMD surface mount package.
Therefore, according to the positive and negative polarity, we chose a 1206 SMD surface
mount package type photoresistor, replacing the lamp beads in the LED light strip. At the
same time, we soldered a signal wire from the voltage divider circuit node and led it out.
After using a jumper wire to connect the LED light bar and the photoresistor bar, we used
hot melt glue to cover the soldering point to improve its reliability, as shown in Figure 2.

 

Figure 2. Fabrication of flexible circuit board inside the sensing unit. (A) cut out a single LED unit
from the light strip; (B) replace the LED lamp beads with a photoresistor; (C) weld the power supply
and signal wires; (D) weld the LED strip and the photoresistor strip together.
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(b) Flexible light-transmitting medium

The pressure sensing unit needs to tolerate a specific pressure range and return to
the original state when the applied pressure is released. As an inexpensive material,
organic silicon materials are widely used in the design of many flexible sensors. This
article uses semi-transparent silica gel (Beijing Hibas Technology Co., Ltd., Beijing, China)
as the primary elastic material and is mixed with corresponding plasticizers to catalyze
the solidification process of silica gel. In the initial prototype design, we found that only
silica gel was used to prepare a light guide medium with higher hardness, which made the
signal not obvious enough for us in the plantar pressure range of interest. To optimize the
design of the sensor unit, we have included a softener (dimethazone). By mixing different
proportions of silica gel and softener, we finally determined the appropriate ratio of the
mixture as the elastomer medium, and its weight ratio is silica gel: softener = 4:1.

(c) Integration process

After preparing the circuit and the elastic medium, we used Autodesk Fusion 360 mod-
elling software to design multiple molds for casting and used FDM3D printers to prepare
the molds. As shown in Figure 3, one of the molds is used to make the sensor unit’s silicone
shell baffle (thickness 1 mm). The other mold is used to integrate the entire sensor unit
(including the silicone shell baffle, circuit and elastic medium). Figure 3B shows the process
of fixing the sensing unit circuit in the grooves of the two silicone shell baffles and, finally,
integrating it into a whole with the cured silicone medium. The final size of the sensor is a
square flexible sensing unit which is 20 mm in width, 20 mm in length and 7 mm in height.
One single sensing unit weighs 2~2.2 × 10−3 kg (silica gel density 700 kg/m3). Figure 4
shows the manufactured sensor with and without power supply status.

 

Figure 3. The integration process of the flexible module of the sensing unit. (A) Silica gel baffle
pouring (B) The sensor unit is fixed on the silica gel baffle (C) Put into the mold and add the silica gel
mixture to wait for solidification.
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(a)      (b) 

Figure 4. The manufactured sensing unit. (a) unit without power (b) unit with power.

2.1.3. Characteristic Analysis System

We analyzed the mechanical and electrical characteristics of the manufactured modular
sensing unit and calibrated the mapping relationship between the quasi-static pressure
and the output signal. It is necessary to conduct a characteristic evaluation experiment
on the sensing unit before being integrated into the insole. In the paper [19], the author
provides a low-cost calibration method that allows researchers to carry out the calibration
test of pressure-related sensing units without using expensive calibration equipment. Here,
we introduce an improved version. The calibration analysis system is shown in Figure 5.
First, we established a calibration instrument according to the process described in [19]
to measure the load force and deformation during the static load test. The calibration
instrument is a microsystem composed of three parts: (1) HX711 force measurement unit,
on both sides of which are bolted 3D printed rigid plastic (PLA) boards; (2) HX711 amplifier
circuit module; (3) an Arduino NANO microcontroller for collecting and recording data
from the measuring instrument; secondly, we replaced the original printing platform of
the FDM3D printer with a load cell. At the same time, the print head of the printer was
replaced with a corresponding contact pressure head according to different test purposes.
The loading and unloading can be designed by writing G-code control codes for the 3D
printer test. In other words, compared to manually adding weight, the mechanical frame
of the 3D printer makes the process more controllable.

Figure 5. Characteristic analysis system.
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2.2. Insole Solution
2.2.1. The Layout of Insole

This part mainly introduces the design and production of flexible pressure sensing
insoles based on the photoelectric pressure sensing unit designed above. The most chal-
lenging problem is that the layout of the sensing unit in the pressure sensing insole needs
to fully consider the plantar pressure distribution. From the intuitive impression, due
to the irregular surface of the sole and the dynamically changing contact position, the
pressure is not evenly distributed on all the surfaces of the insole. For example, the pres-
sure on the inside of the foot arch is slight, while the heel and forefoot areas have greater
pressure. Figure 6 is a diagram of plantar pressure distribution in the standing state from
reference [13]. From the heat diagram, it can be observed that the plantar pressure is mainly
distributed in the heel, forefoot and toes, among which the force in the toe area is mainly
located on the thumb. Therefore, placing sensors in these locations can provide more
relevant data on plantar pressure.

 
(a) (b) (c) 

Figure 6. The plantar pressure distribution. (a) typical plantar pressure distribution in a standing
position; (b) first insole layout solution; (c) second insole layout solution.

Because the difference in the foot size varies among different people, and the layout
of the pressure-sensing insole does not have a proper guideline, two preliminary steps
were made based on the author’s foot size. A flexible pressure insole solution, as shown in
the figure: the layout of the sensor mainly refers to the aforementioned plantar pressure
distribution. In the first solution, sensors are placed in six places: the first toe, the third toe,
the first metatarsal, the fifth metatarsal, the outside of the arch of the foot and the heel. In
the second solution, sensors are placed in six places: the first toe, the first metatarsal, the
fifth metatarsal, two outside of the foot’s arch and the heel. “S1” in Figure 6b, c represents
sensor 1, “S2” represents sensor 2, and so on.

2.2.2. Insole Manufacturing

The manufacturing process of the insole is as follows: first, we designed and 3D
printed the casting mold for the insole (right foot), which is size 43 according to Chinese
standards; secondly, the sensor unit was fixed in the insole casting mold according to the
corresponding position of the two insole layout solutions (six sensors for each solution);
all the wires are guided to the outlet at the heel of the casting mold and fixed in the free
position where the sensor does not interfere with each other; after the mold outlet is closed
with a 3D printed lid, the silica gel mixed with the same proportion softener (dimethazone)
was poured into the casting mold—it should be noted that the cavity height of the insole
casing mold is 0.5 mm higher than the height of the single sensing unit which ensures the
surface of the insole after casting is as flat as possible; finally, the mixed silica gel takes
4 h to solidify, and all the power supply wires are welded into a bus for external power
supply. The weight of the two insole solutions are 136 g and 132 g, respectively. Figure 7
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shows the two plantar pressure-sensing insole solutions in the non-powered state and the
powered state.

 

(a)                          (b)                     (c)               (d) 

Figure 7. Two insole solutions for the right foot insole. (a) Insole solution No. 1 without power (b) Insole solution No. 1
with power (c) Insole solution No. 2 without power (d) Insole solution No. 2 with power.

2.2.3. Electrical System

To measure the sensor’s signal and record the data, we designed the circuit system
according to the system framework shown in Figure 8. The circuit system is mainly used for
sensor signal acquisition, data preprocessing and data storage, including a microcontroller
module, a data storage module and a power supply device. Since the voltage divider circuit
of the sensing unit has been integrated inside the sensing unit, there is no need to use
additional modulation circuits and operational amplifiers to process the signal. The signal
channels from the pressure sensing insole (6 per foot, 12 on both feet) are connected to the
input port of the 16-channel multiplexer module (HC4067, NXP). Under the control of the
microcontroller (Arduino UNO, Ivrea, Italy), the multiplexer traverses all the connection
channels in turn, and transmits the collected analogue signal to the analogue input port
of the microcontroller and passes the built-in ADC (analogue-to-digital converter), which
converts the voltage signal into a digital signal for storage. The sensor signal data is
recorded in a file on the SD card for offline analysis and evaluation of the performance of
the plantar pressure-sensitive insole. To improve the overall ease of use, we designed an
Arduino UNO expansion integrated circuit board to integrate all the above modules into
the expansion circuit board, as shown in Figure 8. The entire system can be powered by a
DC voltage source of 5 V~12 V for power supply, such as a polymer lithium battery.

(a) (b) 

Figure 8. Circuit system diagram (a) and Arduino UNO expansion integrated circuit board (b).
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2.2.4. Plantar Pressure Center

COP is widely used in the study of plantar pressure-related parameters, especially
the division of the gait phase, so it can be used as the most direct evaluation parameter for
verifying pressure-sensing insoles. During exercise, due to the movement of the body’s
center of gravity, the plantar pressure center shows a periodic trend. It moves from the
heel to the toe in a single foot and switches back and forth between the two feet. Therefore,
based on our design, we refer to the method introduced in the paper [11] to calculate the
COP. The COP is divided into CoPx along the inner and outer directions and CoPy in the
front and rear directions. The calculation method is shown in Equations (1) and (2):

CoPx =
∑6

i=1 Xi·Pi

∑6
n=1 Pi

, (1)

CoPy =
∑6

i=1 Yi·Pi

∑6
n=1 Pi

(2)

where Xi and Yi represent the position of the sensing unit along with the medial/lateral
directions and front/rear direction, respectively, as shown in Figure 7. Pi represents the
signal value of the ith sensing unit. It is worth noticing that the plantar pressure center
only exists in the standing stage of the leg. Therefore, we define that the center of pressure
during the swing stage is located at (0,0) to distinguish the standing and swing phases.

3. Experiments and Results

3.1. Sensor Characteristic

Using the calibration analysis system introduced above, we can easily carry out the
characteristic analysis experiment of a single sensor. The characteristic analysis experiment
is mainly to anchor the center of the sensor unit perpendicular to the static load test of the
pressure sensing surface. The static load test is defined as a step of 0.025 mm perpendicular
to the sensor’s surface and then staying for 3 s to have enough time for stable measurement.
The maximum distance is 1 mm (accounting for 14.3% of the thickness of the sensing
unit). After the loading process, the unloading process is completed according to the
same stepping distance and dwell time until the indenter leaves the surface of the sensing
unit. Results of stiffness (force-strain response), sensitivity (resistance-force response) and
hysteresis characteristics of a batch of six sensing elements are analyzed.

As shown in Figure 9a, all sensing units exhibit certain mechanical hysteresis charac-
teristics in terms of mechanical characteristics. According to the quantification method of
mechanical hysteresis characteristics in the paper [5], that is, through calculation, the ratio
of the area enclosed by the loading range and the horizontal axis to the area enclosed by
the unloading range and the horizontal axis in the curve is used to quantify the mechanical
hysteresis characteristics. The mechanical hysteresis coefficients of each sensor are 0.928,
0.937, 0.947, 0.935, 0.921 and 0.933, respectively. We can observe that the mechanical charac-
teristics of the pressure sensing unit are relatively consistent, which are mainly related to
the characteristics of the silicone elastomer inside the sensing unit.

As shown in Figure 9b, there is a certain linear relationship between the sensing signal
and the load in terms of electrical characteristics. With the help of MATLAB’s cftool toolbox,
we chose to use a polynomial to fit the curve. Here, the relationship curve between signal
response and loading force is fitted with a two-order polynomial (F(s) = a0 + a1s + a2s2

where S represents the loading force, and F represents the output response signal). The
fitting results are shown in Table 1. It can be found from Figure 10 that the electrical
hysteresis characteristic is almost negligible during loading and unloading. Combining
Figure 10 and Table 1, we can observe that the initial sensing signals (a0) of the six sensing
units under no-load are more or less different. However, from the 0-60N load range result,
the sensor’s sensing range is relatively close.
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(a) (b) 

Figure 9. The mechanical and electrical characteristics. (a) The mechanical characteristics (b) The electrical characteristics.

Table 1. Fitting Result of Sensing Unit Electrical Characteristic.

Sensor
Fitted Coefficients Fitting Effect 0–60 N

Load
RanΔSa0 a1 a2 RMSE R2

1# 261.2 9.867 −0.105 1.074 0.997 161.3
2# 234.5 5.421 −0.011 2.395 0.992 176.4
3# 281.5 6.517 −0.051 2.753 0.998 169.7
4# 264.7 8.714 −0.091 2.711 0.998 173.4
5# 240.1 8.098 −0.058 2.475 0.996 185.9
6# 225.5 4.974 −0.027 1.713 0.993 178.3

Figure 10. Signal Curve of the first insole solution.

3.2. Gait Data Collection
3.2.1. Comparison of Insole Solutions

We evaluate the performance of the two designed induction insole solutions. Prelimi-
nary test experiments were carried out on both. The author of this article (male, age 24,
height 1.79 m, weight 76.6 kg, shoe size 43) wears two kinds of insoles in indoor corridors
according to walking habits, and conducts the following tests: from a natural standing
state to a waking state with an average pace, then staying still for a few seconds in the end.

In the experiment, we found that the induction signal has an abnormally negative
value. Through observation, we found that the abnormal phenomenon is mainly caused by
the asymmetry of the flexible circuit board area in the sensor unit, which causes the internal
optical path of the sensor unit to shift when pressure is applied to the circuit around the
sensor unit. At this time, the optical path is deflected. The most direct effect of the shift
is that the light intensity is reduced compared to the case where the light path is directly
facing, which leads to abnormal negative values of the induced signal in the experimental
results. Therefore, this is an inevitable feature in the design principle of light-sensitive
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pressure sensing based on commercial LED light strips in this study. That is, the sensing
signal at the center of the sensing unit will be interfered with by the surrounding pressure,
but it will be affected by the center of the sensing unit. When the pressure is positive, the
pressure signal is in line with theoretical expectations. In response to this phenomenon, we
used the linear rectification activation function (Rectified Linear Unit, ReLU) in the neural
network to preprocess the signal of the sensing unit and use the negative signal caused
by the pressure around the sensing unit under the function of the function. It is filtered,
and only the positive part of the sensing signal is retained. The expression equation can be
described as:

f (x) =
{

0 i f (x ≤ 0)
x i f (x > 0)

, (3)

After the rectification activation function is processed, as shown in Figures 10 and 11,
the signal curves are drawn from a piece of data intercepted from the walking experiments
of the two insole schemes. In contrast, the data curve of solution No. 1 is “messy”, and
the mess is mainly reflected in the insufficient regularity of the sensor signal fluctuations
located in the toe area.

Figure 11. Signal Curve of the second insole solution.

To further compare the quality of the two solutions, the pressure centers are calculated
by Equations (1) and (2), as shown in Figures 12 and 13. From the CoPy of the curve of
solution No. 1, we can observe that the plantar pressure center during the stance phase is
disturbed suddenly and, then, the CoPy of the curve of the solution No. 2 can better reflect
that the pressure center is standing. The tendency of the phase is to move from the heel to
the toe, therefore the layout of the second solution is regarded as a better sensor layout.

Figure 12. COP values of the first insole solution.

3.2.2. Biped Gait Data Collection

We completed the left foot insole production according to the same production process
as the right foot insole. Since the circuit system design reserved up to 16 sensing channels
for both feet, one only needs to open the left foot sensing channel in the acquisition program
to acquire all the sensing channels of the feet (a total of 12 sensing units). The equipment
used for the bipedal gait data collection experiment is shown in Figure 14, including a
pair of versatile 43 size shoes and a pair of self-designed two-point photoelectric pressure
sensor insoles. Before collecting data, the wearer uses a nylon bayonet to fix the wire on the
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back of the lower limbs, in the manner shown in Figure 14, to avoid the influence of wire
swinging on the usual walking movement during walking. The nylon bayonet and cable tie
are fixed on the wearer’s waist, and the power bank can be placed in the wearer’s trouser
pocket after power is supplied to achieve the minimum hindrance to walking. The gait data
of a subject was collected using the device. The subject has never suffered from any disease
that hinders walking posture. The experiment process is also from a natural standing state
to a waking state with an average pace followed by staying still for a few seconds.

Figure 13. COP values of the second insole solution.

 

(a)                  (b)                 (c) 

Figure 14. The experimental setup. (a) equipment used (b) sensing system setup back view (c) sensing system setup
front view.

Figures 15 and 16 describes the dynamic bipedal walking experiment data. Observing
the data, each sensor presents a periodic “rest state” and “active state”. During the “active
state”, the sensor signals reach their respective peaks in succession. During the “resting
state”, all sensors returned to their lower levels, which is consistent with our intuitive
impression of the phase of standing support and swing phase during the complete gait
cycle of a single leg.

Figure 15. Right foot plantar pressure sensor signal during the bipedal walking experiment.
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Figure 16. Left foot plantar pressure sensor signal during the bipedal walking experiment.

In addition, it can be estimated that the overall walking frequency is about 31 steps
per minute from the periodically changing curve. Focusing on the data of each sensor of
the insole, we can observe that, during the initial period from the “rest state” to the “active
state”, the No. 1 sensor unit located on the heel first senses the pressure and quickly rises to
the peak; then, as the pressure of the No. 1 sensor gradually decreases, the pressure of the
No. 2 sensors located on the outside of the arch of the foot also change; secondly, the No.
3, No. 4 and No. 5 sensors located on the forefoot and the toes were in the same interval,
reaching their respective peaks over a long time; finally, all sensor signals return to a lower
level of resting state. Connecting the pressure curves of the left and right feet, we can see
that in the short period when the pressure of the right foot is about to enter a lower level,
the heel pressure of the left foot has already been generated and rapidly increased to the
peak. Similarly, the pressure of the left foot is about to enter a higher level. During the
short period of low level, the heel pressure of the right foot has also begun to reach its peak
rapidly, which also reveals the “bipedal standing phase” that is not easily noticeable when
walking. Both feet are in contact with the ground during walking.

4. Discussion

The content shown in this research is mainly focused on the integration of photoelectric
sensing technology into the pressure sensing unit to achieve the purpose of sensing plantar
pressure information, including the analysis of the photoelectric sensing principle and
technology, and the introduction of the technical method realization process. We conducted
a test and result analysis of sensor unit characteristics, and performance evaluation during
actual use. Here, we will discuss and analyze the results obtained, and make reasonable
assumptions and note prospects for further research work.

In this study, in terms of the design of the modular sensing unit, the modular-type
sensor provides flexibility for the layout of the pressure sensing insole solution. This
modular sensor unit is designed ingeniously and economically. The production of the
sensor unit can be completed by using some materials that can be easily purchased from the
market. However, as far as the manufacturing method is concerned, the method provided
in this article is only for small batches and is a hand-made method, so there are certain
defects in the stability and repeatability of the sensor characteristics, which can be found
in the sensor characterization section. The result analysis shows that in further research
work, if one wants to obtain a more stable and reliable modular sensor unit, it is needed to
improve the existing processing technology and manufacturing equipment, and choosing
a mature engineering technology may be able to solve this problem. On the other hand,
it is worth mentioning that our research introduced a compromised pressure analysis
instrument, which can carry out pressure-related calibration test work by building a simple
force plate and transforming a desktop-level 3D printer. The design of a programmable
calibration instrument derived from the analysis of the mechanical and electrical char-
acteristics of the sensor in this study can also be useful for research teams with limited
experimental conditions, that is, who cannot obtain equipment with higher precision and
more comprehensive functions.
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As for the layout of the pressure sensing insole, in some research work, high-resolution
intensive plantar pressure sensing is settled as the research target, such as the research work
from [20,23,24]. However, from the perspective of practical application, high resolution
means a sharp increase in the number of sensor units. The consequence is that more
complex computing processors to deal with the hypermultiplet-channel signal and larger
power supply units are required to maintain long-term data recording. However, the
plantar pressure distribution is continuous, which means there is information redundancy
in the same area. The modular sensor unit can be used to lay out the area with main
pressure characteristics (such as the pressure sensing insole layout solutions in this article)
to reduce the density of the sensing element. In fact, by adjusting the layout position of the
sensing unit, the stability and accuracy of the acquisition of plantar pressure gait data can
be improved in a controllable manner as exhibited in this research. On the one hand, the
experimental results show that, due to the structural configuration of the sensing unit itself,
there exists a phenomenon of “negative pressure” around the sensing unit. We analyzed
the cause of this phenomenon and used the rectification activation function to preprocess
the negative signal. On the other hand, under normal circumstances, the pressure sensor
can better monitor the changes in plantar pressure in the position where the force is more
extensive. The sensor unit located in the toe area may not be selected as the pressure
sensor unit due to the need to control the stability–sensation area. We mainly focused on
the analysis of the results of COP in the front and rear directions, which also showed a
specific rule; that is, during the period when the observed leg is in the standing support
phase, the movement trend of the center of pressure is to shift from the heel position
to the toe position gradually. From this information, the following stages of gait can be
preliminarily observed:

(1) Swing stage: the sole hardly exerts a force on the insole, and the total pressure is in a
stable state and lower than the standing state.

(2) Heel contact stage: the heel touches the ground and bears weight, and the pressure
on the heel area increases significantly.

(3) Intermediate stance phase: the heel no longer bears the same pressure as the heel
contact phase, and part of the pressure is transferred to the front foot.

(4) Toe off stage: the body’s center of gravity is almost moved to the other side of the body,
the heel is off the ground, and the pressure is mainly concentrated on the forefoot.

However, this article only shows a hand-made/manual operation of modifying the
sensor layout. In view of the increasing application of machine learning and other tech-
nologies in the engineering field, if the sensor layout can be used as an optimization goal,
optimization methods based on machine learning can be employed to perform a much
better sensing unit layout for a wider range of plantar pressure distribution information.
We believe that the optimization strategy using artificial intelligence algorithms will bring
reference significance for better design layout.

What is more, when discussing this research work from the perspective of signal trans-
mission, the current design work adopts the method of transmitting the signal through the
cable to obtain the pressure signal. It needs to be admitted that although, in our design,
the cables are carefully routed according to the path that does not hinder the movement
as much as possible, it is inevitable that there are annoying obstacles such as position
displacement and winding during the actual locomotion. Wires will negatively affect the
reliability and complexity of wearable devices (usually tied to the human body). Therefore,
in further research work, wireless communication protocols (such as WIFI, Bluetooth) are
urgently desired for signal transmission. The development of a wireless transmission ver-
sion of the plantar pressure measurement system can get rid of the annoying winding that
hinders movement and improve the integration of the entire sensor measurement system,
providing a more convenient interface for further integration into wearable applications.
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5. Conclusions

The design and application of a simple and reliable plantar pressure data acquisition
device is very important for wearable human body assist equipment such as exoskeletons
and power prosthesis. In this research, we conducted a novel plantar pressure sensing
insole based on photoelectric sensing technology. The innovation of this modular sensing
unit focuses on sensing principles, structural design and elastic materials. We introduced
how to use low-cost manufacturing methods and materials to fabricate this modular sensor
so that other researchers can easily replicate and further develop related research work.
The designed modular pressure sensor realizes calibration analysis on a self-designed
programmable calibration instrument. The electromechanical performance evaluation
experiment proves that the modular pressure sensor has special applicability in pressure
sensing. Subsequently, based on the analysis of plantar pressure, we proposed and com-
pared different pressure-sensitive insole layout solutions, and integrated the modular
pressure sensor into the pressure-sensitive insole. The dynamic locomotion results showed
that the pressure-sensing insole based on the photoelectric effect can capture the defor-
mation of the insole caused by plantar pressure during walking, sense the distribution of
plantar pressure and provide reliable gait-related parameters with no interference to the
wearer. This research provides a reliable gait information acquisition device for wearable
applications such as powered exoskeletons, prosthesis and orthotics.
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Abstract: Three-dimensional human mesh reconstruction from a single video has made much
progress in recent years due to the advances in deep learning. However, previous methods still often
reconstruct temporally noisy pose and mesh sequences given in-the-wild video data. To address this
problem, we propose a human pose refinement network (HPR-Net) based on a non-local attention
mechanism. The pipeline of the proposed framework consists of a weight-regression module, a
weighted-averaging module, and a skinned multi-person linear (SMPL) module. First, the weight-
regression module creates pose affinity weights from a 3D human pose sequence represented in a
unit quaternion form. Next, the weighted-averaging module generates a refined 3D pose sequence
by performing temporal weighted averaging using the generated affinity weights. Finally, the refined
pose sequence is converted into a human mesh sequence using the SMPL module. HPR-Net is
a simple but effective post-processing network that can substantially improve the accuracy and
temporal smoothness of 3D human mesh sequences obtained from an input video by existing human
mesh reconstruction methods. Our experiments show that the noisy results of the existing methods
are consistently improved using the proposed method on various real datasets. Notably, our proposed
method reduces the pose and acceleration errors of VIBE, the existing state-of-the-art human mesh
reconstruction method, by 1.4% and 66.5%, respectively, on the 3DPW dataset.

Keywords: 3D human mesh reconstruction; 3D human pose estimation; deep neural network

1. Introduction

Three-dimensional human pose estimation is an important and actively studied prob-
lem in computer vision. Various methods have been proposed to generate successful
pose estimation results on the basis of deep learning. These methods have been used to
address the problem of reconstructing 3D human pose from a single RGB image or video
obtained from a monocular camera. Recently, methods for estimating dense 3D mesh
beyond sparse 3D joints have been proposed on the basis of a statistical shape model for
human body. However, reconstructing 3D human poses from RGB images accurately
remains a difficult problem.

Recent methods for 3D human mesh reconstruction extract features from input images
on the basis of deep learning and directly regress the pose and identity parameters of a
statistical shape model, such as a skinned multi-person linear model (SMPL) [1], from the
extracted features. However, in the case of an image including occlusion or an unseen
pose that is not included in training data, the network has difficulty in estimating the
correct pose. Methods of estimating temporally coherent pose sequences from input videos
have shown moderate performance [2–4]. However, the above problems still prevent the
existing methods to reconstruct the correct pose in some frames and generate noisy human
motion. For example, the top row of Figure 1 shows the results obtained by VIBE [3], a
state-of-the-art method for reconstructing 3D human mesh from video. In the 3rd frame,
VIBE fails to estimate the correct pose, resulting in temporally noisy results. Our study
focusses on this problem, namely temporally coherent human pose estimation from input
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video. Specifically, we propose a human pose refinement network (i.e., HPR-Net) that can
refine the noisy human pose sequence reconstructed by existing methods. The bottom row
of Figure 1 shows the improved results through our HPR-Net.

Frame sequence

Figure 1. This figure shows a 3D human mesh sequence estimated by VIBE (top row) and its refined
result by our proposed method (bottom row). In the 3rd frame, VIBE fails to estimate the correct
pose of the target person due to severe occlusion. Our method effectively refines the incorrectly
estimated results.

Weighted averaging is a simple but effective method that has been widely used for
refinement of signals, including images. The basic idea of this paper to refine the noisy
3D human pose sequence is based on weighted averaging. However, applying weighted
averaging to human pose refinement is not trivial due to the following two problems. The
first problem is how to determine weights for weighted averaging. To accomplish this
task, we learn a module that generates optimal weights on the basis of large-scale data.
Specifically, we define a weight as affinity between two 3D poses. We propose a non-local
attention-based weight regression module that can consider long-range interactions to
compute this affinity. The proposed module is supervised to output weights that can
reconstruct a ground-truth pose sequence from a noisy pose sequence estimated by existing
human pose estimation methods.

Our human pose refinement method relies on SMPL, where 3D human pose is rep-
resented as a set of 3D rotations of joints. However, 3D rotation and 3D pose, including
the rotation, cannot be regarded as a vector defined in Euclidean space. Thus, weighted
averaging cannot be applied directly to 3D human poses. Performing weighted averaging
for 3D rotation requires a complex optimization process [5]. To alleviate this problem, we
use Gramkow’s study [6], which proves that the mean of unit quaternions is a quadratic
approximation of the mean of 3D rotations. Specifically, we first represent the 3D rotation
constituting the 3D human pose as a unit quaternion and then perform weighted averaging
on the 3D human pose sequence represented as a sequence of unit quaternions. This
weighted averaging based on the unit quaternion can be represented as a simple algebraic
equation without an optimization process and can be included in our network for learning.

Suppose that SMPL-based human mesh reconstruction methods estimate the 3D pose
and identity parameter sequence. Our proposed system consisting of a weight-regression
module, a weighted-averaging module, and an SMPL module performs pose refinement
for a noisy 3D pose sequence through the following process. To refine a pose of a frame, the
weight-regression module first generates weights for the poses in a window of a predefined
size around that frame. Next, the weighted-averaging module outputs an improved 3D
pose by applying weighted averaging on the basis of the generated weights to the poses
inside the window. Finally, the SMPL module generates human meshes and 3D joints from
the improved 3D pose parameters. This process is repeated for all frames to reconstruct the
refined 3D pose and mesh sequence. An overview of the proposed method is shown in
Figure 2.
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Figure 2. Overall framework of the proposed method. The input to our model is a noisy 3D human
pose sequence estimated by existing 3D human pose estimation methods. Our proposed HPR-Net
refines the noisy 3D human pose sequence and generates a refined human pose sequence.

The contributions of this paper can be summarized as follows:

• We propose a novel method to refine a 3D human pose sequence consisting of 3D rota-
tions of joints. The proposed method performs human pose refinement independently
from existing 3D human pose estimation methods. It can be applied to the results of
any existing method in a model-agnostic manner and is easy to use.

• The proposed method is based on a simple but effective weighted-averaging operation
and generates interpretable affinity weights using a non-local attention mechanism.

• In accordance with our experimental results, the proposed method consistently im-
proves the 3D pose estimation and mesh reconstruction performance (i.e., accuracy
and smoothness of output sequences) of existing methods for various real datasets.

2. Related Work

Human mesh reconstruction. Many recent 3D human mesh reconstruction methods
directly regress the parameters of statistical shape models, such as SMPL [1]. These methods
can be broadly classified into a single image-based approach [7–10] and a video-based
approach [2–4].

The single image-based approaches reconstruct 3D human mesh from a monocular
image. Bogo et al. [7] proposed a method that estimates 2D joints from an input image on
the basis of a pretrained 2D joint regression network and optimizes an energy function
to fit SMPL to the regressed 2D joints. Pavlakos et al. [8] extended [7] to optimize an
improved energy function to fit the SMPL-X model to the regressed 2D full-body joints
for holistic body modeling. A variational autoencoder(VAE)-based pose prior for valid
pose parameter regression was proposed for optimization. Kanazawa et al. [9] proposed
a model that directly maps features extracted by a deep network from a single image to
SMPL parameters. In their method, an adversarial prior for the estimated parameters
was proposed and learned to help obtain a realistic human mesh. Kolotouros et al. [10]
combined the optimization-based method and the regression-based method in an end-
to-end manner. The SMPL parameter estimated from a single image is used as an initial
parameter, which is iteratively optimized through the method of [7]. The optimized
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parameter is used as a pseudo ground-truth for learning the regressor to construct a
self-improving framework.

The video-based approaches reconstruct the 3D human mesh sequence from a video.
Kanazawa et al. [2] proposed a temporal convolutional network that reconstructs the SMPL
model from an image sequence. This method is supervised to predict SMPL models in the
nearby few frames to learn information about human motion better. It can estimate past
and future meshes from a single image through a hallucinator. Kocabas et al. [3] proposed
a method that reconstructs an SMPL model sequence from a feature sequence computed
using bidirectional gated recurrent unit from an input video. To compensate for the lack
of 3D annotated data, this method performs weak supervision with various 2D datasets
and adversarial training using large-scale motion datasets, resulting in successful human
mesh reconstruction performance. Luo et al. [4] tried to solve the jittering problem from
the inference results of existing methods for video data. This method reconstructs coarse
motion by learning a VAE-based motion prior and then performs refinement for each
frame’s pose. Thus, the smoothness of the output SMPL sequence is improved. Despite
these recent advances in 3D human mesh reconstruction, most methods still produce
erroneous poses or jittered motions due to unseen poses or occlusions from input images or
videos acquired in an uncontrolled environment. Our work can substantially improve the
accuracy and smoothness of human mesh sequences reconstructed by existing methods.

Non-local attention. Non-local attention was proposed to model long-range depen-
dency in natural language processing [11,12] and computer vision [13–15]. Vaswani et al. [12]
proposed the transformer, which is a framework using only attention mechanisms to over-
come the limitations of existing recurrent models for natural language processing tasks
and successfully solves the long-range dependency problem. Recently, the transformer
architecture is known to improve image recognition performance and is actively used for
various computer vision tasks [16–20]. Wang et al. [13] attempted to model the long-range
dependency in image features using non-local operations proposed in [21]. For this, a
non-local block based on attention mechanisms was proposed. On this basis, the method
in [12] can be regarded as a special case of non-local neural networks. In the study of
Cao et al. [14], the position-wise attention map of [13] was analyzed qualitatively, and most
of the attention maps of each position have similar attention aspects. On this Basis, a more
efficient non-local attention block was proposed. Woo et al. [15] proposed a method that
extracts new features by successively applying channel attention and spatial attention to
input features. This method shows a stronger representation power than features based
on existing fully convolutional baselines. Our method generates a temporal non-local
attention map inspired by [13,21]. The generated attention weights suppress features that
are useless for refinement and strengthen helpful features. Our method can refine noisy
pose parameter sequences through this attention mechanism.

Human pose refinement. The goal of human pose refinement studies is mainly to
refine an estimated sparse joint set. Existing pose refinement methods are included as part
of the joint regression network or used as a post-processing module for inference results.
Newell et al. [22] proposed a network in which several hourglass modules are stacked.
Hourglass module repeats top-down and bottom-up processing, extracts features at vari-
ous scales, and is trained with intermediate supervision. Each stage module generates a
heatmap, which is used as input to the next stage module for refinement. Chen et al. [23]
proposed a cascaded pyramid network that combines GlobalNet, a Resnet-based pyramid
network, and RefineNet, which refines the heatmap generated by GlobalNet. RefineNet con-
siders all features obtained from each step of the pyramid to find occluded joint positions
that are difficult to estimate. Moon et al. [24] proposed a model-agnostic refinement model
based on the error distribution of 2D pose estimation models investigated in Ronchi et al.’s
work [25]. This method is independent on the pose estimation model because it does not
work in an end-to-end manner, and pose estimation performance can be improved for
various existing approaches. Mall et al. [26] proposed a method to refine noisy motion
capture data. The proposed network consisting of linear layers and bidirectional long
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short-term memories regresses the standard deviation of a Gaussian kernel to improve the
pose of a current frame. The proposed method obtains a denoised pose using the Gaussian
kernel obtained through this network to calculate a temporally weighted sum for an input
noisy pose sequence. In [26], 3D human pose is represented in the form of 126 joint angles,
and the weighted sum is computed for this joint angle sequence. Our work provides a
more reliable basis for computation in non-Euclidean space where 3D rotation actually
exists. While the values of weights are limited by the Gaussian kernel in [26], they are not
in our method.

Several methods have been proposed to refine the SMPL pose parameter [9,10].
Kanazawa et al. [9] proposed a regressor that performs iterative refinement to estimate
the SMPL parameter. Kolotouros et al. [10] presented a method that refines the estimated
SMPL parameter through an optimization process. In [9,10], the refinement process is
included in the model, which outputs SMPL identity and pose parameters directly from an
input image. Our refinement method is independent of the pose estimation model and can
be applied to the results of any method for estimating the SMPL pose parameter sequence
regardless of their network structure. Our work is the first to propose a post-processing
method for SMPL pose parameter refinement, and the proposed method is simple but
works effectively.

3. Proposed Method

This section provides detailed descriptions of each module constituting our proposed
HPR-Net. As presented in Section 1, we propose HPR-Net that generates a refined 3D
human pose sequence from a noisy 3D human pose sequence estimated by other methods,
such as VIBE. As shown in Figure 2, HPR-Net refines a noisy 3D pose of a target frame
from input 3D poses that consist of all 3D poses within a window of size N (N is an odd
number) centered on the target frame. We term these input 3D poses as a pose chunk.
HPR-Net consists of a weight-regression module, a weighted-averaging module, and an
SMPL module. Each module is explained in the following subsections. We first introduce
the SMPL module to explain what 3D human model is used, how the 3D human pose is
defined in the SMPL model, and why this module is needed in our framework. The weight-
regression module consists of 1D convolution layers and generates an N-dimensional
weight vector using non-local self-attention mechanism from an input pose chunk. The
weighted-averaging module outputs a refined 3D pose by weighted averaging with the
input pose chunk and weights from the weight-regression module. The above procedure is
applied to the noisy 3D pose sequence with a sliding window manner, so we can obtain
the refined 3D human pose sequence.

3.1. SMPL Module

SMPL is a 3D statistical shape model used to represent a human body and includes
low-dimensional parameters to control the body shape. The parameter set included in
the SMPL model consists of an identity parameter β ∈ R10 and a pose parameter θ ∈ R72.
The pose parameter represents the relative 3D rotations of 24 joints in an axis-angle form.
This parameter controls the 3D pose of the human body represented by the SMPL model.
From the given identity and pose parameters, the SMPL module generates a 3D human
mesh model in a differentiable manner. The vertices M ∈ R3×6890 of the generated mesh
model are multiplied with a pretrained linear regression matrix included in the SMPL
model, so that 24 joints Xsmpl,3d ∈ R3×24 can be additionally obtained. In HPR-Net, the
SMPL module computes the human mesh model and the 3D joints from the refined pose
parameters using our weighted-averaging module and the identity parameters estimated
by existing methods. We can compare the 3D joints from the refined mesh generated by
the SMPL module with its ground-truth to compute a loss function for learning and error
for evaluating the proposed method. We also use the joint set X3d ∈ R3×14 obtained by
converting Xsmpl,3d into 14 joints compatible with the joint definition of Human3.6M [27]
for learning and evaluation.
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3.2. Weight-Regression Module

Network structure. The weight-regression module of HPR-Net generates weights for
pose refinement of the target pose from an input noisy pose chunk. Figure 3 shows the
detailed structure of the weight-regression module consisting of 1D temporal convolution
layer with a kernel size of 3, layer normalization [28], rectified linear unit activation, and
self-attention layer. Suppose that Φ = {βi, θi}N−1

i=0 , which is a chunk of length N for the
noisy SMPL parameter sequence, is given. Here, βi ∈ R10 and θi ∈ R72 are the identity and
pose parameters in the i-th frame, respectively. The pose parameter θi represents the 3D
rotations for 24 SMPL joints represented in an axis-angle form. We first convert θi to pose
parameter pi ∈ R96 in a unit quaternion form. We apply frame-wise positional encoding to
the unit quaternion pose chunk P = [p0, . . . , pN−1] ∈ R96×N , similar to [12], before feeding
it into the network. Specifically, to inject positional information into P, we concatenate a
relative position index vector [−�N

2 , . . . ,−1, 0, 1, . . . , �N
2 ] with P to construct P̃ ∈ R97×N

and feed the concatenated tensor into the weight-regression module. The weight-regression
module first computes temporal feature H = [h0, h1, . . . , hN−1] ∈ R24×N from P̃ through
three 1D temporal convolution layers. hi ∈ R24 represents the temporal feature of the
i-th frame. A pose affinity vector w ∈ RN is generated through a non-local self-attention
mechanism [12,13] as follows:

w = Softmax(HT · h� N
2 ). (1)

Similar to the existing self-attention-based methods, our weight-regression module sim-
ply uses matrix multiplication and softmax operation to construct pose affinity vector
w = [w0, w1, . . . , wN−1]

T , where wi ∈ R represents how the pose of i-th frame affects the
computation of the refined pose at the �N

2 -th (i.e., center) frame. As our HPR-Net refines
the center frame’s pose p� N

2  from P, we choose the center frame’s feature h� N
2  from H to

compare the feature with all other features within the chunk.

Figure 3. Detailed pipeline of the weight-regression module. ⊗ represents matrix multiplication.
First, the weight-regression module concatenates positional information to an input pose chunk.
Second, the positional encoded input chunk is fed into the weight-regression module that consists
of three 1D temporal convolution layers. Finally, pose affinity vector is generated from the output
temporal feature of the convolution layers.

Why do we use LayerNorm? From our experiments, we observed that the use of layer
normalization after the convolution layer shows higher performance than the commonly
used batch normalization [29]. In our method, the 3D pose in an input pose chunk consists
of 3D rotations, and this 3D rotation is represented in a unit quaternion form that is
geometrically on a 4D unit sphere. Layer normalization helps to learn the weight-regression
module by enforcing the features extracted through the convolution layer to be on the
unit sphere.
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3.3. Weighted-Averaging Module

Pose refinement by weighted averaging. Using w generated by the weight-regression
module, we perform weighted averaging on the input pose chunk P and obtain the refined
pose y ∈ R96 as follows. Figure 4 shows the detailed structure of the weighted-averaging
module. Weighted averaging cannot be directly applied to 3D rotations because they are
defined in non-Euclidean space. Therefore, we obtain a second-order approximation of
optimal rotation averaging by performing weighted averaging based on unit quaternion
following Gramkow’s work [6]. By weighted averaging, we first obtain ỹ as follows:

ỹ =
N−1

∑
i=0

wi pi, (2)

where wi is the i-th component of vector w and represents the contribution of pi to weighted
averaging. However, ỹ = [q̃T

0 , q̃T
1 , . . . , q̃T

23]
T cannot be guaranteed to consist of unit quater-

nions. Therefore, we additionally perform normalization to make the 3D rotations q̃j
belonging to ỹ into a unit quaternion form using qj = q̃j/‖q̃j‖. The weighted-averaging
module outputs the refined 3D pose y consisting of unit quaternions as follows:

y = [qT
0 , qT

1 , . . . , qT
23]

T ∈ R96, (3)

where qj denotes the 3D rotation of the j-th SMPL joint.

Normalization

Unit Quaternion

Figure 4. Detailed pipeline of the weighted-averaging module. � represents element-wise multipli-
cation with broadcasting. Σ represents summation for across time dimension. Input pose vectors P
are multiplied with pose affinity weights w which are generated by the weight-regression module.
Then weighted pose vectors are added to output a refined pose vector ỹ. To ensure that the refined
pose parameters consist of unit quaternions, we additionally normalize ỹ to output a valid pose
vector y.

Loss functions. The refined 3D human pose y is converted to an axis-angle form and
then fed into the SMPL module along with the identity parameter β estimated by other
methods to generate the refined mesh M̂ and 3D joints X̂3d = [x̂3d,1, . . . , x̂3d,14]. The joint
loss function Ljoint for learning the proposed network is defined as follows:

Ljoint =
1
J

J

∑
j=1
‖x̂3d,j − x3d,j‖1, (4)

where J = 14 is the number of joints, and x̂3d,j and x3d,j denote the estimated and ground-
truth coordinate vectors of the j-th joint, respectively. Ljoint is defined as L1 loss and we
supervise only X̂3d that is generated from M̂ by the SMPL module.

4. Experimental Results

4.1. Datasets and Evaluation Metrics

We use Human3.6M [27] and 3DPW [30] for training and evaluation. Human3.6M is
a large-scale dataset obtained from an indoor environment, and has been used in many
existing 3D human pose estimation methods. The Human3.6M dataset consists of videos,
where 11 subjects perform 15 actions and includes 2D and 3D joint annotations for each
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frame. Image data in Human3.6M were captured in four camera views. 3DPW is a dataset
obtained in an in-the-wild environment. The 3DPW dataset includes 60 videos and is
divided into train, validation, and test sets. The three sets consist of 24, 12, and 24 videos,
respectively. The 3DPW dataset provides 2D and 3D joint annotations and SMPL parameter
annotations.

We split each dataset into training and test data. In Human3.6M, we use 5 subjects
(1, 5, 6, 7, 8) as training data and 2 subjects (9, 11) as test data following the convention of
previous studies [3,4,10]. For the 3DPW dataset, we use the train and validation sets as
training data and the test set as test data. For convenience of training and evaluation, we
apply VIBE to the training data of Human3.6M and 3DPW datasets and store the estimated
SMPL parameters offline. The saved results are used as input for training the proposed
network. We apply SPIN [10], VIBE [3], and MEVA [4] to the test data of each dataset,
store the estimated SMPL parameters offline, and use them as input for evaluation. At the
training stage, we train the proposed HPR-Net using all the training data of each dataset.
We then evaluate the proposed method by applying HPR-Net to the test data of each
dataset and report the performance quantitatively and qualitatively.

To evaluate the performance of the proposed method, we report MPJPE, PA-MPJPE,
MPVE, and acceleration error. MPJPE and PA-MPJPE are metrics used to evaluate joint
position error. MPJPE calculates the average 3D joint distance (mm). PA-MPJPE calculates
the average 3D joint distance (mm) after performing Procrustes alignment [31] on the
estimated and ground-truth joint sets. MPVE calculates the average position error (mm) of
the vertices of the generated SMPL mesh. Acceleration error [2] is a metric for evaluating
the temporal smoothness (mm/s2) of the estimated pose sequence. Acceleration vectors are
computed for the 3D joint sequence, and the acceleration error is calculated as the average
difference between the estimated and ground-truth acceleration vectors.

4.2. Implementation Details

HPR-Net is trained end-to-end, and the input pose chunk in the training process is
determined by random shuffling at each iteration. Zero padding is applied to the temporal
1D convolution of the weight-regression module. We set the length N of the input pose
chunk for training the HPR-Net to 17 and calculate the loss function for the joints of the
refined mesh corresponding to the center frame. We use Adam [32] as the optimizer of
the network. The learning rate is set to 10−4. We do not decay the learning rate during
training. The batch size and the number of epochs are set to 64 and 20, respectively. In
each epoch, 1000 iterations are performed. The learning rate, batch size, and number of
epochs are determined through simple greedy search using the validation set of 3DPW.
Pytorch [33] was used to implement the proposed method, which was trained with a single
Nvidia RTX3090 GPU. In the evaluation process, the input pose chunk is not randomly
determined and is fed into the network in the order of the frames of the evaluation video.
We refine the input video except for 16 frames (i.e., 8 frames each at the beginning and end
of the video). The pose chunk of length 17 is fed into HPR-Net in a sliding window manner
with stride 1.

4.3. Ablation Study

In ablation experiments, we report how the hyperparameters and component changes
affect the performance of HPR-Net. We use VIBE’s pose sequence estimation result as our
HPR-Net’s input chunk. We set the length of the input pose chunk to 17 in all experiments,
except for the pose chunk length ablation experiment. In ablation experiments, HPR-Net is
evaluated on 3DPW test set.

Pose chunk length. To determine the optimal length N of the pose chunk, we perform
training using various lengths and analyze the results. Table 1 shows the performance in
accordance with the length of the input chunk. HPR-Net shows the best performance with
length 17, except for PA-MPJPE. Thus, we set the pose chunk length to 17.
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Table 1. Performance comparison of HPR-Net according to different pose chunk length. Bold values
indicate best results.

Length MPJPE ↓ PA-MPJPE ↓ MPVE ↓ Accel-Error ↓
9 82.14 51.82 98.25 7.31
17 81.10 51.26 97.13 6.94
33 82.11 51.63 98.26 18.36
65 81.23 50.97 97.24 8.19
129 81.81 51.35 97.89 11.69

Various loss combinations. In the proposed method, only 3D joints are supervised to
train HPR-Net using the joint loss function in Equation (4). To justify this condition, we
conduct an experiment to investigate how various combinations of loss functions affect the
performance of HPR-Net. Specifically, we perform direct supervision with the joint loss
function Ljoint and losses that can be defined using the outputs of HPR-Net. The mesh loss
function Lmesh and the pose loss function Lpose are additionally defined as follows:

Lmesh =
1

6890

6890

∑
v=1

‖m̂v −mv‖1, (5)

Lpose =
1
24

24

∑
j=1
‖R̂j − Rj‖2

F. (6)

The mesh loss function Lmesh is defined as L1 loss, where m̂v and mv denote the estimated
and ground-truth coordinate vectors for the v-th vertex, respectively. The pose loss function
Lpose is for the pose parameters, including 3D rotations, where R̂j and Rj ∈ R3×3 denote
the estimated and ground-truth rotation matrices for the j-th joint, respectively. Frobenius
norm for their difference represents the distance (i.e., chordal distance [5]) between two 3D
rotations in non-Euclidean space. The total loss function L for this ablation experiment is
defined as follows:

L = λjLjoint + λmLmesh + λpLpose, (7)

where λj, λm, and λp denote the weights that determine the strength of each loss.
Table 2 shows the performance of HPR-Net in accordance with the weights of L. HPR-

Net shows the highest performance, except for PA-MPJPE when only the joint loss function
Ljoint is used. Using the pose loss function Lpose leads to performance degradation (1st, 4th,
6th, 7th rows). Supervising the mesh vertices shows lower PA-MPJPE (2nd row) than only
using Ljoint (3rd row). We use Human3.6M and 3DPW datasets for training. However, the
Human3.6M dataset does not include SMPL annotations. Thus, only the 3DPW dataset
is used to supervise the network when we calculate Lmesh and Lpose. The size of 3DPW
training data is smaller than that of Human3.6M. However, the experimental result from
supervising with only Lmesh shows the highest PA-MPJPE and second highest performance
on other metrics. If more datasets containing SMPL annotations are available, then the use
of the mesh loss function will lead to further performance improvements.

Table 2. Performance comparison of HPR-Net according to various combinations of loss functions.
(�= 1.0, blank = 0.0). Bold values indicate best results.

λj λm λp MPJPE ↓ PA-MPJPE ↓ MPVE ↓ Accel-Error ↓
� 85.60 55.03 102.07 12.39

� 81.29 51.04 97.33 7.72
� 81.10 51.26 97.13 6.94
� � 84.37 54.12 100.76 10.38
� � 81.46 51.16 97.48 9.79

� � 85.64 55.20 102.12 12.11
� � � 83.76 53.39 100.06 14.12
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Positional encoding. Most of the non-local attention-based methods inject positional
information into their input. HPR-Net performs positional encoding, which helps to
distinguish the pose of each frame in input pose chunk. We investigate the effect of
positional encoding and its method on the performance of HPR-Net. Table 3 shows the
performance of HPR-Net in accordance with the positional encoding method. For the
experiment, we train and evaluate with three different models, one without positional
encoding (None), one with sinusoidal positional encoding according to [12] (Sinusoidal),
and one with positional encoding used in the proposed method (Ours). When positional
encoding is not used, HPR-Net shows decreased PA-MPJPE performance compared with
VIBE, but the other metrics are improved. Using the sinusoidal positional encoding
shows improved results and best performance on PA-MPJPE. Our encoding method shows
slightly lower PA-MPJPE compared with the sinusoidal positional encoding, but the best
performance on the other metrics.

Table 3. Comparison of refinement performance of HPR-Net according to positional encod-
ing method. Bold values indicate best results.

Methods MPJPE ↓ PA-MPJPE ↓ MPVE ↓ Accel-Error ↓
None 81.63 52.00 97.72 6.97

Sinusoidal 81.53 51.15 97.58 8.42
Ours 81.10 51.26 97.13 6.94

Layer normalization. The weight-regression module is composed of simple 1D tem-
poral convolution layers. Layer normalization is adopted as the feature normalization
layer of the proposed weight-regression module. To justify the use of layer normalization
for HPR-Net, we trained three models, one without feature normalization, one using
batch normalization, and one using layer normalization. Table 4 shows the performance
comparison in accordance with the normalization method used in HPR-Net. When layer
normalization is used, HPR-Net achieves the best performance in all metrics compared
with other methods. From the result, layer normalization helps the learning of the weight-
regression module.

Table 4. Comparison of refinement performance of HPR-Net according to feature normalization
method. Bold values indicate best results.

Methods MPJPE ↓ PA-MPJPE ↓ MPVE ↓ Accel-Error ↓
None 82.12 51.84 98.17 7.76

BatchNorm 82.66 52.07 98.81 12.93
LayerNorm 81.10 51.26 97.13 6.94

4.4. Refinement on State-of-the-Art Methods

We evaluate the performance of applying HPR-Net to state-of-the-art methods [3,4,10]
for different datasets [27,30]. Tables 5 and 6 report the performance of existing methods and
their refinement performance by HPR-Net on each evaluation dataset. Existing methods
are re-evaluated using publicly provided pretrained models. HPR-Net achieves perfor-
mance improvement in all metrics for all methods on 3DPW and Human3.6M datasets.
HPR-Net considerably improves the acceleration error in every experiments. We trained
our HPR-Net with the pose estimation result by VIBE as input. However, HPR-Net consis-
tently improves other methods (i.e., SPIN and MEVA). These results show our HPR-Net’s
generalization capability for other methods.
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Table 5. HPR-Net’s pose refinement performance for various existing methods on 3DPW test data.
Bold values indicate performance improvements.

Methods MPJPE ↓ PA-MPJPE ↓ MPVE ↓ Accel-Error ↓
VIBE 82.28 51.72 98.42 20.69

VIBE + HPR-Net 81.10 51.26 97.13 6.94

SPIN 102.46 60.05 129.22 29.78
SPIN + HPR-Net 100.95 59.30 127.58 8.19

MEVA 85.81 53.54 102.18 14.37
MEVA + HPR-Net 85.43 53.50 101.79 6.63

Table 6. HPR-Net’s pose refinement performance for various existing methods on Human3.6M test
data. Bold values indicate performance improvements.

Methods MPJPE ↓ PA-MPJPE ↓ Accel-Error ↓
VIBE 78.35 53.58 9.76

VIBE + HPR-Net 77.77 53.17 2.13

SPIN 68.22 46.16 14.21
SPIN + HPR-Net 67.35 45.53 2.74

MEVA 73.64 48.48 7.22
MEVA + HPR-Net 73.06 48.06 1.83

4.5. Comparison with Other Pose Refinement Methods

The pose parameter sequence can be refined in several methods. We compare HPR-
Net with other methods in improving the pose sequence. Table 7 shows the quantitative
improvement results of SLERP, Gaussian-filtering-based method (HPR-Gaussian), direct-
regression-based method (HPR-DR), and HPR-Net. All the methods are evaluated on
3DPW test set. SLERP calculates the interpolated unit quaternion between two unit
quaternions. MEVA uses SLERP to further smoothen their output pose parameter sequence.
We test SLERP to evaluate its refinement performance and compare it with our HPR-Net’s
performance. HPR-Gaussian regresses standard deviations to create optimal joint-wise
Gaussian kernels. We implement the HPR-Gaussian model by modifying the structure
of the weight-regression module in HPR-Net. We only change the kernel size of the 3rd
temporal 1D convolution layer of the weight-regression module to N and set the number of
channels to 24. HPR-Gaussian’s weight-regression module creates 24 joint-wise standard
deviations, where the 24 Gaussian kernels with kernel size N are created. Each kernel is
used for Gaussian filtering for the 3D rotation of each of the 24 joints. Specifically, weighted
averaging of 3D rotations along the temporal axis is performed using the values of the
kernels as weights. HPR-DR directly regresses the refined pose of the center frame from
the input pose chunk. To implement HPR-DR, our proposed HPR-Net is modified as
follows. We change the number of channels and kernel size in the last 1D convolution layer
of the weight-regression module to 96 and N, respectively, so that the modified network
(i.e., HPR-DR) generates a 96D vector. This vector is converted into a refined pose vector
consisting of unit quaternions through normalization.

Table 7. Comparison of refinement performance between HPR-Net and other pose sequence refine-
ment methods on the 3DPW dataset. Bold values indicate best results.

Methods MPJPE ↓ PA-MPJPE ↓ MPVE ↓ Accel-Error ↓
SLERP 82.72 52.13 99.88 12.38

HPR-Gaussian 82.15 51.58 98.30 18.04
HPR-DR 183.01 102.79 223.20 14.28
HPR-Net 81.10 51.26 97.13 6.94

From the quantitative improvement results of each method in Table 7, we observe that
SLERP does not improve the performance, except for the acceleration error. Acceleration is
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defined as the second derivative of the joint position and is very sensitive to the small noise
in the refined pose sequence. Since SLERP performs weighted averaging for interpolation
between two poses, it is effective in reducing the small noise and the acceleration error.
HPR-Gaussian improves VIBE quantitatively. However, the performance gain for the
acceleration error is smaller than SLERP because HPR-Gaussian over-smooths the pose
sequence. HPR-DR fails to refine the results of VIBE. It is because the size of the training
data, which is not large enough to train the direct regression model, leads to overfitting.
Our HPR-Net adaptively adjusts the shape of the kernel to prevent over-smoothing and
outperforms the other methods in all metrics, especially the acceleration error. Experimental
results show that our HPR-Net is superior to the other human pose refinement methods.

4.6. Network Design Based on Non-Local Attention

Our proposed HPR-Net is based on non-local attention. Transformer [12] is a repre-
sentative method and has the non-local attention-based structure. Our HPR-Net’s network
structure is similar to that of the Transformer’s non-local self-attention module, but HPR-
Net does not include components, such as multi-head attention and linear projection. To
explore how these components affect our model, we compare our HPR-Net with two
HPR-Net variants with a multi-head attention structure (MHA) and a single-head attention
structure (SHA). The details of each structure are shown in Figure 5.

Attention 
Head

Multi-Head 
Attention

Refined PoseInput Pose 
Chunk

Input Pose 
Chunk Refined Pose

Affinity 
Vector Refined Pose

Weighted-
Averaging 
Module

Attention Head

Temporal 1D Convolution Layers

Linear Projection

Multi-Head 
AttentionMulti-Head 

AttentionAttention 
Head

(a) MHA

(b) SHA

Attention 
Head

Input Pose 
Chunk

(c) HPR-Net

Refined Pose

Figure 5. Detailed pipelines of multi-head structure (a), linear projection structure (b), and our
proposed HPR-Net’s structure (c) for network design experiment. We did not apply linear projection
to input pose chunk P in (a–c), because it should be averaged with affinity weights. Attention head
contains affinity vector generation by self-attention and weighted-averaging processes.

Table 8 shows the VIBE refinement performance of MHA, SHA, and our HPR-Net on
the 3DPW dataset. All the experimented structures show acceleration error improvement.
MHA shows higher MPJPE, PA-MPJPE, and MPVE than SHA. However, the two models fail
to improve MPJPE, PA-MPJPE, and MPVE compared with VIBE. Unlike the two structures,
HPR-Net improves the performance in all metrics and achieves the lowest acceleration
error. The difference between our method and the two structures are that the features
obtained from the convolution layers are not linearly projected, and the MHA is not used
in the proposed HPR-Net. From the results, the linear projection layer seems to cause
performance degradation by confusing to generate an appropriate affinity weight vector
from input pose information. The MHA seems to result in overfitting by complicating the
network structure more than necessary. Our network has a simpler structure and performs
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better. HPR-Net is more optimal in solving our problem than the commonly used non-local
attention structure.

Table 8. Comparison of refinement performance according to network design of HPR-Net. Bold
values indicate best results.

Methods MPJPE ↓ PA-MPJPE ↓ MPVE ↓ Accel-Error ↓
MHA 84.00 53.20 99.94 7.71
SHA 84.13 53.52 100.44 7.49

HPR-Net 81.10 51.26 97.13 6.94

4.7. Qualitative Results

Acceleration error improvement. HPR-Net consistently shows a significant improve-
ment in acceleration error across all methods and datasets on the basis of quantitative
results. We present qualitative improvement results using a graph. Figure 6 shows the
acceleration error of VIBE, SPIN, MEVA and their refined results after applying HPR-Net to
each method. The acceleration errors are calculated for every three consecutive frames from
a video of 3DPW. Compared with existing methods’ result, HPR-Net effectively improves
the acceleration errors for all methods. In particular, the acceleration error is significantly
reduced in frames with high peaks where the errors are noticeable.

Refinement result. We present the qualitative results to show that HPR-Net substan-
tially refines a 3D human pose sequence estimated by existing methods. Figures 7 and 8
show the refined results for VIBE and SPIN, respectively. For each example in Figures 7 and 8,
the top, middle, and bottom rows show the input image sequence, the estimation result
by the existing method, and the refinement result by the proposed HPR-Net, respectively.
We do not report the qualitative result for MEVA, because the SMPL estimation results
by MEVA’s official code are projected incorrectly in the image. In the topmost example of
Figure 7, a pedestrian causes occlusion. Thus, the pose of the target subject is incorrectly
estimated. HPR-Net refines the results by reconstructing the appropriate pose using the
information of nearby frames. In the top-left example of Figure 8, SPIN predicts the global
orientation incorrectly due to challenging illumination. This incorrect global orientation is
well refined in the result of HPR-Net. From the other results, HPR-Net refines the incorrect
estimations of arms and legs.

4.8. Discussion

In accordance with our experimental results, the refinement of the human pose se-
quence estimated by existing methods can be achieved through a data-driven approach on
the basis of a large-scale dataset and a deep neural network. To realize this, the proposed
HPR-Net adaptively performs weighted averaging, a well-known framework for noise
reduction, on input data, therefore consistently improving the human pose estimation
performance of existing state-of-the-art methods. The pose refinement by HPR-Net is
performed independently of the existing human pose estimation method. This modularity
can be a benefit of our approach because it makes the use and analysis of the proposed
method easy. However, HPR-Net has a limitation of depending on the pose estimation
results of existing methods. Combining HPR-Net with the existing pose estimation network
and learning it in an end-to-end manner may bring additional performance improvement.
We plan to continue our research to investigate the end-to-end approach and overcome the
limitations of the proposed method.
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Figure 6. Comparison of acceleration error between HPR-Net and previous methods (VIBE, SPIN,
and MEVA). HPR-Net effectively suppresses acceleration error for all methods, even there are very
high peaks of acceleration error.
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Figure 7. Input images (top) and reconstruction results of VIBE (middle, gray SMPL mesh) and
HPR-Net (bottom, yellow SMPL mesh) on the 3DPW dataset.
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Figure 8. Input images (top) and reconstruction results of SPIN (middle, gray SMPL mesh) and
HPR-Net (bottom, yellow SMPL mesh) on the 3DPW dataset.

5. Conclusions

We propose HPR-Net to refine the noisy 3D human pose parameter sequence. HPR-
Net improves the accuracy and temporal smoothness of the 3D human pose sequence
through a simple non-local attention-based weighted averaging for a noisy pose parameter
chunk represented in a unit-quaternion form. We report quantitatively and qualitatively
that the proposed method can improve 3D human reconstruction performance for various
real datasets, such as Human3.6M and 3DPW. From the experiments for improving the re-
sults of various existing methods such as SPIN, VIBE, and MEVA, a consistent performance
improvement is observed regardless of the method used to estimate the input human pose
sequence. This finding shows that our method works in a model-agnostic manner. The
superiority of HPR-Net is confirmed by comparing it with other approaches that can refine
3D human pose parameters.
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Abstract: Optical motion capture is a mature contemporary technique for the acquisition of motion
data; alas, it is non-error-free. Due to technical limitations and occlusions of markers, gaps might
occur in such recordings. The article reviews various neural network architectures applied to the gap-
filling problem in motion capture sequences within the FBM framework providing a representation
of body kinematic structure. The results are compared with interpolation and matrix completion
methods. We found out that, for longer sequences, simple linear feedforward neural networks
can outperform the other, sophisticated architectures, but these outcomes might be affected by the
small amount of data availabe for training. We were also able to identify that the acceleration and
monotonicity of input sequence are the parameters that have a notable impact on the obtained results.

Keywords: motion capture; neural networks; reconstruction; gap filling; FFNN; LSTM; BILSTM; GRU

1. Introduction

Motion capture (mocap) [1,2], in recent years, has become a mature technology that
has an important role in many application areas. Its main application is in computer
graphics, where it is applied in gaming and movie FX for the generation of realistic-looking
character animation. Other prominent applications areas are biomechanics [3], sports [4],
medical sciences (involving biomechanical [5] and the other branches, i.e., neurology [6]),
and rehabilitation [7].

Optical motion capture (OMC) relies on the visual tracking and triangulation of active
or retro-reflective passive markers. Assuming a rigid body model, successive positions of
markers (trajectories) are used in further stages of processing to drive an associated skeleton,
which is used as a key model for the animation of human-like or animal characters.

OMC is commonly considered the most reliable mocap technology; it is sometimes
called the ‘gold standard’, as it outperforms the other mocap technologies. However, the
process of acquiring marker locations is not error-free. Noise, which is immanent in any
measurement system, has been studied in numerous works [8,9], which suggests it is not
just simple additive Gaussian process. The noise types present in OMC systems were
identified in [10]; these are red, pink, white, blue-violet, and Markov–Gaussian-correlated
noises; however, they are not a big issue for the mocap operators since they have rather low
amplitudes and can be quite efficiently filtered out. The most annoying errors come from
marker observation issues. They occur due to marker occlusion and the marker leaving the
scene, and result in a lack of the recorded data-gaps that are typically represented as not a
number (NaN) values.

The presence of gaps is common and results in everyday praxis, which requires
painstaking visual trajectory examination and manual trajectory editing by operators. This
can be assisted by software support for trajectory reconstruction.
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In this work, we propose a marker-wise approach that addresses the trajectory re-
construction problem. We analyze the usability of various neural network architectures
applied to regressive tasks. The regression/prediction exploits inter-marker correlations
between markers placed on the same body parts. Therefore, we employed a functional
body mesh structure (FBM) [11] as a framework to model the kinematic structure of the
subject. I Thisan be calculated ad-hoc for any articulated subject or rigid objects, so we do
not need a skeleton model.

The article is organized as follows: in Section 2, we disclose the background for the
article—mocap pipeline with sources of distortion and former works on the distortions in
optical mocap systems; Section 3 describes the proposed method, with its rationales and
design considerations, and experiment plan. In the Section 4 we provide results, and a
discussion and interpretation of results. Section 5 summarizes the article.

2. Background

2.1. Optical Motion Capture Pipeline

Optical motion capture systems track the markers—usually passive retro-reflective
spheres in near-infrared images (NIR) images. The basic pipeline is shown in Figure 1.
The markers are observed by several geometrically calibrated NIR cameras. The visual
wavelengths cut-off, and, hence, the images, contain just white dots, which are matched
between the views and triangulated, so the outcome of the early stage of mocap is a time
series containing Cartesian coordinates of all markers. An actor and/or object wears a
sufficient number of markers to represent body segments—marker layout usually follows
a predefined layout standard. The body segments are represented by a predefined mesh,
which identifies the body segments and is a marker-wise representation of body structure.
Finally, mocap recording takes the form of a skeleton angle time series, which represents
the mocap sequence as orientations (angles) in joints and a single Cartesian coordinate for
body root (pelvis usually).

(a) (b) (c) (d)

Figure 1. Stages of the motion capture pipeline: actor (a); registered markers (b); body mesh (c); mesh matched skeleton (d).

2.2. Functional Body Mesh

Functional body mesh (FBM) is a authors’ original contribution, that forms a frame-
work for marker-wise mocap data processing, which incorporates also the kinematic
structure of a represented object. The FBM structure is not given in advance, but it can be
inferred based on the articulated object representative motions [11]. For human actors it
resembles standard meshes, but it can be applied for virtually any vertebrates. It assumes
the body is divided into rigid segments (submeshes), which are organized into a tree
structure. The model represents the hierarchy of subjects’ kinematic structure, reflecting
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bonds between body segments, where every segment is a local rigid body model—usually
based on an underlying bone.

The rigid segments maintain the distance between the markers and, additionally, for
each child segment, one representative marker is assumed within the parent one, which is
also assumed to maintain a constant distance from the child markers. The typical FBM for
the human actor is shown in Figure 2b as a tree. The segments and constituent markers are
located in nodes, whereas the parent marker is denoted on the parent–child edge.

Figure 2. Outline of the body model (a), and corresponding parts hierarchy annotated with parents
and siblings (b).

2.3. Previous Works

Gap filling is a classical problem frequently addressed in research on mocap tech-
nologies. It was in numerous works, which proposed various approaches. The ex-
isting methods can be divided into three main groups—skeleton-based, marker-wise,
and coordinate-based.

A classical skeleton-based method was proposed by Herda et al. [12], they estimate
skeleton motion and regenerate markers on the body envelope. Aristidou and Lanesby [13]
proposed the other method based on a similar concept, where the skeleton is a source for
constraints in inverse kinematics estimation of marker location. Also, Perepichka et al. [14]
combined IK of skeleton model with deep NN to detect erroneously located markers and
to place them on a probable trajectory. All aforementioned approaches require either to
have a predefined skeleton or to infer the skeleton as the entry step of an algorithm.

The skeleton-free methods consider information from markers only, usually acknowl-
edging the whole sequence as a single multivariable (matrix), thus losing the kinematic
structure of the represented actor. They rely on various concepts, starting from the simple
interpolating methods [15–17]. The proposal by Liu and McMillan [18] employed ‘local’
(neighboring markers) low-dimensional least squares models combined with PCA for
missing marker reconstruction. A significant group of gap reconstruction proposals is
based on the low-rank matrix completion methods. They employ various mathematical
tools (e.g., matrix factorization with SVD) for the missing data completion, relying on
inter marker correlations. Among the others, these methods are described in the following
works [19,20]. Another approach is somewhat related: it is a fusion of several regressions
and interpolation methods, which was proposed in [21].

Predicting markers (or joint) position is another concept that is the basis of gap-filling
techniques. One such concept is a predictive model by Piazza et al. [22], which decomposes
the motion into linear and circular and finds momentary predictors by curve fitting. More
sophisticated dynamical models based on the Kalman filter (KF) are commonly applied.
Wy and Boulanger [23] proposed a KF with velocity constraints; however, this achieved
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moderate success due to drift. A KF with an expectation-maximization algorithm was also
used in two related approaches by Li et al.—DynaMMo [24], and BoLeRO [25] (the latter
is actually Dynammo with bone length constraints). Another approach was proposed by
Burke and Lanesby [26], who applied dimensionality reduction by PCA and then Kalman
smoothing for the reconstruction of missing markers.

Another group of methods is dictionary-based. These algorithms recover the tra-
jectories using a dictionary created from previously recorded sequences. They result in
satisfactory outcomes as long the specific motion is in the database. They are represented
by the works of Wang et al. [27], Aristidou et al. [28], and Zhang and van de Panne [29].

Finally, neural networks are another group of methods used in marker trajectory
reconstruction. The task can be described as a sequence-to-sequence regression problem,
whereas NN applied for regression has been recognized since the early 1990s in the work
of Hornik [30]; hence, NN seems to be a natural choice for the task. Surprisingly, however,
they become popular quite late. In the work of Fragkiadaki et al. [31], an encoder–recurrent-
decoder (ERD) was proposed, employing long-short term memory (LSTM) as a recurrent
layer. A similar approach (ERD) was proposed by Harvey et al. [32] for in-between motion
generation on the basis of asmall amount of keyframes. Mall et al. [33] modified the ERD
and proposed an encoder–bidirectional-filter (EBF) based on the bidirectional LSTM (BIL-
STM). In the work of Kucharenko et al. [34], a classical two-layer LSTM and window-based
feed-forward NN (FFNN) were employed. A variant of ResNet is applied by Holden [35]
to reconstruct marker positions from noisy data as a ttrajectory reconstruction task. A set
of extensions to the plain LSTM were proposed by Ji et al. [36]; they introduced attention (a
weighting mechanism) and LS-derived spatial constraints, which result in an improvement
in performance. Convolution auto-encoders was proposed by Kaufmann et al. [37].

3. Materials and Methods

3.1. Proposed Regression Approach

The proposed approach involves employing various neural networks architectures for
the regression task. These are FFNN and three variants of contemporary recursive neural
networks—gated recurrent unit (GRU), long-short-term memory (LSTM), and bidirectional
LSTM (BILSTM). In our proposal, these methods predict trajectories of lost markers on the
basis of a local dataset—the trajectories of neighboring markers.

