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ABSTRACT 

Clinical decision support systems (CDSS) and electronic health records (EHR) 

have been widely adopted but do not support a high level of reasoning for the clinician. 

As a result, workflow incongruity and provider frustrations lead to more errors in 

reasoning. Other successful fields such as defense, aviation, and the military have used 

task complexity as a key factor in decision support system development. Task complexity 

arises during the interaction of the user and the tasks. Therefore, in this dissertation I 

have utilized different human factor methods to explore task complexity factors to 

understand their utility in health information technology system design. 

The first study addresses the question of generalizing complexity through a 

clinical complexity model. In this study, we integrated and validated a patient and task 

complexity model into a clinical complexity model tailored towards healthcare to serve as 

the initial framework for data analysis in our subsequent studies. 

The second study addresses the question of the coping strategies of infectious 

disease (ID) clinicians while dealing with complex decision tasks. The study concluded 

that clinicians use multiple cognitive strategies that help them to switch between 

automatic cognitive processes and analytical processes. 

The third study identified the complexity contributing factors from the transcripts 

of the observations conducted in the ID domain. The clinical complexity model 

developed in the first study guided the research for identifying the prominent complexity 
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factors to recommend innovative healthcare technology system design. 

The fourth study, a pilot exploratory study, demonstrated the feasibility of 

developing a population information display from querying real complex patient 

information from an actual clinical database as well as identifying the ideal features of 

population information display. 

In summary, this dissertation adds to the knowledge about how clinicians adapt 

their information environment to deal with complexity. First, it contributes by developing 

a clinical complexity model that integrates both patient and task complexity. Second, it 

provides specific design recommendations for future innovative health information 

technology systems. Last, this dissertation also suggests that understanding task 

complexity in the healthcare team domain may help to better design of interface system. 
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CHAPTER 1 

INTRODUCTION 

Objectives and Research Questions 

The overall goal of this dissertation is to increase the understanding of complexity 

in clinical decision tasks. Complexity of a system is defined as the amount of information 

needed to describe its behavior [1]. Complexity also includes cognitive complexity, 

which focuses on the contents of the information flowing, and relational complexity, the 

relevant information flow among agents [2]. Also, any measure of complexity must be 

accounted for by the range of inputs and variations of personal traits of the task performer 

[3]. Therefore, the agent’s interactions with the tasks and goals are key to understanding 

the complexity of the domain. For the clinical domain, comprehension of overall 

complexity depends on an understanding of the clinician’s interactions with task 

complexity as well as the complexity of patient care. The main hypothesis of this study is 

that understanding the user’s interaction with complex decision tasks may lead to the 

integration of decision support tools with the electronic health record (EHR) to improve 

patient safety. For our studies, we explored how clinical experts interact with complex 

tasks to better understand the aspects of task complexity. 

First, we have conceptualized and validated a clinical complexity model (Chapter 

3) that includes both the patient and task complexity variables. This clinical complexity 



2 

 

model also helped us to explore and identify complexity-contributing factors in the ID 

domain (Chapter 5). Then, we conducted three studies to answer the following research 

questions: 

1. What are the specific constituents of complexity and the coping strategies 

for dealing with the complexity in the infectious diseases (ID) domain 

(Chapter 4)? 

2. What specific complexity-contributing factors are relevant in the ID 

domain, and what is their relationship to perceived complexity (Chapter 5)? 

3. Is it feasible to extract and display population-based information from a 

clinical database to support complex decision-making (Chapter 6)? What 

design features of population display may help with complex clinical 

decision-making? 

Rationale for Analysis 

The widespread adoption of health information technology (IT) by healthcare 

organizations has mostly been due to the HITECH (The Health Information Technology 

for Economic and Clinical Health) Act of 2009 [4]. To comply with the act and the 

criteria set forth by the Office of National Coordinator (ONC) for meaningful use of 

health IT, healthcare organizations have focused on implementation within the timeline. 

Also, health IT design has been more focused on support for billing processes rather than 

on better patient safety or improving clinical decision-making. As a result, importance 

has not been accorded to issues with health IT system design. Poor design and workflow 

interruptions are causing provider frustrations with and poor adoption of health IT 
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systems. Also, the workflow of a specific organization’s socio-technical complexities has 

largely been ignored [5]. Specifically, most of the systems in healthcare lack user- 

centered design. Other domains, such as aviation and military, have adopted user- 

centered design for better designing their information technology interfaces. In addition 

to the perils of computerized physician order entry (CPOE) risks identified by Koppel et 

al. [6], about 81% of health information technology events reported in the Pennsylvania 

Patient Safety study involved medication errors. Most of these errors were related to alert 

fatigue in decision support systems. Additional risks include the lack of understanding of 

clinician preferences for laboratory test results display in electronic health records 

(EHRs), resulting in the failure of timely follow-up for abnormal test results, which is the 

third most common EHR-related serious safety event [7]. To address these issues, it is 

important to understand how users interact with complex tasks and design systems based 

on the findings of users’ interactions with task complexity [8, 9]. 

Clinical decision support systems (CDSS) have been shown to improve the 

quality, safety, and value of healthcare. However, most of the studies demonstrating the 

benefits of CDSS were done in four healthcare organizations that have homegrown 

electronic health record (EHR) systems and advanced CDSS capabilities [10]. 

Conversely, typical commercial EHR systems, coupled with basic CDSS, have supported 

primarily low-level reasoning (i.e., drug-drug interaction alerts and preventive 

reminders). This kind of decision support fails to account for factors that complicate 

decision-making tasks, resulting in widely reported issues such as alert fatigue and lack 

of usage uptake [11-13]. We propose that CDSS should support high-level reasoning, for 

example, by providing a broad, system-level perspective of the patient and decision 



4 

 

alternatives [14]. For example, a visual display supporting high-level reasoning can 

empower the user to control and customize displays using filtering and retrieval functions 

to change the aggregation level of patient data from highly detailed to overall summaries 

[15]. Most studies outside healthcare have found that incorporating decision task 

complexity in the system design has the potential to improve the quality of decision-

making [8, 16, 17]. Therefore, to guide the design of high-level reasoning in CDSS, it is 

imperative to understand the complex decision-making patterns and factors that 

contribute to decision task complexity. However, despite substantial prior research on 

task complexity in other domains, less is known about task complexity in clinical 

decision-making [14, 18-20]. 

In this dissertation, we propose that the study results will help guide the design 

and allocation of innovative decision support tools to be embedded into the EHR or 

CDSS for better cognitive support. In Chapter 3, we develop the first clinical complexity 

model that includes both the task and patient complexity-contributing factors that guided 

our research to identify specific complexity-contributing factors in the ID domain. The 

specific coping strategies found in the cognitive task analysis (Chapter 4), the domain-

specific, complexity-contributing factors found in the observation study (Chapter 5), and 

the feasibility of designing a population information display and identifying ideal 

features (Chapter 6) provide a better understanding for innovative healthcare system 

design. 

Our research was guided by a theoretical framework of task complexity 

developed in other successful fields and proposed by Liu et al. and Schaink et al. [21] 

[22]. The framework conceptualizes 10 dimensions of task complexity, including size, 
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ambiguity, and novelty. The research was conducted in the domain of ID due to its 

dynamic complexity and importance for public health [23]. 

The project was coordinated with an experienced multidisciplinary informatics 

team at the University of Utah and the Salt Lake City Veterans Administration Medical 

Center. The Institutional Review Board (IRB) of the University of Utah approved the 

study for both sites. 

Significant Contributions 

The dissertation provides a better understanding of task complexity for intuitive 

and improved healthcare information technology system design. 

In the first study (Chapter 3), we developed a clinical complexity model from the 

task complexity framework proposed by Liu et al. and the patient complexity framework 

of Schaink et al. [21, 22]. Other domains of medicine can use this measurement model to 

identify domain-specific, complexity-contributing factors. Such complexity-contributing 

factors, once identified, can then help researchers and designers focus on these factors for 

better task allocation in the interface system or better usability. 

The constituents of complexity and the coping strategies in the second study 

(Chapter 4) provided the basis for a mental model of experts’ clinical complex decision-

making process. Understanding the coping strategies helped to guide the features 

necessary for decision-support design recommendations for better cognitive support for 

clinicians. 

The third study (Chapter 5), the observation study, revealed features of designing 

population information display for complex decision tasks and the complexity-
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contributing factors specific to the ID domain. We used the clinical complexity model 

from our first study and its complexity-contributing factors to identify the specific 

complexity-contributing factors for the ID domain. Finding these complexity-

contributing factors led to better design recommendations for different types of decision 

support to be embedded in the EHR. Also, this study helped us understand the 

relationship between perceived and objective complexity. 

The fourth study (Chapter 6) was an exploratory simulation study. This study 

demonstrated the feasibility of querying and extracting similar patient features to show in 

a single population information display. Also, we were able to identify specific design 

features for ideal population information display through the poststudy interview. This 

study paved the way for larger studies including more participants and complex cases 

with better and fine-tuned population information visualization display. 

Finally, the dissertation demonstrates the need to understand experts’ heuristics 

management and different goal representations of clinical tasks. Heuristics plays a major 

role in how information is stored and retrieved from a user’s memory for decision-

making [24]. Heuristics management by clinical experts can shed more light on which 

information is ignored and the foci of attention cues while taking care of complex 

patients. Goal representation depends on how the tasks are aligned with the different 

levels of expertise and motivation of clinical experts [25]. Understanding these different 

levels of goals may help us better design CDSS and EHR specifications based on 

clinicians’ different levels of expertise. 
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CHAPTER 2 

BACKGROUND 

Complexity From the Clinical Decision-Making Perspective 

Complexity refers to the amount of information needed to describe a 

phenomenon or observation under analysis. The closer the phenomenon is to 

randomness, the more data are needed until the phenomenon can be described within 

terms comprehensible by the mind [1]. Something is complex when it contains a large 

amount of important information that surpasses our ability to process. However, if 

something contains a large amount of useless and meaningless information, our mind 

simply ignores the information [2]. According to Plesk and Greenhalgh, a complex 

adaptive system consists of individual agents that are not always predictable and that 

have actions that are interconnected, and thus the actions of one agent can change the 

context for another agent [3, 4]. Therefore, the interconnected actions and interactions 

may provide better understanding of the complex system to be comprehensible by our 

minds. 

Different domains in medicine deal differently with complexity in patient cases. 

Thus, the decision-making process cannot be generalized for all areas of medicine. In 

medicine, the complexity in family medicine may explain the high intraphysician 

variability in patient management that is observed for general practitioners [5]. Therefore, 
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physicians adjust the care they provide based on the complexity of the clinical situation 

or case [6]. As a result, the feedback loop of learning is not very strong in practicing 

medicine due to the existing uncertainty and complexity. Most complex and unique 

patients do not fit into evidence-based guidelines. However, as we are moving towards 

evidence-based medicine, it is imperative to define complexity to better support patient 

care decisions. Physicians and nurses define complexity in patient cases from various 

perspectives, including task complexity as well as patient complexity [7-10]. However, 

researchers have not yet developed a model that describes complexity and decision-

making difficulty, especially in the area of infectious disease where treatment and 

diagnosis are urgent, and thus an understanding of the complex decision-making process 

is vital for the safety and quality of outcome for the patient. A group of physicians in the 

Veterans Administration Medical Center, Birmingham, Alabama, has developed a vector 

model of complexity. This model takes into account the different forces and their 

interactions that act on a patient, including biological, socioeconomic, cultural, 

environmental, and behavioral factors [11]. Still, the model does not focus on explaining 

the different factors that contribute to task complexity. Grant et al. categorized patient 

cases into different domains of complexity based on the perceptions of primary care 

physicians. They were not, however, able to identify characteristics of those domains [7]. 

De Jonge et al. made a very clear distinction between case and care complexity [12]. 

However, the issues of understanding the contextual factors of complexity stemming 

from the interactions between the clinician and tasks they perform have not been well 

studied. 
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Identifying Task Complexity Can Help With Design 

Task complexity is well defined in other successful areas of system design, 

including defense, the humanities, engineering, business, and the social sciences [13-18]. 

Several studies have found task complexity to be a crucial factor that influences and 

predicts human behavior and performance [13, 19-23]. Liu et al. conceptualized decision 

task complexity in 10 dimensions: size, variety, ambiguity, relationship, variability, 

unreliability, novelty, incongruity, action complexity, and temporal demand [20]. 

However, this model has not been applied in the healthcare domain. Our research used 

these successful approaches from other fields to identify the complexity-contributing 

factors in clinical decision tasks. 

The Value of Perceived Complexity 

Several studies have found task complexity to be a crucial factor that influences 

and predicts human behavior and performance [13, 19-23]. Even though there is no clear 

definition of task complexity, it can be better understood by dividing it into objective task 

complexity and perceived task complexity. Objective task complexity refers to the 

characteristics of the task model. In other words, it is the manipulation and quantitative 

assessment of task complexity based on the task model [20]. Perceived task complexity 

considers the task performer’s characteristics and the perceived difficulties of performing 

the task. Subjective task complexity is the complexity of the ‘state of mind’ of the 

individual who performs the task [24, 25]. Thus, subjective or perceived task complexity 

can shed light on why the task performer perceives the task at hand to be difficult. No 

research has been done on the factors that identify the features or domains contributing to 
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the perceived complexity factors for ID experts’ decision-making process. In this 

research, we adopted the perceived complexity constituents from the literature review of 

Liu et al. that were used in other domains outside healthcare [20]. The four constituents 

we used for measuring perceived complexity are diagnostic uncertainty, treatment 

unpredictability, perceived difficulty, and similarity of the cases. 

Contextual Factors of Patient/Case Complexity 

Currently, there are few methods for estimating complexity in either ambulatory 

care or specialties in medicine [4, 7, 26-28]. One study tried to define complexity from 

the perspective of “complexity theory,” but it did not take into account the different 

characteristics of patient complexity [29]. This study included some related measures of 

risk adjustment, such as case-mix measures, that are used to compare patients seen by 

primary care physicians and patients seen by specialty services. However, the study did 

not capture the dimensions of health status, demographics, health behavior, psychosocial 

issues or health behavior [30]. Another system, called ambulatory diagnostic groups 

(ADGs), uses a prediction system based on 51 ambulatory care groups and combined 

patients’ age and sex to create a risk score mechanism [31]. Another similar approach, 

Ambulatory Severity Index (ASI), combines biophysical and behavioral dimensions with 

a complexity severity index. This index also includes complexity based on urgency, 

complications, and communication [32]. Other systems, such as the diagnostic-related 

groups (DRGs) and case mix groups (CMGs), are based solely on medical diagnoses. 

