9,734 research outputs found

    SymbioCity: Smart Cities for Smarter Networks

    Get PDF
    The "Smart City" (SC) concept revolves around the idea of embodying cutting-edge ICT solutions in the very fabric of future cities, in order to offer new and better services to citizens while lowering the city management costs, both in monetary, social, and environmental terms. In this framework, communication technologies are perceived as subservient to the SC services, providing the means to collect and process the data needed to make the services function. In this paper, we propose a new vision in which technology and SC services are designed to take advantage of each other in a symbiotic manner. According to this new paradigm, which we call "SymbioCity", SC services can indeed be exploited to improve the performance of the same communication systems that provide them with data. Suggestive examples of this symbiotic ecosystem are discussed in the paper. The dissertation is then substantiated in a proof-of-concept case study, where we show how the traffic monitoring service provided by the London Smart City initiative can be used to predict the density of users in a certain zone and optimize the cellular service in that area.Comment: 14 pages, submitted for publication to ETT Transactions on Emerging Telecommunications Technologie

    On the performance of social-based and location-aware forwarding strategies in urban vehicular networks

    Get PDF
    High vehicular mobility in urban scenarios originates inter-vehicles communication discontinuities, a highly important factor when designing a forwarding strategy for vehicular networks. Store, carry and forward mechanisms enable the usage of vehicular networks in a large set of applications, such as sensor data collection in IoT, contributing to smart city platforms. This work evaluates the performance of several location-based and social-aware forwarding schemes through emulations and in a real scenario. Gateway Location Awareness (GLA), a location-aware ranking classification, makes use of velocity, heading angle and distance to the gateway, to select the vehicles with higher chance to deliver the information in a shorter period of time, thus differentiating nodes through their movement patterns. Aging Social-Aware Ranking (ASAR) exploits the social behavior of each vehicle, where nodes are ranked based on a historical contact table, differentiating vehicles with a high number of contacts from those who barely contact with other vehicles. To merge both location and social aforementioned algorithms, a HYBRID approach emerges, thus generating a more intelligent mechanism. For each strategy, we evaluate the influence of several parameters in the network performance, as well as we comparatively evaluate the strategies in different scenarios. Experiment results, obtained both in emulated (with real traces of both mobility and vehicular connectivity from a real city-scale urban vehicular network) and real scenarios, show the performance of GLA, ASAR and HYBRID schemes, and their results are compared to lower- and upper-bounds. The obtained results show that these strategies are a good tradeoff to maximize data delivery ratio and minimize network overhead, while making use of mobile networks as a smart city network infrastructure.publishe

    Modeling the Internet of Things: a simulation perspective

    Full text link
    This paper deals with the problem of properly simulating the Internet of Things (IoT). Simulating an IoT allows evaluating strategies that can be employed to deploy smart services over different kinds of territories. However, the heterogeneity of scenarios seriously complicates this task. This imposes the use of sophisticated modeling and simulation techniques. We discuss novel approaches for the provision of scalable simulation scenarios, that enable the real-time execution of massively populated IoT environments. Attention is given to novel hybrid and multi-level simulation techniques that, when combined with agent-based, adaptive Parallel and Distributed Simulation (PADS) approaches, can provide means to perform highly detailed simulations on demand. To support this claim, we detail a use case concerned with the simulation of vehicular transportation systems.Comment: Proceedings of the IEEE 2017 International Conference on High Performance Computing and Simulation (HPCS 2017
    corecore