The proposed utilization procedure of NN differs from the scenario that is typically
employed in machine learning. We do not feed the NNs with a massive amount of training
sequences in advance to form a predictive model. Instead, we consider each sequence
separately and try to reconstruct the gaps in individual motion trajectory on the basis of
its own data only. This makes sense as long as the marker motion is correlated and most
of the sequence is correct and representative enough. This is the same as for the other
common regression methods, starting with the least squares. Therefore, the testing data are
the whole ‘lost’ segment (gap), whereas the training is the remaining part of the trajectory.
Depending on the gap sizes, and sequence length used in the experiment, the testing can
be between 0.6% (for short gaps and long sequences) and up to 57.1% (for long gaps in
short sequences).

The selection of such a non-typical approach requires a justification. It is likely that
training the NN models for prediction of marker position in a conventional way, using
a massive dataset of mocap sequences, would be able to generalize enough to adjust to
different body sizes and motions. However, it will be tightly coupled with the marker
configuration, not to mention the other actors, such as animals. The other issue is obtaining
such a large amount of data. Despite our direct access to the lab resources, this is still quite
a cumbersome task, since we believe these might be not enough, especially as the resources
available online from various other labs are hardly usable, since they employ different
marker setups.

The forecasting of timeseries is a typical problem addressed by RNNs [38]. Usually,
numerous training and testing sequences allow for a prediction of the future states of the
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modelled system (e.g., power consumption or remaining useful life of devices). A more
similar situation, where RNNs are also applied, is forecasting the time series for problems
lacking massive training data (e.g., COVID-19 [39]). An analysis of LSTM architectures for
similar cases is presented in [40]. However, in these works, the forecast of future values is
based on the past values. What makes our case a bit different is the fact that we usually
have to predict the value in-the-middle, so the past and future values are available.

3.1.1. Feed Forward Neural Network

FFNN is the simplest neural network architecture. In this architecture, the information
flows in one direction, as its structure forms an acyclic directed graph. The neurons are
modeled in the nodes with activation functions (usually sigmoid) using the weighted
sum of inputs. These networks are typically organized into layers, where the output from
the previous layer becomes an input to a successive one. This architecture of networks
is employed for regression and classification tasks, either alone or as final stages in a
larger structures (such as modern deep NN). The architecture of the NN that we employed
is shown in Figure 3. The basic equation (output) of a single—k-th artificial neuron is
given as:

yk(x) = f

(
∑

j
wjkxj + b

)
, (1)

where xj is j-th input, wkj is j-th input weight, b—a bias value, f —is transfer (activation)
function. Transfer function depends on the layer purpose; these are typically a sigmoid for
hidden layers, threshold, linear, or softmax for final layers (for regression and classification
problems, respectively), or others.

Figure 3. Schematic of FFNN.

3.1.2. Recurrent Neural Networks

Recurrent neural networks (RNN) are the types of architecture that employ cycles in
NN structure; this allows for the consideration of current input value as well as preserving
the previous inputs and internal states of NN in memory (and future ones for bidirectional
architecture). Such an approach allows for NN to deal with timed processes and to
recognize process dynamics, not just static values—it applies to such tasks as a signal
prediction or recognition of sequences. Regarding the applicability, aside from classic
problem dichotomy (classification and regression), RNN results might need another task
differentiation. One must decide whether the task is a sequence-to-one or sequence-
to-sequence problem, so the network has to return either a single result for the whole
sequence or a single result for each data tuple in sequence. The prediction/regression task
is a sequence-to-sequence problem, as demonstrated with RNNs in Figure 4 in different
variants—both folded and unfolded, uni- and bi-directional.
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Figure 4. Usage of recurrent NNs in sequence to sequence task: (a) folded, (b) unfolded unidirectional variant, (c) unfolded
bidirectional variant.

At present two types of neuron are predominantly applied in RNN–long short term
memory (LSTM) and gated recurrent unit (GRU), of which the former is also applied
in bidirectional variant (BILSTM). They evolved from a plain RNN called ‘vanilla’, and
they prevent vanishing gradient problems when back-propagating errors in the learning
process. Their detailed designs are unfolded in Figure 5. These cell types rely on the
input information and information from previous time steps, and those previous states are
represented in various ways. GRU passes an output (hidden signal h) between the steps,
whereas LSTM also passes a h and internal cell state C. These values are interpreted as
memory—h as short term, and C as long term. Their activation function is typical sigmoid,
which is modeled with a hyperbolic tangent (tanh), but there are additional elements
present in the cell. The contributing components, such as input or previous values, are
subject to ‘gating’—their share is controlled by Hadamard product (element-wise product
denoted as � or ⊗ in diagram) with 0–1 sigmoid function σ(x) = 1

1+e−x . The individual σ
values are obtained by weighted input and state values.

Figure 5. LSTM (left) and GRU (right) neurons in detail.

In more detail, in LSTM, we pass two variables h, C and have three gates—forget,
input and output. They govern how much of the respective contribution passes to further
processing. The forget gate ( ft) decides how much of the past cell internal state (Ct−1) is to
be kept; the input gate (it) controls how much new contribution C̃t caused by input (xt)
annd taken into the current cell state (Ct). Finally, the output gate (ot) controls what part of
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activation is based on the cell internal state; (Ct) is taken as cell output (ht). The equations
are as follows:

ft = σ(Wf · [xt, ht−1] + b f ), (2)

it = σ(Wi · [xt, ht−1] + b f ), (3)

C̃t = tanh(Wc · [xt, ht−1] + bc), (4)

Ct = ft � Ct−1 + it � C̃t, (5)

ot = σ(Wo · [xt, ht−1] + b f ), (6)

ht = ot � tanh(Ct). (7)

The detailed schematic of GRU is a bit simpler. Only one signal, hidden (layer output)
value (h for hi), is passed between steps. There are two gates present—the reset gate (rt),
which controls how much past output (ht−1) contributes to the overall cell activation, and
the update gate (ut), which controls how much current activation (h̃t) contributes to the
final cell output.The above are described by the following equations:

ut = σ(Wu · [xt, ht−1] + bu), (8)

rt = σ(Wu · [xt, ht−1] + bu), (9)

h̃t = tanh (Wh · [xt, rt � ht−1] + bh), (10)

ht = (1− ut)� ht−1 + ut � h̃t. (11)

3.1.3. Employed Reconstruction Methods

We compared the performance of five architectures of NN—two variants of FFNN
and three RNN-FCs based on GRU, LSTM, and BILSTM; the outline of the latter is de-
picted in Figure 6. The detailed structures and hyperparameters of NNs were established
empirically, since there are no strict rules or guidelines. Usually, this requires simulating,
with parameters sweeping the domain of feasible numbers of layers and neurons [41]. We
shared this approach and reviewed the performance of NN using the test data.

• FFNNlin, with 1 hidden fully connected (FC) layer—containing 8 linear neurons;
• FFNNtanh, with 1 hidden FC layer—containing 8 sigmoidal neurons;
• LSTM followed by 1 FC layer containing 8 sigmoidal neurons;
• GRU followed by 1 FC layer containing 8 sigmoidal neurons;
• BILSTM followed by 1 FC layer containing 8 sigmoidal neurons.

The output is three valued x, y, z vectors, containing reconstructed marker coordinates.

xn

xn 1

xn+1

xn 2

hn

Recurrent Layer
(LSTM/GRU/BILSTM)

Output layerFully Connected Layer
(linear)

Input Layer
(multivariable seqence)

ox     oy     oz
on

Figure 6. Proposed RNN-FC architecture for the regression task.
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3.1.4. Implementation Details

The training process was performed using 600 epochs, with the SGDM solver running
on the GPU. It involved the whole input sequence with gaps excluded. There was a single
instance of sequence in the batch. The sequence parts containing gaps were used as the test
data; the remainder was used for training—therefore, the relative size of test part varies
between 0.6% and 57.1%. The other parameters are:

• Initial Learn Rate: 0.01;
• Learn Rate Drop Factor: 0.9;
• Learn Rate Drop Period: 10;
• Gradient Threshold 0.7;
• Momentum: 0.8.

We also applied z-score normalization for the input and target data.
Additionally, for comparison, we used a pool of other methods, which should provide

nice results for short-term gaps. These are interpolations: linear, spline, modified Akima
(makima), piecewise cubic hermite interpolating polynomial (pchip), and the low-rank
matrix completion method (mSVD0). All but linear interpolation methods are actually
variants of piecewise Hermite cubic polynomial interpolations, which differ in the details
of how they compute interpolant slopes. Spline is a generic method, whereas pchip tries
to preserve shape, and makima avoids overshooting. However, mSVD [42] is an iterative
method decomposing motion capture data with SVD and neglecting the least significant
part of the basis transformed signal, reconstructing the original data with replacing missing
values using reconstructed ones. The procedure finishes when convergence is reached. We
implemented the algorithm, as outlined in [24].

The implementation of methods and experiments was carried out in Matlab 2021a
using its implementations of numerical methods and deep learning toolbox.

3.2. Input Data Preparation

Constructing the predictor for certain markers, we obtained the locations from all the
sibling markers and a single parent one, as they are organized within an FBM structure. For
j-th marker (Xj = [xj, yj, zj]), we consider parent (Xp) and sibling markers (Xs1, . . . , XsL).
To form an input vector, we take two of their values—one for the current moment and
with one sample lag. The other variants with more lags or values raised to the higher
powers were considered, but after preliminary tests, we neglected them since they did not
improve performance.

Each input vector T, for the moment n, is quite long and is assembled of certain parts,
as given below:

T(n, ∗) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

current and former values of parent marker (p)︷ ︸︸ ︷
xp(n), yp(n), zp(n), xp(n− 1), yp(n− 1), zp(n− 1) ,

current and former value of first sibling s1︷ ︸︸ ︷
xs1(n), ys1(n), zs1(n), xs1(n− 1), ys1(n− 1), zs1(n− 1),

...
xsL(n), ysL(n), zsL(n), xsL(n− 1), ysL(n− 1), zsL(n− 1)︸ ︷︷ ︸

current and former value of last sibling sL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

Finally, the input and output data are z-score standardized—zero centered and stan-
dard deviation scaled to 1, since such a step notably improves the final results.

3.3. Test Dataset

For testing purposes, we used a dataset (Table 1) acquired for professional purposes
in the motion-capture laboratory. The ground truth sequences were obtained at the PJAIT
human motion laboratory using the industrial-grade Vicon MX system. The system capture
volume was 9 m × 5 m × 3 m. To minimize the impact of external interference such as
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infrared interference from sunlight or vibrations, all windows were permanently dark-
ened and cameras were mounted on scaffolding instead of tripods. The system was
equipped with 30 NIR cameras manufactured by Vicon: MX-T40, Bonita10, Vantage V5—
wth 10 pieces of each kind.

During the recording, we employed a standard animation pipeline, where data were
obtained with Vicon Blade software using a 53-marker setup. The trajectories were ac-
quired at 100 Hz and, by default, they were processed in a standard, industrial-quality
way, which includes manual data reviewing, cleaning and denoising, so they can be
considered distortion-free.

Several parameters for the test sequences are also presented in Table 2. We selected
these parameters as one could consider them to potentially describe prediction difficulty.
They are various, and based on different concepts such as information theory, statistics,
kinematics, and dynamics, but all characterize the variability in the Mocap signal. They
are usually the average value per marker, except for standard deviation (std dev), which
reports value per coordinate.

Table 1. List of mocap sequence scenarios used for the testing.

No. Name Scenario Duration Difficulty

1 Static Actor stands in the middle of scene, looking around and
shifting from one foot to another, freely swinging arms 32 s varied motions

2 Walking Actor stands still at the edge of the scene, then walks straight
for 6 m, then stands still 7 s low dynamics, easy

3 Running
Actor stands in the middle of scene, then goes backwards to
the edge of the scene and runs for 6 m, then goes backwards to
the middle of the scene

16 s moderate dynamics

4 Sitting Actor stands in the middle of scene, then sits on a stool, and,
after a few seconds, stands again 15 s occlusions

5 Boxing Actor stands in the middle of scene, and performs some fast
boxing punches 14 s high dynamics

6 Falling
Actor stands on 0.5 m elevation in the middle of scene, the
walks to edge of platform, then falls on the mattress, lies for 2 s
and stands

16 s high dynamics,
occlusions

Two non-obvious measures are enumerated: monotonicity and complexity. The
monotonicity indicates, on average, the extent to which the coordinate is monotonic. For
this purpose, we employed an average Spearman rank correlation, which can be described
as follows:

monotonicity =
1
M

M

∑
m=1

corr(rank(Xi), 1 . . . N), (13)

where Xm is mth coordinate, M is number of coordinates, N is sequence length.
Complexity, on the other hand, is how we estimate the variability of poses in the

sequence. For that purpose, we employed PCA, which identifies eigenposes as a new basis
for the sequence. The corresponding eigenvalues describe how much of the overall variance
is described by each of the eigenposes. Therefore, we decided to take the remainder of
the fraction of variance described by the sum of the five largest eigenvalues (λi) as a term
describing how complex (or rather simple) the sequence is—the simpler the sequence, the
more variance is described, with a few eigenposes. Therefore, our complexity measure is
simply given as:

complexity = 1−
5

∑
i=1

λi/
M

∑
i=1

λi, (14)

where M is a number of coordinates.
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Table 2. Input sequence characteristics.

No
Entropy
(H(X))

Stddev (σX ) Velocity ( ∂X
∂t ) Acc. ( ∂2X

∂t2 ) Jerk ( ∂3X
∂t3 ) Monotonicity Complexity

[Bits/Mark.] [mm/Coordinate] [m/s/Mark.] [m/s2/Mark.] [m/s3/Mark.] [-] [-]

1 12.697 129.705 0.208 1.561 64.817 0.352 0.027
2 13.943 941.123 0.773 6.476 829.271 0.582 0.000
3 15.710 982.342 0.895 6.176 643.337 0.379 0.001
4 10.231 135.356 0.190 2.863 452.142 0.347 0.016
5 11.356 121.094 0.259 3.557 507.975 0.323 0.023
6 14.152 601.140 0.589 6.703 799.039 0.745 0.007

3.4. Quality Evaluation

The natural criterion for the reconstruction task is root mean square error (RMSE),
which, in our case, is calculated only for the time and marker, where the gaps occur:

RMSE =

√
1
|W| ∑

i∈W
(X̂i − Xi)2, (15)

where W is a gap map, logically indexing locations of gaps, X̂ is a reconstructed coordinate,
X is the original coordinate.

Additionally, we calculated RMSEs for individual gaps. Local RMSE is a variant of
the above formula, and simply given as:

RMSEk =

√
1
|wk| ∑

i∈wk

(X̂i − Xi)2, (16)

where wk ⊂ W is a single gap map logically indexing the location of k-th gap, X̂ is
reconstructed coordinate, X is original coordinate. RMSEk is intended to reveal variability
in reconstruction capabilities; hence, we used it to obtain statistical descriptors—mean,
median, mode, and quartiles and interquartile range.

A more complex evaluation of regression models can be based on infromation criteria.
These quality measures incorporate squared error and a number of tunable parameters, as
they were designed by searching for a tradeoff between the number of tunable parameters
and the obtained error. The two most popular ones are Bayesian Information Criterion
(BIC) and Akaike Information Criterion (AIC). BIC is calculated as:

BIC = n log(MSE) + p log(n), (17)

whereas AIC formula is as follows:

AIC = n log(MSE) + 2p, (18)

where: mean squared error MSE = RMSE2, n is a number of testing data, p is a number of
tunable parameters.

3.5. Experimental Protocol

During the experiments, we simulated gap occurrence in perfectly reconstructed
source sequences. We simulated gaps of different average lengths—10, 20, 50, 100 and
200 samples (0.1, 0.2, 0.5, 1, and 2 s, respectively). The assumed gap sizes were chosen
to represent situations of various levels of difficulty, from short-and-simple to difficult
ones, when gaps are long. For every gap length, we performed 100 simulation iterations,
where the training and testing data do not intermix between simulation runs. The steps
performed in every iteration are as follows:
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1. We introduce two gaps of assumed length (on average) to the random markers at
random moments; actual values are stored as testing data;

2. The model is trained using the remaining part of the sequence (all but gaps);
3. We reconstruct (predict) the gaps using the pool of methods;
4. The resulting values are stored for evaluation.

We report the results as RMSE and descriptive statistical descriptors for RMSEk
for every considered reconstruction technique. Additionally, we verified the correlation
between RMSE and the variability descriptors for sequences. It is intended to reveal what
are the sources of difficulties in predicting the marker trajectories.

Gap Generation Procedure

The procedure of gap contamination, which was employed, introduces distortions
into the sequences in a controlled way. The parameter characterizing the experiment is
an average-length number of occurrences of gaps. the sequence of operations distorting
the signal is as follows: at first, we draw moments to contaminate, then select a random
marker. The duration of distortions and intervals is a Poisson process, an average length of
distortion set-up according to the considered gap length in the experiment, whereas the
interval length results from the sequence length and number of intervals, which, for two
gaps per sequence, are three—ahead of the first gap, in-between, and after the second gap.

4. Results and Discussion

The section comprises two parts. First, we present RMSE results; they illustrate the
performance of each of the considered gap reconstruction methods. The second part is the
interpretation of results, searching for the aspects of Mocap sequence that might affect the
resulting performance.

4.1. Gap Reconstruction Efficiency

The detailed numerical values are presented in Table 3 for the first sequence as an
example. In the table, we also emphasize the best result for each measurement of gap size.
Forclarity, the numerical outcomes of the experiment are only presented in this chapter
with representative examples. To see the complete set of results in the tabular form, please
refer to Appendix A. The complete results for the gap reconstruction are also demonstrated
in a visual form in Figure 7. Additionally, the zoomed variant of the fragments of the plot
(dash square annotated) for gaps 10–50 are presented in Figure 8.

The first observation, regarding the performance measures, is the fact that the results
are very coherent, regardless of which measure was used. This is shown in Figure 7, where
all the symbols coherently denote statistical descriptors scale. It is also clearly visible in the
values emphasized in Table 3, where all measures but one (mode) indicate the same best
(smallest) results. Hence, we can use a single quality measure; in our case, we assumed
RMSE for further analysis.

Analyzing the results for several sequences, various observations regarding the per-
formance of the considered methods can be noted. These are listed below:

• It can be seen that, for the short gaps, interpolation methods outperform any of the
NN-based methods.

• For gaps that are 50 samples long, the results become less obvious and NN results are
no worse or (usually) better than interpolation methods.

• Linear FFNN usually performed better than any other methods (including non-linear
FFNNtanh), for gaps of 50 samples or longer, for most of the sequences.

• In very rare cases of short-gap cases, RNNs performed better than FFNNlin, but, in
general, simpler FFNNlin outperformed more complex NN models.

• There are two situations when the FFNNlin, performed no better or worse than
interpolation methods (walking and falling). This occurred for sequences with larger
monotonicity values in Table 2. They have also increased velocity/acceleration/jerk
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values; the ‘running’ sequence has similar values for these, but FFNNlin perform the
best in this case, so the kinematic/dynamic parameters should not be considered.
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Figure 7. Results for most of the quality measures for all the test sequences. Bars denote RMSE; for RMSEk: � denotes mean
value, × denotes median, ◦ denotes mode, whiskers indicate IQR; standard deviation is not depicted here; dash-outlined
areas are zoomed in Figure 8.
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deviation is not depicted here.
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Table 3. Quality measures for the static (No. 1) sequence.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10

RMSE 3.830 5.375 2.410 2.494 1.801 1.267 0.348 0.610 0.737 1.267
mean(RMSEk) 3.280 4.869 2.175 2.290 1.708 0.971 0.243 0.468 0.512 0.971
median(RMSEk) 2.746 4.399 2.035 2.120 1.614 0.893 0.205 0.406 0.391 0.893
mode(RMSEk) 0.993 1.821 0.626 0.861 0.455 0.099 0.000 0.045 0.036 0.099
stddev(RMSEk) 1.893 2.209 0.939 0.989 0.573 0.695 0.216 0.336 0.458 0.695
iqr(RMSEk) 2.123 2.905 0.881 0.901 0.684 0.692 0.235 0.370 0.434 0.692

20

RMSE 3.474 5.114 2.559 2.527 2.082 3.366 1.191 1.914 2.354 3.366
mean(RMSEk) 3.187 4.775 2.371 2.351 1.903 2.694 0.933 1.525 1.738 2.694
median(RMSEk) 2.828 4.709 2.274 2.235 1.779 2.147 0.764 1.251 1.287 2.147
mode(RMSEk) 0.605 0.584 0.540 0.381 0.415 0.052 0.005 0.026 0.023 0.052
stddev(RMSEk) 1.442 1.871 0.891 0.898 0.826 1.831 0.664 1.045 1.483 1.831
iqr(RMSEk) 1.841 2.394 1.103 1.013 0.813 1.983 0.866 1.173 1.437 1.983

50

RMSE 3.813 5.910 5.001 4.041 4.777 10.363 5.517 6.928 7.677 10.363
mean(RMSEk) 3.401 5.434 4.233 3.445 3.958 9.207 4.572 6.027 6.573 9.207
median(RMSEk) 2.906 5.154 3.776 3.118 3.496 8.733 3.888 5.512 5.733 8.733
mode(RMSEk) 1.326 1.393 0.831 1.066 1.000 1.169 0.400 0.800 0.793 1.169
stddev(RMSEk) 1.688 2.168 2.430 1.921 2.448 4.464 2.852 3.174 3.764 4.464
iqr(RMSEk) 1.421 2.216 2.169 1.642 2.282 6.078 2.418 3.770 4.373 6.078

100

RMSE 4.759 7.805 10.798 7.678 10.716 24.634 12.548 15.231 18.746 24.634
mean(RMSEk) 4.233 7.134 9.460 6.721 9.302 21.812 11.236 13.587 16.108 21.812
median(RMSEk) 3.658 6.329 8.333 5.953 8.198 21.129 10.345 12.875 14.785 21.129
mode(RMSEk) 1.517 2.252 1.377 1.465 1.400 3.266 2.546 1.986 1.937 3.266
stddev(RMSEk) 2.132 3.143 5.114 3.692 5.230 11.305 5.472 6.825 9.556 11.305
iqr(RMSEk) 2.215 3.473 5.650 4.217 5.700 14.536 6.850 8.029 11.019 14.536

200

RMSE 9.959 18.970 33.147 27.987 33.104 62.786 34.481 47.259 56.570 62.786
mean(RMSEk) 9.062 17.303 30.204 24.837 30.135 55.099 31.616 41.676 48.789 55.099
median(RMSEk) 8.683 16.200 28.352 22.655 28.462 49.641 29.914 38.410 42.155 49.641
mode(RMSEk) 2.404 3.973 5.523 4.263 5.010 8.510 6.518 6.459 6.033 8.510
stddev(RMSEk) 4.013 7.631 13.450 12.743 13.503 29.934 13.511 22.022 28.463 29.934
iqr(RMSEk) 5.084 9.413 18.231 16.895 18.436 48.864 17.125 36.315 46.222 48.864

Looking at the results of various NN architectures, it might be surprising that the
sophisticated RNNs often returned worse results than relatively simple FFNN, especially
for relatively long gaps. Conversely, one might expect that RNNs would outperform other
methods, since they would be able to model longer-term dependencies in the motion.
Presumably, the source of such a result is in the limited amount of training data, which,
depending on the length of the source file, varies between hundreds and thousands of
registered coordinates. Therefore, solvers are unable to find actually good values for a
massive amount of parameters—see Table 4 for the formulas and numbers of learnable
parameters for an exemplary case when input comprises 30 values—coordinates of four
siblings and a parent at current and previous frames.

An obvious solution to such an issue would be increasing the training data. We could
achieve this by employing very long recordings or by using numerous recordings. In
the former, it would be difficult to achieve long enough recordings; the latter is different
from the case which we try to address, where we only obtain a fresh mocap recording and
reconstruct it with the minimal model given by FBM. Training the predictive model in
advance with a massive amount of data is, of course, an interesting solution, but would
cost the generality. For every marker configuration, a separate set of predicting NNs would
need to be trained, so the result would only be practical for standardized body models.

Considering the length of the training sequences, its contribution to the final results
seems far less important than other factors, at least within the range of considered cases.
The analysis of its influence is illustrated in Figure 9. Since the MSE results are entangled,
we employed two additional information criterions, Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC), which disentangle the results by accounting for the
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number of trainable parameters. For every sequence and every NN model, we obtain a
series of five results, which decrease, as the training sequence grows longer when we have
shorter gaps (i.e., the annotated quintuple in the Figure). Analyzing the results in Figure 9,
it is most convenient to observe this in the AIC/BIC plots since, for each model, the number
of parameters remains the same (Table 4), so we can easily compare the results of the testing
sequences. The zoomed versions (to the right) reveal differences at appropriate scales for
the RNN results.

Lookng at the reults, we observe that, regardless the length of the training sequence,
the MSE (AIC/BIC) of the NN model remains at the same order of magnitude—this is
clearly visible in the Figure, where we have very similar values for each gap size for
variable sequences (represented as different marker shapes) for each of the NN types
(represented by a color). The most notable reduction in the error is probably observed with
the increased sequence length, when the sequence (Seq. 1—static) is several folds longer
than the others. However, we cannot observe this difference for shorter sequences in our
data, with notably different lengths (e.g., walking—running). The quality of prediction
could be likely improved if the recordings were longer, but, in everyday praxis, the length
of the motion caputre sequences is only minutes, so one should not expect the results for
RNN data to be notably improved compared to those for FFNN.

The observations hold for both FFNN models and all RNNs. These ambiguous
outcomes confirm the results shown in [40], where the quality of results does not depend
on the length of the training data in a straightforward way.

Table 4. List of mocap sequence scenarios used for the testing.

NN Type Number of Learnable Parameters Value for Exemplary Case

FFNN: hiddenLayerSize× inputvectorSize + hiddenLayerSize 275
+3× hiddenLayerSize + 3

LSTM: 4× hiddenRecurrentNeurons× inputvectorSize 22,023
+4× hiddenRecurrentNeurons×
hiddenRecurrentNeurons
+4× hiddenRecurrentNeurons
+3× hiddenRecurrentNeurons + 3

GRU: 3× hiddenRecurrentNeurons× inputvectorSize 16,563
+3× hiddenRecurrentNeurons×
hiddenRecurrentNeurons
+3× hiddenRecurrentNeurons
+3× hiddenRecurrentNeurons + 3

BILSTM: 8× hiddenRecurrentNeurons× inputvectorSize 47,043
+8× hiddenRecurrentNeurons×
hiddenRecurrentNeurons
+8× hiddenRecurrentNeurons
+3× 2× hiddenRecurrentNeurons + 3

4.2. Motion Factors Affecting Performance

In this section, we try to identify the correlation in which features (parameters) of the
input sequences relate to the performance of gap-filling methods. The results presented
here are concise; we only present and discuss the most conclusive results. The complete
tables containing correlation values for all gap sizes are presented in Appendix B.

Foremost, a generalized view into the correlation between gap-filling outcomes and
input sequence characteristics is given in Table 5. It contains Pearson correlation coefficients
(CC) between RMSE and input sequence characteristic parameters; the values are Pearson
CCs, averaged across all the considered gap sizes. Additionally, for the interpretation of
the results, in Table 6, we provide CCs between RMSE and the descriptive parameters for
the whole sequences for all the test recordings.
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Figure 9. Influence of training sequence length on the quality of obtained results for NN methods: Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC) and MSE.

Knowing that correlation, as a statistical measure, makes little sense for a sparse
dataset, we treat it as a kind of measurement of co-linearity between the measures. How-
ever, for part of the parameters, the (high) correlation values are connected, with quite
satisfactory low p-values; these are given in Appendix B.
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Table 5. Correlation between RMSE and sequence parameters (averaged for all gap sizes).

FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

Entropy 0.708 0.793 0.775 0.736 0.735 0.680 0.486 0.624 0.630 0.680
Stddev 0.741 0.892 0.805 0.781 0.778 0.706 0.517 0.653 0.631 0.706
Velocity 0.744 0.886 0.813 0.784 0.781 0.713 0.521 0.656 0.640 0.713
Acceleration 0.905 0.912 0.903 0.907 0.890 0.854 0.791 0.844 0.818 0.854
Jerk 0.803 0.794 0.777 0.799 0.779 0.753 0.758 0.763 0.725 0.753
Monotonicity 0.900 0.713 0.798 0.847 0.819 0.824 0.926 0.888 0.862 0.824
Complexity −0.779 −0.886 −0.815 −0.804 −0.794 −0.742 −0.589 −0.702 −0.670 −0.742

Table 6. Correlation between sequence parameters.

Entropy Stddev Velocity Acceleration Jerk Monotonicity Complexity

Entropy 1.000 0.869 0.898 0.730 0.459 0.465 −0.712
Stddev 0.869 1.000 0.992 0.879 0.732 0.501 −0.949
Velocity 0.898 0.992 1.000 0.890 0.731 0.477 −0.929
Acceleration 0.730 0.879 0.890 1.000 0.941 0.735 −0.913
Jerk 0.459 0.732 0.731 0.941 1.000 0.695 −0.847
Monotonicity 0.465 0.501 0.477 0.735 0.695 1.000 −0.560
Complexity −0.712 −0.949 −0.929 −0.913 −0.847 −0.560 1.000

p-values

Entropy 1.000 0.025 0.015 0.100 0.360 0.353 0.112
Stddev 0.025 1.000 0.000 0.021 0.098 0.311 0.004
Velocity 0.015 0.000 1.000 0.017 0.099 0.338 0.007
Acceleration 0.100 0.021 0.017 1.000 0.005 0.096 0.011
Jerk 0.360 0.098 0.099 0.005 1.000 0.125 0.033
Monotonicity 0.353 0.311 0.338 0.096 0.125 1.000 0.248
Complexity 0.112 0.004 0.007 0.011 0.033 0.248 1.000

Looking into the results in Table 5, we observe that all the considered sequence pa-
rameters are related, to some extent, to RMSE. However, for all the gap-filling methods, we
identified two key parameters that have higher CCs than the others. These are acceleration
and monotonicity, which seem to be promising candidate measures for describing the
susceptibility of sequences to the employed reconstruction methods.

Regarding inter-parameter correlations in Table 6, we can observe that most of the
measures are correlated with each other. This is expected, since kinematic/dynamic
parameters are connected with the location of the markers over time, so values such as
entropy, position standard deviation, velocity, acceleration, and jerk are correlated (for the
derivatives, the smaller the difference in the derivative order, the higher the CCs).

On the other hand, the two less typical measures, monotonicity and complexity, are
different; therefore, their correlation with the other measures is less predictable. Com-
plexity appeared to have a notable negative correlation with most of the typical measures.
Monotonicity, on the other hand, is more interesting. Since it is only moderately correlated
with remaining measures, it still has quite a high CC, with RMSEs for all the gap recon-
struction methods. Therefore, we can suppose this describes an aspect of the sequence
that is independent of the other measures, which is related to susceptibility to the gap
reconstruction procedures.

5. Summary

In this article, we addressed the issue of filling the gaps that occurred in the mocap
signal. We considered this to be a regressive problem and reviewed the results of several
NN-based regressors, which were compared with several interpolation and low-rank
matrix completion (mSVD) methods.

Generally, in the case of short gaps, the interpolation methods returned the best results,
but since the gaps became longer, part of the NNs gained an advantage. We reviewed
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five variants of neural networks. Surprisingly, the tests revealed that simple linear FFNNs,
using momentary (current and previous sample) and local (from neighboring markers)
coordinates as input data, outperformed quite advanced recurrent NNs for the longer gaps.
For the shorter gaps, RNNs offered better results, but all the NNs were outperformed by
interpolations. The boundary between ’long’ and ’short’ terms are gaps of 50 samples long.
Finally, we were able to identify which factors of the input mocap sequence influence the
reconstruction errors.

The approach to the NNs given here does not incorporate skeletal information. In-
stead, the kinematic structure is based on the FBM framework and all the predictions are
performed with the local data, as obtained from FBM. Currently, none of the analyzed ap-
proaches considered body constraints such as limb length or size, but we can easily obtain
such information from the FBM model. We plan to apply this as an additional processing
stage in the future. In the future, we plan to test more sophisticated NN architectures, such
as combined LSTM convolution, or averaged multiregressions.

Supplementary Materials: The following are available at https://www.mdpi.com/1424-8220/21/1
8/6115/s1, The motion capture sequences.

Author Contributions: conceptualization, P.S.; methodology, P.S., M.P.; software, P.S., M.P.; investiga-
tion, P.S.; resources, M.P.; data curation, M.P.; writing—original draft preparation, P.S.; writing—review
and editing, P.S., M.P.; visualization, P.S. All authors have read and agreed to the published version of
the manuscript.

Funding: The research described in the paper was performed within the statutory project of the
Department of Graphics, Computer Vision and Digital Systems at the Silesian University of Technol-
ogy, Gliwice (RAU-6, 2021). APC were covered from statutory research funds. M.P. was supported
by grant no WND-RPSL.01.02.00-24-00AC/19-011 funded by under the Regional Operational Pro-
gramme of the Silesia Voivodeship in the years 2014–2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The motion capture sequences are provided as Supplementary Files
accompanying the article.

Acknowledgments: The research was supported with motion data by Human Motion Laboratory of
Polish-Japanese Academy of Information Technology.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations
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BILSTM bidirectional LSTM
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HML Human Motion Laboratory
IK inverse kinematics
KF Kalman filter
LS least squares
LSTM long-short term memory
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MSE Mean Square Error
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NaN not a number
NN neural network
OMC optical motion capture
PCA principal component analysis
PJAIT Polish-Japanese Academy of Information Technology
RMSE root mean squared error
RNN recurrent neural network
STDDEV standard deviation
SVD singular value decomposition

Appendix A. Performance Results for All Sequences

Table A1. Quality measures for the walking (No. 2) sequence.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10

RMSE 14.222 26.428 8.844 9.932 7.004 5.088 1.287 2.464 2.507 5.088
mean(RMSEk) 12.398 23.213 7.659 9.014 6.495 3.442 0.810 1.621 1.697 3.442
median(RMSEk) 10.865 21.290 6.327 8.262 5.956 2.051 0.511 1.087 1.180 2.051
mode(RMSEk) 3.499 4.068 1.755 1.140 2.344 0.536 0.056 0.237 0.239 0.536
stddev(RMSEk) 6.930 12.645 4.634 4.744 3.371 3.505 0.938 1.773 1.788 3.505
iqr(RMSEk) 8.986 12.914 3.644 4.297 3.444 3.180 0.652 1.293 1.334 3.180

20

RMSE 15.490 32.802 13.491 13.382 13.303 12.274 4.031 6.590 6.619 12.274
mean(RMSEk) 13.743 27.978 10.155 11.171 8.396 9.071 2.591 4.798 4.904 9.071
median(RMSEk) 12.334 24.575 7.568 9.116 6.209 6.508 1.823 3.767 3.728 6.508
mode(RMSEk) 2.654 5.774 3.242 5.247 2.352 0.401 0.314 0.316 0.382 0.401
stddev(RMSEk) 6.723 16.042 8.161 6.609 8.827 8.020 2.828 4.290 4.175 8.020
iqr(RMSEk) 7.454 15.726 4.545 5.667 2.491 6.791 1.571 3.308 3.921 6.791

50

RMSE 21.907 40.375 24.343 23.833 23.434 42.517 21.474 26.332 25.995 42.517
mean(RMSEk) 19.168 36.769 19.788 19.867 18.831 33.944 16.673 21.757 21.607 33.944
median(RMSEk) 16.432 32.752 15.196 15.655 14.926 23.652 12.952 16.134 15.996 23.652
mode(RMSEk) 5.905 13.574 6.336 7.173 6.100 5.500 4.293 3.782 3.921 5.500
stddev(RMSEk) 10.486 16.289 13.174 12.408 13.037 25.484 12.659 14.438 13.993 25.484
iqr(RMSEk) 12.421 22.207 13.308 11.413 12.903 29.918 12.189 17.991 18.129 29.918

100

RMSE 39.346 75.817 61.641 60.420 60.823 76.058 58.357 62.302 62.419 76.058
mean(RMSEk) 32.287 66.701 50.195 49.019 49.453 63.445 46.476 50.803 50.693 63.445
median(RMSEk) 23.318 56.329 38.960 37.001 39.074 51.683 35.447 40.065 40.418 51.683
mode(RMSEk) 8.122 22.940 14.125 15.094 14.334 12.943 12.407 12.074 12.493 12.943
stddev(RMSEk) 22.397 35.709 35.107 34.707 34.685 41.564 34.503 35.371 35.700 41.564
iqr(RMSEk) 18.933 41.446 39.727 40.427 40.813 63.062 39.062 49.784 50.440 63.062

200

RMSE 112.933 134.121 127.416 132.150 124.566 79.741 105.237 79.407 80.457 79.741
mean(RMSEk) 87.084 121.229 108.733 111.164 107.192 75.307 91.826 69.585 70.031 75.307
median(RMSEk) 59.288 104.710 91.987 89.523 91.019 68.567 80.427 63.559 61.704 68.567
mode(RMSEk) 26.007 46.150 23.032 23.675 22.813 42.408 21.841 21.984 21.602 42.408
stddev(RMSEk) 71.160 57.197 66.944 71.470 63.693 26.502 53.401 39.296 40.746 26.502
iqr(RMSEk) 61.864 71.116 90.839 90.285 90.685 42.057 88.500 65.862 66.873 42.057

Table A2. Quality measures for the running (No. 3) sequence.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10

RMSE 11.702 25.988 8.748 8.666 7.066 3.001 0.701 1.291 1.259 3.001
mean(RMSEk) 9.939 23.049 7.675 7.581 6.105 2.221 0.476 0.985 0.942 2.221
median(RMSEk) 8.661 20.122 6.973 6.485 5.540 1.743 0.346 0.831 0.720 1.743
mode(RMSEk) 1.933 6.022 1.838 1.236 1.106 0.234 0.079 0.149 0.151 0.234
stddev(RMSEk) 5.919 11.837 4.214 4.245 3.797 1.714 0.439 0.692 0.691 1.714
iqr(RMSEk) 7.005 15.692 5.106 4.850 3.513 1.835 0.286 0.835 0.799 1.835
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Table A2. Cont.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

20

RMSE 12.141 27.729 11.594 11.232 9.321 7.397 1.742 3.401 3.439 7.397
mean(RMSEk) 10.331 25.124 9.324 9.440 6.919 5.676 1.274 2.601 2.589 5.676
median(RMSEk) 8.695 23.641 7.664 7.948 5.424 4.496 0.968 1.988 1.853 4.496
mode(RMSEk) 2.547 6.946 2.438 1.512 1.953 0.661 0.237 0.453 0.438 0.661
stddev(RMSEk) 6.215 11.425 6.552 5.753 5.787 4.017 1.010 1.889 2.021 4.017
iqr(RMSEk) 8.168 12.490 4.481 5.442 3.111 3.995 1.017 2.154 2.061 3.995

50

RMSE 23.573 39.084 31.147 24.057 23.597 34.144 12.857 19.473 21.328 34.144
mean(RMSEk) 14.767 31.801 17.835 15.504 14.637 27.624 8.608 14.842 16.431 27.624
median(RMSEk) 9.523 25.412 10.904 10.501 8.853 25.122 6.834 12.894 13.844 25.122
mode(RMSEk) 3.229 9.379 4.119 2.888 3.306 2.559 0.896 1.291 1.737 2.559
stddev(RMSEk) 18.345 22.596 25.456 18.049 18.231 18.865 8.914 11.837 12.760 18.865
iqr(RMSEk) 6.432 16.838 6.719 7.811 7.903 20.224 6.920 9.883 11.590 20.224

100

RMSE 38.173 61.656 68.606 54.639 58.223 94.347 45.740 58.606 62.724 94.347
mean(RMSEk) 25.165 49.288 44.780 40.344 42.251 83.854 37.303 51.072 55.958 83.854
median(RMSEk) 18.493 41.944 33.811 31.168 32.177 77.220 32.103 46.438 50.903 77.220
mode(RMSEk) 4.901 11.780 8.178 5.555 4.181 4.989 4.549 3.554 3.884 4.989
stddev(RMSEk) 27.594 35.231 50.041 35.158 38.271 41.350 25.286 27.575 27.272 41.350
iqr(RMSEk) 13.060 29.863 24.844 24.922 25.449 47.512 25.816 26.432 29.725 47.512

200

RMSE 110.196 145.641 145.387 143.360 145.050 248.552 138.231 167.249 199.417 248.552
mean(RMSEk) 88.708 129.262 125.767 123.634 125.213 235.787 119.848 146.780 185.085 235.787
median(RMSEk) 70.845 113.902 108.387 105.181 107.987 233.618 103.952 128.657 171.109 233.618
mode(RMSEk) 20.092 53.434 39.113 39.722 38.728 96.336 38.444 36.027 74.145 96.336
stddev(RMSEk) 63.969 65.135 70.990 70.695 71.285 73.293 66.963 77.021 70.628 73.293
iqr(RMSEk) 67.200 73.343 87.747 82.080 89.947 77.986 83.010 64.869 47.085 77.986

Table A3. Quality measures for the sitting (No. 4) sequence.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10

RMSE 3.701 3.792 1.664 1.954 1.373 1.697 0.711 0.841 0.839 1.697
mean(RMSEk) 3.272 3.386 1.463 1.737 1.210 1.218 0.478 0.617 0.606 1.218
median(RMSEk) 2.996 2.987 1.351 1.682 1.108 0.948 0.339 0.475 0.429 0.948
mode(RMSEk) 0.437 0.558 0.197 0.212 0.249 0.072 0.059 0.041 0.043 0.072
stddev(RMSEk) 1.896 1.767 0.806 0.846 0.642 1.094 0.483 0.530 0.537 1.094
iqr(RMSEk) 2.282 2.025 0.991 1.301 0.702 1.049 0.260 0.467 0.480 1.049

20

RMSE 3.464 3.829 2.060 2.025 1.688 3.902 1.285 1.904 2.029 3.902
mean(RMSEk) 3.106 3.429 1.708 1.797 1.475 3.057 0.942 1.515 1.559 3.057
median(RMSEk) 2.911 3.319 1.519 1.572 1.318 2.434 0.739 1.230 1.169 2.434
mode(RMSEk) 0.522 0.497 0.300 0.240 0.271 0.211 0.126 0.155 0.161 0.211
stddev(RMSEk) 1.577 1.750 1.122 0.962 0.812 2.415 0.838 1.153 1.311 2.415
iqr(RMSEk) 2.233 2.263 1.038 1.069 0.934 2.762 0.781 0.979 0.995 2.762

20

RMSE 4.901 6.291 6.392 5.952 6.255 15.596 6.334 9.332 10.056 15.596
mean(RMSEk) 4.383 5.355 5.064 4.697 4.895 12.767 4.902 7.260 7.710 12.767
median(RMSEk) 3.982 4.831 4.007 3.623 3.803 11.036 3.652 5.788 6.343 11.036
mode(RMSEk) 0.482 0.417 0.313 0.422 0.277 0.267 0.332 0.267 0.240 0.267
stddev(RMSEk) 2.276 3.254 3.793 3.568 3.778 8.741 3.880 5.667 6.265 8.741
iqr(RMSEk) 2.978 3.833 5.160 4.098 4.999 11.116 5.269 6.546 6.801 11.116

20

RMSE 15.716 21.780 23.727 23.023 23.575 38.083 23.547 28.358 28.813 38.083
mean(RMSEk) 11.904 16.468 18.440 17.539 18.222 33.439 18.245 23.435 24.033 33.439
median(RMSEk) 8.596 13.132 15.903 14.109 15.147 30.517 15.467 20.365 20.691 30.517
mode(RMSEk) 0.643 0.711 0.927 0.743 0.950 1.324 1.170 1.139 1.121 1.324
stddev(RMSEk) 9.980 13.839 14.495 14.484 14.524 17.840 14.459 15.569 15.542 17.840
iqr(RMSEk) 7.816 11.087 13.380 12.476 13.201 23.419 13.054 15.405 14.280 23.419
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Table A3. Cont.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

20

RMSE 37.101 48.909 51.388 50.842 51.274 72.745 51.478 59.839 59.857 72.745
mean(RMSEk) 31.439 41.811 44.331 43.711 44.219 66.280 44.321 54.030 54.156 66.280
median(RMSEk) 26.422 36.792 40.178 39.257 40.099 71.201 39.395 55.235 54.311 71.201
mode(RMSEk) 1.783 2.342 2.592 2.372 2.558 0.972 2.819 0.875 0.912 0.972
stddev(RMSEk) 20.198 25.924 26.514 26.496 26.480 30.443 26.659 26.183 26.001 30.443
iqr(RMSEk) 22.947 30.188 29.510 29.617 29.241 37.209 29.316 29.572 28.094 37.209

Table A4. Quality measures for the boxing (No. 5) sequence.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10

RMSE 2.603 3.006 1.217 1.467 1.008 1.175 0.986 0.668 0.735 1.175
mean(RMSEk) 2.321 2.697 1.087 1.316 0.885 0.848 0.484 0.461 0.507 0.848
median(RMSEk) 2.036 2.476 1.001 1.173 0.783 0.666 0.276 0.317 0.322 0.666
mode(RMSEk) 0.505 0.309 0.270 0.303 0.218 0.036 0.043 0.035 0.034 0.036
stddev(RMSEk) 1.174 1.354 0.521 0.613 0.456 0.712 0.765 0.420 0.473 0.712
iqr(RMSEk) 1.449 1.769 0.504 0.705 0.542 0.709 0.307 0.341 0.490 0.709

20

RMSE 2.581 3.298 1.446 1.591 1.200 3.534 1.157 1.648 2.021 3.534
mean(RMSEk) 2.295 3.030 1.341 1.458 1.070 2.818 0.797 1.309 1.519 2.818
median(RMSEk) 2.022 2.780 1.242 1.353 0.934 2.282 0.608 0.983 1.071 2.282
mode(RMSEk) 0.826 0.700 0.326 0.402 0.303 0.273 0.106 0.125 0.126 0.273
stddev(RMSEk) 1.161 1.308 0.541 0.606 0.549 1.965 0.819 0.930 1.249 1.965
iqr(RMSEk) 1.415 1.704 0.736 0.732 0.494 2.153 0.491 1.038 1.333 2.153

50

RMSE 4.045 5.038 4.965 4.067 4.295 14.095 3.956 7.248 9.171 14.095
mean(RMSEk) 3.211 4.183 3.609 3.109 3.306 11.957 3.262 6.083 7.562 11.957
median(RMSEk) 2.546 3.503 2.661 2.500 2.634 10.384 2.736 5.271 6.318 10.384
mode(RMSEk) 0.699 1.102 0.699 0.538 0.480 0.444 0.542 0.513 0.546 0.444
stddev(RMSEk) 2.460 2.788 3.404 2.614 2.747 7.236 2.235 3.802 4.994 7.236
iqr(RMSEk) 1.743 1.595 1.968 1.540 2.062 9.821 2.059 5.074 7.302 9.821

100

RMSE 10.134 16.216 21.424 19.275 21.386 36.436 21.538 27.723 30.374 36.436
mean(RMSEk) 8.175 13.241 17.438 15.384 17.357 31.336 17.608 23.779 26.421 31.336
median(RMSEk) 6.398 11.337 14.702 12.285 14.627 27.834 14.823 22.008 24.825 27.834
mode(RMSEk) 0.864 1.156 1.085 0.973 1.090 0.514 0.912 0.632 0.490 0.514
stddev(RMSEk) 5.837 9.220 12.123 11.372 12.169 18.465 12.075 14.128 14.876 18.465
iqr(RMSEk) 6.261 12.033 16.415 16.672 16.414 25.577 16.361 18.637 19.008 25.577

200

RMSE 42.833 60.847 71.465 70.625 71.514 64.829 72.201 60.721 61.704 64.829
mean(RMSEk) 36.693 54.330 64.743 63.732 64.805 61.507 65.477 56.493 57.666 61.507
median(RMSEk) 33.631 50.764 61.017 60.170 61.057 60.782 62.218 55.492 57.030 60.782
mode(RMSEk) 4.592 9.116 10.042 9.788 9.974 8.998 10.077 8.616 8.609 8.998
stddev(RMSEk) 21.768 26.954 29.620 29.819 29.609 20.171 29.798 22.097 21.740 20.171
iqr(RMSEk) 21.992 31.408 36.039 35.205 36.075 24.945 36.485 29.814 28.505 24.945

Table A5. Quality measures for the falling (No. 6) sequence.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10

RMSE 19.193 17.106 8.537 9.585 6.720 5.763 1.601 2.872 3.365 5.763
mean(RMSEk) 15.455 15.022 7.818 8.772 6.166 3.827 0.994 1.851 1.968 3.827
median(RMSEk) 13.186 13.571 6.947 8.341 5.616 2.359 0.618 1.107 1.145 2.359
mode(RMSEk) 2.760 3.139 2.310 2.880 2.110 0.244 0.105 0.145 0.149 0.244
stddev(RMSEk) 11.270 8.163 3.494 3.852 2.555 4.023 1.138 2.039 2.551 4.023
iqr(RMSEk) 9.203 10.174 3.101 4.009 3.520 3.723 0.789 1.795 1.813 3.723
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Table A5. Cont.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

20

RMSE 18.496 17.762 10.664 11.914 9.057 15.278 6.073 9.213 9.596 15.278
mean(RMSEk) 16.206 16.199 8.940 10.261 7.897 10.937 3.694 5.981 6.392 10.937
median(RMSEk) 14.108 14.897 8.130 9.530 7.106 7.613 2.089 3.687 4.319 7.613
mode(RMSEk) 4.659 2.388 2.143 1.822 2.821 0.953 0.339 0.756 0.832 0.953
stddev(RMSEk) 8.511 7.184 6.211 5.915 4.455 9.596 4.383 6.169 6.567 9.596
iqr(RMSEk) 9.496 8.219 4.321 5.520 3.642 10.133 3.402 5.298 5.154 10.133

50

RMSE 38.618 43.058 50.077 47.367 47.474 60.232 46.220 42.945 44.782 60.232
mean(RMSEk) 28.149 30.795 32.292 30.356 30.213 43.423 28.314 29.543 31.603 43.423
median(RMSEk) 18.927 18.873 16.214 15.491 14.312 29.262 14.172 17.724 19.705 29.262
mode(RMSEk) 5.585 3.883 3.061 4.112 2.789 4.507 1.345 2.710 2.615 4.507
stddev(RMSEk) 25.916 29.395 37.233 35.345 35.587 42.053 35.660 31.333 31.914 42.053
iqr(RMSEk) 15.417 17.126 31.871 21.094 29.043 38.828 27.009 24.239 28.168 38.828

100

RMSE 70.671 89.650 100.005 95.523 100.282 125.495 98.770 92.878 97.573 125.495
mean(RMSEk) 55.641 72.172 81.983 76.503 81.814 104.667 81.794 76.620 81.261 104.667
median(RMSEk) 42.728 57.532 66.468 62.277 66.311 86.119 68.990 59.710 66.757 86.119
mode(RMSEk) 7.967 8.688 10.247 7.912 9.749 7.809 9.146 6.892 7.449 7.809
stddev(RMSEk) 43.593 53.283 57.286 57.268 58.033 69.796 55.712 52.857 54.185 69.796
iqr(RMSEk) 52.533 72.029 82.980 85.218 86.618 85.060 92.529 71.859 75.211 85.060

200

RMSE 192.371 224.989 240.459 237.068 240.104 219.332 238.962 182.390 177.973 219.332
mean(RMSEk) 168.542 199.701 214.118 209.626 213.731 198.998 212.497 165.908 161.330 198.998
median(RMSEk) 145.399 185.636 190.954 187.446 191.565 196.704 189.560 169.458 163.676 196.704
mode(RMSEk) 43.924 47.226 58.636 49.156 60.128 38.386 60.706 33.396 32.207 38.386
stddev(RMSEk) 92.157 103.406 108.703 110.129 108.684 94.898 108.542 77.915 77.491 94.898
iqr(RMSEk) 102.432 114.007 119.186 116.515 119.440 153.708 117.857 121.289 120.480 153.708

Appendix B. Correlations between RMSE an Sequence Parameters

Table A6. Correlation between RMSE and entropy of input sequence.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10 0.741 0.878 0.890 0.849 0.890 0.614 0.261 0.552 0.520 0.614
20 0.760 0.827 0.852 0.842 0.790 0.608 0.466 0.550 0.533 0.608
50 0.744 0.851 0.740 0.678 0.670 0.660 0.503 0.603 0.608 0.660
100 0.639 0.719 0.724 0.649 0.662 0.742 0.576 0.661 0.679 0.742
200 0.658 0.691 0.667 0.665 0.664 0.777 0.626 0.756 0.812 0.777

10 0.092 0.021 0.017 0.033 0.017 0.195 0.617 0.256 0.290 0.195
20 0.080 0.042 0.031 0.036 0.061 0.200 0.352 0.258 0.276 0.200
50 0.090 0.032 0.093 0.139 0.146 0.153 0.309 0.205 0.200 0.153
100 0.172 0.108 0.104 0.163 0.152 0.091 0.231 0.153 0.138 0.091
200 0.155 0.129 0.148 0.150 0.150 0.069 0.184 0.082 0.050 0.069

Table A7. Correlation between RMSE and standard deviation of input sequence.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10 0.775 0.997 0.950 0.928 0.956 0.729 0.419 0.668 0.586 0.729
20 0.823 0.986 0.969 0.943 0.948 0.688 0.505 0.595 0.556 0.688
50 0.736 0.924 0.703 0.661 0.645 0.718 0.479 0.627 0.614 0.718
100 0.673 0.833 0.755 0.708 0.698 0.747 0.611 0.718 0.707 0.747
200 0.696 0.719 0.649 0.667 0.641 0.648 0.570 0.659 0.694 0.648
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Table A7. Cont.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10 0.070 0.000 0.004 0.007 0.003 0.100 0.408 0.147 0.222 0.100
20 0.044 0.000 0.001 0.005 0.004 0.131 0.307 0.213 0.252 0.131
50 0.095 0.008 0.119 0.153 0.167 0.108 0.336 0.183 0.195 0.108
100 0.143 0.040 0.083 0.115 0.123 0.088 0.198 0.108 0.116 0.088
200 0.125 0.107 0.163 0.148 0.170 0.164 0.237 0.155 0.126 0.164

Table A8. Correlation between RMSE and velocity of input sequence.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10 0.768 0.983 0.943 0.915 0.950 0.701 0.419 0.640 0.564 0.701
20 0.812 0.962 0.950 0.927 0.916 0.669 0.486 0.576 0.540 0.669
50 0.749 0.921 0.724 0.672 0.657 0.716 0.478 0.624 0.619 0.716
100 0.681 0.825 0.772 0.715 0.709 0.771 0.615 0.728 0.723 0.771
200 0.712 0.742 0.679 0.694 0.673 0.710 0.609 0.714 0.755 0.710

10 0.074 0.000 0.005 0.011 0.004 0.121 0.409 0.172 0.243 0.121
20 0.050 0.002 0.004 0.008 0.010 0.146 0.328 0.231 0.269 0.146
50 0.087 0.009 0.104 0.143 0.157 0.110 0.338 0.186 0.190 0.110
100 0.136 0.043 0.072 0.111 0.115 0.072 0.194 0.101 0.104 0.072
200 0.112 0.091 0.138 0.126 0.143 0.114 0.199 0.111 0.083 0.114

Table A9. Correlation between RMSE and acceleration of input sequence.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10 0.901 0.867 0.917 0.928 0.922 0.879 0.775 0.853 0.806 0.879
20 0.923 0.853 0.916 0.932 0.894 0.870 0.754 0.806 0.779 0.870
50 0.896 0.952 0.870 0.858 0.846 0.909 0.740 0.845 0.844 0.909
100 0.886 0.960 0.928 0.916 0.907 0.914 0.858 0.926 0.916 0.914
200 0.918 0.929 0.884 0.901 0.879 0.699 0.830 0.789 0.745 0.699

10 0.014 0.025 0.010 0.008 0.009 0.021 0.070 0.031 0.053 0.021
20 0.009 0.031 0.010 0.007 0.016 0.024 0.083 0.053 0.068 0.024
50 0.016 0.003 0.024 0.029 0.034 0.012 0.093 0.034 0.034 0.012
100 0.019 0.002 0.008 0.010 0.012 0.011 0.029 0.008 0.010 0.011
200 0.010 0.007 0.019 0.014 0.021 0.122 0.041 0.062 0.089 0.122

Table A10. Correlation between RMSE and jerk of input sequence.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10 0.784 0.711 0.752 0.785 0.760 0.823 0.861 0.818 0.765 0.823
20 0.811 0.723 0.778 0.798 0.784 0.810 0.720 0.750 0.720 0.810
50 0.772 0.813 0.736 0.749 0.737 0.833 0.674 0.770 0.766 0.833
100 0.806 0.881 0.826 0.846 0.827 0.797 0.800 0.855 0.830 0.797
200 0.843 0.843 0.791 0.816 0.785 0.502 0.736 0.625 0.546 0.502

10 0.065 0.113 0.084 0.064 0.080 0.044 0.028 0.047 0.076 0.044
20 0.050 0.104 0.068 0.057 0.065 0.051 0.107 0.086 0.106 0.051
50 0.072 0.049 0.095 0.086 0.095 0.040 0.142 0.073 0.076 0.040
100 0.053 0.020 0.043 0.034 0.042 0.057 0.056 0.030 0.041 0.057
200 0.035 0.035 0.061 0.048 0.064 0.311 0.095 0.185 0.262 0.311

151



Sensors 2021, 21, 6115

Table A11. Correlation between RMSE and monotonicity of input sequence.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10 0.918 0.533 0.722 0.781 0.709 0.952 0.866 0.971 0.993 0.952
20 0.898 0.529 0.694 0.759 0.703 0.971 0.999 0.993 0.996 0.971
50 0.883 0.774 0.857 0.914 0.918 0.937 0.974 0.965 0.953 0.937
100 0.908 0.873 0.853 0.908 0.904 0.817 0.951 0.897 0.890 0.817
200 0.892 0.858 0.866 0.871 0.862 0.441 0.842 0.612 0.476 0.441

10 0.010 0.276 0.106 0.067 0.115 0.003 0.026 0.001 0.000 0.003
20 0.015 0.281 0.126 0.080 0.119 0.001 0.000 0.000 0.000 0.001
50 0.020 0.071 0.029 0.011 0.010 0.006 0.001 0.002 0.003 0.006
100 0.012 0.023 0.031 0.012 0.013 0.047 0.003 0.015 0.018 0.047
200 0.017 0.029 0.026 0.024 0.027 0.381 0.036 0.196 0.340 0.381

Table A12. Correlation between RMSE and complexity of input sequence.

Len FFNNlin FFNNtanh LSTM GRU BILSTM LIN SPLINE MAKIMA PCHIP mSVD

10 −0.795 −0.937 −0.913 −0.906 −0.922 −0.781 −0.532 −0.729 −0.645 −0.781
20 −0.837 −0.931 −0.936 −0.920 −0.919 −0.733 −0.568 −0.644 −0.599 −0.733
50 −0.763 −0.914 −0.730 −0.703 −0.687 −0.770 −0.544 −0.685 −0.670 −0.770
100 −0.744 −0.878 −0.802 −0.775 −0.758 −0.787 −0.682 −0.780 −0.759 −0.787
200 −0.754 −0.769 −0.692 −0.714 −0.685 −0.637 −0.618 −0.673 −0.675 −0.637

10 0.059 0.006 0.011 0.013 0.009 0.067 0.278 0.100 0.167 0.067
20 0.038 0.007 0.006 0.009 0.010 0.097 0.239 0.167 0.209 0.097
50 0.078 0.011 0.099 0.119 0.131 0.074 0.265 0.134 0.145 0.074
100 0.090 0.021 0.055 0.070 0.081 0.063 0.135 0.067 0.080 0.063
200 0.083 0.074 0.128 0.111 0.133 0.174 0.191 0.143 0.141 0.174
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Abstract: Human action recognition (HAR) has gained significant attention recently as it can be
adopted for a smart surveillance system in Multimedia. However, HAR is a challenging task because
of the variety of human actions in daily life. Various solutions based on computer vision (CV) have
been proposed in the literature which did not prove to be successful due to large video sequences
which need to be processed in surveillance systems. The problem exacerbates in the presence of multi-
view cameras. Recently, the development of deep learning (DL)-based systems has shown significant
success for HAR even for multi-view camera systems. In this research work, a DL-based design
is proposed for HAR. The proposed design consists of multiple steps including feature mapping,
feature fusion and feature selection. For the initial feature mapping step, two pre-trained models are
considered, such as DenseNet201 and InceptionV3. Later, the extracted deep features are fused using
the Serial based Extended (SbE) approach. Later on, the best features are selected using Kurtosis-
controlled Weighted KNN. The selected features are classified using several supervised learning
algorithms. To show the efficacy of the proposed design, we used several datasets, such as KTH,
IXMAS, WVU, and Hollywood. Experimental results showed that the proposed design achieved
accuracies of 99.3%, 97.4%, 99.8%, and 99.9%, respectively, on these datasets. Furthermore, the feature
selection step performed better in terms of computational time compared with the state-of-the-art.

Keywords: human action recognition; deep learning; features fusion; features selection; recognition

1. Introduction

Human action recognition (HAR) emerged as an active research area in the field of
computer vision (CV) in the last decade [1]. HAR has applications in various domains
including; surveillance [2], human-computer interaction (HCI) [3], video reclamation, and
understanding of visual information [4], etc. The most important application of action
recognition is video surveillance [5]. Governments use this application for intelligence
gathering, reducing crime rate, for security purposes [6], or even crime investigation [7].
The main motivation of growing research in HAR is due to its use in video surveillance
applications [8]. In visual surveillance, HAR plays a key role in recognizing the activities
of subjects in public places. Furthermore, these types of systems are also useful in smart
cities surveillance [9].

Human actions are of various types. These actions can be categorized into two broad
classes, namely voluntary actions and involuntary actions [10]. Manual recognition of
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these actions in real-time is a tedious and error-prone task; therefore, many CV techniques
are introduced in the literature [11,12] to serve this task. Most of the proposed solutions
are based on classical techniques such as shape features, texture features, point features,
and geometric features [13]. A few techniques are based on the temporal information of
the human [14], and a few of them extract human silhouettes before feature extraction [15].

Recently, deep learning has shown promising results in the field of computer vision
(CV) [16]. Deep learning makes learning and data representation at multiple levels by
mimicking the human brain processing [17] to create models. These models consist of
multiple processing layers such as convolutional, ReLu, pooling, fully connected, and
Softmax [18]. The functionality of a CNN model is to replicate the working of the human
brain as it preserves and makes sense of multidimensional information. There exist multiple
methods in deep learning, which include encompassing neural networks, hierarchical
probabilistic models, supervised learning, and unsupervised learning models [19].

The HAR process is a challenging task as there are a variety of human actions in daily
life. In order to tackle this challenge, deep learning models are utilized. The performance
of a deep learning model is always based on the number of training samples [20]. In the
action recognition tasks, several datasets are publicly available. These datasets include
several actions such as walking, running, leaving a car, waving, kicking, boxing, throwing,
falling, bending down, and many more.

Recently proposed systems mainly focus on the hybrid techniques; however, they do
not focus on minimizing the computational time [21]. This is an important factor as most
time surveillance is performed in real-time. Some of the other key challenges of HAR are as
follows: (i) Query video sequences resolution is imperative for the recognition of the focal
point in the most recent frame. The background complexity, shadows, lighting conditions,
and outfit conditions extract irrelevant information using classical techniques of human
action, which later results in inefficient action classification; (ii) with automatic activities
recognition under multi-view cameras it is difficult to classify the correct human activities.
Change in the motion variation captures the wrong activities under the multi-view cameras;
(iii) imbalanced datasets impact the learning of a CNN. A CNN model always needs a
massive number of training images for learning; and (iv) features extraction from the entire
video sequences includes several irrelevant features, affecting the classification accuracy.

These challenges are considered in this work to propose a fully automated design
using deep learning features fusion and best feature selection for HAR under the complex
video sequences. The major contributions of this work are summarized as follows:

• Selected two pre-trained deep learning models and removed the last three layers. The
new layers are added and trained on the target datasets (action recognition dataset).
In the training process, the first 80% of the layers are frozen instead of using all the
layers, whereas the training process was conducted using transfer learning.

• Proposed a Serial based Extended (SbE) approach for multiple deep learning features
fusion. This approach fused features in two phases for better performance and to
reduce redundancy.

• Proposed a feature selection technique named Kurtosis-controlled Weighted KNN
(KcWKNN). A threshold function is defined which is further analyzed using a fit-
ness function.

• Performed an ablation study to investigate the performance of each step in terms of
advantages and disadvantages.

The rest of the manuscript is organized as follows: Related work is presenting in
Section 2. The proposed design for HAR is presented in Section 3, which includes deep
learning models, transfer learning, the selection of best features and fusion. Results of
the proposed method are presented in Section 4 in terms of tables and confusion matrixes.
Finally, Section 5 concludes this work.
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2. Related Work

HAR has emerged as an impactful research area in CV from the last decade [22]. It is
based on important applications such as visual surveillance [23], robotics, biometrics [24,25],
and smart healthcare centers to name a few [26,27]. Several researchers of computer vision
developed techniques using machine learning [28] for HAR. Most of these researches
focused on deep learning due to its better performance and few of them used barometric
sensors for activity recognition [29]. Rasel et al. [30] extracted the spatial features using
acidometer sensors and classified using multiclass SVM for final activity recognition.
Zhao et al. [31] introduced a combined framework for activity recognition. They combined
short-term and long-term features for the final results. Khan et al. [32] combined the
attention-based LSTM network with dilated CNN model features for the action recognition.
Similarly, a skeleton based attention framework is presented by [33] for action recognition.
Maheshkumar et al. [13] presented an HAR framework using both the shape and the OFF
features [34]. The presented framework is the combination of Hidden Markov Model
(HMM) and SVM. The shape and OFF features are extracted and used for HAR through the
HMM classifier. The multi-frame averaging method was adopted for background extraction
of the image. A discrete Fourier transform (DFT) was performed to reduce the magnitude
on the length feature set from the middle to the body contour. In order to select features,
the principal component analysis was implied. The presented framework was tested on
videos recorded in real-time settings and achieved maximum accuracy. Weifeng et al. [35]
presented a generalized Laplacian Regularized Sparse Coding (LRSC) framework for HAR.
It was a nonlinear generalized version of graph Laplacian with a tighter isoperimetric
inequality. A fast-iterative shrinkage thresholding algorithm for the optimization of �-LRSC
was also presented in this work. The input of the sparse codes learned by the �-LRSC
algorithm were placed into the support vector machine (SVM) for final categorization.
The datasets used for the experimental process were unstructured social activity attribute
(USAA) and HMDB51. The experimental results demonstrated the competence of the
presented �-LRSC algorithm. Ahmed et al. [36] presented an HAR model using a depth
video analysis. HMM was employed to recognize regular activities of aged people living
without any attendant. The first step was to analyze the depth maps through the temporal
motion identification method using the segments of human silhouettes in a given scenario.
Robust features were selected and fused together to find the gradient orientation change,
intensity difference temporal and local movement of the body organs [37]. These fused
features were processed via embedded HMM. The experimental process was conducted
on three different datasets such as Online Self-Annotated [38], Smart Home, and Three
Healthcare, and achieved the accuracies 84.4, 87.3, and 95.97%, respectively. Muhammed
et al. [39] presented a smartphone inertial sensors-based framework for human activity
recognition. The presented framework was divided into three steps: (i) extract the efficient
features; (ii) the features were reduced using the kernel principal component analysis
(KPCA) and linear discriminant analysis (LDA) to make them resilient; (iii) resultant
features were trained via deep belief neural networks (DBN) to attain improved accuracy.
The presented approach was compared with traditional expression recognition approaches
such as typical multiclass SVM [40,41] and artificial neural network (ANN) and showed an
improved accuracy.

Lei et al. [42] presented a light weight action recognition framework based on DNN
using RGB video sequences. The presented framework was constructed using CNNs and
LTSM units that was a temporal attention model. The purpose of using CNNs was to
segment out the objects from the complex background. LTSM networks were used on
spatial feature maps of multiple CNN layers. Three datasets, such as UCF-11, UCF Sports,
and UCF-101, were used for experimental processes and achieved 98.45%, 91.89%, and
84.10%, respectively. Abdu et al. [43] presented an HAR framework based on deep learning.
They considered the problem of traditional techniques which are not useful for the better
accuracy of complex activities. The presented framework used a cross DBNN model that
unites the SRUs with GRUs of the neural network. The SRUs were used to execute the
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sequence multi-modal data input. Then GRUs were used to store and learn the amount of
information that can be transferred from past state to future state. Zan et al. [44] presented
an action recognition model that served the problem of multi-view HAR. The presented
algorithm was based on adaptive fusion and category-level dictionary learning (AFCDL).
In order to integrate dictionary learning, query sets were designed, and the regularization
scheme was constructed for the adaptive weights assignment. Muhammad et al. [45]
presented a new framework of 26-layered CNN for composite action classification. Two
layers, the global average pooling layer and fully connected layer (FC) were used for
feature extraction. The extracted features are classified using the extreme learning machine
(ELM) and Softmax for final action classification. Four datasets named HMDB51, UCF
Sports, KTH, and Weizmann were used for the experimentation process and showed better
performance. Muhammad et al. [4] presented a new fully automated structure for HAR
by fusing DNN and multi-view features. Initially, a pre-trained CNN named VGG19
was implied to take out DNN features. Horizontal and vertical gradients were used to
compute multi-view features and vertical directional attributes. Final recognition was
performed on the selected features via the Naive Bayes Classifier (NBC). Kun et al. [46]
introduced an HAR model based on DNN that combines the convolutional layer with
LSTM. The presented model was able to automatically extract the features and perform
their classification with the standard parameters.

Recently, the development of deep learning models for HAR using high dimensional
datasets has shown immense progress. Classical methods for HAR did not show satisfac-
tory performance, especially for large datasets. In contrast, the modern techniques such as
Long Short-Term Memory (LSTM), SV-GCN, and Convolution Neural Networks (CNNs)
are showing improved performance and can be considered for further research to obtain
an improvement in the accuracy.

3. Proposed Methodology

This section presents the proposed methodology for human action recognition in
complex video sequences. The proposed design consists of multiple steps, including
feature mapping, feature fusion, and feature selection. Figure 1 represents the proposed
design of HAR. In this design, features are extracted from the two pre-trained models
such as DenseNet201 and InceptionV3. The extracted deep features are fused using the
Serial based Extended (SbE) approach. In the later step, the best features are selected
using Kurtosis-controlled Weighted KNN. The selected features are classified using several
supervised learning algorithms. Detail of each step is provided below.

3.1. Convolutional Neural Network (CNN)

CNN is an innovative technique in deep learning that makes the classification process
fast and precise. CNN requires lesser parameters to train compared with the traditional
neural networks [47]. A CNN model contains multiple layers where the convolution layer
is an integral part. Few other layers contained in the CNN model are pooling layers (min,
max, average), the ReLU layer, and some fully connected (FC) layers. The internal structure
of a CNN has multiple layers as presented in Figure 2. This figure shows that video
sequences are provided as input to this network. In the network, the initially convolutional
layer is added to convolve input image features, which are later normalized in pooling and
hidden layers. After that, FC layers are added to convert image features into 1D feature
vector. The final 1D extracted features are classified in the last layer, which is known as the
output layer.
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Figure 1. Illustration of a proposed design for HAR using deep learning.

