268 research outputs found

    Triboelectric Effect Enabled Self-Powered, Point-of-Care Diagnostics: Opportunities for developing ASSURED and REASSURED devices

    Get PDF
    The use of rapid point-of-care (PoC) diagnostics in conjunction with physiological signal monitoring has seen tremendous progress in their availability and uptake, particularly in low- and middle-income countries (LMICs). However, to truly overcome infrastructural and resource constraints, there is an urgent need for self-powered devices which can enable on-demand and/or continuous monitoring of patients. The past decade has seen the rapid rise of triboelectric nanogenerators (TENGs) as the choice for high-efficiency energy harvesting for developing self-powered systems as well as for use as sensors. This review provides an overview of the current state of the art of such wearable sensors and end-to-end solutions for physiological and biomarker monitoring. We further discuss the current constraints and bottlenecks of these devices and systems and provide an outlook on the development of TENG-enabled PoC/monitoring devices that could eventually meet criteria formulated specifically for use in LMICs.Ulster Universityhttp://www.mdpi.com/journal/micromachineshj2021Electrical, Electronic and Computer Engineerin

    Holistic System Design for Distributed National eHealth Services

    Get PDF
    publishedVersio

    Nano-enabled biosensing systems for intelligent healthcare: towards COVID-19 management

    Get PDF
    Biosensors are emerging as efficient (sensitive and selective) and affordable analytical diagnostic tools for early-stage disease detection, as required for personalized health wellness management. Low-level detection of a targeted disease biomarker (pM level) has emerged extremely useful to evaluate the progression of disease under therapy. Such collected bioinformatics and its multi-aspects-oriented analytics is in demand to explore the effectiveness of a prescribed treatment, optimize therapy, and correlate biomarker level with disease pathogenesis. Owing to nanotechnology-enabled advancements in sensing unit fabrication, device integration, interfacing, packaging, and sensing performance at point-of-care (POC) has rendered diagnostics according to the requirements of disease management and patient disease profile i.e. in a personalized manner. Efforts are continuously being made to promote the state of art biosensing technology as a next-generation non-invasive disease diagnostics methodology. Keeping this in view, this progressive opinion article describes personalized health care management related analytical tools which can provide access to better health for everyone, with overreaching aim to manage healthy tomorrow timely. Considering accomplishments and predictions, such affordable intelligent diagnostics tools are urgently required to manage COVID-19 pandemic, a life-threatening respiratory infectious disease, where a rapid, selective and sensitive detection of human beta severe acute respiratory system coronavirus (SARS-COoV-2) protein is the key factor

    How 5G wireless (and concomitant technologies) will revolutionize healthcare?

    Get PDF
    The need to have equitable access to quality healthcare is enshrined in the United Nations (UN) Sustainable Development Goals (SDGs), which defines the developmental agenda of the UN for the next 15 years. In particular, the third SDG focuses on the need to “ensure healthy lives and promote well-being for all at all ages”. In this paper, we build the case that 5G wireless technology, along with concomitant emerging technologies (such as IoT, big data, artificial intelligence and machine learning), will transform global healthcare systems in the near future. Our optimism around 5G-enabled healthcare stems from a confluence of significant technical pushes that are already at play: apart from the availability of high-throughput low-latency wireless connectivity, other significant factors include the democratization of computing through cloud computing; the democratization of Artificial Intelligence (AI) and cognitive computing (e.g., IBM Watson); and the commoditization of data through crowdsourcing and digital exhaust. These technologies together can finally crack a dysfunctional healthcare system that has largely been impervious to technological innovations. We highlight the persistent deficiencies of the current healthcare system and then demonstrate how the 5G-enabled healthcare revolution can fix these deficiencies. We also highlight open technical research challenges, and potential pitfalls, that may hinder the development of such a 5G-enabled health revolution

    Design and Implementation of Wireless Point-Of-Care Health Monitoring Systems: Diagnosis For Sleep Disorders and Cardiovascular Diseases