However, these systems include too many patient groups, and their predictive power is 

limited. Their usefulness in defining case complexity is limited by the large differences 
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within the diagnosis-based groups [12]. The same DRG and CMG group developed a 

Complexity Prediction Instrument (COMPRI) using 117 items, including patient’s 

admission status, severity of illness ratings, living/working situation, stress, social 

support, activities of daily living, health status, previous healthcare use, compliance, drug 

abuse, and emotional status [33, 34]. Another group of researchers developed a new 

method for estimating the relative complexity of clinical encounters based on the care 

provided weighted by diversity and variability [26]. In another study, a theory-driven 

approach for case complexity assessment revealed three dimensions: frailty, neuroticism 

and metabolic syndrome [12]. All these different methods have focused on risk 

assessment and assigning a value of severity. However, the specific contextual factors for 

each disease state are different due to the nature of the disease state and the complex 

attributes of specific patient cases. On the other hand, our study was focused on the 

contextual factors of simple as well as complex cases (Chapter 5) in the infectious disease 

domain. 

Context of Complex Decision Task in CDS Design 

Most CDSS capabilities available in EHR systems (e.g., drug-drug interaction 

alerts) adopt an oversimplified approach to patient and decision-making tasks. This 

oversimplification tends to support low-level reasoning, which may lead to problems 

such as alert fatigue [35-41]. On the other hand, clinicians reason at higher levels of 

abstraction. Therefore, the key in decision support design is to provide the users an 

overall integrated view without overloading them with information [42]. Systematic 

reviews have found that an effective CDSS must minimize the effort required by 
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clinicians to process and act on system recommendations [36]. For the sake of a high 

level of reasoning and better adaptation of CDSS, we need to understand the context of 

complex decision tasks, the interactions between task attributes and the complexity-

contributing factors of specific decision tasks [21]. 
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Abstract 

Clinical experts’ cognitive mechanisms for managing complexity have 

implications for the design of future innovative healthcare systems. The purpose of 

the study is to examine the constituents of decision complexity and explore the 

coping strategies clinicians use to control and adapt to their information 

environment. 

We used Cognitive Task Analysis (CTA) methods to interview 10 Infectious 

Disease (ID) experts at the University of Utah and Salt Lake City Veteran’s 

Administration Medical Center. Participants were asked to recall a complex, critical and 

vivid antibiotic-prescribing incident using Critical Decision Method (CDM), a type of 

Cognitive Task Analysis (CTA). Using the four iterations of the Critical Decision 
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Method, questions were posed to fully explore the incident, focusing in depth on the 

clinical components underlying the complexity. Probes were included to assess cognitive 

and decision strategies used by participants. 

The following three themes emerged as the constituents of decision complexity 

experienced by the Infectious Diseases experts: 1) the overall clinical picture does not 

match the pattern, 2) A lack of comprehension of the situation and dealing with 3) social 

and emotional pressures such as fear and anxiety. All these factors contribute to the 

decision complexity. These factors almost always occurred together, creating 

unexpected events and uncertainty in clinical reasoning. Five themes emerged in 

analyses of how experts cope with the complexity. Expert clinicians frequently used 1) 

watchful waiting instead of over prescribing antibiotics, engaged in 2) theory of mind to 

project and simulate other practitioners’ perspectives, reduced very complex cases into 

simple 3) heuristics, employed 4) anticipatory thinking to plan and replan events, and 

consulted with peers to share knowledge, solicit opinions and 5) seeking help on patient 

cases. 

The cognitive switching of reasoning to deal with decision complexity found in 

this study has important implications to design future decision support systems for the 

management of complex patients. 

Background 

Electronic Health Record (EHR) systems hold great promise for the development 

of Clinical Decision Support Systems (CDS) [1]. CDS provides intelligently filtered, 

patient-centered information to clinicians, potentially leading to improved performance 
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and patient outcomes [2-7]. However, current CDS tools in EHR systems may not be 

particularly suitable to assist with complex reasoning because they do not support both 

the automatic pattern matching of experts and high-level deliberative reasoning required 

in complex cases [8, 9]. Most CDS capabilities available in commercial EHR systems 

(e.g., drug-drug interaction alerts) address low-level cognitive functions, such as 

reminding or alerting. On the other hand, superior expert performance is mediated by 

highly structured and domain-specific knowledge that allows new pieces of information 

to be absorbed efficiently [10-13]. Cognitive support that accounts for this dual approach 

is largely missing in CDS design [12, 14-16]. 

Advances in CDS are particularly necessary in the field of infectious diseases 

(ID). Despite some early success of seminal CDS interventions for ID, little progress 

has been made to assist decision-making in this area [17-25]. Understanding the 

complex decision process by ID experts may help design advanced CDS tools to help 

with tasks such early infection detection and treatment monitoring [26-29]. In addition, 

given the public health importance of ID, improvements in the understanding of 

cognitive strategies in ID decision-making have larger population-based implications. 

The overall goal for this study is to identify the constituents of decision complexity and 

the coping strategies to inform the design of health information technology that provide 

high-level cognitive support to clinicians. Our study is focused on the following 

research questions: (1) What are the factors associated with decision-making 

complexity experienced by ID experts? (2) What cognitive strategies do ID experts use 

to cope with complexity? 
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Methods 

Study Design 

We conducted semistructured interviews with ID experts using Cognitive Task 

Analysis (CTA) methodology [30]. CTA is a systematic and scientific method used for 

studying and describing complex reasoning and knowledge that experts use to perform 

complex tasks [31]. We have used the RATS (Relevance of study question, Appropriateness 

of qualitative method, Transparency of procedure and Soundness of interpretive approach) 

protocol for qualitative data analysis for the transcriptions of the interviews [32]. The RATS 

protocol provides standardized guidelines for qualitative research methods. 

Settings 

The study was conducted at the Salt Lake City Veteran’s Administration Medical 

Center and the University of Utah Hospital and was approved by the Institutional Review 

Board (IRB). All participants provided oral informed consent that was approved by the IRB. 

Participants 

Participants were 10 infectious disease experts who practice at one of the study 

sites. We defined “clinical expertise in infectious disease” as board certification in 

infectious disease, full-time work for a minimum of 5 years in a clinical environment and 

the identification by peers as an expert in the infectious disease domain. The first author 

contacted the participants through email and participation was voluntary. The interviews 

were conducted at the participants’ private offices. 



32 

 

Procedure 

Interviews were conducted according to the Critical Decision Method (CDM), a 

type of CTA. The CDM procedure is described in Table 4.1.  Each ID expert was asked 

to describe a recent complex case that was challenging in terms of diagnosis and/or 

treatment. A semistructured interview script was piloted and refined. The primary author 

interviewed the participants. At the end of the interviews, participants were asked to 

provide basic demographic information. The interviews were audio-recorded and 

transcribed. All identifiers were removed from the transcripts. 

Data Analysis 

The research team conducted qualitative thematic analysis of interview narratives 

[33-35]. The analysis was conducted iteratively with three of the co-authors (RI, CRW, 

GDF) independently identifying relevant concepts associated with aspects of complexity, 

sense-making, cognitive goals and adaptive strategies. Group consensus was sought at the 

end of each iteration, and the resulting codes were used in the subsequent iterations. Once 

all transcripts were coded, similar codes were merged based on code frequency and 

consensus. In turn, codes were consolidated into high-level themes using data reduction 

techniques such as category sorting, in which interview segments are grouped according 

to content similarity [36]. The final step of the data analysis involved the identification of 

relationships among themes. Interconnected themes emerged from this analysis. 

Atlast.ti®, a qualitative research software, was used to conduct the data analysis. 
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Results 

The ID experts had an average of 18.5 years of experience. Of the 10 ID experts, 

2 were female and 8 were male. 

Factors Associated With Decision-Making Complexity 

The following themes were identified from the factors contributing to decision-

making complexity: 1) the overall clinical picture does not match the pattern, 2) a lack of 

comprehension of the situation and dealing with 3) social and emotional pressures. These 

themes consisted of several associated factors. For example, the overall clinical picture 

does not match pattern consisted of unexpected outcome, risky patient characteristics and 

unusual case. All these factors refer to situations where the clinical manifestations of the 

patient do not match the recognized mental pattern of the clinician. This mismatch in the 

pattern matching may be the reason for increased cognitive complexity. A lack of 

comprehension of the situation includes the complexity factors of lack of and/or 

conflicting indicator data, lack of evidence about treatment effectiveness, lack of 

diagnosis and gaps in physician’s knowledge. All these factors refer to the scarcity of 

information with clinical utility, which compromise situational awareness. The last theme 

of social and emotional pressures includes the factors frustration/regret, liability and/or 

fear and multiple care provider conflict. These factors contribute to clinicians’ anxiety 

with the decision-making process and the patient’s care. Table 4.2 presents a detailed 

explanation of the constituents of complexity and example quotations from the interview. 
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Strategies Used to Cope With Complexity 

Five broad themes emerged from the data analysis: 1) Watchful waiting instead of 

prescribing antibiotics: less is more; 2) theory of mind: projection and simulation of 

other practitioners’ perspectives; 3) heuristics: using shortcut mental model to simplify 

problems; 4) anticipatory thinking: planning and replanning for future events; and 5) 

seeking help: consultation with other experts for their opinions. 

Watchful waiting instead of prescribing antibiotics: less is more. In general, 

expert ID physicians attempt to minimize antibiotic overuse. In this process, they use 

their clinical expertise and consensus among the team members as a means of seeking 

support for conservative treatment, such as avoiding overuse of antibiotics or watchful 

waiting to see if patients improve on their own. Experts engage the principle of “less is 

more” in clinical reasoning. For example, 

There was nothing that I needed to do today on that patient. Now, again, if I 
really thought that the risk of endocarditis was high based on the fact that she had 
a murmur, any other signs or stigmata of endocarditis, then we would have gotten 
three blood cultures before starting antibiotics. 

Theory of mind: projection and simulation of other practitioners’ perspectives. 

Theory of mind refers to the cognitive ability or capacity that can attribute mental states 

to self and others[37]. Experts project and simulate what other practitioners might think 

in terms of the course of treatment for the patient in order to simplify the problem for 

better communications. As a result, experts mentally “simulate” possible scenarios of 

how other clinicians might view past decisions. For example, 

Someone will complain about everything you do. So if we’d treated her with 
antibiotics then someone would be like, ‘Why are you treating her with 
antibiotics? She doesn’t need them at this point.’ So someone will find something 
to complain about. 
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Heuristics: using shortcut mental model to simplify the problem. Experts 

construct heuristics to deal with complex cases in order to spare attention resources and 

to cope with information overload. For example, 

I think usually we would consider stopping therapy in a patient who’s had six 
months of therapy total, IV and oral for vertebra osteomyelitis in the absence of 
retained prosthetic material. However, this is his second about to near death with 
the same pathogen and a very similar infection. He is tolerating the antibiotic 
very well. So, we’re considering now leaving him on oral suppressive antibiotics 
indefinitely. 

Anticipatory thinking: planning and replanning for future events. Anticipatory 

thinking is the mental projection or simulation of potential events that may affect future 

decisions and outcomes; it is the “what if” component of deliberative thought [38]. The 

ID experts also use a chronological method to understand the patient history in depth to 

predict the trajectory of the disease state. This form of sense-making of looking forward 

rather than retrospectively is part of the macrocognitive process of anticipatory thinking 

[38]. For example, 

The risk/benefit analysis then would I think favor continuing him on antibiotics 
because the risk of the antibiotics themselves are very low once he’s tolerated 
them for a certain amount of time. And the potential consequence is if he relapses 
from off course then it is very severe. So in this circumstance, I suspect I’ll 
probably leave him on antibiotics for quite some time. 

Seeking help: consultation with other experts for their opinions. Our analysis 

found that experts strongly rely and seek case consultation with other experts they trust. 

For example, 

We have a weekly conference for the immune-compromised ID docs. We 
discussed his case in that conference and just reviewed everything, sought out any 
other opinions, any advice as to what other people might consider for evaluation 
or duration of therapy and tried to come up with kind of a consensus, which I 
think was very valuable. 



36 

 

Discussion 

Previous studies on complexity in medicine have focused on patient factors related 

to complexity [39-45]. Different patient complexity measures have been developed based 

on the amount of care provided weighted by the diversity and variability of the patient 

[46-48]. Unlike previous research, the present study contributes to the understanding of 

complexity from the decision-making perspective. Our results reflect the deep cognitive 

mechanisms of ID experts to cope with complexity from well-established qualitative 

methods [30, 49-53]. The cognitive mechanisms found in our study have also been 

described in the context of the cognitive and decision science literature including 

naturalistic decision-making, clinical reasoning, heuristics and mental simulation [10, 37, 

54-57]. The coping strategies used by ID experts may help them reduce the identified 

complexity factors in several ways. These strategies resonate with the findings of 

Patterson and Woods for individuals dealing with information overload [58]. For example, 

anticipatory thinking, theory of mind and seeking help can support lack of comprehension 

of the situation. Risk assessment by using anticipatory thinking helps clinicians prioritize 

tasks for the best outcome for the patient [59, 60]. Also, heuristics can help when the 

overall clinical picture does not match the pattern by a short-cut mental model to fit their 

patients based on prior experiences [10, 54]. Moreover, watchful waiting provides 

clinicians the time to comprehend the situation better and reduce the complexity factor of 

lack of comprehension of the situation. Theory of mind may reduce social and emotional 

pressures by group conformity and social validation. However, social and emotional 

pressures make it harder to follow a watchful waiting. The relationships of the coping 

strategies with the sources of decision-making complexity are shown in Figure 4.1. 
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Dual process theory (DPT) may provide a framework to interpret the results. The 

DPT postulates two systems of reasoning: System 1 (automatic, nonanalytic, intuitive) 

and System 2 (effortful, analytic, abstract and logical thinking) cognitive processes [15, 

61, 62]. System 2 is activated in situations that are associated with a high level of novelty 

and uncertainty, such as when complex patients are encountered. As a result, System 2 

imposes significantly higher requirements for attention and cognitive effort than System 

1. The cognitive mechanisms identified in this study can be interpreted as reflecting 

involvement of both System 1 and System 2. In fact, clinicians transition between both 

System 1 and System 2 for efficient clinical reasoning to cope with complexity. The 

mechanism of theory of mind requires minimal cognitive capacity and therefore is more 

System 1 than System 2 whereas anticipatory thinking, seeking help and watchful waiting 

are more aligned with the System 2 approach due to their effortful nature. Similarly, 

heuristics, which is a more automated process and thus System 1, can help when the 

overall clinical picture does not match the pattern by a short-cut mental model to fit their 

patients based on prior experiences [10, 54]. 