 

Figure 2. A simple architecture of CNN containing multiple layers for image classification.

3.2. Densenet201 Pre-Trained Deep Model

DenseNet is an advanced CNN model where every layer is directly connected with all
the layers in subsequent order. These connections help to improve the flow of information
in the network, as illustrated in Figure 3. This dense connectivity makes it a dense con-
volutional network commonly known as DenseNet [48]. Other than the improvement in
the information flow, it caters to the vanishing gradient problems as well as it strengthens
the feature prorogation process. DenseNet also allows for reusing the features and it
reduces required parameters, which eventually reduces the computational complexity of
the algorithm. Consider a CNN with φ number of layers and φl layer index has an input
stream that starts with x0. A nonlinear transformation function Fφ(.) is applied on each
layer and it can be a combination of multiple functions such as BN, pooling convolution or
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ReLU. In a densely connected network, each layer is connected to its subsequent layers.
Output of the φth layer is represented by xφ.

xφ = Fφ
(

x0, . . . . . . , xφ−1
)

(1)

where
(

x0, . . . . . . , xφ−1
)

states the concatenation of the feature maps generated in layers
0, . . . . . . ..,φ− 1.

 

Figure 3. Network architecture of DenseNet201 for action recognition.

3.3. Inception V3 Pre-Trained Deep Model

InceptionV3 [49] is an already trained CNN model on the ImageNet dataset. It
consists of 316 layers which include convolution layers, pooling layers, fully connected
layers, dropout, and Softmax layers. The total number of connections in this model is 350.
Unlike a traditional CNN that allows a fixed filter size in a single layer, InceptionV3 has
the flexibility to use variable filter sizes and a number of parameters in a single layer which
results in better performance. An architecture of InceptionV3 is shown in Figure 4.

 

Figure 4. Network architecture of Inceptionv3 model.

3.4. Transfer Learning Based Learning

Transfer learning is a well-known technique in the field of deep learning that allows
the reusability of a pre-trained model on an advanced research problem [50]. A major
advantage of using TL is that it requires less data as input and provides remarkable results.
It aims to transfer knowledge from a source domain to a targeted domain, here the source
domain refers to a pre-trained model with a very large dataset and the targeted domain
is the proposed problem with limited labels [51]. In the source domain, usually a large
high-resolution image dataset known as ImageNet is used [52,53]. It contains more than
15 billion labels and 1000 image categories. Image labels in ImageNet are saved according
to the wordNet hierarchy, where each node leads to thousands of images belonging to that
category. Mathematically, TL is defined as follows:
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Given a source domain sd, defined as:

sd =
{(

xd
1, yd

1

)
, . . . ,

(
xd

i , yd
i

)
, . . . ,

(
xd

n, yd
n

)}
The learning task is Ld,Ls,

(
xd

m, yd
m

)
∈ ϕ. The target domain is defined as:

st =
{(

xt
1, yt

1
)
, . . . ,

(
xt

i , yt
i
)
, . . . ,

(
xt

n, yt
n
)}

The learning task Lt,
(
xt

n, yt
n
) ∈ ϕ, (m, n) will be the size of training data, where n � m

and yd
i and yt

i are the training data labels. Using this definition, both pre-trained models
are trained on action datasets. During the training process, the learning rate was 0.01, the
mini batch size is 64, the maximum epochs is 100 and the learning method is the stochastic
gradient descent. After the fine-tuning process, the output of both models is the number of
action classes.

3.5. Features Extraction

Features are extracted from the newly learned models called target models as shown
in Figures 5 and 6. Figure 5 represents a DenseNet201 modified model. Using this model,
features are extracted using the avg-pool layer. In the output, an N × 1920 dimensional

feature vector was obtained, denoted by
→
C , where N represents number of images in the

target dataset.
Using the Inception V3 modified model (depicted in Figure 6), features are extracted

from the average pool layer. On this layer, the dimension of the extracted deep feature

vector is N × 2048 and it is represented by
→
D, where N is the number of images in the

target dataset.

 

Figure 5. Target model (modified DenseNet201) for feature extraction.
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Figure 6. Target model (modified Inception V3) for feature extraction.

3.6. Serial Based Extended Fusion

The fusion of features is becoming a popular technique for improved classification
results. The main advantage of this step is to improve the image information in terms
of features. The improved feature space increases the classification performance. In the
proposed work, a Serial based Extended (SbE) approach is implemented. In this approach,
initially features are fused using a serial-based approach. The fused vectors are combined
in a single feature vector and to obtain a feature vector of dimension N×3968 and denoted

by Ò, considering two feature vectors
→
C and

→
D defined on the outline of sample space

→
Z. For an arbitrary sample ∈ →

Z, the equivalent two feature vectors are j ∈
→
C and

k ∈ →
D. The serial combined feature of can be defined as =

(
j
k

)
. If feature vector

→
C

has n dimensions and feature vector
→
D has m dimensions, then serial fused feature Òwill

have (n + m) dimensions. After obtaining a Òfeature vector, the features are sorted into
descending order and the mean value is computed. Based on the mean value, the feature
vector is extended in terms of the final fusion.

μ() =
1
N

N

∑
i=1

(i) (2)

Fsn =

{
Fusion(i) f or i ≥ μ
Discard, ElseWhere

(3)

Here, Fusion(i) is a final fused feature vector of dimension N×K, where the value of
K is always transformed according to the variation in the dataset. Later on, this fusion
vector is analyzed using the experimental process and further refined using a feature
selection approach.
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3.7. Serial Based Extended Fusion

Feature selection is the process of the selection of subset features from the input feature
vector [54]. It helps to improve the performance of the algorithm and also reduces the
training time. In the proposed design, a new feature selection algorithm is proposed,
Kurtosis-controlled Weighted KNN (KcWKNN). The proposed selection method works in
the following steps: (i) input fused feature vector; (ii) compute Kurtosis value; (iii) define a
threshold function; (iv) calculate fitness, and (v) select the feature vector.

The Kurtosis value is computed as follows:

Kr =
μ4

δ4 (4)

μ4 = E
[(︷︸︸︷

F i − E
[︷︸︸︷

F
])n]

,
︷︸︸︷

F i ∈ Fusion(i) and n = 4 (5)

δ4 =

√√√√E

[(︷︸︸︷
F i − μ

)2
]

(6)

where K is the Kurtosis function, μ4 is the fourth central moment, and δ is the standard
deviation. Kurtosis is a statistical measure that we investigate to find how much the tails of
the distribution deviate from the normal. Distributions with higher values are identified
in this process. In this work, the main purpose of using Kurtosis is to obtain the higher
tail values (outlier features) through the fourth moment that was later employed in the
threshold function for the initial feature selection. By using the Kurtosis value, a threshold
function is defined as follows:

Ts =
{

FS(i) f or Fusion(i) ≥ Kr
Ignore, Elsewhere

(7)

The selected feature vector FS(i) is passed into the fitness function WKNN for valida-
tion. Mathematically, WKNN is defined as follows:

Consider {(xi, yi)}N
i=1 ∈ P as the training set where xi is the p-dimensional training

vector and yi is its equivalent class labels set. To determine the label y of any x from the
test set (x, y), the following mathematics takes place.

(a) Compute the Euclidian distance e between x and each (x, y), formal given in Equation (8).

e(x, xi)= x− xiio (8)

(b) Arrange all values in ascending order
(c) Assign a weight ώi to the ith nearest neighbor using Equation (9).

ώi =
1

(e(x, xi))
2 (9)

(d) Assign ώi = 1 for the equally weighted KNN rule,
(e) The class label of x is assigned on the basis of majority votes from the neighbors by

Equation (10).
y = argmax ∑

(x,y)∈P
ώi, ï(x = yi) (10)

where x is the class label, yi is the class label for ith nearest neighbor and ï(.) is the
Dirac-Delta function that takes value = 1 if its argument is true and 0 otherwise.

(f) Compute error.

The error is used as a performance measure, where the number of iterations is initial-
ized as 50. This process is carried out until the error is minimized. Visually, the flow is
shown in Figure 7, where it can be seen that the best selected features are finally classified
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using supervised learning algorithms. Moreover, the complete work of the proposed design
is listed in Algorithm 1.

 

Figure 7. Proposed flow diagram of best feature selection.

Algorithm 1. The complete work of the proposed design.

Input: Action Recognition Datasets
Output: Predicted Action Class
Step 1: Input action datasets
Step 2: Load Pre-trained Deep Models;
- Densenet201
- Inception V3

Step 3: Fine Deep Models
Step 4: Trained Deep Models using TL
Step 5: Feature Extraction from Avg Pooling Layers
Step 6: SbE approach for Features Fusion
Step 7: Best Features Selection using Proposed KcWKNN
Step 8: Predict Action Label

4. Results and Analysis

The experimental process of the proposed method is presented in this section. Four
publically available datasets such as KTH [3], Hollywood [38], WVU [39], and IXMAS [40]
were used in this work for the experimental process. Each class of these datasets contains
10,000 video frames that are utilized for the experimental process. In the experimental
process, 50% of video sequences are used for the training purpose, while the remaining
50% is utilized for the testing purpose. The K-Fold cross validation is adopted, where
the value of K = 10. Results are computed on several supervised learning algorithms and
select the best one is selected based on the accuracy value. All simulations are conducted
on MATLAB2020a using a Personal Computer Corei7 with 16 GB of RAM and 8 GB
Graphics card.

4.1. Results

A total of four experiments were performed on each dataset to analyze the perfor-
mance of the middle step. These steps are: (i) performed classification using DenseNet201
deep features; (ii) performed classification using InceptionV3 deep model; (iii) performed
classification using the SbE deep features fusion, and (iv) performed classification using
KcWKNN-based feature selection.

Experiment 1: Table 1 presents the results of the specific DenseNet201 deep features
on selected datasets. In this table, it is noted that the Cubic SVM achieved a better accuracy
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of 99.3% on the KTH dataset. Other classifiers also achieved a better accuracy of above
94%. For the Hollywood action dataset, the best achieved accuracy is 99.9% for Fine KNN.
Similar to the KTH dataset, the rest of the classifiers also performed better on this dataset.
The best obtained accuracy for the WVU dataset is 99.8% for Cubic SVM. The rest of
the classifiers also performed better and achieved an average accuracy of 97%. The best
obtained accuracy of the IXAMAS dataset is 97.3% for Fine KNN.

Table 1. Classification accuracy on specific DenseNet201 deep model. The bold represents the best
obtained values.

Classifier
Datasets Accuracy on DenseNet201 Deep Model

KTH Hollywood WVU IXAMAS

Linear Discriminant 98.8 99.6 98.3 92.1

Linear SVM 98.0 98.3 97.1 86.6

Quadratic SVM 98.9 99.6 99.7 96.4

Cubic SVM 99.3 99.8 99.8 95.4

Medium Gaussian SVM 98.6 99.5 97.8 93.1

Fine KNN 98.7 99.9 99.3 97.3

Medium KNN 96.7 98.8 97.3 88.0

Cosine KNN 96.9 98.8 97.4 88.3

Weighted KNN 97.2 99.7 98.0 92.9

Ensemble Bagged Trees 89.6 98.2 94.5 82.9

Experiment 2: The results of InceptionV3 deep features are provided in Table 2. In
this table, it is noted that the best achieved accuracy on the KTH dataset is 98.1%, for the
Hollywood dataset it is 99.8%, for the WVU dataset it is 99.1%, and for the IXAMAS dataset
it is 96%. From this table, it is observed that the performance of specific DenseNet201
features are better. However, during the computation of results, time significantly increases.
Therefore, it is essential to handle this issue with consistent accuracy.

Table 2. Classification accuracy on specific InceptionV3 deep model. The bold represents the best
obtained values.

Classifier
Datasets Accuracy on DenseNet201 Deep Model

KTH Hollywood WVU IXAMAS

Linear Discriminant 96.6 98.8 96.5 87.3

Linear SVM 95.4 96.3 93.5 81.3

Quadratic SVM 97.6 99.3 99.0 92.1

Cubic SVM 98.1 99.5 99.1 93.6

Medium Gaussian SVM 97.0 99.3 97.7 91.2

Fine KNN 97.6 99.8 98.4 96.0

Medium KNN 95.00 98.1 94.8 83.8

Cosine KNN 95.6 98.5 95.1 84.7

Weighted KNN 95.9 99.1 95.8 90.0

Ensemble Bagged Trees 89.0 92.4 90.5 73.3

Experiment 3: After the experiments on specific feature sets, the SbE approach is
applied for deep features fusion. The KTH dataset results are provided in Table 3. In this
table, The highest performance is recorded for Cubic SVM with an accuracy of 99.3%. Recall
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and precision are 99.3% and 99.43% respectively. Moreover, the noted time during the
training process is 893.23 s. The second highest accuracy is achieved by a linear discriminant
classifier of 99.2%. The rest of the classifiers also performed better. Compared with specific
feature vectors, the fusion process results are more consistent. Figure 8 illustrates the true
positive rates (TPRs)-based confusion matrix of Cubic SVM that confirms the value of
the recall rate. In this figure, the highlighted diagonal values represent the true positive
predictions, whereas the values other than the diagonal represent false negative predictions.

Table 3. Achieved results on KTH dataset after fusion of deep features using SbE approach. The bold
represents the best obtained values.

Classifier
Recall

Rate (%)
Precision
Rate (%)

FNR
Time

(s)
F1 Score

(%)
Accuracy

(%)

Linear Discriminant 99.200 99.300 0.80 424.10 99.249 99.2

Linear SVM 98.400 98.616 1.60 487.10 98.508 98.4

Quadratic SVM 99.150 98.283 0.85 706.56 98.714 99.2

Cubic SVM 99.300 99.433 0.70 893.23 99.366 99.3

Medium Gaussian SVM 98.916 99.083 1.08 1445.8 98.999 98.9

Fine KNN 99.083 99.216 0.91 450.55 99.149 99.1

Medium KNN 96.700 97.233 3.30 447.37 96.965 96.8

Cosine KNN 97.516 97.716 2.48 459.33 97.616 97.5

Weighted KNN 97.483 97.916 2.51 447.59 97.699 97.6

Ensemble Bagged Trees 94.233 94.733 5.76 192.96 94.482 94.3

 

Figure 8. TPR-based confusion matrix of KTH dataset after fusion of deep features using SbE
approach.

Table 4 represents the results of the Hollywood action dataset using the SbE approach.
In this table, it is noted that the best accuracy is 99.9%, obtained by Fine KNN. Other
performance measures such as recall rate, precision rate and F1 score values are 99.1825%,
99.8375%, and 99.5089%, respectively. The rest of the classifiers mentioned in this table
performed better and achieved an average accuracy above 98%. Figure 9 illustrates the
TPR-based confusion matrix of Fine KNN, where it is clear that each class prediction rate
is above 99%. Moreover, compared with the specific deep features experiment on the
Hollywood dataset, the fusion process shows more consistent results.
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Table 4. Achieved results on Hollywood dataset after fusion of deep features using SbE approach.
The bold represents the best obtained values.

Classifier
Recall

Rate (%)
Precision
Rate (%)

FNR
Time

(s)
F1 Score

(%)
Accuracy

(%)

Linear Discriminant 99.775 99.825 0.22 469.75 99.800 99.9

Linear SVM 99.887 99.25 1.11 734.42 99.567 99.2

Quadratic SVM 99.550 99.725 0.45 1065.4 99.637 99.7

Cubic SVM 99.575 99.775 0.42 1337.4 99.674 99.8

Medium Gaussian SVM 99.287 99.675 0.71 2227.1 99.480 99.7

Fine KNN 99.182 99.837 0.18 447.76 99.508 99.9

Medium KNN 98.500 99.0125 1.50 437.47 98.755 99.1

Cosine KNN 99.037 98.975 0.96 449.13 99.006 99.3

Weighted KNN 99.250 99.45 0.75 439.29 99.349 99.6

Ensemble Bagged Trees 94.425 97.562 5.57 209.63 95.968 96.7

 

Figure 9. TPR based confusion matrix of Fine KNN using Hollywood dataset after fusion of deep
features through SbE approach.

Table 5 presents the results of the WVU dataset using the SbE fusion approach. The
highest accuracy is achieved through Linear Discriminant which is 99.8%, where the recall
rate, precision rate, and F1 score are 99.79%, 99.78%, and 99.78%, respectively. Quadratic
SVM and Cubic SVM performed second best and achieved an accuracy of 99.7% for each.
The rest of the classifiers also performed better and gained the average accuracy of above
99%. Figure 10 illustrated the TPR based confusion matrix of the WVU dataset for the
Linear Discriminant classifier. This figure showed that the correct prediction rate of each
classifier is more than 99%. Compared with this accuracy of WVU on specific features, it is
noticed that the fusion process provides consistent accuracy.
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Table 5. Achieved results on WVU dataset after fusion of deep features using SbE approach. The
bold represents the best obtained values.

Classifier
Recall

Rate (%)
Precision
Rate (%)

FNR
(%)

Time
(s)

F1 Score
(%)

Accuracy
(%)

Linear Discriminant 99.79 99.78 0.21 2073.1 99.785 99.8

Linear SVM 97.74 97.77 2.26 2567.7 97.755 97.7

Quadratic SVM 99.56 99.56 0.44 2824.5 99.560 99.6

Cubic SVM 99.56 99.57 0.44 2267 99.565 99.6

Medium Gaussian SVM 98.56 98.34 1.66 2749 98.449 98.3

Fine KNN 97.0 97.03 3.00 3486 97.015 97.0

Medium KNN 87.15 88.34 12.8 3933.5 87.741 87.2

Cosine KNN 87.98 89.01 12.1 2825.4 88.492 88.0

Weighted KNN 90.89 91.51 9.11 2716.7 91.198 90.9

Ensemble Bagged Trees 94.08 94.12 5.92 965.78 94.100 94.1

 

Figure 10. TPR-based confusion matrix of Linear Discriminant classifier after fusion of deep features
using SbE approach.

Table 6 presents the results of the IXMAS dataset after SbE features fusion. In this table,
it can be seen that the highest accuracy is achieved through Fine KNN of 97.4%, where
the recall rate, precision rate, and F1 score are 97.18%, 97.25%, and 97.21%, respectively.
Cubic SVM performed second best and achieved an accuracy of 97.3%. The rest of the
classifiers also performed better and attained an average accuracy above 93%. Figure 11
illustrates the TPR-based confusion matrix of the Fine KNN for the IXMAS dataset using
the SbE approach.

Overall, the results of the SbE approach are improved and are consistent compared
with the specific deep features (see results in Tables 1 and 2). However, it is observed that
the computational time increases during the fusion process. For a real-time system, this
time needs to be minimized. Therefore, a feature selection approach is proposed.
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Table 6. Achieved results on IXMAS dataset after fusion of deep features using SbE approach. The
bold represents the best obtained values.

Classifier
Recall

Rate (%)
Precision
Rate (%)

FNR
(%)

Time
(s)

F1 Score
(%)

Accuracy
(%)

Linear Discriminant 96.460 96.310 3.54 508.35 96.384 96.5

Linear SVM 91.030 91.230 8.97 1428 91.129 91.3

Quadratic SVM 96.670 96.680 3.33 936.8 96.675 96.7

Cubic SVM 97.216 97.225 2.78 390.9 97.220 97.3

Medium Gaussian SVM 96.016 96.066 3.98 840.3 96.041 96.1

Fine KNN 97.180 97.250 2.82 570.56 97.215 97.4

Medium KNN 88.360 88.890 11.6 560.06 88.624 88.9

Cosine KNN 89.141 89.516 10.8 559.83 89.328 89.7

Weighted KNN 92.475 92.625 7.52 543.5 92.549 92.8

Ensemble Bagged Trees 80.291 81.550 19.7 284.31 80.915 81.4

 

Figure 11. TPR-based confusion matrix of Fine KNN after fusion of deep features using SbE approach.

Experiment 4: In this experiment, the best features are selected using Kurtosis-
controlled WKNN and provided to the classifiers. Results are provided in Tables 7–10.
Table 7 presents the results of the proposed feature selection algorithm on the KTH dataset.
In this table, the highest obtained accuracy is 99%, achieved by Cubic SVM. Other perfor-
mance measures such as recall, precision and F1 score are 98.1666%, 99.1166% and 99.016%,
respectively. Figure 12 illustrates the TPR-based confusion matrix of the Cubic SVM for
the best feature selection process. In comparison with Table 3 results, it is noted that
the accuracy of Cubic SVM decreases (0.3%), while the computational time expressively
declines. The computational time of the Cubic SVM in the fusion process was 893.23 s,
which is reduced after the feature selection process to 451.40 s. This shows that the fea-
ture selection process not only maintains the recognition accuracy but also minimizes the
computational time.
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Table 7. Achieved results on KTH dataset after best feature selection using KcWKNN. The bold
represents the best obtained values.

Classifier
Recall

Rate (%)
Precision
Rate (%)

FNR
(%)

Time
(s)

F1 Score
(%)

Accuracy
(%)

Linear Discriminant 98.080 98.516 1.92 87.805 98.297 98.1

Linear SVM 97.633 97.933 2.36 255.42 97.783 97.7

Quadratic SVM 98.600 98.866 1.40 360.10 98.733 98.7

Cubic SVM 98.916 99.116 1.09 451.40 99.016 99.0

Medium Gaussian SVM 98.2833 98.483 1.71 687.37 98.383 98.3

Fine KNN 98.616 98.833 1.38 237.93 98.724 98.7

Medium KNN 95.483 96.366 4.51 231.39 95.922 95.7

Cosine KNN 97.016 97.183 2.98 230.18 97.099 97.0

Weighted KNN 96.233 97.000 3.76 222.90 96.615 96.4

Ensemble Bagged Trees 94.150 93.716 5.8 140.57 93.632 94.2

Table 8. Achieved results on Hollywood dataset after best feature selection using KcWKNN. The
bold represents the best obtained values.

Classifier
Recall

Rate (%)
Precision
Rate (%)

FNR
(%)

Time
(s)

F1 Score
(%)

Accuracy
(%)

Linear Discriminant 99.087 99.450 0.912 88.375 99.268 99.4

Linear SVM 97.937 98.687 2.062 323.99 98.311 98.6

Quadratic SVM 99.262 99.587 0.737 439.41 99.424 99.5

Cubic SVM 99.387 99.675 0.612 501.67 99.531 99.7

Medium Gaussian SVM 98.587 99.500 1.412 910.78 99.041 99.5

Fine KNN 99.812 99.837 0.187 213.33 99.825 99.8

Medium KNN 97.225 98.550 2.775 224.52 97.883 98.5

Cosine KNN 98.325 98.862 1.675 221.19 98.593 98.9

Weighted KNN 98.575 99.412 1.425 215.89 98.992 99.2

Ensemble Bagged Trees 87.050 94.287 12.95 126.72 90.524 97.7

Table 9. Achieved results on WVU dataset after best feature selection using KcWKNN. The bold
represents the best obtained values.

Classifier
Recall

Rate (%)
Precision
Rate (%)

FNR
(%)

Time
(s)

F1 Score
(%)

Accuracy
(%)

Linear Discriminant 98.50 98.53 1.50 241.48 98.515 98.5

Linear SVM 96.51 96.57 3.49 293.2 96.539 96.5

Quadratic SVM 99.37 99.38 0.63 1064.6 99.375 99.4

Cubic SVM 99.43 99.44 0.57 1124.0 99.435 99.4

Medium Gaussian SVM 98.24 98.25 1.76 1363.7 98.245 98.2

Fine KNN 96.55 96.59 3.45 1365.1 96.570 96.5

Medium KNN 86.80 87.98 13.2 1322.0 87.386 86.8

Cosine KNN 87.61 88.73 12.39 1316.2 88.166 87.6

Weighted KNN 90.33 91.07 9.67 1236.8 90.698 90.3

Ensemble Bagged Trees 94.71 94.75 5.29 423.37 94.730 95.7
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Table 10. Achieved results on IXMAS dataset after best feature selection using KcWKNN. The bold
represents the best obtained values.

Classifier
Recall

Rate (%)
Precision
Rate (%)

FNR
(%)

Time
(s)

F1 Score
(%)

Accuracy
(%)

Linear Discriminant 91.583 91.516 8.41 119.8 91.549 91.7

Linear SVM 88.050 88.400 11.95 714.13 88.224 88.5

Quadratic SVM 95.008 95.083 4.99 634.7 95.045 95.1

Cubic SVM 95.783 95.866 4.21 239.4 95.824 95.9

Medium Gaussian SVM 94.466 94.933 5.53 475.5 94.699 94.6

Fine KNN 97.075 96.991 2.92 290.69 97.033 97.1

Medium KNN 86.383 86.925 13.61 266.24 86.653 86.9

Cosine KNN 88.066 88.233 11.93 270.74 88.149 88.5

Weighted KNN 90.975 91.966 9.02 263.74 91.468 91.2

Ensemble Bagged Trees 83.433 85.108 16.5 175.78 84.261 84.8

 

Figure 12. TPR based confusion matrix of Cubic SVM after best feature selection using KcWKNN.

Table 8 presents the best feature selection results on the Hollywood Action dataset
and achieved best accuracy by Fine KNN of 99.8%. The other calculated measures such
as recall rate, precision rate, and F1 Score are 99.812%, 99.837%, and 99.82%, respectively.
For the rest of the classifiers, the average accuracy is above 98% (can be seen in this table).
Figure 13 illustrates the TPR-based confusion matrix of Fine KNN for this experiment. The
diagonal values in this experiment show the correct predicted values. Comparison with
Table 4 shows that the classification accuracy is still consistent, whereas the computational
time is significantly reduced. The computational time at the fusion process was 447.76 s,
whereas after the selection process, it is reduced to 213.33 s. This shows that the selection
of best features using KcWKNN performed significantly better.
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Figure 13. TPR based confusion matrix of Fine KNN after best feature selection using KcWKNN.

Table 9 presents the results of the WVU dataset after the best feature selection using
KcWKK. In this table, Quadratic SVM and Cubic SVM performed best with the accuracy
of 99.4%, where the recall rate is 99.37% and 99.43%, respectively, and the precision rate
is 99.38% and 99.44%, respectively and the F1 score is 99.375%, and 99.43%, respectively.
Figure 14 shows the TPR-based confusion matrix of the Cubic SVM for this experiment. This
figure shows that the prediction rate of each class is above 99%. Moreover, in comparison
with Table 5 (fusion results), the computational time of this experiment on the WVU dataset
is almost half and accuracy is still consistent. This shows that the KcWKNN selection
approach performed significantly well.

 

Figure 14. TPR-based confusion matrix of Cubic SVM after best feature selection using KcWKNN.

The results of the KcWKNN-based best features selection on the IXMAS dataset are
provided in Table 10. In this table, it is noted that the Fine KNN attained best accuracy
of 97.1%, whereas the recall rate, precision rate, and F1 score are 97.075%, 96.9916%, and
97.033%, respectively. Figure 15 illustrates the TPR-based confusion matrix of the Fine
KNN for this experiment. The correct prediction value of each class is provided in the
diagonal of this figure. Compared with Table 6, this experiment reduces the computational
time while maintaining the recognition accuracy.
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Figure 15. TPR-based confusion matrix of Fine KNN after best feature selection using KcWKNN.

Finally, a detailed analysis was conducted among all experiments in terms of accuracy
and time. From Tables 1–10, it is observed that the accuracy value is improved after the
proposed fusion process and the time is reduced. However, the noted time was still high
and must be reduced further; therefore, a feature selection technique is proposed and time
is significantly reduced compared with the original extracted deep features and fusion step
(plotted in Figures 16–19). In the selection process, a little change occurred in the accuracy
value, but on the other side, a high fall is noted in the computational time.

 

Figure 16. Computational time-based comparison of middle steps on KTH dataset.
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Figure 17. Computational time-based comparison of middle steps on Hollywood dataset.

 

Figure 18. Computational time-based comparison of middle steps on WVU dataset.

 

Figure 19. Computational time-based comparison of middle steps on IXMAS dataset.
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4.2. Comparison with SOTA

Overall, the feature selection process maintains the classification accuracy while
significantly reducing the computational time. A comparison with some recent techniques
was also conducted as provided in Table 11. This table shows that the proposed design
results are significantly improved. The main strength of the proposed design is the fusion
of deep features using the SbE approach and best feature selection using KcWKNN.

Table 11. Comparison of the proposed design with existing techniques in terms of accuracy. The
bold represents the best obtained values.

Reference Dataset Accuracy (%)

Muhammad et al. [45], 2020 KTH 98.30

Proposed method KTH 99.00

Muhammad et al. [4], 2020 IXMAS 95.20

Amir et al. [55], 2021 IXMAS 87.48

Proposed method IXMAS 97.10

Muhammad et al. [56], 2020 WVU 99.10

Muhammad et al. [57], 2019 WVU 99.90

Proposed method WVU 99.40

Evan et al. [58], 2008 Hollywood 91.80

Proposed method Hollywood 99.20

5. Conclusions

HAR has gained a lot of popularity in recent years. Multiple techniques have been
used for the accurate recognition of human actions. The problem is to correctly identify
the action in real-time and from multiple perspectives. In this work, a design is proposed
where the key aim is to improve the accuracy of the HAR process in the complex video
sequences using advanced deep learning techniques. The proposed design consists of
four steps, namely feature mapping, feature fusion, feature selection, and classification.
Two modified deep learning models, DenseNet201 and InceptionV3 were used for feature
mapping. Fusion and selection were performed using the serial-based extended approach
and Kurtosis-controlled Weighted KNN approach, respectively. The results were obtained
after extensive experimentation on state-of-the-art action datasets. Based on the results, it
is concluded that the proposed design performed better than the existing techniques in
terms of accuracy as well as computational time. Cubic SVM and Fine KNN classifiers
were top performers on the proposed HAR method. The key limitation of this work is the
computational time that was noted during the original deep extracted features. This step
increases the computational time that is not suitable for the real-time applications. As a
future study, we intend to test the proposed design on relatively complex action datasets
such as HMDB51 and UCF101. Moreover, the recent deep learning models can also be
considered for feature extraction and will study the less complexity feature fusion and
selection algorithms.
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Features Fusion for Human Action Recognition. Comput. Mater. Cont. 2021, 69, 4061–4075. [CrossRef]
21. Khan, M.A.; Alhaisoni, M.; Armghan, A.; Alenezi, F.; Tariq, U.; Nam, Y.; Akram, T. Video Analytics Framework for Human

Action Recognition. Comput. Mater. Cont. 2021, 68, 3841–3859.
22. Sharif, M.; Akram, T.; Yasmin, M.; Nayak, R.S. Stomach deformities recognition using rank-based deep features selection. J. Med.

Econ. 2019, 43, 329.
23. Saleem, F.; Khan, M.A.; Alhaisoni, M.; Tariq, U.; Armghan, A.; Alenezi, F.; Choi, J.; Kadry, S. Human Gait Recognition: A Single

Stream Optimal Deep Learning Features Fusion. Sensors 2021, 21, 7584. [CrossRef] [PubMed]
24. Khan, A.; Javed, M.Y.; Alhaisoni, M.; Tariq, U.; Kadry, S.; Choi, J.; Nam, Y. Human Gait Recognition Using Deep Learning and

Improved Ant Colony Optimization. Comput. Mater. Cont. 2022, 70, 2113–2130. [CrossRef]
25. Mehmood, A.; Tariq, U.; Jeong, C.-W.; Nam, Y.; Mostafa, R.R.; Elaeiny, A. Human Gait Recognition: A Deep Learning and Best

Feature Selection Framework. Comput. Mater. Cont. 2022, 70, 343–360. [CrossRef]
26. Wang, H.; Yu, B.; Xia, K.; Li, J.; Zuo, X. Skeleton Edge Motion Networks for Human Action Recognition. Neurocomputing 2021,

423, 1–12. [CrossRef]
27. Bi, Z.; Huang, W. Human action identification by a quality-guided fusion of multi-model feature. Future Gener. Comput. Syst.

2021, 116, 13–21. [CrossRef]
28. Lei, Y.; Yang, B.; Jiang, X.; Jia, F.; Li, N.; Nandi, A.K. Applications of machine learning to machine fault diagnosis: A review and

roadmap. Mech. Syst. Signal Process 2020, 138, 106587. [CrossRef]

176



Sensors 2021, 21, 7941

29. Manivannan, A.; Chin, W.C.B.; Barrat, A.; Bouffanais, R. On the challenges and potential of using barometric sensors to track
human activity. Sensors 2020, 20, 6786. [CrossRef] [PubMed]

30. Ahmed Bhuiyan, R.; Ahmed, N.; Amiruzzaman, M.; Islam, M.R. A robust feature extraction model for human activity characteri-
zation using 3-axis accelerometer and gyroscope data. Sensors 2020, 20, 6990. [CrossRef]

31. Zhao, B.; Li, S.; Gao, Y.; Li, C.; Li, W. A Framework of Combining Short-Term Spatial/Frequency Feature Extraction and
Long-Term IndRNN for Activity Recognition. Sensors 2020, 20, 6984. [CrossRef] [PubMed]

32. Muhammad, K.; Ullah, A.; Imran, A.S.; Sajjad, M.; Kiran, M.S.; Sannino, G.; Albuquerque, V.H.C. Human action recognition
using attention based LSTM network with dilated CNN features. Future Gener. Comput. Syst. 2021, 125, 820–830. [CrossRef]

33. Li, C.; Xie, C.; Zhang, B.; Han, J.; Zhen, X.; Chen, J. Memory attention networks for skeleton-based action recognition. IEEE Trans.
Neural Netw. Learn. Syst. 2021. [CrossRef] [PubMed]

34. Im, W.; Kim, T.-K.; Yoon, S.-E. Unsupervised Learning of Optical Flow with Deep Feature Similarity. In Computer Vision—ECCV
2020. ECCV 2020; Lecture Notes in Computer Science; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M., Eds.; Springer: Cham,
Switzerland, 2020; Volume 12369.

35. Liu, W.; Zha, Z.-J.; Wang, Y.; Lu, K.; Tao, D. $p$-Laplacian regularized sparse coding for human activity recognition. IEEE Trans.
Ind. Electron. 2016, 63, 5120–5129. [CrossRef]

36. Jalal, A.; Kamal, S.; Kim, D. A Depth Video-based Human Detection and Activity Recognition using Multi-features and Embedded
Hidden Markov Models for Health Care Monitoring Systems. Int. J. Interact. Multimed. Artif. Intell. 2017, 4, 54. [CrossRef]

37. Effrosynidis, D.; Arampatzis, A. An evaluation of feature selection methods for environmental data. Ecol Inform. 2021, 61, 101224.
[CrossRef]

38. Melhart, D.; Liapis, A.; Yannakakis, G.N. The Affect Game AnnotatIoN (AGAIN) Dataset. arXiv 2021, arXiv:2104.02643.
39. Hassan, M.M.; Uddin, M.Z.; Mohamed, A.; Almogren, A. A robust human activity recognition system using smartphone sensors

and deep learning. Future Gener. Comput. Syst. 2018, 81, 307–313. [CrossRef]
40. Joshi, A.B.; Kumar, D.; Gaffar, A.; Mishra, D. Triple color image encryption based on 2D multiple parameter fractional discrete

Fourier transform and 3D Arnold transform. Opt. Lasers. Eng. 2020, 133, 106139. [CrossRef]
41. Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A comprehensive survey on support vector machine

classification: Applications, challenges and trends. Neurocomputing 2020, 408, 189–215. [CrossRef]
42. Wang, L.; Xu, Y.; Cheng, J.; Xia, H.; Yin, J.; Wu, J. Human action recognition by learning spatio-temporal features with deep neural

networks. IEEE Access 2018, 6, 17913–17922. [CrossRef]
43. Gumaei, A.; Hassan, M.M.; Alelaiwi, A.; Alsalman, H. A hybrid deep learning model for human activity recognition using

multimodal body sensing data. IEEE Access 2019, 7, 99152–99160. [CrossRef]
44. Gao, Z.; Xuan, H.-Z.; Zhang, H.; Wan, S.; Choo, K.-K.R. Adaptive fusion and category-level dictionary learning model for

multiview human action recognition. IEEE Internet Things J. 2019, 6, 9280–9293. [CrossRef]
45. Khan, M.A.; Zhang, Y.-D.; Khan, S.A.; Attique, M.; Rehman, A.; Seo, S. A resource conscious human action recognition framework

using 26-layered deep convolutional neural network. Multimed. Tools. Appl. 2020. [CrossRef]
46. Xia, K.; Huang, J.; Wang, H. LSTM-CNN architecture for human activity recognition. IEEE Access 2020, 8, 56855–56866. [CrossRef]
47. Rashid, M.; Sharif, M.; Raza, M.; Sarfraz, M.M.; Afza, F. Object detection and classification: A joint selection and fusion strategy

of deep convolutional neural network and SIFT point features. Multimed. Tools. Appl. 2019, 78, 15751–15777. [CrossRef]
48. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; IEEE Press: Piscataway, NJ, USA.
49. Hussain, N.; Sharif, M.; Khan, S.A.; Albesher, A.A.; Saba, T.; Armaghan, A. A deep neural network and classical features based

scheme for objects recognition: An application for machine inspection. Multimed. Tools. Appl. 2020, 1–23. [CrossRef]
50. Akram, T.; Zhang, Y.-D.; Sharif, M. Attributes based skin lesion detection and recognition: A mask RCNN and transfer learning-

based deep learning framework. Pattern Recognit. Lett. 2021, 143, 58–66.
51. Oquab, M.; Bottou, L.; Laptev, I.; Sivic, J. Learning and transferring mid-level image representations using convolutional neural

networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, Columbus, OH, USA, 23–28 June
2014.

52. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Li, F.-F. Imagenet: A large-scale hierarchical image databas e. In Proceedings of the
2009 IEEE conference on computer vision and pattern recognition, Miami, FL, USA, 20–25 June 2009.

53. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. NIPS 2012, 25,
1097–1105. [CrossRef]

54. Naheed, N.; Shaheen, M.; Khan, S.A.; Alawairdhi, M.; Khan, M.A. Importance of features selection, attributes selection, challenges
and future directions for medical imaging data: A review. Comput. Sci. Eng. 2020, 125, 314–344. [CrossRef]

55. Nadeem, A.; Jalal, A.; Kim, K. Automatic human posture estimation for sport activity recognition with robust body parts detection
and entropy markov model. Multimed. Tools. Appl. 2021, 22, 1–34. [CrossRef]

56. Sharif, M.; Zahid, F.; Shah, J.H.; Akram, T. Human action recognition: A framework of statistical weighted segmentation and rank
correlation-based selection. Pattern Anal. Appl. 2020, 23, 281–294. [CrossRef]

177



Sensors 2021, 21, 7941

57. Akram, T.; Sharif, M.; Javed, M.Y.; Muhammad, N.; Yasmin, M. An implementation of optimized framework for action
classification using multilayers neural network on selected fused features. Pattern Anal. Appl. 2019, 22, 1377–1397.

58. Laptev, I.; Marszalek, M.; Schmid, C.; Rozenfeld, B. Learning realistic human actions from movies. In Proceedings of the 2008
IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008.

178



Citation: Eichler, N.; Raz, S.;

Toledano-Shubi, A.; Livne, D.;

Shimshoni, I.; Hel-Or, H. Automatic

and Efficient Fall Risk Assessment

Based on Machine Learning. Sensors

2022, 22, 1557. https://doi.org/

10.3390/s22041557

Academic Editors: Carlos Tavares

Calafate, Tomasz Krzeszowski,
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Abstract: Automating fall risk assessment, in an efficient, non-invasive manner, specifically in the
elderly population, serves as an efficient means for implementing wide screening of individuals for
fall risk and determining their need for participation in fall prevention programs. We present an
automated and efficient system for fall risk assessment based on a multi-depth camera human motion
tracking system, which captures patients performing the well-known and validated Berg Balance
Scale (BBS). Trained machine learning classifiers predict the patient’s 14 scores of the BBS by extracting
spatio-temporal features from the captured human motion records. Additionally, we used machine
learning tools to develop fall risk predictors that enable reducing the number of BBS tasks required
to assess fall risk, from 14 to 4–6 tasks, without compromising the quality and accuracy of the BBS
assessment. The reduced battery, termed Efficient-BBS (E-BBS), can be performed by physiotherapists
in a traditional setting or deployed using our automated system, allowing an efficient and effective
BBS evaluation. We report on a pilot study, run in a major hospital, including accuracy and statistical
evaluations. We show the accuracy and confidence levels of the E-BBS, as well as the average number
of BBS tasks required to reach the accuracy thresholds. The trained E-BBS system was shown to
reduce the number of tasks in the BBS test by approximately 50% while maintaining 97% accuracy.
The presented approach enables a wide screening of individuals for fall risk in a manner that does not
require significant time or resources from the medical community. Furthermore, the technology and
machine learning algorithms can be implemented on other batteries of medical tests and evaluations.

Keywords: fall risk detection; balance; Berg Balance Scale; human tracking; elderly; telemedicine;
diagnosis

1. Introduction

Accidental falls are a major concern in the elderly population, often requiring hospital-
ization, and may lead to death [1,2]. Falls are one of the main causes of disability, loss of
independence, and reduced quality of life. This incurs high expenses on the individuals,
their families, and the public health system [3,4]. It has been shown, however, that individu-
als can significantly reduce the risk of fall by participating in fall prevention programs [5,6].
Thus, there is great importance in performing a wide screening of the elderly population
for the risk of fall and, consequently, initiating appropriate intervention programs.

Assessing the risk of fall is typically performed by physiotherapists and other types of
medical professionals using various standardized and validated balance tests. One such
test is the Berg Balance Scale (BBS) [7,8], a rigorous and time-consuming examination, since
it requires the patient to perform 14 different tests. Due to its demand on the medical
professional resources, these tests are not widely performed on the general public and
are typically administered in the context of rehabilitation. Thus, more efficient testing
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methods for the risk of fall are crucial for implementing community-wide screening to
identify high-risk individuals [5,6].

In this paper, we present a method to alleviate the workload in fall risk assessment.
We developed our methods for the Berg Balance Scale (BBS); however, the approach is
applicable to any time-consuming battery of tests. We developed an automated system
for assessing the risk of fall using the BBS test, which is non-invasive and easy to use. It
uses a novel self-calibrating multi-depth camera human motion tracking system previously
developed by the authors. Using the data extracted from the cameras, machine learning
classifiers were developed to evaluate the performance of the tasks by the patient. Thus, a
medical professional is no longer needed to monitor and assess the performance of the test
by the patient.

Still, performing 14 tasks is time consuming. Thus, in this paper, we present a machine-
learning-based method to predict the fall risk, which enables reducing the number of
BBS tasks required to assess fall risk from 14 to 4–6 tasks while maintaining the quality
and accuracy of the BBS assessment (at 96%). We term the reordered and reduced BBS
battery Efficient-BBS (E-BBS), as it reduces the the number of tasks to be performed and
consequently reduces the time required to complete the BBS test. We present the E-BBS
task ordering methods, which proceed either in a predefined order of tasks or on a per-
patient adaptive task sequencing. The E-BBS can be performed by physiotherapists in
a traditional setting or deployed using the automated system, allowing an efficient and
effective BBS evaluation.

The automated system was tested in a major hospital, under the guidelines of the
Declaration of Helsinki. The results showed high accuracy rates in predicting fall risk and
showed a correlation with the BBS scores on individual BBS motion tasks as assessed by
medical professionals. The E-BBS was developed by training machine learning algorithms
on the data collected at the hospital. The trained E-BBS system was shown to reduce the
number of tasks in the BBS test by approximately 50% while maintaining 97% accuracy.

The main scientific contribution of the paper is the novel approach to shortening
and creating an adaptive sequence of testing from any given battery of tests (medical or
other). The paper implemented the approach on the BBS test, but it can be exploited to
reduce any battery of tasks that provides a final score or outcome to a shorter test while
maintaining accuracy. The outcome of the study will also hopefully contribute to the
medical community, allowing more efficient testing of the risk of fall that can be deployed
in medical centers, community centers, as well as in private homes. It will allow a wider
reach to the aging community and, as such, help to improve this population’s welfare
and quality of life together with reducing the burden on families, communities, and at the
national level as well.

In the following sections, we review the automated system and introduce the E-BBS.
We present a description of the full system including a review of the previously presented
study in [9] with additional statistical analysis. We show the results of a pilot study, run on
130 patients in a major hospital, including the accuracy and statistical evaluations. We then
present the E-BBS system and show its accuracy and its confidence levels, as well as the
average number of BBS tasks that are required to reach the accuracy thresholds.

There is a plethora of balance and risk of fall tests that have been validated and are
used in the medical community (see [10] for a review). Most tests involve motor tasks that
are scored by a physiotherapist or medical professional. The motor tasks are mostly related
to daily actions and movements that are typically performed by humans such as walking,
rising from a chair, transitioning between sitting and standing positions, reaching, and
more. Some tests are short and easy to administer; others are longer and include a battery
of tasks, but are more comprehensive and systematic.

Short tests that focus on walking assess the time or distance required to complete
the task and include the 2 m walk [11], 10 m walk [12], and 6 min walk [13]. A more
comprehensive gait test is the Dynamic Gait Index [14] with several motor tasks of
increasing difficulty.
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Tests relying on transitioning into and out of a chair are also very common as this
action is important in daily life. They assess lower body strength [15], which is related
to the risk of fall [16]. The single task tests in this class include the 30 s chair stand [15],
5X-Sit-to-Stand [17], and 10X-Sit-to-Stand, requiring subjects to rise and lower themselves
into a chair as fast as possible. The number of repetitions performed or the time to perform
a set number of repetitions serves as the score in these tests.

A very popular balance test, combining both walking and transitioning from a chair, is
the Timed Up and Go Test (TuG) [18,19]. It measures the time required to rise from a chair,
walk 3 m, turn, return to the chair, and sit back down [20]. This test is popular as it is short
and easy to administer, though for reliability, it is often repeated several times [21].

Another type of balance test is those based on static pose including the Unipedal
Stance Test [22], Unilateral Forefoot Balance Test [23], and the Romberg Test [24]. These
tests have subjects stand on one or both feet in different positions (aligned, tandem, or toe
to heel) and with eyes opened or closed. Combining several of these poses in increasing
difficulty is used in the 4-Stage Balance Test [25].

Finally, balance tests based on in-place stepping include the Step Test [26], where
one foot is repeatedly placed on and off a step, the Four Square Step Test [27,28], where a
sequence of steps is performed over objects in a square path, and the Y Balance Test [29],
where subjects perform lunging steps in three direction.

The above-described tests rely on a single task or on very few tasks. Though requiring
little time to administer, they are not, in general, comprehensive and rigorous. For diagnosis
and referral to treatment, medical professionals typically use a more comprehensive testing
scheme that includes a larger number of tasks. Though more informative, these tasks
are, unfortunately, more time consuming. Common balance tests in this class include the
Berg Balance Scale (BBS) [7], the Tinetti Assessment Tool (TAT) [30], the Short Physical
Performance Battery (SPPB) [31], and the Balance Evaluation Systems Test (BESTest) [32].
These tests each include a battery of tasks involving holding a pose, walking, sit-to-stand
transitions, and more.

As a compromise between comprehensive testing and test administration time, two
approaches have been taken. For several of the lengthy tests, shorter versions have been
introduced and validated such as the MiniBest [33] and the Short-BBS (SFBBS) [34] (see
below). The second approach attempts to incorporate technology and advanced algorithms
to assist or replace the balance test. Various sensors have been used to track individuals
in their natural environment and assess their balance and risk of fall. Examples include
wearable sensors [35], inertial sensors [36], and visual sensors [37,38]. Unfortunately, these
intrusive methods are often uncomfortable and expensive and typically do not provide a
comprehensive analysis of the patient’s balance (e.g., type of imbalance and physiological
source of the imbalance). Cameras and other non-contact sensors are advantageous, in
being non-intrusive and being capable of collecting a wide range of data per patient.
These non-intrusive sensors are desirable for hospitals, old age homes, and home care
systems [39,40]. However, video cameras do not capture depth information, which, in
assessing balance, may lead to erroneous outcomes and incorrect assessment of the risk of
fall [41]. Depth-sensing cameras (such as the Microsoft Kinect [42] and others) can be used
to capture depth in the scenes using technologies such as stereo imaging, structured light,
and time-of-flight technologies [43]. Indeed, depth sensors have been used on single-task
balance tests including the Get-Up-and-Go [44], 10-meter walk test [45], Single-Legged
Stance Test [46], and on gait assessment [47]. However, many of the multi-task balance
tests require pose and motions that give rise to self-occlusion (for example, the 360◦ turn in
the BBS assessment), in which case multiple cameras are required. However, using more
than a single camera requires calibration and synchronization [38], which is inappropriate
for an easy-to-use balance assessment system. In our system, we used two depth-sensing
cameras in a novel multi-depth camera tracking system, which performs synchronization
and calibration automatically and requires no manual intervention [48]. Using this non-
invasive technology together with Machine-Learning (ML)-based algorithms, balance and
the risk of fall can be successfully and efficiently assessed.
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1.1. The Berg Balance Scale

In this study, we implemented our approach on the Berg Balance Scale (BBS) [7,8], a
standard and validated measure commonly used by medical professionals to assess the
risk of fall.

The BBS is comprehensive and includes 14 motor tasks of varying difficulty, with tasks
involving sitting and rising from a chair, holding a pose, turning, stepping, and more. Each
task is scored on a five-level scale ranging from zero (unable) to four (independent). The
final BBS score is obtained by summing the 14 individual task scores [8]. A BBS score of 36
or less implies a near 100% chance of fall within 6 mo [14]. Scores from 0–20 are considered
high fall risk, from 21–40 medium fall risk and scores from 41–56 as low fall risk [7,8].

The BBS measure has been well studied. It has been shown to be valid and to have high
sensitivity [14,33,49]. Test–retest reliability has been shown to be very good when tested
on elderly individuals [50,51], stroke patients [52,53], and Parkinson’s patients [54,55]. The
inter- and intra-rater reliability of the BBS was also shown to be good when tested on
elderly individuals [7,8,33,56,57], Parkinson’s patients [55,58], stroke patients [59,60], and
patients following spinal cord injury [61].

The BBS, though comprehensive, is time consuming. To compensate for the lengthy
testing, a short form of the BBS was proposed (SFBBS) [34]. This test includes seven of the
fourteen BBS tasks, and the rating is on a three-point scale (vs. the five-point scale of the
BBS). The SFBBS was shown to have good validity, internal consistency, and reliability on
stroke patients [34,62] and on the elderly [63,64] and has been shown to compare well with
the standard BBS [62,64,65]. In this paper, we present the Efficient-BBS (E-BBS), an adaptive
BBS testing scheme based on machine learning, and show that it significantly improves
performance over the SFBBS.

2. Automated Fall Risk Assessment System

The BBS balance assessment task is highly time consuming and thus requires signif-
icant resources of the medical professional and of the medical organization as a whole.
Currently, this test is most often administered to patients who have already undergone
a fall or a medical procedure (stroke, hip/knee replacement, etc.) in order to assess the
severity of their condition or assess their rehabilitation. Although it has been shown that
timely intervention can reduce the risk of fall, detecting those individuals from the general
population that are at risk and would benefit from this intervention is not easily possible,
given the expense of balance assessment.

Thus, we propose to develop an automated fall risk assessment system, which is
able to administer the BBS procedure and, using machine learning (ML) methods, to
automatically predict the risk of fall of the subject. This can be performed without the
intervention of a medical specialist and thus can be used for mass screening. Furthermore,
since running the complete battery of 14 BBS tasks is time consuming, we propose a method
for using a minimal number of BBS tasks that will maintain the accuracy of the standard
BBS assessment while significantly reducing the test time.

To be widely used, outside medical centers, the system must be non-intrusive, portable,
and easy to use, while still maintaining reliable and consistent BBS score predictions. The
proposed system consists of three major components (see Figure 1):

1. Motion tracking system, including 3D cameras;
2. Automatic BBS score prediction algorithms;
3. Final fall risk assessment using machine learning.

The first two components compute the 14 BBS scores by tracking the subject’s motion
and using machine learning to predict the scores. This work, which was presented in [9],
is reviewed in Sections 3 and 4. Section 4 also reviews the machine learning model used
to predict the level of risk from the 14 previously predicted BBS scores either as a final
score (from 0–56) or as one of three levels of risk (high, medium, or low risk of fall). Finally,
in Section 5, we describe our novel machine-learning-based approach for predicting the
final BBS score, the E-BBS, which uses an adaptively chosen subset of BBS tasks per subject,
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based on the subject’s scores on these tasks. This approach reduces the number of tasks
required to 4–6 tasks per subject.

Figure 1. Schematic diagram of the BBS score and fall risk prediction system.

3. Motion Capture and Tracking

To track subjects performing the BBS tasks, we used the Microsoft Kinect [42], a depth
sensor camera based on time-of-flight technology [66]. It provides depth information, i.e.,
the distance from the camera, for every point in the scene for each video frame. When film-
ing human subjects, a skeletal body representation composed of 3D joints and connecting
bones (Figure 2) is extracted from the captured depth information using machine learning
algorithms [67–69]. For the purpose of tracking and estimating BBS task performance, we
also collected the 3D data points in the patient’s immediate surroundings, floor position,
and orientation, as well as the 3D points of objects in the scene relevant to the BBS task.

Due to the possibility of the self-occlusion of the body during some of the BBS tasks and
to ensure full coverage of the subject, we used a two-camera setup where two cameras were
placed 3 m from the subject, about 2 m apart and at 45◦ angles. This ensured full coverage,
as well as merging of the data to reduce noise and uncertainty in the skeletal structure.

A major drawback of any multi-camera system is the necessity of performing synchro-
nization and calibration between the cameras. This process typically requires a specialized
calibration session with specific calibration tools, a process that is impractical and infeasible
for systems such as ours that are targeted for use in the community.
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Figure 2. The 3D sensor (left) measures the distances of points in the scene from which a skeleton
representation of the body pose is produced (right).

Thus, we used a novel multi-camera tracking system developed by our team [48,70]
in which synchronization and calibration are performed automatically and on the fly by
exploiting the patient’s motion. The skeletal data acquired by the two calibrated cameras
can then be easily integrated. Using this multi-depth-sensing camera tracking system
allows motion and pose tracking of subjects to be non-intrusive, portable, and inexpensive.

Kinect allows motion and pose tracking of subjects to be non-intrusive, portable and
inexpensive, motion capture system Motion tracking is thus performed non-intrusively.

4. Predicting BBS Scores Using Machine Learning

In this section, we review the system we developed based on computer vision tools
and machine learning to predict the BBS scores of a patient on each of the 14 BBS tasks, as
well as to predict the final risk of fall. The predicted scores were shown to correlate well
with the scores assessed by the physiotherapists. More details can be found in [9].

Following the data collection, spatio-temporal features were extracted from the col-
lected skeletal data and used to train a machine learning model to predict each of the 14 BBS
task scores. Given the 14 predicted scores an additional model was trained to predict the
final risk of fall of the patients. Figure 1 shows a diagram of the automated system.

4.1. Data Collection

Data for this project were collected in the Physiotherapy Unit at a major public hospital
under the guidelines of the Declaration of Helsinki (ID: 0194-15-NHR, Galilee Medical
Center). A total of 130 subjects were recruited, 100 of whom were hospital in-patients.
Thirty of the subjects were visitors or care givers of patients and were recruited as subjects
of low fall risk. All subjects (in-patients and controls) were aged 65 or older. Seventy-six of
the subjects were female, and fifty-three were male subjects. All subjects took the BBS test in
the hospital’s physiotherapy room. The multi-camera tracking system (Section 3) recorded
the subjects performing the 14 BBS tasks. Two physiotherapists administered and scored
the patient on each of the 14 tasks. The double scoring by the physiotherapists’ served to
validate the scores. Due to the high BBS inter-rater reliability [7,8,33], only seldomly were
the scores of the two therapists inconsistent; in these cases, the more conservative score
was used. The physiotherapists’ BBS scores for each patient served as the ground truth
labels for training the learning models.
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4.2. Feature Extraction

To train the BBS score prediction models, sets of features were defined for each of the
14 BBS tasks. The skeletal sequence acquired for each subject per each BBS task (Figure 3)
served as the basis for the features. Feature extraction was performed in two steps. First,
features were extracted from the skeletal structure of each frame in the sequence. These
included: relative positions of skeleton joints, angles between connecting bones, distances
between body parts, heights of joints from the ground, and more (Figure 4). Most of
the extracted features were independent of the location of the subject and invariant to
body size.

Figure 3. The multi-camera tracking system setup includes two depth sensors allowing the capture of
the full range of patient motion, as well as enabling data merging to reduce noise and skeleton errors.

In the second step, spatio-temporal features were calculated from these per-frame
features including: maximal/minimal/mean values of the per-frame features across all
frames in the sequence, average speed and acceleration of joints across the sequence, motion-
paths of the joints, and more. This set of spatio-temporal features served to represent the
motion action of a subject performing a single BBS task and were used to train the machine
learning algorithms.

To improve model training, the number of features was reduced by selecting the most
informative features per BBS task, as computationally derived from the trained models.
Feature selection was also guided by recommendations from the physiotherapists as to the
most predictive parts of the body and its features. Feature selection resulted in different
features per each BBS task, ranging from 100–200 features (for examples, see [9,71]).

4.3. Training

Training and testing were performed using the data collected at the hospital of patients
performing the 14 tasks of the BBS test. Each task was recorded as a skeletal sequence,
represented using the features described above, and labeled with the BBS score assigned by
the physiotherapists. Separate models were trained to predict the BBS score for each of the
14 BBS tasks. An additional model was trained on the BBS scores to predict the final BBS
fall risk assessment.
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Figure 4. Spatio-temporal features are computed from the skeleton data in each recorded video frame.

For each of the 14 tasks, a random forest classifier [72,73] was trained using leave-one-
out cross-validation [74]. The model hyper-parameters were sought using grid search [75].
The number of trees was set to 100 and the depth to 10. The random forest classifier was
chosen as its use of bootstrapping enables these models to work well on small datasets.
Furthermore, the random forest classifier allows feature ranking [76,77] in which the
predictive power of features can be assessed. This in turn assists in feature selection to
assist in further reducing over-fitting.

An additional ML-based classifier was trained on the 14 scores predicted by the
random forests, to predict the final risk of fall (Figure 1). The risk of fall is defined as one of
three categories based on the sum of BBS task scores: high risk (between 0–20), medium
risk (21–40), and low risk of fall (41–56) (see Section 1.1). The risk of fall category, calculated
from the physiotherapist scores on the subjects, served as the labels of the training data.
An SVM classifier [78] was trained for predicting the fall risk category. The Radial Basis
Function (RBF) [79] was used as the SVM kernel, with γ = 1/n f , where n f is the number
of features, and the regularization parameter C = 3. Leave-one-out cross-validation [74]
was used to evaluate the model’s performance.

4.4. Automatic BBS Score Prediction Results

We tested the performance of the random forest models in predicting each of the
BBS task scores and the SVM classifier in predicting the final fall risk category from the
14 task scores.

Table 1 shows the accuracy of the random forest score predictors for each of the 14 BBS
tasks. BBS task scores are in 0–4. The number of samples (N) differed between tasks due to
some patients’ inability to perform tasks or due to technical difficulties in recording (such
as occlusion of the subject by the physiotherapist when protecting the patient from falling).
Additionally, the distribution of samples across the possible scores was not even since some
tasks were very easy (e.g., sitting in a chair in Task 3) and always scored high grades. As
seen in the table, the Mean-Squared Error (MSE) of the classifications was very low across
tasks, implying that when the classification was incorrect, it was at most one score unit in
error. In addition, we also calculated the weighted precision, recall, and F1-score.

It can be seen that the accuracy varied across the different BBS tasks with some tasks
showing low performance. However, considering the end goal of assessing the final fall risk,
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we show that the predicting model compensated for these inaccurate task score predictions
and correctly assessed the final risk with high accuracy.

Figure 5a shows the accuracy results in predicting the final risk of fall in one of three
categories (high, medium, and low risk of fall). Results are shown as a 3 × 3 confusion
matrix comparing the true risk of fall class as determined by the physiotherapists (the
sum of the BBS scores assigned by the physiotherapists) with the predicted risk of fall.
The overall accuracy was 75.5% correct with an MSE of 0.25. A concern in assessing
the risk of fall is the false negative rate (e.g., nine subjects at high risk were classified as
medium risk). The ML algorithm allows reducing the false negative rate by adjusting
the thresholds. Figure 5b shows the confusion matrix obtained when reducing the false
negatives to four subjects. This, however, incurred an increase in false positives and in the
MSE (to 0.29).

Table 1. Automatic prediction of BBS scores per task.

BBS Task Task Description N
Samples per Class
<0,1,2,3,4>

Accuracy MSE Recall Precision F1

1 Sitting to Standing 102 0,0,0,66,36 87% 0.18 0.87 0.88 0.87

2 Standing Unsupported 111 0,0,15,24,72 73% 0.36 0.73 0.71 0.71

3 Sitting with Back
Unsupported 112 0,0,0,0,0,112 100% 0.0 1 1 1

4 Standing to Sitting 105 0,0,0,53,52 88% 0.15 0.88 0.88 0.88

5 Transfers 96 0,0,22,39,35 72% 0.36 0.72 0.72 0.72

6 Standing Unsupported,
Eyes Closed 101 0,0,0,49,52 71% 0.32 0.71 0.72 0.71

7 Standing Unsupported,
Feet Together 106 13,13,0,33,47 72% 0.37 0.72 0.72 0.72

8 Reaching Forward 75 0,17,0,24,34 73% 0.51 0.73 0.72 0.72

9 Pick up Object from the
Floor 99 7,0,0,39,53 72% 0.31 0.72 0.74 0.70

10 Look Behind Shoulders 102 7,9,8,32,46 52% 1.25 0.52 0.50 0.51

11 Turn 360◦ 100 14,26,20,7,33 66% 0.60 0.66 0.62 0.64

12 Alternate Feet on Step 93 39,11,12,0,31 74% 0.34 0.74 0.69 0.71

13 Standing Unsupported,
One Foot in Front 93 30,14,30,0,19 68% 0.54 0.68 0.64 0.64

14 Standing on One Leg 109 39,40,8,0,22 66% 0.80 0.66 0.64 0.65

Finally, feature ranking was performed on the final fall risk prediction model. Features
were ranked according to their F-statistic [80]. The most predictive features were found
to be:

• Turn 360◦ (Task #11);
• Alternate feet on step (Task #12);
• Transfers between chairs (Task #5);
• Reaching forward with outstretched arm (Task #8).

Indeed, the first two are considered in practice to be highly informative (as confirmed
by the physiotherapists who co-authored this paper).
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Figure 5. Confusion matrix between the true risk of fall as determined by the physiotherapists and
the predicted risk of fall (left). False negatives can be reduced by manipulating the thresholds (right).
The MSE values are 0.25 and 0.29, respectively.

4.5. Statistical Analysis

Statistical analysis was performed to evaluate the correlations between the physio-
therapist scores of the BBS and the predicted scores produced by our automated system
(termed ML predictions). Two physiotherapists scored each of the patients performing the
14 BBS tasks. For each patient, an ML prediction was calculated for each BBS task. The
overall level of risk was categorized into three risk levels: high, medium, and low risk of
fall. The overall level of the risk of fall was determined by the sum of the 14 scores: 0–20:
high fall risk; 21–40: medium fall risk; 41–56: low fall risk.

An intraclass correlation (two-way mixed-model, single measure) [81] was used for
measuring inter-rater reliability of the BBS final score between the two physiotherapists and
the ML prediction. Included in the analysis also was the minimal score between the two
physiotherapists (MIN(A,D)), calculated on each sample independently. This is in accord
with a conservative scoring that tends toward fewer false alarms (see Section 4.4). AN
Intraclass Correlation Coefficient (ICC) above 0.8 reflects high reliability, 0.6–0.79 moderate
reliability, and less than 0.6 low reliability. Table 2 shows the ICC results. The ICC measure
of the raters’ consistency in measuring final BBS scores was higher between the physiother-
apists than between the physiotherapists and the ML prediction (Table 2). Saying that, the
correlation between the prediction results and the physiotherapists’ measures was high
(>0.83) both between the two physiotherapists and between each physiotherapist and the
ML prediction.

Table 2. The intra-class correlation coefficient between physicians and ML of the BBS scores. All
p-values < 0.001.

D Min(A,D) ML Prediction

A 0.981 0.989 0.839
D 0.992 0.834
Min(A,D) 0.824

5. Efficient Fall Risk Evaluation Algorithm

The automated system for BBS assessment presented above is an effective method
for reducing physiotherapist resources and allowing a wider screening of the elderly
community for the risk of fall. In this section, we introduce an additional enhancement
in which machine learning was used to reduce the number of BBS tasks required to be
performed. This approach can reduce the number of tasks from 14 to an average of 4–6 tasks
per subject, thus reducing the amount of time spent by the patient and the medical staff
member (physiotherapist or the person supervising the automatic process) required for
assessing fall risk. The approach can be applied both to the physical BBS and to the
automatic system and in essence can be exploited for any other battery of tests.
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The standard BBS assessment carried out either by a physiotherapist or performed
using the automated method described above includes 14 BBS tasks that are performed
by the subject in a predefined sequential order. The subject is scored on each of the tasks.
The scores are then either summed (if collected by the physiotherapist) or run through our
automated ML algorithm (Section 4) in order to assess the final fall risk of the subject into
one of three classes (high, medium, or low fall risk).

Considering the BBS assessment as an iterative process (where one task is performed
per iteration), every iteration can be considered as a “partial predictor” of the final fall risk
assessment category. As additional tests are performed and task scores are accumulated,
the prediction becomes more accurate. Thus, we used ML to develop a method in which
the BBS tasks were ordered in a manner that optimized for accuracy of the final fall risk
prediction and allowed for the testing to terminate early when the prediction reached a
high confidence level. The BBS tasks may be administered in a predetermined optimal
order constant across all subjects or may be adaptively determined per subject. Either
way, the number (and consequently, the time required to perform the BBS assessment) was
significantly reduced, making the whole process more efficient.

5.1. Preprocessing: Building a Dataset of Fall Risk Predictors

The goal of the adaptive fall risk evaluation algorithm was to find the minimal subset
of BBS tasks that would ensure the highest classification (prediction) accuracy for the risk
of fall. To this end, we built a dataset of ML-based fall risk predictors. We considered
all subsets of the 14 BBS tasks (214 − 1 subsets) and, for each subset, trained a machine
learning classifier to predict the final fall risk assessment using as the input only the scores
associated with the tasks in the subset. Together with the prediction, each classifier also
output a measure of confidence in the prediction.

The fall risk predictors were trained using the patient data collected for the automated
BBS system as described in Section 4. We created two different datasets of predictors. One
dataset consisted of predictors trained on the physiotherapists’ BBS scores with the ground
truth risk category determined by the sum of these scores. The second dataset consisted of
predictors trained on the BBS scores computed by our automated BBS assessment system
described in Section 4. The fall risk category determined by the physiotherapists served
as the ground truth in this case as well. Three types of machine learning algorithms were
tested as predictors: SVM [78], decision trees [82] and random forest [72]. Each of these
algorithms outputs the predicted risk class, as well as the confidence in the prediction. The
random forest models produced the most accurate predictors, both in terms of accuracy
and in terms of the average confidence level. Thus, we considered only the random forest
models in this study. The random forests were trained with 100 trees.

For each dataset, the trained predictors were ranked according to the accuracy in
prediction (proportion of correct fall risk predictions), as well as the average confidence of
the predictions over the training set.

5.2. Efficient Re-Ordering of the BBS Tasks

The enhancement of the BBS testing that we propose involved re-ordering the BBS
tasks and interactively predicting the risk of fall after each task is performed and scored.
Together with the fall risk prediction, the confidence in the prediction is given after each task
as well. Given a confidence threshold CT, the BBS testing terminates when the confidence
exceeds the threshold. A schematic diagram of the system is shown in Figure 6. We term
the new ordering and shortened sequence of BBS tasks Efficient-BBS (E-BBS), where the
process is efficient in the number of tasks the patient has to perform.

The algorithm for determining the E-BBS task order requires: (a) the first BBS task
(or a subset of initial tasks) and (b) a method to determine the next BBS task to perform.
Let xi be the BBS scores of the ith subject in the training set and be yi the risk class (high,
medium, low) associated with xi (assume there are N such pairs (xi, yi)). Recall that the
preprocessing step (Section 5.1) created a dataset of ML-based predictors for every subset of
the BBS tasks. We define Pred(SS, xi) as the fall risk class prediction for xi according to the
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trained predictor associated with the BBS task subset SS. The function Con f (SS, xi) returns
the confidence associated with the prediction. E-BBS is an iterative process with a single
BBS task performed at each iteration. Let CSS be the current subset of BBS tasks (tasks that
have been performed and scored), and denote by NT the next task to be determined from
among the unused set of tasks UT.

We developed and tested four different selector methods (see Figure 6) for choosing
the next BBS task to be performed:

Figure 6. Schematic diagram of the E-BBS fall risk prediction system with efficient and adaptive
ordering of the BBS tasks.

• Method 1. The next task NT is selected as that which when augmented to CSS creates
a subset whose predictor has the highest accuracy over the complete training set.

NT = arg max
T∈UT

N

∑
i=1

I(Pred({CSS, T}, xi) = yi),

where I is the indicator function;
• Method 2. NT is determined as above, but with the accuracy score of the augmented

subset predictor calculated only on the training examples xi for which the CSS predic-
tor gives a confidence below the confidence threshold CT, i.e., the xi’s for which the
classifier did not yet make a decision.

NT = arg max
T∈UT

N

∑
i=1

I(Pred({CSS, T}, xi) = yi)

× I(Con f (CSS, xi) < CT);

• Method 3. The third method is an adaptive method that depends on the scores xp
of the patient being tested for BBS. NT is determined as above, but the ith training
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example’s contribution to the sum is weighted by its similarity to the scores xp of the
patient. The greater the similarity, the higher the weight is.

NT = arg max
T∈UT

N

∑
i=1

I(Pred({CSS, T}, xi) = yi)

× I(Con f (CSS, xi) < CT)

× d(CSS(xi), CSS(xp)),

where CSS(xp) and CSS(xi) are the BBS scores of the patient and of the ith training
sample restricted to the tasks in CSS. As a similarity measure, we used
d(xi, xj) = exp(−||xi − xj||2/σ2), where the parameter σ2 controls the contribution of
the point as a function of the distance;

• Method 4. The fourth method extends the third method by considering only the
examples in the training set for which the algorithm correctly classified the example.

NT = arg max
T∈UT

N

∑
i=1

I(Pred({CSS, T}, xi) = yi)

× I(Con f (CSS, xi) < CT)

× d(CSS(xi), CSS(xp))

× I(yi = ŷi),

where ŷi is the final prediction of the algorithm, i.e., Pred(AT, xi) = ŷi, where AT is
the set of all tasks.

