244 research outputs found

    Wideband and UWB antennas for wireless applications. A comprehensive review

    Get PDF
    A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB) antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible), and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc.) and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems

    Parasitic Strip Loaded Dual Band Notch Circular Monopole Antenna with Defected Ground Structure

    Get PDF
    In this article a parasitic strip loaded monopole antennas are designed to notch dual and triple bands. The designed models are constructed on one side of the substrate material and on the other end defected ground structures are implemented. The basic antenna comprises a tuning stub and a ground plane with tapered shape slot as DGS. Another model is constructed with circular monopole radiating element on front side and similar kind of ground structure used in the basic rectangular tuning stub antenna. To create notched bands with tuning stubs, two symmetrical parasitic slits are placed inside the slot of the ground plane. The basic model is of the rectangular stub notching triple band and the circular tuning stub antenna notching dual band. Dual band notched circular tuning stub antenna is prototyped on FR4 substrate and measured results from vector network analyzer are compared with simulation results of HFSS for validation

    Design a new notched UWB antenna to rejected unwonted band for wireless communication

    Get PDF
    This paper presents a slotted design for ultra-wideband (UWB) antenna. Design of a rectangular UWB antenna covering the frequency range 3.1-10.6 GHz, to achieve notch characteristics in the bands at 3.1-8.4 GHz and 8.6-10.6 GHz. By changing the direction of distribution of current to apply this technique by inserting three C-shaped holes and two pairs of rectangular notches below the antenna. The simulation results reveal that the proposed structure is in good accord with the simulation results. The proposed UWB antenna size is (100x90x1.6 mm)3. This proposed design could provide a solution to eliminating bands that interfere in a UWB band depending on the aperture design. The simulated findings reveal that the UWB antenna operates in the 8.5 GHz center frequency range and rejects all frequency bands utilizing slits. This antenna design can provide a solution to remove UWB bands from 3.1-10.6 except for 8.5 GHz which only works. By using the notch, we got a large increase in the gain. makes to be a suitable candidate for X-band-UWB applications

    Analysis and design of a compact ultra-wideband antenna with WLAN and X-band satellite notch

    Get PDF
    A compact design of ultra-wideband (UWB) antenna with dual band-notched characteristics based on split-ring resonators (SRR) are investigated in this paper. The wider impedance bandwidth (from 2.73 to 11.34 GHz) is obtained by using two symmetrical slits in the radiating patch and another slit in the partial ground plane. The dual band-notch rejection at WLAN and X-band downlink satellite communication system are obtained by inserting a modified U-strip on the radiating patch at 5.5 GHz and embedding a pair of rectangular SRRs on both sides of the microstrip feed line at 7.5 GHz, respectively. The proposed antenna is simulated and tested using CST MWS high frequency simulator and exhibits the advantages of compact size, simple design and each notched frequency band can be controlled independently by using the SRR geometrical parameters. Therefore, the parametric study is carried out to understand the mutual coupling between the dual band-notched elements. To validate simulation results of our design, a prototype is fabricated and good agreement is achieved between measurement and simulation. Furthermore, a radiation patterns, satisfactory gain, current distribution and VSWR result at the notched frequencies make the proposed antenna a suitable candidate for practical UWB applications

    A new wideband planar antenna with band-notch functionality at GPS, Bluetooth and WiFi bands for integration in portable wireless systems

    Get PDF
    Empirical results are presented for a novel miniature planar antenna that operates over a wide bandwidth (500 MHz to 3.05G Hz). The antenna consists of dual-square radiating patches separated by two narrow vertical stubs to reject interferences from GPS, Bluetooth and WiFi bands. Radiating patches and stubs are surrounded by a ground-plane conductor, and the antenna is fed through a common coplanar waveguide transmission line (CPW-TL). The two vertical stubs generate pass-band resonances enabling wideband operation across the following communications standards: cellular, APMS, JCDMA, GSM, DCS, PCS, KPCS, IMT-2000, WCDMA, UMTS and WiMAX. Embedded in the ground-plane conductor is an H-shaped dielectric slit, which has been rotated by 90°, whose function is to reject interferences from GPS, Bluetooth and WiFi bands. Measurements results confirm the antenna exhibits notched characteristics at frequency bands of GPS (1574.4–1576.4 MHz), Bluetooth (2402–2480 MHz) and WiFi (2412–2483.5 MHz). The impedance bandwidth of the antenna is 2.55G Hz for VSWR < 2, which corresponds to a fractional bandwidth of 143.66%. Measured results also confirm that the antenna radiates omnidirectionally in the E-plane with appreciable gain performance over its operating frequency range. The antenna has dimensions of 15 mm × 15 mm × 0.8 mm

    A Planar Dual Notched Band Vivaldi Antenna for Wireless Communication Applications