All the complexity coping mechanisms help to deal with constituents of 

complexity. Only social and peer pressures make dealing with watchful waiting 

challenging. 

Implications for Decision Support 

Current and future innovative informatics tools such as patient monitoring, better 

documentation, better visualization and population decision support embedded in EHR 

systems can better facilitate clinicians’ high-level reasoning. The mapping of these tools 
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with the coping strategies is illustrated in Figure 4.2.  Patient monitoring tools such as 

therapeutic antibiotic monitors and adverse drug event monitors embedded in the EHR 

have the potential to support System 2 and reduce experts’ mental anxiety in watchful 

waiting. These tools also provide valuable information for anticipatory thinking [63-65]. 

For example, teleconsultation and monitoring models, such as the ECHO (Extension for 

Community Healthcare Outcomes) program in New Mexico, include remote patient 

monitoring features that may guard against or forestall potential future threats [66]. The 

planning and the ability to monitor the patients may help with better sensemaking and 

planning for the future to aid anticipatory thinking. In addition, these features may 

improve providers’ confidence on their decisions, reduce social and emotional pressures, 

and as a result implement watchful waiting. 

All these CDS tools embedded in the EHR can support both System 1 and System 

2 of Dual-Process Theory. Please note that just one kind of CDS tool may not be 

sufficient to help with the cognitive switching. 

Documenting decision trade-offs can reduce the fear of liability or the social and 

emotional pressures of watchful waiting. Also, better documentation tools that convey 

the rationale to support treatment decisions can make it easy for providers to understand 

previous decisions and goals to promote the notion of shared cognition, thereby 

supporting the theory of mind theme found in our research. Our results also suggest that 

supporting cognitive switching between System 1 and System 2 helps clinicians  

effectively manage complex clinical reasoning. For example, “Smart Forms,” a 

documentation-based clinical decision support system developed at Partners Healthcare, 

has been shown to improve decision quality and management of patients decision support 
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recommendations for medication orders, laboratory tests, future appointments and 

tailored patient educational material [67]. 

Integrated visual displays can provide clinicians with information that matches 

the heuristics or the high-level mental models. In current EHR systems, information is 

often presented in a fragmented fashion, splitting a single patient record across multiple 

screens and modules in different formats. The disjointed records, redundancy of 

information and the sheer volume of shifting data in multiple displays add a significant  

challenge to clinicians’ sense-making process [68-72]. Integrated displays automatically 

retrieve and process information from disparate modules within the EHR to provide 

information overview, while preserving the option of indepth exploration on demand [73-

75]. For example, a quick overview of a white board display of care coordination has 

been shown to improve and standardize communication in a care team in an acute care 

hospital [76]. By presenting information aligned with users’ workflow, “Smart Forms” 

help clinicians with the automatic (System 1) thought process. At the same time, the 

system allows users to switch to analytical (System 2) thought process through 

noninterruptive decision support recommendations for medication orders, laboratory 

tests, future appointments and tailored patient educational material. 

Also, population decision support embedded into EHR systems has the potential 

to support System 2 with cognitive support for seeking help and watchful waiting [77]. 

Population-based decision support is a systematic application for analyzing population 

databases to improve the health of groups of individuals [77]. Such decision support can 

work as a “cognitive extension” for clinicians by providing information about treatment 

response for similar patients and interventions by other clinical experts. This information 
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can help the clinician locate peer consultants who have experience with similar patients. 

Also, the decision not to prescribe antibiotics by other clinicians in the database can 

support the coping strategy of watchful waiting and reduce the associated social and 

emotional pressure. 

The sociotechnical barriers that exist in our health information technology 

infrastructure can benefit from a better understanding of cognitive switching from System 

1 to System 2 [26-29]. For example, in October 2014, a patient with Ebola virus came to 

a hospital in Dallas, Texas with classical symptoms of viral fever. Even though the 

nursing notes included travel history, it was ignored. However, an intelligently designed 

CDS that could encompass local and population data could have detected the travel 

history as a potential threat and warned the clinicians [78]. Thus, future informatics tools 

that incorporate the coping strategies into the system design may incorporate the 

heuristics (System 1) of expert clinicians and act as a cognitive extension to notify 

(System 2) clinicians about travel history when appropriate. 

Implications for Research and Practice 

Overuse of antibiotics has been a concern with respect to drug resistance and 

public health [79, 80]. The notion that doing less in medicine sometimes can mean more 

has been an important discussion in the infectious disease community [22, 81, 82]. More 

research is needed for innovative decision support systems that can help clinicians by 

easing the social pressure that results from the active decision to not prescribe 

antibiotics. 

The results of this study suggest a way to rework the paradigm of evidence-based 
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medicine to enhance management of complex clinical tasks. Practice guidelines derived 

from reviews of evidence typically assume that an experienced clinician is making an 

assessment of the patient, which is to say there is leeway for clinical judgment . 

However, when guidelines are incorporated into clinical decision support systems, the 

usual focus is to induce clinicians to accept rule-based recommendations. The role of 

judgment may be acknowledged, but resources are not made available to aid clinicians 

in reasoning through complex problems. Our hypothesis is that decision support systems 

should be matched to the cognitive mechanisms that clinicians use when managing 

complex patients. Information displays should facilitate exploration of what-if scenarios 

in order to improve anticipatory thinking. Better framing of the decision space would 

help clinicians search for appropriate heuristics and gain confidence from the experience 

of other clinicians. 

Limitations 

The Critical Decision Method (CDM) relies on clinicians’ memory of previous 

cases and therefore is prone to recall bias. Also, experts possess tacit knowledge that is 

difficult to verbalize and articulate [30]. Thus, the CTA method is limited due to 

knowledge that cannot be verbalized in principle. Also, since the first author conducted 

the data collections, there is the potential that this researcher influenced the way the 

interview was conducted. To guard against this bias, we piloted and constructed the 

questionnaire based on the CDM instrument. Also, our results reflect the opinions and 

deep cognitive processes of ID experts, which may have influenced the generalizability 

of the results. However, as infection is prevalent in all aspects of medicine, these results 
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can be translated for broader impact in all areas of clinical medicine. 

Conclusions 

The cognitive factors that may contribute to decision complexity include 1) 

overall clinical picture does not match the pattern, 2) lack of comprehension of the 

situation and 3) social and emotional pressures. ID experts use the following 

mechanisms to cope with decision complexity: 1) watchful waiting instead of prescribing 

antibiotics: less is more, 2) theory of mind: projection and simulation of other 

practitioners’ perspectives, 3) heuristics: using shortcut mental models to simplify 

problems, 4) anticipatory thinking: planning and replanning for future events and 5) 

Seeking help: consultation with other experts for their opinions. Future and innovative 

decision support tools in the EHR may support the cognitive switching from System 1 to 

System 2 to match experts’ high-level reasoning. CDS and EHR designers can 

incorporate the cognitive mechanisms found in our study to inform the design of 

innovative solutions. 
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Table 4.1.  Critical Decision Method phases 

Phases  Description 

Incident 
identification 
and selection 

The first step of the CDM process. The participant selects an 
appropriate incident for probing. The participant is asked to give a 
detailed description of the incident from the beginning to end. For 
example, in this study, the ID experts identified a recent case that 
seemed complex to solve cognitively.  

Timeline 
verification 
and decision 
point 
identification 

The second step is to get a clear and refined overview of the incident 
structure, key events and segments. For each of the key events, the 
participants were asked for goals at that point. For example, in this 
study, the timeline verification started from the very moment the ID 
expert got involved with the case or was referred to the case.  

Progressive 
deepening 

The third step refers to points in the timeline where the interviewer 
probes the participants for additional details. As a result, more details 
about decision points, judgments and the decision-making process are 
revealed. This particular phase makes sure that the participants are 
probed for specific and detailed information regarding cognitive skills, 
experiences and expertise. For example, in this study the experts were 
asked specific questions about their gut feelings and how they knew the 
information that suddenly occurred to them.  

“What If” 
queries  

In this final phase, the participants are asked hypothetical questions 
regarding their incidents that further help to illuminate the implicit 
decision-making process of the experts. For example, the interviewer 
asked, “If the patient had contracted a different type of pathogen, how 
would you have responded?” 
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Table 4.2.  Constituents of complexity with example quotations 

Themes Factors Example quotations 

Overall clinical 
picture does not 
match the pattern 

Unexpected 
outcome 

“So he was started on Cefotaxime. And about five 
days went by and he did not improve; he became more 
encephalopathic. He had trouble recalling not the city 
but the state and the country he was residing in” 

Risky patient 
characteristics 

“So he’s on antiretroviral for his HIV. He is on two 
psychotropic medicines. He was in a car accident ten 
years ago and had brain trauma at the time and he’s 
on one of the medications for improving memory” 

Unusual case 

“I’ve never seen a case of Brucellae, that was my 
first one. I think I may have ordered a Brucellae 
culture once in the past and it was negative. But I 
thought that the case was just very strong for that. 
TB of course is a common thing and that would be 
something that it could have been as well” 

Lack of 
comprehension 
of the situation 

Lack of and/or 
conflicting 
indicator data 

“You start to get a trend, and when you get 20 
minutes of data and you have a fever in a guy with 
pan-resistant drugs it’s scary. When you have 
three days of the same guy going down for a 
smoke break, relaxing, chilling in his room, 
watching TV, you’re a lot more comfortable with 
the plan” 

Lack of 
evidence about 
treatment 
effectiveness 

“We knew he had stuff everywhere at one point. 
He was sort of stalled in his clinical improvement. 
We were having some slight to moderate suspicion 
that there’s another pocket of infection, and what 
was the best imaging study to get. The problem is 
if you asked 10 radiologists you might have gotten 
10 different answers. And what really happened is 
he probably got a very expensive, non-specific test 
that then led us to do a CAT scan” 

Lack of 
diagnosis 

“Could he have candida endocarditis, or could he 
have some occult viscous rupture, like a ruptured 
diverticulum; something that would let all the 
candida in the GI tract suffuse into the peritoneal 
fluid where then it would grow like in a bath of 
mycology broth?” 
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Table 4.2. Continued 

Themes Factors Example Quotations 

Lack of 
comprehension 
of the situation 

Gaps in 
physicians’ 
knowledge 

“We looked at some review papers on vertebra 
osteomyelitis and we looked for guidelines. 
There’s guidelines about to be published but 
they’ve not yet been published so we looked for 
clinical trials but didn’t find much except for 
some vague low-grade recommendations that you 
should treat until epidural collection was resolved 
– but that was not specified what that meant, 
absolutely disappear versus no longer abscess 
versus no longer bone involvement. So that 
wasn’t very helpful” 

Social and 
emotional 
pressures 

Frustration/regret 

“I also see sometimes there’s a nervousness or an 
anxiety about stopping so they continue but they 
never make clear in their own minds or in the 
medical record why they’re anxious, why they 
believe their patient deserves a longer duration of 
therapy than standard. And I think it’s an important 
exercise to at least be able to clarify in your own 
mind why you’re doing things differently and be 
able to express that and argue that” 

Liability and/or 
fear 

“This is a guy who had in the past, recent past, 
been critically ill on various occasions, and when 
you look at his microbiology it’s terrifying 
frankly the number of bugs he has and the various 
resistance” 

Multiple care 
providers/conflict 

“But the cardiology and the transplant team is 
very aware of all of these because anytime 
anything happens to the kidney all of their other 
medicines get screwed up including all the anti-
rejection drugs. So they’re watching it like a 
hawk, you know” 
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Figure 4.1.  Relationship between coping strategies with cognitive factors of complexity 
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Figure 4.2.  Mapping of the CDS tools with cognitive mechanisms and dual process 
theory  

 



 

 

CHAPTER 5 

COMPLEXITY IN THE INFECTIOUS DISEASE DOMAIN:  

GUIDING INFORMATION TECHNOLOGY DESIGN  

FOR IMPROVED COGNITION SUPPORT 

Roosan Islam, PharmD., Makoto Jones, M.S, MD., Gregory Stoddard, MS.,  

Charlene Weir, RN, PhD., Guilherme Del Fiol, MD, PhD (In review in International 

Journal of Medical Informatics) 

Abstract 

Understanding complexity in healthcare has the potential to reduce decision and 

treatment uncertainty. Therefore, identifying both patient and task complexity-

contributing factors may provide a better task allocation and design recommendation for 

next generation health information technology system design. 

The objective is to identify the specific complexity-contributing factors in the 

infectious disease domain and the relationship with the complexity perceived by the 

clinicians. 

We observed and audio-recorded the clinical rounds of three infectious disease 

teams. Thirty cases were observed for a period of 4 consecutive days. Transcripts were 

coded based on the clinical complexity contributing factors from the clinical complexity 
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model. Ratings of complexity on day 1 for each cases were collected. We then used 

statistical methods to identify complexity contributing factors and their relationship with 

perceived complexity of clinicians. 

A factor analysis (principal component extracts with verimax rotation) of specific 

items revealed three factors (Eigenvalues>2.0) explaining 47% of total variance, namely 

task interaction and goals (10 items, 26%, Cronbach’s Alpha=0.87), urgency and acuity 

(6 items, 11%, Cronbach’s Alpha=0.67), and psychosocial behavior (4 items, 10%, 

Cronbach’s Alpha=0.55). The regression analysis showed no statistical significance 

between perceived and objective complexity (Multiple R-squared=0.13, p=0.61). There 

were no physician effects on the rating of perceived complexity. 