It can be seen that the first two selector methods produced a task sequence that was
independent of the patient input. Thus, these selector methods produced a constant order
of BBS tasks that was later used on all patient data when testing. Selector Methods 3 and 4
are adaptive, as the NT task is chosen based on training data, which are dependent on the
data of the patient being tested. Thus, for each patient, a different BBS sequence of tasks is
produced. However, we show later in Section 5.3 that, in fact, all E-BBS sequences shared
the same initial portion of the task sequence.

5.3. Results: Efficient BBS

Given a starting subset of BBS tasks, a confidence threshold, and a training set, each of
the four selector methods produces a different optimal ordering of BBS tasks. To evaluate
the performance of each such ordering, we used five-fold cross-validation on the training
set. For consistency, we also compared the results with the standard ordering of BBS
tasks [7,8], as well as the Short-Form BBS (SFBBS), which selected a subset of seven tasks to
be performed [34] (see Section 1.1).

The quality of the performance of a specific ordering of tasks was evaluated using
two measures: the accuracy of predicting the fall risk category and the average number of
BBS tasks required to complete the prediction process. Since the Efficient-BBS assessment
terminates the testing when the confidence of the prediction reaches the desired threshold,
the number of required BBS tasks was significantly lower than the number of BBS tasks in
the standard BBS test (14).

We compared the performance of the adaptive ordering across selector methods, using
confidence thresholds of 90, 92, 94, 96, 98, and 100. The initial subset of BBS tasks considered
were of size 1, 2, and 3 (a discussion on the significance of starting with an initial subset
of tasks is given in the Discussion Section 6). Finally, we compared the results across the
two types of datasets: based on the physiotherapist scoring and based on the automatic
BBS scoring.

Figure 7 plots the accuracy and the average number of BBS tasks required for the
E-BBS ordering produced by the four selector methods trained on the physiotherapists
scoring, as well as the standard BBS ordering. For each method, the plot shows values for
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the six different confidence thresholds. Naturally, the higher the confidence threshold, the
longer the length of the sequence is. The initial test set was selected as the optimal set of
three tasks, as discussed below, and included the three BBS tasks numbered {8,9,11} (see [7]).
As can be seen, all orderings of BBS tasks reached an accuracy of around 97% correct risk of
fall predictions. However, the different selector methods showed a significant reduction
in average BBS tasks compared to the standard BBS, requiring from 4–6 tasks on average
compared to the 14 tasks of the standard BBS. Additionally, we plot the performance of the
SF-BBS [34] with seven BBS tasks at an accuracy rate of 87% on our patient data, showing
that the E-BBS significantly outperforms the SF-BBS (the SF-BBS uses a three-unit scoring
scale, whereas we relied on a five-unit scale used in the standard BBS testing). The four
selector methods showed comparable performance with a slight advantage for Method 3.

Figure 7. Accuracy vs. average number of BBS tests for different selector methods (Section 5.2) trained
on the physiotherapist scoring. For each method, the plot shows values for 6 different confidence
thresholds (90, 92, 94, 96, 98, and 100).

Figure 8 displays the same results as Figure 7 when training was performed on the
scores predicted by the automatic BBS system. One can observe a lower rate of performance,
but, as before, the standard BBS was strongly outperformed by the four selector methods,
with Method 4 showing the best performance. However, in this case, all methods reached
an accuracy of 76–77% correct risk of fall classification. Furthermore, it can be observed
that there was a drop in accuracy when the confidence threshold reached 100. This was
due to the fact that the automatic BBS score assessment was inconsistent in its performance
with some of the BBS tasks showing low prediction accuracy, as shown in Table 1. The
trained predictors selected the high-accuracy tasks first in the E-BBS ordering, leaving those
with low accuracy to later in the ordering. When the confidence threshold was low, the
BBS assessment of a subject was able to predict confidently without relying on those BBS
tasks with low accuracy. However, when the confidence threshold approached 100, those
tasks must be recruited, and their inaccuracy led to incorrect predictions of the overall fall
risk. Albeit that there was this fault, the average number of required BBS tasks was still
significantly lower than 14. We note that when continuing up to the fourteenth task, the
four selector methods did not improve in accuracy beyond that shown in the plot, which is
consistent with the non-adaptive results shown in Figure 5.

We now question the initial BBS tasks used by the E-BBS test. The reason for allowing
a definition of an initial set of BBS tasks is that the iterative method of BBS testing and the
design of the selector methods inherently imply that the optimal ordering was determined
following a greedy algorithm. As such, a local minimum may be reached in the optimization.
To mitigate this effect, we allowed a global optimal subset to be chosen as the initial set of
tasks in the ordering.
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Figure 8. Accuracy vs. average number of BBS tests for different selector methods (Section 5.2) trained
on the automatic BBS scoring. For each method, the plot shows values for 6 different confidence
thresholds (90, 92, 94, 96, 98, and 100).

Without any external constraints on the initial task set, we chose the set to be that which
performed optimally. Since the predictors trained in the preprocessing stage (Section 5.1)
were each ranked by their prediction accuracy, we chose a subset of a predefined size whose
predictor showed the best accuracy. We considered subsets of size 1, 2, and 3. Table 3
shows the accuracy of the predictors associated with subsets of size 1 when trained on
the patient data with physiotherapists’ scoring. The results in the table can be interpreted
as the predictive quality of each individual task of the BBS. It can be seen that Task #9,
as a single task, was the best predictor of fall risk on our test set with 85.5% accuracy.
Similarly, for subsets of size 2 and 3, we found that the optimal initial task sets were {9,11}
and {8,9,11}, respectively.

Table 3. Singe BBS tasks—predictor accuracy.

BBS Task Accuracy (%)

9 85.5

7 81.4

6 81.2

11 80.8

8 80.0

4 77.8

5 77.4

12 76.2

1 74.2

10 72.6

2 70.7

13 67.5

14 67.3

3 50.8

Figure 9 shows the accuracy vs. the average number of BBS tasks required, when
using different initial subsets of BBS tasks. For comparison, also shown are the results for
Subset {1} and for the standard BBS test sequence. Results are shown for Selector Method
3. As can be seen, all E-BBS orderings were significantly better than the standard BBS

193



Sensors 2022, 22, 1557

and also better than the Subset {1} case. The accuracy was highest for the subset of size 3,
reaching 97% accuracy at a confidence level of 100. All orderings required only 3–6 BBS
tasks on average. Using BBS Task 1 as the initial task, as is used in the standard BBS test,
showed the least accurate results of the E-BBS orderings. This is indicative of the structure
of the standard BBS test where “easier” tasks are performed at the beginning of the testing
sequence. These, however, are less informative and have a lower predictive quality (see
Table 3). In the optimal ordering, these would appear later in the ordering, with the more
informative tasks appearing first.

Finally, we studied the new order of BBS tasks as expressed in the E-BBS. We first
considered the physiotherapist training set and, for simplicity, focused on the initial task
subset with the single BBS Task #9, which was determined as the optimal starting task,
and we set the confidence threshold to 100. We considered the four task selector methods
(Section 5.2) and considered the E-BBS task sequence they produced over a test set of
patients. To present the results, we used occurrence matrices, as shown in Figures 10 and 11.
Columns of the matrix indicate the order in the E-BBS sequence. Each row indicates a
standard BBS task enumerated 1–14. The value in each matrix entry (i,j) indicates the
proportion of times that BBS task i appeared in an E-BBS sequence in position j across all
E-BBS sequences produced over the test set.

Figure 9. Accuracy vs. average number of BBS tests for the different initial subset of tasks. Results
are shown for Selector Method 3 and training on the physiotherapists’ data. For each initial subset of
the tasks, the plot shows values for 6 different confidence thresholds (90, 92, 94, 96, 98, and 100).

Figure 10 displays four occurrence matrices trained and tested on the physiotherapist
data. Matrices (a) to (d) show results for Selector Methods 1 to 4, respectively. It can be
seen that the number of BBS tasks used in the E-BBS sequences decreased along the order.
This was due to the fact that for most patients, the number of tasks required to reach the
confidence threshold was much lower than 14, and the E-BBS evaluation was terminated
before all 14 tasks were performed.

As expected, Selector Methods 1 and 2, which are not-adaptive, produced a constant
sequence of the E-BBS, which is a permutation of the standard BBS. Selector Methods 3 and
4 are adaptive and thus produced a different E-BBS sequence for each subject. However, it
can be seen that the first two tasks in the sequence were always the same—Tasks #9 and
#11 (followed by #8 with high probability)—and then showed variability in the subsequent
tasks, with Selector Method 3 showing a wider variability than Method 4. More interesting
is the fact that the initial part of the E-BBS sequence was similar across all four selector
methods (all four matrices showed initial BBS Tasks 9, 11, 8, and even 7 with high values).
This indicates that regardless of whether the adaptive or constant E-BBS is used, the same
BBS tasks will be invoked initially, implying that these tasks are predictive of the final
assessment of the risk of fall.
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Figure 10. Occurrence matrices depicting the ordering of BBS tasks in the E-BBS. Columns indicate
the order in the E-BBS sequence. Each row indicates a standard BBS task as defined in [7]. The matrix
entry value indicates the proportion of times a BBS task was used in a certain E-BBS sequence position
across the test set. (a–d) Occurrence matrices of E-BBS sequences as trained on the physiotherapist
data and using the 4 Selector Methods 1 to 4, respectively.

Figure 11. (a–d) same as Figure 10, but trained on the automatic BBS scoring data.

Figure 11 displays similar occurrence matrices trained on the automatic scoring of BBS
patients. Here too we see similar characteristics, albeit noisier. The common initial tasks in
the E-BBS sequence on these data were BBS Tasks 1, 12, and 13. The distinction between
this sequence and that obtained for the physiotherapist data was due to the fact that the
automatic system introduces errors in the BBS scoring itself. Thus, the tasks appearing
early in the E-BBS are those that are predictive of fall risk, as well as reliable in terms of
automatic BBS scoring.

The outcome of this analysis implies that the E-BBS order of BBS tasks can be set as
constant for the first three tasks (namely, Tasks 9, 11, and 8), followed by either the constant
sequence determined by Selector Methods 1 and 2 or performed adaptively per patient
using Selector Methods 3 or 4. Considering that most patient testing terminated early due
to reaching the desired confidence level, the E-BBS sequence beyond the first 3-6 tasks
was rare.

We summarize the orderings of tasks in the E-BBS testing in Tables 4 and 5. In Table 4,
sequences are shown for Selector Methods 1 and 2 and for the physiotherapist data and the
automatic scoring data. As described above, the first three tasks are common to all E-BBS
options, diverging only later. Regarding Methods 3 or 4, tasks were selected adaptively for
each subject according to the BBS scores achieved until this step. Table 5 shows an example
of a single subject for both methods. Note that this task sequence terminated at different
points for each subject dependent on the subject’s scores and the configured confidence
threshold CT.

Table 4. E-BBS order of tasks using Methods 1 and 2. Task numbers are the standard BBS task
numbers [7].

Data Method T T T T T T T T T T T T T T
# 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Physiotherapist 1 9 11 8 7 5 13 10 1 2 3 4 6 12 14
2 9 11 8 7 5 12 10 2 3 1 6 13 4 14

Automatic 1 1 12 13 7 14 4 8 2 3 5 6 9 10 11
2 1 12 13 6 11 8 2 3 10 4 7 9 5 14
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Table 5. E-BBS order of tasks using Methods 3 and 4. Task numbers are the standard BBS task
numbers [7].

Data Method T T T T T T T T T T T T T T
# 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Physiotherapist 3 9 11 8 7 4 5 10 1 3 14 2 13 12 6
4 9 11 8 7 2 5 10 1 4 3 6 13 14 12

Automatic 3 1 12 13 11 5 4 9 2 10 14 8 7 6 3
4 1 12 13 11 4 5 7 10 14 8 2 9 3 6

6. Discussion and Conclusions

We presented an approach to automating the BBS fall risk assessment test. The
approach involves two main parts. First, a computer vision and ML-based system tracks
the motion and pose of human subjects performing the BBS tasks, and then, a two-level
ML model first predicts the BBS score for each of the fourteen tasks, the output of which is
fed into another ML model, which then predicts the final fall risk category. In addition, we
presented an ML-based method that determines an Efficient-BBS (E-BBS) battery of tests,
requiring the patient to perform only a subset of the original BBS tests, while achieving the
same quality of prediction as the full BBS test in a significantly shorter time. We emphasize
that the E-BBS can be implemented on the outputs predicted by the automated BBS score
predictor or directly on the scores supplied by the physiotherapists.

The approaches presented in this paper were tested on data collected at a major
hospital where physiotherapists provided BBS scores and the level of fall risk for hospital
patients and healthy subjects. The system showed high accuracy rates on assessing fall
risk and good correlation with ground truth scores on the individual BBS tasks. In our
experiments, we used real test results, where the tests were performed in the standard
order, but we simulated the order of the tests for the E-BBS evaluation. In a real setting, the
physiotherapists (our co-authors) stated that the order of tests has some importance and
starting first with easier tests might produce better scores by the patients. Thus, additional
considerations could be added into the subset selection process, possibly incurring a slight
decrease in performance. This is a topic of future research.

The complete system is non-invasive and easy to use in a set-up-and-go form, well
suited to be used by non-technically-savvy individuals. Furthermore, the E-BBS allows the
testing to be significantly more time efficient. Thus, the system is well suited for expanding
testing beyond the confines of hospitals, medical centers, and doctors’ offices. It allows
implementing a wide-scale screening of the elderly population for a high risk of fall. The
system can efficiently determine those at low risk and, more importantly, direct those found
to be at high risk to further medical assessment and preventive treatment.

Finally, we note that this study focused on evaluating the risk of fall and the BBS
scores. However, the motion analysis, as well as the efficient sequencing approach can be
applied to any other sequence of assessment tests.
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Abstract: Considering that the population is aging rapidly, the demand for technology for aging-at-
home, which can provide reliable, unobtrusive monitoring of human activity, is expected to expand.
This research focuses on improving the solution of the posture detection problem, which is a part of
fall detection system. Fall detection, using depth maps obtained by the Microsoft Kinect sensor, is a
two-stage method. We concentrate on the first stage of the system, that is, pose recognition from a
depth map. For lying pose detection, a new hybrid FRSystem is proposed. In the system, two rule
sets are investigated, the first one created based on a domain knowledge and the second induced
based on the rough set theory. Additionally, two inference aggregation approaches are considered
with and without the knowledge measure. The results indicate that the new axiomatic definition of
knowledge measures, which we propose has a positive impact on the effectiveness of inference and
the rule induction method reducing the number of rules in a set maintains it.

Keywords: precedence indicator; knowledge measure; fuzzy inference; rule induction; posture
detection; aggregation function

1. Introduction and Description Problem

Fuzzy [1] and rough [2] sets provide tools for the analysis of significant imperfections
of data and knowledge. The former allows classification of objects as belonging to a
given degree to a set or relation. The latter provides approximations in cases where the
information is incomplete. In this paper, we demonstrate how the mentioned theories can
be merged into a hybrid system to improve the solution of the posture detection problem,
which is a part of a fall detection system.

Considering that the population is aging rapidly, the demand for assistive technology
for aging at home which can provide reliable, unobtrusive monitoring of human activity is
expected to expand. One important aim of assistive technology is to provide prolonged
independent living in a safe, home like environment without changing everyday lifestyle.
Falls are a severe problem within the growing aging population. Many efforts have
been undertaken to develop reliable methods of fall detection. The increasing number of
studies in this area have allowed us to identify the major challenges and issues for fall
detection technology, especially: performance, usability, and acceptance by the elderly.
Fall detection systems need to be as accurate and reliable as possible both in terms of
high sensitivity and specificity. In practice, this means that fall detectors must reliably
distinguish between falls and activities of daily living (ADL) robustly, sustaining at low
false alarm ratio. The method should not limit the placement of the sensors, or be sensitive
to volatile environmental conditions. Such detection systems fall into two major categories,
that is, wearable sensors and context-aware systems [3]. The main advantages of wearable
sensors are size, usability, power consumption, and costs of use. The availability of cheap,
embedded inertial sensors used in smartphones and smartwatches has contributed to the
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growth in their popularity in recent years. Usually, such approaches use threshold-based
techniques to check if a person’s movement exceeds a predetermined threshold [4]. Some
of the methods incorporate gyroscopes to obtain the person’s orientation [5]. Unfortunately,
none of the above-mentioned methods provides satisfactory accuracy. Moreover, body-
worn devices cannot be worn during certain activities, such as sleeping, changing clothes,
and washing, moreover elderly people may forget to wear such devices. Context-aware
systems are based on different kinds of sensors located in the user’s environment: cameras,
microphones, pressure sensors, Doppler radar, and so forth. The main benefit of using
context-aware systems is that no sensors need to be attached to the body of the monitored
person, hence the reliability does not depend on the user’s willingness to wear the device.
On the other hand, this form of activity monitoring is more expensive, invasive, and
sometimes requires time to install and calibrate. Camera-based systems, which are one
type of context-aware detectors, offer a promising way to detect falls and have been a
subject of extensive research. Numerous attempts have been made to detect falls based on
a single CCD camera, multiple cameras, stereo-pair cameras, and omnidirectional ones.
Although CCD cameras offer several advantages, like the possibility to recognize various
daily activities, the lack of ability to work in nightlight conditions and preserve privacy
well may be considered serious drawbacks. Compared with the above-mentioned solutions,
depth maps are insensitive to lightning conditions and provide 3D information that may
substantially contribute towards the robust analysis of human activity.

This paper is focused on human pose recognition which is one part of the hierarchical
system proposed in [6]. The mentioned system consists of two input fuzzy-reasoning
engines (analyzing pose and movement separately) and a triggering alert Sugeno engine.
The fuzzy reasoning on disjoint subsets of the linguistic variables performed by the engines
leads to the reduction of the number of fuzzy rules needed for input-output mapping.
Analyses of fuzzy and rough inference algorithms for posture detection, which are a
part of the fall detection system, require methods that take into account uncertainty, for
example, fuzzy set theory and rough set theory. These two theories model different types
of uncertainty. The rough set theory takes into consideration the indiscernibility between
objects. The second, that is, fuzzy set theory deals with the ill-definition of the boundary
of a class through a continuous generalization of set characteristic functions. Given that
these approaches pursue different goals, it is more natural to combine the two models of
uncertainty than to force them to compete on the same problems. Thus, both approaches
will be used in the proposed decision-making system.

The main objective of our research is to improve the solution to the posture detection
problem. Therefore, a new hybrid system, based on fuzzy and rough sets, has been
developed; the concept of the fuzzy information measure has been investigated and a new
axiomatic definition of the knowledge measure has been introduced. In the system, two rule
sets are investigated, the first one created based on a domain knowledge and the second
induced based on the rough set theory, and two inference aggregation approaches are
considered with and without knowledge measure. These measures together with various
aggregation methods are used to evaluate the accuracy of the classification of rule sets in the
decision-making process (the aim is also to indicate individual operators and fuzzification
methods included in the tested system that meet the adopted assumptions, that is, to take
into account the uncertainty represented by approximated values). The efficiency of the
system is compared to [6]. The knowledge measure can be considered as a dual measure
of fuzzy entropy or uncertainty. An entropy measure cannot capture all uncertainties in
FSs. Knowledge measure has been studied in fuzzy environments, for example, in [7,8]
and in intuitionistic fuzzy environments [9,10], which introduced knowledge measures in
an IFS theory as a dual axiom system of intuitionistic fuzzy entropy. In this paper, the new
knowledge measure is used to solve the problems of fuzzy inference (in a posture detection
system) and tested using different aggregations in the process of aggregating premises. Its
effectiveness is then compared using other measures known from the literature.

The following points summarize the main contribution of this study:

202



Sensors 2022, 22, 1602

(i) New measures:

• A new subsethood measure for fuzzy values is proposed and its validity is
proved with the help of the example of use;

• A new knowledge measure for FSs is introduced and its significance is proved
with the help of the example of use;

(ii) A new hybrid system is proposed and used in a real decision making problem, i.e., a
fall detection system for the elderly, in particular in a posture detection system:

• The proposed knowledge measure is applied to fuzzy inference problems;
• A rule induction method is applied to reduce the number of rules in a set while

maintaining the effectiveness of the inference process and significantly improve
the performance of a approximate reasoning.

The paper is organized as follows. In Section 2 related works are presented. In
Section 3 methodology and data descriptions are proposed. In addition, elements of the
fuzzy and rough sets theory as well as new measures of precedence and knowledge based
on precedence indicators with their applications to fuzzy inference are presented. Finally,
the experimental results of simulations of a hybrid approach to the fall detection problems
are described in Section 4.

2. Related Work

Recently, depth cameras have been used in fall detection [11,12]. Ref. [13] applied the
skeletal model obtained from Kinect SDK to fall detection. Ref. [14] proposed employing 3D
joint tracking information to estimate the walking speed and to extract features describing
the movements of a person going down the stairs. However, a person can be in one
of many poses before a fall, so the skeleton extraction model may fail, or be unreliable
during fall motion [15,16]. In [16] a two-stage fall detection method is proposed. Temporal
segmentation of the vertical state time series of a person tracked in 3D is used in the first
stage to identify on-ground events. In the second stage the confidence that the event
was preceded by a fall is calculated, using a set of decision trees and features extracted
from ground-based events. The improvement of fall detection reliability by combining
depth and inertial sensors was proposed in [17]. Recent work demonstrates that merging
the depth with accelerometer signal improves human activity recognition [18]. A more
detailed overview of recent fall detection methodology using depth sensors is provided
in [19]. Other approaches are based, for example, on convolutional neural networks (CNNs).
However, due to the limited amount of data, their performance is limited. In [20] the authors
used transfer learning where pre-traning on the ImageNet dataset AlexNet architecture was
applied to accelerometric data, achieving an accuracy of 96.4%. Additionally, the authors
of [21] also used depth data, however extracted from videos and thus applied to 3D-CNN.
The detection of falls base on videos relies on multiple frames and uses more complex
models, thus it can be considerably slower. By using data augmentation, they increased
the model accuracy from 69.6% to 92.4% [22]. In this work we perform detection and
classification of body contour on depth images. This approach ensures the privacy of the
monitored person and is very effective in terms of processing speed. Our method involves
merging the techniques mentioned above, fuzzy sets theory and rough sets theory. Despite
the popularity of machine learning approaches, issues may arise with the use of simulated
human fall event data. Firstly, the small number of actors, may not be sufficient to represent
the entire population in terms of variability in human properties (i.e., height) or human
biomechanics [23]. Scarcity of data may be problematic (especially for deep learning) so
approaches other than traditional supervised classification are being investigated [24].
Another solution to address the lack of data is a customization of the parameters of the
decision system to a person’s physical characteristics [25]. Our approach leverages the
ease of customization and explainability of a fuzzy inference system by reducing the
number of rules, allowing to build a linguistically understandable classifier maintaining
high detection accuracy.
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3. Methodology, Data, Theory and Tools Descriptions

For the purpose of to this article, we propose a new hybrid diagnostic system based
on fuzzy and rough sets theory. To be specific, two rule sets are investigated, the first
one created based on a domain knowledge and the second constructed by the rough set
theory along with the main area of research which is concentrated on the concept of fuzzy
information measure, and therefore the knowledge measure. These measures together with
various aggregation methods are used to evaluate the accuracy of the classification of rule
sets in the decision-making process.

3.1. Methodology and Data

The main goal of this research was to compare two approaches to posture recognition in
fall detection: I. Knowledge Approach and II. Rough Set Approach. In the first approach
a method based on a domain knowledge was used to generate a set of rules, the cardinality
of which results from the combinatorial characteristic of this method. In turn, in the second
approach induction method based on rough sets (described in Section 3.3) was used to
reduce a set of rules. Next, both sets of rules were used in the fuzzy inference and evaluation
process separately. Additionally, expert knowledge was used for modeling the selection
of the parameters for the fuzzification function (described in Section 4). This combination
of fuzzy and rough solutions is a novelty to the systems studied in the literature on fall
detection problems. The concept of a hybrid approach (that we call a FuzzyRoughSystem,
or FRSystem), presented in Figure 1, was based on three processes: Data Acquisition Process,
Fuzzy Inference Process and Evaluation Process.

Figure 1. The FRSystem flowchart.

In the Data Acquisition Process, Kinect v1 cameras and an inertial motion sensor
were used. The inertial sensors: PS Move and x-IMU collected data at 60 Hz and 256 Hz
rates, respectively. The cameras were placed in different locations (one the front of the
room parallel to the floor and the second one on the ceiling, facing down), in each case,
the camera could be static or mounted on an active head. To preserve the user’s privacy,
only the depth maps were analyzed. Depth maps were acquired using USB protocol, while
accelerometric data were streamed wirelessly from the accelerometer using the Bluetooth
protocol. For data acquisition, the OpenNI library was used, while the IMU sensor’s
software was prepared based on the source codes provided by the manufacturer.

As a result, 5990 depth maps were collected in the UR Fall Detection Dataset. These
depth maps were acquired using two Microsoft Kinect cameras from two different view-
points. Each of the 30 distinct falls had about 150 labelled frames. The depth maps were
stored as PNG16 images with 640 × 480 resolution.
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The fall detection system, based on the images, was carried out in two stages: detection
of a lying pose based on a single depth map and character movement analysis using
dynamic transitions, however, in this work, we focused on the first stage of the system.
Features describing the silhouette of a person at a given moment were determined as
a result of the clustering of 600 images depicting characters in various poses, including
during a fall and while performing ADL actions were analyzed. Ultimately, the following
descriptors were selected from the set of features:

• H/W—the ratio of the height of the person’s bounding box to its width in the seg-
mented point cloud.

• H/Hmax—the ratio of the height of the person’s surrounding box in the current frame
to the physical height of the person.

• max(σx, σz)—the maximum standard deviation of the values of points belonging to the
character from its center of gravity along the axes of the Kinect camera coordinate system.

• P40—the ratio of the number of points, lying no more than 40 cm above the floor, to
the number of all points (belonging to the character point cloud).

Before we present and discuss the implementation of the new system (Section 4),
we will recall some facts and introduce new elements in the fuzzy sets theory or rough
sets theory.

3.2. Fuzzy Set Theory

Firstly, we recall the concept of a fuzzy set (relation) (cf. [26]). We consider fuzzy sets
in a set P �= ∅.

Definition 1 ([1]). An arbitrary operation R : p → [0, 1] is a fuzzy set on P.

All fuzzy sets on P will be denoted per FS(P) and the membership function describing
the degree of belonging of p ∈ P to R is μR(P).

3.2.1. Basic Operations

In this chapter, we will focus on the elementary operations (fuzzy negations and
implication functions built on [0, 1]) used in fuzzy reasoning, which is the basis of our novel
system and which will also be recalled in Section 3.2.3.

Definition 2 (cf. [27]). A non-increasing operation N : [0, 1]→ [0, 1] which satisfies N(0) = 1
and N(1) = 0 is called a fuzzy negation N, which is strong if N(N(p)) = p, p ∈ [0, 1].

Example 1 (cf. [28]). Examples of fuzzy negations N are:
• Nk(p) = 1− p (strong negation called classical/standard negation);
• Nw(p) = (1− pw)

1
w , w > 0;

• N(p) = 1− p2, which is strict but not strong;
• Nλ

S (p) = 1−p
1+λp , the Sugeno family of fuzzy (strong) negations, where λ ∈ (−1, ∞) and for

λ = 0 we get the classical fuzzy negation.

Definition 3 ([29]). An operation I : [0, 1]2 → [0, 1] which is a decreasing in the first component
and increasing in the second component also fulfilling I(1, 0) = 0, I(0, 1) = I(0, 0) = I(1, 1) = 1
is called a fuzzy implication.

Examples of fuzzy implications I are:

• Łukasiewicz implication—ILK(p, q) =
{

1, if p ≤ q
1− p + q, otherwise;

• Fodor implication—IFD(p, q) =
{

1, if p ≤ q
max(1− p, q), otherwise;
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• Rescher implication—IRS(p, q) =
{

1, if p ≤ q
0, otherwise;

• Reichenbach implication—IRC(p, q) = 1− p + pq;
• Kleene-Dienes implication—IKD(p, q) = max(1− p, q).

Now, we recall the basic and the most important operation on fuzzy sets, i.e., an
aggregation function.

Definition 4 (cf. [30]). An operation A : [0, 1]n → [0, 1], n ≥ 2 which is increasing and fulfils
boundary conditions A(0, . . . , 0) = 0, A(1, . . . , 1) = 1 is called an aggregation function.

Example 2. Examples of aggregation functions are:
• lattice: TM(p, q) = min(p, q), SM(p, q) = max(p, q);
• algebraic: TP(p, q) = pq, SP(p, q) = p + q− pq;
• Łukasiewicz: TL(p, q) = max(0, p + q− 1),
SL(p, q) = min(1, p + q);

Arithmetic mean
Amean(p1, . . . , pn) =

1
n
(p1 + . . . + pn); (1)

Geometric mean
Agmean(p1, . . . , pn) = n

√
p1 . . . pn; (2)

Square mean

A2mean(p1, . . . , pn) =

√
p1

2 + . . . + pn2

n
; (3)

The OWA operator (ordered weighted averaging) OWA : [0, 1]n → [0, 1]

OWA(p1, . . . , pn) =
n

∑
i=1

wi p(i), (4)

(i) means a permutation of {1, . . . , n} such that p(1) ≥ p(2) ≥ . . . ≥ p(n) and w = (w1, . . . , wn) ∈
[0, 1]n is a vector of weights (i.e., wi ∈ [0, 1] and ∑n

i=1 wi = 1) for p1, . . . pn ∈ [0, 1], n ∈ N.

We will also employ the concept of pre-aggregation function [31], which satisfies
the same boundary conditions as an aggregation function, but, in return to requiring
monotonicity, directional monotonicity is needed, that is:

Definition 5. An operation F : [0, 1]n → [0, 1] is a pre-aggregation function if it fulfils
(1) There exists −→r ∈ [0, 1]n (−→r �= −→0 ) a real vector which F is −→r -increasing, that is, for all points
(p1, . . . , pn) ∈ [0, 1]n and for all c > 0 such that (p1 + cr1, . . . , pn + crn) ∈ [0, 1]n, holds
F(p1 + cr1, . . . , pn + crn) ≥ F(p1, . . . , pn).
(2) F fulfils the boundary conditions: F(0, . . . , 0) = 0 and F(1, . . . , 1) = 1.

Example 3 ([31]). Examples of pre-aggregation functions:
1. F(p, q) = p− (max(0, p− q))2 is (0, 1)—increasing (not an aggregation function).

2. Lλ(p, q) = λp2+(1−λ)q2

λp+(1−λ)q (with convention 0/0 = 0) is (1− λ, λ)—increasing, for λ ∈ [0, 1]
(the weighted Lehmer mean).

3.2.2. Knowledge Measure

We will focus on an important measure, that is, the measure of fuzzification, that is,
the knowledge measure. We propose to use this measure in the process of fuzzy inference
when drawing conclusions from premises (in aggregating premises). Before we move on
to a new idea of measuring knowledge in the fuzzy set environment/theory, we need to

206



Sensors 2022, 22, 1602

present a certain tool useful for the operation of fuzzy values, that is, a measure of inclusion
of fuzzy values called a precedence indicator.

Precedence Indicator

Research on fuzzy sets began with the concept of Zadeh (1965), where K ≤ L iff
∀p∈PK(x) ≤ L(x), but Bandler and Kohout (1980) proposed a new measure subsethood
grade/precedence indicator of a fuzzy set in another fuzzy set which is based on a con-
sidering the infimum of an appropriate aggregation of implication operators. This idea of
Bandler and Kohout inspired many authors to study fuzzy subsethood measures as the
type of function σ : FS(P)× FS(P) → [0, 1] with the different axiomatizations that have
been proposed are not equal and they hinge on the examined applications. Based on this
fact, and drawing inspiration from the works [32–35] in this paper we propose a new list
of axiomatization for fuzzy precedence measure Prec : [0, 1]× [0, 1]→ [0, 1] as the class of
implication operators which allows us to:

1. Construct a new precedence indicator inspired by the axiomatic definition of the fuzzy
subsethood measures;

2. Construct new knowledge measures using a new precedence indicator;
3. Apply new knowledge measures in fuzzy inference, as an illustrative example of the

effectiveness of the proposed new measures.

Definition 6. An operation Prec : ([0, 1])2 → [0, 1] is called a precedence indicator if it fulfils:

P1 Prec(p, q) = 0 iff p = 1 and q = 0;

P2 Prec(p, q) = 1 iff p ≤ q for any p, q ∈ [0, 1];

P3 If p ≤ q ≤ r, then Prec(r, p) ≤ Prec(q, p) and Prec(r, p) ≤ Prec(r, q) for any p, q, r ∈ [0, 1].

Now we propose the constructive method of the precedence indicator based on an
aggregation and negation functions.

Proposition 1. Let N denote a fuzzy negation (i.e., an antytonic operation that fulfils N(0) = 1,
N(1) = 0) and A is the aggregation A ≤ max. Then

PrecA(p, q) =
{

1, if p ≤ q,
A(N(p), q), otherwise

(5)

is the precedence indicator.

Here are some examples of the precedence indicators that satisfy Proposition 1.

Example 4. For A = Amean and standard negation N we have

1.

PrecA(p, q) =

{
1, if p ≤ q,
1−p+q

2 , otherwise
(6)

or for Sugeno negation with λ = 1 we have
2.

PrecA(p, q) =

{
1, if p ≤ q,
1
2

1−p
1+p + q

2 , otherwise
(7)

for p, q ∈ [0, 1].

We pay attention to the fact that precedence indicators create a subclass of fuzzy
implication functions as we observe in the following example.
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Example 5. The following operations are implication function but not precedence indicators:

I(p, q) =

⎧⎨⎩
1, if p ≤ q,
0, if p = 1, q �= 1,
1
2 , otherwise,

(8)

I(p, q) =

⎧⎨⎩
|p− q|, if p < q,
1− |p− q|, if p = q,
A(N(p), q), otherwise

(9)

for p, q ∈ [0, 1].

Knowledge Measure

In this part of the work, we consider the crucial concept of information in the setting
of uncertainty, that is, the idea of the knowledge measure of a fuzzy set, and suggest a new
construction process for it by use of a precedence indicator. Cognitively, the knowledge
measure is dual to the entropy measure of the arbitrary fuzzy set which gives the average
values/height of fuzziness/ambiguity existing in the fuzzy set. Similarly, we can wonder
about the average amount of knowledge present in the fuzzy set. Thus, a knowledge
measure of a fuzzy set needs to satisfy the following axiomatic postulates. We propose
some generalisation (in the fourth axiom) of the axiomatic definition of knowledge measure
presented in [7,8].

Definition 7. For R ∈ FS(P) a knowledge measure would satisfy the following properties:

K1 K(R) has maximum value iff R is a crisp set, i.e., R(pi) = 0 or 1 for all pi ∈ P,

K2 K(R) has minimum value iff R is the most fuzzy set, i.e., R(pi) = 0.5 for all pi ∈ P,

K3 K(R∗) ≥ K(R), where R∗ is a crisped version (sharpened) of R,

K4 K(R) = K(RN), where RN is the duality (complement) of set R for strong fuzzy negation
N, i.e., RN(p) = N(R(p)), p ∈ P (for classic negation N we obtain a complement relation
of R).

We suggest the following construction method of the knowledge measure.

Proposition 2. Let Prec be a precedence indicator that satisfies Proposition 1, where aggregation
A is symmetric and N is the strong negation with an equilibrium point 0.5 (i.e., N(0.5) = 0.5) for
R ∈ FS(P), card(P) = n, n ∈ N, then

K(R) =
1
n

n

∑
i=1

|Prec(1, R(pi))− Prec(R(pi), 0)|
1−min(Prec(1, R(pi)), Prec(R(pi), 0))

(10)

is a knowledge measure.

Proof. Let i = 1, . . . , n. At the beginning let us note that 0 ≤ K(R) ≤ 1.
(K1) is obvious with the assumption about R, Prec, and their properties. Because for a

crisp relation of R we have:

1. for R(pi) = 1 Prec(1, 1) = 1 and Prec(1, 0) = 0 or
2. for R(pi) = 0 Prec(1, 0) = 0 and Prec(0, 0) = 1

and as consequence we obtain K(R) = 1.
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Conversely, suppose K(R) = 1, this is possible for
|Prec(1, R(pi))− Prec(R(pi), 0)| = 1 for all i, which implies

(Prec(1, R(pi)) = 1 and Prec(R(pi), 0) = 0) or (Prec(1, R(pi)) = 0 and Prec(R(pi), 0) = 1),

so from P1 and P2 we obtain R(p) ∈ {0, 1}, p ∈ P, that is, R is crisp relation.
(K2) By Proposition 1 and R(pi) = 0.5 for all i and from the symmetry property of A

and for the equilibrum point 0.5 of N we observe Prec(1, 0.5) = A(N(1), 0.5) = A(0, 0.5) =
A(0.5, 0) = Prec(0.5, 0), i.e., K(R) = 0. Conversely, by assumption K(R) = 0 we obtain
|Prec(1, R(pi))− Prec(R(pi), 0)| = 0 for all i, thus
Prec(1, R(pi)) = Prec(R(pi), 0), which implies R(pi) = 0.5 for all i.

(K3) If R∗ is crisper than R, that is,

1. R∗(pi) ≥ R(pi) for R(pi) ≥ 0.5,
2. R∗(pi) ≤ R(pi) for R(pi) < 0.5.

Based on Proposition 1 and for

Prec(R∗(pi), 0) ≤ Prec(R(pi), 0), Prec(1, R(pi)) ≤ Prec(1, R∗(pi))

and
Prec(1, R(pi)) ≥ Prec(R(pi), 0) f or R(pi) ≥ 0.5.

Thus

|Prec(1, R∗(pi))− Prec(R∗(pi), 0)| ≥ |Prec(1, R(pi))− Prec(R(pi), 0)|,

that is, K(R∗) ≥ K(R). In a similar way we consider the case R(pi) < 0.5.
(K4) Based on Proposition 1 we observe for the symmetric aggregation A:

|A(0, RN(pi))− A(R(pi), 0)| = |A(0, R(pi))− A(RN(pi), 0)| f or all i,

as a consequence we have K(RN) = K(R), which completes the proof.

Example 6. If in Proposition 2 we used precedence indicators satisfying Proposition 1 with
A ∈ {Amean, Agmean, A2mean, min, max} and N is standard (classical) negation, then we obtain
knowledge measure K(R) for R ∈ FS(P).

3.2.3. Knowledge Measure and Fuzzy Inference (Mamdani)

The known and popular area of fuzzy logic and its extensions application is approx-
imate reasoning, where from uncertainty/imprecise inputs/fuzzy premises or rules we
often obtain uncertainty/imprecise inferences. Approximate reasoning has been used in
many fields, for example, medical diagnosis, expert systems and control systems.

The main goal of this part of the paper is to explore the more general algorithm of
approximate reasoning by using the general modus ponens property with the arbitrary
aggregation functions next to the new knowledge measure. In the beginning, an algorithm
for multi conditional approximate reasoning based on the new aggregation-based composi-
tion rules is proposed. The use of knowledge measure in fuzzy reasoning is a new accent
in the classical model of inference. Thus we obtain a modification of the standard fuzzy
reasoning method.

Approximate reasoning is the procedure where a possible uncertainty/imprecise
conclusion is implied from a collection of uncertainty/imprecise premises. The classical
modus ponens schema, was extended by Zadeh [36] to fuzzy reasoning in the following
way and we obtained the GMP, that is, Generalized Modus Ponens:
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Proposition: If p is D then q is E
Fact: p is D’
------------------------------------------
q is E’,

where E′ is the fuzzy set in the universe Q. The main plus of the GMP is that we can obtain
new information even if D′ and D are different. Usually, in the GMP the fuzzy rule is
represented using a fuzzy relation R on the referential set P×Q. Existing different methods
to build R can be used [37]. The most promising:

R(p, q) = I(D(p), E(q)), where I is an implication function. We may build the im-
plication function from the aggregation function: I(p, q) = A(1− p, q) with A(1, 0) =
A(0, 1) = 1. Thus we can also create the relation R using the aggregation function by
specific assumptions.

The fuzzy inference process is as follows

E′(q) = Ap∈P B(D′(p), R(p, q)); i.e. E′ = D′ ◦ R, (11)

where A, B are aggregation functions on [0, 1]. The basic inference process has the form
presented in Figure 1.

Our novelty in the fuzzy inference in the process of aggregating premises is the
proposal to use the combination of aggregation and knowledge measure as the following
new operator:

OR = B(An
i=1(pi), K(R)), (12)

where R is a fuzzy set on P, where cardP = n. Thus premises data in the given rule and K
knowledge measure created by Proposition 2 and A, B are aggregation functions.

3.3. Rough Set Theory

The rough set theory use the indiscernibility relation to discover information about
objects in an information system.

Definition 8 ([38]). An information system (IS) is an ordered quadruple (U,AT,V,f) where U is a fi-
nite nonempty set of objects, AT is a finite nonempty set of attributes, V =

⋃
a∈AT Va; is a nonempty

finite set of values of attributes, where Va is the domain of attribute a, and f : U × AT → V is an
information function such that f (x, a) ∈ Va for all x ∈ U and a ∈ AT.

A decision table is a type of information system. In the decision table the set AT = A∪D;
A is a set of attributes, and D is set of decisions, D ∩ A = ∅. Whereas, a concept is the set of
all cases with the same decision value [39].

Definition 9 ([2]). For each subset of attributes A ⊆ AT a binary indiscernibility relation IND(A)
on U can be determined as follows:

IND(A) = {(x, y) ∈ U ×U|∀a ∈ A, f (x, a) = f (y, a)}.

Let a ∈ A, v ∈ V, and p = (a, v) be an attribute-value pair. The set [p] of all cases from
U for which attribute a has value v is called a block of attribute-value pairs [40]. The rule
induction Algorithm 1 LEM2 [39], in order to find a local covering of an input set, explores
the space of attribute-value pairs.

Let X be a subset of U and P be a nonempty collection of nonempty sets of attribute-
value pairs. The set P is a minimal complex of X if and only if X depends on P and no proper
subset P

′
of P exists such that X depends on P

′
[39]. ρ is a local covering of X if and only if

the following conditions are satisfied:

1. each member P of ρ is a minimal complex of X,
2.

⋃
p∈ρ[P] = X

3. ρ is minimal [39].
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Algorithm 1 LEM2
Input: a set X
Output: a single local covering ρ of set X

X := G;
ρ := ∅;
while G �= ∅ do

P := ∅
PG = {p|[p] ∩ G �= ∅}
while P = ∅ or [P] � X do

select a pair p ∈ PG such that |[p] ∩ G| is maximum;
if a tie occurs, select a pair p ∈ PG with the smallest cardinality of [p];
if another tie occurs, select first pair;
P := P ∪ {p}
G := [p] ∩ G
PG := {p|[p] ∩ G �= ∅} − P

end while
for each p ∈ P do

if [P− {p}] ⊆ X then P := P− {p};
end if
ρ := ρ ∪ {P};
G := X−⋃

P∈ρ[P];
end for

end while
for each ρ ∈ P do

if
⋃

P′∈ρ−{P}[P′] = X then ρ := ρ− P;
end if

end for

The LEM2 algorithm has been used successfully in many areas, recently in [41–45].

4. Implementation and Results

We implemented the inference system of FRSystem (Figure 1) in the following way:
for the values of each input, that is, H/W, H/max, max(σx, σz), P40 we generated the
fuzzy sets by using the adequate membership function needed for suitable rules, so for
Lo (low value of the feature), Me (average value of the feature), Hi (high value of the
feature) and the value of isLy (lying position), myLy (maybe lying position) and notLy (not lying
position) we use function type Z, Gaussian and type S, respectively (the Gaussian function
is uniquely built by two different Gaussian functions). For the above functions we propose
the following parameters:

1. H/W:
μLo

H/W(p, 0.5, 1.25, 2), μMe
H/W(p, 2, 0.5, 2, 0, 4), μHi

H/W(p, 2, 2.6, 3.2);

2. H/max:
μLo

H/max(p, 0.25, 0.4, 0.6), μMe
H/max(p, 0.6, 0.1, 0.6, 0.2), μHi

H/max(p, 0.6, 0.8, 1);

3. max(σx, σz):
μLo

max(σx ,σz)
(p, 260, 285, 310), μMe

max(σx ,σz)
(p, 310, 17, 310, 33),

μHi
max(σx ,σz)

(p, 310, 360, 410);

4. P40:
μLo

P40)
(p, 0.18, 0.3, 0.42), μMe

P40
(p, 0.42, 0.08, 0.42, 0.09), μHi

P40
(p, 0.42, 0.55, 0.68);

5. Pose:
μ

isLy
Pose(p, 0.22, 0.36, 0.5), μ

mayLy
Pose (p, 0.5, 0.09, 0.5, 0.09), μ

notLy
Pose (p, 0.5, 0.63, 0.77).

Based on the collected data, two rule sets were generated independently. The first one,
a result of the Rough Set Approach, contained 44 rules: 10 rules for the pose notLy, 34 rules
for the pose mayLy and 10 rules for the pose isLy. The second one, a result of the Knowledge
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Approach (FRSystem, Figure 1), contained 81 rules ((3 cases( f unctions))4 f eatures, [46]): 13
for the pose notLy, 52 rules for the pose mayLy and 16 rules for the pose isLy.

Next, in the Fuzzy Inference Process, a modified version of the basic Mamdani model
was applied to obtain a posture decision (lying or not). Namely, in fuzzy inference, in the
process of aggregating premises, a combination of aggregation and knowledge measure
was used (new aspect by applying the operator OR, see Section 3.2.3) constructed using
a new precedence indicator. The effectiveness of the new measure was compared with
the classic model without using the knowledge measure (the Sections 3 and 4 in the
FRSystem (Figure 2)) and also the effectiveness of applying different aggregations in the
fuzzy inference process was analyzed.

Figure 2. The Scheme of the fuzzy inference process.

To demonstrate the effectiveness of the proposed hybrid approach the following
characteristics were used:

• accuracy

ACC =
TP + TN

TP + TN + FP + FN
, (13)

where TP is the number of correct isLy classifications, TN is the number of correct
notLy classifications, FP is the number of notLy classifications as isLy and FN the
number of isLy classifications as notLy

• specificity

SPE =
TN

TN + FP
, (14)
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• precision

PRE =
TP

TP + FP
, (15)

• sensitivity

REC =
TP

TP + FN
(16)

in the Evaluation Process. Note that accuracy means how close a measurement is to the
actual or expected value. The precision says how close the sets of measurements are to
each other. The recall is characterized as the percentage of relevant results that are correctly
classified by the used model, and specificity means the percentage of true negative results.

Finally, the rules used in inference (I. Rough Set Approach and II. Knowledge Ap-
proach) were assessed based on: the number of correct classifications of the rule, the
effectiveness of the rule in the set and the effectiveness of the rule within the decision class.

We assumed that the effectiveness of the rule in the set can be expressed as follows:

the number o f correct classi f ications o f the rule
the number o f objects in the set

. (17)

In turn the effectiveness of the rule within the decision class can be determined
as follows:

the number o f correct classi f ications o f the rule in the decision class
the number o f objects in the decision class

. (18)

Based on the above-mentioned measures, a rule ranking was created. First, the
strongest rules from the set classification point of view were identified. Then, among the
strongest rules, the ones which turned out to be the most effective within the decision class
were selected. In this way, the rules that were critical to pose detection were indicated.
The rules that were critical to pose detection were indicated. Finally, we use the center of
gravity method for the defuzzification process.

To measure the effectiveness of our approach, the above-mentioned characteristics:
accuracy (ACC), specificity (SPE), precision (PRE), and recall (REC) (sensitivity) were used.
We studies the following cases:

• Determination of the effectiveness of classic fuzzy inference (without the knowledge
measure and without the rule reduction) in fall detection problems, Table 1;

• Assessment of the impact of different aggregation functions and different knowledge
measures, i.e., precedence indicators, on the effectiveness of classification of the
reduced and nonreduced rules, using the FRSystem, Table 2;

• Verification of the effectiveness of the different knowledge measure construction
methods in the FRSystem, proposed by us and others known from the literature,
Table 3.

• Estimation of the effectiveness of each rule in the whole set and within the deci-
sion class.

Tables 1–3 show the experimental results obtained during the given dataset analysis.
Presented outcomes in Table 1 maintain a high level of classification comparable to [6].
However, the next studies show that we observe progress in our classification results if
we use the FRSystem (as can be seen in the result in Tables 1 and 2) where the results
are grouped for the original set of rules and after their selection by the rough method.
Moreover, we compare the effectiveness of different aggregation functions used in the
fuzzy inference, in the process of aggregating premises. We present the best results ob-
tained for knowledge measures that satisfy Proposition 2 and are used in FRSystem. In
particular, in K1 we use in operator OR aggregation functions A2mean and B = F (A2mean
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used in the precedence indicator used in the Knowledge measure K) (which we denote
as K1(A2mean, BF, A2mean). Similarly, we created K2(A2mean, BF, max), K3(min, BF, A2mean),
K4(Amean, BF, Amean), K5(Amean, Bmin, max). In the presented results, we assume the results
of each class we aggregate by the maximum.

Table 1. Confusion and classification evaluation metrics by the standard fuzzy inference system with
aggregations from examples 2 and 3.

Tm Tp Amean OWA F

TP 7303 7303 7420 7375 7420
TN 1968 1968 2069 2056 1969
FP 405 405 304 317 404
FN 149 149 32 77 32

ACC 0.944 0.944 0.966 0.960 0.956
PRE 0.947 0.947 0.961 0.959 0.948
REC 0.980 0.980 0.996 0.990 0.996
SPE 0.829 0.829 0.872 0.866 0.830

Table 2. Confusion and classification evaluation metrics with the operator K used in the FRSystem,
where All and Red. means test on full and on reduced set of rules. respectively.

K1 K2 K3 K4 K5

All Red. All Red. All Red. All Red. All Red.

TP 7443 7446 7442 7446 7430 7445 7440 7446 7440 7445
TN 2066 1938 2076 1956 2083 1939 2063 1961 2064 1985
FP 307 435 297 417 290 434 310 412 309 388
FN 9 6 10 6 22 7 12 6 12 7

ACC 0.968 0.956 0.969 0.957 0.968 0.956 0.967 0.957 0.967 0.96
PRE 0.960 0.945 0.962 0.947 0.962 0.945 0.96 0.948 0.96 0.95
REC 0.999 0.999 0.999 0.999 0.997 0.999 0.999 0.999 0.999 0.999
SPE 0.871 0.817 0.875 0.824 0.878 0.818 0.869 0.826 0.87 0.84

Table 3. Confusion and classification evaluation metrics with different knowledge measures used in
the FRSystem.

K KSLS KAK

TP 7442 7434 7444
TN 2076 2026 2064
FP 297 347 309
FN 10 18 8

ACC 0.969 0.963 0.968
PRE 0.962 0.956 0.960
REC 0.999 0.998 0.999
SPE 0.875 0.854 0.870

The best results we obtained are marked in bold. As can be seen, the best performance
is obtained for K2 used in the FRSystem, with the following measures: ACC (96.9%), PRE
(96.2%), SPE (87.8%) and REC (99.9%). What is more, we may say that the application of a
reduced set of rules retained the classification level, that is, we obtained results with an
acceptable difference of error, in a limit of the error at the level of about 0.01 (see Table 2).
Thus, paths I and II in the FRSystem are comparable in the effectiveness aspect, but reducing
the number of rules also has another important and positive effect on our model because
we do not have to take into account all the attribute-value relationships. Only the most
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important relationships are selected in the induction process. A smaller and at the same
time, optimal set of rules is easier for experts to evaluate.

Moreover, in Table 3 we compare our best results (we denote by K the knowledge
measure built-in to the proposed method and used in the FRSystem) with other meth-
ods to build knowledge measures known in the literature (unlike our approach, the de-
pendence (precedence indicator) of a given fuzzy value on the extreme (certain value)
is not taken into account), such as: KSLS(F) = 1

n ∑n
i=1 2[F2(pi) + (1 − F(pi))

2] − 1 [8],
KAK(F) = log2[

2
n ∑n

i=1(F2(pi) + (1− F(pi))
2)] [7].

There, the fuzzy and dual values are taken into account while in our approach the
given fuzzy value is compared by subsethood measure with the extremes (the largest
and the smallest certain value), which gives a more complete picture of the uncertainty
contained in the measurements. We observe the higher effectiveness of the proposed new
knowledge measure (see Table 3). For comparison we take K from case K2 from the result
presented in Table 2:

K(F) =
1
n

n

∑
i=1

|Precmax(1, F(pi))− Precmax(F(pi), 0)|
1−min(Precmax(1, F(pi)), Precmax(F(pi), 0))

, (19)

where for p, q ∈ [0, 1] we have

Precmax(p, q) =
{

1, if p ≤ q,
max(N(p), q), otherwise.

In order to identify the most relevant attribute values (from a classification view point)
for each decision class the rules were assessed first on the whole set, and then on the
concepts. As a result, the values of the attributes clearly defining the detection of a lying
or non-lying position are indicated and presented in Table 4. It should be noted that, the
H/W attribute did not occur in the reduced set of rules, among the conditions of the most
efficient rules for the notLy decision class. The absence of this attribute did not affect the
quality of classification within this class in relation to the non-reduced set of rules. The
remaining conjunctions of conditions for the most effective reduced and non-reduced rules
were identical.

Table 4. Specification of the most relevant attribute values for decision classes, where Lo, Me and Hi
means low, average and high value of the feature, respectively and Ly means lying position.

H/W H/Hmax max(σx, σz) P40 Concept

Hi Hi Lo Lo notLy
Me Hi ∨Me Lo Lo

Lo Lo Lo ∨Me Hi ∼notLy

5. Conclusions

In this paper, we have provided the initial results of a very interesting new approach
to the selection of appropriate aggregation functions and a set of rules for fuzzy inference
in the problem of fall detection, especially posture detection. Moreover, the main research
was concentrated on investigating the concept of a fuzzy information measure, presenting
a new axiomatic definition for the knowledge measure, and using theirs in the proposed
hybrid system. The results obtained for the mentioned aspects indicate the positive results
of the new approach. Out of 81 rules (see [46]), by applying the LEM2 algorithm we
indicate 44 rules (see [47]) which allow us to significantly reduce the dimensionality of the
studied problem and facilitate its analysis while maintaining a high level of classification
comparable to [6].

Our goal for future work is to develop this research on both theoretical and practical
grounds. For example, we would like, in cooperation with an Elderly care home in Rzeszow,
to expand the data set and develop some new methods to represent data, for example,
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a hybrid method that uses fuzzy and rough sets concerning uncertainty, so we will use
interval-valued fuzzy set theory. In addition, the developed hybrid inference method seems
to be very promising for use with different input data sets in the future. In particular, new
measures of information may prove useful for the issues or methodologies observed in the
works [7,8], where the proposed knowledge measure is utilized to calculate the weights
vector, when weights are partially known and other when weights are completely unknown
in economic terms, in multiple attribute decision-making methods or in image thresholding
based on a fuzzy accuracy measure.
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Abstract: The analysis of human gait is an important tool in medicine and rehabilitation to evaluate
the effects and the progression of neurological diseases resulting in neuromotor disorders. In these
fields, the gold standard techniques adopted to perform gait analysis rely on motion capture systems
and markers. However, these systems present drawbacks: they are expensive, time consuming and
they can affect the naturalness of the motion. For these reasons, in the last few years, considerable
effort has been spent to study and implement markerless systems based on videography for gait
analysis. Unfortunately, only few studies quantitatively compare the differences between markerless
and marker-based systems in 3D settings. This work presented a new RGB video-based markerless
system leveraging computer vision and deep learning to perform 3D gait analysis. These results
were compared with those obtained by a marker-based motion capture system. To this end, we
acquired simultaneously with the two systems a multimodal dataset of 16 people repeatedly walking
in an indoor environment. With the two methods we obtained similar spatio-temporal parameters.
The joint angles were comparable, except for a slight underestimation of the maximum flexion for
ankle and knee angles. Taking together these results highlighted the possibility to adopt markerless
technique for gait analysis.

Keywords: markerless; human motion analysis; gait analysis; computer vision; deep learning

1. Introduction

Gait analysis is a fundamental tool in medicine and rehabilitation [1]. It helps expert
physicians to characterize and monitor motion patterns after orthopedic injuries and in
people with neurological diseases, e.g., stroke, spinal cord injury, multiple sclerosis, or
Parkinson [2]. Furthermore, gait analysis can be used to tailor appropriate and specific
rehabilitation treatments. Quantitative assessments ensure repeatability and objectivity of
the analysis, compared to visual observations only [3]. This kinematic quantification has
been a major technical challenge for many years in the mid 90s [4].

Infrared marker-based motion capture systems (MoCap) have been developed to track
continuous motion in 3D space [5]. Due to their high level of precision, infrared marker-
based systems are considered the gold standard in modern gait analysis [6] and, in general,
in accurate tracking of human motion. However, these approaches have limitations. First of
all, they require many markers to be attached firmly to the body of the person. This process
is time consuming and results in a cumbersome setup that can influence the naturalness of
the motion [7]. These systems are also expensive and require skilled personnel to apply
the markers correctly and to post-process the recorded data, making the overall analysis
operator dependent [7]. Thus, the entire process requires many resources in terms of
time and personnel. For these reasons, recently, many efforts have been made to study
cheaper, faster, and simpler approaches to characterize human motion and, consequently,
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gait analysis [8]. Among the possible alternatives, systems based on wearable sensors (such
as Inertial Measurements Units (IMU)) are less expensive, but suffer from the same issues
of marker-based approaches.

In the last decades, deep learning algorithms have moved forward in solving computer
vision problems [9]. In particular, recent advances on markerless pose estimation algo-
rithms, based on computer vision and deep neural networks, are opening the possibility of
adopting efficient methods for extracting motion information starting from common red-
green-blue (RGB) video data [10]. This leads to the question of whether deep learning-based
approaches can be adopted to analyze human motion in different domains and, specifically,
if they can be adopted to perform accurate gait analysis for clinical applications [8]. Video-
based techniques present many advantages with respect to marker-based systems. First
of all, markerless video-based approaches are less expensive; they are not cumbersome
and do not affect the naturalness of the motion, thus, they can be adopted to study human
motion in an unconstrained environment. Lastly, they can be fully automatic and, hence,
not operator dependent [6]. However, there are few studies that quantitatively compare
the information extracted with video-based markerless techniques with those retrieved
with gold standard marker-based systems [11–13]. As reported in the following section,
most of them focus on 2D analysis, while for 3D analysis, to the best of our knowledge,
there is still a lack of evidence related to the differences between video-based markerless
and standard marker-based systems when describing meaningful kinematic variables and
spatio-temporal parameters of human gait. In this work we aim at filling this gap by
comparing both the spatio-temporal parameters and the joint angles changes during the
gait cycle, computed from the keypoints extracted with these two techniques in 3D space.

Indeed, in this work, we defined an algorithm that, taking as inputs three RGB
videos (acquired from 3 different viewpoints) and the calibration parameters, computes 3D
keypoints positions. More precisely, our algorithm is composed by the following steps:

1. Keypoints detection in the image planes with a state-of-the-art Convolutional Neural
Network (CNN): Pose ResNet-152 [14].

2. Keypoints refinement of the 2D detections, adopting Adafuse [15], that leverages
epipolar geometry. In this step, also the weights of Pose ResNet-152 [14] are refined.

3. Keypoints’ trajectories temporal filtering to increase the spatio-temporal consistency.
4. 3D reconstruction: Combining the detected keypoints from the different viewpoints,

we reconstructed the 3D positions of each keypoint following a geometric approach [16].

First, we trained our algorithm on the Human3.6M dataset [17]. Then, we used the
trained model to extract the 3D keypoints positions from our acquired data. Starting from
the 3D keypoints coordinates, we computed spatio-temporal and kinematic gait parameters.
Then, we compared our method with the gold standard marker-based method. Figure 1
summarizes the main steps addressed in this work.

In this context, the main contributions of this work can be summarized as follows:

• Implementation of a video-based markerless pipeline for gait analysis. The pipeline
takes as input RGB videos (multiple viewpoints of the same scene) and camera cal-
ibration parameters, computes the 3D keypoints following the algorithm summa-
rized above, and gives as outputs the kinematic parameters usually computed in
gait analysis.

• Comparison between marker and markerless systems. We tested the reliability and the
stability of the implemented pipeline. To do that, we acquired the gait of 16 healthy
subjects with both a marker-based system (Optitrack) and a multi-view RGB camera
system. Then, by using a biomechanical model (OpenSim Software [18]), we computed
the spatio-temporal and kinematic gait parameters [4] with data from both the gold
standard motion capture system and our implemented markerless pipeline. Then,
we compared the results from the two systems. Experimental results obtained in a
preliminary study focusing on 2D data (single viewpoint) [19] provide initial evidence
of the comparability of the two approaches.
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The paper is organized as follow: In Section 2, related works that drives this re-
search are presented; in Section 3 we present our sample and how we collected data; in
Section 4, the 3D extraction’s procedure for both marker and markerless data are presented
(Section 4.1 and Section 4.2, respectively); in Section 5, we presented the data filtering and
the computation of spatio-temporal and kinematic parameters; in Section 6, the statistical
tests used to compare the two approaches are presented; and in Sections 7 and 8, we present
our results and its related discussion.

Figure 1. Summary of the workflow.

2. Related Works

Many efforts have been spent in the last few years to implement and test video-based
systems that are able to characterize human gait without using cumbersome and intrusive
markers placed on the body skin. In this section, we present works that addressed this
problem by following approaches that differ for: the dimensionality of the considered space
(2D or 3D analysis), type of cameras, e.g., depth cameras (RGBD) or RGB cameras, and type
of algorithms (deep learning or classical approaches).

Rodrigues et al. [20] developed a markerless multimodal motion capture system using
multiple RGBD cameras and IMUs mounted to the lower limbs of the participants to
estimate spatio-temporal parameters and joint angles. Corazza et al. [21] extracted the
walking people’s silhouettes from 16 RGB camera views. These 2D silhouettes extracted
from images recorded from different perspectives allowed the researchers to reconstruct the
visual hull of the subject as a 3D model. By post-processing this model, the relevant joint
angles could be determined. The authors could achieve a good performance determining
the angles on the sagittal plane, however with larger errors on smaller angles, such as the
knee adduction angle. Examples of similar approaches that used one or more RGB cameras
and extracted silhouettes or used RGBD cameras can be found in [11,22–25].
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Recently, due to the continuous progress in terms of accuracy and computational costs
of pose estimation algorithms based on deep learning architecture, there is an increasing
interest in the study of video-based systems for gait analysis. Kidzinski et al. [26] performed
2D gait analysis starting from the detection of keypoints in the image plane and, then,
analyzing their trajectories extracting the joint angles and their changes on the gait cycle.
They analyzed data from 1792 videos of 1026 patients with cerebral palsy. This approach
has the potential to assess early symptoms of neurological disorders by using not expensive
and commonly used technology. We followed a similar approach in Moro et al. [19] to
investigate gait patterns in 10 stroke survivors. These works succeeded in performing a
quantitative movement analysis using single camera videos in a stable way with results
comparable to standard marker-based methods. Unfortunately, the 2D nature of the images
limited the analysis to elevation angles [27] and to a subset of spatio-temporal parameters.

Vafadar et al. [28] performed markerless gait analysis by first reconstructing an accu-
rate human pose in 3D from multiple camera views. They collected a gait-specific dataset
composed by 31 participants, 22 with normal gait and 9 with pathological gait. The re-
searchers recorded the gait of the participants with a standard marker-based system and
with 4 RGB cameras. For 3D pose estimation, they relied on the approach proposed by [29].
They were successfully able to reconstruct the human pose while walking in 3D. However,
they did not include in the detection keypoints on the feet and, consequently, they were
not able to extract significant spatio-temporal parameters as the stride width and the ankle
joint motion.

3. Dataset

A total of 16 unimpaired participants (6 females, mean age ± standard deviation:
27 ± 2 years old) without a known history of orthopaedic injuries or neurological diseases
walked naturally in straight lines from one side of a room to the opposite. The path was
6 m long. Each participant performed 20 trials, 10 for each direction.

The setup for data acquisition (see Figure 2) included (i) a calibrated multi-view
camera system consisting of 3 RGB Mako G125 GigE cameras with Sony ICX445 CCD
sensor, resolution 1292 × 964, 30 frames per second (fps) for markerless analysis and (ii) a
calibrated motion capture system, the Optitrack Flex 13 Motion Capture system, 1.3 MP, 56°
Horizontal FOV, 46° Vertical FOV, 28 LEDs, 8.33 ms latency, with 8 cameras acquiring at
100 Hz. With the motion capture system, we acquired the 3D position of 22 infrared passive
markers placed on the body of the participants following the Davis protocol [30]. RGB
cameras calibration was performed according to Zhang’s method [31]. As a calibration
pattern, we used a checkerboard with squares 40 × 40 mm. The calibration covered a
volume of 6.5 × 2.5 × 2 m.

Figure 2. Setup adopted for data acquisition. The upper panel shows the sketch of the setup with
the position of the 8 infrared (red) and 3 RGB (blue) cameras. The lower panel shows the three view
points of the RGB cameras.
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The study was conducted according to the guidelines of the Declaration of Helsinki,
and approved by the Institutional Review Board of the Department of Informatics, Bio-
engineering, Robotics and Systems Engineering (DIBRIS), University of Genoa, Genova,
Italy (protocol code CE DIBRIS-008/2020 approved on 18/05/2020). All the participants
involved in the study signed an informed consent form.

4. 3D Keypoints

In this section, we present the processing for obtaining the 3D positions of meaningful
keypoints. These steps are different for the marker-based and markerless approaches. More
precisely, in the marker-based approach, we used the software Motive [32] to extract the
3D trajectories of the markers. In the markerless approach, we adapted the algorithm
Adafuse [15] to detect and refine keypoints from the RGB videos. The two procedures are
described in detail below.

4.1. Marker Data

The motion capture system reconstructed the trajectories of the markers in the 3D
reference system, starting from 8 infrared cameras. To perform the motion analysis, we
needed to add a feature matching and tracking step. The process of sorting and tracking the
markers is a standard procedure performed after data acquisition with a motion capture
system. The software Motive [32] provided with the Optitrack motion capture system
automatically performed this procedure by applying a model of the human body, indicating
the position of the markers (Figure 3A), defined by the user. However, in cases of markers
occlusions or presence of disturbances as reflexes, this procedure required the manual
intervention of the operator, resulting in a time consuming procedure. This workload
emphasizes one drawback of the marker-based motion capture system. At the end of this
process, we obtained 16 matrices Pmarkerj with j = 1, . . . , 16 indicating the index for each
participant, of shape 22× 3×Mj (22 representing the number of markers, 3 the (X, Y, Z)m
markers’ coordinates in the 3D space in the markers reference system (m) and Mj for the
number of samples for the acquisition of the j-th participant).

Figure 3. (A) Frontal and back views of the positions of the 22 markers positioned in this study
according to the Davis protocol [30]. Specifically they were placed on the spinal process of C7 and
on the spinal process of the sacrum (both visible in the back view) and bilaterally on: the acromion,
the Anterior Superior Iliac Spine (ASIS), the greater trochanter, the middle between the greater
trochanter and the lateral epicondyle of the femur (with bars 5 cm long), the lateral epicondyle of the
femur, the fibula head, the middle between the fibula head and the lateral malleolus (with bars 5 cm
long), the lateral malleolus, the first metatarsal phalangeal joint, and the fifth metatarsal phalangeal
joint on the lateral aspect of the foot. (B) 2D keypoints (green and blue dots) considered in this work
from the Human3.6 dataset. The two blue keypoints in each foot are highlighted because they are not
included in [15] and we added them in our training.
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4.2. Video Data

The RGB cameras produced video streams acquired from three views. To obtain the
3D points, we needed to detect semantic features in 2D and then triangulate them in 3D.
The resulting 3D points were easily tracked, since each one of them was associated with
a semantic meaning. Thus, the aim of this step was the detection of the 3D positions of
keypoints that represent the analogous of markers and that can be adopted to perform
gait analysis. To perform this step, it is possible to proceed in two different ways: (i) rely
on a 2D pose estimator to detect the positions of the keypoints in the image planes of
each viewpoint and then reconstruct the positions of each keypoint in the 3D space with
a 3D reconstruction algorithm (e.g., [16])or (ii) rely directly on an end-to-end 3D pose
estimator (see the review [8] for examples). We opted for the first option in order to have
higher control in the number and in the position of the body keypoints detected in the
image planes.

For this task we relied on AdaFuse [15]: A deep learning-based algorithm that allows
one to accurately detect the positions of specific keypoints in the image plane and lever-
ages classical stereo vision algorithms [16] to reconstruct the 3D positions of the detected
keypoints. We selected Adafuse as it is one of the most recent (2021) and most precise [15]
algorithms for 3D pose estimation. Its precision is due to the refinements in the image
planes (2D) of the detected keypoints: It leverages epipolar geometry and on stereo vision
algorithms to refine 2D detection. In this way, the 3D keypoints estimates are also more pre-
cise. In addition, the CNN (Convolutional Neural Network) for the 2D keypoints detection
(2D backbone in the following sections) can be accurately selected based on the specific
goal. In Section 4.2.1, we present and justify our choices.

Adafuse is mainly divided into the three following parts:

• A 2D pose estimator backbone (Pose ResNet [14]).
• A fusing deep learning architecture that refines the probability maps of each view

generated in the first step. To accomplish this, the algorithm takes into account the
information from neighboring views and it leverages epipolar geometry [16]. In this
way it, is possible to enrich the information of each probability map at any point x by
adding the information of the probability maps of its neighbor viewpoints.

• A geometric 3D reconstruction part that leverages the intrinsic and extrinsic camera
parameters obtained during calibration.

4.2.1. Adafuse Training

The pretrained 2D backbone models provided by AdaFuse authors [15] do not consider
keypoints on the feet. Since these keypoints are necessary for gait analysis to compute the
kinematic parameters related with the ankle joint (i.e., ankle dorsi-/plantar-flexion), we
had to train the model with new data that also included keypoints on the feet. Moreover,
to effectively train our model, we also needed a dataset with the 3D ground truth positions
of each keypoint. The direct outputs of the AdaFuse algorithm are 2D probability maps
(Uj,i,l

t ) of each keypoint l for each input frame (I j
t , at t-th time instant and for the j-th

participant) for each viewpoint i (i = {1, 2, 3}). The final 3D pose could be computed by
geometric triangulation. This is true if the 2D ground truth positions of each keypoint are
consistent between the different viewpoints. Unfortunately, this is not the case for most of
the available datasets.

Among the public available datasets (well summarized in [11]), we relied on the
Human3.6m dataset [17] because it included almost all the characteristics required by our
analysis and described below. The Human3.6m dataset contains recordings of 11 pro-
fessional actors (6 male, 5 female), performing in 17 different scenarios. Those scenarios
are, for example discussion, smoking, taking photos, or walking. The actors wear natural
clothes while having markers attached to their clothes (or skin, if the skin is visible). In total,
the dataset includes over 3.6 million images with human poses. Each scene only shows one
actor at a time, so this dataset is only suitable for single human pose estimation. The dataset
includes both a multi-view RGB camera system (with 4 cameras) and a motion capture
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system with infrared cameras and 32 markers (see [17] for further details). Leveraging
Vicon’s skeleton fitting procedure [33] and by applying forward kinematics, the Human3.6m
dataset [17] provides both the 3D ground truth (i.e., the positions of the keypoints in the
3D space), and the 2D ground truth ( i.e., the positions of the keypoints projected into
the 2D image planes) of the different viewpoints (see Figure 3B). The reader is referred
to [17] for more details on how 3D and 2D ground truth were provided. Human3.6m was
our best option, even if it presented drawbacks for our main goal. For example, the feet
sometimes get rather blurry, mainly in the swing phase where one foot moves quickly.
Additionally, the background carpet, under the lighting condition during the recordings,
has color similar to the skin, so contrast decreases to a low level, where even for human
observers, it would be hard to detect the keypoints precisely.