    Get PDF
    Chronic sleep disorders are present in 40 million people in the United States. More than 25 million people remain undiagnosed and untreated, which accounts for over $22 billion in unnecessary healthcare costs. In addition, another major chronic disease is the heart diseases which cause 23.8% of the deaths in the United States. Thus, there is a need for a low cost, reliable, and ubiquitous patient monitoring system. A remote point-of-care system can satisfy this need by providing real time monitoring of the patient\u27s health condition at remote places. However, the currently available POC systems have some drawbacks; the fixed number of physiological channels and lack of real time monitoring. In this dissertation, several remote POC systems are reported to diagnose sleep disorders and cardiovascular diseases to overcome the drawbacks of the current systems. First, two types of remote POC systems were developed for sleep disorders. One was designed with ZigBee and Wi-Fi network, which provides increase/decrease the number of physiological channels flexibly by using ZigBee star network. It also supports the remote real-time monitoring by extending WPAN to WLAN with combination of two wireless communication topologies, ZigBee and Wi-Fi. The other system was designed with GSM/WCDMA network, which removes the restriction of testing places and provides remote real-time monitoring in the true sense of the word. Second, a fully wearable textile integrated real-time ECG acquisition system for football players was developed to prevent sudden cardiac death. To reduce power consumption, adaptive RF output power control was implemented based on RSSI and the power consumption was reduced up to 20%. Third, as an application of measuring physiological signals, a wireless brain machine interface by using the extracted features of EOG and EEG was implemented to control the movement of a robot. The acceleration/deceleration of the robot is controlled based on the attention level from EEG. The left/right motion of eyeballs of EOG is used to control the direction of the robot. The accuracy rate was about 95%. These kinds of health monitoring systems can reduce the exponentially increasing healthcare costs and cater the most important healthcare needs of the society

    Smart Sensors for Healthcare and Medical Applications

    Get PDF
    This book focuses on new sensing technologies, measurement techniques, and their applications in medicine and healthcare. Specifically, the book briefly describes the potential of smart sensors in the aforementioned applications, collecting 24 articles selected and published in the Special Issue “Smart Sensors for Healthcare and Medical Applications”. We proposed this topic, being aware of the pivotal role that smart sensors can play in the improvement of healthcare services in both acute and chronic conditions as well as in prevention for a healthy life and active aging. The articles selected in this book cover a variety of topics related to the design, validation, and application of smart sensors to healthcare

    An overview of technologies and devices against COVID-19 pandemic diffusion: virus detection and monitoring solutions

    Get PDF
    none5siThe year 2020 will remain in the history for the diffusion of the COVID-19 virus, originating a pandemic on a world scale with over a million deaths. From the onset of the pandemic, the scientific community has made numerous efforts to design systems to detect the infected subjects in ever-faster times, allowing both to intervene on them, to avoid dangerous complications, and to contain the pandemic spreading. In this paper, we present an overview of different innovative technologies and devices fielded against the SARS-CoV-2 virus. The various technologies applicable to the rapid and reliable detection of the COVID-19 virus have been explored. Specifically, several magnetic, electrochemical, and plasmonic biosensors have been proposed in the scientific literature, as an alternative to nucleic acid-based real-time reverse transcription Polymerase Chain Reaction (PCR) (RT-qPCR) assays, overcoming the limitations featuring this typology of tests (the need for expensive instruments and reagents, as well as of specialized staff, and their reliability). Furthermore, we investigated the IoT solutions and devices, reported on the market and in the scientific literature, to contain the pandemic spreading, by avoiding the contagion, acquiring the parameters of suspected users, and monitoring them during the quarantine period.openR. de Fazio, A. Sponziello, D. Cafagna, R. Velazquez, P. Viscontide Fazio, R.; Sponziello, A.; Cafagna, D.; Velazquez, R.; Visconti, P

    A Novel smart jacket for blood pressure measurement based on shape memory alloys

    Get PDF
    Smart textiles with medical applications offer the possibility of continuous and non-invasively monitoring which benefit patients and doctors. To measure blood pressure in premature infants a miniature actuator that can be sewn to the fabric is required. For this reason, an actuator based on shape memory alloys has been designed so that it compresses as a conventional air cuff but with 3.5W power consumption and can be controlled by applying different Pulse-Width Modulation (PWM) signals, thus offering several levels of compression. In addition, the first concept prototype of the smart jacket is achieved; made of a natural fiber fabric that incorporates: an optical sensor, a capacitive pressure sensor with great accuracy, the force actuator and a Lilypad Simblee control board which can be sewn to the fabric, is washable and has a Low Energy Bluetooh module (BBE) to connect to other devices. All this allows the systolic, diastolic and cardiac pressure to be measured for the first time in the world with the smart jacket by a semi-occlusive method. Altogether with a mobile application which allows doctors to monitor the patient at every moment, perform remote control, data measurement and recording in a comfortable and intuitive way that satisfies the necessity for a better clinical management to the growing number of patients and is a source of savings for the clinical services
    • 

    corecore