Task complexity contributes significantly to overall complexity in the infectious 

disease domain. The different complexity contributing factors found in this study can 

help health information technology system designers and researchers with intuitive 

design. Different types of decision support tools can help to reduce the specific 

complexity contributing factors found in this study. Future studies aimed at 

understanding clinical domain-specific complexity contributing factors can ultimately 

help healthcare system designers with better task allocation and management. 

Introduction 

The characteristics of infectious diseases (ID) set this domain apart from other 

areas of clinical care due to their complexity, unpredictability, and potential for global 

effects [1-4]. The complexity surrounding newly emerging infections, environmentally 

persistent organisms and increasing antibiotic resistance interacts with patient acuity to 
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create a significant decision-making burden [4, 5]. Understanding the scope of factors 

contributing to complexity would help improve the design of clinical decision support 

systems, electronic health record (EHR) systems, educational interventions, and risk 

assessment. 

Other domains in medicine such as general ambulatory care have methods to 

estimate complexity considering diversity, variability, volume, and time limitations as 

complexity factors [6]. However, few methods take into account characteristics of both 

patient and decision tasks to assess complexity. Most of the complexity features in the 

Ambulatory Diagnostics Groups (ADGs) and Case Mix Groups (CMGs) consist of 

medical diagnosis and other patient-related complexity factors, but exclude decision task 

complexity [7-10]. 

To understand complexity, it is important to assess the factors related to both 

objective properties of the task and perceived task complexity. The objective properties 

of task complexity involve specific task characteristics, such as the number of decision 

steps or competing goals [11, 12]. On the other hand, perceived task complexity refers to 

the conjunct property of the task and task performer characteristics [13, 14]. When the 

task overcomes the cognitive capacity of the task performer, the task is perceived to be 

complex by the task performer. Models of task complexity have been created in other 

research domains such as aviation and military to influence and predict human 

performance and behavior [15-20]. Liu et al. have developed a task complexity 

conceptualization framework from a literature review [21]. In this model, task complexity 

is represented in 10 dimensions (e.g., size, variety, ambiguity, relationship) and 27 

complexity-contributing factors (CCFs). However, this model has not been validated or 
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applied in clinical settings. In a previous study, we developed and validated a clinical 

complexity measurement model that includes both patient and task complexity 

contributing factors [22]. In the present study, we conducted provider observations to 

identify the specific CCFs in the ID domain and their relationship to perceived 

complexity. Our findings can be used to guide the design of health information 

technology solutions that help clinicians cope with complex decision-making. 

Methods 

Settings 

An observational study was conducted in the inpatient ID settings at the 

University of Utah and Veterans Affairs Salt Lake City Medical Center. The University 

of Utah and VA Salt Lake City Institutional Review Board (IRB) approved the study. 

Participants 

We observed the rounds of three infectious disease teams. Each team consisted of 

an ID fellow, one physician assistant, and one ID pharmacy resident. 

Description of Procedures 

Case selection 

Thirty patient cases were observed across the three teams. Each case was 

observed for 4 consecutive days. Previous studies have successfully used cases ranging 

from 16 to 30 [23-25]. The only inclusion criterion for a case was the referral to the ID 

team for consultation from the primary care team in the hospital. 
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Observation events 

The ID physicians contacted the first author when they were ready to do rounds 

for the patient cases. The rounds were audiotaped and transcribed. All patient identifiers 

were removed. The transcription and notes were organized for data analysis. 

Complexity ratings 

After the rounds on Day 1 for each new case, the ID experts were asked to rate 

the overall perceived complexity based on the criteria explained in Table 5.1. The four 

constituents of perceived complexity, i.e., diagnostic uncertainty, perceived difficulty, 

treatment unpredictability, and similarity, were obtained from the Liu et al. task 

complexity model. 

Development of the Clinical Complexity Model 

In a previous study, we developed an integrated clinical complexity measurement 

model that includes both patient and task CCFs [22]. Three of the co-authors (RI, CRW, 

GDF) used the transcripts from the present observational study to iteratively constructed 

the measurement model. This model integrates the patient CCFs proposed by Schaink et 

al. and task CCFs outlined by Liu et al. [21, 26]. A list of CCFs used in the model is 

available in Table 5.2. The CCFs in this model were used to code the transcripts of the 

present observational study. 
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Data Analysis 

A total of 252 pages of transcripts were coded. The first author organized the 

transcripts according to the sequence of cases and progression of days observed. The first 

author also unitized the transcripts into one or more sentences that conveyed one idea. 

Units were then refined through team consensus. Subsequently, two of the authors (CRW 

and GDF) independently and iteratively coded the unitized sections using the 24 CCFs 

from the patient and task complexity models. After each coding iteration, the three 

researchers met for recoding and modification of the categories, selecting one CCF for 

each unit of text. Cohen’s kappa was calculated after each revision of 50 unitized 

statements. The final interrater reliability reached a Cohen’s kappa of 0.8. We used Atlas. 

Ti for coding purposes. 

Statistical Analysis 

We conducted statistical analysis on the coding frequencies of the CCFs listed in 

Table 5.2. First, we organized the data using a data reduction technique. Since the data 

were collected in their natural setting during routine patient care rounds, with one 

physician evaluating the complexity of each patient, there were no data available to 

assess the interrater reliability among the physicians. One-way analysis of variance 

(ANOVA) was used to assess physician effect on average complexity scores. Levene’s 

homogeneity of variance test was used to assess physician effect on the variability of 

complexity scores. Cronbach’s alpha was computed among the components of perceived 

complexity to assess the internal consistency. We conducted principal component 

analysis (PCA) (with verimax rotation) to group the CCFs. The internal consistency of 
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the variables of each factor was determined using Cronbach’s alpha. We used regression 

analysis to assess the correlation between perceived complexity and each factor found in 

the PCA. The changes in complexity factors over time were assessed using a standardized 

score (Z-score). We used STATA 13.1 to perform the statistical analysis. 

Results 

Physician Effect 

We found no physician effect on ratings of perceived complexity. The one-way 

analysis of variance showed no significant difference in means of perceived complexity 

scores among the three physicians (means of three physicians’ scores: 3.6, 3.2, 4.0; p = 

.33). Similarly, the Levene’s test of homogeneity of variance showed no significant 

difference in the variability of perceived complexity scores between the three physicians 

(standard deviations of three physicians’ scores: 1.2, 1.2, 1.4; p = .94). 

Internal Consistency of Perceived (Subjective) Complexity 

Perceived complexity ratings ranged from 6 to 26, and the average across all 

patients was 14.3 (SD=5.11). A perceived complexity scale summing the four items was 

created. The Cronbach’s alpha for internal consistency of the scale was 0.76. These 

results show that the four items were correlated strongly with each other and are 

important constituents of perceived complexity. 

 



62 

 

Factor Analysis of the Objective Complexity Variables 

After the final iteration, 20 CCFs (13 task and 7 patient CCFs) emerged. The 

principal components factor analysis resulted in three factors (Eigenvalue>2.0) that 

explained over 47% of the total pooled variance (Table 5.3). The internal consistency 

(Cronbach’s alpha) among Factors 1, 2, and 3 was, respectively, 0.87, 0.67, and 0.55. 

These factors explain, respectively, 26%, 11%, and 10% of the overall variance. 

The complexity factors found in Factors 1, 2, and 3 represent the following 

dimensions: task interactions and goals, urgency and acuity, and psychosocial behavior. 

Ten task complexity variables represent the task interaction and goals dimension. 

Confusing information and unclear goals represent ambiguity or unspecific clinical task 

components in making efficient decisions. Decision conflict and conflicting goals represent 

competing or incompatible clinical tasks. Large number of goals, large number of decision 

steps, and multiple decision-making options refer to the size or increased number of task 

specifications, requiring the task performer to perform more steps. Lack of expertise refers 

to the novelty of the situation because of the uniqueness of the patient, treatment or 

decision uncertainty, or less experience of the provider. Lack of team coordination 

represents deficiency in shared mental cognition and inefficient clinical workflows. Factor 

2 represents total of six complexity variables representing acute situational awareness and 

urgent nature of the patient’s situation. Urgent information, changing information, and 

time pressure represent the temporal demand and variability associated with the patient’s 

situation. Significant physical illness and older age are patient CCFs and represent the 

acuity of the patient’s situation. Heavy utilization of healthcare represents patients with 

chronic conditions and multimorbidity. Factor 3 refers to four patient CCFs represented in 
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Table 5.2. This dimension represents the patient’s overall well-being. Psychological illness 

and mental anxiety refer to the mental health of the patient. Noncompliant patients refer to 

patients when they do not follow the prescribed regiment of treatment. Poverty and low 

social supports add the intricacies of social capital dimension. 

Relationship Between Objective and Perceived Complexity 

The regression analysis showed that the relationship between objective and 

perceived complexity was not significant (multiple R-squared=0.13; p=0.61). The 

different correlation factors are presented in Figure 5.1. 

Changes in Complexity Over Time 

The complexity factors were most prominent in day 1, decreased significantly in 

day 2, increased again in day 3, and decreased in day 4 (Figure 5.2). However, no clear 

pattern emerged from the assessment of complexity over time. 

Discussion 

In this study, we aimed to identify the factors that contribute to complexity within 

the ID domain and to assess the relationship between objective and physicians’ perceived 

complexity. Previous studies on complexity in health care did not consider task CCFs.  

The main contribution of this study is the finding that task complexity significantly 

contributes to overall complexity, explaining 26% of the variance in the complexity 

model. 

The three dimensions, i.e., task interaction and goals, urgency and acuity, and 
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psychosocial behavior contain 20 CCFs. Our results indicate that perceived complexity 

factors were not correlated with objective complexity factors. This finding suggests that 

physicians may consider other factors for assessing decision-making complexity beyond 

the objective factors included in the study. Our results regarding patient CCFs resonate 

with previous studies that identified patient-specific CCFs, such as frailty and 

psychosocial behaviors [7, 10, 26-28]. Other studies focused on assessing clinicians’ 

perceived complexity found similar patient complexity factors [8, 9, 29]. Also, the total 

changes of complexity over the course of care and time shows the variability of 

complexity. 

Implications for Design 

The factors found through factor analysis (i.e., task interactions and goals, 

urgency and acuity, and psychosocial behavior) can benefit future researchers and health 

information technology system designers. Decision support tools such as integrated 

visual display, better documentation tools, infobuttons, task visualization of clinical 

workflow, connected patient health records (PHR), specialized decision support tools 

designed to manage unique and chronic patients, and informatics tools using machine 

learning algorithms may have the potential to help clinicians cope with the CCFs found in 

this study. 

Providing an integrated visualization of the overall patient situation may help 

reduce task complexity factors such as unclear goals and unnecessary information. A 

visual analytic display that provides an overview of the patient status while enabling 

exploration of details on demand can help clinicians focus on the right information and 
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prioritize goals [30-32]. For example, LifeLine2 allows users to drill down into details 

and filter unnecessary information [33]. LifeFlow allows visualization of millions of 

patient records in one single page. This feature can provide better situational awareness 

and helps clinicians set clear goals [33]. 

Better documentation tools can enhance communication through shared 

cognition and thus may reduce lack of team coordination. Conflict arises when trade-

offs are not clear or the correct choice cannot be determined. Thus, clinicians may also 

use documentation tools to document the rationale supporting their decisions and trade-

offs and thus reduce complexity factors such as conflicting goals and decision conflicts 

[34, 35]. For example, at Partners Healthcare, “Smart Forms,” a documentation-based 

clinical decision support tool, has been shown to improve decision quality and 

management of patients [35]. This tool can organize and highlight clinical data in a 

disease-focused manner and thus help with focusing on correct choices to reduce 

decision conflicts. 

Clinicians often raise information needs when managing their patients that could 

be met with online evidence resources [31, 36]. Yet, barriers compromise the efficient 

use of these resources. Tools such as infobuttons have demonstrated to be effective in 

helping clinicians find evidence at the point of care [32]. Seamless access to evidence-

based information at the point of care can reduce cognitive overload associated with 

information seeking and reduce the confusing information factor. Also, access to 

evidence-based information may address physicians’ knowledge gaps, reducing the lack 

of expertise factor. 

Task visualization in clinical workflows may reduce complexity factors related to 
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the size of the tasks such as large number of goals, multiple decision-making options, and 

large number of decision steps. Workflow fragmentation assessment, pattern recognition, 

and task flow visualization may support prioritization of tasks in acute situations and help 

reduce complexity caused by urgent information, changing information, and time pressure. 

Clinical task visualization can reduce communication problems between teams and 

improve the distributed shared cognition. For example, a timeline belt visualization 

exhibiting workflow fragmentation of tasks helped during the implementation of 

computerized provider entry (CPOE). These kinds of tools can identify patterns and 

prioritize tasks for clinicians, thereby leading to optimal management of clinical operations 

[37]. This kind of task visualization for optimizing workflow has been successfully used in 

the design of decision support tools in aviation and military systems. 

Personal health record (PHR) systems, tethered to the EHR, have the potential to 

reduce the complexity associated with patient factors such as noncompliant patient and 

poverty and low social support. PHRs integrated with EHRs may reduce communication 

gaps between patients and providers and improve clinicians’ understanding of the 

patient’s social and compliance issues. For example, the complementary patient 

information (CPI) model developed by Puentes et al. can be integrated with the EHR and 

can provide valuable information about the patient’s social and treatment adherence 

issues for better outcomes [38]. 

Specialized decision support tools such as medical dosing for patients with renal 

impairment and for older patients can help clinicians cope with the complexity associated 

with significant physical illness, older age, and heavy utilization of healthcare. For 

example, Nephros, a renal dosing application, takes into account patient age, gender, 
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creatinine, and weight to accurately predict the renal clearance of the patient [39]. This 

tool also can suggest new renal dosing for the patient. Thus, this kind of decision support 

tool can improve clinical reasoning by providing patient-specific recommendations about 

dosing regimens for the older and chronic complex patients. We have mapped the 

complexity factors with different tools that can support EHR in Figure 5.3. 

Innovative interventions that use data extracted from social media also have the 

potential to reduce complexity factors such as mental anxiety and psychological illness. 

For example, Choudhry et al. built a machine-learning model from Tweeter feeds that 

predicts the onset and the likelihood of depression [40]. Tools leveraging such algorithms 

could be integrated with EHR to help clinicians cope with psychosocial complexity. 