We fine tuned the Adafuse architecture in two steps:

1. 2D backbone. We first focused on the 2D backbone network creating independent
probability maps of the keypoints in Figure 3B for each separate input image and
we fine tuned the Pose ResNet-152 [14] pretrained on the COCO dataset [34]. We
did not train the network directly from scratch to reduce time and the amount of
computational resources needed. We fine tuned the network by adopting a subset
of the Human3.6m training images, i.e., we considered one image every 20 frames
(for a total of 180,000 training images). This allowed us to have a training set with a
reasonable number of frames sufficiently different from one another.

2. Full architecture. Then we focused on the fusing network which refines the maps
with the help of the neighboring views. This second part of the AdaFuse architecture
should not be trained separately (as mentioned in [15]), but jointly with the 2D
backbone. Thus, we initialized the first part (2D backbone) with the weights obtained
with the fine tuning described above and the fusion network with random weights.
In this case, the inputs of the process are not just single images (as for the previous
step), but a group of images representing the same time instant but coming from
different viewpoints. Additionally, we input the calibration information for the group
of images containing intrinsic and extrinsic parameters. These parameters are not
used by the neural network itself, but in an immediate post-processing step which
computes the 3D poses at the end. The target and output for the neural network is a
group of probability maps corresponding to the input images. It is worth remembering
here that the outputs of the full Adafuse process are just probability maps and not
3D points, however they are more precise than those from the 2D backbone because
additional information from neighboring views is fused with the backbone prediction.
The 3D pose is then computed via triangulation.

4.2.2. Inference

We applied the model trained as described in Section 4.2.1 to our dataset for retrieving
the 3D positions of the Human3.6m keypoints highlighted in Figure 3B. Since Pose ResNet-
152 requires as input a bounding box also localizing the person in the image plane for
each frame composing the videos, we relied on CenterNet [35], which is a state-of-the-art
object detector, to create these bounding boxes for our dataset. Thus, we input to the
model the 3 images coming from the 3 different viewpoints at the same time instant t,
the bounding boxes, and the intrinsic and extrinsic parameters retrieved with cameras
calibration. Firstly, we obtained the probability maps for different keypoints at the same
time instant (Figure 4A for some examples) and then the final 2D locations of each keypoint
(Figure 4B). At the end, the final output is a vector of shape 21× 3 (21 keypoints with the
corresponding (X, Y, Z)v coordinates in the 3D space in the camera reference system v)
with j = 1, . . . , 16 representing the number of videos (i.e., the number of participants) and
t = 1, . . . , Nj, which is the index for the number of frames composing the j-th video (Nj is
the total number of frame for the video of the j-th participant). At the end of this step, 16
matrices were left Pmarkerlessj with a shape of 21× 3× Nj (see Figure 4C for examples of
3D poses).
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Figure 4. (A) Examples of the detected probability maps (Uj,i,l
t ) for the j-th participant at a specific

time instant t. The rows represent the 3 different viewpoints i. Each column represents a different
keypoint l detected on the right leg (from left to right: hip, knee, heel, toe). (B) Examples of the
detected keypoints (yellow dots) on the three views composing our dataset. (C) Examples of the final
3D skeleton of the video pre-processing.

4.3. Keypoints Detection Evaluation Metrics

To evaluate the accuracy of our trained model, we relied on two metrics usually
adopted to evaluate the accuracy of 2D and 3D pose estimation algorithms.

For the evaluation of the 2D backbone, we relied on the Percentage of Correct Key-
points (PCK) [36]. Given the ground truth (as defined in [17] ) and the estimate position
detected by our model of a certain keypoint l at the time instant t (xl

t and x̃l
t, respectively),

the PCK defines how close the estimate x̃l
t is with respect to the ground truth position xl

t.
In particular, x̃l

t is considered correctly detected if:

|x̃l
t − xl

t| < rthr (1)

where |x̃l
t− xl

t| represents the Euclidean distance between the estimate and the ground truth
position of the keypoint l. This means that to be considered correctly detected, the estimate
x̃l

t should fall inside a circle centered in the ground truth xl
t and with radius rthr. In many

works regarding 2D pose estimation algorithm [10], the PCK is computed considering
rthr as a percentage of: (i) the torso diameter (usually the 20%); (ii) the head bone link
(usually the 50%, PCKh@0.5 with h indicating the head bone link and @0.5 indicating a
50% threshold). In this work, we adopted PCKh@τ considering different thresholds τ,
e.g., PCKh@0.5, PCKh@0.75, PCKh@1, corresponding 0.5, 0.75, and 1 time to the length of
the head bone link.

On the other side, for the evaluation of the accuracy of the full process ending with
the 3D reconstruction, we relied on the Mean Per Joint Position Error (MPJPE). The MPJPE
is the most common metric to evaluate 3D estimates and it is defined for each keypoint as
the mean euclidean distance in the 3D space between the estimated keypoint (x̃l

t) and the
correspondent ground truth (xl

t).
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5. 3D Keypoints Trajectories Processing

The 3D trajectories of the keypoints extracted with marker-based (Pmarkerj) and
markerless (Pmarkerlessj) systems were processed in the same way to extract quantitative
parameters describing the gait of each participant.

5.1. Gait Cycle Detection

One gait cycle is defined as the period that starts with the heel strike (first instant
when the heel hits the ground) of one foot and ends with the following heel strike of the
same foot. A typical approach for automatic gait cycle detection in the absence of force
platforms is to analyze the speed of the feet keypoints [37]. The cycle starts when the heel
hits the ground; in this time instant, the speed of the heel is close to zero. It remains close
to zero for the entire stance phase (the phase starting with the heel strike and ending when
the foot leaves the ground) and it goes up in the swing phase (complementary to the stance
phase). Then, the swing phase ends and the heel speed goes close to zero again. This first
time instant where the speed is close to zero is the one representing the end of the current
gait cycle and also the start of the following one.

For both the marker and the markerless approaches, we detected the start and the
end of the gait cycle by following this procedure and considering the vertical component
of the heel keypoint, low pass filtered with a Butterworth filter (4-th order, 3 Hz cut
off frequency). We computed the derivative of the filtered vertical (Y) heel coordinates,
obtaining the velocity profiles. Then, we computed the speed absolute value by combining
the coordinates and we automatically detected the gait cycles following the considerations
mentioned before. It is worth mentioning here that the 3 Hz cut off frequency filter was only
used for gait cycle detection. To process the keypoints’ signals in later steps, we filtered the
original raw signals as described in the following sections.

5.2. Spatio-Temporal Parameters and Joint Angles

The 3D coordinates trajectories of each keypoint during the gait cycles were low pass
filtered (Butterworth, 4-th order, 12Hz cut off frequency) [4].

Starting from the heels’ markers trajectories, we extracted the spatio-temporal parame-
ters that characterize the human gait. In particular, we computed the following parameters:
(i) Stride length: the distance (in meters) walked during a gait cycle; (ii) Stride time: the
time (in seconds) necessary to walk one gait cycle; (iii) Stance phase: percentage of the gait
cycle during which the foot of interest is touching the ground; (iv) Swing phase: percentage
of the cycle complementary to the stance phase, when the foot of interest is not touching the
ground; (v) Stride width: the distance (in meters) between the right and the left foot across
the cycle; and (vi) Speed: mean speed of the center of mass of the body during the cycle.

To estimate the joint angles during the gait cycle, we relied on the open source software
Opensim [18]. Opensim is commonly adopted to estimate joint angles during gait analysis
because it allows associating the detected keypoints/markers to human biomechanical
skeleton models and analyze the kinematics and the relative muscular activation. In this
work, we adopted the Rajagopal Model [38], a full body musculoskeletal model for dynamic
simulations of human movements, widely used in gait analysis applications. In Opensim,
two tools are specifically designed to solve our problem, Scaling and Inverse Kinematics.
The first was adopted to scale a generic skeleton model to fit the input markers/keypoints
data. The latter was used to simulate the motion of the skeleton and to estimate the
joint angles for each gait cycle for each subject. Following the steps explained above, we
extracted the joint angles for the central gait cycle of each trial (for a total of 20 gait cycle)
for each participant involved in the study both with marker-based and markerless systems.

6. Statistical Analysis

To compare the time profile of the joint angles during the gait cycle obtained with the
markerless and the marker-based gait analysis we used the statistical parametric mapping
method, which is specifically designed for continuous field analysis [39] and is already used
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in similar applications in gait analysis [19]. In this study we applied this method to the 1D
spatio-temporal variables describing the variations of the joint angles during the gait cycle
by using the open source software spm1d [39]. Specifically, we performed a one dimensional
paired t-test. We tested the following null hypothesis: “There are no statistically significant
differences between the gait angles obtained with our markerless approach and the gait
angles obtained with the gold standard marker-based system”. The alpha level indicating
the probability of incorrectly rejecting the null hypothesis was set at 0.05. Small values
of p allow for the rejection of the null hypothesis. Indeed, if we obtain p > 0.05, we can
conclude that our statistical tests did not find significant differences between the gait angles
obtained with our markerless approach and those obtained with the gold standard marker-
based system. To follow a conservative approach, i.e., to maximize the possibility to find
statistically significant differences between the results obtained with the two methods, we
did not apply Bonferroni corrections. Notice that the application of corrections for multiple
comparisons would decrease the probability to find significant differences between the
single point curves. Furthermore, we compared the spatio-temporal parameters obtained
with the two methods with a paired t-test. Again, statistical significance was set for all
statistics at the family-wise error rate of α = 0.05.

7. Results

7.1. Architecture Evaluation

To evaluate the accuracy of our trained 2D backbone, we computed the PCKh for
each keypoint (see Figure 5 for a qualitative result). As threshold value rthr, we selected
a percentage of the head bone link for each participant (indicated by the h in PCKh).
The following multiplication factors were chosen: 1 (PCKh@1), 0.75 (PCKh@0.75), and 0.5
(PCKh@0.5). Table 1 summarizes the obtained results.

Table 1. Accuracy (%) of the 2D backbone, i.e., the percentage of corrected keypoints (PCKh)
considering different threshold values: 1, 0.75, and 0.5 times the head bone link (PCKh@1, PCKh@0.75,
and PCKh@0.5, respectively).

Keypoints PCKh@1 PCKh@0.75 PCKh@0.5

head 96.3 95.8 95.2
root 96.6 95.6 94.8
nose 96.1 94.3 87.2
neck 96.1 89.3 77.2

right shoulder 93.4 87.4 66.7
right elbow 89.1 79.8 70.7
right wrist 85.5 78.6 67.8

left shoulder 95.2 88.9 72.7
left elbow 90.6 82.2 77.1
left wrist 85.0 78.7 70.0

belly 94.2 80.7 72.0
right hip 96.0 87.6 73.2

right knee 93.4 85.5 76.2
right foot1 91.6 79.7 61.4
right foot2 92.3 84.5 68.6
right foot3 89.2 77.3 63.0

left hip 95.8 85.1 72.1
left knee 92.4 79.9 66.7
left foot1 90.3 75.9 52.8
left foot2 91.7 83.4 67.7
left foot3 88.7 78.4 64.4

228



Sensors 2022, 22, 2011

Figure 5. Examples of the keypoints detected with our model (yellow dots) with respect to the ground
truth (blue dots).

The neural network indeed learned to detect also the new keypoints (toes and heels)
with a high accuracy. The PCKh for these keypoints is comparable to the one of the others,
and also to the results presented in other works (see for instance [15]).

To evaluate the accuracy of the full architecture, we computed the MPJPE across all
the detected keypoints and obtained an error of 23.65 millimeters, again comparable to
the one obtained in [15] (e.g., 19.5 millimeters on the same dataset, however with fewer
keypoints–the feet were excluded) and also comparable with the error obtained in the best
performing recent works about 3D pose estimation (between 19 and 30 millimeters) [40–43].

7.2. Joint Angles and Spatio-Temporal Parameters

We computed the spatio-temporal parameters described in the previous section for
each gait cycle for every participant and compared the results obtained with the two
different techniques. In Table 2, we report the mean and standard deviation across all
the subjects. Note that parameters obtained with our markerless pipeline are similar to
the ones extracted with the gold standard marker-based technique, as highlighted by the
statistical comparisons: All p-values > 0.050, see Table 2 for more details.

Table 2. Spatio-temporal parameters computed with marker-based and markerless systems, and sta-
tistical results of the comparison between the two methods (last row). We report the mean ± the
standard deviation of each parameter. The stance and swing phases are reported in % with respect
to the whole gait cycle; stride length and step width and expressed in meters (m); stride time in
seconds (s); and the speed in meters per second (m/s).

Stance Phase (%) Swing Phase (%) Stride Length (m) Step Width (m) Stride Time (s) Speed (m/s)

Marker 59.2 ± 2.6 40.8 ± 2.6 1.35 ± 0.11 0.10 ± 0.02 1.13 ± 0.02 1.31 ± 0.10

Markerless 59.6 ± 3.1 40.4 ± 3.1 1.40 ± 0.21 0.12 ± 0.02 1.11 ± 0.04 1.35 ± 0.16

p-values 0.644 0.644 0.474 0.132 0.291 0.341

We compared the joint angles obtained by our markerless approach to those obtained
with the marker-based method. We selected the following meaningful angles: hip flex-
ion/extension, knee flexion/extension, ankle dorsi-/planta-flexion, hip ab-/ad-duction,
and pelvis tilt. Figure 6 shows the mean and standard deviation of the angles previously
mentioned across all the participants (black: marker-based, red: markerless) and the results
of the paired t-test. No statistical differences were found between the two techniques with
the exception of a slight underestimation of the knee flexion and the ankle dorsiflexion
angle between 70% and 80% of the gait cycle (during the swing phase, see gray areas in
the paired t-tests in the right column of Figure 6 in correspondence of these two angles).
Note that those statistical differences are not robust to multiple comparison, i.e., applying a
Bonferroni correction the differences are not below the threshold for significance.
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Figure 6. Left column: joint angles (mean and std). From top to bottom: hip flexion/extension, knee
flexion/extension, ankle dorsi-/planta-flexion, hip ab-/ad-duction, and pelvis tilt. In black shows
the results obtained with the marker-based system and in red shows the results with the markerless
pipeline. Right column: results of the correspondent paired t-tests.

8. Discussion and Conclusions

This paper presents an approach for markerless gait analysis relying only on RGB
video acquisition and leveraging computer vision and deep learning algorithms. Our
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approach presents the following advantages with respect to the gold standard marker-
based methods:

1. It requires less expertise and has no bias introduced by any operators. In fact, while the
operator during marker-based data acquisition needs to place markers carefully on the
subjects skin in order to avoid biased results, our pipeline works fully automatically,
and it is independent of any human performance;

2. It does not affect the naturalness of gait in any ways since it does not require cum-
bersome markers and sensors. Furthermore, it makes the data acquisition easier and
faster because it is not necessary to place markers on the body skin;

3. It is less expensive and with a simpler setup and is easier to use outside laboratory
environments, since it requires only RGB cameras.

Conversely, the results obtained with our markerless system present differences with
respect to the ones obtained with the gold standard, especially during the swing phase
in the maximum flexion of the knee and the ankle joint angles. These differences are
statistically significant, however they appear to be small. Nonetheless, this limitation
should be accounted and further investigated when adopting this markerless pipeline
to detect and monitor abnormal motion patterns in people with orthopaedic injury or
neurological diseases. If we focus on the errors related to the knee and the ankle joint
angles during the swing phase, we can observe that they are mainly due to small errors in
the detection of the feet keypoints. In fact, during the swing phase, the foot moves quickly
and the image tends to become blurry, making it is difficult also for human beings to detect
keypoints with high confidence. The immediate way to reduce the motion blur is to adopt
RGB cameras with a higher temporal resolution, meaning a higher acquisition rate (fps).
In this way, the motion blur will be reduced and, consequently, the detection error will also
be lower.

Apart from inputting higher quality data to our pipeline, we can also improve the 2D
backbone itself. In fact, the one adopted in this work and in AdaFuse [15] (Simple Baselines)
is not the best performer according to multiple benchmarks. For example, the neural
network HRNet [44] had been proven to provide better results on the Human3.6m dataset.
Improving the accuracy of the detection will reduce the errors highlighted before.

In conclusion, the results suggest that the proposed markerless pipeline is a promising
alternative to compute the marker-based system to most spatio-temporal and kinematic
parameters. We highlighted also the limits of our pipeline and we presented possible
solutions to overcome them in our future works.
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Abstract: The popularity of action recognition (AR) approaches and the need for improvement
of their effectiveness require the generation of artificial samples addressing the nonlinearity of the
time-space, scarcity of data points, or their variability. Therefore, in this paper, a novel approach to
time series augmentation is proposed. The method improves the suboptimal warped time series
generator algorithm (SPAWNER), introducing constraints based on identified AR-related problems
with generated data points. Specifically, the proposed ARSPAWNER removes potential new time
series that do not offer additional knowledge to the examples of a class or are created far from
the occupied area. The constraints are based on statistics of time series of AR classes and their
representative examples inferred with dynamic time warping barycentric averaging technique (DBA).
The extensive experiments performed on eight AR datasets using three popular time series classifiers
reveal the superiority of the introduced method over related approaches.

Keywords: data augmentation; skeletal data; human action recognition; time series classification

1. Introduction

The automatic interpretation of actions performed by the human body is both chal-
lenging and desired. Well-designed action recognition (AR) algorithms could be put into
practice in the detection of aggressive behavior, video surveillance, interaction with hu-
mans and robots, or advanced control over virtual reality avatars. In recent years, many
methods for human action recognition have been developed [1]. However, similarly to
other subfields of pattern recognition, they suffer from overfitting or inability to create more
robust machine learning models due to lack of diverse training samples. Therefore, the data
augmentation techniques designed to enrich AR databases are desired. Furthermore, their
usability in practice is also supported by the difficulty of creating AR databases with vari-
ous samples covering feature space well enough to train a classifier. Consequently, the data
augmentation methods used for multidimensional data samples (e.g., synthetic minority
over-sampling technique (SMOTE) [2]) cannot be directly used for augmenting time series
of AR classes since they take into account a relationship between consecutive measurements
or often non-linear distortions affecting the duration variability of registered time series of
a class [3]. Additionally, such time-related feature space prevents a simple addition of new
data points (i.e., entire time series) between existing samples. Considering the challenges
of the time series data augmentation techniques, in the literature, several approaches have
been proposed. They perform operations that stretch, cut, shrink, or perturb input time
series [4,5]. In more advanced solutions, new time-series are generated using deep network-
based models [6], the weighting of aligned averages [7,8], or concatenating parts of two
perturbed time series by the dynamic time warping (DTW) technique [9]. However, those
methods are considering time series classification problems without addressing issues
related to the AR time series domain, in which data samples often belong to a relatively
large number of similar classes with irregular, partially-overlapping boundaries.
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The literature review reveals the scarcity of time series augmentation approaches
devoted to AR problems. Additionally, the existing solutions are often associated with
mandatory data processing steps damaging important temporal information or archi-
tectures that require large-scale datasets and dedicated hardware for efficient training.
Therefore, in this paper, a novel method for time series data augmentation is introduced. It
uses SPAWNER (SuboPtimAl Warped time series geNEratoR) algorithm [9] to generate
new data samples and incorporates a set of constraints to provide time series suitable
for AR datasets. The constraints are defined to reject samples that do not introduce new
knowledge to the dataset and samples likely to be generated in a solution space occupied
by a neighboring class. To achieve such a goal, new time series is compared with one of
its input samples and a representative solution created for a class using Dynamic Time
Warping Barycenter Averaging (DBA) [7]. In the proposed Action Recognition SPAWNER
(ARSPAWNER), the comparison is performed taking into account statistics of samples
within a considered class.

The contributions of this study are as follows.

1. A novel method for AR time series augmentation with small amount of data;
2. A novel and efficient method for determining constraints on generated data samples

using statistics for a class and its representatives along with their incorporation into
the data augmentation approach to address AR-related characteristics;

3. Comparative evaluation of the method with related approaches on eight AR datasets
using popular classifiers.

The paper is arranged as follows. Section 2 reviews previous work on human action
recognition and time-series data augmentation. Section 3 introduces the proposed approach.
In Section 4, feature extraction techniques used to process AR time series benchmarks
employed in experiments are described. Section 5 presents comparative evaluation of
the method with related approaches. Finally, Section 6 concludes the paper and indicates
possible directions of future work.

2. Related Work

The classification results of a machine learning method depend on the availability
of learning data samples. Hence, they should cover enough feature space to provide the
classifier with information that allows for unequivocal determination of class labels of
unknown samples. With only a few learning examples, the classifier in most cases would
not be able to correctly infer differences between classes, identify class boundaries, or
address the variability of samples within a class. Similarly, the imbalanced distribution
of data samples per class or the occupation by the most samples of a small area may lead
to a drop in the classification performance. Therefore, many approaches to enrich class
diversity or determine artificial samples close to class boundaries are proposed based
on linear data transformation [2,10]. However, such approaches cannot be used with
time series as most of them are nonlinearly transformed in the time scale, which causes
variations in their lengths, even for the same class. Hence, simpler approaches to time
series augmentation consider removal of a part of a time series, adding data points between
existing values (i.e., warping), or introducing noise, rotation, and scaling [4]. In a more
developed solution proposed by Forestier et al. [8], DBA, averages of multiply aligned
data samples are iteratively weighted. As a result, for a set of time series, a new example
is generated that can be seen as their representative. However, its usage for time series
of large dimensionality and length, aiming at generating more samples from selected
subsets from the input dataset, is challenging due to its computation demands [7,9]. In the
previous authors’ work, SPAWNER, time series are generated in the warped space between
two data samples using their suboptimal alignment [9]. Specifically, the method uses
DTW [11] for the alignment of perturbed parts of two input time series and concatenates
aligned parts. The suboptimality arises from the usage of two randomly selected parts
of each sample and the concatenation of their result instead of the DTW-based optimal
alignment of the entire (i.e., non-divided) sequences. As those approaches are devoted to
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augmenting time series databases from many domains, there are works devoted to data
generation techniques devoted to enriching time series from a single domain, addressing
its characteristics. For example, Haradal et al. [6] introduced a method for augmentation
of electrocardiogram (ECG) and electroencephalogram (EEG) datasets using generative
adversarial networks (GAN) for the generation and discrimination of synthetic biosignals.
In the work of Ramponi et al. [12], similar signals are generated with conditional GAN. The
electrocardiograms are generated by Cao et al. [13] using samples of different classes and
by Delaney et al. [14] using a variety of GAN architectures. Electroencephalographic data
are augmented by Krall et al. [15] introducing distortions that consider temporal, spatial, or
rotational changes. The data augmentation technique introduced by Le Guennec et al. [4]
adds noise and magnitude changes to the input time series. Additionally, it warps them
and removes some of their fragments (the cropping operation).

Some works address the augmentation of human action recognition datasets. For
example, Shen et al. [16] proposed the Imaginative GAN (IGAN) and assessed it from a
perspective of diversity and affinity of resulting samples. IGAN is a modification of the
conventional GAN using unsupervised learning. The method approximates the distribution
of the input data and samples new data. Additionally, it learns the latent behavioral (speed
of actions) and physical (sizes of body parts) attributes. Ramachandra et al. [17] proposed
an approach in which human activities measured by inertial sensors are recognized using
data augmented by the proposed transformer GAN. Song et al. [18] specified an Interactive
Action Translation (IAT) task that, taking into account rules of interaction, learns a model
to generate a response for a given stimulation during inference. The method uses the
Pair Embedding (PE) that utilizes Gaussian distributions of paired relationships to cluster
individual actions in an embedding space and generate new pairs in their respective
neighborhood. Here, encoders in a Paired Variational Auto-Encoders (PVAEs) and PCA-
based linear dimension reductions are employed. Hoelzemann et al. [19] proposed human
action data augmentation using a recurrent GAN based on a set of long short-term memory
(LSTM) cells of four trained DeepConvLSTM models.

Despite promising performance of recent GAN-based data augmentation approaches,
the GAN solutions require large-scale data to obtain stable models [16,18] or can be sensitive
to outlying data samples [17]. Additionally, they may require data prepossessing in which
human actions are unified to the same length due to architecture constraints. Consequently,
the unification, or interpolation, negatively affects the input data and limits the variability
of obtained samples. Furthermore, GAN, as other deep learning techniques, require
demanding hyperparameter tuning [17], time-consuming training, and are associated with
additional input data modifications to avoid overfitting.

Since, in this work, the augmentation of time series representing human actions is
considered, main methods for their recognition are briefly introduced. They can be divided
into deep learning and handcrafted approaches, where the techniques that belong to
the first category extract suitable features and train a classifier in an end-to-end manner,
while handcrafted approaches have separate feature extraction and classification steps.
Furthermore, some of the deep learning methods are based on feature vectors but require a
large amount of training data to provide acceptable models.

Among recently introduced AR methods, the approach by Sidor and Wysocki [20] uses
a handcrafted Viewpoint Feature Histogram (VFH) point cloud description method [21]
to calculate features for cells dividing point clouds of registered human actions. The cells
represent different parts of the human body, and, therefore, such calculated features are
more distinctive than those extracted for the whole cloud. Additionally, the method fuses
two classifiers to improve its effectiveness. In the works of Pazhoumand-Dar et al. and
Lillo et al. [22,23], the recognition is based on skeletal joint locations, angles between them,
and more complex relationships between body parts. Skeletal data combined with local
features extracted from depth images in the area around the projected joints can be found
in the works of Raman and Maybank and Shahroudy et al. [24,25]. In these solutions, a
two-level hierarchical Hidden Markov Model (HMM) [24] or hierarchical mixed norm with
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three levels of regularization over learning weights [25] are employed. One of the latest
and most effective approaches to applying deep learning techniques to AR is presented
by Farnoosh et al. [26]. In that work, a low-dimensional deep generative latent model
encoding highly correlated skeletal data into a few sets of switching autoregressive temporal
processes is introduced. The model decodes from the low-dimensional representations to
the skeletal data and associated labels. Wang et al. [27] proposed the Skeleton Edge Motion
Networks (SEMM) with spatio-temporal building blocks consisting of the concatenated
spatial branch and temporal branch. It is observed that the spatial branch is effective when
human actions do not have rich temporal information, while the temporal branch performs
well with actions having a lot of movement of specific body parts. To boost the performance
of SEMM, a progressive ranking loss that facilitates maintaining temporal order information
in a self-supervised manner is employed. The spatial–temporal transformer network (ST-
TR) is introduced by Plizzari et al. [28]. It models dependencies between skeletal joints
using the transformer self-attention operator. Additionally, a spatial self-attention module
(SSA) and a temporal self-attention module (TSA) are applied to understand intra-frame
interactions between particular body parts and model inter-frame correlations. Then, the
SSA and TSA are combined in a two-stream network. Donahue et al. [29] proposed an
approach to human activity recognition based on video recordings using the long-term
recurrent convolutional network (LRCN) with jointly trained convolutional (spatial) and
recursive (temporal) parts.

In this study, to better highlight the capabilities of data augmentation techniques and
offer results that can be easily replicated without additional hardware needed by recent
deep learning models, handcrafted features, and popular classifiers are taken into account.
Consequently, the relationship between generated samples of AR datasets that contain
effective handcrafted features and the performance of several classifiers is investigated.

3. Proposed Method

In ARSPAWNER, two input time series of a given class are divided into two parts for
a separate alignment using DTW and, after their concatenation, a new time series example
is formed. This part of the time series processing is performed by the SPAWNER technique.
Then, the resulted time series is rejected if it does not satisfy a set of constraints based on
the AR time series characteristics.

In the approach, M-dimensional time series X = [x1, x2, . . . , xL] of the length L is
processed. Specifically, each xl ∈ RM, l = 1, 2, . . . , L, and X ∈ RL×M. Then, a dataset
of N samples, Ln, n = 1, 2, . . . , N, Xn ∈ RLn×M, Ln is length of n-th sample, forms a
collection U = {(X1, C1), (X2, C2), . . . , (XN , CN)}, where C ∈ {1, K} are class labels (K).
Consequently, a classifier trained on U assigns a label C to test time series Y ∈ RL×M.

To generate new time series based on a combination of two input samples X1 and X2

of the same class, the method employs DTW. In DTW, for X1 = [x1
1, x2

1, . . . , xi
1, . . . , xL1

1 ] and

X2 = [x1
2, x2

2, . . . , xj
2, . . . , xL2

2 ], so-called warping path is determined which indicates optimal
sequence W = [w1, w2, . . . , wP], where P is the length of the path, p-th element wp = (i, j),
and max(L1, L2) ≤ P < L1 + L2. Therefore, a L1 × L2 matrix D is calculated. For all (i, j),
it contains distances between time series [x1

1, . . . , xi
1] and [x1

2, . . . , xj
1]. To select the optimal

alignment between X1 and X2, the path W∗ minimizing the total cumulative distance is
found by calculating D(i, j) = (xi

1− xj
2)

2 + min(D(i− 1, j), D(i, j− 1), D(i− 1, j− 1)). The
warping path satisfies three conditions: (1) The boundary condition which forces the path to
start at the beginning of the time series, w1 = (1, 1), and finish at their ends, wP = (L1, L2);
(2) The monotonicity condition according to which the time series indices in the path are
monotonically increasing: (i1 ≤ i2 ≤ . . . ≤ L1, j1 ≤ j2 ≤ . . . ≤ L2); (3) The continuity
condition which limits the acceptable path steps to adjacent matrix elements. It can be
written as wp+1 − wp ∈ {(1, 0, (0, 1), (1, 1)}∀p∈{1,2,...,P−1}. The warping window ξ limits
the elements of X1 and X2 that can be aligned, i.e., ∀(i,j)∈wp ||i− j|| ≤ ξ. DTW is used to
calculate the distance d = D(L1, L2) between time series.
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To generate new examples in a suboptimal manner, an additional fourth constraint
on the warping path is considered that forces it to contain the element wp = (R1, R2),
where R1 = �rL1�, R2 = �rL2�, r is a single, uniformly distributed, randomly generated
number in the interval (0, 1). Here, �·� denotes ceiling operation. To prevent the calculation
of L1 × L2 matrix D and reducing the computational cost, two matrices R1 × R2 D1 and
|(L1− R1)| × |(L2− R2)| D2 are used. Then, [x1

1, x2
1, . . . , xR1

1 ] is aligned with [x1
2, x2

2, . . . , xR2
2 ]

and [xR1+1
1 , xR1+2

1 , . . . , xL1
1 ] is aligned with [xR2+1

2 , xR2+2
2 , . . . , xL2

2 ]. The resulting warping
paths W∗

1 and W∗
2 are optimal due to the fourth constraint and the separate usage of

D1 and D2. However, after their concatenation the obtained path is suboptimal. More-
over, ξ1 and ξ2 used to determine W∗

1 and W∗
2 are taken from �0.1 · max(R1, R2)� and

�0.1 ·max(|L1 − R1|, |L2 − R2|)�, respectively. They reduce the flexibility of the path from
the perspective of the matrix D, as well as the concatenated paths W∗

1 and W∗
2 . After the

paths are concatenated to W∗
1,2, the algorithm aligns X1 to X2 generating sequences X�

1
and X�

2 with the length of W∗
1,2. To produce a new time series, X�, X�

1 and X�
2 are merged,

where x� ∈ X�, is a random number chosen from a normal distribution with a small σ,
x� ∼ N (μ, σ2), μ = 0.5(x�1 + x�2), σ = 0.05|x�1 − x�2 |.

To improve the quality of a AR dataset involving artificial example, X�,C, generated by
the method, additional constraints limiting the possibility of its acceptance are introduced.
At first, average d̃k and standard deviation d̂k of the DTW distances is computed between all
samples that belong to each k-th (k = 1, 2, . . . , K) class. Then, the DBA approach is employed
to provide representative sample for the class X́k = DBA(XC

1 , XC
2 , . . . ,XC

N), C = k, where
XC

N is the number of samples that belong to the C = k class [8]. Specifically, it is computed as

argminX́k ∈ E
NC

∑
i=1

DTW2(X́k, XC
i ), (1)

where E is a space induced by DTW and the optimization problem is solved using an
expectation-maximization scheme and iterative refining of the X́k [8]. Finally, the X�,C is
introduced to the dataset if the following conditions are met (Equations (2) and (3)):

d1 > r1d̃k ∧ d2 > r1d̃k, (2)

d1 < T ∧ d2 < T, (3)

where d1 = DTW(X1, X�,C), d2 = DTW(X́k, X�,C), T = r1d̃k + d̂k(r2 + d̂k/d̃k), and (r1, r2)
are parameters.

The proposed condition accepts only such time series which introduce new knowledge
to the dataset, assuming that close proximity of the already present examples makes new
examples redundant. The upper limit prevents the emergence of new examples in areas
occupied by other classes.

To highlight the differences between SPAWNER and ARSPAWNER, 2D Multi-Dimensional
Scaling (MDS) [30] embeddings of DTW dissimilarities for the exemplary time series from
the MSRA I dataset are presented in Figure 1. The figure contains class boundaries of
similar or overlapping classes to better indicate areas in which the methods created new
examples. Input data samples are denoted by filled triangles. To facilitate the analysis, the
same examples are connected by arcs. As shown, the SPAWNER produces examples that
are filtered out by ARSPAWNER. For example, two newly created members of the “orange”
class by SPAWNER are rejected by ARSPAWNER due to their close proximity to the input
data samples. Consequently, one member of the “green” class and three members of the
“purple” class were rejected by ARSPAWNER. Interestingly, the scattered input examples
of the “blue” class resulted in the emergence of two samples produced by SPAWNER that
are too far from them. Hence, ARSPAWNER removed them, significantly altering the class
boundary. It is worth noticing that the MDS embeddings strongly depend on the examples
that are considered while it is calculated. Overall, the class boundaries with examples
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introduced by ARSPAWNER are compact, without time series that could negatively impact
the recognition of samples from other classes.

Figure 1. Class boundaries in the 2D MDS embeddings of DTW dissimilarities for the exemplary
time series from the MSRA I dataset generated by SPAWNER and ARSPAWNER. Boundaries of
neighboring classes are highlighted.

4. Action Recognition Descriptors and Features

The action recognition features employed to show the effectiveness of the proposed
data augmentation approach are using successful Bone Pair Descriptor (BPD) [31] and
Distance Descriptor (DD) [32].

4.1. Distance Descriptor

The Distance Descriptor represents relationships among pairwise joint distances in
skeletal data. DD can be calculated based on 3D joint coordinates, without using vector
data. The descriptor features are obtained for N joints as follows.

1. For each joint Pi, 1 ≤ i ≤ N do:

(a) Calculate distances between the other joints Pj, j �= i;
(b) Sort joints Pj by the calculated distances in ascending order;
(c) Assign consecutive integers aij to the ordered joints Pj, starting from 1.

2. Create a feature vector consisting of integer values assigned to the joints Pj in step 1(c)
in the following order: [a12, a13, a14, a15, a21, . . . , aNN−1];

3. Reduce the feature vector by adding together integers a corresponding to the same
pair of indices i, j: [a12 + a21, a13 + a31, . . . , aN−1N + aNN−1].

Finally, each feature value is divided by 2(N − 1) to normalize them to the interval
[0–1]. Note that an input set of joints should be selected from the whole skeleton before the
calculation of DD to reduce the computation time and increase the classification accuracy.
DD is calculated using the Euclidean distance.

4.2. Bone Pair Descriptor

The Bone Pair Descriptor encodes the angular relations between particular pairs of
bones. The descriptor is calculated as follows. Let Pc be the skeleton central joint, bc the
central vector associated with the joint Pc, Pi the i-th non-central joint, and bi the vector
associated with that joint (Figure 2). Vectors bc and bi coincide with a bone or a part of the spine.
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Figure 2. Calculation of Bone Pair Descriptor.

The relative position of vectors bc and bi is described by α, φ, and Θ according to
Equations (4)–(6) [33]:

αi = a cos(vi · bi) (4)

φi = a cos
(

u · di
|di|

)
(5)

Θi = a tan
(

wi · bi
u · bi

)
(6)

where the vectors u, vi, and wi define the Darboux frame [34]:

u = bc (7)

vi =
di
|di| × u (8)

wi = u× vi (9)

with · and × representing the scalar product and the vector product, respectively. Let N be
the number of non-central joints. The BPD has 3N features calculated for each non-central
joint using Equations (4)–(6):

V = [α1, φ1, Θ1, α2, φ2, Θ2, . . . , αN , φN , ΘN ] (10)

Finally, the features are normalized to the interval [0–1], dividing them by the maxi-
mum of π for α or φ, and 2π for Θ. BPD requires the selection of central joint Pc, non-central
joints Pi, and joints determining vectors, bc bi, from the whole skeleton.

In the experiments, only α and φ features were used since Θ proved ineffective and its
calculation is time-consuming [31].

5. Experiments and Discussion

5.1. Datasets

For the evaluation of the approach, six human action datasets with skeletal data
were used: MSR Action3D (MSRA) [35], UTD Multimodal Human Action Dataset (UTD-
MHAD) [36], UTKinect-Action3D (UTK) [37], Florence 3D Action Dataset (FLORENCE) [38],
SYSU 3D Human–Object Interaction Set (SYSU) [39], and Kinect Activity Recognition
Dataset (KARD) [40]. The MSRA dataset is split into three separate subsets, MSRA I, MSRA
II, MSRA III, as suggested by its authors [35]. Each subset contains different action classes,
although some of them appear in two subsets. That makes a total of eight datasets used
in experiments. Detailed information about the datasets, including the length variability
of time series, the number of input examples, and the number of augmented examples
produced by each approach, is presented in Table 1.
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Table 1. Characteristics of datasets used in experiments.

Name Classes Subjects
Sequences Time Series Input Augmented Validation
(Actions) Length Examples Examples Protocol

MSRA I 8 10 224 13–76 118 611 50-50 validation
MSRA II 8 10 207 15–100 118 573 50-50 validation
MSRA III 8 10 225 13–71 113 438 50-50 validation

UTD-MHAD 27 8 861 41–125 431 1163 50-50 validation
UTK 10 10 199 5–110 179 744 10-fold cross-validation

FLORENCE 9 10 215 8–35 194 1109 10-fold cross-validation
SYSU 12 40 480 58–638 240 1087 50-50 validation
KARD 18 10 540 42–310 270 685 50-50 validation

According to the original paper introducing the MSRA dataset, there are seven subjects
performing actions. However, the larger version, consisting of 10 subjects, is publicly
available and can be downloaded from the authors’ website [41]. This version was used in
the experiments.

In this study, two types of validation were performed. For MSRA, SYSU, UTD-MHAD,
and KARD, 50-50 validation tests were used, in which the training and testing sets were
split in half based on the subjects performing actions. The protocol for UTD-MHAD
and FLORENCE is 10-fold cross-validation. For each dataset, the validation protocols
proposed by the authors were used. In the case of KARD, 50-50 validation was used instead
of the 10-fold cross-validation due to excessive computation time. All performed tests
were subject independent, which means that in each test, the training set contains actions
performed by subjects not present in the testing set. Such tests simulate the behavior of a
recognition application in practice, where people performing actions do not participate in
the creation of the training data.

Actions from all datasets were recorded using a Microsoft Kinect sensor. In this work,
only skeletal joints were used to characterize human actions. The skeletons for actions
present in all datasets except FLORENCE and KARD consist of 20 joints, while the skeletons
used to capture actions in the FLORENCE and KARD datasets consist of 15 joints (see
Figure 3).

Figure 3. Three skeletons available in datasets: (left) MSRA, UTD-MHAD, UTK, and SYSU; (middle)
FLORENCE; (right) KARD.

The same subsets of joints and bones cannot be used for 20-joint datasets and 15-joint
datasets. Furthermore, FLORENCE and KARD do not have identical joint sets despite
having the same number of joints. Therefore, for the experiments, three groups of joint
subsets and bone subsets were selected separately for the Distance Descriptor and the Bone
Pair Descriptor. They are listed in Tables 2 and 3 .
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Table 2. Subsets of joints used for the Distance Descriptor. “L.” and “R.” denote Left and
Right, respectively.

MSRA, UTD-MHAD, UTK, SYSU FLORENCE KARD

Hand L. Wrist L. Hand L.
Hand R. Wrist R. Hand R.
Shoulder L. Shoulder L. Shoulder L.
Shoulder R. Shoulder R. Shoulder R.
Head Head Head
Spine Spine Spine
Hip L. Hip L. Hip L.
Hip R. Hip R. Hip R.
Ankle L. Ankle L. Foot L.
Ankle R. Ankle R. Foot R.

Table 3. Subsets of bones used for the Bone Pair Descriptor. “L.” and “R.” denote Left and
Right, respectively.

MSRA, UTD-MHAD, UTK, SYSU FLORENCE KARD

Spine–Head (central) Spine–Head (central) Spine–Head (central)
Elbow R.–Wrist R. Elbow R.–Wrist R. Elbow R.–Wrist R.
Wrist R.–Hand R. Shoulder R.–Elbow R. Shoulder R.–Elbow R.
Shoulder R.–Elbow R. Elbow L.–Wrist L. Elbow L.–Wrist L.
Elbow L.–Wrist L. Shoulder L.–Elbow L. Shoulder L.–Elbow L.
Wrist L.–Hand L. Hip R.–Knee R. Hip R.–Knee R.
Shoulder L.–Elbow L. Knee R.–Ankle R. Knee R.–Foot R.
Hip R.–Knee R. Hip L.–Knee L. Hip L.–Knee L.
Knee R.–Ankle R. Knee L.–Ankle L. Knee L.–Foot L.
Ankle R.–Foot R.
Hip L.–Knee L.
Knee L.–Ankle L.
Ankle L.–Foot L.

The subsets of joints and bones were selected experimentally as a part of the previous
work on the subject of human action recognition [31]. Different configurations were also
tested, however, the chosen subsets yielded the best results in terms of recognition rate and
computation time.

5.2. Visual Examples of Augmented Time Series

To show exemplary time series, in Figure 4, two actions from the MSRA II dataset [35]
(i.e., “draw circle” and “high arm wave”) are presented along with the additional time
series generated by ARSPAWNER. The curves of the first action represent the first DD
feature related to Hand Left and Hand Right joints, and the curves of “high arm wave”
action represent φ feature of BPD, for which the non-central vector is determined by Wrist
Right and Hand Right joints.
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Figure 4. Time series generated by ARSPAWNER (blue curve) based on two exemplary timeseries
(red and green curves). The left plot represents “draw circle” action and the right plot represents
“high arm wave” action from MSRA II dataset.

5.3. Classifiers

Among classification methods, the classical Dynamic Time Warping (DTW) and two
recent methods were used: LogDet Divergence-based Metric Learning with Triplet con-
straints (LDMLT) [42] and Time series Cluster Kernel (TCK) [43]. LDMLT is a classifier
based on Mahalanobis distance and the so-called triplet constraints used for its learning [42].
TCK is a method that calculates similarities between time series using Gaussian Mixture
Models (GMM) augmented with informative prior distributions. It can handle missing
data without the usage of imputation methods [43]. The output of DTW and LDMLT is
the distance between two given sequences, i.e., each testing sequence is compared to each
training sequence. Therefore, there is a need to apply the nearest neighbor classifier to
determine the class represented by the closest sequence.

In Table 4, the configuration of parameters for each classifier is presented. The pa-
rameter values were set experimentally in the spirit of fairness, i.e., by changing them and
checking whether the recognition rate is improved.

Table 4. Parameters of the classifiers.

Classifier Parameter Name Parameter Value

DTW Window size 5
Metric Euclidean

Triplets factor 20
LDMLT Alpha factor 5

Number of iterations 15

Maximum number of mixture components 5
TCK Number of randomizations 50

Number of iterations 20

5.4. Results

The feature vectors used in the experiments are concatenations of the DD and BPD
features without Θ, which makes a total of 69 features (45 for DD and 24 for BPD).

ARSPAWNER generates new data based on a pair of input time series, and therefore,
the number of generated examples by other methods is aligned with the number of returned
samples. This ensures a fair comparison of algorithms.

In this study, four augmentation methods are compared using the classification accu-
racy obtained for each dataset and classifier. Due to the randomness of the augmentation
algorithms and TCK classifier, each accuracy is calculated for 10 runs and averaged. Then,
the following values are calculated: average accuracy, average rank, geometric average
rank, and a number determining how many times a method achieved the best accuracy
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(count best). These values are considered as the comparative criteria. To compare the
methods, ranks from 1 to 5 are used, where a lower rank means a method has greater
accuracy. The compared approaches are: SPAWNER, ARSPAWNER, Window Slicing [4],
and Window Warping [4]. The results for each method, and for the case in which the
augmentation is not performed (non-augmentation case), are presented in Table 5.

The experimental results reveal that the proposed ARSPAWNER is the most effective
augmentation method and outperforms the non-augmentation case according to all com-
parative criteria. The method shows the greatest advantage over the others when used
with DTW. However, in the case of the other two classifiers, ARSPAWNER and SPAWNER
have close average effectiveness. They both significantly outperform the other methods, as
well as the results of the non-augmentation case.

The LDMLT classifier yielded better results than the other two methods for all datasets,
and its suitability for the action recognition problems was proven in the previous study [31].
The study of Kamycki et al. [9], in which SPAWNER was introduced, does not address
action recognition problems considering time series from different domains. Interestingly,
in that study, the LDMT classifier showed inferior performance. From Table 5, it can also
be seen that the TCK classifier obtained the worst results among all three methods for all
datasets, except UTK, for which it outperformed DTW.

Overall, it can be seen that the introduced ARSPAWNER outperforms the remaining
data augmentation methods on action recognition datasets, since it considers the specificity
of such data collections, with many similar and overlapping action classes.

Table 5. Experimental comparison of augmentation methods for three classifiers in terms of classifi-
cation accuracy. The two best results for each classifier and dataset are written in bold.

Dataset/Aug. Method None WW WS SPAWNER ARSPAWNER

DTW
MSRA I 71.7 70.6 74.3 74.4 76.1
MSRA II 69.0 69.7 73.1 69.3 71.7
MSRA III 83.9 84.2 84.0 86.5 86.5
UTD-MHAD 86.3 86.3 83.9 86.5 86.7
UTK 81.9 80.7 86.4 85.4 86.4
FLORENCE 78.6 78.4 81.7 81.5 81.8
SYSU 69.2 67.2 70.8 71.2 72.5
KARD 89.6 90.9 91.6 88.0 89.7

LDMLT
MSRA I 75.5 80.6 82.6 86.2 86.5
MSRA II 78.8 77.3 73.2 80.6 83.2
MSRA III 90.2 88.8 88.6 89.4 89.6
UTD-MHAD 92.1 90.4 84.4 92.4 89.2
UTK 91.5 92 91.9 95.4 95.7
FLORENCE 86.0 84.7 84.7 88.5 87.4
SYSU 68.8 61.4 64.4 70.9 70.5
KARD 95.9 96.4 94.0 97.0 97.6

TCK
MSRA I 55.8 62.8 62.1 65.7 66.5
MSRA II 54.9 58.0 58.5 54.9 58.1
MSRA III 75.7 79.3 77.1 81.7 81.4
UTD-MHAD 62.0 56.6 57.7 61.5 60.3
UTK 92.6 93.3 93.7 93.2 93.3
FLORENCE 78.0 79.7 79.4 81.6 80.4
SYSU 62.7 62.8 62.3 66.5 66.2
KARD 85.5 88.0 88.3 88.9 85.2

Overall results
Average rank 3.88 3.65 3.38 2.21 1.90
Geometric average rank 3.6 3.53 2.95 1.93 1.68
Count best 2 0 5 8 11
Average accuracy 78.2 78.3 78.7 80.7 80.9
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5.5. Visual Comparison

To show the areas in which new samples are generated by the augmentation methods
from the MSRA I dataset, Kruskal’s nonmetric MDS [30] is employed. To facilitate the
analysis, the first 60 actions are considered. MDS reduces the dimensionality of data
samples and can be used with time series of different lengths by the usage of the DTW
dissimilarity matrix. The matrix contains pairwise DTW distances between examples. The
MDS representations of exemplary time series are shown in Figure 5. Input time series are
filled while the colors indicate their classes. The proximity of samples from different classes
or existing overlapped class boundaries illustrate the recognition problems. However,
the introduction of new data samples in most cases improved the recognition accuracy
of classifiers, it can be assumed that methods generating time series in areas within class
boundaries are likely to lead to a higher recognition rate. As presented, ARSPAWNER
generates fewer examples in areas occupied by representatives of other classes than in the
case of the remaining augmentation approaches.

The recognition problems can also be highlighted by showing testing examples to-
gether with training data and augmented data. Therefore, in Figure 6, solid triangles
represent 2D MDS embeddings of testing samples from the entire MSRA I dataset, and
empty triangles denote training data (Figure 6a) and augmented data (Figure 6b), respec-
tively. The placement of testing samples in the feature space indicates recognition problems
as the class boundaries are difficult to determine due to the presence of clusters of similar
examples from different classes in close proximity. Even classes that seem to be easily
distinguished, represented here by yellow and bright green triangles are close to each other
while training examples of the bright green class are far from that boundary (Figure 6a).
This means that training examples do not carry enough information to be able to success-
fully recognize examples from these two classes. The emergence of augmented samples
(Figure 6b) cannot solve this problem, since such knowledge cannot be obtained, but adds
more examples in vital areas, shrinking overlapped class areas. Similar observations can be
made for other datasets. It is worth noticing that the reported results strongly depend on
the capabilities of used classifiers. Some of them may not be suitable to recognize human
actions as can be seen in the TCK case.

5.6. Comparison with CGAN

Since there are approaches based on GAN architecture to augment time series in differ-
ent domains, the performance of ARSPAWNER is compared with those of Conditional GAN
on three MSRA datasets. Due to the lack of Matlab implementations of GAN-based ap-
proaches designed to augment action recognition time series in the literature, the available
Matlab CGAN example designed to generate synthetic time series was adapted (Math-
Works, https://www.mathworks.com (accessed on 13 March 2022)) [44]. The employed
CGAN uses 1-D convolutional networks and is designed to perform the two-class aug-
mentation. The generator network projects and reshapes the 1 × 1 × 100 noise arrays
to 4 × 1 × 1024 arrays. It converts data labels to embedding 4× 1 × 1 vectors. Then, it
concatenates the outputs of the two inputs and upsamples them to 1201 × 1 × 1 arrays
with 1-D transposed convolution layers and ReLU layers. The dimensionality of the arrays
is determined by the application of the origin of the adapted example. The discriminator
network takes two inputs and classifies original and synthesized 1201 × 1 × 1 signals. It
reshapes and concatenates them. Then, after downsampling, a series of 1-D convolution
layers with leaky ReLU (a scale of 0.2) are employed.
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Figure 5. The 2D MDS embeddings of DTW dissimilarities between training and augmented se-
quences from the MSRA I dataset for the compared augmentation methods. Colors are used to
differentiate the classes, the filled triangles denote input examples.

(a) Training and testing data (b) Augmented and testing data

Figure 6. The 2D MDS embeddings of DTW dissimilarities between testing and training or testing and
augmented sequences from the MSRA I dataset. Colors differentiate the classes, the filled triangles
denote testing examples.

The network was adapted to perform the augmentation of action recognition MSRA
datasets that contain time series of different lengths, belonging to 8 classes and composed of
69 features. Specifically, due to the ability to generate two class time series, it was run eight
times with input samples divided into two classes (i.e., the class considered in a given run
and the rest). Additionally, since it is not designed to process multivariate time series and to
avoid time-consuming computations, the PCA technique was applied to reduce the feature
dimensionality from 69 to 5 and CGAN was run for each new feature independently with
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the concatenation of data to form synthesized five-dimensional vectors. Furthermore, since
time series in MSRA datasets are of different lengths, they were interpolated to the same
length, imposed by the network architecture. The finally obtained augmented examples
were added to the original samples and employed by the nearest neighbor classifier with
the DTW distance. The parameters of the network were set as recommended by the
network designers, with the reduced number of iterations since the model converged
earlier, allowing for the reduction in the training time. Important parameters of CGAN:
number of iterations = 1000, learning rate = 0.0002, the Adam optimizer, batch size = 256,
latent dimension = 100, and embedding dimension = 100. In experiments with CGAN, a PC
with Nvidia Quadro RTX 4000 MAX-Q GPU, i9-10885H CPU, and 64 GB RAM was used.
To ensure a fair comparison, ARSPAWNER was also run on the same five-dimensional
feature vectors resulting from PCA.

The accuracy of the classifier for three augmented MSRA datasets after PCA feature
reduction is presented in Table 6. It can be seen that the classifier equipped with data
generated by ARSPAWNER improves its accuracy by a large margin. The improvement
can also be visible for CGAN-created data in the case of MSRA I. However, for the MSRA
II and III datasets, creating synthetic samples led to a significant drop in the performance
of the classifier. The problems with the generation of suitable data examples of CGAN are
possibly caused by the lack of a sufficient number of learning data examples, challenging
data examples in the dataset after reduction by PCA, and inefficiency of the employed
network architecture. To better highlight encountered problems with CGAN architecture,
the 2D MDS embeddings were created for the entire MSRA I dataset (Figure 7). As
shown, input data samples are close to each other due to the usage of PCA reducing the
dimensionality of the time series in the dataset. However, ARSPAWNER was able to create
samples in large clusters (Figure 7d) in their proximity (Figure 7c). CGAN, in turn, created
many samples across the feature space, with their representatives also located in places
that belong to the neighboring classes (Figure 7a,b).

Table 6. Comparison of CGAN and ARSPAWNER on the MSRA datasets. The best result for each
dataset is written in bold.

Dataset None CGAN ARSPAWNER

MSRA I 0.7075 0.7453 0.8118
MSRA II 0.6283 0.5487 0.6994
MSRA III 0.8125 0.6964 0.8393

5.7. Impact of Parameters

The next experiment concerns the impact of the ARSPAWNER parameters r1 and r2
on the classification accuracy. Figure 8 shows 3D surface plots calculated for each classifier
and MSRA II dataset. The values of r1 and r2 are within the range [0.1–1.0] with step 0.1.
The classification accuracy for DTW ranges from 63.2% to 72.6%, for LDMLT the range
is [78.8–85.5%], and for TCK the range is [53.3–62.4%]. For each classifier, the difference
between the lowest and the highest result is greater than 5 percentage points and smaller
than 10 percentage points. Therefore, it can be concluded that the parameters r1 and r2
have a moderate impact on the classification accuracy.

The r1 and r2 parameters govern two constraints on the generated time series. Hence,
a more detailed experiment, involving all three MSRA datasets, shows the impact of lower
and upper constraints on the performance of ARSPAWNER with the nearest neighbor
classifier with the DTW distance. Additionally, it allows for assessing the importance of
the class representatives used in the conditions. The results presented in Table 7 indicate
that both conditions should be present to obtain the best recognition rate for the MSRA
datasets. However, the condition that rejects examples created near to a given input sample
or a representative sample of a class (Equation (2)) is more influential than the upper limit
(Equation (3)), responsible for acceptance of candidates closer to the class borders. Since
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both conditions are based on two distances to a considered input sample (d1) and the DBA
representative (d2), their calculation reveals that they both should be used. It is justified by
a larger drop in the performance of the ARSPAWNER in the case in which distance to the
input sample is not employed. This confirms the usability of the introduced usage of the
representative time series for each class.

(a) CGAN, all samples (b) CGAN, augmented samples

(c) ARSPAWNER, all samples (d) ARSPAWNER, augmented samples

Figure 7. The 2D MDS embeddings of DTW dissimilarities between sequences of reduced dimen-
sionality from the MSRA I dataset for CGAN and ARSPAWNER. Colors are used to differentiate
the classes, the filled triangles denote input examples (a,c), while filled circles denote augmented
samples (b,d).

Table 7. Performance of ARSPAWNER with active conditions.

Active Condition MSRA I MSRA II MSRA III

Equations (2)–(3) 76.1 71.7 86.5
Equation (2) 76.1 70.4 86.5
Equation (3) 76.0 70.1 84.9

Lack of d1 in Equations (2)–(3) 76.5 70.1 85.6
Lack of d2 in Equations (2)–(3) 75.6 70.8 85.6
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Figure 8. Three-dimensional surface plots presenting the impact of ARSPAWNER parameters r1 and
r2 on classification accuracy with MSRA II dataset. The upper, middle, and lower plots represent the
results of DTW, LDMLT, and TCK, respectively.
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5.8. Performance with Small Number of Training Examples

To determine the capability of the introduced ARSPAWNER to augment small datasets,
composed of a small number of training examples per class, it was tested using the MSRA
I-III datasets varying the number of input time series. This experiment also indicates prob-
lems with small benchmark datasets in which class boundaries cannot be easily established
due to an insufficient amount of available data and a relatively large number of classes (i.e.,
there are eight classes in the MSRA datasets). In the experiment, 3 to 15 input examples per
class were randomly selected and used by ARSPAWNER to generate synthetic data. Then,
the average accuracy of the nearest neighbor classifier with the DTW distance based on ten
draws is reported in Figure 9. Overall, as reported, ARSPAWNER can improve the results
of the classifier based only on a few available training samples. Depending on the dataset
and the way testing examples are scattered in the feature space, the positive effect of the
augmentation is visible even for five input examples.

Figure 9. Average accuracy of the nearest neighbor classifier with the DTW distance based on a small
number of augmented training examples per class.

6. Conclusions

In this paper, a novel method for the augmentation of datasets with time series rep-
resenting human actions has been presented. The introduced ARSPAWNER improves
the original SPAWNER by introducing action recognition-related constraints addressing
problems present in this domain. The approach identifies data samples, i.e., time series, that
are far enough from input samples and still do not cross the boundaries of other classes. Ad-
ditionally, data samples that are in the proximity of the input time series, and consequently
do not introduce new knowledge, are rejected. The constraints are based on distances
between a new sample and an input sample and a sample generated as a representative
time series characterizing a class. It has been shown that the introduced constraints provide
to the augmentation leading to the improved performance of classifiers. The method has
been experimentally compared with related approaches using three classifiers on eight
action recognition datasets.

Future work will involve an application of optimization techniques to select a suitable
set of generated time series based on data clustering quality indices. Such an approach can
be seen as an extension of the study presented in this paper since constraints that remove
augmented samples may be replaced with a step in which their suitability is assessed
based on the quality criteria describing clusters of generated samples. Another interesting
research direction is to employ augmentation methods like ARSPAWNER to augment small
datasets and train time-consuming deep learning classifiers.

To facilitate the reproducibility of the approach, the Matlab implementation of the
introduced ARSPAWNER is available at www.marosz.kia.prz.edu.pl/ARSPAWNER.html
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(accessed on 13 March 2022). The scripts for Distance Descriptor and Bone Pair Descriptor
are also publicly available and can be downloaded [45].
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Data for Parkinson’s Disease Monitoring using Convolutional Neural Networks. In Proceedings of the ACM International
Conference on Multimodal Interaction, Glasgow, UK, 13–17 November 2017. [CrossRef]

6. Haradal, S.; Hayashi, H.; Uchida, S. Biosignal Data Augmentation Based on Generative Adversarial Networks. In Proceedings of
the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI,
USA, 17–21 July 2018; pp. 368–371. [CrossRef]

7. Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Data Augmentation Using Synthetic Data for Time Series
Classification with Deep Residual Networks. arXiv 2018, arXiv:1808.02455.

8. Forestier, G.; Petitjean, F.; Dau, H.A.; Webb, G.I.; Keogh, E. Generating Synthetic Time Series to Augment Sparse Datasets. In
Proceedings of the 2017 IEEE International Conference on Data Mining (ICDM), New Orleans, LA, USA, 18–21 November 2017;
pp. 865–870. [CrossRef]
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Abstract: Human Machine Interfaces (HMI) principles are for the development of interfaces for
assistance or support systems in physiotherapy or rehabilitation processes. One of the main problems
is the degree of customization when applying some rehabilitation therapy or when adapting an
assistance system to the individual characteristics of the users. To solve this inconvenience, it is
proposed to implement a database of surface Electromyography (sEMG) of a channel in healthy
individuals for pattern recognition through Neural Networks of contraction in the muscular region of
the biceps brachii. Each movement is labeled using the One-Hot Encoding technique, which activates
a state machine to control the position of an anthropomorphic manipulator robot and validate the
response time of the designed HMI. Preliminary results show that the learning curve decreases when
customizing the interface. The developed system uses muscle contraction to direct the position of the
end effector of a virtual robot. The classification of Electromyography (EMG) signals is obtained to
generate trajectories in real time by designing a test platform in LabVIEW.

Keywords: EMG; pattern recognition; machine learning; robot; cyber-physical systems

1. Introduction

A person with a disability is an individual who has one or more physical or mental
deficiencies that prevent their full and effective participation in equal conditions when
interacting with different social environments. In recent years, the development of HMI
for people with motor disabilities has been oriented towards the use of systems based
on Electromyography (EMG). In [1], a review of the state of the art in EMG monitoring
is presented in terms of applications in rehabilitation and minimally invasive acquisition
devices; among the advantages that it highlights are in the fields of physiotherapy and
telemedicine. In [2], through three EMG channels, they control the position of a robot with
two degrees of freedom; the processing is done as a function of time through the amplitude
of the signal when movements are made with the elbow and the shoulder joint. Four
channels of surface electromyography acquisition are proposed in [3], where pairs of elec-
trodes are placed according to the position and orientation of the target muscles. Selecting
materials with excellent properties for devices on the skin, the fabricated electrodes achieve
low skin electrode impedance and record sEMG signals with a high signal-to-noise ratio.
In [4], a review on signal acquisition and pattern recognition through Machine Learning is
presented. In [5], a myoelectric pattern recognition-driven hand exoskeleton was designed
for stroke rehabilitation. It detects and recognizes the intention of movement based on EMG
signals, and then the exoskeleton helps the user to perform six types of hand movements
in a real way. One of the main challenges in the design of interfaces based on sEMG is the
obtention of a signal function or model that allows for the reliable control of a care system.
Due to the non-stationary signal behavior, three methods are generally used for sEMG
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analysis to extract information, which are in the time [6,7], frequency, and time–frequency
domain [8]. There are some practical factors, such as the change in arm position, that
prevent robust myoelectric control. In [9], an experiment with 14 subjects is carried out to
accurately characterize factors that alter the EMG recording. Using regression algorithms,
they obtain real-time feedback on changes in the position of the arm and displacement of
the electrodes. Pattern recognition has been studied further to develop control algorithms
for electric hand prostheses [10,11]. These works have shown excellent accuracy when
classifying different types of hand movement (>95% for 10 classes), [12–14]. Most of the
pattern recognition approaches have the limitation that only one of the functions of the
prosthetic hand can be controlled, due to its sequential and binary control. Such control
strategies make it impossible to perform natural movements of the hand that consist of the
simultaneous activation of different degrees of freedom. Some studies have introduced
new pattern recognition schemes that classify combined movements [15–19]. The disad-
vantage of the new approach is the total number of classes, as it increases drastically when
new classes are considered. Recently, regression-based approaches have been on the rise,
as they provide control information that allows for multi-degree-of-freedom control. In
this work, a regression algorithm using neural networks is proposed to obtain a model
through multiclass categorization that allows for the control of a robotic system with three
degrees of freedom of the anthropomorphic type. The analysis of a single channel of sEMG
that classifies signals with different times of muscle contraction is implemented, with the
objective that the robot moves accurately according to predetermined positions in a state
machine and demonstrates the correct operation of an HMI by reducing the learning curve.
In [20], a study of multichannel electromyography signals is carried out, which is one of
the methods used in the recognition of human movement patterns. An exoskeleton robot is
controlled and EMG signals are measured during dynamic or isometric muscle contractions.
As a result, they developed a pattern recognition model of dynamic and isometric muscle
contractions using the Short Time Fourier Transform (STFT).

Section 2 presents the fundamentals of the EMG signal. Section 3 presents the design of
the HMI from the acquisition of the EMG signal and its analog and digital processing. The
multiclass classification model obtained using neural networks is described. The different
classes to be detected, the training algorithm and the operation of a state machine that
determines the position of the robot according to the result obtained from the model are
shown. The classification to reach the desired position is explained, obtaining the dynamics
and inverse kinematics of an anthropomorphic robot with three degrees of freedom. A
PD+ control is implemented to apply the necessary torque to each joint of the robot and
to validate the operation of the HMI. It designs a graphical user interface in LabVIEW
software by interacting a virtual robot and the EMG signal. Section 4 describes the results
obtained with the classifier, the experimental tests and the response time for each test.

2. HMI Systems Based on EMG

The neuron is the cellular unit of the central nervous system. It has two properties:
(1) Sensory, which gives it the ability to respond to physical and chemical agents with
the initiation of a nerve impulse; and (2) Conductivity, which gives it the property of
transmitting these impulses from one side to another. The dendrites that originate in the
cell body are responsible for receiving impulses from other neurons and sending them
to the soma of their own neuron. The axon is an extension from the neuronal soma that
conducts the impulse to the muscle; it is surrounded by a myelin sheath that allows for
better impulse conductivity. The neuron that originates the EMG biopotential is called a
motor neuron, which conducts the impulse through the neuromuscular junction to the
muscle fiber, as shown in Figure 1 [21].
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Figure 1. Components of the motor neuron, [21].

EMG is an electrical exploration of the peripheral nerves by the stimulation of the
muscles to achieve their contraction. The differential potential in the biceps brachii is
measured by placing two silver/silver chloride (Ag/AgCl) electrodes and a reference
electrode located at the junction of the forearm and hand, as shown in Figure 2. [20].

 
(a) 

(b) 

Figure 2. (a) Electrode placement diagram and the AD620 instrumentation amplifier, (b) Physical
representation of the EMG signal acquisition protocol and the Silver/Silver Chloride (Ag/AgCl)
electrode implemented.

When muscle contraction is performed, there are two types: (1) Isometric contraction,
which is a static form of exercise in which a muscle contracts to produce force without
an appreciable change in muscle length; and (2) Isotonic contraction, which is without
appreciable change in the force of contraction. The distance between the origin of the
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muscle and its insertion becomes smaller. For EMG acquisition study purposes, in the
protocol carried out, isometric contractions are recorded by placing a weight in the user’s
hand with a value of 5 pounds. This process is carried out in order to avoid the acquisition
of noise due to involuntary movements and to keep the arm static while the biceps brachii
contraction is performed for short periods of time. This process is carried out in order to
avoid the acquisition of noises due to involuntary movements and to keep the arm static
while the contraction of the biceps brachii is performed for short periods of recording
time, no longer than 45 s, preventing the user from making an unwanted movement due
to fatigue. When performing the acquisition, it was observed that the muscle relaxation
periods of 5 s made it possible to accurately obtain the muscle contraction times, thus
avoiding the introduction of noise due to muscle fatigue. The goal of this work is to
demonstrate that, with a correct training of the neural network, adding dynamic muscle
contractions due to involuntary movements as an extra class of recognition allows the
system to rule out this muscle noise as a motion control command. The EMG signals
have amplitudes from 0.1 mV to 5 mV, with a bandwidth of 0 to 5 KHz [21]. With this
information, a first acquisition is made using a BIOPAC® commercial system, which allows
for the recording of the differential signal taken from two electrodes and a reference, as
indicated in Figure 3a. This system records the waveforms of the EMG signal in order to
validate the implemented acquisition protocol. Tests were performed for contraction times
of 1, 3 and 5 s. In Figure 3b, the response obtained from the EMG signal to a contraction of
5 s with rest pauses also of 5 s is presented. The inconvenience presented in the acquisition
protocol when using this system is that the record is stored in a numerical database and
cannot be read directly by any other acquisition card. Real-time implementation of the Fast
Fourier Transform (FFT) is necessary to verify the spectrum in frequency and obtain the
value of the cutoff frequency for the implementation of filters. The next section presents the
instrumentation implemented and the digital processing for the acquisition of the database.

 
(a) 

(b) 

Figure 3. (a) Biopac® System, (b) Database obtained from the Biopac of the EMG signal with sustained
isometric contraction of 5 s.

3. Materials and Methods

The amplifier used is the IC AD620 due to its characteristic of a common rejection
ratio of 100 dB and the gain adjustment with an external resistor. A circuit with a basal
corrector and a Common Mode Rejection (CMRR) configuration connected to the junction
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of the forearm and hand is implemented as a circuit reference. According to the amplitude
and frequency characteristics of the EMG signal, the analog processing stage is designed,
which includes amplification, isolation and filtering.

A. Amplification with basal corrector

An instrumentation amplifier CI AD620 is implemented as a preamplification system
to acquire the differential EMG signal with a gain of 500. A basal correction circuit is
conditioned to eliminate the level of direct current (DC) caused by involuntary movements
of the user or an incorrect connection of the electrodes. The circuit is a IC TL084 operational
amplifier in its integrator configuration that is connected in feedback to the Ref and Vout
outputs of the instrumentation amplifier, as shown in Figure 4, implementing a high pass
filter that eliminates the DC bias voltage and preventing op amps from reaching their
maximum power limits.

Figure 4. Amplification module and basal corrector.

B. Analog Filter

To filter the frequency components that are not within the bandwidth of the EMG
signal, a range from 0.5 Hz to 5 KHz, a second order bandpass filter in Butterworth
configuration with unity gain is designed, with a ratio of 40 dB per decade using high
impedance TL084 operational amplifiers, precision resistors and electrolytic capacitors; see
Figure 5.

Figure 5. Filter in second order Butterworth configuration at 40 dB/decade.

The output of the analog filter stage is connected to the absolute voltage input of
a DAQ6009 acquisition card connected via USB port to a laptop, with a sample rate of
10KHz. An acquisition card with a ground plane is designed to decrease inductive noise,
as indicated in Figure 6a. Figure 6b shows the response of the acquisition card in the
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Tektronix® oscilloscope. Analog noise is observed, which is subsequently eliminated by
means of a digital filter.

 
(a) 

 
(b) 

Figure 6. (a) EMG signal acquisition cards, (b) EMG signal response in the Tektronix oscilloscope.

C. Digital Filter

Due to the acquisition system being subject to the interference of electromagnetic noise
induced by lamps or some other external device, and in order to digitally tune the response
of the filter, the design of a digital low pass filter is implemented. First, the analog/digital
conversion is done with the National Instrument DAQ6009 card at an acquisition frequency
of 10 KHz at 9600 bauds with 11 bits of resolution. The procedure consists of obtaining
samples of the continuous signal at instants of time, defining vi[n] = vn(nT), where T is
the sampling period.

The response of the digital first order low pass filter is obtained with the aim of reduc-
ing the computational cost when applying the filter in real time. The filter configuration
is indicated in Figure 7, indicating its response in terms of the complex frequency s. In
Equation (1), the filter response is plotted as a function of the complex discrete frequency z.

