3,298 research outputs found

    Enhancing Geospatial Data: Collecting and Visualising User-Generated Content Through Custom Toolkits and Cloud Computing Workflows

    Get PDF
    Through this thesis we set the hypothesis that, via the creation of a set of custom toolkits, using cloud computing, online user-generated content, can be extracted from emerging large-scale data sets, allowing the collection, analysis and visualisation of geospatial data by social scientists. By the use of a custom-built suite of software, known as the ‘BigDataToolkit’, we examine the need and use of cloud computing and custom workflows to open up access to existing online data as well as setting up processes to enable the collection of new data. We examine the use of the toolkit to collect large amounts of data from various online sources, such as Social Media Application Programming Interfaces (APIs) and data stores, to visualise the data collected in real-time. Through the execution of these workflows, this thesis presents an implementation of a smart collector framework to automate the collection process to significantly increase the amount of data that can be obtained from the standard API endpoints. By the use of these interconnected methods and distributed collection workflows, the final system is able to collect and visualise a larger amount of data in real time than single system data collection processes used within traditional social media analysis. Aimed at allowing researchers without a core understanding of the intricacies of computer science, this thesis provides a methodology to open up new data sources to not only academics but also wider participants, allowing the collection of user-generated geographic and textual content, en masse. A series of case studies are provided, covering applications from the single researcher collecting data through to collection via the use of televised media. These are examined in terms of the tools created and the opportunities opened, allowing real-time analysis of data, collected via the use of the developed toolkit

    Collaborative recommendations with content-based filters for cultural activities via a scalable event distribution platform

    Get PDF
    Nowadays, most people have limited leisure time and the offer of (cultural) activities to spend this time is enormous. Consequently, picking the most appropriate events becomes increasingly difficult for end-users. This complexity of choice reinforces the necessity of filtering systems that assist users in finding and selecting relevant events. Whereas traditional filtering tools enable e.g. the use of keyword-based or filtered searches, innovative recommender systems draw on user ratings, preferences, and metadata describing the events. Existing collaborative recommendation techniques, developed for suggesting web-shop products or audio-visual content, have difficulties with sparse rating data and can not cope at all with event-specific restrictions like availability, time, and location. Moreover, aggregating, enriching, and distributing these events are additional requisites for an optimal communication channel. In this paper, we propose a highly-scalable event recommendation platform which considers event-specific characteristics. Personal suggestions are generated by an advanced collaborative filtering algorithm, which is more robust on sparse data by extending user profiles with presumable future consumptions. The events, which are described using an RDF/OWL representation of the EventsML-G2 standard, are categorized and enriched via smart indexing and open linked data sets. This metadata model enables additional content-based filters, which consider event-specific characteristics, on the recommendation list. The integration of these different functionalities is realized by a scalable and extendable bus architecture. Finally, focus group conversations were organized with external experts, cultural mediators, and potential end-users to evaluate the event distribution platform and investigate the possible added value of recommendations for cultural participation

    Semantic medical care in smart cities

    Get PDF
    Medical care is a vitally important part of successful smart cities further development. High quality medical treatment has always been a challenging task for administrative departments of cities government. The key reason is that the treatment of patients significantly depends on the skills of medical stuff that can hardly be controlled and estimated. Semantic technologies by now have showed capabilities to solve highly complicated badly formalized problems in conditions of uncertainty. It makes reasonable to apply them in medical domain. In the paper a real example of information system for semantic medical care is presented. The system is being developed for Federal Almazov North-West Medical Research Centre in St-Petersburg, Russia (http://www.almazovcentre.ru/?lang=en). The main attention is paid to the proposed solution for the problem of medical treatment estimation in administrative and managerial departments. We focus on medical treatment examinations matching, trend analysis and administrative analytical and prediction task solving making use of semantic technologies, statistical analysis and deep learning applied to huge amounts of diverse data. Semantic medical data analysis project is an attempt to proceed to semantic medicine - an interoperable approach to medical domain area

    Winning the SDG battle in cities : how an integrated information ecosystem can contribute to the achievement of the 2030 sustainable development goals

    Get PDF
    In 2015, the United Nations adopted an ambitious development agenda composed of 17 sustainable development goals (SDGs), which are to be reached by 2030. Beyond SDG 11 concerning the development of sustainable cities, many of the SDGs target activities falling within the responsibility of local governments. Thus, cities will play a leading role in the achievement of these goals, and we argue that the information systems (IS) community must be an active partner in these efforts. This paper aims to contribute to the achievement of the SDGs by developing a conceptual model to explain the role of IS in building smart sustainable cities and providing a framework of action for IS researchers and city managers. To this end, we conduct grounded theory studies of two green IS used by an internationally recognized smart city to manage water quality and green space. Based on these findings, we articulate a model explaining how an integrated information ecosystem enables the interactions between three interrelated spheres – administrative, political and sustainability – to support the development of smart sustainable cities. Moving from theory to practice, we use two real‐world scenarios to demonstrate the applicability of the model. Finally, we define an action framework outlining key actions for cities and suggest corresponding questions for future research. Beyond a simple call‐to‐action, this work provides a much‐needed foundation for future research and practice leading to a sustainable future for all

    Semantic enrichment for enhancing LAM data and supporting digital humanities. Review article