Limitations 

The coding of the complexity factors involved the transcripts of conversations 

among ID team members during rounds. However, there are other potential sources of 

complexity data such as patient-provider interactions, patient-caregiver interactions, and 

provider-provider interactions regarding patient cases. Capturing these interactions could 

improve understanding of complexity. Also, the study design was susceptible to observer 

bias. However, all conversations were recorded, transcribed, and analyzed by three 

independent reviewers with clinical background. Generalizability may be limited due to 

the focus on the ID domain. However, as infection is prevalent in most clinical domains, 

the design recommendations may be generalizable. Further studies are needed to assess 

CCFs in different clinical domains. 
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Conclusion 

In this observational study in the ID domain, we found that task complexity 

contributes significantly to overall complexity. Thus, future research on complexity in 

health care should include task complexity factors. Our results suggest that objective 

CCFs are not predictors of complexity as perceived by clinicians. Thus, clinicians may 

consider other unknown factors in their assessment of complexity. Future studies are 

needed to elicit these factors. The CCFs identified in our study may be used to guide the 

design of health information technology to provide better cognitive support. 
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Table 5.1.  Perceived complexity: Definition and questions asked after rounds on Day 1 

Pe
rc

ei
ve

d 
C

om
pl

ex
ity

 
Criteria** Question 

Diagnostic 
Uncertainty 

How uncertain are you about the diagnosis of this patient? 
(1=very certain; 7=very uncertain). 

Perceived 
Difficulty 

How difficult does this case seem to you? (1=not difficult; 
7=very difficult). 

Treatment 
Unpredictability 

How confident are you about the treatment outcome? (1=very 
predictable; 7=very unpredictable). 

Case Similarity How similar is this patient compared with your previous 
patients? (1=very similar 7=very unique) 

**Obtained from the conceptual framework of task complexity by Liu et al. [21] 
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Table 5.2.  Complexity contributing factors (CCFs) 

Task Complexity Contributing Factors Patient Complexity Contributing Factors 

Unclear goals Poly-pharmacy 

Large number of goals Significant physical illness 

Conflicting goals Mental anxiety 

Confusing information Psychological illness 

Unnecessary information Addiction/substance abuse 

Changing information Older age 

Urgent information Health disparity 

Multiple decision-making options Noncompliant patient 

Large number of decision steps Poverty and low social support 

Decision conflict Heavy utilization of healthcare resources 

Lack of expertise Difficulty with healthcare system navigation 

Lack of team coordination  

Time pressure  
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Table 5.3.  Principal components factor analysis with the objective complexity variables  

Complexity Variables Factor 1 Factor 2 Factor 3 

Task Interactions and Goals   

Confusing information 0.42 -0.07 0.12 

Decision conflict 0.38 -0.01 0.23 

Lack of team coordination 0.33 0.06 0.1 

Multiple decision making options 0.33 -0.02 -0.09 

Lack of expertise 0.33 0.01 -0.05 

Unnecessary Information 0.30 -0.12 -0.11 

Conflicting goals 0.31 0.2 0.02 

Unclear goals 0.23 -0.12 -0.26 

Large number of goals 0.19 0.1 -0.16 

Large number of decision steps 0.18 -0.01 -0.24 

Urgency and Acuity    

Urgent information -0.04 0.45 -0.05 

Older age 0.06 0.44 0.06 

Heavy utilization of healthcare -0.05 0.41 -0.19 

Changing information 0.12 0.36 -0.1 

Significant physical illness 0.02 0.17 -0.18 

Time pressure 0.07 -0.44 -0.21 

Psychosocial Behaviors    

Noncompliant patient 0.1 -0.03 0.53 

Psychological illness 0.03 -0.01 0.42 

Mental anxiety -0.08 0.06 0.33 

Poverty and low social support 0.05 0.09 0.23 

Eigenvalues 5.25 2.25 2.01  

Proportion of variance explained (%) 26 11 10 
**The Eigenvalues are with the proportions of variance explained by each factor. The 20 
CCFs are relevant to the ID domain from the 24 CCFs from  
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Figure 5.1.  Correlation between perceived complexity and Factor 1, Factor 2, and Factor 3 
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Figure 5.2.  Complexity contributing factors over 4 days. 
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Figure 5.3.  Mapping of decision support tools that can help to reduce complexity 

 



 

 

CHAPTER 6 

FEASIBILITY OF POPULATION HEALTH ANALYTICS AND DATA 

VISUALIZATION FOR DECISION SUPPORT IN THE INFECTIOUS  

DISEASES DOMAIN: A PILOT SIMULATION STUDY 

Introduction 

Most visualization displays address simple problems by categorizing tasks into 

simple or smaller steps [1]. The goal is often to minimize cognitive load or analytical 

thinking while maximizing pattern matching. However, when dealing with complex 

problems, displays should also give support for more intense and deliberate thinking by 

providing a rich source of information that matches the needs of the decision-maker. If 

the information is difficult to comprehend and does not match the decision task, there is a 

risk of increasing cognitive load and a higher chance of diagnostic errors. Therefore, 

easy-to-understand presentations of the aggregated patient information from a population 

database are equally important alongside individual data for effective clinical decision-

making. Especially in the infectious diseases (ID) domain, due to emerging and resistant 

infections, the changing morphology of pathogens, and public health implications, a high 

level of uncertainty makes it more difficult for ID clinicians to focus on early goals. 

Therefore, a high-level display that can help ID clinicians focus on prioritizing 

information can help clarify the goals. 
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Few studies have addressed the feasibility of extracting and displaying 

population-based information from clinical records. In this study, we have designed a 

complex case in the ID domain and assessed the feasibility of population-based analytical 

algorithms to extract similar patients in a “live” patient database electronic warehouse. 

To test design components for a population information display, we created a simulated 

computerized visualization display that presents data on similar patient cases. Finally, we 

performed an exploratory mixed-method study to assess the impact of population health 

analytics and data visualization on cognitive outcomes. 

The objectives of this study were: 

1. To explore the feasibility of extracting and displaying population-based   

information from a large clinical database. 

2. To identify specific features of population display that may help with 

complex clinical decision-making. 

3. To explore perceptions for population information displays. 

4. To explore the impact of a population information display on cognitive 

outcomes. 

Literature Review of Healthcare Data Display 

The rapid expansion of electronic health data has increased the potential for 

knowledge discovery given that the data are managed in innovative and effective ways 

[1]. A systematic review by West et al. investigated the use of visualization techniques 

reported between 1996 and 2013 and evaluated innovative approaches to information 

visualization of EHR data for knowledge discovery. The systematic review found that 
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healthcare data visualization studies since 2010 have focused on multiple-patient data 

visualization [1]. Uncertainty in medicine arises due to treatment variations and unique 

aspects of complex patients. Therefore, understanding the patient with respect to other 

multiple similar patients can help clinicians reduce uncertainty and increase confidence in 

their decisions. Our project involved visualizing multiple complex patient records in a 

single display to support patient care decision-making. Therefore, in this literature 

review, we discuss similar systems that provide visual displays for multiple similar 

patients. In the following paragraphs, we discuss some of the most advanced visualization 

tools that exist, including Lifeline2, VISITORS, DICON, CommonGround, and 

SIMILAN. These systems have the ability to emphasize querying, sorting, aggregating, 

and clustering multiple patients’ data. 

LifeLines2, developed by researchers at the University of Maryland, is one of the 

most advanced applications for both numerical and categorical data visualizations [1]. 

The purpose of this tool is to enable discovery and exploration of patterns across multiple 

records to support hypothesis generation and find cause-and effect relationships in a 

population to support research. Initially, this tool was developed only to support pattern 

discovery for research purposes. Eventually, motivated by the advent of EHRs, this tool 

was introduced to the clinical practice domain for pattern discovery to understand patient 

responses. One of the unique features of this tool is the interactive visualization designed 

to search and explore different event sequences in multiple records of temporal 

categorical data. The distinguishing design for LifeLines2 is alignment. Users can align 

the records by any specific event type (for example, stroke). However, in this design, the 

system cannot visualize numerical data (for example, high/normal/low blood pressure). 
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The ability to drill down into details when looking into patient records as well as to see 

trends and explore data for patterns is the strength of this tool [2]. Also, this tool allows 

the groups to be compared with parallel temporal summaries. It also allows a temporal 

sequence search including absence of events. As a result, users can select patients based 

on similar patterns. LifeLines2 also has the ability to aggregate patients based on similar 

event sequences in histograms. The i2b2 clinical research platform from Partners 

HealthCare has adopted LifeLines2 in over 50 research sites [3]. 

Another innovative visualization tool called VISITORS, or Visualization of 

Time-Oriented Records, has also gained attention [4]. The purpose of this system is to 

analyze the results of large amounts of time-oriented multiple patient data from multiple 

sources such as clinical trials. This system can also show numerical data as a 

combination of point plots and line charts, and categorical abstractions are shown as 

size- and color-coded rectangles using the same timeline. VISITORS offers an 

impressive query language that allows users to search for both raw and abstracted data in 

groups of patients. This system can accommodate diverse temporal data from multiple 

records as well as form-based user interfaces to search and filter. The users can use both 

dynamic query as well as a threshold indicator to perform filtering without temporal 

constraints. One of the unique features of this system is adaptability. For example, the 

color-coded rectangles in the display can change to a bar chart and then into a line chart 

to show different presentations of the same data. One of the issues this system faces, 

based on the usability study, is the fairly complex user interface that requires lengthy 

training time for the users [4]. The features of VISITORS are commercially available 

from MediLogos [5]. 
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Among other notable visualization tools, Dynamic Icons (DICON), by Gotz et al., 

has shown promise. DICON applies machine-learning algorithms to cluster similar 

patients and visualize the information as a tree map [6]. The main purpose of this tool is 

to help clinical domain experts visualize similar patient cohorts for better understanding 

of population-wide statistical data. Clinicians can use DICON for large and complex data 

and high-level statistical information to evaluate cluster quality, and a detailed display of 

multidimensional attributes of the data helps clinicians understand the meaning of the 

clusters. Users can rapidly analyze the data from the icons and the timeline to make sense 

of the data as well as embed statistical information into a multiattribute display to 

facilitate cluster interpretation, evaluation, and comparison. Its unique features include 

visualization of the clustered EHR records as composite icons that have parts 

representing the features of all EHRs in a cluster. Finally, this system can provide 

different spatial arrangements such as scatter plots and manual refinement of the clusters. 

Another unique feature of this system is that it uses color saturation to depict data 

variance and diversity. An evaluation study, which was a case study in the healthcare 

domain to visualize a dataset containing more than 10,000 patient records to find patterns 

of prominent disease over age groups and geographic locations, found a limitation that 

the system cannot overlay statistical measures of quality onto the visualization. This 

system was finally implemented as part of the DaVinci system and has been used with 

both traditional displays and on touch screen devices. 

The CommonGround Infectious Disease Weather Map interface is another 

sophisticated tool that was developed by Livnat et al. at the University of Utah [7]. The 

purpose of this system is to create a visual paradigm using visual correlation of multi-
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dimensional epidemiologic data that can serve as an infectious disease weather map for 

public surveillance. The system offers a ‘common ground’ for detection, monitoring, 

exploration, and discovery of infectious diseases. This dynamic display provides a novel 

visualization that facilitates situational awareness. This prototype also provides the first 

iteration of an integrated infectious disease weather map that can be used by public health 

professionals. The use and visualization of tags from independent data sources are 

organized in a methodical manner. The tag clouds give users an impression of the overall 

situation. The unique features of the dynamic tag visualization show how the authors 

creatively used it rather than displaying only an alphabetically sorted list. Moreover, the 

display shows a systematic identification of trends in chronological order. The system 

was developed for helping the public health epidemiologist. However, it can be modified 

for other settings such as situational awareness in acute care hospitals. 

The purpose of the Similan visualization system is to enable discovery and 

exploration of similar patient records in temporal categorical datasets to support both 

clinicians and researchers [8]. The color-coded categorical variables are represented by 

icons on a zoomable timeline and can focus on point events as opposed to intervals. 

Many similarity measures exist for numerical time series, but temporal categorical 

records are different. In Similan, M&M measures (match and mismatch) were included 

based on the concept of aligning records by sentinel events and then matching events 

between the target and the compared records. In most traditional search systems, records 

that do not fit the search criteria are removed from the users’ sight. However, in Similan, 

users can better refine their searches as well as see such results. Also, users can specify a 

time range of interest (absolute or relative) for searching similar patient records. The 
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unique feature of Similan is that it can sort patients by similarity to target a temporal 

pattern. This system has been evaluated by case studies. One of the limitations of this 

system is the complex user interface. As a result, participants have had difficulty learning 

the M&M measures. 

The goal of analyzing single patient records is different from analyzing multiple 

patients’ records. Most systems support tasks for analyzing either a single patient or 

multiple patients. However, transitioning from multiple patients’ analysis to single patient 

analysis or vice versa has not been widely studied. 

Most of these systems were developed to visualize multiple patients’ records. 

However, there has not been any system that can select only complex attributes of 

patients and then visualize the patients. In the ID domain, clinicians face significant 

challenges when dealing with unique and complex patients. Therefore, understanding the 

key features and attributes that make the patient complex is important before visualizing 

the information. In addition, previous visualization tools have focused on discovery and 

exploration of similar patients to help with research and epidemiology. This study 

addresses the need for tools to deal with complex patients providing cognitive support to 

improve clinicians’ decision-making. Also, what information needs to be visualized 

depends on the clinical questions raised at the point of care. In this study, we have 

addressed these gaps by focusing on the key attributes of the complexity. Then, we have 

used the VA clinical database to query only similar complex patients to visualize the 

data. This study adds to the science of visualization by designing a visual display based 

on the attributes of the complexity of previously seen patients. 
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Methods 

Study Design 

The design of the experiment was a mixed-methods 2 between (level of expertise) 

X 2 within (pre-/postpresentation of population-based display) simulation study. In other 

words, we blocked on expertise through our selection of two defined groups and exposed 

all participants to both forms of the display, collecting data pre-/postexposure to the 

population-based display. The design included both qualitative and quantitative 

components. 