Figure 7. First order low pass filter and its transfer function as a function of the complex variable s.

G(z) =

(
1− e

T
RC

)
z−1

1− e
T

RC z−1
(1)
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In Equation (2) the filter equation is indicated as a function of the discrete variable n by
means of difference equations when implementing the inverse z-transform of Equation (1).

vo[n] = e−2πfcT vo[n− 1] +
(

1− e−2πfcT
)

vi[n− 1] (2)

To obtain the value of the cutoff frequency (fc) and tune the digital filter, the Discrete
Fourier Transform (FFT) is implemented. First, the EMG signal is digitized by means of
a convolution with a Dirac delta pulse train as a function of time, where vi[n] is a signal
represented in an exponential Fourier series, as in Equation (3). ak represents the amplitude
of the signal energy.

vi[n] = ∑
k=N

akej 2π
N kn = a0ej 2π

N 0n + a1ej 2π
N 1n . . . + aN−1ej 2π

N (N−1)n (3)

The frequency spectrum analysis is performed by applying the Fourier Transform
on the discrete signal vi[n], obtaining as a result a train of delta functions in frequency
X
(
ej�), as indicated by Equation (4), whose amplitude is determined by the weighting

of coefficients ak, through the results of the spectrum in Frequency. The component that
provides more energy to the signal is calculated; thus, the frequency of the induced noise
is determined, and the cutoff frequency is obtained with precision (fc) for the design of
the digital filter. Figure 8 is the result of the implementation of the digital filter in the
acquisition of the EMG signal.

X
(

ejω
)
=

+∞

∑
k=−∞

ak2πδ
(
ω− 2π

N
k
)

(4)

 

Figure 8. Filtered EMG signal.

D. Multiclass Classifier: One Hot Encoding

In this section, the method used is presented so that, in real time, the movements
determined through the EMG interface are executed on a manipulator robot. An intelligent
system for muscle contraction classification was implemented. Using a Multilayer Neural
Network (MNN), a model is obtained that identifies four different classes of muscle contrac-
tion. The first class is described as Sharp muscle pulse (SMP), the second class as Smooth
muscle pulse 3 s (SMP3), the third class as Smooth Muscle Pulse 5 s (SMP5) and, finally,
the fourth class is described as Noise Involuntary Movements (NIM). These signals are
classified using the One-Hot Encoding technique that labels the waveform of each signal
with an integer. Thus, the digital inputs of a state machine are obtained, which determine
the predetermined position of a manipulator robot with three degrees of freedom in the
Cartesian plane (x, y, z) inside the robot workspace. In Figure 9, the architecture of the HMI
based on EMG is presented.
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Figure 9. Architecture of the EMG signal classification method for the control of a manipulator robot.

To perform the identification of patterns in the EMG signal of a single channel, they are
divided into action potentials with different time intervals. The SMP (Sharp Muscle Pulse)
class has an instantaneous contraction interval of 1 s and muscle relaxation intervals of
5 s. The SMP3 (Smooth Muscle Pulse 3 s) class has a contraction interval of 3 s and muscle
relaxation intervals of 5 s. The SMP5 (Smooth Muscle Pulse 5 s) class has a muscle con-
traction interval of 5 s and muscle relaxation intervals of 5 s. The NIM (Noise Involuntary
Movements) class is a class that records the resting state of users as well as involuntary arm
movements recorded during acquisition. All these samples are stored in a vector called p.
Figure 10 indicates the waveform of each class. The SMP, SMP3 and SMP5 classes indicate
a position change control order in the manipulator robot, while the NIM class indicates a
total stop state, so the MNN has as inputs the different signals identified in classes stored
in the vector p1×n. An integer is assigned to each class through supervised training; this
labeling is stored in a vector called T1×n, where n is the total number of samples.

Action potential (muscle contraction time intervals) 
• Class 1: Sharp Muscle Pulse (SMP) =  

Sustained contraction for a time interval of 1 s, rest interval of 5 s. 

 
• Class 2: Smoot Muscle Pulse 3 s (SMP3) =  

Sustained contraction for a time interval of 3 s, rest interval of 5 s. 

Figure 10. Cont.
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• Class 3: Smoot Muscle Pulse 5 s (SMP5) 

Sustained contraction for a time interval of 5 s, rest interval of 5 s. 

 
Resting Potential 

• Class 4: Noise Involuntary Movements (NIM) 
Relaxed biceps muscle and acquisition of involuntary arm movements. 

 
Figure 10. Graphical representation of the data set (input vector p1×n). The output vector T1×n stores
the labels of each class using integer data.

E. Multiclass Classifier: Multilayer Neural Network

In this section, the implementation of an intelligent system for the classification of
EMG signals is presented. The representation of the multilayer neural network is presented
in Figure 11, where p =

[
pT] is the vector of the R inputs, b =

[
bT
]

represents the

polarization of S neurons, n =
[
nT] represents the net inputs of each of the S neurons and

W =
[
WSR

T] is the matrix of synaptic weights.
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Figure 11. Structure of the Multilayer Neural Network.

The first stage consists of data normalization because the EMG signals have different
voltage thresholds. The description of this procedure is presented in Equation (5), where p
represents the data set of the EMG signal by means of a vector of an acquisition channel.
The mean of the data is subtracted, with a standard deviation equal to 1 to minimize the
computational cost when the network performs the learning process.

p =
p− pmean
√

pvar =
p− pmean

pstd (5)

Algorithm 1 describes the pseudocode for the implementation of the Neural Network
in Python; the training consists of assigning to each sample the value of a constant that
is stored in the vector T. This vector is the desired result for each class and has the same
dimensions as the input vector p.

In Figure 12, an association between the precision of the neural network with new
data (Trian loss) and the value of the loss function (Val loss) after 3000 epochs is presented.
Both graphs have a tendency to zero as training progresses, indicating a correct functioning
of the optimizer. In [22], the authors designed multiclass classification on two channels
of electrooculography signals and controlled an omnidirectional mobile robot in the X, Y
plane. In this work, it is shown that, according to the muscle contraction time, the multiclass
classification allows for the control of robotic systems that work in space (X, Y, Z) and that
are adaptive to the individual characteristics of the user, achieving a personalization of the
Interface.

Figure 12. Graph of the accuracy trend of the neural network with new data (Train loss) and the
trend of the loss function (Val loss). Neural network accuracy ratio after 3000 epochs.
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Algorithm 1: Multilayer Perceptrón algorithm implemented for the EMG

1 p ← Input_vector
2 T ← Output_vector

3 /*** output vector T where the labeling value is stored by one-hot-encoding of each the classes***/
4 T ← [{0, 0, 0, 1}, {0, 0, 2, 0}, {0, 3, 0, 0}, {4, 0, 0, 0}]

5 scaler ← StandardScaler( ).fit(P)

6 p ← scaler.transform(P)

7 /**Divide p into a test (Ptest) and a training set (Ptrain)**/

8 one_hot_labels = to_categorial(T, num_classes ← 4)
9
P_train, P_test, T_train, T_test ← train_test_split(P, one_hot_labels, test_size ← 0.20, random_state ← 42)

10 /**Random Initialization**/
11 W ← 2× (random− 0.5)× scale

12 epochs ← 3000
13 hiddenNodes ← 4

14 model ← Sequential( )

15 model.add(Dense(hiddenNodes, activation ← relu, input_dim ← 4)
16 a[1]← max(0, n) //ReLu activation function

17 model.add(Dense(4, activation ← ′softmax′))
18 a[2]← en4 / ∑5

1 en4 //Softmax activation function

19 model.summary( )

20 loss ← categorical_crossentropy
21 /**Loss function (categorial cross entropy**/
22 L(y, ŷ)← 1

N ∑M
j=1 ∑N

i=1

(
yijlog

(
ŷij

))
22 optimizer ← tf .keras.optimzers.Adam( )
24 W ← W − αm√

v+ε

25 model.compile(loss ← loss, optimizer ← optimizer, metrics ← [′accuracy′])
26 history ← model.fit(P_train, T_train , epochs ← epochs, vebose ← 1 , validation_split ← 0.1 )

27 test, test ← model.evaluate(P, t, verbose ← 1)
28 weights(model.layers, 3)
29 scaling(scaler, 3)
30 layers(model.layers)

The obtained values of the synaptic weights W and the polarization vector b of the
two neurons, after 3000 epochs:

W1 = [4][1] =

⎡⎢⎢⎣
−0.321
1.016
1.322
1.564

⎤⎥⎥⎦
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W2 = [4][4] =

⎡⎢⎢⎣
−0.363 0.232 0.222 −0.123
0.543 −0.127 0.142 −0.234
0.126 −0.123 −0.118 0.233
−0.217 0.147 0.156 −0.126

⎤⎥⎥⎦
b1 =

[ −0.321 0.087 0.123 0.224
]

b2 =
[

0.457 −0.121 0.789 0.389
]

Once the model recognizes each of the classes by means of integers, a comparison
system is implemented using the premise, “If the Network output is: (integer) [1–4] then
1 is enabled when the network recognizes the waveform that corresponds to each label,
otherwise it is 0”. This process allows for a combination of digital pulses for the activation
of a state machine.

F. State Machine

The combination of digital signals obtained from the pattern recognition of the neural
network by means of class classification allows for the transition change of a state machine.
A Mealy-type machine is implemented, which generates an output based on its current
state and an input. Three finite sets determined by the inputs, outputs and states are
defined.

In Figure 13, the transitions of the digital inputs are indicated and the NIM class
is represented as the most significant bit. In the next position the SMP3 class is, then
the SMP5 class and finally the SMP class, so that there is an input 4 bits for transition
change. Each of the states indicates a predetermined position of the manipulator robot
with three degrees of freedom in Cartesian coordinates

(
px, py, pz

)
. Subsequently, these

coordinates are converted to joint coordinates
(
q1, q2, q3

)
using the inverse kinematics of

the manipulator robot. There is an input IN9 that, when detecting a status at 1 of noise or
involuntary movements, completely deactivates the operation of the robot; this is taken as
a security measure to not activate the robot when this class of signals occurs.

Figure 13. The table presents the inputs of the digital system, and the system outputs are indicated
by means of the robot diagram.

In Figure 14, the designed machine has eight possible states for muscle movement,
with four digital inputs corresponding to the high and low pulses of the Neural Network
recognition. Table 1 describes the position in Cartesian coordinates of each of the robot
states.
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Figure 14. Eight-state Mealy-type machine, transition indicated.

Table 1. Description of each of the desired positions of each state.

State Input EMG
Desired Value in Meters

Desired Movement
px py pz

S1 IN1 0 −0.34 0.38 Stop
S2 IN2 0 −0.11 0.46 Up
S3 IN4 0.34 −0.34 0.38 Right
S4 IN7 −0.34 −0.34 0.38 Left

DUL IN8 −0.34 −0.11 0.46 Diagonal Up Left
DUR IN3 0.34 −0.11 0.46 Diagonal Up Right
DDL IN6 −0.34 −0.34 0.28 Diagonal Down Left
DDR IN5 0.34 −0.34 0.28 Diagonal Down Right

The selected robot is an anthropomorphic robot with three degrees of freedom and
rotational joints whose operation is similar to the human arm (Figure 15), where l1, l2 and
l3 represent the total length of the links, lc1, lc2 and lc3 represent the length from the initial
end to the center of mass of each of the links that make up the robot, m1, m2 and m3 are
the values of the center of mass of each link, x0...3, y0...3, z0...3 represent the cartesian axes
indicating the orientation of the position and q1, q2 and q3 represent each degree of freedom
of each rotational joint of the robot.
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Figure 15. Virtual model of an anthropomorphic robot with three degrees of freedom.

To determine the workspace of the anthropomorphic robot, the calculation of the
forward kinematics is performed, which determines the position of the end effector
in Cartesian coordinates

(
px, py, pz

)
based on joint coordinates

(
q1, q2, q3

)
indicated in

Equation (6). These equations are fundamental for the calculation of the robot dynamics.

px = cos(q1)
(
lc3 cos

(
q2 + q3

)
+ lc2 cos(q2)

)
py = sin(q1)

(
lc3 cos

(
q2 + q3

)
+ lc2 cos(q2)

)
pz = l1 + lc3 sin

(
q2 + q3

)
+ lc2 sin(q2)

(6)

Because the state machine has the coordinates of the end effector position in meters
for each of the Cartesian axes x, y y z, the inverse kinematics of the robot defined in
Equation (7), these equations determine the value of the position in radians for each of the
degrees of freedom

(
q1, q2, q3

)
.

q1 = tan−1
(

py
px

)
q2 = 2 tan−1

(
b +

√
b2 + a2 − c2

a + c

)
(7)

where:
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c = px
2 cos2(q1) + 2 px py sen(q1) cos(q1) + pz

2 − 2 pz l1 + l12 + l22 − l32

a = 2 px l2 cos(q1) + 2 py l2 sen(q1)

b = 2 pz l2 − 2 l1 l2

q3 = tan−1
(

pz cos(q2)− l1 cos(q2)− px cos(q1) sin(q2)− py sin(q1) sin(q2)

pz cos(q2)− l1 cos(q2)− px cos(q1) sin(q2)− py sin(q1) sin(q2)

)
To implement the PD+ position tracking control algorithm, use the dynamic model

defined in Equation (8).
Inertia Matrix (M(q))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎝
I1 + I2 + I3 +

l22 m3
2 + lc2

2 m2
2 + lc3

2 m3
2

+
l22 m2 cos(2q2)

2 +
l22 m3 cos(2q2)

2

+
lc3

2 m3 cos(2q2 + 2q3)
2

+ l2 lc3 m3 cos
(
2q2 + q3

)
+ l2 lc3 m3 cos

(
q3
)

⎞⎟⎟⎟⎟⎟⎟⎠ (I2 + I3) I3

(I2 + I3)

⎛⎝ I2 + I3 + lc2
2 m2

+ lc3
2 + 2 l2 lc3 m3 cos

(
q3
)

+l22 m3

⎞⎠ (
I3 + lc3

2 m3
+l2 lc3 m3 cos

(
q3
) )

I3

(
I3 + lc3

2 m3
+l2 lc3 m3 cos

(
q3
) ) (

I3 + lc3
2 m3

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Coriolis Matrix

(
C
(
q,

.
q
))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎝ − .
q2l22 m2 sin(2q2)

− .
q2l22m3 sin(2q2)

− .
q2lc3

2m3 sin
(
2q2 + 2q3

)
⎞⎠ (−2

.
q1 l2 lc3 m3 sin

(
2q2 + q3

)) ⎛⎝ − .
q1 lc3

2 m3 sin
(
2q2 + 2q3

)
− .

q1 l2 lc3 m3 sin
(
q3
)

− .
q1 l2 lc3 m3 sin

(
2q2 + q3

)
⎞⎠

⎛⎜⎜⎜⎜⎝
.

q1 l22m3 sin(2q2)
2

+
− .

q1lc2
2 m2 sin(2q2)

2

+
.

q1 lc32 m3 sin(2q2+2q3)
2

+
.

q1 l2lc3 m3 sin
(
2q2 + q3

)

⎞⎟⎟⎟⎟⎠ (−2
.

q3 l2 lc3 m3 sin
(
q3
)) (− .

q3 l2 lc3 m3 sin
(
q3
))

⎛⎜⎜⎝
.

q1 lc3
2 m3 sin(2q2+2q3)

2

+
.

q1 l2 lc3 m3 sin(q3)
2

+
.

q1 l2 lc3 m3 sin(2q2+q3)
2

⎞⎟⎟⎠ ( .
q2 l2 lc3 m3 sin

(
q3
))

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Gravity Vector (g(q))⎡⎣ 0

− g lc3 m3 cos
(
q2 + q3

)− g l2 m3 cos(q2)− g lc2 m2 cos(q2)
− g lc3 m3 cos

(
q2 + q3

)
⎤⎦

Viscous friction vector (B)

B
.
q =

⎡⎣ B1
.

q1
B2

.
q2

B3
.

q3

⎤⎦
Torque Vector

τ =

⎡⎣ τ1
τ2
τ3

⎤⎦
τ = M(q)

..
q + C

(
q,

.
q
) .
q + g(q) + B

.
q (8)
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where M(q) is a positive definite symmetric matrix of n x n called the inertia matrix, with
I1, I2, I3 being the moments of inertia of the rigid links of the mechanical structure of the
robot, C

(
q,

.
q
)

is an n x 1 vector called the vector of centrifugal and Coriolis forces, B
.
q is

an n x 1 vector that determines the viscous friction, g(q) is an n x 1 vector of gravitational
forces and τ is the n x 1 vector that determines the torques and forces applied by the
actuators at the joints.

G. Position Control

As a result of the cartesian coordinates (px, py, pz) obtained from the classifier by
means of a Multilayer Neural Network and assigned to a discrete event by means of a
state machine, the desired Cartesian coordinates for the robot are obtained, which are
transformed to joint coordinates

(
q1, q2, q3

)
from inverse kinematics. These values are the

inputs for the PD+ type position control system. [15].
The PD+ control with gravity compensation, defined in Equation (9) by τPD+, is an

algorithm that includes proportional control of the position error q̃ and velocity error
proportional control

.
q̃, where Kp, Kv ∈ Rnxn are the proportional and derivative gains,

respectively, both are positive definite matrices, and the full dynamics of the robot are
added. In the structure of this scheme, the trajectory of position, velocity and desired
acceleration is involved, qd(t),

.
qd(t),

..
qd(t) ∈ Rn.

τPD+ = Kpq̃ + Kv
.
q̃ + M(q)

..
qd + C

(
q,

.
q
) .
qd + B

.
qd + g(q) (9)

The objective of this control is to find a torque value, τ, such that it satisfies the
expression indicated in Equation (10).

lim
t→∞

[
q̃
.
q̃

]
=

[
0
0

]
∈ R2n (10)

where q̃ ∈ Rn is the following error and is defined as q̃ = qd(t)− q(t), and
.
q̃ ∈ Rn is

the velocity error, given by
.
q̃ =

.
qd(t)−

.
q(t). Figure 16 indicates the block diagram of the

implemented PD+ control.
Figure 17a shows the behavior of the zero-position error trend in each joint coordinate

of the robot whose Cartesian coordinate is assigned by the state machine. The operation of
the control when reaching the desired joint position is also presented. Figure 17b shows the
virtual simulation of the robot applying the PD+ control for the generation of trajectories
through the interaction of the EMG signal.

A graphical user interface is designed as indicated in Figure 18b with visual feedback
of the EMG signal, the result of the state machine by means of a green indicator that
indicates the position detected of the MNN’s classification, the control curves resulting
from the implemented PD+ and a simulation of the virtual robot that indicates the position
of the end effector. In Figure 18b, the user connection and the operation of the interface to
calculate the response time metrics are indicated.
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Figure 16. Block diagram of PD + control with gravity compensation.

Figure 17. (a) Graphs of the position error with a tendency to zero for each of the joint coordinates(
q1, q2, q3

)
and control curves indicating the operation of the PD+ to reach the desired positions,

(b) Result of the PD+ trajectory control of an anthropomorphic virtual robot.
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(a) 

 
(b) 

Figure 18. (a) Implementation of the real-time acquisition system interacting with the virtual robot
simulation, (b) Graphical interface designed to record response time metrics.

4. Results and Discussions

The EMG signal classification method that allows for the generation of coordinates
for the trajectory control of a manipulator robot has been developed. The user’s ability to
follow a series of point-to-point coordinates previously determined by colors is measured
according to the time of sustained contraction. The yellow dot indicates the starting point
of the test, the green dots indicate the path to be followed and the blue dot indicates the
end point to which the robot’s end effector must reach. Two trajectories are proposed
that increase the difficulty indicating a penalty each time the user enters a contraction
command other than the one indicated. The time in which the user generates the trajectory
is also recorded. The test ends when the user generates the trajectory without penalties. In
Figure 19a, the first proposed trajectory is indicated, in Figure 19b, the time and the number
of penalties for each test performed by the user are presented and in Figure 19c, a graph of
the response time for trajectory 1 is indicated.
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• Description of the trajectory in each of the tests. The yellow point is the beginning, 
passing through each of the green points until reaching the final blue point. 

 
(a) 

• Description of the time and penalties in each of the tests. When the box is green, it 
is because the user reached the desired point; when it is red, it is because the user did 

not reach the indicated point. 

 

 
(b) 

• The graphic description of the experiment shows that, as the number of tests in-
creases, the time in which the trajectory is performed decreases, as well as the variation 

between the time of arrival from one point to another. These results are observed after 11
repetitions. 

Figure 19. Cont.
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(c) 

Figure 19. (a) Point-to-point trajectories (Trajectory 1 and Trajectory 2), (b) The time and the number
of penalties (Trajectory 1 and Trajectory 2) and (c) Plot of trend response for each trajectory (Trajectory
1 and Trajectory 2).

A downward trend is observed in this first trajectory in the response time when
completing the test with zero penalties. It is shown that 11 repetitions are enough to
successfully complete the proposed trajectory. At the beginning, it indicates an initial time
of 118.52 s, and, at the end, it indicates an initial time of 77.54 s, which corresponds to a
decrease in the response time by 34.58%. In Figure 19a, the second proposed trajectory is
indicated. Figure 19b shows the time and the number of penalties for each test performed
by the user. Figure 19c indicates a graph of the response time for trajectory 2.

In the second trajectory, a behavior similar to the first trajectory is observed. With
11 repetitions, it is enough to successfully complete the test. At the beginning, an initial
time of 188.64 s is indicated, and, at the end, an initial time of 111.99 s is indicated, which
corresponds to a decrease in the response time by 40.64%. When performing the test
with different points, the same trend is observed in the decrease in response time. By
around 11 repetitions, the user has mastery of the HMI. It should be noted that the model
is customized for each user according to individual characteristics and muscle contraction
time in addition to adding a recognition class for involuntary movements that blocks the
operation of the robot and takes it to a “home” state.

5. Conclusions

An HMI that allows for the classification of muscular signals according to the contrac-
tion time has been designed. The model implemented through a neural network allows
for the personalization and classification in real time for the generation of movement com-
mands of a virtual robot. The HMI can be implemented with inexperienced users who
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need only 11 repetitions to master the operation of the system, reducing the learning curve.
The future work of this project is to implement the classification of multiclass signals in
a physical robotic system. In assistive systems or bionic prostheses, although there is the
limitation that, being a discrete system, the movement command is determined by a state
machine, the improvement consists of implementing neurofuzzy systems that allow for the
generation of continuous trajectories in the robot. The development of assistance systems
through physiological signals is important for people with disabilities since it allows them
to better adapt to their work or personal environment.
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Abstract: Analysing the dynamics in social interactions in indoor spaces entails evaluating spatial–
temporal variables from the event, such as location and time. Additionally, social interactions
include invisible spaces that we unconsciously acknowledge due to social constraints, e.g., space
between people having a conversation with each other. Nevertheless, current sensor arrays focus on
detecting the physically occupied spaces from social interactions, i.e., areas inhabited by physically
measurable objects. Our goal is to detect the socially occupied spaces, i.e., spaces not physically
occupied by subjects and objects but inhabited by the interaction they sustain. We evaluate the social
representation of the space structure between two or more active participants, so-called F-Formation
for small gatherings. We propose calculating body orientation and location from skeleton joint data
sets by integrating depth cameras. The body orientation is derived by integrating the shoulders and
spine joint data with head/face rotation data and spatial–temporal information from trajectories.
From the physically occupied measurements, we can detect socially occupied spaces. In our user
study implementing the system, we compared the capabilities and skeleton tracking datasets from
three depth camera sensors, the Kinect v2, Azure Kinect, and Zed 2i. We collected 32 walking patterns
for individual and dyad configurations and evaluated the system’s accuracy regarding the intended
and socially accepted orientations. Experimental results show accuracy above 90% for the Kinect v2,
96% for the Azure Kinect, and 89% for the Zed 2i for assessing socially relevant body orientation.
Our algorithm contributes to the anonymous and automated assessment of socially occupied spaces.
The depth sensor system is promising in detecting more complex social structures. These findings
impact research areas that study group interactions within complex indoor settings.

Keywords: RGB-D sensors; human motion modelling; F-Formation; Kinect v2; Azure Kinect; Zed 2i;
socially occupied space

1. Introduction

While studying how people interact in space, alone or with a companion, the first
approximation is to identify variables describing movement and measure them. Specific
parameters are straightforward to determine as they can be physically detected in space;
for example, the location of people involved in a conversation and their distances can be
assessed as properties of physically occupied space. Other aspects describing interactional
processes are invisible to the eyes, but still, people inside or outside the group well un-
derstand and respect them [1]. While sensors are able to measure the physical properties
of people and their location, to date, it is still a challenge to detect their interaction au-
tomatically; however, it exists due to social accords in a socially occupied space that is
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not physically discernible [2]. Sociology studies gatherings of people to identify different
roles such as leadership [3], with raised interest to detect them in entertainment to take
pictures [4], to help to arrange displays in an interaction encouraging way [5], to improve
the communication and design in virtual reality [6], and in computer vision to improve
the way robots approach individuals [7,8]. To date, research on identifying interactions
among people or between people and their environment often relies on manual observation
techniques based on video recording [9]. Other approaches for static scenes analyse videos
to detect groups of people automatically by extracting social cues [10]. The distinction
between physical and non-physical space is one key unsolved challenge in the automatic
interpretation of interactional spaces.

Currently, sensor-based systems focus on spaces physically appropriated by a human
body or an object, so-called physically occupied spaces. On the contrary, we aim to detect
the socially occupied space, i.e., space occupied not physically by people. Social models
such as facing formations, so-called F-Formations, represent this occupancy that occurs due
to a social agreement. F-Formations are present when “two or more individuals maintain a
spatial and orientational interaction in which the space between them is one with equal,
direct and exclusive access” [11]. The model comprises three areas: O-space, the inner
transactional space; P-Space, the narrow zone immediate to the O-Space, and R-Space,
which protects the system and serves as a transactional space for the participants, as shown
in Figure 1. The interactional space is the area in which the interchange occurs, existing
between the bodies involved in the exchange [12]. After analysing people’s bodies and
participation during an interaction, it is then possible to conclude the interactional space.
Sociologists have physically distinguished social interaction models by implementing direct
observation, interviews, and analysing videos [13,14], concluding that body orientation is
crucial in encouraging participation from all members [13]. Nevertheless, the difficulty in
detecting these social spaces rises with the number of people, i.e., the size of the gathering;
thus, automating the physical features’ measurement to describe them is vital. Defining the
socially occupied space requires discerning where people stand and their body’s direction
to detect their interactional space placement.

(a) (b) 

Figure 1. The illustration of the F-Formation model and its three interactional areas are O, P, and R
spaces. In (a) group–object interaction. In (b) group–members interaction.

Moreover, spatial–temporal information is needed to rate the level of engagement
in a conversation and describe the encounter’s physical dynamics. Tracking technologies
such as Bluetooth and Wi-Fi are used to extract position and movement, helping to detect
encounter dynamics [14,15]. However, they lack information about bodily signs to identify
individuals’ interaction with the milieu or everybody else.

278



Sensors 2022, 22, 3798

Our study concentrates on extracting the data needed to interpret the socially occupied
space and defining a methodology to obtain it from different sensor devices. We select a set
of depth cameras, with infrared and stereoscopic technology, the Kinect v2, Azure Kinect,
and Zed 2i, to tell people’s position, body orientation, and viewing direction, which are
central in explaining group interaction. Then, we implement the F-Formations model,
a social model, by translating the sensors’ measurements into an interpretation of the
socially occupied space for small size and highly focussed gathering interactions. From the
results, we evaluate which device suits better our use case. Our approach does not rely
on video storage or trackers’ placement, unlike other methods. The emphasis is to assess
the different sensor’s output data in detecting body orientations. We collect data for eight
body orientations in four different walking patterns for each depth camera. The designed
algorithm uses the shoulders and spine skeleton joints information collected, together with
the trajectories’ temporal information, to calculate the body angle. The accuracy evaluation
consists of the following methods: evaluating whether the automatic body orientation
falls into the correct category with a body orientation category classification, followed by
a category deviation analysis, and finally, versus an acceptable social orientation range.
Our experiment results show accuracy above 90% for both the Kinect v2 and Zed 2i and
95% for the Azure Kinect for assessing the body angle in the experiment setup, with the
different depth sensors’ accuracy varying in specific areas for side, back and diagonal body
orientations and location to the device. In this paper, our contributions are:

• We compare three different depth sensors to evaluate the use of the skeleton data
generated by their depth maps and calculate the body orientation from the skeleton
data and assess the sensors’ accuracy by analysing the link between location and
intended direction. Additionally, we analyse the advantages and disadvantages per
device in determining the body orientation.

• We can conclude the spatial extent of the personal interactional space from the body’s
location and orientation. The focus of attention that intersects allows us to identify
people in group interaction and the resulting interactional space.

• We create a system to collect information from physically occupied spaces, analysing
the relevant information to interpret socially occupied spaces.

The structure of the paper is as follows: Section 2 introduces related literature to track
people and discover groups in indoor spaces. Section 3 depicts the system configuration
and our skeleton data processing approach. Sections 4 and 5 describe the experiment setup,
the system evaluation, and the discussion of the results for each format and device. Finally,
we present in Section 6 our conclusions and future work.

2. Related Work

Social interaction. In analysing human social behaviour, interactions can evolve from
a single individual to an increasing number of participants. Social structures such as groups
are defined as a social unit with more than one individual and a clear membership that
sustain a continuous interaction. Complementary gatherings represent an interaction often
in public spaces, defined as a set of two or more co-present individuals sharing a temporal
interaction [16]. As the number of individuals decreases, the situation possesses a different
level of interaction: large encounters with thirty-one to N participants happen in semi-
public and public spaces such as concerts, whereas medium gatherings from seven to thirty
participants arise in meetings and classrooms. The larger the number of participants in a
gathering, a lower level of common focus exists, whereas lesser members showcase solid
social interaction and group belonging [17]. Small gatherings from two to six participants
imply a common-focused or jointly focused interaction, where people are involved in a
mutual activity [18] encompassing conversational groups, which can be studied within the
F-Formation model.

F-Formations exist when “two or more individuals maintain a spatial and orientational
interaction in which the space between them is one with equal, direct and exclusive
access” [11]. The model comprises three areas: O-space, the inner transactional space in
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which the focus of attention is present; P-Space, the narrow zone immediate to the O-Space
where individuals position themselves; and the R-Space, which protects the system and
serves as an entry and exit point for the participants, enclosed by the bodies orientation [19].
The detection of these areas relies on the definition of the orientational transaction to assess
the intersection of focus of attention in an interactional zone, for which Kendon integrated
the concept of social proxemics. Hall defined four physical areas from human observations
in social situations: intimate, personal, social and public zones [13]. The interpersonal
distance in social zones ranges from 1.20 to 2.10 m. These zones are integrated into the
F-Formation model to address its extension and the area in which interactants, and their
focus of attention exists as illustrated in Figure 2. The field of view in which the attention
spans, is represented by a cone with origin in the frontal body, with a aperture value of
around 120◦; inside this cone, the inner cone in which humans sustain attention during
interaction ranges between 30◦ and 60◦ degrees, the so-called gaze area [20]. The different
stages of attention can assess the focus during interaction during trajectories [21,22]. During
the capture stage, attention is unfocused, and individuals’ actions rely on scanning and
approaching elements in the environment. Narrow attention arises in the focus stage, where
the attention is captured for fewer than three seconds in a single object. Finally, when the
attention is deep for more than five seconds, reaching the engagement stage, the bodies are
static in a position, and senses are concentrated on reading, discussing, or recalling content,
generating a social experience in which the interactional spaces are constructed by the
bodies participating in the interchange of information [23]. Our research focuses on small
gatherings in indoor spaces, particularly museum exhibitions, by analysing the position
and an approximation of the body orientation from static social encounters. The goal is
to identify the components of the socially occupied space for highly engaged moments
during an interaction.

Figure 2. A set of individuals join a third member and construct the interactional space. The position
and body orientation establish physically which space is socially occupied. Spatial–temporal variables
such as position over time indicate the dynamics of interaction.

Human behaviour tracking approaches. Different studies have been implemented to
evaluate individuals’ position in interaction in closed spaces [15,24]. For our analysis, these
human tracking technologies can be divided into devices with and without physical contact
with the user. The first category is unobtrusive because its installation is in the surroundings.
For example, Wi-Fi and Bluetooth technologies help identify device interaction and location.
However, its utility is limited to positional variables. It does not directly assess body data
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to analyse social interactions, giving partial information about people’s spatial and body
arrangement. They need additional data such as video recordings or manual records [25].
LiDAR cameras in museums have similar limitations for measuring social interactions
with exhibitions, requiring significant processing tasks to get precise trajectories, deriving
information mainly about highly concurred areas [26]. Finally, computer vision techniques
to identify human traffic rely on RGB cameras to detect people’s bodies and derive their
trajectories, incurring privacy concerns and challenges such as occlusion and distortion.
The second category is obtrusive as it is installed in peoples’ bodies in the form of trackers
and markers, interfering with their activities’ natural behaviour, especially when users are
required to activate beacons to confirm their locations [27]. So far, these technologies focus
mainly on spatial data, offering only proximity information to identify groups according to
their shared space.

Nevertheless, due to the richness in human interactions, trajectories need to be com-
plemented with relevant data to characterise the interactional space and offer more context
for the sociological analysis of models such as F-Formations [9]. The description of social
features in group interaction has been studied in museum visits using forms and manual
observation, implying expensive and lengthy analysis [23]. Additional techniques involve
using cameras to design traditional and interactive displays in closed spaces, reducing the
socially occupied space to an area to be physically occupied [28]. Existing computer vision
methods use video datasets such as SALSA and Babble and identify attention, proximity,
and head orientation to analyse participants in a conversation with the analysis of bodies
from video recordings, highlighting the difficulty of the analysis of head rotation as a result
of a low-resolution video [29,30]. Other similar studies rely on virtual environments to
recreate social dynamics [31]. These approaches focus solely on detecting conversation’s
physically occupied space, ignoring the surrounding socially occupied space dynamics that
led to these groups’ construction.

Depth cameras for human interaction. Several depth camera models are available
outside the industrial market, such as the Orbbec and the Intel RealSense models used
for 3D image extraction, depth map reconstruction and gait analysis [32–34]. Each device
provides different software solutions to process scene information, such as semantic seg-
mentation, object detection and skeleton tracking, open to the public or with a fee, as shown
in Table 1. Cameras with the skeleton tracking functionality ready to be used without cost
for researchers and practitioners in their studies include the Microsoft Kinect series and the
Zed 2i.

Table 1. Depth cameras model availability with and without integrated skeleton tracking.

Device Technique Range Skeleton Tracking

Azure Kinect TOF 0.25–5.46 m Yes, included
Kinect v2 TOF 0.50–4.50 m Yes, included
pmd CarmBoard pico monstar TOF 0.50–6.00 m No
Intel Realsense D435i Stereovision 0.30–3.00 m Yes, to pay for
Intel Realsense D455 Stereovision 0.60–8.00 m Yes, to pay for
Stereolabs Zed 2i Stereovision 0.20–20.0 m Yes, included
Orbbec Astra Structured Light 0.60–8.00 m Yes, to pay for
Orbbec Astra Pro Persee Structured Light 0.40–8.00 m Yes, to pay for

Approaches using commercial depth cameras include the Kinect v2 camera in an
egocentric perspective in robots for conversational participation and events, limiting the
analysis to static scenarios evaluating only the physically occupied space by interacting
with the artificial participants [35,36]. However, this use demonstrates their great potential
in acquiring trajectory and relevant social features due to the processed skeleton data,
easiness of installation, and low costs without storing video data from the scene, allowing
researchers to exploit these data to extract human behaviour [37–39]. Additional depth cam-
eras available for the public include the Azure Kinect, the successor of the Kinect v2, mainly
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used for industry and healthcare with promising human activity detection [40]. Studies
comparing both devices are limited to joint detection accuracy for medical monitoring,
static scenarios, or physical training that does not reflect the natural movement of the body
in large trajectories [41,42]. An alternative depth camera to the Time-of-Flight technology
from the Microsoft devices is the Zed 2i from Stereolabs, which relies on stereoscopic
technology to gather depth information and extract body joints. Nevertheless, only selected
studies are available to evaluate the depth map accuracy from the previous model [32,43],
and research on the skeleton joints accuracy model is scarce.

This study intends to extend these prior studies by integrating social signals, trajecto-
ries, and human behaviour. Social signals describe a set of behavioural attitudes from social
intelligence present during interaction [44]. The posture and gesture category highlights
the relevance of low-level social features: distance, aperture, and body orientation to assess
interaction [6,45]. We use depth cameras as a hybrid technology for tracking individuals
and collecting body data during trajectories to automate detecting the invisible space in
interaction. To assess which depth camera technology and model is more suitable for
detecting socially occupied spaces, we compare the skeleton tracking data generated by
two infrared-based and one stereoscopic-based depth camera.

3. System Design

We propose employing depth sensors cameras to extract the body orientation using
skeleton tracking data joints, with a series of evaluations assessing the efficacy of detecting
F-Formations exploiting spatial–temporal and body cues data. Our methodology comprises
five steps: a set of data collection experiments, a coordinates transformation and social
cues processing, the estimation of the body angle orientation and evaluation, and finally
we test our findings with a group detection algorithm. We process the shoulder left, right,
and centre joints, as described in Figure 3, to calculate body angle orientation and the spine
joint’s coordinates as the position for each skeleton dataset generated collected per device:
two infrared-based and one stereoscopic-based technology.

(a) (b) 

Figure 3. Real−world coordinate system with the skeleton extracted from the depth cameras.
On (a) the selected skeleton joints are in red, with the positional skeleton joint in blue. On (b) the
selected upper skeleton joints used to calculate body orientation.
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3.1. Depth Sensor Cameras

We selected three depth sensor cameras that are reachable to end-users in terms
of the price, market availability to the public, capability to generate skeleton tracking
data, easiness of installation and running within different environments. From Microsoft,
the Kinect v2 and the Azure Kinect offer end-users a device with capabilities ranging from
games to industrial use using Time-of-Flight (TOF) technology. Alternatively, Stereolabs
with the Zed 2i offers a stereoscopic camera whose size and configuration make it a good
option for developers in robotics and industry.

3.1.1. Kinect v2

Microsoft launched the Kinect v2 in 2016 as an accessory for the XBOX console to track
a body’s movements for video games. The device extracts the scene depth information
by processing the incoming light using an infrared and RGB-D video. The device detects
25 body joints per skeleton for up to six bodies using a set of decision tree-based algorithms
with no native information for the head/face elements. The Microsoft Kinect Software
Development Kit (SDK) allows to access the device, basic tutorials and depict the camera
status, limited to Windows operating systems versions higher than 8. Additionally, the li-
braries can be implemented in WPF C# projects to access its functionalities [46], adding
others, such as a complementary face elements detection, including eyes, mouth and head
from the Microsoft.Kinect.Face library.

3.1.2. Azure Kinect

The next generation of Kinect devices came in 2020 with the introduction of the Azure
Kinect. The Azure focuses on industrial warehousing, robotics, and health applications
compared to the previous generation [37]. The Azure camera uses the highest hardware
specification requirements from the three devices. The depth camera implements an
amplitude-modulated continuous Wave Time-of-Flight principle, casting illumination in
the near-IR spectrum to record the light travelled. The skeleton tracking feature includes
32 body joints including face elements for up to four bodies, employing a neural network
algorithm to derive the skeleton bodies from the depth map. Users can access the camera
functionalities with the SDK and libraries written in C++ and C# on Windows and Linux
operative systems, possibly connecting to Azure Cognitive Services for other processes.

3.1.3. Zed 2i

Stereolabs Zed 2i depth camera has been available in the market since 2021 and is
based on stereoscopic technology by using two 4Mpx sensors, calculating the displacement
of the pixels between the left and the right images captured. The body tracking is based
on a neural network algorithm to detect body joints present on both sides, and it merges
the information with the depth and positional tracking model, producing 34 body joints,
including face components. The camera requires configuring CUDA and a Zed-specific
development environment to access the SDK functionalities, which work on Windows and
Linux operative systems [47].

The body skeleton joints structure and the coordinate system for each camera are
shown in detail in Figure 4, with a summary and technical comparison in Table 2. The Azure
Kinect and the Zed 2i have the highest number of joints, including face and spine ones with
slightly different names.
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(a) (b) (c) 

Figure 4. Skeleton joints map per device. (a) Kinect v2, (b) Azure Kinect and (c) Zed 2i. Greys areas
indicate a left-right joint correspondence. Italic joints indicate differences between the devices.

Table 2. Detailed technical comparison of the selected depth cameras.

Kinect v2 Azure Kinect Zed 2i

Year 2016 2020 2020
Technology TOF TOF Stereovision

Colour camera resolution 1920 × 1080 px @30 fps 4096 × 3072 @30 fps
2× (2208 × 1242) @15 fps
2× (1920 × 1080) @30 fps
2× (1280 × 720) @60 fps

Depth camera resolution 512 × 424 px @30 fps Narrow: 654 × 576 @30 fps
Wide: 1024 × 1024 @30 fps

Field of view 70◦ H–60◦ V Narrow: 75◦ H–65◦ V
Wide: 120◦ H–129◦ V 110◦ H–70◦ V

Depth extent 0.5 m–4.5 m 0.25 m–5.46 m 0.2 m–20 m
Coding language C# C, C# C, C++, Python
Skeleton joints 25 32 34

3.2. Depth Cameras Coordinates’ Transformation

We transform the device’s coordinates into the physical space. The devices generate
data relative to their positions in their own coordinate system, with x representing the
positive or negative horizontal distance, y the height, and z the frontal distance, as shown
in Figure 5.

(a) (b) (c) 

Figure 5. Depth camera sensors with their coordinate system: (a) Kinect v2, (b) Azure Kinect,
and (c) Zed 2i. The Zed 2i has six different coordinate systems.
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The coordinates system origin xo, yo are set to the device position, calculating the
transformed coordinates xt, yt, with a translation angle θ, and the camera’s original set of
coordinates [xk, yk, zk] for each skeleton joint. We apply a matrix product transformation
described in Equation (1):

[xt, yt] =

⎡⎣ cos θ − sin θ xo
sin θ cos θ yo

0 0 1

⎤⎦⎡⎣ xk
yk
1

⎤⎦ (1)

3.3. Processing Social Signals

Humans regularly recognise the direction in which the body is oriented by identifying
the head orientation and the upper and lower limbs and reviewing if they are placed left or
right. Following this reasoning, the body orientation is calculated from the skeleton joints
tracked by each device. The data generated by each sensor in the form of JSON files contain
information about every set of joint coordinates, as illustrated in Figure 3. We collect each
skeleton data every 200 milliseconds, using the upper limbs as an indicator of the focus of
attention to later calculate the body angle. The main methodology is illustrated in Figure 6.
The task starts by processing the input data. We receive the collected skeleton data in a JSON
file, which is analysed and organised by timestamp, creating a dataset with all relevant
information for the algorithm, such as body identification, skeleton joints, timestamp,
body location, camera, and experiment identifier. Next, the program proceeds with the
coordinates’ transformation for the body location and each skeleton joint.

                     (a)                                                 (b) 

Figure 6. On (a) Methodology to extract body orientation from the skeleton data collected. On (b) il-
lustration of upper joints and head rotation data usage to calculate the body orientation.

Once the data is processed, the next step is to calculate the body orientation. For each
position pi, we review the availability of the interested upper joints to proceed with the
angle calculations. This allows us to warranty the use of complete skeleton data sets as they
can be incomplete every other timestamp. The algorithm evaluates if the relevant skeleton
joints are present on each timestamp, selecting the upper joints shoulder left and right for
all devices, shoulder centre and head orientation detected for the Kinect v2, and clavicle for
the Azure Kinect and the Zed 2i. We use Equation (2) to calculate the body angle orientation
after applying the corresponding coordinate transformation using Equation (1):

θbody_angle = arctan
(

xt

yt

)
∗ 180

π
(2)
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To assess if the vector perpendicular to the orientation vector should rotate clockwise
or counter-clockwise, we evaluate the position of each shoulder joint relative to the sensor’s
orientation. If the left shoulder joint in the position slx is larger than the right shoulder
joint position srx, the body is looking in the direction of the sensor. This can be observed by
plotting the shoulder line and the joint’s position as illustrated in Figure 6b.

Lastly, if the camera is the Kinect v2 and the head elements are available for more than
80% of the sample, we apply an additional correction to the orientation using a full 180◦
rotation as described in Algorithm 1. While Azure Kinect and Zed 2i include information
on the face and head joints in detecting skeletal joins related to body orientation, Kinect
v2 processes skeletal joints and face and head joints separately. As a result, front and back
orientation are often confused, and the device has a strong tendency always to assume a
front orientation, even if people are oriented backwards. To make all three approaches
comparable, we integrate the face and head joins explicitly into the body orientation
processing in the case of Kinect v2, where information from the head is processed. This
operation potentially improves assessing the body orientation towards the camera as its
absence suggests a non-frontal orientation [2]. On the other hand, the Azure Kinect and
Zed 2i offer the face and head joints detected by the algorithm, but as they are already
processed to evaluate the joints’ left-right correspondence internally, they are not included
in the body orientation correction to avoid overfitting. In the end, the calculated angle θpi
is returned. Algorithm 1 describes the mentioned process:

Algorithm 1 Body angle calculation

Input: A dataset N with skeleton joints in the form (x, y ) per timestamp
Output: Body orientation angle θsrsl

for pi in N:
if shoulder_joint_pair:

apply_coordinates_transformation
(
slxy, srxy)

θpi = tan−1
(

xt
yt

)
∗
(

180
◦

π

)
if srx < slx :

θpi = θpi − 90◦
else:

θpi = θpi + 90◦
else:

θpi = 1
correction_level = analyze_head_data_availability(pi)
if camera is Kinect_v2 and correction_level > 80%:

apply_orientation_correction (θpi)

return θpi
end

3.4. An F-Formation Social Model for Group Detection

We integrate the F-Formations model for processing the physically occupied spaces to
detect socially occupied spaces. From Kendon’s theory of F-Formations [11], the attributes
to be extracted from the physical space are related to proximity, spatial–temporal data such
as position and time, and focus of attention. We extract Kendo’s model attributes and
proceed to identify shared stops among subjects in the conducted experiments. Hall defined
proxemics with a range of 0.5 to 1.5 m distance between bodies as the personal space for
two or more individuals coexisting in a continuous lapse of time [13] and a common focus
of attention, to a person or an object, as the intersection of field of views [48].

We develop a group detection algorithm that uses the bodies’ trajectories and the
calculated body angle on every timestamp as described in Algorithm 2.
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Algorithm 2 Group detection

Input: A dataset N with skeleton joints in the form (x, y ) per timestamp
an integer stops_expected with the number of assigned stops
an integer groups_expected representing the number of assigned group locations

Output: A dataset class_group with group membership, and stop locations
body_identification=spatemp_stop_kmeans(N, stops_expected)
for bi in body_indentification:

trajectory_stops = spatemp_stop(bi, t, r)
shared_stops=intersection_stops(trajectory_stops)
class_group=spatemp_stop_kmeans_time(shared_stops, groups_expected)
return class_group

Firstly, we assign a body identifier by applying a spatial K-Means supervised clas-
sification algorithm with stops_expected parameter, the expected number of members in
the scene. Next, we process the trajectory for each skeleton body bi, and detect individual
stopping moments by evaluating the spine joints’ temporal and spatial proximity within
a radius r and stop time t, generating the trajectory_stops. With the individual bodies’
long stop detected, we proceed to extract the individual stops intersected, assessing their
coexistence in a maximum of 1.5 m personal space. Once the shared_stops in the trajectory
are extracted, we apply a temporal K-Means supervised classification algorithm to evaluate
group temporality with the parameter groups_expected, obtaining each class_group to assign
group membership to each skeleton body. The focus of attention and its intersection is
visualised by integrating the body angle calculation results and generating the body’s field
of view. With this information, is possible to draw the F-Formation model components and
thus the socially occupied space during the participants’ interaction.

In brief, our system employs three different depth sensor cameras to collect skeleton
data during trajectories, from which we can extract the position and orientation of every
participant. Once the skeleton joints data is collected and available, we apply a coordinates
transformation to have a unified coordinate system as each device possesses its own.
Secondly, we calculate the body orientation angle based on three skeleton joints: shoulders
(left and right) and shoulder centre. Then, we proceed with an angle correction for the
Kinect v2 to adjust the results to the same level as the other devices for a fairer skeleton
joint algorithm comparison. To identify the most reliable camera for detecting socially
occupied spaces, we assess the results with a set of performance evaluations. Finally, to
probe the use of this approach, the attributes extracted from the physically occupied space
are exploited to identify when group members are sharing an interactional space and focus
of attention, thus the construction of an F-Formation.

4. Body Orientation Angle Evaluation

This section describes the experimental setup for two different configurations and
shows the evaluation results, demonstrating the sensors’ body orientation accuracy.

4.1. Data and Software Availability

The data collected during these studies are available at https://osf.io/xhwgm/ (accessed
on 15 March 2022). The tutorials and code to create a new interface for all devices
can be found at https://github.com/violetasdev/bodytrackingdepth_course (accessed
on 15 March 2022). For the Azure Kinect we implement a modified version of k4.net,
the final version is available at https://github.com/violetasdev/k4a.net (accessed on
15 March 2022). The Kinect v2 body orientation plots can be reproduced at https://osf.io/
ghz79/ (accessed on 15 March 2022).

4.2. Experiment Setup

The sensors are positioned in an isolated 4.0 m × 9.0 m area, over a 2.0 m vertical
truss with a height of 1.83 m, pointing towards a white wall. In the separated free floor
area, coloured feet are placed every 1.2 m to cover each sensor’s field of view and guide
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participants to draw different walking patterns. Regarding the equipment configuration,
the Kinect v2 sensor is connected to an Intel Core i7-10 laptop, with 16 GB of DDR4 RAM
and a NVIDIA GeForce RTX 3070 Super Max-Q graphics card. The Zed 2i is connected to a
laptop with Intel Core i9-11, 32 GB of RAM, and an NVIDIA GeForce RTX 3080 graphics
card. The Azure Kinect is connected to an Intel Core i7-10 laptop with 16 GB of RAM and
an NVIDIA GeForce GTX 1650 graphics card.

We produce the JSON files containing the skeleton joints data from three different
coded solutions. The libraries implemented are in C# for the Kinect v2 and the Azure Kinect
devices and in Python for the Zed 2i. A video camera records the computer screens for each
trajectory to further review specific timestamps from the scene in search of external factors
affecting the experiment. The skeleton data are collected every 200 milliseconds and the
exact same scene setup for all devices, with the same starting time and bodies entering the
scene simultaneously for the Azure Kinect and the Zed 2i. The resulting Kinect v2 skeleton
data is taken from our previous data collection with the same configuration [2]. We use
the narrow view configuration for the Azure Kinect for the skeleton tracking algorithm
recommended by the fabricant due to the performance results [49]. For the Zed 2i, we select
the COORDINATE_SYSTEM_IMAGE as the coordinate system to match all devices [50].

4.3. Participants’ Description

Two participants perform the oriented-walking patterns in a single and dyad con-
figuration. First, one female with a height of 1.73 m follows each assigned pattern and
body orientation for a total of 32 samples. Secondly, a dyad (a group composed of two
participants) with a female and a male with a similar height ranging between 1.73 m and
1.81 m concludes an equal task while keeping a side-to-side configuration.

4.4. Walking Trajectories and Body Orientations Definition

Experiment members are asked to walk in the isolated area in a combined walking
pattern and body orientation in front of the camera for one minute per trajectory. For each
body orientation representing back, frontal, diagonal, and side orientations, as detailed in
Figure 7, four walking patterns should be completed from bottom to top and left to the
right direction, as indicated in Figure 8, completing approximately 15 m per trajectory.

Figure 7. Body orientation categories.
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(a) (b) 

Figure 8. Experiment set up for all devices: in (a) the experiment arrangement; in (b) the different
walking patterns with the start point and the camera’s position and field of view.

We classify the calculated body orientation angle into eight categories in slices of 45◦
and define an acceptable angle range for each category as displayed in Table 3 to evaluate
each calculated body angle. The classification algorithm assigns the category labels with
a 100% correspondence to an orientation. The accepted angle range is used to evaluate
the margin error in calculating the body angle to identify how much is deviated from the
expected result.

Table 3. Description of the body orientations label with the intended and defined acceptable angle range.

Body Orientation Label Intended Orientation Angle Accepted Angle Range

Side right 0◦ [−22.5◦, 0◦), [0◦, 22.5◦)
Back diagonal right 45◦ [22.5◦, 67.5◦)
Back 90◦ [67.5◦, 112.5◦)
Back diagonal left 135◦ [112.5◦, 157.5◦)
Side left −180◦/180◦ [157.5◦, 180◦), (−180◦, 157.5◦]
Frontal diagonal left −135◦ [−157.5◦, −112.5◦)
Frontal −90◦ [−112.5◦, −67.5◦)
Frontal diagonal right −45◦ [−67.5◦, −22.5◦)
Back diagonal left 0◦ [−22.5◦, 0◦), [0◦, 22.5◦)

4.5. Evaluation and Results

We assess the calculated body angles accuracy in three stages: first, we evaluate
whether the automatically detected body orientation falls into the correct category (i.e., the
body angle with which the participant walked the experiment). The second evaluation aims
to shed light on the accuracy, i.e., how large is the error, particularly for those automatically
detected body orientations that did not fall into the correct category. Finally, the third
evaluation addresses the context of social interaction in which we assess if the automati-
cally detected body orientation falls into the maximum range of 30◦ for sustaining social
interaction. Due to the findings of outliers in the experiment, we apply an interpolation
correction by analysing the socially acceptable angle range and the nature of the outlier,
showing the corrected body orientation’s angle results. For this evaluation, we compare
the Kinect v2 results from our previous work presented at the IPIN 2021 conference [2].

4.5.1. Intended Body Orientation Category Range

The evaluation compares the computed body orientation angle against the acceptable
range for the intended orientation defined in Table 3. Figure 8a,b shows each device’s
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corresponding precision and recall for the single configuration. For the Kinect v2, the preci-
sion and recall are 0.82, respectively, with back diagonal and side orientations as the least
accurate orientations. For the Azure Kinect, the precision and recall are 0.87, respectively,
with the back orientation as the weakest. Finally, the Zed 2i possesses precision and recall
of 0.83, with back diagonal right, back, and frontal diagonal left orientations with the
lowest accuracy.

For the dyad configuration, the precision and recall using the Kinect v2 are 0.79 and
0.80, where back diagonal and side categories have the lowest precision, as shown in
Figure 9c,d. The Azure Kinect shows a general precision and recall of 0.81 up to 0.9 for
frontal diagonal right, with frontal and back orientations precision below 0.70. The Zed
2i device orientations back, frontal, and back diagonal left show a low precision and
recall lower than 0.77 with stronger orientations above 0.80 precision and recall up to
0.94. The most accurate orientations for the Kinect v2 benefit from the availability of
the head rotation detection feature. In general, for the Azure Kinect and the Zed 2i,
the back orientation is the most challenging orientation to detect, but despite not having
the head/face rotation data available, the precision and accuracy results are higher than in
the Kinect v2. For the Zed 2i, from the video review, we identified difficulties in detecting
both participants, as one person was missing at a time, especially near the borders from the
field of view.

  
(a) (b) 

  
(c) (d) 

Figure 9. Precision and recall results for body orientation assessment for compiled measurements
per device for single configuration in (a) and (b) and dyad configuration in (c) and (d), respectively.

4.5.2. Intended Orientation Angle Deviation

For each category label, Tables 4 and 5 show the angle deviation in degrees regarding
the intended orientation in which the participants recreated the walking patterns. In general,
for all three devices, for body orientations parallel to the depth camera, the average error
is low for single and dyad, rising in diagonal body orientation categories. The most
significant average error for the Kinect v2 and Zed 2i is the side orientations due to their
orthogonality and the back orientation for the Azure Kinect. For the Kinect v2, the side-left
and side-right high error results show difficulty collecting accurate skeleton data when the
bodies possess a side orientation concerning the sensor’s position. The standard deviation
in the single and dyad configurations does not surpass all devices’ next neighbouring
category label. Exceptions are for the single configuration, the side-left and side-right
orientations for Kinect v2 and Zed 2i with an error up to 1.5 adjacent classes. In the dyad
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configuration, the side-right orientation for the Kinect v2 deviates 1.5 adjacent classes.
The back orientation deviates three adjacent classes for the Azure Kinect, resulting in the
correct frontal orientation and two adjacent classes for the back diagonal right orientation.

Table 4. Single Configuration: Evaluation of body intended orientation angle deviation (IOD)
intended orientation angle (IO) in degrees. Bold numbers indicate the highest values.

Body Orientation
Kinect v2 Azure Kinect Zed 2i

IOD AVG IOD STD IOD AVG IOD STD IOD AVG IOD STD

Back 6.85 6.51 30.51 58.84 18.18 24.12
Back diagonal left 19.54 11.81 15.72 29.60 14.64 22.70
Back diagonal right 21.74 15.82 22.73 43.11 21.71 21.45
Frontal 4.81 4.12 5.51 5.01 10.27 7.66
Frontal diagonal left 13.61 8.83 15.20 13.57 18.69 22.32
Frontal diagonal right 11.98 6.95 11.06 16.76 9.45 10.68
Side left 34.81 34.46 19.78 13.67 35.29 10.65
Side right 35.62 31.55 8.19 6.30 12.38 10.97

Table 5. Dyad Configuration: Evaluation of body intended orientation angle deviation (IOD) against
intended orientation angle (IO) in degrees. Bold numbers indicate the highest values.

Body Orientation
Kinect v2 Azure Kinect Zed 2i

IOD AVG IOD STD IOD AVG IOD STD IOD AVG IOD STD

Back 8.37 8.37 13.39 26.62 15.883 17.499
Back diagonal left 22.96 22.96 19.53 16.08 15.975 14.067
Back diagonal right 20.35 20.35 14.53 20.39 23.730 18.311
Frontal 6.53 6.53 6.50 5.26 9.690 9.121
Frontal diagonal left 14.8 14.8 17.47 12.84 17.610 19.293
Frontal diagonal right 13.84 13.84 11.58 7.35 9.558 7.610
Side left 28.1 28.1 23.08 18.97 26.411 24.267
Side right 36.93 36.93 15.53 10.45 15.005 22.984

The body orientation and the followed patterns are illustrated in Figure 10 for a highly
accurate detected body orientation and a low accurate one for all three devices. The Kinect
v2 depth camera extracts the head/face rotation and skeleton joints data, and the body
disappears once it crosses the camera’s centre, recovering the body in a flipped orientation
shortly after, as illustrated in Figure 10b. The Azure Kinect shows the designated patterns
until the bodies reach the camera’s field of view limits in Figure 10c,d. For the Zed 2i,
as it has a larger field of view than the other devices, is it possible to continue tracking the
participants with difficulties in closer measurements and drawing the distance between
each line inconsistently.

 

  
(a) Kinect v2: Frontal diagonal left (b) Kinect v2: Side right 

Figure 10. Cont.

291



Sensors 2022, 22, 3798

 
  

(c) Azure Kinect: Frontal diagonal left (d) Azure Kinect: Side right 

 

  
(e) Zed 2i: Frontal diagonal left (f) Zed 2i: Side right 

Figure 10. Calculated body orientation angles per sensor; (a,c,e) are highly accurate detected Frontal
Diagonal orientation with participant view on the left; (b,d,f) show the detected Side Right orientation
with the lowest accuracy for the Kinect v2.

4.5.3. Intended Orientation inside the Interactional Space

Because we need the field-of-view extension, we evaluate the body orientation angle to
assess the group’s focus of attention during an interaction. From the extension of the body
orientation, we can define the focus of attention of each participant, and the intersection
suggests a shared object of interest. In our case, we extend the participant’s field of view
to the sides, drawing a 30◦ cone, and Figure 11 shows the results for the calculated angles
classification within the interactional range. The interactional angle is detected around 80%
of the time for most categories in all devices for single and dyad configurations. The socially
acceptable orientation availability for the Kinect v2 in single configurations is low for side
and back diagonal orientations due to the absence of joints and self-occlusion, improving
in the dyad configurations by almost 10%. The Azure Kinect has the highest availability,
with a socially acceptable range from 94% in the single configuration and 87% in the
dyad configuration, up to 100% in both scenarios. The Zed 2i have comparable results to
the Azure Kinect, ranging from 85% availability in single configurations and 73% in dyad
configurations, with weaknesses in back diagonal right orientations for both configurations.

 
(a) (b) 

Figure 11. Achieved percentage for acceptable social interaction angle in range per device for single
configuration in (a) and dyad configuration in (b).

292



Sensors 2022, 22, 3798

4.5.4. Interpolation Correction

We identified outliers in each category during the classification of the body orienta-
tion angle. For this reason, to understand better whether inaccurate measurements occur
systematically or whether they occur sporadically as isolated outliers, we consider the tem-
poral dimension. In the latter case, we can correct erroneous measurements by considering
the prior and subsequent measurements by smoothing out the error. We categorise these
outliers into Neighbour outliers and Extreme outliers. Neighbour outliers are continuously
wrong predicted angles along the walked trajectory. Extreme outliers are out of the median
values with no temporal or spatial reason to appear. We use the recorded videos to examine
both situations, review the intended body orientation angle and find an explanation for the
wrong calculation. We apply an interpolation median correction to those spatial–temporal
continuous values within 400 milliseconds with adjacent properly calculated values, and no
external intervention is identified for the outlier to arise. We found that certain outliers
followed a spatial–temporal pattern by plotting their location in the corresponding coordi-
nate system. Afterwards, we inspected the video walking trajectories one-by-one to search
for factors that might have led to the wrong skeleton-joints data extraction, related to the
body’s relative position to the camera’s field of view, fluctuations in the body orientation
while walking, and environment lighting changes.

We identified six distinct causes for an outlier: body entering the scene, body realign-
ment, body proximity to the camera’s field of view limits, body with high proximity relative
to the camera, depth range limit of camera’s field of view, and camera’s field of view centre.
Body realignment is the natural movement as it moves to the desired location, which creates
a forward movement from one shoulder to another as we step on foot at a time. The body
entering the scene reveals that the device requires adjusting to the orientation. On the other
hand, other outliers expose the weakest areas of the sensors’ field of view. We apply a
temporal interpolation correction to manage these findings by taking the median value of
two temporal and spatially pre and post continuous sample values. We then re-classify the
calculated body orientation angles into the corresponding categories, obtaining the results
described in Figure 12 with a visual representation of the correction shown in Figure 13.
The new corrected body orientation angle values align with the accepted range angle for
orientation. For single configurations, precision and recall values increase by 9% for the
Kinect v2, 4% and 9% correspondently for the Azure Kinect, and 6% for the Zed 2i.

  
(a) (b) 

  
(c) (d) 

Figure 12. Precision and recall values for single configuration in (a,b), respectively; precision and
recall values for dyad configuration in (c,d), respectively. Both after temporal interpolation.
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Figure 13. Temporal interpolation correction for the Back Diagonal Right orientation. In light blue,
calculated body orientation angle with outliers. In dark blue, the corrected orientation angle.

4.6. Discussion

The extraction of body orientation angles using skeleton data solely from depth
cameras shows high accuracy and availability with the integration of spatial–temporal
attributes to understand the human body’s mobility. Furthermore, there is evidence of the
potential of depth sensor cameras to assess diverse body orientations by evaluating the
calculated body angles against a set of categories in different walking patterns.

The Kinect v2 is mainly suitable for orientations aligned forward to the camera due to
the algorithm training implemented in the device, which was trained primarily for these
orientations for playing along with a console. However, it is feasible to have beneficial
results for non-frontal orientations with the extracted skeleton joints and the head/face
rotation data. The weakness relies on the body’s orthogonal orientation to the camera for
side orientations, splitting the calculated orientation into two distinct areas. For the side
orientation, the head/face rotation and upper skeleton joints are detected differently for
each half of the trajectory, reflected in the value of 40% to 50% predicted accuracy.

The Azure Kinect has an accuracy greater than 90% in most orientations for single and
dyad configurations, with a weakness in distinguishing between frontal or back orientation,
which can be corrected by adding head/face rotation information. During the experiments,
it was noticeable that if the body enters the scene from one of the borders, as shown in
Figure 10c (top-right) and Figure 10d (bottom-left), the device takes time to adjust the
proper orientation, especially in those backwards, recovering rather quickly, in around
a second.

The Zed 2i in the single configuration highlights a high accuracy, between 80% to
95% for most orientations, with difficulties in diagonal orientations. As identified with the
Azure Kinect, it needs time to adjust the skeleton once the body enters the scene from the
borders, but as shown in Figure 10e,f, more spatial information can be recovered with the
broad field of view. One primary concern is missing bodies in the scene at times, especially
when they come back from leaving the camera’s field of view.

Notably, the side orientation was affected by the camera’s alignment of the body
siding, misclassifying the calculated angle to neighbourhood categories. Concerning the
temporal interpolation correction, body orientation angles can be misclassified due to self-
occlusion and the delay of the camera algorithm to correct the body orientation, especially
in the edges of the field of view, showing the relevance of spatial–temporal data analysis to
identify anomalies in the experiment expected pattern.
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Lastly, there is an overall precision and recall improvement of 16% for Kinect v2, 13%
for Azure Kinect, and 9% for Zed 2i for the dyad configuration, in the lowest category
classification: back diagonal and side orientations. The enhancement of more than 10%
in the case of the Kinect v2 and the Azure Kinect suggests the possibility of increasing
the accuracy of the body orientations by using spatial–temporal information during the
movement of several subjects linked to the group’s temporality and habitation of a larger
area. The positive results, particularly of the Azure Kinect in the interactional range
evaluation, with single and multiple body detections, evidence the depth sensor cameras’
capability in generating social signals from skeleton joints datasets.

5. Evaluation in the Context of F-Formations

The following section describes the experimental setup for four social arrangements to
detect F-Formations and the evaluation results, displaying the system’s potential in using
measurements from the physically occupied space to interpret the socially occupied space.

5.1. Experiment Setup

This experiment follows the same setup regarding the delimited area, sensor location,
data collection software, and configuration from the previous section. However, the task
was different. Instead of walking along a path, participants were asked to stand at specific
meeting points. Three meeting points are arranged in the free floor area in the camera’s
field of view.

5.2. Definition of Encounter

The intended positions are marked to form a triangular pattern with vertices separated
approximately 1.2 m. Participants stay on each one of the meeting points for 20 s per
encounter, with frontal, side, and frontal diagonal orientations for all-frontal, frontal-
diagonal and frontal-vis a vis interaction. The pattern is repeated in three distinct positions
related to the cameras’ field of view and a single static position, as described in Figure 14.

Figure 14. Description of the encounter locations with intended body orientations. From left to right:
all-frontal, frontal-diagonal, frontal-vis a vis configuration (colour codes correspond to the Body
Orientation angle bar in Figure 7).

5.3. Participants’ Description

For studying small gatherings in social encounters, two groups, one with two females
and one male, the other one with two males and one female, with heights between 1.73 m
and 1.81 m, met at different encounter points with a combination of body orientation and
location. Each group concluded the task by producing thirty samples per device.

5.4. Evaluation Metrics and Results

The detection of groups is evaluated by comparing the number of stops identified by
the algorithm against the intended meeting point. Additionally, we display the field of view
of each participant during interaction to review how they intersect. In general, with the
data collected with each depth camera, the algorithm identified groups by analysing the
spatial–temporal interactional area’s attributes and location with more than 90% for the
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Kinect v2, and 100% for the Azure Kinect and the Zed 2i. Details on the number of bodies,
stops and groups detected per meeting configuration are described in Table 6. For the
Kinect v2, in the case of frontal-diagonal orientations, one-stop could not be detected due
to the lack of data in assessing the orientation, which is explained by the orientation’s
evaluation results. The Azure Kinect did not assign a unique identifier to participants,
but the algorithm was able to discriminate them all and their stops thanks to the skeleton
data’s high spatial–temporal resolution. On the other hand, the Zed 2i deviation for the
frontal orientation is more evident in the group interactions and an additional body in the
scene in 2 of 8 group interactions. However, similar to the Azure Kinect, the skeleton data
resolution is high, allowing the algorithm to identify the authentic participants.

Table 6. Group detection results with the number of bodies and stops per configuration. Bold numbers
indicate a lower or higher number of bodies detected.

Stops Orientation
Kinect v2 Azure Kinect Zed 2i

Bodies Stops Groups Bodies Stops Groups Bodies Stops Groups

3 Frontal 3 9 3 3 9 3 4 9 3
3 Frontal/Face to face 3 9 3 3 9 3 3 9 3
3 Frontal/Diagonal 2 8 2 3 9 3 3 9 3
1 Frontal 3 9 1 3 3 1 3 1 1
1 Frontal/Face to face 3 9 1 3 3 1 4 1 1
1 Frontal/Diagonal 3 8 1 3 3 1 3 1 1

5.5. Discussion

With the skeleton data collected per depth camera, the group detection algorithm
detected group members’ stops and membership in most designated meeting points.
The field of view extension is calculated from the location and body orientation. Their
intersection suggests the investigated focus of attention displayed in Figure 15 with a first
approximation of the O-Space. The accuracy in detecting body orientations increases with
differences per device for orientations facing the camera.

  
(a) Kinect v2 spaces (b) Azure Kinect spaces (c) Zed 2i spaces 

   

(d) Kinect v2 participants view (e) Azure Kinect participants view (f) Zed 2i participants view 

Figure 15. Group meeting points with frontal-vis a vis orientation per device (a) Kinect v2, (b) Azure
Kinect, and (c) Zed 2i. Each colour differentiates a person participating in the group with their
corresponding orientation angle. From (d–f), participants view per device.
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For the Kinect v2, in the diagonal orientations, a group is incomplete due to one
member’s unavailability of its skeleton data, as expected for back-diagonal orientation
and side orientations result from the classification evaluation. We conclude that the group
members are more complicated to detect when the body orientation is sided with the
depth camera, restricting the extraction of the skeleton joints. Moreover, for diagonal
orientations, we acknowledge body occlusions between participants during trajectories
when they move from one meeting point to another while analysing the video recordings,
limiting the body angle measurement due to the absence of skeleton joints. On the other
hand, despite these limitations and the lack of individual body identification, the Azure
Kinect camera produced high spatial–temporal resolution skeleton data facilitating the
algorithm detection of all trajectories and stops from the group members as it predicts
with a lower level of confidence the occluded areas from other joint data. For each group
member, it is possible to see the movement of the upper limbs for resolutions up to 5 cm,
as seen in the control video recordings where the participant was moving in a circular
motion in a single location. Finally, the Zed 2i possesses a high spatio-temporal resolution
and an excellent overall identification of individuals during trajectories, although leaving
the scene can leave to missing the body for more extended periods than the Azure Kinect.

With the information derived from the skeleton data, it is possible to identify the
different interactional spaces from an F-Formation, displayed in Figure 16. The participant’s
field of view bounds the O-space, the attention focus. In combination with the bodies’
location, the field of view indicates the limits of the P-Space, where the participants sustain
the interaction. Finally, the R-Space is constructed with a buffer determined by the social
space [13], outside the inner interaction as a transactional space for the arrangement and
disarrangement of the group, i.e., people leaving, arriving or standing at the socially
occupied space.