    Get PDF
    With the aim of realizing a Vivaldi Antenna (VA) with stop bands for wireless communication applications, this paper introduces a novel, uncomplicated, easily fabricated, and compact planar VA featuring two distinctive rejected&nbsp;frequency bands. The designed VA is engraved onto an FR4-epoxy substrate, measuring 0.4243λ0×0.4296λ0&nbsp;×0.01315λ0&nbsp;at 2.63 GHz. The integration of dual notched band functionality is ingeniously achieved through the implementation&nbsp;of a simple additional strip and a U-formed slit. A physical prototype of the VA was successfully constructed&nbsp;and meticulously measured with the R&amp;S®ZNB Vector Network Analyser. The measured impedance bandwidth&nbsp;demonstrates that the realised VA operates from 2.63 GHz to beyond 12 GHz while effectively excluding two&nbsp;bands: 3.46-4.16 GHz (18.37 %) and 5.32-6.5 GHz (19.97 %). Simulated results indicate that the designed VA can&nbsp;provide stable unidirectional radiation patterns, reasonable realized gain, and acceptable radiation efficiency across&nbsp;its operating ranges, with notable drops observed at the two notched bands. As a result, these findings highlight&nbsp;the practical value of the designed VA for wireless communication applications, particularly in scenarios where the&nbsp;integration of filtering structures in antennas becomes essential to prevent interference with co-existing systems. The&nbsp;presented VA opens new avenues for enhancing wireless communication performance, catering to the increasing&nbsp;demand for reliable and interference-resistant solutions

    Circular Patch Antenna with Defected Ground for UWB Communication with WLAN Band Rejection

    Get PDF
    The design and performance of coplanar waveguide fed modified circular patch antenna for possible application in ultra wideband communication systems with band rejection for upper wireless local area network band (5.15 GHz - 5.85 GHz) is reported. This antenna is designed on glass epoxy FR4 substrate having size 30 mm Ă— 20 mm Ă— 1.59 mm. The coplanar waveguide fed circular patch antenna is modified by introducing L shaped slits in ground plane and U shaped slot in patch and performance analysis of antenna is simulated by applying CST microwave studio simulation software. Different designed antennas were tested with available experimental facilities. The developed end product shows a nice matching with feed network at frequencies 2.62 GHz, 3.94 GHz and 8.50 GHz and provides 10.38 GHz (3.33 GHz - 13.71 GHz) impedance bandwidth with wireless local area network 5.5 GHz (4.74 GHz - 6.15 GHz) band rejection. The co and cross polar patterns in elevation and azimuth planes at two frequencies namely 2.62 GHz and 3.94 GHz are obtained which dictate that co-polar patterns are significantly better than cross polar patterns. The simulated peak gain of antenna is close to 3.86 dBi and gain variation with frequency shows a sharp gain decrease in the frequency range 4.74 GHz to 6.15 GHz.

    A Review: Circuit Theory of Microstrip Antennas for Dual-, Multi-, and Ultra-Widebands

    Get PDF
    In this chapter, a review has been presented on dual-band, multiband, and ultra-wideband (UWB). This review has been classified according to antenna feeding and loading of antennas using slots and notch and coplanar structure. Thereafter a comparison of dual-band, multiband, and ultra-wideband antenna has been presented. The basic geometry of patch antenna has been present along with its equivalent circuit diagram. It has been observed that patch antenna geometry for ultra-wideband is difficult to achieve with normal structure. Ultra-wideband antennas are achieved with two or more techniques; mostly UWB antennas are achieved from coplaner structures

    Slotted Printed Monopole UWB Antennas with Tuneable Rejection Bands for WLAN/WiMAX and X-Band Coexistence

    Get PDF
    YesFour versions of the compact hexagonal-shaped monopole printed antennas for UWB applications are presented. The first proposed antenna has an impedance bandwidth of 127.48 % (3.1 GHz to 14 GHz), which satisfies the bandwidth for ultra-wideband communication systems. To reduce the foreseen co-channel interference with WLAN (5.2GHz) and X-Band systems (10GHz), the second and third antennas type were generated by embedding hexagonal slot on the top of the radiating patch. The integration of the half and full hexagonal slots created notched bands that potentially filtered out the sources of interference, but were static in nature. Therefore, a fourth antenna type with tuneable-notched bands was designed by adding a varactor diode at an appropriate location within the slot. The fourth antenna type is a dual-notch that was electronically and simultaneously tuned from 3.2GHz to 5.1GHz and from 7.25GHz up to 9.9GHz by varying the bias voltages across the varactor. The prototypes of the four antenna versions were successfully fabricated and tested. The measured results have good agreement with the simulated results.This work is carried out under the grant of the FundacĂŁo para a CiĂŞncia e a Tecnologia (FCT - Portugal), with the reference number: SFRH / BPD / 95110 / 201
    • …
    corecore