Participants 

Ten volunteer physicians participated in the study (five infectious disease, or ID, 

experts and five non-ID experts). Expertise was defined by board certification in ID. The 

“experts” were selected based on ID board certification and ID faculty role. The 

nonexperts were board certified in areas outside ID. Both were required to have a 

minimum of 5 years of clinical experience. The experts had an average experience of 

15.6 years and a range of 10 to 24 years. The five nonexpert participants had an average 

experience of 17 years with a range of 7 to 38 years. The clinicians were contacted by 

email and participation was voluntary. All participants provided verbal consent. The 

participants did not receive any compensation for this voluntary participation. The 

experiment was conducted in private offices and conference rooms at the University of 

Utah Hospital and Veterans Affairs (VA) Hospital in Salt Lake City. The study was 

approved by the IRB (Institutional Review Board) at the University of Utah. 
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Development of Stimulus Materials 

In this study, we have used two types of materials: 1) simulated case and 2) 

display forms. Three of the authors (YL, RI, and MJ), including an ID clinician (MJ), 

were involved with the design of the materials. 

Simulated Case 

A simulated case was created to mimic realistic diagnostic uncertainty in the ID 

domain. A real patient was selected by two of the authors, one ID expert and one clinical 

pharmacist (MJ and RI), and the patient’s deidentified data were used to form the 

backbone of the simulation. The case was presented in “ChartReview,” an artificial 

electronic chart. We asked all participants to rate the complexity of the case based on 

high (8-10/10), medium (5-7/10), and low complexity (1-4/10) scores. The summary of 

the overall case is described in Table 6.1. 

Display Forms 

Two forms of case display were created. The first emulated the usual narrative, 

patient-based medical record. The second included both the case narrative and a 

population-based information display. The design process for the population display 

involved two steps. First, we used several search criteria for finding similar patients from 

the VA clinical data repository. Then, we designed the display based on the information 

of similar patients found from the database. The process is described below. 
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Search Criteria From Population Database 

We first identified the most important clinical question for the complex patient 

(Table 6.1). For our complex case, the patient’s deteriorating condition and comorbidities 

did not fit any evidence-based guideline. Moreover, the use of Daptomycin was 

recommended per clinical guidelines for Vancomycin-resistant Enterococcus (VRE) 

neutropenia patients [9]. However, using this agent did not improve the patient’s overall 

clinical status. On the contrary, the patient’s overall clinical and functional status 

declined rapidly. As a result, the clinician had to deal with the uncertainty of using other 

medications without knowing the consequences due to a lack of evidence. This 

uncertainty adds to the cognitive complexity. Therefore, to reduce the cognitive 

complexity, the goal was to find treatment outcomes regarding other therapeutic agents 

from practice-based information from the VA clinical database. We first defined 

parameters for finding similar patients. 

To investigate the treatment of refractory VRE bacteraemia, we initially focused 

our search within admissions with combinations of the following ICD-9-CM codes: 

neutropenia (204) and acute myelogenous leukemia (208, 288), the presence of fever 

(780.6, 790.7), bacteraemia (038.0, 038.9), bacterial infection (041, 599), or other general 

infection codes (771.8, 785.2, 995.92, 995.91). Refractory VRE bacteraemia was defined 

as the inpatient isolation of an enterococcal species from blood, where the first and last 

positives were more than 5 days apart, but positive cultures in the series were separated 

by no more than 14 days. 

Initial examination of the potential cohort revealed that the matched group of 

patients was quite small; therefore, all individuals with refractory VRE bacteraemia were 
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included, regardless of their comorbidities, which resulted in a cohort of a few hundred 

patients. We measured the administration of antibiotics with potential activity against 

VRE alone or in combination with other antibiotics, i.e., Quinupristin / Dalfopristin, 

Daptomycin, Ampicillin, Gentamicin, Streptomycin, Linezolid, or Tigecycline. We  

defined courses as consecutive antibiotics where gaps between doses were no longer than 

two hospital days apart. As a result, we found 19 patients from the database who matched 

the similarity profile of the complex case we designed. A summary of these patients is 

described in Table 6.2. 

Population Display and Design Rationale 

The population information display includes the number of hospital days in the X-

axis and individual patients in the Y-axis (Figure 6.1). The antibiotics administered to 

each patient are represented by different colored lines (Daptomycin as green, Ampicillin 

as yellow, and other antibiotics as blue). The gray line represents the total stay for the 

patient in the hospital. The first culture for positive VRE is represented by a red arrow, 

and the first negative culture is represented by a straight purple line. The X represents the 

time of death for each patient. 

We utilized our findings from Chapter 4 and Chapter 5 for innovative design of 

the population display. Specifically, we incorporated anticipatory thinking, heuristics, 

and theory of mind coping strategies from Chapter 4 in this design. For example, the 

timeline view supports the trajectory of patient responses and thus helps clinicians to 

anticipate the future outcome depending on the treatment selected. The one single view of 

all previous patients with different therapies and outcomes helps clinicians build their 
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mental model about the current patient, treatment alternatives, and expected outcomes. 

Moreover, the “if-then” heuristics supports the mental model for simple decision logic. 

For example, in this display, we were interested in the outcome (i.e., number of deaths) of 

Daptomycin or a combination drug including Daptomycin versus other antibiotics. We 

laid out the outcomes (deaths versus not death) of therapeutic agents in a timeline view, 

which supports formulation of “if-then” (if patient used drug X, then death happened or 

did not happen) relationships. Finally, the different treatment strategies used by different 

providers may help to promote theory of mind. The design aims to encourage the 

clinician to consider options for treatment previously used by clinicians with different 

patients. Thinking about other options helps  reduce the focus on only one alternative, 

otherwise called the anchor bias. Thus, the design in turn aims to reduce anchor bias and 

help the clinician evaluate different treatment strategies. 

The population display design aims to reduce the complexity-contributing factors 

of unnecessary information, unclear goals and lack of expertise found in Chapter 5. 

Complex patients have many different attributes and information cues. For example, by 

focusing the display on antibiotic treatment and survival, we aimed to reduce the number 

of unnecessary information cues to help the clinician to focus on relevant information. 

Focusing on relevant information may help the clinician prioritize goals and reduce 

unclear goals. 

Finally, the display utilizes population information from the VA clinical database. 

This information includes the collective experiences of other clinicians with similar 

patients. For most complex and unique cases, clinicians do not have enough experience 

because such problems may be outside the clinician’s domain of expertise or have 
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unusual presentation or response to therapy. Therefore, the information display aims to 

address clinicians’ lack of expertise with a given situation. 

The longitudinal view provides the patient-specific outcome represented in a 

timeline view. Figure 6.1 depicts the different features of the display. The population 

graph and the patient electronic information were embedded into an artificial electronic 

chart, “ChartReview,” developed by Duvall et al. [10] 

Population Information Display Validation 

To validate the display content, we asked two ID clinicians to evaluate whether 

the population information display represented similar patient characteristics of the 

complex patient described in Table 6.1. The first author presented the case and the 

population information display to both ID clinicians in “ChartReview.” The inclusion 

criteria for the ID clinicians were the same as for the study participants. However, these 

clinicians did not participate in the study. They volunteered only for the purpose of 

validation. The clinicians first checked the parameters of finding similar patients and 

confirmed the appropriateness of the parameters based on their clinical experience. They 

then explored the visualization of the population information in depth, making sure that 

the legends and data points cognitively made sense. They checked to make sure if the 

outcomes (death or no death) from the therapeutic agents for similar patients added any 

clinical value to reduce uncertainty. They verbally confirmed that the population 

information display contained similar matched patient characteristics representing the 

complex case. They also confirmed the validity of the clinical utility of the population 

display for helping with clinical decisions for this very complex case. 
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Procedures and Manipulation of Variables 

The clinicians consented to participate and were provided an explanation of the 

study purpose. Clinicians were first shown “ChartReview” with a mock patient to 

understand the functionalities and get acquainted with the electronic chart. They were asked 

to verbally confirm that they understood the functionalities of “ChartReview” before the 

study started. Training took approximately 5-10 minutes. During this training, participants 

could ask questions and receive any support they needed. A separate window in the chart 

had the guideline information of patients with VRE neutropenia related to the complex 

patient case. Once the study started, participants were asked to move the mouse where they 

were focusing their eyes while reading the chart. The steps are as described below: 

1. Participants were first asked to read the patient chart, including patient 

background information and lab data. 

2. Then, they were asked to write down a plan for the case and rank each 

item of the plan according to their priorities. 

3. After participants wrote down the ranked plan, they were shown the 

population display of similar patients. Once they examined the display, 

they were asked to make modifications to the plan as deemed necessary. 

4. The first author observed the mouse movement and noted specific pauses 

while participants were looking through the population display. The reasons 

for the pauses were explored in probing questions by the interviewer. 

5. Finally, the first author conducted poststudy, in-depth interviews, probing 

into each pause to gauge the subject’s mental models and asking follow-up 

questions. Demographic information was collected at the end of the study. 
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Study Outcome Measures 

The measured outcomes for the objectives were 

1. Preference for population information display (qualitative content analysis 

to find themes for the preferences) 

2. Time looking at the population display (Quick Time player to record the 

amount of time 

3. Time to read the chart (Quick Time player to record the amount of time) 

and 

4. Appropriateness of plans (as judged by expert panel) pre-/postpresentation 

of population information display. 

The preferences for population information display provided design guidelines for 

future population-based visual displays. The time to read the chart and time looking at the 

population graph shed better light on the effect of expertise on reading or interpreting 

information. Changes in appropriateness of plans before and after seeing the population 

information display helped in understanding if the display had any impact on the 

cognitive outcome. The measured outcomes and the procedures for data collection are 

described in Table 6.3. 

Criteria for the Review of Appropriateness of Plans 

An expert panel (EP) consisting of two ID experts and a clinical pharmacist 

reviewed the case and constructed the criteria for an appropriate plan. All experts had 

clinical experience greater than 5 years. They first decided on different appropriate 

plans for ID experts and non-ID experts. Then, they reviewed the plans from the study 
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and rated them as appropriate or not appropriate per group consensus. The EP 

developed the basis for the appropriate plan described in Table 6.4. Any plans that did 

not meet the criteria were rated as not appropriate. As long as the clinicians mentioned 

one of the plans included in the table, the plan was determined to be appropriate. For 

example, if the clinicians wrote down “start Linezolid” and mentioned other actions to 

be taken for the patient, the plan was termed as appropriate. Therefore, as long as one 

of the plans in Table 6.4 was mentioned, the plan was considered to be appropriate by 

the EP. 

The rationale for developing the criteria for the ID group included the fact that the 

patient’s clinical and functional status was declining using Daptomycin. Therefore, it was 

necessary to start other antibiotics. For the non-ID group, the EP decided that nonexperts 

do not have the necessary training for making decisions on domain-specific complex 

cases. As our case was developed to be an ID specific complex case, the EP decided that 

the plan was appropriate as long as the clinicians plan to consult an ID expert. Therefore, 

for the non-ID group, all the other criteria remained the same with an extra criterion for 

consulting ID experts. 

When faced with uncertainty and lack of evidence, it is often difficult for 

clinicians to judge plans as right or wrong. Complex patients oftentimes have several 

comorbidities that can be responsible for their demise. Therefore, it is hard to predict or  

judge the right or wrong course of treatment even retrospectively. The expert panel 

reached consensus to categorize the plans as appropriate and not appropriate from their 

years of clinical practice. 
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Data Analysis 

The data analysis involved both qualitative and quantitative analysis. 

Qualitative Analysis 

Content analysis and appropriate qualitative methods were used to generate 

themes for the preferences for population display. We used Atlas ti for coding the 

poststudy interviews regarding the preferences for population display. Two researchers 

(RI and JM) independently reviewed the transcripts and later met face to face to discuss 

their perceptions for multiple rounds. After several iterations, themes emerged about the 

clinicians’ preferences for ideal population information display. We used the RATS 

(Relevance of study question, Appropriateness of qualitative method, Transparency of 

procedure and Soundness of interpretive approach) protocol for the content analysis [11]. 

Quantitative Analysis 

We conducted quantitative analysis to explore the perceptions for population 

information display and the impact of population display on cognitive outcomes. 

We used a t-test to explore the expertise effect on the perceptions for population 

information display. 

We operationalized cognitive outcomes by measuring the percentage of subjects 

who changed their treatment plans after being exposed to the population display. We used 

a paired sampled t-test to understand the significance of changed (appropriate versus not 

appropriate) plans before and after the population information display was shown. 

We used the t-test to detect expertise effects on reading the chart. The level of 
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significance was set at alpha=0.05 (two-tailed) a priori. A sample size of five in each 

group makes this analysis exploratory. Previous exploratory pilot studies successfully 

used 4 to 10 participants for similar study designs [12-14]. 

Results 

We successfully extracted similar patient information from the VA database and 

designed a population information display incorporating the similar patients. The results 

are organized in two sections: qualitative and quantitative analysis. All clinicians rated 

the case as highly complex except one who rated the case as medium complex. 

Qualitative Analysis 

The qualitative section is further subdivided into two sections. In the first section, 

we discuss criteria for the review of appropriateness of plans. In the second section, we 

discuss the content analysis of the transcripts. 

Results of Appropriateness of Plans 

The EP reviewed all the cases based on the appropriateness of the plans in Table 

6.4. Of the 10 clinicians, 5 clinicians changed their plans after being shown the 

population display. The overall appropriateness of plans before and after the display is 

explained in Figure 6.2. 

In the ID group, of the 5 clinicians, 3 did not change their plans after seeing the 

population display. Two changed plans after seeing the display, but only one of the plans 

was appropriate and one was not appropriate. Four of the five clinicians kept Daptomycin 
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in the regimen, and thus their plans were reviewed as not appropriate. One clinician 

added Linezolid and considered changing therapy to Tigecycline; that plan was reviewed 

as appropriate. The specific changes after showing the population display for the two ID 

clinicians were as follows. 

ID clinician 1 

● Start Linezolid and stop Daptomycin. 

● Look into synergistic therapy with Ampicillin, Ceftriaxone or other beta-lactam less 

toxic then Gentamycin. 

● Continue Gentamycin. 

● Boost cells for possible surgical intervention. 

ID clinician 2 

● Look for improved outcomes for VRE bacteraemia with Daptomycin + Ampicillin. 

● Explore options with newly approved antimicrobials including Oritavancin. 