Figure 16. F-Formation’s interactional spaces view each body’s shoulder line (in red) with the
detected orientation (arrows).

By limiting the areas that shape an F-Formation with the physically occupied space,
we can observe that the socially occupied space is stiff for tight body angles. With restricted
access and more open orientations, the group interaction expands, granting clear access
to external participants. This indicates that the interactional space components do not
follow a standard shape, and it is related to the body orientation and proximity factors in
the interaction.
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6. Conclusions

This study performed a series of experiments to measure three different depth sensor
cameras’ accuracy for assessing body orientation angles and purpose them to detect socially
occupied spaces using the F-Formations model. First, we generated three datasets by
walking in a combination of four trajectory patterns in eight body orientations in a single
and dyad configuration. We observed that the Kinect v2 depth sensor’s accuracy is good in
frontal, back, and diagonal orientations but weak when the user is aligned orthogonal to
the camera in the case of side orientations. For the Azure Kinect, the depth sensor accuracy
is higher in most orientations, with difficulties distinguishing frontal from back orientations
as it lacks head/face rotation information. The Zed 2i, with its wide range, can collect more
information, but it can omit bodies re-entering the scene. For other scenarios, the accuracy
for the case of a strict categorisation proves to be 90%, 96%, and 89% for the Kinect v2,
Azure Kinect, and Zed 2i, respectively, with a maximum standard deviation of 1.5, 3.0,
and 1.5 angle classes. Finally, after the temporal interpolation correction for the socially
acceptable interaction, the availability increases to 92.4%, 100.0%, and 99.8% for the single
configuration and 94.9%, 100.0%, and 99.8% for the dyad configuration for the Kinect v2,
Azure Kinect and Zed 2i, respectively.

Through this system, we can differentiate the components of the socially occupied
spaces. For each device skeleton dataset, we reached 90% accuracy for the Kinect v2 and
100% for the Azure Kinect and the Zed 2i. The reached accuracy and socially acceptable
angle availability from the Azure Kinect are adequate to detect F-Formations. Additionally,
it does not depend on additional software to integrate head/face rotation data to improve
the right-left correspondence, as in the case of Kinect v2 or RGB videos in the case of
Zed 2i. Regarding our first approximation in detecting F-Formations’ interactional spaces,
the algorithm identified the group members’ positions and assessed each participant’s
field of view during an interaction. The interactional spaces could be delimited given the
participant’s position, the study of proxemics, and the body orientation to assess the focus
of attention.

Regarding resources and easiness in implementing the system, the hardware for using
specific models can limit the performance, especially for the most recent devices, as it
requires demanding resources. Nevertheless, the possibility of purchasing the technology
is more significant than those specialised body tracking devices. For the particular use
case of analysing group behaviour, depth cameras analyse individuals while making their
identities more difficult to reveal, whereas the stereoscopic camera requires analysing raw
video. Secondly, to collect data, the Zed 2i requires minimum light to discriminate details
in the scene. We noticed this necessity in the experiment environment when the lights were
dimmed, and the accuracy started to suffer, for which we sustained a proper illumination.

For the upcoming work, we aim to improve the socially occupied spaces detection
algorithm and implement it in a desktop application to have live results for experimental
group analysis. Improving the algorithm requires integrating parameters to appropriately
limit the different interactional areas of the F-Formation model, the O-space, the P-Space,
and the R-space from a spatial–temporal perspective and implementing and evaluation
against other methods in the literature related to the assessment of social spaces in computer
vision. Additionally, we intend to add more information regarding the dynamics of
encounters by evaluating factors such as joining, leaving, or avoiding the group to facilitate
the automatisation of human behaviour analysis. Lastly, integrating multiple sensors in one
synchronised system to improve occlusion is also on the agenda as it may prove helpful in
treating occlusions from the participants’ bodies and the loss of spatial–temporal data by
integrating multiple points of view from the scene.
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Abstract: Facial motion analysis is a research field with many practical applications, and has been
strongly developed in the last years. However, most effort has been focused on the recognition of
basic facial expressions of emotion and neglects the analysis of facial motions related to non-verbal
communication signals. This paper focuses on the classification of facial expressions that are of the
utmost importance in sign languages (Grammatical Facial Expressions) but also present in expressive
spoken language. We have collected a dataset of Spanish Sign Language sentences and extracted
the intervals for three types of Grammatical Facial Expressions: negation, closed queries and open
queries. A study of several deep learning models using different input features on the collected
dataset (LSE_GFE) and an external dataset (BUHMAP) shows that GFEs can be learned reliably with
Graph Convolutional Networks simply fed with face landmarks.

Keywords: facial expression recognition; facial landmarks; action units; convolutional neural networks;
graph convolutional networks

1. Introduction

Facial expressions are one of the most valuable signals in human interactions. Numer-
ous studies have been conducted on automatic Facial Expression Recognition (FER) due to
its practical importance in human–robot interaction, personalized medical treatment, driver
fatigue monitoring, customer behavior, etc. In the 1970s, Ekman and Friesen [1] postulated
that six basic facial expressions of emotion are perceived by humans in the same way
regardless of their culture. Today, these facial expressions are the basis of most computer
vision systems for FER. However, these facial expressions of emotion are not sufficient
to fully represent the expressiveness of human affection, emotion and communication.
Human communication uses nonverbal channels to fully convey a message and its context,
and facial expressiveness is one of the most important nonverbal channels. In this context,
facial expressions are referred to as Linguistic or Grammatical Facial Expressions (GFEs) [2],
as they serve a grammatical function in the sentences. An extreme case of the importance
of GFEs is that of sign languages, where they provide adjectivation and can modify the
semantics of signs [3]. As shown in [4], many studies have been conducted to recognise
basic facial expressions of emotion using a wide variety of input features and classification
methods. While static images provide enough information to decently perform such a
task [5], more subtle facial expression cues require temporal information [6]. Several large
datasets for FER are available both with static and dynamic information. Unfortunately,
very few datasets containing video representations of grammatical facial expressions are
available, making the development of robust models for GFER extremely difficult. Due
to such lack of labelled data, using RGB sequences for automated GFE recognition yields
to model overfitting the data. Hence, it is good practice to use previously trained feature
extractors for related tasks.

In 1978, Paul Ekman created a taxonomy of facial expressions, the Facial Action
Coding System (FACS, [7]). From this system, a set of atomic facial muscles (AUs) is
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defined, from which any further complex expression or emotional state can be inferred.
AUs span a large number of combinations that can be used for the recognition of the
6 basic emotions (happiness, surprise, anger, fear, sadness and disgust), as well as for other
complex psychological states, such as depression or pain [8]. AUs have also been studied
in combination with vocal prosody, as in the series of AudioVisual Emotion Challenge
AVEC2016 [9], highlighting their link with non-verbal communication.

Two of the most used features pre-computed for facial expression recognition are
Action Units (AUs) [10] as well as facial landmarks [11] that convey discrete information on
head and face muscle movements. Techniques to extract both types of features have been
greatly improved in the last years thanks to deep models trained with large datasets [4].
These features have been used to perform FER with standard data classifiers as Support Vec-
tor Machines (SVMs) [12] or Multilayer Perceptrons (MLPs) [13], or used as complementary
input to derive more complex representations using deep neural networks [14].

In this work we try to push the state of the art on grammatical facial expression recog-
nition systems fed with non-RGB data, namely Action Units or facial landmarks, casting
these inputs as graphs. Recently, Graph Neural Networks (GNN) and their convolutional
extension to Graph Convolutional Networks (GCN) [15] stand out for their flexibility and
their good performance in Human Action Recognition. Furthermore, some works have
already combined GNNs and facial landmarks [16] as well as AUs [17], obtaining SOTA
results in FER.

The main contributions of this work can be summarized as follows:

• A new dataset specifically acquired for GFE in the context of sign languages providing
their face landmarks and AUs.

• A thorough assessment of GCN for Grammatical Facial Expression Recognition (GFER)
with two types of input features (facial landmarks and action units) and compar-
ison of this technique over two different GFE datasets and also against classical
CNN techniques.

• A comparison of the experimental results with human performance on the new dataset.

The rest of the paper is organized as follows: Section 2 reviews the most recent ap-
proaches related to the automated recognition of FER/GFER using facial features extracted
from video sequences. Section 3 describes the selected datasets and feature extraction,
sampling and pre-processing. Section 4, describes the deep learning models and evalua-
tion metrics. Section 5 presents the experiments performed, and finally, Section 6 draws
some conclusions.

2. Related Work

Our research is focused on communicative facial expressions related to sign languages.
As pointed out in [2], signers must be able to quickly identify and discriminate between
different linguistic and affective facial expressions in order to process and interpret signed
sentences. Through fMRI studies, they demonstrated that the parts of the brain that are
activated when detecting emotions and language-related facial expressions are different. It
is clear then, that head and facial muscle movement in this context could have common
features with facial expressions of emotion, but also their own specificities that should be
learned from sufficient input samples.

Many more machine learning studies have been conducted on FER than on GFER, so
taking advantage of the techniques developed for FER should be a priority when addressing
GFER, especially considering that, as presented in the next section, the number of databases
prepared for automated GFE analysis is very small. Thus, we analyzed the research articles
on FER and GFER available in the SCOPUS database on the basis of the primary keywords
indicated in the Table 1. All searches were restricted to journal and conference articles
published between 2009 and 2021 (to cover mainly the trend of deep learning approaches),
in Computer Science, Engineering and Mathematics subject areas. This search approach
retrieved a total of 929 documents. After a review of titles, abstracts and keywords, it
was clear that the vast majority was related to FER using RGB video input, CNN-based
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approaches, detection of Action Units and, in a lesser extent, landmarks detection. As we
were primarily interested in non-RGB inputs to avoid the necessity of large datasets, and to
include graph-based systems, we run a secondary search, applying an exclusion criteria
based on the secondary keywords given in Table 1. This filtering resulted in a total of
120 relevant documents, again most of them related to CNNs. A final filtering including the
term “graph convolutional networks” yield nine relevant studies which where analyzed
in depth.

Table 1. Bibliographic search keywords.

Primary Keywords

(“facial expression recognition” OR “facial
emotion recognition” OR (“linguistic” OR

“grammatical”) AND “facial expressions” AND
“recognition”) OR (“facial micro-expression

recognition”) AND (“video” OR “image
sequences” OR “dynamic expressions” OR

“temporary information” OR “temporal data”
OR “spatial-temporal")

Secondary Keywords (“action units” OR “landmarks”)

Last filtering (“action units” OR “landmarks” AND “graph
convolutional networks”

Existing deep learning approaches for video-based FER from facial landmarks, typ-
ically concatenate their coordinates over multiple frames to form a sequence of vectors
as the input to Recurrent Neural Networks (RNNs) [18], or rearrange them to form an
image-like matrix to feed a Convolutional Neural Networks (CNNs) [14]. As comparative
results showed, these methods are not able to fully capture the joint dynamics of spatial
and temporal features encoded in a sequence of facial landmarks. In the last years, many
of the approaches proposed for human action recognition (HAR) use the estimation of
body skeleton keypoints. In order to capture the complex spatial-temporal characteristics
of human actions, the best performing approaches plug these keypoints, or a transfor-
mation thereof, as features of nodes in a graph convolutional neural network, such as
Spatio–Temporal Graph Convolutional Networks (ST-GCNs) [19]. Recently, a GCN-based
method has been proposed in [16] which uses only facial landmarks for FER. They showed
SOTA performance on three large datasets and better performance when fusing with
RGB-based models, highlighting the complementary of the approaches when enough data
is available. Also, in [20] the Progressive Spatio–Temporal Bilinear Network (PST-BLN)
method was proposed for compact modeling of facial expression recognition. They showed
performance only slightly worse than RGB based models over three large FER datasets but
with a model one order of magnitude smaller. Node features different to landmarks have
been also explored. In [17] nodes are defined in a face graph with features related to AUs
and edges related to landmark distances. The solution compares favourably against other
FER methods over the same large datasets.

These SOTA methods show that FER can be reliably attained with GCN models that
do not use RGB information explicitly, which allows leveraging facial feature extraction
techniques from large RGB FER datasets. As we will show in the next section, datasets for
GFER are really scarce and small, so GCN based approaches over landmarks and AUs are
a promising approach.

3. Materials

In this section the details of the datasets are described, including the extraction and pre-
processing of both action units and facial landmarks and the sampling and normalization
of videos.
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3.1. Datasets

One of the biggest problems in GFER is the lack of extensive and properly collected
data. Table 2 summarizes the main datasets collected for dynamic facial expression recogni-
tion sorted by number of citations.

Table 2. Main datasets collected for dynamic facial expression recognition.

Name Cites Type of Expression Acquisition Set Up Classes Videos Persons

CK+ [21] 1754 emotions controlled 7 327 118
OULU-CASIA [22] 413 emotions controlled (light variation) 6 480 80

MMI [23] 342 induced emotions natural 6 213 30
AFEW [24] 316 emotions movies 7 1426 330
MUG [25] 261 induced emotions semi-controlled 6 1462 52

BU-4DFE [26] 154 emotions controlled 6 606 101
FABO [27] 85 induced emotions semi-controlled 9 1900 23

BUHMAP [28] 20 sign-language/emotions controlled 8 440 11
GFE-LIBRAS [29] 10 sign-language natural 9 36 2

DFEW [30] 8 emotions movies 7 16,372 -
LILiR [31] 6 non-verbal communication natural 4 527 2
SILFA [32] 3 sign-language semi-controlled ? 230 10

Most of the datasets were acquired for FER. In fact most of the works reviewed in our
study have used the four first datasets in the table. From those that had different annota-
tions to the basic six emotions + neutral, FABO, LILiR, SILFA, BUHMAP, and GFE-LIBRAS,
only the last three were particularly acquired for Sign Language studies. Unfortunately,
GFE-LIBRAS, that has a large number of sign language face motions and expressions (9),
comprises only 18 clips from 2 persons and only the landmarks are available for download,
SILFA is a quite interesting GFE dataset that can be obtained from the authors but it is anno-
tated with a set of AUs, instead of comprehensible sign-language expressions. On the other
hand, BUHMAP contains five sign-language-related expressions + two emotion + neutral
and the 440 videos from 11 persons are available in RGB videos, so we chose this dataset to
test the approaches developed in this work.

3.1.1. BUHMAP

The Boğaziçi University Head Motion Analysis Project Database (BUHMAP) [28]
contains labelled videos of 8 different classes of facial signs. The dataset consists of
440 videos recorded by 11 different subjects (6 women and 5 men) which performed
each sign 5 times. The included classes combine basic emotions with head movements
acted by the donors when prompted. The classes are defined below:

1. Neutral: The neutral state of the face. The subject neither moves his/her face nor
makes any facial expressions.

2. Head L-R: Shaking the head to right and left sides. The initial side varies among
subjects, and the shaking continues about 3–5 times. This sign is frequently used for
negation in Turkish Sign Language (TSL).

3. Head Up: Raise the head upwards while simultaneously raising the eyebrows. This
sign is also frequently used for negation in TSL.

4. Head F: Head is moved forward accompanied with raised eyebrows. This sign is
frequently used to change the sentence to question form in TSL.

5. Sadness: Lips turned down, eyebrows down. It is used to show sadness, e.g., when
apologizing. Henceme subjects also move their head downwards.

6. Head U-D: Nodding head up and down continuously. Frequently used for agreement.
7. Happiness: Lips turned up. Subject smiles.
8. Happy U-D: Head U-D + Happiness. The preceding two classes are performed together.

It is introduced to be a challenge for the classifier in successfully distinguishing this
confusing class with the two preceding ones.
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Figure 1 shows an example of frame sequences for the 8 defined classes in BUHMAP dataset.

Figure 1. Example of FE classes in BUHMAP dataset. Rows from top to bottom: 1—Neutral, 2—Head
L-R, 3—Head Up, 4—Head F, 5—Sadness, 6—Head U-D, 7—Happiness, 8—Happy U-D.

3.1.2. LSE_GFE

LSE_GFE has been extracted from the LSE_UVIGO [33], a multi-source database
designed to foster research on Spanish Sign Language Recognition. The anonymous data
needed to reproduce the experiments have been released, jointly with all the code, in the
github page https://github.com/mporta-gtm/GrammaticalFacialExpressions (accessed
on 1 May 2022). The dataset contains isolated signs, expressive sentences and interviews,
all acquired in a controlled lab environment. Also, besides the sign/gloss/sentence labels,
841 videos have also annotations for some grammatical facial expressions, namely:

1. q.polar: Yes/no question. Head and body is slightly moved forward accompanied
with raising eyebrows. This sign is frequently used to change the sentence to close
question form in LSE. 123 samples performed by 19 people.

2. q.partial: Open question. Head and body is moved forward accompanied with frown
eyebrows. This sign is frequently used to change the sentence to open question form
in LSE. 265 samples performed by 13 people.

3. q.other: General question form, not assimilable to polar (close) or partial (open).
16 samples from 9 people.

4. n.L-R: Typical “no” negation, similar to Head L-R in BUHMAP. 176 samples performed
by 22 people.

5. n.other: General negation, not assimilable to n.L-R. 53 samples from 19 people.
6. None: Samples without any of these questioning or negation components were ex-

tracted from the available videos of 24 people, to ensure the capacity of the model
to detect the presence of non manual components. This class is quite different to
the BUHMAP Neutral class, because in the LSE_GFE case, other communicative ex-
pressions can be included in the None class, i.e, dubitation with complex head and
eyebrows movement.
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The statistics of this dataset are shown in Table 3. It can be seen that the data distribu-
tion is highly unbalanced both in gender and in classes. This problem would be tackled in
future research.

Table 3. Gender distribution in LSE_GFE dataset (#samples).

Class Female Male

q.polar 68 55
q.partial 174 91
q.other 10 6
n.L-R 105 71
n.other 29 24
None 109 99

This dataset had to be filtered before using it in order to solve some detected issues.
First, as classes q.other and n.other had too few samples and their definition was ambiguous
even for expert language interpreters, they were discarded. Second, not all the collaborators
which recorded the videos were deaf people so, to maintain the integrity of the dataset,
ensuring that all samples were correctly performed, only recordings from deaf people and
sign language interpreters were considered. The final number of videos for the dataset in
this work was 413, that compares to the 440 videos of BUHMAP.

Figure 2 shows an example of frame sequences for the 4 defined classes of LSE_GFE
for this work.

Figure 2. Example of FE classes in LSE_GFE dataset. Rows from top to bottom: None, q.polar,
q.partial, n.L-R.

It is important to note that the GFEs of LSE_GFE are extracted from interviews, so
facial expressions are expected to be more natural than in the case of BUHMAP, where the
8 classes were forcibly generated. Figure 3 shows a snapshot of the ELAN tool [34] used
for annotating the Lex40_UVIGO dataset. In this snapshot an example of annotation of an
interval for the class q.partial (i.parcial, in spanish) can be observed.
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Figure 3. Snapshot of the ELAN annotation tool with an example of interval of an open question
class q.partial.

3.2. Features
3.2.1. Action Units

Action Units are defined as the fundamental movements of muscles or groups of
muscles of the face that correspond to the display of an emotion. These movements are
encoded by the Facial Action Coding System (FACS) [7]. Using FACS it is possible to code
most anatomically plausible facial expressions by disassembling them into specific Actions
Units (AUs). An example of some action units is supplied in Figure 4, where the activation
of groups of muscles is labelled with the corresponding AU code.

Figure 4. Examples of Action Units. Henceurce: OpenFace.

The extraction of Action Units was carried out using OpenFace [35], a face analysis
library that includes a state-of-the-art HOG-based method for detecting AUs. This model
provides the presence (binary value) of 18 AUs together with an estimation of the intensity
value, from 0 to five, of 17 of them. This data was pre-processed to build a vector of
18 values were the first 17 are the obtained intensities and the last one is the presence
value of the remaining AU scaled to the range of the intensities. Then, these vector were
concatenated in a matrix where the horizontal axis contains the 18 AUs studied and the
vertical axis represents their temporal evolution.

3.2.2. Facial Landmarks

Facial landmarks were extracted also by using OpenFace, which employs a deep
learning state-of-the-art method [36]. After the extraction, the x and y coordinates of
68 keypoints are normalized between −1 and 1 with respect to the landmark of the nose
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tip, where −1 and 1 correspond to the points furthest away from the nose. In addition,
in some experiments a data augmentation technique consisting of horizontal flipping of
x landmarks coordinates was tested. Finally, the use of 3D coordinates was considered
but preliminary tests show that the depth estimation of this method is noisy and does not
contribute to enhance the performance on the evaluated models.

3.3. Video Sample Generation and Preprocessing

The assessed classification models require the input samples to have an equal, or at
least very similar, size. In order to gain insight of the labelled events of each dataset a small
study on their duration was carried out. Figure 5 shows the distribution of such events
in both datasets in terms of duration in milliseconds. It can be seen that both datasets
follow a non-gaussian distribution with different means and deviations (1.5 s ± 0.9 for
LSE_GFE and 1.8 s ± 0.5 for BUHMAP). Furthermore, the longest event in LSE_GFE last 7 s
while BUHMAP videos have a maximum length of 4.5 s. These differences talk about the
different acquisition setting of both datasets: in BUHMAP volunteers perform a prompted
movement/expression, in LSE_UVIGO volunteers respond naturally to questions asked
by a deaf interpreter in sign language. In addition, the variation on acquisition frame rate
between both sets is also rather significant, as BUHMAP videos were recorded at 30 frames
per second while LSE_UVIGO has recordings at 50 fps (38% of the total) and 60 fps (the
remaining 62%). Due to all these differences, it is reasonable to conclude that the size of the
input samples from both datasets will probably have to be different in order to best fit the
kind of events that it pretends to explain. The duration and frame rate were also included
in the study.

Figure 5. Duration of annotated segments in BUHMAP (left) and LSE_GFE (right).

In addition to the inter-datasets length differences there also exist inter-class differences
for both datasets. Mean and deviation of each class lengths are presented in Figure 6. It
is worth noting that the None class of LSE_GFE dataset has no deviation as its samples
are obtained as fixed size sequences without target events and might contain any other
emotional FE or GFE not being studied in this work, so it is not, in general a neutral
expression. Furthermore, the classes in LSE_GFE have a higher deviation and particularly
class n.L-R has a shorter mean duration, which can influence the obtained results.
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Figure 6. Duration per class in LSE_GFE and BUHMAP.

Video samples were generated by cropping a window with the selected duration
centered in each labelled event of each video. An ablation study includes the effect of
cropping duration and frame-rate.

4. Methods

This section covers the definition of classification models and the evaluation methods.

4.1. CNN Models

In order to verify the effectiveness of GCNs for GFEs recognition three different CNN
architectures are assessed: the VGG, model the MobilenetV2 [37] model and a custom CNN
with several convolutional depths.

The rationale behind building a custom CNN instead of just using of-the-shelf models
was to accommodate the kernels to the non-image nature of the input. As commented
in Section 2, feeding a CNN with sequence of landmarks can be done by arranging them
as concatenated rows in time [14], forming a 1-channel image if X-Y(-Z) coordinates are
concatenated, or a 2(3)-channels X,Y(,Z). Once this artificial image is built one can use
classical CNNs with typical square kernels, like VGG or mobilenet, or rectangular kernels
that span one dimension along the length of the feature vector. We have adopted the latter
for the custom CNN, both for landmarks and for AU features. Therefore, the custom CNN
was composed using a convolutional block with 64 filters of size (5, size of input features)
and (2, 0) padding, compacting the feature dimension to a single value for each frame
while maintaining the temporal resolution. Regardless, more convolutional blocks can
be appended to increase the model depth as shown in Figure 7. After an adaptive max
pooling, the resulting 64 vectors are flattened and classified using two fully connected
layers with a hidden space of 128 neurons. Furthermore, batch normalization is applied
after the convolution and a ReLu activation follows the convolution and the first linear
layer, while the output of the second linear layer is activated using a softmax function. This
model has only ∼30 k parameters when only one convolutional block is used.
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Figure 7. Overview of custom CNN architecture. The input data, whether facial landmarks or
action units, is arranged in a matrix of shape T(temporal_length) × N(number_o f _ f eatures) ×
C(dimensionality_o f _ f eatures). This data is processed using F1 convolutional filters of shape
3× N× C to obtain F1 feature vectors of shape T× 1. Then, extra convolutional blocks with different
number of filters can be added resulting in a final set of FF feature vectors with shape T × 1. After
that, these feature vectors are flattened and an adaptive pooling reduces their temporal dimension to
S, obtaining a set of feature vectors with shape S× 1× FF. Finally, those vectors are processed using
two fully connected layers with a hidden space of H neurons resulting in O output values.

4.2. GCN Models

GNNs are designed to work with not regularly sorted data and can broadly be clas-
sified into two classes: spectral and spatial GNNs. The main difference between them
is that spectral GNNs convolve the input graph with a set of learned filters in the graph
Fourier domain while spatial GNNs, in general, perform layer-wise updates for each node
by, first, selecting neighbors, then merging the features from the selected neighbors with an
aggregation function and finally applying a transformation to the merged features. Graph
Convolutional Networks (GCNs) are considered to be a spatial GNN variant character-
ized to perform mean neighborhood aggregation through convolution operations. This
networks can be seen as a generalized version of Convolutional Neural Networks (CNNs)
in which the data do not need to follow an order and the number and distribution of neigh-
bouring nodes can vary, since the neighbourhoods are not based on spatial constraints but
on defined relationships between nodes. To do so, a new element is added in the forward
step Equation (1). In such equation the weights Wi of the i-th convolutional filter multiply
the input features (nodes) Xi and the adjacency matrix (edges) A, which represents the
relationship between the input features. This matrix has shape N × N, where N is the
number of input nodes.

Hi+1 = σ(WiXi A) (1)

The GCN selected for this work is based on a recent state-of-the-art model with great
success in action recognition [38] (onwards, msg3d) and also in sign language recogni-
tion [39]. The representational capacity of this spatial-temporal model in HAR and SLR
moved us to try testing it for GFER. If the model is able to capture GFE then we can
hypothesize that a unified body skeleton and face mesh might be able to find the linguistic
relationship between manual and non-manual (including GFE) components in sign lan-
guages. This model was adapted in this work to fit both facial landmarks and action units,
matching each face landmark or action unit to a node feature of the graph. The structure of
the full model is depicted in Figure 8. In short, it stacks r (3 in our case) spatial-temporal
graph convolutional (STGC) blocks to process input features and then applies an average
pooling and a softmax classifier on a fully connected layer.
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Figure 8. Overview of MSG-3D architecture. “TCN” and “GCN” denote temporal and graph convo-
lutional blocks, and prefix “MS-” and suffix “-D” denote multi-scale and disentangled aggregation.

One of the main advantages of this model is the use of multi-scale disentangled graph
convolutions. The goal of this operation is to take into account connections between nodes
which are separated by several hops. Previous proposals [40] employed higher-order
polynomials of the adjacency matrix to aggregate multi-scale structural information but
this method suffers of a bias towards local regions as, even though it takes into account
longer paths between nodes, the amount of shorter paths outweigh them. In order to avoid
this problem, the authors build the k-adjacency matrix (where k stands for the number of
scales used, i.e., the maximum path length between two nodes that is taken into account) as

Ak
(i,j) =

⎧⎪⎨⎪⎩
1 if d(vi, vj) = k
1 if i = j
0 otherwise

(2)

where d(vi, vj) gives the shortest distance in number of hops between nodes vi and vj.
STGC blocks deploy two paths in order to extract regional as well as long-range

spatial and temporal correlations: The first path (called G3D pathway) uses sliding spatial-
temporal windows to sample small regions, performs disentangled multi-scale graph
convolutions on them and collapses them with a linear layer. On the other hand, the second
path (called factorized pathway) chains three different layers to obtain long-range, spatial-
only and temporal-only information. The first layer performs disentangled multi-scale
graph convolution only in the spatial dimension with the maximum number of graph
scales, obtaining a long-range representation of spatial information for each temporal unit.
Then, in second and third layers, it performs multi-scale temporal convolutions over the
result of the first layer, thus capturing extended temporal information.

The model also includes a trainable mask which is added to the adjacency matrix A
before each convolution step, allowing the network to learn directly the best connections
between nodes. Unfortunately, the use of multiple scales and temporal windows scale up
the size of this mask to tens of thousands of trainable parameters.

In our, pre-computed feature sequences were re-structured to build a graph, using
each landmark coordinate or action unit intensity value as a node feature and defining
relationships between all nodes. As the proposed method takes into account both spatial
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and temporal information in a unified model, the input to the model has to be a sequence
of feature graphs corresponding to consecutive frames.

In order to test the influence of the input connections, particularly when using facial
landmarks as input, two different graphs were defined and used in this work. The first one,
named base graph and shown in Figure 9, define connections between the key-points with
stronger muscle or anatomical relation. The second graph does not define any connection
and rely on the ability of the model to learn relevant connections from scratch. In the case
of action units, a single fully-connected graph was used in which all nodes were connected
to each other.

Finally, an ablation test was carried out to study the impact of the number of trainable
parameters of the model in the obtained results. To do so, the same tests were replicated
using a single scale in both spatial and temporal dimensions.

Figure 9. Base graph used with MSG3D.

4.3. Evaluation Strategy and Metrics

To evaluate the performance of each configuration Leave-One-Subject-Out (LOSO)
cross-validation was used. This method divides the dataset in as many folds as different
persons participate in it. Then, the model is trained from scratch once for each division,
using the selected fold as validation data and all the remaining folds as training data.

Regardless, as the LSE_GFE has a large number of collaborators which contributed
with different number of samples non-uniformly distributed over the classes, only the
11 persons with more and best distributed samples were used. Remember that BUHMAP
is composed by 11 persons. The ids of the selected individuals as well as the number of
samples from each class they recorded are depicted in Table 4.

Table 4. Sample distribution (#samples) of LSE_GFE collaborators used in LOSO.

ID q.polar q.partial n.L-R None

p0003 19 47 20 13
p0004 6 4 3 3
p0006 15 49 20 34
p0013 6 15 3 11
p0025 6 14 4 11
p0026 4 12 8 9
p0028 5 18 3 11
p0036 15 30 24 35
p0037 7 18 9 34
p0039 12 19 11 15
p0041 6 13 8 16

In addition, to tackle the randomness of stochastic gradient descent, which resulted
in substantial differences between reiterated trainings of the same model, each evaluation
needed to be repeated ten times to extract a reliable estimation of the model performance.
Mean and ± standard deviation are provided for every test.
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The metrics selected to evaluate the performance of the model are F1 score, for its
capacity to assess precision and recall in a single value, and the accuracy. Finally, as each
fold could contain a very different number of samples per class and the individual metrics
of each split need to be weighted in order to achieve a reliable mean, the output of the model
over the validation set of each fold was stored and concatenated in a single matrix. Then,
the metrics are computed directly from this matrix, obtaining the equivalent to a weighted
mean of all the folds. In addition, as the F1-score is defined for binary classification, it
is computed individually for each class versus all others and then the weighted mean
among all classes is obtained, taking into account the number of samples of each one in the
validation set.

5. Results

In this section, the results obtained for all the relevant experiments carried out are
presented and discussed.

Comparative study of classical CNN models.

In this study we compared the performance of VGG-11 and MobilenetV2, as examples
of deep networks with different convolutional blocks, with the much smaller custom CNN
model presented above. All of them were trained from scratch because there are not
pretrained models for these type of inputs. It can be observed from Table 5 that VGG-11
and MobilenetV2 perform worse than the smaller custom CNN model for both datasets
and both input features. Deeper custom CNN models (not presented in the Table to avoid
overcrowding it) performed worse than the simplest one. It can be argued that VGG-11
and MobileNetV2 were not adapted to the type of input feature and also that the model is
too large for the size of the dataset and overfits the data. It is worth noting that allowing a
global combination of input features in custom CNN was more beneficial to landmarks than
AUs, as the difference is coherent in both datasets. However, the classical local input filters
of VGG-11 and MobilenetV2 yields not conclusive results on the advantage of landmarks
over AUs, as they depend on the dataset.

Table 5. Comparative study of classical CNN models.

Model Dataset Feature Weighted F1 Accuracy Parameters

MobilenetV2 BUHMAP landmarks 75.55%±2.78 75.11%±2.75 2233768
MobilenetV2 BUHMAP AUs 78.30%±2.33 78.43%±2.26 2233480
MobilenetV2 LSE_GFE landmarks 67.16%±2.22 66.90%±2.24 2228344
MobilenetV2 LSE_GFE AUs 62.78%±1.12 61.43%±1.17 2228356

VGG-11 BUHMAP landmarks 77.28%±2.64 77.50%±2.53 128804040
VGG-11 BUHMAP AUs 79.20%±2.13 79.02%±2.15 128803464
VGG-11 LSE_GFE landmarks 66.62%±2.27 66.89%±2.14 128787652
VGG-11 LSE_GFE AUs 63.18%±0.99 62.21%±1.01 128787076

custom CNN BUHMAP landmarks 88.81%±1.30 88.75%±1.31 31992
custom CNN BUHMAP AUs 85.90%±1.21 85.98%±1.18 23912
custom CNN LSE_GFE landmarks 71.96%±1.45 71.89%±1.48 31732
custom CNN LSE_GFE AUs 70.49%±1.00 69.52%±1.06 23652

Assessment of MSG3D performance.
The next set of experiments are focused on assessing the performance of Multi-Scale

Convolutional Spatial-Temporal Graph Neural Networks when applied to classifying
GFEs. The rationale to bring to this work a network that has proven efficiency for action
recognition with skeletal-type inputs might be questionable. Facial expressions do not
show the same spatial-temporal variability as the full skeleton of a person in action, but
given that GCNs can be seen as a generalization of classical CNNs and there are many
model meta-parameters that can be adjusted, a rigorous study might throw interesting
results.
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Table 6 shows the performance of the baseline MSG3D model for both datasets and
input features. It is interesting to highlight that MSG3D outperforms the custom CNN in
both datasets when using landmark coordinates as the feature of the GCN nodes. This
behaviour is even more interesting when looking at the number of free parameters of the
baseline model, which is near three times the size of MobilenetV2. This means that MSG3D
is a model much more appropriate to explain these kind of spatial–temporal data than
MobilenetV2. Comparing with the lighter custom CNN the performance advantage is
not so clear. It decreases a bit for BUHMAP but increases largely for LSE_GFE. However
the size of the model is more than two orders of magnitude larger. On the other hand,
when the features of the nodes are AUs, performance improves for BUHMAP but decrease
dramatically for LSE_GFE. The size of the model is three times smaller than using land-
marks because, differently to classical CNNs, it scales with the number of graph-nodes.
The poor behavior of AUs in LSE_GFE remains unexplained, but our main hypothesis is
that LSE_GFE is a more difficult dataset to extract reliable AUs as it only contains GFEs and
OpenFace is optimized to extract AUs for facial emotional expressions. BUHMAP contains
a mix of GFEs and emotional FEs. As we do not have control on the accuracy of the AUs
extractor of OpenFace, and landmarks (trained for more scenarios than FEs) outperforms
or equals AUs for this problem, we will do the next ablation study just using landmarks.

Table 6. Performance of baseline MSG3D model.

Dataset Feature Weighted F1 Accuracy Parameters

BUHMAP landmarks 87.05%±1.79 86.75%±1.80 6527396
BUHMAP AUs 87.71%±1.48 87.73%±1.47 2913570
LSE_GFE landmarks 79.17%±1.45 79.16%±1.50 6525856
LSE_GFE AUs 59.60%±0.8 58.24%±0.91 2912030

5.1. Ablation Study on MSG3D

The objective of this ablation study consists of assessing the influence of several
meta-parameters of MSG3D and input sample composition in the final performance for
both datasets. The first three experiments deal with the bias-variance dilemma and the
generalization capacity of the model. Hence, we will test a simple data augmentation
technique, change the flexibility of the model and reduce the size of the model. The second
set of experiments will test the influence of the temporal duration of the training sample
that contains the GFE, and the apparent frame-rate seen by the model. In short:

• Use of data augmentation through horizontal flipping.
• The impact of graph topology.
• Number of spatial and temporal scales.
• The impact of GFE duration and frame-rate

Study on the effect of data augmentation through horizontal flipping.
Table 7 shows the effect of augmenting the input sample with x-flipped node features.

Results clearly show that this simple data augmentation improves generalization so, the
following tests will include it.

Table 7. Ablation study for data augmentation through horizontal flipping.

Dataset Flipping Graph Weighted F1 Accuracy

BUHMAP no base 87.05%±1.79 86.75±1.80
BUHMAP yes base 90.64%±1.12 90.45±1.25

LSE_GFE no base 79.17%±1.45 79.16±1.50
LSE_GFE yes base 80.38%±0.95 80.37±0.93
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Study on the effect of graph topology.
This study tries to assess if imposing a muscular–anatomical graph from the beginning

is better than start from an empty graph. It must be highlighted that the model has
the capacity to insert and delete connections in both cases during training. Table 8 shows
nothing conclusive as imposing the initial graph is better for LSE_GFE but not for BUHMAP,
so we will keep the variable in the next ablation test.

Table 8. Ablation study for graph topology.

Dataset Graph Weighted F1 Accuracy

BUHMAP base-graph 90.64%±1.12 90.45±1.25
BUHMAP empty-graph 91.48%±1.17 91.36±1.23
LSE_GFE base-graph 80.38%±0.95 0.8037±0.93
LSE_GFE empty-graph 79.15%±0.66 0.7905±0.0062

Study on the effect of number of spatial and temporal scales.
This study tries to evaluate whether the multiscale approach, which increases com-

plexity and gives extra flexibility to the model to learn spatial-temporal dependencies, is
worthwhile for this problem. Results from Table 9 shows that BUHMAP is better explained
with a simpler model, but it is not so clear for LSE_GFE. As the complexity of the model
is greatly reduced removing spatial and temporal scales (SS, TS) and the difference in
LSE_GFE is not statistically significant when using empty-graph, we will keep this model
for the last ablation test.

Table 9. Ablation study with one single scale in both spatial and temporal dimensions.

Dataset Graph (SS,TS) Weighted F1 Accuracy Parameters

BUHMAP base-graph (8,8) 90.64%±1.12 90.45±1.25 6527396
BUHMAP base-graph (1,1) 92.75%±1.60 92.66±1.67 2159676
BUHMAP empty-graph (8,8) 91.48%±1.17 91.36±1.23 6527396
BUHMAP empty-graph (1,1) 93.21%±0.82 93.09±0.86 2159676

LSE_GFE base-graph (8,8) 80.38%±0.95 80.37±0.93 6525856
LSE_GFE base-graph (1,1) 79.99%±0.92 79.86±0.93 2158136
LSE_GFE empty-graph (8,8) 79.15%±0.66 79.05±0.62 6525856
LSE_GFE empty-graph (1,1) 79.93%±0.61 79.81±0.64 2158136

Study on the effect of GFE duration and FPS.
The last ablation study is not related to the model itself but to the size and temporal

redundancy of the input. We already explained that both datasets have been acquired for
different purposes and with different acquisition settings, so there’s not a priori information
of the optimal duration and frame-rate for feeding the MSG3D in this context. Table 10
shows the result of halving/doubling the duration of the input event inside the limits of
the distribution range of both datasets and subsampling the original frame-rate to reduce
redundancy (as LSE_GFE is recorded at 50 and 60 fps a slight interpolation effect might
be present in some of the tests). Table 10 shows a larger dependency on the duration for
LSE_UVIGO than BUHMAP. This can be explained by the larger deviation per class in
the former than the latter (see Figure 6). The best results for LSE_GFE are obtained with
intervals of 2 s while for BUHMAP there’s a slight improvement using 4 s. The influence of
frame rate is not very important in general but a slight improvement is observed with less
redundancy probably related to a minor overfitting risk.
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Table 10. Ablation study on duration and FPS. Empty-graph, horizontal flipping and one single scale
in both spatial and temporal dimensions.

Dataset Duration FPS Weighted F1 Accuracy

BUHMAP 4 s 30 89.87%±0.84 89.0±0.93
BUHMAP 4 s 15 93.21%±0.82 93.09±0.86
BUHMAP 2 s 30 92.83%±0.96 92.75±1.01
BUHMAP 2 s 15 92.68%±0.82 92.57±0.89

LSE_GFE 4 s 30 68.67%±1.89 68.23±2.00
LSE_GFE 4 s 15 70.42%±1.43 70.20±1.43
LSE_GFE 2 s 50 79.93%±0.61 79.81±0.64
LSE_GFE 2 s 20 80.70%±0.97 80.45±1.01

5.2. Accuracy Per Class

In order to understand the difficulty of learning each specific class, the confusion
matrices of the best models for each dataset and type of model are presented in Figure 10
only for landmark features. It is worth noting that the two architectures present an apparent
complementary behavior, as those classes with worse accuracy in MSG3D have better or
similar accuracy using the custom CNN, in both datasets. Complementary of models
performance can be exploited for fused decisions, but drawing solid conclusions on fused
classifiers must be handle carefully when datasets are as small as in this work. This study
is left for future research if LSE_GFE is increased.

Figure 10. Confusion matrices of MSG3D (left) and custom CNN models (right) for BUHMAP (top)
and LSE_GFE (bottom).

5.3. Comparison with State-of-the-Art Methods on BUHMAP

The papers published using BUHMAP dataset are a little bit old and most of them
use different subsets of it, excluding some of the labelled classes. In addition each study
uses different test strategies and report different metrics. In [41] the authors use all the
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eight labelled classes and report the mean test accuracy over LOSO. In [42] the samples
of neutral expression are excluded and the reported results are the mean classification
accuracy over LOSO. Ref. [43] uses a subset of the database focused on the three classes
related to facial expressions and report the classification accuracy and the F1-score but
no explanation about the used evaluation data is given. Finally, ref. [44] performs three
different tests: The first one uses samples from seven classes (excluding neutral expression
class) from one person to train and the same samples from other subject to test. The second
one performs five-fold cross-validation over the samples of seven classes from two different
persons. The last one uses three repetitions of four classes related to head movement from
nine subjects to train and test on the remaining two subjects. The numerical results reported
in the publications of these systems are gathered in Table 11 and compared with the best
result obtained for the BUHMAP dataset in this work, which was achieved by training a
reduced MSG3D model over the facial landmarks augmented through horizontal flipping.
The only systems that outperform our proposal are not fully comparable as they remove
four classes [44] or just the neutral expression [42]. The latter system is a fusion of several
subsystems and an ad hoc selection of feature sets after the merger, which could point to
some meta-overfitting. It was not our intention to build the best system for classifying over
BUHMAP but presenting a new dataset and propose an alternative deep learning approach
that handles spatio-temporal graphs to automate the classification of GFE. Testing over
BUHMAP was the only way to make sure that our approaches made sense for this problem,
and they could achieve SOTA performance on previous similar datasets.

Table 11. Comparison of performance over BUHMAP against other published works.

System Classes Eval. Method Accuracy F1-Score

[41] All LOSO CV 76.98%
[42] 2 to 8 LOSO CV 98.2%
[43] 1, 5 and 7 Unknown 88.50% 88.87%
[44] 2 a 8 1 person test 67.1%
[44] 2, 3, 4 and 7 1 person test 95.0%
[44] 2 a 8 5-fold CV 92.5%
[44] 2, 3, 4 and 7 5-fold CV 96.6%
[44] 2, 3, 4 and 7 2 persons test 91.6%

Ours (best) All LOSO CV 93.09% 93.21%

5.4. Comparison with Human Performance on LSE_GFE

For the sake of completeness we made a last study on the performance of sign language
experts when watching the same video clips extracted for testing the models. The sign
language experts were three sign-language interpreters. Two of them had never seen the
complete video interview of LSE_UVIGO from where the GFE video clips were extracted.
The other interpreter was the same person (also author of this paper) that labeled the
LSE_GFE dataset watching the whole sign language sentence. It is important to highlight
that at least 12 months passed from the annotation of LSE_GFE to the experiment we are
going to explain here, so this interpreter had mostly forgotten the context of the video clips.

A web-based application was prepared for the interpreters to watch a video clip from a
random sequence extracted from the LSE_GFE dataset and manually annotate the 4 studied
classes. Due to the difficulty of the problem, also alternative responses could be selected
from this set:

• q.doubt -> “I am sure that it is question but I do not know whether it is polar or
partial”,

• doubt -> “I am not sure whether it is a question or a negation but I am sure it is one of
them”,

• not selected -> “I am not sure of any option. Pass”.

With these three options we try to minimize the effect of random responses. Figure 11
shows a screenshot of the web tool accessible to the interpreters (in Spanish). They were free
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to enter in different moments and annotate as in an Amazon Mechanical Turk task. Every
annotation was linked to the annotator and deleted from the random list for that annotator.

Figure 11. Screenshot of the web tool of LSE_GFE manual annotation.

Figure 12 show the confusion matrices of the different interpreters-annotators. An-
notator 0 is the one that 12 months before labeled the dataset watching the whole sign
language interviews. The best automated system is again displayed to facilitate comparison
with annotators.

Figure 12. Confusion matrices of the interpreters against the original labels of LSE_GFE. Upper right
shows the best automated system.

Several interesting observations can be drawn from this experiment:

• Annotator 0 performs much better than the others, so it is clear that there’s an influ-
ence on having seen the footage and being involved in the acquisition process and
discussions on the experiments.

• The class None, that was randomly extracted from interview segments where none
of the 3 classes were present, is, by a large margin, the class with worse human
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performance. Even the annotator 0 performed worse than the automated system. This
is a clear cue that the larger performance of annotator 0 was boosted by the previous
knowledge of the dataset.

• The three annotators outperformed the automated system in classes q.partial and n.L-R,
but two of them performed much worse in class q.polar where they showed many
doubts.

In summary, this experiment demonstrated that LSE_GFE is a challenging dataset
worth distributing to the research community to advance the state of the art in GFE
recognition and sign language comprehension. Also, the disagreement among annotators
and the advantage of having seen the whole sign language sentence tells us that there
is much more work to do regarding the duration of needed context in input features for
building a successful automated system.

6. Conclusions

This work presented a new dataset of Grammatical Facial Expressions (GFE) acquired
in a natural context of Spanish Sign Language (LSE_GFE) and a comparative study of a
type of Convolutional Graph Neural Networks for automated classification of GFE classes.
This type of GCN has been already successfully applied to FER but, as far as we know this
is the first time that this type of complex models, well known in the action recognition
arena, are applied to GFE recognition.

In order to assess the model adequacy for the task, all the experiments were carried
out with the LSE_GFE and another publicly available dataset, BUHMAP, already gather
and studied for FER and GFER in the past. The experiments using landmarks and action
units as input features, and a custom CNN and the GCN model called MSG3D, over
the two datasets, showed that the best option that surpassed the state of the art was
obtained with simplified MSG3D fed with landmarks and augmented data with horizontal
coordinate flipping.

Experiments with human expert sign language annotators showed that the simplified
MSG3D model is able to compete with them, outperforming class accuracy in two of
the four classes. These experiments also showed that the additional temporal context of
GFE might be necessary for accurate disambiguation between similar expressive facial
movements. Further research on models able to deal with class-dependent input duration
could improve accuracy.
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Abstract: Optical motion capture systems are prone to errors connected to marker recognition
(e.g., occlusion, leaving the scene, or mislabeling). These errors are then corrected in the software, but
the process is not perfect, resulting in artifact distortions. In this article, we examine four existing
types of artifacts and propose a method for detection and classification of the distortions. The
algorithm is based on the derivative analysis, low-pass filtering, mathematical morphology, and
loose predictor. The tests involved multiple simulations using synthetically-distorted sequences,
performance comparisons to human operators (concerning real life data), and an applicability analysis
for the distortion removal.

Keywords: motion capture; artifact classification; artifact detection; reconstruction; anomaly detection

1. Introduction

Motion capture (mocap) systems [1,2] play important roles in modern computer
graphics, where they are applied in gaming and movie FX to generate realistic character
animations. Prominent applications of mocap systems could also be found in biomechanics
and medical sciences [3]. To date, the most reliable technology is the marker-based optical
mocap (OMC)—it is known as the ‘gold standard’ as it outperforms other mocap technolo-
gies. It utilizes visual tracking of active or retro-reflective passive markers. Trajectories of
these markers are then used for animation of associated skeletons, which are used as key
models in the animation of human-like or animal characters.

The process of acquiring marker locations is error prone. Distortions occurring
in the mocap sequences can be simply divided into two classes—random noise and
algorithmically-introduced artifact distortions. Random noise is a consequence of the
stochastic processes resulting in different kinds of distortions in a mocap sequence. It has
been studied in numerous works [4–7]. Among the types of noise, the most prominent [8] is
white noise, which can be efficiently filtered out [9] or ‘smoothed’. Numerous methods have
been proposed [10] utilizing low-pass filtering, interpolating methods, or moving averages.

Artifact distortions are introduced by reconstruction algorithms present in mocap
pipelines; they could be regarded as momentary systematic errors. These distortions intro-
duce trajectory modifications of different appearances and of larger amplitudes. At higher
levels of mocap processing, when the marker motion is remapped to drive the skeleton
animation [11], the false positions of markers result in erroneous poses, which degrade
the animation or biomechanical measurements. All distortions, gaps, and artifacts occur
commonly in mocap sequences, influencing the praxis of a mocap operator. Since trajec-
tory ’mis’-shapes are poorly filtered out by simple noise removing algorithms, standard
industrial quality processing of mocap sequences require visual trajectory screenings and
manual trajectory editing by operators. It is a painstaking process that could be assisted
with software support for trajectory reconstruction; however, these capabilities are limited,
and these methods could also degrade the results if used improperly.
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Despite the common knowledge about artifact problems, this topic has not been fully
recognized. In related works, researchers have mainly focused on error prevention during
gap reconstruction, focusing on the efficiency of error removal (including artifacts) in terms
of root mean squared error (RMSE). To our knowledge, our proposal is novel as it identifies
erroneous intervals and classifies them accordingly.

The key motivation regarding the development of distortion classifiers is that, for each
different distortion class, we can select an appropriate method of suppressing (e.g., for the
rectangular distortion, which is a result of mistaken marker labeling—it would be enough
to find its counterpart marker and swap erroneous parts of the trajectories to achieve
perfect reconstruction).

In the article, we propose a marker-wise method for detection and classification of
systematic errors—artifacts. The proposed approach is skeleton-free; therefore, it is able
to adapt to virtually any vertebrate subject. There are two basic assumptions: the rigid
body model and a correlation of marker trajectories. A rigid body model was assumed
for the functional body mesh (structured point cloud) [12], which we used to represent
the subject’s body hierarchy. The next assumption stems from the former—it is the fact
that the movements of markers are highly correlated and predictable when they are placed
on common body parts (e.g., limbs). We employed a deviation of a trajectory from the
prediction as a criterion for classification.

The proposed method is intended to support the mocap operator. It could be used
in various ways, either assisting the operator by pointing out potential artifacts, or as a
fully automatic method (combined with filtering and capable of detecting and removing
artifacts). Our results show that the detection efficiency is on par with operators with
intermediate experience, and it outperforms novice ones. Both approaches were verified
in the experiments: E2—where we compared recognition abilities to the human operators
and E3—where we verified recognition combined with several reconstruction methods.

The article is organized as follows: in Section 2, we disclose the background for the
article—the mocap pipeline with distortion sources and former works on the distortions in
optical mocap systems; Section 3 describes the proposed method with its rationales and
design considerations. In Section 4, we test the method for its performance and discuss the
results. Section 5 summarizes the article.

2. Background

2.1. Sources and Types of Distortions

There are two main sources of artifacts occurring in the markers in optical motion cap-
ture signals: software-caused (the main scope of the article) and soft tissue-caused artifacts
(e.g., [13]). A soft tissue-caused artifact represented the actual marker motion; however, the
marker was moved relative to the underlying bone because of local skin deformations.

In optical mocap, marker tracking is obtained by the image registration of the marker
position by multiple IR cameras. A multi-view observation allows for the reconstruction of
marker trajectories (3D positions over time) through the triangulation of 2D position record-
ings, which are registered by multiple cameras. The process is error-prone and various
sources of the distortions can be identified, as depicted in Figure 1. Besides conventional
stochastic noise, two main error sources in marker registration are gaps and erroneous
marker matching. Gaps occur when the marker disappears from the camera view, due to
locating the body part outside the scene (camera range), covering markers with another
body part (occlusion). In such cases, reconstruction algorithms can be sources of errors.
Marker matching occurs twice in the mocap pipeline. First, prior to the triangulation, it is
necessary to perform marker matching in multiple 2D views of a single frame to identify
corresponding 2D locations of markers. Another marker matching procedure is labeling
(naming); it is performed among the different frames, where it is necessary to identify
corresponding successive positions of 3D markers in the sequences of the frames. These
software procedures can result in one trivial and four regular types of distortions, which
can be observed in current mocap systems. These are:
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1. Simple gap—appears when reconstruction algorithms give up, it is the least type of
concern (a trivial case);

2. Single peak—caused by transient erroneous marker matching techniques. It is simple
to detect;

3. Heavy noise of a much larger amplitude than ordinary noise introduced by frequent
erroneous marker matching techniques;

4. Rectangular distortion—forward (followed by backward) steps caused by mismatch-
ing the 3D positions of the markers (part of the 3D trajectory is assigned to another
marker) or due to the erroneous marker reconstruction based on a rigid body model;

5. Slow value change—two potential sources—accumulated reconstruction errors in
successive frames (e.g., when there is deformation of a body, which is the failure of a
commonly assumed rigid body model) or the result of low-pass filtering of peaks.

Figure 1. Processing in the early stages of the motion capture pipeline with distortion sources (red)
and problems to solve (yellow), question marks (?) indicate ambiguous choices.

All of the above classes are depicted in Figure 2. They can be roughly divided into
two basic classes—sudden (2–4) and slow (5) changes to the trajectory. It is worth noting
that, aside from software sources, soft tissue over the skeleton is an additional distortion
source as it denies the rigid body model. Usually, these artifacts take ‘slow change’ forms,
so they fit into the above classification.

Figure 2. Identified types of distortions inpainted into exemplary data—the first coordinate of the
first marker (head) of the IM subject.

2.2. Previous Work

To the authors’ knowledge, this work is the first proposal for the identification and
classification of artifact distortions in mocap sequences. Of course, the knowledge of recon-
struction imperfections and artifacts is present in wider backgrounds of mocap technology
and research; artifacts are referenced to in the former works as errors.
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Most research studies on mocap signal processing mainly focus on preventing the
occurrence of artifacts. Therefore, works on motion capture areas are related mostly to the
occlusion gap filling problem and are oriented toward minimizing the gap filling error. They
involve various methods for signal reconstruction, when the marker is lost in a recorded
sequence. Approaches include interpolation [14], fusion of weak regressors [15], inverse
kinematics [16], skeletal model [17], and inter-marker correlations [18,19]. Nowadays, deep
neural networks are hot topics) [20–22]. However, such approaches usually require a lot of
training data, which might not be available—every new marker configuration, new type of
activity, or even individual actor might require retraining the network. It might be difficult,
especially for the deep NNs, which may require a lot of training examples; therefore, deep
NNs might just be feasible for typical situations.

The methods differ in the assumptions, performances, and complexities; some assume
constraints from rigid body constraints and others employ skeletal models (or nothing).
Constraint efficiency depends on how adequate and accurate the assumed model is. There
could be discrepancies between the rigid body and modeled body segments [23], on the
other hand, skeleton-based methods are sensitive to the accurate estimations of model
parameters—bone lengths and marker placements—with respect to the underlying bone.

Typically, the errors in reconstruction methods appear in slow changes, which in some
cases [17] are elongated so much that they appear as constant biases. The main factor
that decides whether a certain method is suitable or not is the length of the gap. Simple
signal-based methods (e.g., interpolation) work well for short errors, whereas complex
model-based methods are better suited for long gaps.

The other approach, resulting in error/artifact reduction in the mocap pipeline, takes
certain stages of the pipeline into consideration. Researchers have focused on partial prob-
lems in the motion capture pipeline, and they perfected these individual steps, improving
the system configuration [24], e.g., the number and layout of the cameras, calibration [25],
and labeling [26–29]. Such approaches undoubtedly reduce errors and improve the overall
performance of the mocap pipeline, yet they are not perfect. Errors of reconstruction still
occur; therefore, there remains room for improvement.

We identified only one research proposal slightly similar to ours, where erroneous
intervals were explicitly identified for further cleaning. In [17], actual markers drove the
skeleton first, then virtual markers were placed onto virtual skin. The positions of the actual
and virtual markers were compared; if the marker positions did not match, such intervals
were assumed to be erroneous and filtered; however, no identifications of distortion types
were used.

3. The Proposal

3.1. Premises—Correlation of Trajectory Coordinates

The correlation between the locations and gradients of markers allowed us to propose
a method to classify all types of distortions. Since the variables in mocap sequences can be
strongly (positively and negatively) correlated within the groups, artifacts introduced by
reconstruction algorithms should differ significantly enough to distinguish them on the
basis of the proper trajectories of neighboring markers.

In Figure 3a, we present a correlation coefficient (CC) in the form of a distance matrix.
It demonstrates structural dependencies in the correlations between the marker positions.
One can easily observe the clusters formed by the body parts—hands, torso, legs, and so on.
The correlation is high within individual body parts (both positive and negative); on the
other hand, the correlates between body parts depend on the registered motions—in case
of natural walking, the hand positions would counter-correlate, whereas with a butterfly
swimming motion, the hand positions would correlate.

The time aspect of the correlation is depicted in Figure 3b; it presents the correlation
and autocorrelation functions for several marker pairs. It clearly illustrates the correlation
between successive marker locations and between locations of the markers located in the
common body segments and connected body segments (e.g., head and neck).
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Figure 3. Correlation between X position of markers in exemplary sequence (fast walking HJ subject):
(a) the whole sequence, all 53 markers; (b) inter-marker correlation function for the selected correlated
and non-correlated markers.

To conclude this line of reasoning, we suggest that we could reliably identify the
outstanding markers on the basis of the markers correlated within groups—from the
common body segment or parent body part.

3.2. The Method Overview

The proposal is feasible thanks to the data correlations in mocap sequences, which
make the predictions feasible and allow for reliable estimations of the actual positions
of markers.

The key idea of the algorithm is to use model (prediction) results as a verification
criterion for the data. If the data fall too far from the prediction results, then they are
rationally considered distortion, and could be assigned into a distortion class using a
pattern recognition method. Each distortion class is identified at a separate stage; it is
cleaned from the signal using interpolation. The signal is then passed to the next stage of
detection, from the simple distortion (single peaks) to the most difficult (slow changes).
The conceptual scheme of the proposed method is depicted in Figure 4; for a detailed view,
please refer to the unfolded schematic of the processing pipeline given in Section 3.4.

The method for anomaly identification and classification depends on the type of
distortion. Sudden changes to the trajectory are identified on the basis of the differential
signals and low-pass filters (as predicting models) with stats-based thresholding and
mathematical morphology. This allows distinguishing between the types of sudden changes.
Slow change detection is based on the hysteresis thresholding of residuals with backward
regrowing of identified segments.

Three predictive models were employed in our pipeline. In case of sudden change
detection, which is the simple case, we moved median and Savitzky–Golay filters to identify
legitimate changes in the signal. To identify short-term distortions, we employed median
filters (as they are estimator-resistant to peak changes). For longer term distortions, we
employed Savitzky–Golay, which could follow a low-pass signal waveform in the presence
of a high-frequency noise. For the detection of slow changes, we employed neighbor-based
predictors—initially we assumed a polynomial predictor based on the least squares method,
which we gave up in favor of a feed-forward neural network (FFNN), yet we decided to
include it in the description, as it depicts the development process.
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Figure 4. Conceptual schematic of the proposed algorithm.

3.3. Regressive Models

The efficiency of the overall approach depends on the quality of the model predictors
and the ability to approximate the real location of a given marker (the location where it
should be), on the basis of its own or neighboring markers locations from past, present, or
future. In general, the regression model (predictor) [30] has the form of the function:

Ŷi = f (Xi, βi) + Ri, (1)

which in the linear [31] case yields:

Ŷi = Xiβi + Ri, (2)

where for N observations of M regressor variables, Ŷi is the N-element long column of the
predicted values of the i-th variable, Xi is the N-by-M design matrix for the model, βi is the
N-element column vector of coefficients, Ri is the error (residual). The model coefficients
are estimated on the basis of Xi and Yi, a column vector of goal values with the least squares
method (LSM) is denoted as:

βi = (X′i Xi)
−1X′iYi. (3)

The residual is the remaining value, which is the non-predicted/non-correlated part
of the signal, given simply as:

Ri = Yi − Ŷi. (4)

The part that will be further analyzed is the residual. Its probability follows the
Laplace (double exponential) distribution:

f (x|μ, b) =
1
2b

e
(
− |x−μ|

b

)
, (5)

where: μ is the mean value equal to zero in our case, b is a dispersion parameter calculated
on the standard deviation as b = σ/

√
2. Therefore, the standard deviation of the residual

(denoted as σR) can be employed to evaluate the quality of the prediction; moreover, it
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indicates that such a centered distribution allows for an efficient outlier detection using the
thresholding based on the standard deviation (e.g., three-sigma rule).

3.3.1. Savitzky–Golay Filter

Savitzky–Golay filter [32] is a smoothing filter that is based conceptually on polynomial
fitting in the least squares sense (there are efficient convolution-based implementations).
Its output is a value of the polynomial function fit locally to the data. The coefficients (cl) of
the L-th order are fit to the data within the sliding window of size M centered around x(i);
the filter output is the polynomial value for the midpoint. In the basic variant, the filter is
‘low-pass’, but a ‘high-pass’ can be obtained by a simple difference between the signal and
its smoothed variant:

pLP(i) =
L

∑
l=0

cl · xl(i) (6)

pHP(i) = c(i)− pLP(i) (7)

Its least squares design matrix can be simply noted as:

Xi =

⎛⎜⎝ 1 x(i− M) x2(i−M) · · · xL(i−M)
...

...
...

. . .
...

1 x(i + M) x2(i + M) · · · xL(i + M)

⎞⎟⎠,

3.3.2. Neighbor-Based Linear Least Squares Loose Model

Slow change detection requires the predictor to be able to avoid following slowly-
accumulating changes in the signal; hence, we employed loose (weak) prediction, which
does not rely on its own momentary positions of the marker, it only uses past and current
positions of sibling and parent markers. Initially we employed the polynomial model; it
was obtained with ordinary least squares (LS) and was conveniently planned using the
Vandermonde matrix Xi, with some caution, as it could be ill-conditioned with growing
polynomial orders, as:

Xi =

⎛⎜⎜⎜⎜⎝
1 xj(1) x2

j (1) · · · xL
j (1) xk(1) x2

k(1) · · ·
1 xj(2) x2

j (2) · · · xL
j (2) xk(2) x2

k(2) · · ·
...

...
...

. . .
...

...
... · · ·

1 xj(N) x2
j (N) · · · xL

j (N) xk(N) x2
k(N) · · ·

⎞⎟⎟⎟⎟⎠,

where: x(n) are successive 1 . . . N values of a single regressor variable, L is a polynomial
order, i, j, k, · · · are variable indices, such that i �= j, k, · · · .

Considering the predictor, the term order appears twice, meaning the context size—
number of former values taken into prediction and polynomial order. Hence, to avoid
confusion in the paper, we used the following notation for predictors and residuals

PL
k (i, n), RL

k (i, n) (8)

where: L—means polynomial order used in X, k—the number of past values of regressor
variables used to construct X, n—the number (time) of frames in the sequence, i is the
number of predicted variables.

The selection of proper markers to formulate the predictor for each marker according
to Equation (3) is based on the body’s hierarchical structure. For that purpose, we used
a body structure as depicted in Figure 5a—a functional body mesh (FBM) [12] for an
average human subject, inferred for the typical Vicon marker setup. The FBM hierarchy
with the corresponding skeleton is shown in Figure 5b. The FBM represents a kinematic
structure—group markers located on the structure of the body and a hierarchy as a tree of
these groups. The structure-obtaining step must be performed for each class of subjects or
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different sets of markers separately. The design matrix X was composed of coordinates of
parents and siblings in current and k former frames (but it excluded former coordinates of
the considered marker). A parent cluster is represented by a single marker—the one that is
closest in terms of gradient coherence and distance constancy.

(b)(a)
Figure 5. Outline of the body model, with body parts distinguished with individual random colors
and underlying skeleton included (a), and corresponding parts hierarchy annotated with parents and
siblings (b).

Our demands toward the predictor were slightly specific. One obvious requirement
was for it to be as precise as possible. Another (but contradictory) requirement was that it
would not follow momentary changes induced by artifacts. Such requirements made us
choose a special approach to formulate the X matrix; the predictor efficiency of the predictor
depended on the data used. We neglected past values of considered markers—this was
due to the fact that the largest correlation was between the current and past locations of a
marker; therefore, it ensured the accuracy (Figure 6b). Unfortunately, in case of a distortion,
it would make the predictor follow the artifact deviation; see Figure 6a. Next, we chose
predictor parameters. Usually, the higher the degree of the polynomial and context size,
the higher the precision; however, due to ill conditioning of X, it could reach a higher error
with the growing polynomial order. Moreover, too large of an increase would not improve
the predictor accuracy. The predictor parameters were tuned with numerical testing with
preliminary data. We set up parameters to k = 3 and L = 4, as they appeared during the
preliminary model tuning (Figure 7) to be a reasonable trade-off between the predictor
accuracy and computation complexity.
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predicted variables): (a) first dimension of the first marker (with artificial distortions); (b) residual
histograms and corresponding Laplace PDFs for R4

3 (for explanation of the model construction and
parameters, see Equation (8)).

Summarizing each row vector in X is long and is assembled of certain parts as
given below:

X(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1,

current value and k former of parent marker (p)︷ ︸︸ ︷
xp(n), yp(n), zp(n), xp(n− 1), · · · , zp(n− k) ,

current value and k former of first..last siblings︷ ︸︸ ︷
xs1(n), ys1(n), zs1(n), xs1(n− 1), · · · , zslast(n− k),

...
xL

s1(n), yL
s1(n), zL

s1(n), xL
s1(n− 1), · · · , zL

slast(n− k)︸ ︷︷ ︸
current value and k former of first..last siblings raised to Lth power

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

We studied the polynomial models, thoroughly scanning the parameter space (see
Figure 7) to obtain the accuracy, allowing for identification of slow deviations; the residual
was noisy and the deviations were visible, but cluttered, making their automatic identifica-
tion (see Section 3.4.5) work poorly. Therefore, we reviewed a series of various regression
techniques—SVM, ANFIS-fuzzy models, lasso, ridge, regression trees, different variants of
neural networks.

3.3.3. Regression with Neural Network

We found the solution for the regression problem in neural networks [33], with their
ability to solve the regression problems. However, we proposed some additional modifi-
cations besides classical feed-forward NN [34] tuning performed during NN engineering,
such as the number of layers and neurons, and the selection of the training algorithm.

Random-valued initialization with the scaled conjugate gradient training method
made each output replica follow the true values, and the errors (residuals) were not
correlated, unless they represented actual distortion. Hence, their averaged residual
values exhibited much lower noise levels, so it allowed us to reveal the slow artifacts
with thresholding.

The design of the NN structure is a kind of art, as there are no unambiguous rules
or guidelines. Usually, it requires simulating with parameter sweeping for a domain
of possible (feasible) numbers of layers and neurons, with a critical review of obtained
performance (MSE or classification ratio) [35]. We shared that approach and reviewed the
performance of NN using the test data. The NN architecture we employed is presented in
Figure 8. It is ordinarily a fully connected FFNN, with two hidden layers—first containing
12 sigmoid neurons, second containing 4 ·M sigmoid neurons. The output is a three-valued
x, y, z vector replicated P times—we used a five-fold replication. As input, we used a
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similar set of neighbor and parent coordinates to Equation (9); additionally, we enhanced
it with the moving average of the own value of the marker. The latter could make the
NN follow momentary slow changes; therefore, the window of a moving average (MA)
should be notably larger than the lengths of the detected distortions (we assumed it to be
200 samples). By extensive testing, we also identified the number of previous values (=1)
and the order of power used to raise the input data (L = 2). Finally, each input vector X
was long and assembled of certain parts, as given below:

X(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

current value and k former of parent marker (p)︷ ︸︸ ︷
xp(n), yp(n), zp(n), xp(n− 1), · · · , zp(n− k) ,

current value and k former of first..last siblings︷ ︸︸ ︷
xs1(n), ys1(n), zs1(n), xs1(n− 1), · · · , zslast(n− k),

...
xL

s1(n), yL
s1(n), zL

s1(n), xL
s1(n− 1), · · · , zL

slast(n− k)︸ ︷︷ ︸
current value and k former of first..last siblings raised to Lth power

,

MAx(n), MAy(n), MAz(n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10)

Figure 7. Predictor parameter tuning with preliminary data for three subjects, quality as stan-
dard deviation averaged over all markers; the tuned parameters: L—polynomial order, k—context
size (lags).

The classical feed-forward NN performed well for the regression of the position of
a marker. The residuals should reveal distortions if the NN is not overtrained. How-
ever, fluctuations of the residual, which resemble pink noise, could cause false detections
when thresholded. Therefore, we decided to mimic multi-start NN training, with P-fold
replication of the target output Yp = [x, y, z] values. Thus, our prediction has the final step:

Ŷ =
1
M

M

∑
m=1

Ŷm. (11)

In Figure 9, we demonstrate the prediction results for the real sequence contaminated
with artificially-introduced distortion. We can clearly observe that NN residuals contain the
expected changes in signals, whereas residuals from the polynomial model are inconclusive.

334



Sensors 2022, 22, 4076

Hidden Layer 1
(12 sigmoid neurons)

Hidden Layer 2
(3 sigmoid neurons)

Output Layer - xm,ym,zm(3 linear neurons)

Input Layer
( size of X(n) )

M-fold

Figure 8. Architecture of the neural network used for regression.
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3.4. Recognition and Classification of Distortions

The detection process was organized into a strict pipeline consisting of four stages,
where we detected distortions from the simplest to the hardest, along with the removal of
the detected distortions (through interpolation after each stage). Such an approach ensures
proper classification, otherwise we would have false positive classification due to the fact
that subsequent methods could also be sensitive to simpler distortions, i.e., slow change
would also be sensitive to rectangular distortion if the amplitude of distortion is sufficient.
The detailed schematic of the dataflow in the algorithm is depicted in Figure 10.

The detection worked using the prediction residuals; therefore, we can see the devi-
ations that cannot be explained by expected movements of markers described with the
model. The choices of the models depended on the detected anomaly. For the sudden
changes, these models were low-pass filters—median (for peaks) and Savitzky–Golay (for
longer distortions); therefore, the respective high-pass filters acted as residuals. For the
slow change, the model was FFNN and the residual was given explicitly as the difference
between the signal and prediction.

To some extent, the residual values as deviations from a model can be considered
innovations in the marker positions, resulting in position changes beyond the prediction.
Therefore, minor residual values can be interpreted as normal motions, whereas large or
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sudden changes imply artifacts. Knowledge of the statistical properties of residuals allowed
us to evaluate thresholds for detecting outliers of the normal variabilities of residuals.
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Figure 10. The detailed schematic of the proposed algorithm.