    Get PDF
    With the rapid development of the digital humanities (DH) field, demands for historical and cultural heritage data have generated deep interest in the data provided by libraries, archives, and museums (LAMs). In order to enhance LAM data’s quality and discoverability while enabling a self-sustaining ecosystem, “semantic enrichment” becomes a strategy increasingly used by LAMs during recent years. This article introduces a number of semantic enrichment methods and efforts that can be applied to LAM data at various levels, aiming to support deeper and wider exploration and use of LAM data in DH research. The real cases, research projects, experiments, and pilot studies shared in this article demonstrate endless potential for LAM data, whether they are structured, semi-structured, or unstructured, regardless of what types of original artifacts carry the data. Following their roadmaps would encourage more effective initiatives and strengthen this effort to maximize LAM data’s discoverability, use- and reuse-ability, and their value in the mainstream of DH and Semantic Web

    Future of networking is the future of Big Data, The

    Get PDF
    2019 Summer.Includes bibliographical references.Scientific domains such as Climate Science, High Energy Particle Physics (HEP), Genomics, Biology, and many others are increasingly moving towards data-oriented workflows where each of these communities generates, stores and uses massive datasets that reach into terabytes and petabytes, and projected soon to reach exabytes. These communities are also increasingly moving towards a global collaborative model where scientists routinely exchange a significant amount of data. The sheer volume of data and associated complexities associated with maintaining, transferring, and using them, continue to push the limits of the current technologies in multiple dimensions - storage, analysis, networking, and security. This thesis tackles the networking aspect of big-data science. Networking is the glue that binds all the components of modern scientific workflows, and these communities are becoming increasingly dependent on high-speed, highly reliable networks. The network, as the common layer across big-science communities, provides an ideal place for implementing common services. Big-science applications also need to work closely with the network to ensure optimal usage of resources, intelligent routing of requests, and data. Finally, as more communities move towards data-intensive, connected workflows - adopting a service model where the network provides some of the common services reduces not only application complexity but also the necessity of duplicate implementations. Named Data Networking (NDN) is a new network architecture whose service model aligns better with the needs of these data-oriented applications. NDN's name based paradigm makes it easier to provide intelligent features at the network layer rather than at the application layer. This thesis shows that NDN can push several standard features to the network. This work is the first attempt to apply NDN in the context of large scientific data; in the process, this thesis touches upon scientific data naming, name discovery, real-world deployment of NDN for scientific data, feasibility studies, and the designs of in-network protocols for big-data science

    Doctor of Philosophy

    Get PDF
    dissertationClinical decision support systems (CDSS) and electronic health records (EHR) have been widely adopted but do not support a high level of reasoning for the clinician. As a result, workflow incongruity and provider frustrations lead to more errors in reasoning. Other successful fields such as defense, aviation, and the military have used task complexity as a key factor in decision support system development. Task complexity arises during the interaction of the user and the tasks. Therefore, in this dissertation I have utilized different human factor methods to explore task complexity factors to understand their utility in health information technology system design. The first study addresses the question of generalizing complexity through a clinical complexity model. In this study, we integrated and validated a patient and task complexity model into a clinical complexity model tailored towards healthcare to serve as the initial framework for data analysis in our subsequent studies. The second study addresses the question of the coping strategies of infectious disease (ID) clinicians while dealing with complex decision tasks. The study concluded that clinicians use multiple cognitive strategies that help them to switch between automatic cognitive processes and analytical processes. The third study identified the complexity contributing factors from the transcripts of the observations conducted in the ID domain. The clinical complexity model developed in the first study guided the research for identifying the prominent complexity iv factors to recommend innovative healthcare technology system design. The fourth study, a pilot exploratory study, demonstrated the feasibility of developing a population information display from querying real complex patient information from an actual clinical database as well as identifying the ideal features of population information display. In summary, this dissertation adds to the knowledge about how clinicians adapt their information environment to deal with complexity. First, it contributes by developing a clinical complexity model that integrates both patient and task complexity. Second, it provides specific design recommendations for future innovative health information technology systems. Last, this dissertation also suggests that understanding task complexity in the healthcare team domain may help to better design of interface system

    Urban data and urban design: A data mining approach to architecture education

    Get PDF
    The configuration of urban projects using Information and Communication Technologies is an essential aspect in the education of future architects. Students must know the technologies that will facilitate their academic and professional development, as well as anticipating the needs of the citizens and the requirements of their designs. In this paper, a data mining approach was used to outline the strategic requirements for an urban design project in an architecture course using a Project-Based Learning strategy. Informal data related to an award-winning public space (Gillett Square in London, UK) was retrieved from two social networks (Flickr and Twitter), and from its official website. The analysis focused on semantic, temporal and spatial patterns, aspects generally overlooked in traditional approaches. Text-mining techniques were used to relate semantic and temporal data, focusing on seasonal and weekly (work-leisure) cycles, and the geographic patterns were extracted both from geotagged pictures and by geocoding user locations. The results showed that it is possible to obtain and extract valuable data and information in order to determine the different uses and architectural requirements of an urban space, but such data and information can be challenging to retrieve, structure, analyze and visualize. The main goal of the paper is to outline a strategy and present a visualization of the results, in a way designed to be attractive and informative for both students and professionals - even without a technical background - so the conducted analysis may be reproducible in other urban data contexts.Postprint (author's final draft
    corecore