For the non-ID group, all 5 clinicians’ plans were reviewed as appropriate by the 

EP before showing the display. Of the 5, 2 clinicians did not change their plans after 

seeing the display. The other 3 clinicians who changed their plans kept the “Consult ID” 

option in the treatment plan, and thus their plans were considered appropriate. The 

specific changes after showing the population display for the 3 non-ID clinicians were: 
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Non-ID clinician 1 

● More inclined to use Linezolid. 

● Consult ID. 

Non-ID clinician 2 

● Consider switching to other antibiotics based on possible better survival. 

● Consult ID. 

Non-ID clinician 3 

● Consider changing to other VRE antibiotics. 

● Consult ID. 

Content Analysis of the Transcripts 

The content analysis revealed four themes that emerged as preferences for 

population information display: 1) Trusting population data can be an issue. 2) Embedded 

analytics is necessary to explore patient similarities. Providers would like to understand 

more about the similarities. 3) Tools are needed to control the view (overview, zoom and 

filter). 4) Different presentations of the population display can be beneficial. The themes 

are described in the following sections. 

Theme 1: Trusting the Population Data Can Be an Issue 

Clinicians appear to be concerned about the validity and trustworthiness of the data. 

Even though the patients found through the population database search are similar to a certain 



98 

 

extent, they are not identical. Therefore, clinicians are cautious about using the information to 

infer cause-effect relationships. Also, the practice-based information may differ significantly 

due to different formulary management or culture of practice in a particular hospital, resulting 

in potential decision conflicts rather than reducing such conflicts. Therefore, establishing 

clinician trust in the population data is crucial. For example, 

Exactly, so I would narrow it down and go this way and see how many patients 
we have here actually. So I would want to know that because just glancing at this, 
I don’t know if it really is the same patient population. 

Theme 2: Embedded Analytics Is Necessary to Explore  

Patient Similarities 

Clinicians would like to see the similarities and differences among patients in an 

aggregated summarized view or through analytical functions. It is important to 

understand the differences between the matched similar patients and the patient at hand. 

For example, 

So I think a complex display is fine. There’s some learning curve for it but once I 
got used to it, it could be useful. But I have to think about how to show that better. 
The similarity profile of the match patients may help. Or you can also show the 
data of matched profile as percentage of similarity. 

Theme 3: Tools Are Needed to Control the View  

(Overview, Zoom, and Filter) 

Features such as overview, zoom, and filter embedded in the display may reduce 

confusion. Therefore, clinicians prefer an overview function to explore the patient 

profiles first for an integrated view; to zoom if necessary to look into specific details (lab 

results and different days of results); and filter the data based on specific patient features 
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or outcomes, such as time of death or time for negative culture results. For example, 

And by that have a filter panel with full control over those comorbidities. I’m 
saying I want to include or exclude diabetics, the heart failures, the surgical 
abscesses, the by sight infection. And if I could tweak this and knowing that the 
VA probably has a few thousand patients that potentially could be like this then as 
soon as it gets a few thousand patients, then you’re starting to have to display this 
differently; summarizing is better. So, this is the individual case review and you 
almost would say that I want a summary viewed first. Then, sort of overviewed, 
filter and zoom kind of thing. I think that’s relevant. The overview is of the, you 
know, the four, five antibiotics choices, some sort of heat map of how well you did 
and then drilling in to individual cases like this being able to filter in or out, the 
ones that you think are closest to the patient. 

Theme 4: Different Presentations of the Population Display  

Can Be Beneficial 

Different presentations of the same information can help make sense of the data 

cognitively [15-17]. Depending on the question related to the problem, the searching 

criteria are set to find similar patients from the population database. Therefore, few 

patients can be found for very rare or complex cases, and many patients can be found 

regarding comparative outcomes of certain treatments. Therefore, different presentations 

depending on the number of patients available may be necessary. For example, 

I don’t know about pie chart for very small number of patients but that might 
work for large numbers of patients. But, yeah, I mean when you’re dealing with 
all those cases and you want to give the data, showing individual level patient’s 
data is a good way to do it I think. 

Quantitative Analysis 

Viewing time for the population graph did differ (t8= 2.3, p=0.04) between 

groups, with experts taking significantly less time than nonexperts (2.3±0.86 minutes 

versus 3.63.6±0.91 minutes, respectively). The viewing time for the population display is 
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shown in a box plot in Figure 6.3. 

Clinicians’ appropriateness of plans (cognitive outcomes) was relatively low 

(60% of plans being appropriate) and not statistically significant (t9=-1.9; p=0.08). 

For the expert group, the average time to read the chart was 4.9±0.48 minutes and 

for the nonexpert group 5.5±0.79 minutes. This difference was also not significant (t6=-

1.3,p=0.22). 

Discussion 

In this study, we have successfully used an actual clinical database to extract 

information from patients that is similar to the complex simulated case. We then designed 

a population information display. Previous studies also developed similar visualizations 

by extracting information from EHRs or population databases [18-20]. We have used 

ICD-9 CM codes to find similar patients from the VA clinical database and presented the 

information in a single display. Extracting similar patients is difficult and depends on the 

size of the database and the efficacy of the search tools. The parameters chosen for 

extraction may be the key to finding the desired outcome from similar patients’ profiles 

for better cognitive support. Further work is needed to make such queries automatic and 

efficient, but first we needed to know if providing that information makes a difference in 

decision-making and what preferences users might have. Most complex patients do not fit 

into the evidence-based guidelines [21-25]. Therefore, clinicians need more point-of-care 

information without information overload for reducing cognitive complexity. Also, the 

data can be better represented by visualization in a single display. Visualization of 

population information has the potential to support “if-then” heuristics for improved and 
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informed clinical reasoning [26-28]. Most decision support systems do not take heuristics 

into consideration in the design due to the associated biases [26, 29]. However, intuitive 

design for future innovative population decision-support systems should match the higher 

cognitive reasoning and mental models of clinicians [30-32]. Showing treatment or 

diagnostic outcome data leveraged from population or EHR database may nudge the 

clinician positively and provide cognitive support when the clinician is dealing with 

unique and complex patients. The visualization design principles used in our study can 

help future researchers and designers with better task allocation and intuitive display 

features. Future work is needed in the area of visual presentation that can match 

clinicians’ mental models to effectively show similar complex patients in a single display 

The discussion is further subdivided into the following three sections: implications for 

healthcare system design from the qualitative analysis, implications of the quantitative 

analysis, and improved design of the population information display. 

Implications for Healthcare System Design From the 

Qualitative Analysis 

The themes that emerged based on the preferences for information display may 

help future researchers and designers. Our results resonate with those of previous studies 

on understanding clinicians’ preferences for information display design in healthcare [33-

38]. However, our findings that providers are concerned with data trustworthiness, that 

they need to have more meta-information about the display and that they want to explore 

the similarity profile of the patients are unique to this kind of display. In the following 

paragraphs, we discuss the results from the perspective of the implications for design. 
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Improving the Trust in Population Data 

Practice-based information may provide a glimpse of what can be done when the 

case at hand is complex and evidence is scarce. However, data pulled from a population 

database may reveal wide variations in clinical practice, leading to more confusion for the 

clinician, or at least much more uncertainty as compared to a clinical guideline. Also, the 

snapshot view may lead to attribution errors regarding the cause and effect of different 

choices [39]. For example, if providers can assume from the data that 50 patients 

receiving drug A had a positive outcome, then their patients at hand may also benefit 

from it. However, the treatment outcomes of the matched patients may not be the same 

for the patient at hand due to the unique characteristics of each patient’s clinical and 

functional presentation. Therefore, embedding different types of analytics to verify the 

data may be a solution. For example, different patient-matching algorithms, temporal 

patterns, or predictive analytics within the population decision-support systems may help 

clinicians to understand the data [40-43]. This problem needs to be addressed before 

making the data available in real-time to clinicians. Many current applications for 

providing population data assume that real-time information can be shown without 

validation [18]. Our findings suggest that clinicians are worried about the validity of real-

time population data and would prefer that data validation by a domain expert be done 

before the data are used to guide decisions for a specific patient. 

Analytical Complexities of Finding Similar Patients 

It is sometimes difficult to explore a large number of similar patients when the 

patient at hand has complex and very unique characteristics. Therefore, defining 
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similarity measures for temporal categorical data is important for understanding the 

results of the population inquiry. Features for showing the results of similar patients in 

terms of natural frequencies rather than probabilities may reduce cognitive biases due to 

the misapplication of probabilities [28]. For example, a similarity measure of temporal 

categorical data called M&M (Match and Mismatch) developed by researchers at the 

University of Maryland finds similar patients by ranking scores [8]. This tool has the 

capability of comparing different features of a patient’s characteristics by using filters as 

well as visualizing the similarities in a scatter plot. Tools such as M&M may be 

embedded in the population information display to provide a better measurement of the 

matched similar patients. 

Better Tools to Control Display 

The need for tools to control the view of the display can include overview, zoom, 

and filter functions. Such functionalities have worked well in many other domains as well 

as in medicine [43-48]. An overall view gives a better understanding and helps with the 

clinician’s situational awareness. Then, zoom and filter options help the clinician to focus 

on the important information by filtering out the unnecessary information and allowing 

him or her to pay particular attention to details [49]. For example, LifeFlow has an 

analytic function to show the overall view. In addition, users can zoom and filter as 

needed to obtain the relevant information from the EHR [50]. From our study, it is clear 

that clinicians want to explore in detail particular information from a display. Therefore, 

the analytical capabilities for control over the display will empower clinicians to obtain a 

better understanding of the similar matched patients from the population database. 
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Multiple Representations of the Population Display 

Different visualizations of the same information can help researchers make better 

sense of the data. Infographics researchers in other domains, such as information or 

computer science, have established design guidelines (e.g., space/time resource 

optimization, attention management, consistency, etc.) [51-54]. However, the particular 

problem of finding and displaying similar patients is new, and guidelines have not been 

established. Information presented in a timeline view for individual patients may help 

when the case is very complex and only a few patients can be found through a database 

search. However, if the number of similar patients found is large, then pie charts or bar 

graphs with aggregate information may be a better option. A systematic review of 

innovative visualization of EHR data has shown pie charts, bar charts, line graphs, and 

scatter plots may reveal important information in an aggregated view for representing a 

larger number of patients [1]. However, for a very small number of patients, a 

longitudinal view may be better [4]. For example, researchers from IBM Research 

developed an interactive clinical pattern technique that can visualize and change the 

visualization display based on the pattern of the data [55]. 

Implications From Quantitative Analysis 

The quantitative results from this exploratory study offer insights into the effect 

of a population display on cognitive processes. We found that the display did have a 

marginal effect on the quality of the plan in pre-/postassessments. We also found that 

experts processed the population-based information faster than nonexperts, giving 

validity to the display content. This finding is congruent with similar findings about 



105 

 

experts’ ability to process information in search, perception and reasoning components of 

the task faster when compared with nonexperts [56-60]. 

Improved Design of the Population Information Display 

The literature review of healthcare information visualization highlights important 

design features. Also, the results of this study provided us with rich qualitative data regarding 

the preferences for population information display design. In the following paragraphs, we 

discuss how the new design supports the themes raised from clinicians concern in this study. 

Improving Trust in Population Data 

Clinicians raised concern about the quality of the data and the need to understand 

how similar their patients were to the cases we found by querying the VA database. 

Visualization approaches may help clinicians feel more confident about the similarity of 

the patients presented. In our previous design, we did not separate the antibiotics period 

explicitly by pre-post and current antibiotic timeline, which caused confusion. Clinicians 

also raised concern in the previous display about the position of the legends, as they had 

to search what each legend represented due to its position at the bottom of the display. 

Therefore, in this new design, we have placed the legends on the right side of the display 

for convenience. Showing the antibiotics period as three different timeframes side by side 

provides a better picture to compare the patient in hand. The differentiation of the 

timeline can improve the comprehensibility of the display. However, analytics-based 

information display can improve confidence and trust overall. Future enhancements to 

address clinicians’ lack of trust on the data include approaches to explain the logic that 
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can determine two patients to be similar as well as helping clinicians visualize the 

differences and similarities between patients. 

Better Cluster to Understand Similarity of the Patients 

The patients were not clustered by deaths or antibiotic type in our previous display. 

Clinicians raised concerns as they had to find similar groups of patients. Therefore, in this 

present display, we have clustered the patients by deaths and by the types of antibiotics 

used. These clusters provide a better representation of the population information and help 

to make better cognitive sense of the display by reducing search time. 

Supporting Possible Analytical Capabilities for Improved  

Control of the Display 

Clinicians want to be able to zoom, filter, and sort patients based on different 

attributes. Even though the design for the current display is static, different analytical 

capabilities such as zoom to patient information based on the antibiotic period can be 

achieved. In this display, we have separated patients by different timeline periods and 

deaths. In our previous display, it was not possible to zoom into pre-, current, and post- 

antibiotic timelines and explore similarities. However, in the current display, it is possible 

to add those analytical capabilities due to the separate timeline view. 

Support Multiple Representations of the Population Display 

Clinicians recommended different presentations of data for better 

comprehensibility in this study. Our previous design included only a visual display. 
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However, in this new design, we have added a summary table for a different presentation 

of the data through numerical variables. The summary table inside Figure 6.4 provides a 

quick overview of the patients who died after using Daptomycin versus non-Daptomycin 

medications. The different presentation of the population data promotes better 

understanding and improved comprehensibility of the population-based information. 

Limitations and Future Work 

The main limitation of our study was the small sample size. As an exploratory 

study, the results will guide future larger studies with visualization displays showing 

population information. There were also biases with regard to the appropriateness of 

plans for experts versus nonexperts. The expert panel decided that as long as the 

nonexperts consulted ID clinicians, the plan was appropriate. However, this was not the 

case for experts’ evaluations of the plans. It is difficult to judge an appropriate plan for 

very complex cases. Last, this study was focused on the ID domain. Future studies in 

other domains are needed to assess generalizability. Also, in this study, we have used a 

static population information display without analytical capabilities. Future work may 

include better population information displays incorporating the preferences for design 

found in this pilot exploratory study. 