3.4.1. Locating Sudden Changes

Sudden changes are well detectable in the derivative of the basic signal, meanwhile
slow changes require use of a base representation of residuals to measure the deviation.
For the approximation of derivatives, we used differentials:

ΔX(n) = X(n)− X(n− 1). (12)

Discrimination of different types of sudden changes cannot solely rely on differentials.
This is because a strong peak in ΔX notifies about the existence of a sudden change, but
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it does not bring information about the structure, i.e., the duration of the change or its
neighborhood. Therefore, we employed mathematical morphology methods (MM) to
analyze the shapes of those sudden changes. We used the following MM operations:

Erosion: E(n) = x(n)� S = max(∀j∈Sn x(n− j)), (13)

Dilation: D(n) = x(n)⊕ S = min(∀j∈Sn x(n− j)), (14)

Opening: O(n) = x(n) ◦ S = (x(n)� S)⊕ S, (15)

Closing: C(n) = x(n) • S = (x(n)⊕ S)� S, (16)

Top-hat: Tw(x(n)) = x(n)− (x(n) ◦ S), (17)

where: x() is a 1D signal, S is the structuring element defining points to be taken into
consideration (j), Sn is the structuring element centered (translated) at n.

An additional morphological method involves seeking sudden changes; we imple-
mented a scanning function (find_derivate_pairs(dX,T,maxlen)), which looked for
opponent differential pairs dX, exceeded the threshold level T, and was no more distant
than some presumed maximal length maxlen. It results=ed in binary decision variables
marking located ranges. The function parameters—threshold and distance—depend on the
data characteristics and sampling frequency.

3.4.2. Identifying Single Peaks

It is the first stage of processing. Single peaks and heavy noises are two appearances of
the same short-term distortion—the key difference is that single peaks are isolated within
some neighborhoods, whereas in heavy noise segments, numerous peaks occur next to each
other. To identify the isolated peaks, we employed the following sequence of operations.

First, we removed low frequencies (presumed to be legitimate) using a median filter:

XHP = X−median(X, window), (18)

where the window size should be several times larger than the maximal peak length.
Then, we calculate differential:

DHP(n) = XHP(n)− XHP(n− 1), (19)

which is cleaned of non-interesting low values using thresholding :

D̃HP(n) =
{

DHP(n), if DHP(n) > threshold1
0, otherwise

}
(20)

Next, the identification of probable peaks is based on the assumption that the differen-
tial sum is local to small values (in theory ≈ 0), whereas the local sum of absolute values of
the differential is high. Thus, we calculated these sums within window Wn:

movSum(n) = ∑
j∈Wn

D̃HP(n− j) (21)

and
movSumAbs(n) = ∑

j∈Wn

|D̃HP(n− j)| (22)

which are then tested as:

ampRatio(n) =
movSumAbs(n)
|movSum(n)| (23)

when the ampRatio is larger than the assumed threshold (we assumed 5), it implies there is
a peak candidate:
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peakCandidates(n) =
{

1, if ampRatio(n) > threshold2
0, otherwise

}
(24)

Finally, to identify single peaks only, we employed binary top-hat, which rejects peaks
within the neighborhood defined by the structuring element. It allowed us to keep isolated
peaks only:

peaks = Tw(peakCandidates, S) (25)

Tunable parameters of the stage are:

• window—for the moving average, we assumed it to be 19 samples long;
• threshold1—it is calculated statistically from the data using k1 · σ of DHP—w employed

3 · σ as a default value; however, any k1 can be provided as the parameter;
• threshold2—(anti-sensitivity) for the ampRatio;
• maxSize—(default 5), which declares the maximal size of the expected peaks; it affects

the size of moving sum windows Wn, which is 2 ·maxSize + 3 samples long, it also
defines the size of the linear structuring element for morphological operations S.

3.4.3. Heavy Noise

Heavy noise detection is somewhat similar in design to isolated peak detection, but
there are differences in the details. Foremost, we assume that the input data are already
clear of isolated peaks. First, we calculate the differential:

D1 = X(n)− X(n− 1), (26)

from which we remove low frequencies using a high pass variant of the Savitzky–Golay
filter (Equation (7)):

D1_HP = SavitzkyGolayHiPass(D1, L, M). (27)

Next, we remove small fluctuations within the prospective areas of high values in Dh p
with morphological closing (float):

D1_HP_cleaned = |DHP| • S. (28)

These values are now thresholded:

rawNoise(n) =
{

1, if D1_HP_cleaned > threshold
0, otherwise

}
. (29)

Raw noise intervals are finally cleaned by removing holes using morphological closing,
but the binary variant this time:

heavyNoise = rawNoise • S. (30)

Finally, heavy noise segments shorter than the minLen attribute are rejected.
Tunable parameters of the heavy noise detection stage are:

• threshold—this is calculated statistically from the data using k2 · σ of DHP—w em-
ployed 2 · σ as a default value; however, any k can be provided as parameter;

• Minimal length of the segment (minLen), which is used to define the linear structuring
element S as 2 ·minLen− 1; we assumed minLen = 20 samples;

• Default parameters of Savitzky–Golay are L = 5, M = 13.

3.4.4. Step Change

Step change is another differential-based detection; it resembles the two former detec-
tions. It requires removing isolated peaks and heavy noise areas. After that, identification
of rectangular-like changes becomes a simple problem.
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The first two steps are shared with heavy noise detection. We compute D1—differential
(Equation (26)), which is then high-pass filtered with the Savitzky–Golay filter (Equation (27)),
so we have DHP. Next, we employ simple scanning with find_derivate_pairs, which
seeks the areas between the complementary pairs of differential peaks (above threshold);
we interpret it as a rectangular distortion, as shown in Figure 11. This scanning requires
setting up two parameters—minLen and maxDist, identifying the minimal length of a step
change, and maximal distance of searching.

Tunable parameters for the step change detection stage are:

• threshold—this is calculated statistically from DHP using k3 · σ of—we employed 3 · σ
as a default value; however, any k3 can be provided as parameter,

• Minimal length of the segment (minLen); we assumed minLen = 20 samples;
• Maximal searching distance maxDist; we assumed 200 samples as the default value.
• Default parameters of Savitzky–Golay are the same as for heavy noise L = 5, M = 13.
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Figure 11. Appearance of sudden distortions in residual/high-pass (R(n))—single peak and step
change, and their corresponding peak pairs in differential D(n).

3.4.5. Identifying Slow Changes

The slow changes of the positions (Figure 12a) involve a class of distortions notably
different from the other ones, requiring a separate approach for detection due to the fact
that its nature makes it hard to detect with differential analysis. We employed a loose NN
model predictor (PNN) as described in Section 3.3.3. It predicts the proper marker position
on the basis of its neighbor markers (parent and sibling). The deviations from such a model
(R—residuals) were analyzed, looking for notably large and long deviations, identified as
artifact hills or valleys.

R(n) = X(n)− PNN(n) (31)

The hills and valleys could be of a different scale; the length and ’differential’ can vary
significantly. Moreover, predictor fluctuations at the turning points can also seem similar
to short-term slow changes (of small amplitudes) appearing when the predictor cannot
follow the change of value. Though, based on the statistical properties of the residual of
the prediction and on the fact that we know that the distortion should be rather long (as it
is an accumulated reconstruction error), one can make certain assumptions allowing for
detection of the distortions.

We used ‘canning of values’ of the Savitzky–Golay smoothed residual of regression
with hysteresis thresholding. It can be described in the following steps (see also Figure 12b):

1. Smoothed the R with the Savitzky–Golay low-pass filter (L = 7, M = 11—parameters
heuristically tuned).

2. The upper threshold Tu was set up with a kU · σ rule of a thumb—in our case, three
times σR was selected (kU = 3) as the default would identify the significant tops and
bottoms of the hills and valleys.

3. If the top or bottom lengths were shorter than some minimal τU , we skipped it
(0.2 s—20 frames in our case), assuming it to be short-term fluctuation.
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4. After the identification of a top/bottom value, we looked for the rest of a distortion
(below threshold)—the marked range expanded both sides iteratively (in the past and
future) until the residual value went below/above the lower threshold TL, obtained
with khv · σR with khv = 0.5 as the default value.

5. If the overall located distortion (hill/valley) was shorter than some value τhv (50 frames
—0.5 s), it was omitted, as one can consider it a short-term fluctuation of the predictor.
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m
]

time [samples]

co
or

di
na

te
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(a)

Figure 12. Slow detection: (a) original, predicted, and distorted signal, (b) residual with hystere-
sis thresholding.

4. Verification of the Method

The verification of the efficiency of the proposed approach was three-fold. In the first
experiment, we analyzed the efficiency of the distortion classification using synthetically
generated distortions in artifact-free sequences, which allowed us to provide some statistics
on the classification efficiency. In the second test, we compared the performance of the
proposed approach to the human operators of various experiences—from novice to experts.
The last test was connected with the applicability of the artifact classification for the data
cleaning with a pool of generic reconstruction algorithms.

4.1. Materials and Methods
4.1.1. The Data

For testing purposes, we used data sets acquired for professional applications in the
motion capture laboratory. The sequences were obtained at the PJAIT human motion
laboratory using the industrial-grade Vicon MX system. The system capture volume was
9 × 5 × 3 m. To minimize the impact of external interference, such as infrared interference
from sunlight or vibrations, all windows were permanently darkened and cameras were
mounted on scaffolding instead of tripods. The system was equipped with 30 NIR cameras
manufactured by Vicon—10 pieces of each kind: MX-T40, Bonita10, Vantage V5.

During the recording, we employed two system configurations—a standard animation
pipeline, where data were obtained with Vicon Blade software (using a 53-marker setup)
and a typical biomechanical setup using Vicon Nexus software (using a 39-marker setup).
The trajectories were acquired at 100 Hz; by default, they were processed in a standard,
industrial quality way, which included manual data reviewing, cleaning, and denoising,
so they could be considered distortion-free. However, depending on the experiment,
different variants of the recordings were used in experiments; these were raw unprocessed
data, processed (cleaned), and artificially-modified variants with controlled amounts and
locations of distortions. Information, on which variant was used is provided in the detailed
description of the experimental protocols.

The two recordings used in the experiment illustrate the ability to adapt to the different
marker settings used in different application areas. The first sequence was clean with no
errors, but relatively comprehensive—all the limbs were moved and the feet freely swung
in random directions; therefore, it could be challenging for the predictor. The second

340



Sensors 2022, 22, 4076

sequence contains quite a lot of reconstruction errors in its raw form, so we had material to
compare the results to the human operators.

4.1.2. Experimental Protocols

We planned the first experiment (E1) to test the performance of the method proposed in
Section 3, using default parameters for a controlled dataset, with a perfectly clean sequence
and controlled artificial distortions. It involved the first recording from the Table 1—‘Static’,
which was manually cleaned by an expert, so it was artifact-free ground truth. Next,
we introduced distortions at random locations (randomly drawn markers) and random
amplitudes—see noise contamination procedures given further in Section 4.1.3.

Table 1. List of mocap sequence scenarios used for the testing.

No. Name Scenario Duration Difficulty

1 Static Actor stands in the T-pose in the middle of the scene, looks around, and
shifts from one foot to another

22 s easy, static

2 Sitting Actor stands in the middle of the scene and then sits on a chair; actor
stands again after a few seconds and repeats this three times

29 s occlusions

Companion results were additionally acquired in the experiment to compare the results
obtained in E1 to the existing methods of anomaly detection. Since artifact classification is
a completely new approach, it has been a bit difficult to select suitable methods to compare
with. We refer to the two generic methods [36] for anomaly detection in the time series:
three-Sigma move (M3S), which employs mean and variance moving; the other one is the
Hampel filter (HF), which is based on the moving median and median absolute deviation
(MAD), which are more robust measures.

During the experiments, we kept track of the distortions and their types; therefore, we
were able to verify whether the error classification was correct. The criteria for evaluation
in the artifact recognition task are pretty straightforward—classification rates (true and
false recognition) presented as a confusion matrix. The simulations were performed for
three distortion shares 5%, 10%, and 20%; each was executed 1000 times and the results
are aggregated as average confusion matrices (rounded). For each class, we calculated the
following measures:

sensitivity (true positive rate) : TPR =
tp

tp + fn
· 100%, (32)

miss-rate (false negative rate) : FNR =
fn

tp + fn
· 100%, (33)

fall-out (false positive rate) : FPR =
fp

tp + fp
· 100%, (34)

precision (positive predictive value) : PPV =
tp

tp + fp
· 100%, (35)

Additionally, two more measures were employed to quantify performance. The F-score
is a scalar describing the efficiency of overall classification for all classes [37]—its val-
ues are between 0 (no proper classification) and 1 (perfect classification). From various
equivalent formulas, we chose the following one, because it was simple to adapt to the
multiclass problem:

F =
tp

tp + 1
2 (fp + fn)

. (36)

The other measure was Matthews correlation coefficient (MCC) [38], which is a quality
measure intended for characterizing the classification efficiency for imbalanced populations
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of classes (as in our cases). Its values scale between −1 for no classification and 1 for perfect
classification. The formula is given as:

MCC =
tp · tn− fp · fn√

(tp + fp)(tp + fn)(tn + fp)(tn + fn)
, (37)

where cardinality of classifications are denoted as: tp—true positive classifications, fp—
false positive, tn—true negative, fn—false negative.

The second experiment (E2) involved comparing the performance of the proposed
method using default parameters to four operators of the mocap facility, with different
levels of experience—two beginners (2 and 3 months of experience), one intermediate
(1.5 years experience), and one expert (10 years of experience). The number of respondents
was small and imbalanced because it was hard to find volunteers of that expertise. Addi-
tionally, we preferred to control and monitor the reconstruction process—including the
software version and its setting—so we needed them in our lab facility. The results we
present here represent all the people who worked in the lab and who agreed to do some
work for us. Since a mocap operator is a rare profession, every response is informative;
therefore, we preferred to present the imbalanced number of operators than to remove one
of the respondents.

The test is intended to be a qualitative verification of the proposed approach and
to verify the proposal using real life data. We used the raw form (not cleaned) of the
‘Sitting’ recording, which contained all kinds of distortions. Such data were used against
the proposed detection algorithm. Apart from automatic processing, the four operators
conducted normal data screening and cleaning. These manual processing steps, using
Vicon Nexus software, were a standard approach in the lab, which is in everyday usage
in the facility. In the final step, the results obtained by the algorithm and four operators
were reviewed by an expert—a human mocap system operator with long experience in
data editing and cleaning. The results are reported as raw numbers of distortions located,
compared, and verified against human judgment.

The last experiment (E3) involved verification of the applicability of the proposed
approach. It was intended to be a proof-of-concept of the targeted distortion cleaning.
Therefore, it used different variants of static person sequences with the distortions of vari-
able intensities and durations introduced into the recording—taking 5%, 10%, and 20% of
the overall length—similar to E1. In the tests, we employed our algorithm with the default
settings as a detector, which then was combined with the following reconstruction methods:
Savitzky–Golay (13th order polynomial over 101 samples window), linear interpolation,
spline interpolation, and FFNN prediction (as given in Section 3.3). Each method was
applied in the locations of the detected artifacts only, the rest of the signal remained intact.
All distortions were simulated separately in this case, with a randomized location (marker),
time, duration, and an amplitude with 10 mm of average value and 4 mm of std deviation.
The simulations of contamination–detection–reconstruction were performed 200 times; for
each fold we obtained a quality measure, which was finally averaged. We assumed the
root-mean-square error (RMSE) as the measure of quality; it was computed over all the
coordinates and samples in the considered sequence:

RMSE =

√√√√ 1
K · N

K

∑
k=1

N

∑
n=1

(x̂k(n)− xk(n))2 , (38)

where: K is a number of variables in the time series, N is the number of samples, x() is the
original value, x̂() is the reconstructed value.

4.1.3. Artifact Contamination Procedure

The procedure of distortion contamination, which was employed in E1 and E3, in-
troduced artifact distortions into the sequences in a controlled way—we logged the type,
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duration, location, and amplitude of the distortion. The contamination could include mix-
tures of all kinds in equal proportions. The key parameter characterizing the experiment
was time share (distorted time fraction), for which distortions were generated. For the
interpretation clarity, we ensured that only one distortion at a time occurred; therefore,
the time share denotes that a distortion occurs at a given fraction of time. The sequence
of distorting the signal is as follows: first, we drew locations to contaminate with ’bulk’
distortions—slow, step changes, and heavy noise; next, we seeded randomly isolated peaks.
Distortion parameters were set up randomly for each instance of distortions:

• The sign was a +1/−1 value drawn with equal probabilities;
• The amplitude was a Gaussian random variable with assumed amplitude and standard

deviation (in the tested cases: μ = 5 or 10 mm and σ = 0.4 · μ); these values were used
to scale the peak of the rectangle or triangle distortion and as the standard deviations
in the heavy noise area;

• Distortion durations and intervals were part of the Poisson process; an average length
of distortion was set up to 50 samples, and the interval length was adjusted according
to the duration of the sequence and the target amount of the given distortion.

The distortions introduced were quite demanding for the detection procedure. The
amplitudes were on average small (5 and 10 mm) and of short (0.5 s) duration; therefore,
we could assume that the synthetic tests were rather rigorous and more difficult to detect
than in real life scenarios.

4.2. Results and Discussion

The outcomes of all three experiments are provided in the successive sub-paragraphs.
They are accompanied by interpretations and discussions.

4.2.1. Synthetic Distortion Classification

The classification for synthetic noise outcomes are demonstrated in Figures 13 and 14
for average amplitudes of 5 and 10 mm, respectively. The raw results in confusion matrices
demonstrate the average number of samples (rounded toward the whole sample) assigned
to specific classes (correct or not) for 1000 simulations. They present averaged confusion
matrices for three distortion shares 5%, 10%, and 20% of the overall time of the sequences
with two average amplitudes—5 and 10 mm. According to the length of the recording in a
simulation, the contamination procedure should produce approximately 160, 320, and 640
distorted samples, respectively, of each distortion type, and should be in equal proportions.

The comparative results for the generic anomaly detectors, HF and M3S in different
configurations of the moving window, are demonstrated in Figure 15 as confusion matrices.
The true anomalies are subdivided into classes, whereas the output is binary, whether it
is detected as an outlier or not. The figure presents only the best of the results for 10 mm
of amplitude and a 20% share of distortions, so it should be compared with the results in
Figure 14c. We did not include the results for other distortion configurations, because they
were either very similar (about recognition ratios) for 10 mm amplitudes or significantly
worse for 5 mm.

Regardless of the number of distortions (shares), the results were pretty consistent; they
were also very similar for numerous additional simulation runs, which are not included
here. The fractions of true and false classifications hold across the runs. The same almost
holds for F-scores and MCC values to a lesser extent. Therefore, the confusion matrix is
the most informative presentation of results as it is near 0.999 for both amplitudes and
all distortion shares—these large F-score/MCC values are due to the dominance of the
properly classified clear signal samples. Nevertheless, they offer some insight into the
results, with an increase in the share of distortions in the test sequence, we observe a
very slight decrease in the classification performance expressed with the F-score/MCCs.
These differences stem mainly from a slightly increased number of clear samples falsely
classified as artifact-contaminated, since the classification rates remain on par between the
artifact shares.
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Figure 13. Average confusion matrix for detection of synthetic noises for a 1000-fold simulation with
5-mm average amplitudes of distortions and shares: (a) 5%, (b) 10%, (c) 20% of time (blue—successful
results, red—faulty).
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Figure 14. Average confusion matrix for detection of synthetic noises for a 1000-fold simulation with
10-mm average amplitudes of distortions and shares: (a) 5%, (b) 10%, (c) 20% of time (blue—successful
results, red—faulty).

Each specific class requires separate insight into the results. These are as follows:

• The clear signal was identified properly for more than 99% of samples; a negligi-
bly small amount of distorted samples was erroneously identified as clean signals
(compared to the overall cardinality of the class).
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• For the peak change, sensitivity was approximately 66% and 90%, and the main
misclassification was in a clear signal; this class was not a cause of confusion for the
other classes compared to a clean signal (usually below FPR = 50%).

• Heavy noise sensitivity was above 88%; the main confusions were step change and
a clear signal; this class was rarely erroneously recognized in place of the others
(FPR = 4–8%); the main confused class was a clear signal.

• For the step change, sensitivity was approximately 70% and the main confusion was
slow change; this class was erroneously recognized in place of others at a moderate rate
(FPR = 12–27%)—here, a clean signal and heavy noise were wrongly identified.

• For the slow change, TPR was a bit more than 50% and the main confusion was a
clear signal; this class was often difficult and erroneously recognized in place of others
(FPR = 80–90%)—usually, it was a clear signal, but a step change and heavy noise
were also wrongly identified.

Considering the above results, the proposed method has moderate to high sensitivity
(depending on the class) and quite high precision for all classes but one (slow change).
False negative detection (having relatively small values) was way more undesirable than
the others; this was notable from a practical point of view. False positive, or detecting a
wrong class of the distortion, would still result in pointing out the operator to the potential
error location, or in the case of automatic error filtering, it would lead to the use of a repair
procedure (see Section 4.2.3).

The difficulty in identification of slow change was expected; it comes from the fact that
this change can be subtle and poorly distinguishable in predictor residuals, which resemble
pink noise in our case. The latter is also a cause of high FPR. We analyzed alternative
regression methods as a model—neural networks (simple FFNN and NARX-NN models),
ridge, lasso, and SVR. However, the results were either poor or impractical (due to long
training time), or both. On the other hand, a false positive error (quite frequent) is of much
lesser importance than a false negative; the former might result in suggesting additional
locations to the operator for reviewing, or using the interpolating method, which should not
degrade the signal significantly; whereas the latter might result in preserving the distortion
in the signal.

The comparison to the other anomaly detectors shows that the proposed solution out-
performs these methods. In the best-tested configurations, they were capable to identify (as
outliers) approximately 2/3 of peaks, and a small part (5–10%) of heavy noise-contaminated
samples (usually the initial ones before the local variance or MAD value increased in the
presence of the noise, so much that the thresholds did not intercept the noise anymore). The
two other signal anomalies—step and slow change—remained invisible to these methods
(excluding a single accidental case in M3S. Meanwhile, our approach (Figure 14c) was
capable of identifying approximately 90% of the first two anomalies and above 75% of the
latter two, which were ‘invisible’ to the generic detectors.

Regarding false detections, in most cases (all but one), both the generic methods
returned small numbers of false positive detections. We attributed this to the overall low
sensitivity of these methods, and in cases when the detection rates were a bit higher, false
positives were also elevated (Figure 15a,f,g).

Both the M3S and Hampel filter are methods that consider each coordinate separately;
therefore, they do not use inter-marker dependencies. This allowed us to identify individual
anomalous coordinates. Regrettably, because of the latter, we had to reject the other (more
sophisticated) methods of anomaly detection based on machine learning, such as clustering,
one-class SVM, or autoencoders as insufficient. In their basic variants, they considered
the whole frame of a recording as a single observation with coordinates as features. This
implies that they could potentially point out anomalous frames in sequence, but they would
not identify what marker/dimension is the problem. One might think of adopting such
approaches to anomaly detections; however, it would require a separate in-depth study.
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Figure 15. Averaged confusion matrix for detection with M3S (a–d) and the Hampel filer (e–h) of
synthetic anomalies for a 1000-fold simulation with 10-mm average amplitudes of distortions and a
share 20% of the time (blue—successful results, red—faulty).

4.2.2. Comparing to Human Operators

Table 2 comprises the numbers of detected distortions in the recording processed in a
standard pipeline, and the recording processed by each of the four operators. The detected
distortions were compared and verified by human operators, who either approved the
classifications or rejected them.

In the recording processed by the machine, the proposed algorithm found 29 errors—
peaks, step, and slow changes; 16 of these errors were correctly classified. The algorithm
classified sudden, very dynamic hand movements in a relatively static recording as slow
changes (13 incorrectly classified errors). In addition, the algorithm did not detect four
errors; after careful analysis, it turned out that these errors did not belong to any of the
previously defined classes—they were a combination of a single peak and a slow change.
An example of such an error is shown in Figure 16. Such an artifact (having a relatively
large amplitude) could be intercepted if the slow change detector had different parameters,
but it would require setting up a smaller value for a minimal length of an artifact. It could
result in an increased number of false positives for this class, as this parameter prevents
false alerts of the short-term fluctuations of the NN predictor. It is worth mentioning
that the slow change detector reacts properly for a mixed class of artifacts—step changes
followed by slow relaxing to the proper trajectory (or slow error accumulation followed
by immediate correction) do not cause detection for any of the detectors based on finding
derivative pairs, but they properly trigger detection for the deviations from the predictor if
they are long enough. In fact, all the deviations that are large and long enough would be
identified as slow changes. It is a matter of human interpretation whether we can name
them as slow; however, that name distinguishes them well from all of a sudden changes
we identified based on the differential analysis.
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Table 2. Comparing the number of distortions located by the proposed method to the human
operator (E2).

Operator Seq. No Recording
Errors Identified by Error Verification

Human Algorithm Approved Rejected Missed

None 2 Sitting — 29 16 13 4

Expert 2 Sitting 20 9 0 0 0

Intermediate 2 Sitting 18 11 2 9 0

Beginner 1 2 Sitting 10 37 20 17 2

Beginner 2 2 Sitting 11 46 26 20 1

1574 1576 1578 1580 1582 1584 1586 1588
Time [sample]

360

380

400

420

440

460

X
 [m

m
]

Figure 16. Additional combined distortion types (red line indicates faulty values).

In the recording processed by the expert, the algorithm again incorrectly classified the
hand movements as slow changes. The result was similar for the intermediate operator, with
the difference that the algorithm found two errors omitted by the human (two small peaks).

In the case of a recording repaired by beginners, both the algorithm and the expert
found more errors after the repair than before. This was due to the selection of an inap-
propriate method of repairing a given artifact. For example, when the distortion occurred
only on one axis, the person, in order to correct the error, removed the marker trajectory for
those few frames when the error occurred. This resulted in the creation of an additional
gap, which the beginner operator filled using simple interpolation. In the case of longer
artificial gaps, interpolation caused the data to be incorrectly reconstructed, and the errors
no longer appeared on one axis, but on all three.

4.2.3. Applicability Testing

The results are presented in Tables 3–5. Each field presents the averaged RMSE of a
200-fold repeated simulation process, distorting the test sequence and its reconstruction
using various procedures. Each distortion type was considered separately. It allowed us
to quantify how each reconstruction method reduced the distortion. Figure 17 illustrates
the reconstruction results, demonstrating the ground truth, distorted signal value, and
outcomes of four variants of reconstruction. In the tables, for each distortion type and
reconstruction method, we compare two RMSE values: hypothetical perfect classification
and actual classification with the proposed algorithm.
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Table 3. RMSE after reconstruction with different methods (with perfect and algorithmic artifact
classifications) for the mocap sequence with a 5% distorted time in the sequence.

Peaks Heavy Noise Step Change Slow Change

Distorted 0.19065 0.17717 0.18069 0.10129

Linear interpolation (perfect) 0.00136 0.18322 0.15939 0.18795
Linear interpolation (classified) 0.03947 0.18514 0.15623 0.29339

Savitzky–Golay filter (perfect) 0.01900 0.04963 0.17440 0.10130
Savitzky–Golay filter (classified) 0.08159 0.06855 0.17553 0.10173

Spline interpolation (perfect) 0.00025 0.11041 0.09780 0.10972
Spline interpolation (classified) 0.03429 0.68692 0.10895 0.19935

FFNN predictor (perfect) 0.01841 0.01953 0.01933 0.01875
FFNN predictor (classified) 0.03944 0.04547 0.04409 0.11000

Table 4. RMSE after reconstruction with different methods (with perfect and algorithmic artifact
classifications) for the mocap sequence with a 10% distorted time in the sequence.

Peaks Heavy Noise Step Change Slow Change

Distorted 0.26906 0.26340 0.26282 0.15037

Linear interpolation (perfect) 0.00186 0.25487 0.28409 0.27662
Linear interpolation (classified) 0.05144 0.26360 0.27618 0.38908

Savitzky–Golay filter (perfect) 0.02678 0.07211 0.25361 0.15046
Savitzky–Golay filter (classified) 0.08959 0.08895 0.25510 0.15083

Spline interpolation (perfect) 0.00039 0.14679 0.15207 0.15955
Spline interpolation (classified) 0.04754 0.95512 0.16358 0.23918

FFNN predictor (perfect) 0.02785 0.02468 0.02581 0.02612
FFNN predictor (classified) 0.05537 0.05201 0.06349 0.14717

Table 5. RMSE after reconstruction with different methods (with perfect and algorithmic artifact
classifications) for the mocap sequence with a 20% distorted time in the sequence.

Peaks Heavy Noise Step Change Slow Change

Distorted 0.38228 0.39623 0.39247 0.21676

Linear interpolation (perfect) 0.00273 0.44107 0.44015 0.39172
Linear interpolation (classified) 0.07007 0.45679 0.45630 0.55692

Savitzky–Golay filter (perfect) 0.03880 0.11228 0.37892 0.21704
Savitzky–Golay filter (classified) 0.10383 0.16007 0.38120 0.21748

Spline interpolation (perfect) 0.00058 0.24337 0.28188 0.25274
Spline interpolation (classified) 0.06753 1.58979 0.37534 0.35679

FFNN predictor (perfect) 0.04169 0.03711 0.03972 0.03735
FFNN predictor (classified) 0.07903 0.11433 0.10284 0.20549

In the results, we recognize the different efficiencies of the tested reconstruction
methods for different distortions. We could also clearly observe that the efficiency of
detection of the artifacts directly affects the ability to restore the signal. The key observations
are summarized in a few points:

• Peak changes were effectively removed with interpolation methods—simple linear
or spline (piecewise cubic polynomial); the other two methods in perfect detection
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would not offer even comparable efficiency, yet in actual classification, they offered
just slightly worse performances.

• FFNN offered the best performance for all ‘bulky’ distortions (of longer durations),
both hypothetical and classified cases.

• Heavy noise, aside from FFNN, was well cleaned with the Savitzky–Golay filter (see
Figure 17b).

• Step changes could be effectively removed with FFNN only.
• Slow changes were the most contradictory—the only appropriate reconstruction

method was FFNN; in the case of perfect detection, the efficiency was high, but due
to the limited actual detection, the results were quite poor. These results correspond
well to the detection of slow changes in E1—low sensitivity and high fall out.

The above outcomes of reconstruction are just preliminary results. They should be
further analyzed in a separate study for the possible reconstruction methods involving other
predictors, interpolations, the rigid body model, and projections on geometric constraints.
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Figure 17. Artifacts and the removal with methods tested in E3: (a) single peaks, (b) heavy noise,
(c) step change, (d) slow change. Please mind the various scales in the axes.

4.3. Results Recap

All above outcomes indicate that the proposed approach offers reasonable results.
Experiment E1 proves that sudden changes are way easier to detect than slow changes, but
slowly accumulated errors are also detectable (with less efficiency). It is mainly a matter of
predictor efficiency, so the amplitude of distortions is a key factor affecting artifact locating.

Another disputable aspect is the fact that there is no simple possibility to compare
the detection and classification efficiencies to the other solutions, as this work is the first
proposal in this area. The only method that is somewhat comparable to ours is publicly
unavailable. Moreover, it is capable of segmenting artifacts only and cannot classify
distortions, so the performance comparison, if possible, would be very limited.

Comparing the reconstruction efficiency (as in E3) to the existing repairing method—
the classification efficiency would not only be evaluated, but also (foremost) the quality of
the reconstruction algorithm.

However, we were able to compare the efficiency of our solution to the industrial-
grade software in an indirect way, as described in E2. Automatic repairing algorithms
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offered within modern software (Vicon Nexus) could degrade the sequence (increase the
number of artifacts)—this is well illustrated by the results of the novice operators, who
used automatic repairing, resulting in an increased number of artifacts.

Additionally, referring to our experience with the state-of-the-art software, when using
the ‘find bad data’ function in the Vicon Blade software, it is not the best option to let the
software do everything for us. This method requires three parameters: threshold (allowed
deviation in millimeters), cut-off (the cut-off frequency), and sensitivity (amplifies the effect
of the cut-off frequency). Unfortunately, this method requires one to set different values
to find different errors. Moreover, these parameters may be different for each recording,
e.g., more dynamic recordings require increasing the threshold. Another drawback is the
fact that each marker trajectory is treated separately, with no inter-marker relations, so slow
changes are invisible to that method.

Finally, in the proposal, we presumed that (for certain markers) there was one distor-
tion type at a time. This might not be true in some cases; however, this matters in rare cases,
since one fault usually happens at a time, or one is dominant and clutters the others. Some
combinations of errors can be well distinguished (e.g., peaks/noise during slow change),
whereas others cannot (step changes within noise). Therefore, as we demonstrated in E2,
such an algorithm cannot replace experienced operators but can be of assistance, making
the jobs faster and less burdensome.

5. Summary

In this article, we addressed the issue of artifacts occurring in the mocap signal. We
proposed a method for their detection and demonstrated how to employ the detection
method to improve signal fidelity. The method proposed in this article seems to be quite
effective for sudden changes, and it can detect distortions of relatively small amplitudes.
As for the slow changes, their outcomes are moderate, since we observed a relatively large
number of false positive detections. However, we expected that this class of distortions
might be difficult to detect. This topic is worthy of further study.

Compared to human operators, the proposed solution cannot outperform experienced
professionals; however, it offers a notably better performance than a novice operator. On
the other hand, even for an expert, it can save time by suggesting locations to review.

The proposal could be adopted in existing software as an optional step of signal refine-
ment and/or for automatic support for the mocap sequence editors. Further improvements
are still possible, but require additional research, such as employing better predictive
models. Moreover, the engineering approach could be beneficial for detection efficiency.
One improvement could be to detect distortions for all three coordinates of a marker, jointly,
since distortions usually occur in more than a single coordinate. Moreover, studying the
reconstruction methods is a topic that we plan to investigate in the future.
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Abstract: Two-dimensional (2D) multi-person pose estimation and three-dimensional (3D) root-
relative pose estimation from a monocular RGB camera have made significant progress recently. Yet,
real-world applications require depth estimations and the ability to determine the distances between
people in a scene. Therefore, it is necessary to recover the 3D absolute poses of several people.
However, this is still a challenge when using cameras from single points of view. Furthermore, the
previously proposed systems typically required a significant amount of resources and memory. To
overcome these restrictions, we herein propose a real-time framework for multi-person 3D absolute
pose estimation from a monocular camera, which integrates a human detector, a 2D pose estimator,
a 3D root-relative pose reconstructor, and a root depth estimator in a top-down manner. The proposed
system, called Root-GAST-Net, is based on modified versions of GAST-Net and RootNet networks.
The efficiency of the proposed Root-GAST-Net system is demonstrated through quantitative and
qualitative evaluations on two benchmark datasets, Human3.6M and MuPoTS-3D. On all evaluated
metrics, our experimental results on the MuPoTS-3D dataset outperform the current state-of-the-art
by a significant margin, and can run in real-time at 15 fps on the Nvidia GeForce GTX 1080.

Keywords: 3D multi-person pose estimation; absolute poses; camera-centric coordinates; computer
vision; artificial intelligence; deep-learning

1. Introduction

Human pose estimation (HPE) is a popular task in computer vision. It aims to predict
and track the location of joints (e.g., elbow, wrist) or body parts of one or more human
bodies; it associates them with segments in graphical form (from an image or sequence
of images) to represent the human’s orientation and it describe the actual posture. This is
an important process for understanding human behavior and human–computer interac-
tions. An example of a human posture skeleton is illustrated in Figure 1.

With human pose estimation, tracking a person or multiple people in real space can
be done at an incredibly granular level. This powerful capability unlocks a wide range of
industrial applications [1–8], including gaming, animation, motion transfer, augmented real-
ity, human–robot cooperation and training, biomechanical analysis for medical/healthcare,
sports fields, gesture control, autonomous driving, human fall detection, action prediction,
security and surveillance, etc.

Pose estimation can be performed in two ways: in a two-dimensional space to predict
XY image coordinates or in a three-dimensional space to predict the XYZ camera or world
coordinates. However, most real-life applications require depth estimation, which provides
informative knowledge since 2D poses are often confusing. They can appear identical when
in fact they represent completely distinct poses. This makes activity recognition difficult
and leads researchers to employ 3D pose estimation.
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Figure 1. 3D Skeleton model in MuPoTS-3D format and joints names.

Recently, 3D root-relative human pose estimation has shown remarkable progress.
Several methods [9–14] propose alleviating the problem by using multi-view images or
videos as input. However, multi-view observations are expensive to obtain in daily life
scenarios. Thus, the use of 3D human pose estimations from monocular images or videos
is in high demand. State-of-the-art approaches that use monocular data [15–22] usually
decouple the problem into two main phases: 2D pose estimation for joint detection and
localization in the image space, and then lifting of the 2D pixel coordinates to 3D keypoint-
position predictions in the camera space. In our research, we followed the same strategy
and focused on the second phase, i.e., the 3D pose reconstruction from a sequence of 2D
keypoints. Two-dimensional (2D) pose estimation is a popular vision problem that has
been studied in many works, e.g., [23–28] and has been greatly improved especially using
the deep learning paradigm.

Indeed, 3D pose estimation approaches show promising results on single-person
datasets, such as Human3.6M [29] and HumanEva-I [30]. However, they do not perform
well in multi-person scenarios, which are the most common cases in real-world applications
and surveillance systems. The distances between people can be crucial in the analysis and
recognition of their interactions. This introduces the absolute pose [31–33], which aims
to locate the root joint (key central point of the person) and estimate its distance from the
camera. At present, the 3D multi-person pose estimation still faces a great challenge. When
possible, stereo vision calibration is used to determine the exact position of a person from
images taken from different points of view. However, these kinds of data are not always
available, and they significantly raise the overall costs of the process procedures. Moreover,
acquiring such data is impractical in real-time system applications, as we seek to optimize
the amount of data that must be captured and processed. This shows the gap between
scientific literature and real-world requirements.

The purpose of this study was to present a framework that could accomplish more
accurate and robust 3D multi-person pose estimations from a monocular video, from
these circumstances and industrial constraints. Thus, we propose an integrated top-down
approach that combines GAST-Net for reconstructing 3D root-relative keypoints from
2D keypoints and RootNet for estimating root depth from human bounding boxes. It
generates an appropriate 3D multi-skeleton estimation result from a monocular video while
maintaining low computational costs and short execution times.

Basically, the system is the result of a series of improvements that boost accuracy by
more than 8.8 percentage points on 3D-PCKabs on the MuPoTS-3D [34] dataset, when
compared to the approaches in the literature [31–33,35,36].

Examples of results from our whole framework are illustrated in Figure 2.
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Figure 2. Examples of 3D absolute poses resulting from our whole framework.

The main contributions of this work can be summarized as follows:

• The proposal of an integrated top-down framework based on a modified GAST-Net
and RootNet networks for multi-person 3D pose estimation from a monocular RGB
video in a short execution time.

• Outperforming existing 3D multi-person absolute pose estimation methods in a MuPoTS-
3D dataset by more than 8.8 percentage points on 3D-PCKabs and by more than
12.6 percentage points on AProot

25 .

The paper is organized as follows. Section 2 illustrates the review of conventional
literature on 3D pose estimation based on different levels: the input type (video), the
number of instances (multi-person), and the approach following the 3D root-relative pose
estimation (two-stage approach). Section 3 demonstrates the proposed framework method-
ology. Section 4 explains the implementation details, the results and discussion. Section 5
provides a conclusion of the work.

2. Related Works

2.1. Two-Stage Pose Estimation

Several works [22,37–43] apply deep neural networks on 3D pose estimation tasks
to learn the direct mapping between RGB images and their corresponding 3D poses in
one stage. However, this needs labeled data for supervised training, usually impractical
out of MoCap labs. Unsupervised learning algorithms require sophisticated architectures
with high computation costs, which are impractical too in realistic applications. To this
end, Martinez et al. [44] introduced a two-stage prediction approach. They first predicted
the 2D pose from the image and then lifted 2D joint coordinates to the 3D space via
a fully connected residual network. Fang et al. [45] introduced a model to encode the
mapping function of the human pose from 2D to 3D by explicitly encoding the human
body configuration with pose grammar. To improve the generalization of the trained 2D-to-
3D pose estimator, Gong et al. [46] proposed a pose augmentation framework (PoseAug)
exploiting a differentiable augmentation module based on a neural network. In Ref. [47],
the authors created a shape dictionary by collecting all 3D poses in the training set to
be aligned by the Procrustes method, to concisely summarize the variability in training
data and enable a sparse representation. A convex approach was then proposed to jointly
estimate the coefficients of the sparse representation. The same authors [48] predicted the
uncertainty heatmaps of the 2D joint locations, then combined these maps with a sparse
model of a 3D human pose to retrieve the 3D pose via an EM algorithm. Ref. [49] adopted
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a large library of 2D keypoints and their 3D representations to match the depths of the
2D poses estimated by the k-nearest neighbor algorithm. Hossain et al. [50] proposed
two 2-layered normalized LSTM networks with residual connections to leverage temporal
information for lifting 2D joint locations to 3D positions.

2.2. Video Pose Estimation

Although 3D coordinates can be determined from a single image, temporal algorithms
used in videos have better accuracies than simple frame-by-frame approaches. Most works
deploy recurrent neural networks (RNNs) [50,51] to exploit temporal information. Long
short-term memory networks (LSTMs) [52] are the most widely used RNN architectures
for learning long-term dependencies in pose estimation problems because of their ability
to preserve information over time. In [51], propagating LSTM networks (p-LSTMs) were
proposed to estimate depth information from 2D keypoints. Ref. [53] presented a two-part
spatial–temporal convolutional LSTM model (ST-CLSTM) to capture spatial features and
temporal consistency between frames. The authors used ST-CLSTM as the generator and
a 3D CNN as the discriminator to output the temporal loss from the estimated and ground
truth depth sequences. AnimePose [54] used Scene-LSTM to estimate the person’s temporal
trajectory and track overlapping postures in obscure frames based on their predictions in
prior frames. Temporal convolutional networks (TCNs) [55], on the other hand, give addi-
tional benefits, such as convolution sharing and low memory requirements for training; this
is very advantageous when dealing with extended input sequences. TCN evaluation and
training are hence faster than with RNN. As a result, they are becoming increasingly em-
ployed in pose estimation [35,37–39,56], especially in real-time systems [57,58]. Moreover,
Ref. [39] proposed employing dilated temporal convolutions in a fully convolutional model;
moreover, [59] used it as an automatic framework for semantic motion segmentation.
Li et al. [60] captured long-range dependencies using transformer-based architecture.

2.3. Spatial–Temporal Graph Convolution Network

Despite the acquired temporal information’s ability to anticipate smoother poses, the
depths and self-occlusions remain ambiguous. A graph convolutional network (GCN) was
used to exploit the spatiotemporal information that allowed to lower these ambiguities.
GCNs have greatly improved 3D human pose estimations by representing the human
skeleton as an undirected graph. The spatial–temporal graph convolutional network (ST-
GCN) [61] was the first approach to use graph CNNs for skeleton-based action recognition.
Zhou et al. [22] developed the semantic graph convolutional network (SemGCN) for the
3D human pose regression challenge. The SemGCN aims to learn by capturing semantic
information, such as local and global node relationships through end-to-end training. The
graph attention spatiotemporal convolutional network (GAST-Net) [57] also combines
common convolutional networks to integrate the spatiotemporal information. GAST-Net
comprises two types of graph attention blocks: a local spatial attention network (to model
the hierarchical and symmetrical structures of the human skeleton) and a global spatial
attention network (to extract global semantic information and better encode the human
body’s spatial characteristics). Cai et al. [62] developed an undirected graph to model the
spatial–temporal connections between distinct joints for 3D single-person pose estimation
from video data. In Ref. [32], the authors utilized a graphical neural network (GNN) to
efficiently aggregate the features corresponding to the different types of articulation, where
each type was represented by a graph node. The GCNs based on directed graphs were also
adopted by Cheng et al. [35] to model human joint GCNs that refine potentially imperfect
poses obtained from 2D pose heatmaps, and human bone GCNs, to model bone connections.
The authors also used two TCNs to estimate the 3D root-relative pose and the absolute root
depth. Finally, the dynamic graph convolutional module (DGCM) [63] applied GCN for
a multi-person 2D pose estimation framework.
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2.4. Multi-Person 3D Pose Estimation

Only a few studies were conducted on 3D multi-person pose estimation from a single
RGB image. Generally, existing methods can be divided into two categories: top-down and
bottom-up approaches.

Top-down 3D human pose estimation methods [64–66] commonly use human de-
tection as an essential part to crop each person in a bounding box and then estimate
person-centric 3D full-body joints [31,39,58]. These methods show promising performances,
but their main drawbacks still involve the independent detection and process of each
person. Hence, they are likely to suffer from inter-person occlusions and close interactions.
Rogez et al. [65,67] introduced LCR-Net, which classified bounding boxes generated into
a set of K-poses, refined using a regressor. The architecture contains three stages that
share the convolutional feature layers and are jointly trained. Likewise, Benzine et al. [68]
proposed the pose estimation and detection anchor-based network (PandaNet), an anchor-
based single-shot approach. The network predicts the 2D/3D pose regression into a single
forward pass for each bounding box detected in a given image.

To predict camera-centric, Moon et al. [31] processed each cropped person’s image
independently. They produced root-relative 3D joints using PoseNet [21] and estimated the
pelvis keypoint localization of each person using the RootNet model. Similarly, hierarchical
multi-person ordinal relations (HMOR) [69] is a coarse-to-fine architecture that hierar-
chically estimates multi-person ordinal relations through instance-level, part-level, and
joint-level. The end-to-end HDNet architecture [32] follows the same pipeline, extract pose,
and depth data using a pyramidal feature network [70] as the backbone. Features are then
propagated and aggregated using GNN for target depth estimation. In [35], after obtaining
the 2D poses from the 2D pose estimator, the poses were normalized to be centered on
the root point. Then, the authors used three temporal models—joint-TCN, root-TCN, and
velocity-TCN—to obtain absolute 3D human poses, but on monocular videos instead of
single images.

On the other hand, bottom-up approaches [34,71,72] first produced all body joint
locations and depth maps, then associated body parts to each person according to the root
depth and part relative depth. Mehta et al. [34] proposed a single forward pass regardless of
the number of people in the scene. The authors applied temporal and kinematic constraints
in three steps to predict occlusion-robust PoseMaps (ORPM) and part affinity fields [27].
Another bottom-up multi-stage framework was proposed by Zanfir et al. [73], which first
estimated the volumetric heatmaps to determine the 3D keypoint locations and limbs using
the confidence scores of all possible connections, and then conducted skeleton grouping in
order to assign limbs to various people. Likewise, Fabbri et al. [71] proposed estimating
the volumetric heatmaps in an encoder–decoder manner. They first produced compressed
volumetric heatmaps, which were used as ground truth, and then decompressed at test
time to re-obtain the original representation. Zhen et al. [33] proposed estimating 2.5D
representations of body parts first and then reconstructed the 3D human pose in a single-
shot bottom-up framework. Wang et al. [74] also proposed distribution-aware single-stage
models to represent 3D poses with a 2.5D human center, together with 3D center-relative
joint offsets in a one pass solution.

TDBU_Net framework [36] combined top-down and bottom-up pipelines to accom-
plish the multi-person camera-centric 3D human pose estimation.

In this article, we were inspired by all of these proposals in building a top-down
framework that could be used in real-world applications. We used monocular video as
input, as in [35,36]. Thus, to deal with long-term models, we chose dilated temporal
convolutional networks which only required the next images to produce real-time outputs.
To respect this constraint, we also needed a system that integrated as few models as possible,
unlike [35,36], while maintaining the highest possible accuracy.
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3. Framework Overview

The first part of this section presents the basic architectures used in our framework,
consisting of four phases: the human detector using Yolo-v3 architecture [75], the 2D human
pose estimator employing HrNet network [23], the 3D root-relative pose estimator using
the GAST-Net model [76], and the depth root estimator with the RootNet model [31]. The
second part describes the overall pipeline of the framework. The last part details the series
of enhancements of our framework on the 3D absolute pose estimator and their impacts on
the final result.

3.1. Basic Models Architectures

Human detector (Yolo-v3): This architecture [75] predicts bounding boxes using
dimension clusters as anchor boxes. The network predicts four coordinates for each
bounding box (bbox): the 2D image coordinates of the top-left pixel of the bbox, the width
and height of the bbox, and the confidence score. Darknet-53 was used for feature extraction.

2D pose estimator (HrNet): The high-resolution network [23] starts from a high-
resolution subnetwork and gradually adds high-to-low resolution subnetworks one by
one, by decreasing the resolution to half and increasing the width to double in separate
branches that connect in parallel. In that way, high-resolution representation is maintained
throughout the process. The input image size is 256 × 192 or 384 × 288, which produces
17 heatmaps (heatmap per each keypoint) of size 64 × 48 or 96 × 72 respectively. The
authors proposed a small network (HRNet-W32) with 32 channels and a large one (HRNet-
W48) with 48 channels.

3D root-relative pose estimator (GAST-Net): The majority of models that recently
analyzed and interpreted input video were based on temporal convolutional networks
(TCNs), which were initially introduced to action segmentation by Lea et al. [55]. The
GAST-Net (graph attention spatiotemporal network) [76] is inspired by VideoPose3D [39].
The network predicts 3D poses from 2D keypoints. It is designed from dilated temporal
convolutional networks (TCNs) to tackle long-term patterns and exhibit extended memory,
and from a graph attention block that consists of two spatial attention networks. The
local spatial attention network models the hierarchical and symmetrical structures of the
human skeleton. The global spatial attention network adaptively extracts global semantic
information to better encode the spatial characteristics of the human body.

Depth estimator (RootNet): Moon et al. [31] proposed a top-down system to estimate
3D multi-person poses from a single RGB image, consisting of human detection by the
DetectNet model, absolute 3D human root localization by the RootNet model, and root-
relative 3D single-person pose estimation by the PoseNet model. Both models adopt
ResNet-50 pre-trained on the ImageNet dataset as a backbone to extract the global data.
We are particularly interested in the RootNet model, which generates two outputs: the
2D image coordinates of the root’s keypoint (x, y) estimated using soft-argmax on the
root-heatmap (the central point of the individual), and the root depth absolute determined
using a scalar value k, computed using focal lengths divided by the per-pixel distance
factors and the human area ratio between the real-world and the image.

3.2. Taxonomy of the Framework

Given a sequence of bounding boxes from monocular RGB videos of a person or
a group of people in real-time, the goal was to produce a sequence of 3D camera-centric
coordinates of everyone in the scene. First, for each person, we assigned a unique ID i to
be tracked through the successive frames. Then, we applied a high-resolution network
(HRNet) [23] on each frame to produce 17 heatmaps. Each heatmap predicts 2D human
joint locations in MS-COCO format P2D for each detected individual.

The 2D-poses Pi
2D in 27 frames were collected and given thereafter to a 3D single-pose

estimator, GAST-Net, for direct 2D-to-3D mapping and recovering of the 3D root-relative
pose Pi

3Drel, where all produced joints were represented by their distances from the pelvis
keypoints. GAST-Net was applied (as much as the number of people in the frame).

360



Sensors 2022, 22, 4109

GAST-Net was chosen since it provides the best compromise between the number
of frames required to process and the estimation precision. In fact, the methods with the
best accuracies on monocular videos from Human3.6M (the largest database of 3D human
pose estimation) are: temporal convolution [39] trained in semi-supervision learning, the
Attention 3D Human Pose [77], which identifies significant frames and tensor outputs
from each layer using the attention mechanism, the RIE paper [43], which improves the
accuracy by relative information encoding that yields positional and temporal-enhanced
representations, and Anatomy3D [78], which estimates the 3D skeleton by predicting
bone orientation and length. These methods reached the MPJPEs (defined in Section 4)
of 44.1, 43.3, 45.1, and 46.8 mm, respectively, but required 243 frames as input. This is
very costly in terms of memory and processing time; moreover, this increases the delay
between the image display and the result, which is not favorable for real-time processing.
Furthermore, tracking several individuals on large time scales is more complicated and
error-prone. On the other hand, approaches that employ few frames have higher errors.
For example, VIBE [79] only used 16 frames but attained an MPJPE error of 65.6 mm, as
well as TP-Net [80] which required 20 frames but had an average error of 52.1. Trajectory
space factorization [41] scored an error of 46.6 mm from 50 frames; GAST-Net achieved
an MPJPE of 46.2 mm using 27 frames. Thus, it presents a good compromise for use in
real-world contexts.

For absolute depth estimation of the pelvis keypoint, we employed the RootNet
network proposed in [31], due to its adaptability to any 3D root-relative estimator.

The proposed overall pipeline for estimating the absolute camera-centered coordinates
of multi-person keypoints from a monocular camera is depicted in Figure 3. The pipeline
comprises three boxes. Person detection and 2D keypoint estimation are included in the
first box (green). The second box (orange) contains the 2D to 3D lift, and the last box (blue)
contains the depth estimation.

3.3. 3D Absolute Pose Estimator

The purpose of this work was to develop a 3D multi-person camera-centric pose
estimation system under industrial and real-world settings. Therefore, we started with
a hybridization of well-chosen models, GAST-Net for predicting 3D root-relative keypoints
and a RootNet network proposed in [31] for predicting absolute root depth (i.e., the depth
of pelvis keypoint), obtained by multiplying k (defined above) by the scalar value of the
network output. Then, the XY camera coordinates of the root were determined using the
camera-intrinsic parameters, the image coordinates of the root, and the predicted absolute
root depth. Finally, the absolute coordinates of the rest of the joints were estimated from
these two predictions. We call this hybridization the GR method. On the MuPoTS-3D
dataset, the system adopting the GR method outperformed previous methods by more
than 12.1 percentage points on AProot

25 , contributing to more than 6.7 percentage points
on 3D-PCKabs. However, we observed that the root-relative keypoints were less good by
25.8 percentage points on PCK, which sparked the idea to upgrade the GAST-Net. While
the original GAST-Net was trained on single-person databases [29], we chose to retrain our
model on both a single-person video database (MPII-3DHP [81]) and a multi-person video
database (MuCo-Temp [56]) with the required processing, following [56], to produce direct
absolute keypoint coordinates. The TCN-based approaches evaluated on MuPoTS-3D
were trained on the MPII-3DHP database, containing videos of a single person recorded
in a green-screen studio and/or on the MuCo-3DHP database, composed of MPII-3DHP
frames, containing multiple positions copied into a single frame. For this, in order to train
the temporal networks, such as GAST-NETABS, [56] proposed MuCo-Temp, a temporal
extension of MuCo-3DHP that was generated, such as MuCo-3DHP, but it is composed
of videos instead of frames. As a result, the relative keypoint precision enhanced from
63.8% with the basic GAST-Net to 82.5% on PCK with our modified GAST-Net, which
contributes to 1.6 percentage points in absolute points on 3D-PCKabs when compared to
the first methodology of hybridization. Note that in the following we name the upgraded
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GAST-Net by GAST-NETABS, and this methodology by the GA method. We noticed that
although AProot

25 of GAST-NETABS (measuring the root depth estimation) has improved
compared to the state-of-the-art, it is still not as good as the first hybridization methodology
. This pushed us to compute the root-relative keypoints from the absolute keypoints
obtained by GAST-NETABS and employ the RootNet for root depth estimation, generating
final absolute joints. We call this methodology the GAR method. In this way, we increased
the accuracy (compared to the literature approaches) by more than 8.8 percentage points
on 3D-PCKabs. Figure 4 presents the structural diagram of the various types of networks
used in the framework.

All these experimental results will be presented, detailed, and analyzed in the next
section (Section 4).

Figure 3. The pipeline of the Root-GAST-Net framework.
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Figure 4. The structural diagram of the various types of networks used in the framework.

4. Experimentation and Results Discussion

This section deals with the experimental details and results of the proposed system.
Results are discussed and evaluated using MPJPE, MRPE, 3D-PCK, AProot

25 , 3D-PCKabs
metrics and response times. The proposed Root-GAST-Net system and its three variants
(GR, GA, GAR), 3D pose absolute methodologies, were compared to the existing methods
grouped in papers_With_Code link of 3D multi-person pose estimations (absolutes) on the
MuPoTS-3D page ( https://paperswithcode.com/sota/3d-multi-person-pose-estimation-
absolute-on, accessed on 1 April 2022). The compared methods are 3D MPPE PoseNet [31],
HDNet [32], SMAP [33], HMOR [69], GnTCN [35], and TDBU_Net [36]. The goal of
evaluating the three methodologies was to measure the impact of each adjustment.

4.1. Datasets and Evaluation Metrics

Human3.6M is the most popular and biggest dataset/benchmark for 3D human pose
estimation [29]. It contains 3.6 million single-person indoor video frames and the corre-
sponding poses of 11 professional actors (6 males, 5 females) captured by the MoCap system
from 4 camera viewpoints. Camera extrinsic (rotation and translation with respect to world
coordinates) and intrinsic parameters (focal length and principal point) are also available.
This could be used to evaluate the single-person-centric pose estimate [39,41,43,57,77–80]
as well as the camera-centered coordinate prediction [31–33,35,36,69]. Only subjects 9 and
11 were used for testing, as in prior studies.

For evaluation, we computed the mean per joint position error metric (MPJPE), which
is the mean Euclidean error averaged over all joints and all poses, calculated after aligning
the human root of the estimated and ground truth 3D poses, calculated on relative poses,
as shown in the formula below:

MPJPE =
1
T

1
N

T

∑
t=1

N

∑
i=1

∥∥∥∥J(t)i − Ji
∗(t)∥∥∥∥

2
, (1)

where T denotes the total number of test samples and N denotes the number of joints. J
and J∗ denote the predicted joint and the ground truth joint, respectively.

Another evaluation metric used in this database, proposed in [31], is the mean root
position error (MRPE), which is the average error of the absolute root joint (the hip)
localization, as follows:
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MRPE =
1
T

T

∑
t=1

∥∥∥(R(t) − R∗(t))
∥∥∥

2
, (2)

where R and R∗ denote the predicted root joint and the ground truth root joint respectively.
MuCo-3DHP and MuPoTS-3D MuCo-3DHP and MuPoTS-3D are two datasets pro-

posed by Mehta et al. [34] for 3D multi-person pose estimation evaluation. MuCo-3DHP
is the training dataset that merges randomly sampled 3D poses from a single-person 3D
human pose dataset MPI-INF-3DHP [81] to form realistic multi-person scenes. MuPoTS-3D
is a dataset used for testing 3D multi-person estimation. It contains 20 videos in both
indoor and outdoor scenes. Ground truth is obtained with a multi-view markerless motion
capture system.

In order to evaluate person-centric pose estimations, we used the percentage of a cor-
rect 3D keypoint (3D-PCK), which treats an estimated joint as correct if it is within a fixed
threshold distance from the matched ground truth joint. In the literature, the threshold is
set to 15 cm. We also used AUCrel , which is the area under the 3D-PCK curve computed
from various thresholds.

We followed [31] to evaluate the absolute camera-centered coordinate estimations.
We used average precision AProot

25 to measure the 3D human root location prediction
error, which considers the prediction as correct when the Euclidean distance between the
estimated and the ground truth coordinates is smaller than 25 cm. Moreover, we used
3D-PCKabs, which is PCK without the root alignment used to evaluate the absolute poses.

MuCo-Temp This dataset was proposed by [56]. It is generated in the same way as
MuCo-3DHP. Both use images composited from the MPI-INF-3DHP dataset. The difference
is that MuCo-Temp consists of videos instead of frames. So we can use it for temporal
network training.

4.2. Implementation Details

We adopted Yolo-v3 architecture [75], which is based on the Darknet-53 model as
a backbone and is pre-trained on the COCO dataset [82]. The input resolution is 608 × 608.

The cropped image of the bounding box was transformed to 384 × 288 to be used as
input for the 2D pose estimator. The transformation applied was an affine transformation
that preserves collinearity, parallelism, and the ratio of distances between the points, as
in [23]. A unique ID was assigned to each person using the tracking method [83] based
on the Hungarian optimization algorithm. Then, we used the small architecture of HrNet
(HRNet-w32) pre-trained on the COCO dataset [82], implemented in PyTorch. The output
was 17 heatmaps (resolution: 96 × 72). Cropping was resized to 256 × 256 to be processed
by RootNet for depth root prediction Zroot

abs . A unique ID was affected for each person using
the tracking method based on the Hungarian optimization algorithm. The 27 consecutive
2D coordinates were collected for each person, to be given to GAST-NET.

All networks, except GAST-NET, were optimized to TensorRT ( https://developer.
nvidia.com/tensorrt, accessed on 1 April 2022), a Nvidia library allowing to optimize
computations on the GPU in order to reach lower computation times. This library also offers
lower precision arithmetic but in our experiments, we kept models in the FP32 precision.

For GAST-NETABS training, we used the Adam optimizer with a learning rate of
1 × 10−3 and a batch size of 32. We trained the model for 80 epochs on MPII-3DHP [81]
and MuCo-Temp [56] datasets. Computations were performed at the supercomputer
facilities at Mésocentre Clermont Auvergne University for one week.

Finally, the detected bounding box was resized to 256× 256 to be processed by RootNet
for depth root prediction Zroot

abs .

4.3. Results
4.3.1. Evaluation of Multi-Person Dataset MuPoTS

The results of our system with the three improvements are listed in Table 1, which can
be compared to the literature results. We evaluated using the MuPoTS-3D dataset since it
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has been used to analyze 3D multi-person poses in both person-centric and camera-centric
coordinates. Following [31,35], the performance of person-centric 3D pose estimation was
evaluated using AUCrel and PCK metrics, while camera-centric 3D pose estimation was
evaluated using AProot

25 and PCKabs metrics. The detailed PCKabs results per sequence are
shown in Table 2. We observed an improvement in the estimation accuracy in most of
the sequences.

According to both tables, all our strategies outperformed previous 3D multi-person
absolute pose estimation approaches by a significant margin, even if the relative poses
were weaker.

Table 1. Person-centric and camera-centric evaluations on the MuPoTS-3D dataset. The best is in
bold, the second best is underlined.

Method Year PCK AUCrel 3D-PCKabs AProot
25

3D MPPE PoseNet [31] 2019 81.8 39.8 31.5 31.0

HDNet [32] 2020 83.7 - 35.2 39.4

SMAP [33] 2020 80.5 45.5 38.7 45.5

HMOR [69] 2020 82.0 43.5 43.8 -

GnTCN [35] 2021 87.5 48.9 45.7 45.2

TDBU_Net [36] 2021 89.6 50.6 48.0 46.3

DAS [74] 2022 82.7 - 39.2 -

Root-GAST with GR - 63.8 30.6 54.7 58.4

Root-GAST with GA - 82.5 45.3 56.1 56.8

Root-GAST with GAR - 82.5 45.3 56.8 58.9

Table 2. Sequence-wise 3D-PCKabs comparison with the state-of-the-art on the MuPoTS-3D dataset.
(*) The accuracies of methods are measured on matched ground truths. The best is in bold, the second
best is underlined.

Method S1 S2 S3 S4 S5 S6 S7

3D MPPE PoseNet (*) [31] 59.5 45.3 51.4 46.2 53.0 27.4 23.7

HDNet [32] 21.4 22.7 58.3 27.5 37.3 12.2 49.2

SMAP (*) [33] 42.1 41.4 46.5 16.3 53.0 26.4 47.5

GnTCN (*) [35] 64.7 59.3 59.4 63.1 52.6 42.7 31.9

TDBU_Net [36] 69.2 57.1 49.3 68.9 55.1 36.1 49.4

Root-GAST with GAR (*) 89.8 77.0 73.4 77.0 81.0 54.3 68.4

Method S8 S9 S10 S11 S12 S13 S14

3D MPPE PoseNet (*) [31] 26.4 39.1 23.6 8.3 14.9 38.2 29.5

HDNet [32] 40.8 53.1 43.9 43.2 43.6 39.7 28.3

SMAP (*) [33] 18.7 36.7 73.5 46.0 22.7 24.3 38.9

GnTCN (*) [35] 35.2 53.0 28.3 37.6 26.7 46.3 44.5

TDBU_Net [36] 33.0 43.5 52.8 48.8 36.5 51.2 37.1

Root-GAST with GAR (*) 60.5 71.3 65.4 33.5 26.1 67.3 46.9
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Table 2. Cont.

Method S15 S16 S17 S18 S19 S20 Avg

3D MPPE PoseNet (*) [31] 36.8 23.6 14.4 20.0 18.8 25.4 31.8

HDNet [32] 49.5 23.8 18.0 26.9 25.0 38.8 35.2

SMAP (*) [33] 47.5 34.2 35.0 20.0 38.7 64.8 38.7

GnTCN (*) [35] 50.2 47.9 39.4 23.5 61.0 56.1 46.3

TDBU_Net [36] 47.3 52.0 20.3 43.7 57.5 50.4 48.0

Root-GAST with GAR (*) 66.9 35.7 40.1 38.5 26.0 35.3 56.8

The average precisions throughout the entire dataset were then examined using
various threshold settings ranging from 25 to 10 cm. AP measured the accuracy of the
root key point; we only evaluated the Root-GAST system’s performance using the GA
approach since GR and GAR methodologies employed RootNet to predict the root joint.
They produced the same result as the original paper. Table 3 displays the results. When
compared to the state-of-the-art methodology, our method significantly achieves greater
AP across all levels of thresholds. We deduce that our method estimates many more correct
root keypoints even with a low distance threshold.

Table 3. Average precision of the root keypoint evaluation by different distances on the MuPoTS-
3D dataset.

Method AProot
25 AProot

20 AProot
15 AProot

10

3D MPPE PoseNet [31] 31.0 21.5 10.2 2.3

HDNet [32] 39.4 28.0 14.6 4.1

Root-GAST with GA 56.8 47.1 36.8 22.4

To compare with most of the existing methods that evaluate person-centric 3D pose
estimations on MuPoTS-3D using MPJPE , we report our results using the same metric in
Table 4. Our result was 101.9 mm, the result of [34] was 132 mm, the result of [84] was 120
mm, the result of [56] when adding the pose refinement model was 103 mm. Our method
also outperforms the existing methods on this metric.

Table 4. MPJPE of the relative poses on the MuPoTS-3D dataset. The best is in bold, the second best
is underlined.

Method Year MPJPE (mm)

Temporal smoothing [56] 2020 107

Temporal smoothing + Pose refinement [56] 2020 103

Depth Prediction Network [84] 2019 120

LCR-Net [67] 2017 146

Mehta et al. [34] 2018 132

GAST-NetABS - 101.9

4.3.2. Evaluation on Single-Person Dataset Human3.6M

In order to validate the system, we chose Human3.6M, which contains only single-
person videos. Since we compared the results through the mean root position error (MRPE)
metric, which measured the accuracy error of the root key point, we only evaluated the
Root-GAST system’s performance using the GA approach. GR and GAR methodologies
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employed RootNet to predict the root joint; they produced the same result as the origi-
nal paper.

The root localization results of our GAST-NetABS and the RootNet model are shown
in Table 5. Even though the evaluation was performed on the Human3.6M dataset, we
employed the GA model that was retrained on MPII and the MuCo-Temp dataset, and
we compared it to the RootNet model that was trained on the MuCo dataset to make
a fair comparison. Our measurement error amounted to 158 mm, while that of [31] was
289.28 mm. However, we could expect greater improvement if we train our model in the
Human3.6M dataset.

Table 5. MRPE results comparison with RootNet [31] on the Human3.6M dataset. MRPEx, MRPEy,
and MRPEz are the average MRPE errors in the x, y, and z axes, respectively.

Method MRPE (mm) MRPEx (mm) MRPEy (mm) MRPEz (mm)

3D MPPE PoseNet [31] 289.28 35.95 58.65 268.49

Root-GAST with GA 178 33 41.9 158

4.3.3. Response Time

The response time is the processing time taken by the algorithm to process its input; it
depends on the material configurations. The Root-GAST-Net pipeline was implemented
in C++ and executed on a machine equipped with Intel Core i5-9500, with a dedicated
memory of 32GB, and the Nvidia GeForce GTX 1080, with a dedicated memory of 8GB.

A comparative analysis of the response times of each network is shown in Table 6.
The processing time was measured on batches of monocular images from the Human3.6M
dataset, each containing one person. Note that the processing time of the tracking step
is negligible.

Table 6. Response time per model.

Model
Min Response Time

(ms)
Max Response Time

(ms)
Average Response

Time (ms)

Yolo-v3 24 30 28
HrNet 9 12 10

GAST-Net 27 33 29
GAST-NetABS 23 29 26

RootNet 4 8 5

Finally, the frame rate of the whole pipeline with each strategy is given in Table 7. The
proposed Root-GAST-Net system can run at about 15 frames per second, which is suitable
for real-time scenarios. Therefore, improving the metrics does not impact the real-time
aspect of the pipeline.

Table 7. Frame rate per strategy.

Strategy Average Frame Rate (fps)

Root-GAST with GR 13
Root-GAST with GA 16

Root-GAST with GAR 15

4.3.4. Qualitative Results

As the system follows a top-down approach, the final result depends on all previous
outputs. If the detection is not correctly done, the 2D keypoints and depths will be wrongly
estimated, which will impact the absolute pose. If there are numerous people inside the
box or body parts that are partially outside the box’s bounds, the full-body joint calculation
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is likely to be incorrect, as shown in Figure 5. The confusion stems from erroneous 2D point
estimations, which have negative impacts on the 3D-lifted process.

Figure 5. Erroneous 3D multi-person pose estimation. The first two images represent two similar
poses of different people because one is completely occluded. In the right two images, one pose is
incorrect because the body parts are partially outside of the boxes.

5. Conclusions

In this work, we propose a top-down framework for 3D multi-person absolute pose
estimation, reconstructed from 2D poses from a monocular camera. Our framework Root-
GAST-Net can combine different models in three strategies. The GR strategy and GAR
strategy, which integrate human detection, 2D pose estimation, 3D human root-relative
single-person pose estimation, and root depth estimation. Moreover, the GA strategy
integrates human detection, 2D pose estimation, and 3D absolute pose estimation.

Experimental results on multiple datasets showed that our framework significantly
outperforms the recent approaches in 3D absolute multi-pose estimation. In addition, the
system can be used in real-time, as the execution time of each frame containing one person
takes around 60 milliseconds using the Nvidia GeForce GTX 1080. This can be reduced
using high-performance materials and FP16 precision.

In future works, we plan to retrain the model on the Human3.6M dataset to improve
the evaluation accuracy of this database. We also plan to develop a fall detection application
based on the absolute and relative 3D postures predicted by the Root-GAST-Net system.
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Abbreviations

The following abbreviations are used in this manuscript:

HPE human pose estimation
LSTM long short-term memory
GNN graph neural network
GCN graph convolution network
TCN temporal convolutional network
RNN recurrent neural network
MPJPE mean per joint position error
MRPE mean of the root position error
AUC area under the curve
3D-PCK percentage of correct key-points in 3D space
AProot average precision of the root keypoint
GPU graphics processing unit
GR first 3D absolute pose methodology: GAST-Net + RootNet
GA second 3D absolute pose methodology: GAST-NetABS trained on MuCo-Temp
GAR third 3D absolute pose methodology: GAST-NetABS trained on MuCo-Temp + RootNet
Root-GAST the whole pipeline: human detector + 2D pose estimator + 3D absolute pose estimator
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