Conclusion 

In this study, we have successfully extracted similar complex patient information 

from an actual clinical database and presented the information in a population 

information display. Future studies may use our methodology for finding similar complex 
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attributes of patients based on the clinical question to reduce uncertainty and cognitive 

complexity. In addition, the content analysis of the qualitative data on preferences for 

population display revealed the following four themes: 1) trusting population data can be 

an issue, 2) embedded analytics is necessary to explore patient similarities, 3) tools are 

needed to control the view (overview zoom and filter), and 4) different presentations of 

the population display can be beneficial. The results suggest that ID experts processed the 

population information visualization faster than nonexperts. Future studies with a large 

number of participants and a more fine-tuned visualization population display may 

validate the results of this exploratory study. 
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Table 6.1.  Complex case summary 

Patient is a 60-year-old man with AML s/p induction with 7+3 day+35 now s/p re-
induction who has had sustained neutropenia and now fever for the past 7 days. Initial 
blood cultures revealed Vancomycin-resistant Enterococcus. Infectious diseases was 
consulted the day after the fever spike and recommended Daptomycin given history of 
the same during previous admissions. Routine susceptibility report demonstrated 
susceptibility to Daptomycin, but after 2 days of sustained bacteraemia and worsening 
picture, gentamicin was added and his PICC line was discontinued. The patient remains 
on the floor, but has been persistently febrile. Transthoracic echocardiogram shows new 
tricuspid-valve regurgitation and a 3 cm vegetation. 
He endorses subjective fevers and chills but does not otherwise localize his symptoms. 
He reports feeling depressed about his outlook. 
VRE TV endocarditis currently failing or with delayed response to Daptomycin + 
Gentamicin and removal of the PICC line. Worsening on therapy. Creatinine now 1.6 
from 1.3. Currently neutropenic, precluding surgical intervention. Daptomycin etest 4, 
Linezolid 2. Susceptibility on the VRE from 2 days ago was rechecked and was the 
same as the original. 

Instructions: Please write down a plan about how will you manage the patient 
therapeutically and rank the plans 
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Table 6.2.  Information from similar patients 

 Patients with 
Daptomycin 

and/or 
combination 

therapy including 
Daptomycin 

Patients with any 
antibiotic other 

than Daptomycin Total 
Percentage of 
total patients 

Died 8 2 10 52% 

Did not die 6 3 9 48% 

Total 14 5 19  

Percentage of 
total patients 74% 26%   

**More patients died on treatment therapy containing Daptomycin than other 
therapeutics alternatives. Also, the guideline does suggest using Daptomycin as an initial 
therapeutic agent. 
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Table 6.3.  Measured outcomes and data collection 

Independent variables Data collection procedure 

Preferences for 
information display 

The first author audio recorded and transcribed the post-
study, in-depth interview with the participants 

Time looking at the 
population information 
display 

Quick Time player screen capture recorded the total time 
each participant spent looking and exploring the population 
information display 

Time to read the chart Quick Time player screen capture recorded the total time 
each participant spent reading the patient chart 

Appropriateness of plans Participants wrote down the treatment plan in word-
processing software and ranked the plan. They wrote down 
the plan twice: once after reading the chart and then again 
after seeing the population information display 
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Table 6.4.  Criteria for appropriate plans (if participants mentioned at least one of the 
treatment strategies such as start Linezolid or Tigecycline or consult ID,  the plan was 
termed appropriate). 

 Appropriate Plan 

Infectious diseases group 1. Start Linezolid 
 or 
2. Start Tigecycline 
 or 
3. Start very high dose of Ampicillin + Ceftriaxone 

Noninfectious diseases group 4. Consult ID 
 or 
5. Start Linezolid 
 or 
6. Start Tigecycline 
 or 
7. Start very high dose of Ampicillin + Ceftriaxone 
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Figure 6.1.  Population information display. 
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Figure 6.2.  Appropriateness of plans before and after showing the display. 
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Figure 6.3.  Viewing time for the population display (expert versus nonexpert) 
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Figure 6.4.  Redesigned population-based information display. Each line represents a 
patient who was treated with Daptomycin, Ampicillin, or Other Vancomycin-Resistant 
Enterococcus (VRE) antibiotics such as Linezolid, Tigecycline, Synercid, Gentamycin, or 
Streptomycin. These patients were found from querying the VA clinical database. The 
guidelines for VRE neutropenic patients mandate Daptomycin use. The display provides 
outcome information for patients who were treated with Daptomycin, Ampicillin, and 
other VRE antibiotics. 



 

 

CHAPTER 7 

DISCUSSION 

Summary 

In this dissertation, we explored task complexity for a better understanding of the 

design principles for next generation health IT systems. Previous research on complexity 

in healthcare lacked a clinical complexity model that included both patient and task 

complexity variables. Our main hypothesis was that understanding the user’s interaction 

with complex decision tasks may lead to improved recommendations for the design of 

decision support tools integrated with EHR systems to improve patient safety. To achieve 

this, we created the first integrated clinical complexity model (Chapter 3) that includes 

both patient and task complexity. Then, we successfully identified specific decision 

support tools tied with cognitive mechanisms (Chapter 4) and specific complexity-

contributing factors (Chapter 5). Our findings (Chapter 4 and Chapter 5) from this 

dissertation have successfully led to the recommendation of different decision support 

tools based on the cognitive mechanisms and complexity-contributing factors. 

To improve the understanding of complex tasks in the healthcare domain, we 

have conducted four studies focused on the following topics. First, we have merged and 

adopted a patient and task complexity model from previous studies [1, 2] for a 

healthcare-specific clinical complexity model (Chapter 3). However, this model was not 
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validated in the infectious diseases (ID) domain. To make sure that this model represents 

clinical complexity, we used it for the data analysis in the observation study (Chapter 5). 

As a result, we found that 20 of 24 complexity-contributing factors in the clinical 

complexity model were relevant for the ID domain. Identifying these complexity-

contributing factors led to better design recommendations for different decision support 

tools. Moreover, the cognitive task analysis (Chapter 4) of ID clinicians helped us 

understand the constituents of complexity and the coping strategies expert clinicians use 

to deal with complexity. These coping strategies provide a better understanding of 

specific design recommendations to incorporate different decision support tools for better 

cognitive support for our clinicians. The final pilot study (Chapter 6) demonstrated the 

feasibility of extracting and displaying population-based information from an actual 

clinical population’s database records. Also, the specific preferences (Chapter 6) for 

population information display may guide future design recommendations for population-

based decision support systems. These studies demonstrated aspects of different task 

complexity factors and provided specific design recommendations for future innovative 

and safer health IT systems. 

Our research has focused on task complexity in the ID domain. Most of our 

participants were clinical experts who manage uncertainty and complexity in their daily 

practice using their experiences. This research has delved into the interaction of task 

characteristics and individual differences (e.g., experience, cognitive capabilities). Our 

results suggest that the problem-solving process can best contribute to effective and 

efficient problem-solving outcomes when individuals’ mental models accurately 

represent the complex tasks. Previous research for understanding clinical complexity 
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lacked a measurement for understanding factors related to objectively characterize 

complex tasks. As a result, complexity in medicine was more of an abstract concept. The 

clinical complexity model (Chapter 3) developed in this dissertation can objectively 

measure complexity and reduce the abstraction. Moreover, the design recommendation 

by understanding the coping strategies (Chapter 4) for dealing with complex tasks and 

identified complexity-contributing factors (Chapter 5) will guide the informatics 

community, health services researchers, and system designers for safer and better 

information technology platforms. 

For example, the cognitive mechanisms (Chapter 4) for dealing with complex 

decision tasks may help with the design of decision support tools that can be integrated 

with EHR systems for better clinical reasoning. The different patient monitoring tools to 

support watchful waiting may provide better task allocation for interface design for 

decision support systems. Also, the complexity-contributing factors (Chapter 5) found in 

the observation study yielded specific design guidelines. For example, the unnecessary 

information and unclear goals can be reduced by integrated displays in the ID domain. 

These findings can greatly help informatics researchers and health IT designers for 

specific task allocation for future innovative interface design. All these complexity 

factors are related to tasks, and thus they can help with task allocation features for 

designing systems. 

Also, we found that information presented in spatial format (e.g., population 

information display in Chapter 6) contributed to faster processing of information for 

domain experts when compared with nonexpert clinicians. The preferences for ideal 

population display (Chapter 6) have led to better design principles for improving and 
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incorporating big data for better clinical decision-making. These results also imply that 

complex information presented in specific visualization formats (such as different time 

views) may reduce cognitive load. Overall, this dissertation suggests that better 

understanding of task complexity can provide informatics solutions for safer and 

improved technological designs to enhance the clinical reasoning of clinicians and 

thereby improve patient safety. 

Finally, the studies from this dissertation suggest that task complexity is an 

important and crucial factor to be considered in healthcare information technology 

system design. Future studies of how complexity in medicine can validate our clinical 

complexity model in different clinical domains and identify domain-specific task 

complexity factors may provide a better understanding of task allocation and design 

specifications in future innovative interface systems. The results of our studies can help 

future researchers and designers build systems for our clinicians for the way they behave 

and not the way we want them to behave. 

Limitations 

The research described in this dissertation has several limitations. Several human 

factors methods elicit the decision-making process, such as hierarchical task analysis 

(HTA) and cognitive work analysis (CWA). In this research, we have used one form of 

cognitive task analysis, as well as observation and simulation, to understand the overall 

clinical reasoning process. Other methodologies, including HTA (Hierarchical Task 

Analysis) and CWA (Cognitive Work Analysis,) could also be used to understand the 

task interactions. However, the methods that we have used are very robust and have been 
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employed in many different fields to understand the decision-making process. 

Another limitation is the sample size for the observation study (Chapter 5) and the 

exploratory study (Chapter 6). The results of the observation study suggest that a greater 

number of cases may help researchers predict the relationship between perceived and 

objective complexity. Also, we conducted the pilot study (Chapter 6) with 10 participants 

only. Therefore, more participants could have provided a significant relationship among 

the outcomes of the study measures. 

The main limitation of this overall study is generalizability to other clinical 

domains. All the studies have been done in the ID domain. Among all other clinical 

domains, ID is challenging due to the resistant and emerging organisms causing 

infections and the concomitant public health implications [3-5]. An avenue for future 

research is the examination of the research questions in different clinical domains. 

Finally, understanding task complexity is just one of the many but important steps 

to understand user-centered design. Understanding different task allocations and the 

requirements for interface system design is important. However, there are many other 

methods, such as cognitive work analysis, timeline analysis, and event analysis of 

systemic work. These methods also can help us to understand the overall design process 

from the human-computer interaction point of view. The alternative methods may 

generate more decision points and complexity-contributing factors that can add important 

knowledge for the problem on which we are focused. Also, task complexity may reside in 

the cognitive complexity of the user. Therefore, understanding socio-technical 

complexities such as teamwork, workflow analysis, and social network analysis is also an 

important part of the process. In this study, we did not explore the other relevant human- 
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factor methodologies. Therefore, future studies may shed light on task complexity by 

integrating other robust human-factor methodologies. 

Future Directions 

Our findings can help future decision support designers in medication 

management in different clinical domains. For example, our mapping of decision support 

tools based on cognitive mechanisms can be applied in other clinical areas such as 

managing patients with high blood pressure or psychiatric use of antidepressants. In all 

domains, clinicians experience complexity. However, little has been done to manage the 

complexity by presenting information in innovative visualization. Our second design 

clearly shows the outcome of different therapeutic agents in a longitudinal manner. Other 

clinical domains such as primary care or psychiatry can use such displays to provide 

outcomes of different therapeutic agents and provide guidance to clinicians for managing 

optimal treatment regimens. 

The research described in this dissertation may lead to such future research 

directions as task complexity to understand clinical workflow, heuristics management for 

intuitive system design, and action identification to differentiate between high- and low-

level tasks for better cognitive support. 

Task Complexity to Understand Clinical Workflow 

In our work, we found that the complexity lies not only between the clinician and 

the artifacts (display, computers, etc.) but also within and between the actor and the 

environment (other factors such as teams, patients). Therefore, understanding task 
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complexity in a team environment can shed better light on clinical workflow from a 

design perspective. 

The complexity and importance of tasks likely affect how decisions are made at 

the level of communication and coordination required among team members. The 

complexity of the task determines the time and effort team members invest in the 

collaborative problem-solving process. Understanding task complexity can shed light on 

clinical workflow variations and effective management of the patient. It may be possible 

to create a framework to map clinical workflow based on the task information-social 

network approach to understand the macro-cognition of teams. Understanding task 

complexity among clinical teams may help us to develop a generalizable framework for 

mapping clinical workflow for health information technology system (re)-design. 

Heuristics Management for Intuitive System Design 

In our results from Chapter 4, we found that heuristics or a short-cut mental 

model plays a very important role in overall clinical reasoning. However, most decision 

support design does not take the principle of “less is more” seriously. On the contrary, it 

is assumed that more information will lead to better decision-making. Therefore, 

understanding the short-cut mental model is important for intuitive design. 

 Heuristics plays an important role in overall clinical reasoning. Due to cognitive 

limitations, we cannot process information beyond our cognitive capacity. As a result, the 

brain filters out unnecessary information and focuses only on pertinent information. 

Although generally effective, this process may lead to cognitive bias and errors. 

However, if heuristics management is not optimized, information overload will confuse 
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the user and make him or her more prone to errors. For example, by identifying the 

ignored information during clinical reasoning, decision logic built into the system may 

provide cognitive support for clinicians not to miss pertinent and important information. 

Future studies may look into these ignored factors to reduce the bias that comes with 

heuristics. Therefore, future intuitive systems can match the higher cognitive ability of 

the clinician by focusing on the important information in order to convey only relevant 

point-of-care information to the clinician to reduce cognitive bias and errors. 

Action Identification to Differentiate Between 

High- and Low-Level Tasks 

In our research from Chapter 3 and Chapter 5, we found that complexity-

contributing factors can vary based on time and the situation of the patient. Therefore, to 

identify these factors in clinical domains, it may be helpful to understand how these tasks 

are represented in the clinician’s mental workflow. 

The task complexity factors discussed in this dissertation were domain specific. 

However, tasks are represented in the expert’s mind with respect to different levels of 

goals and expectations. As a result, the same task may not be in the same level of 

representation in the nonexpert’s mind as in the expert’s mind. Therefore, understanding 

these different representations of high- and low-level tasks may help with future design 

and task allocation in the interface system. 
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