2,049 research outputs found

    Visual motion processing and human tracking behavior

    Full text link
    The accurate visual tracking of a moving object is a human fundamental skill that allows to reduce the relative slip and instability of the object's image on the retina, thus granting a stable, high-quality vision. In order to optimize tracking performance across time, a quick estimate of the object's global motion properties needs to be fed to the oculomotor system and dynamically updated. Concurrently, performance can be greatly improved in terms of latency and accuracy by taking into account predictive cues, especially under variable conditions of visibility and in presence of ambiguous retinal information. Here, we review several recent studies focusing on the integration of retinal and extra-retinal information for the control of human smooth pursuit.By dynamically probing the tracking performance with well established paradigms in the visual perception and oculomotor literature we provide the basis to test theoretical hypotheses within the framework of dynamic probabilistic inference. We will in particular present the applications of these results in light of state-of-the-art computer vision algorithms

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Safety Risk Management of LEED Building Construction : A BIM based Approach

    Get PDF
    Green buildings have been gaining popularity in the construction industry due to their low impact on the environment. Green buildings are aimed at creating energy-efficient, healthy, and environment-friendly buildings. However, OSHA records show that about 48% more accidents occur in green building construction as compared to traditional construction methods. Compromising the workers\u27 health and safety questions the true sustainability of the building. Green buildings have been a popular strategy in institutional sustainability agendas. Globally, LEED is the most popular green buildings rating system. Statistics show that an increasing number of construction projects intend to obtain the LEED certification in the next decade. However, elevated worker health and safety risks have been gradually becoming a concern while pursuing LEED credits. However, there exists a limited study comparing the safety hazards occurring in conventional construction practices and green construction practices.This research explores the major safety risks associated with LEED-certified building construction. Failure Mode Effect, Analysis (FMEA) is used to determine the safety risk associated with each LEED credit. LEED credits were ranked based on safety performance. Safety score and incremental cost of LEED credits were used to identify the optimal credit combination for LEED gold certification that reduces the safety risk and minimizes the cost. Bayesian Belief Networks (BBN) was used to analyze the impact of project factors on safety risk. This analysis identified how the risk level of LEED credits changes based on project parameters. Safety risks identified from FMEA and BBN were used to develop Building Information Modelling (BIM)-based solutions to improve worker safety. The outcomes of this research will address the challenges of LEED construction and inform the construction industry in enhancing the health and safety of construction workers with state-of-the-art technolog

    Terrain Aware Traverse Planning for Mars Rovers

    Get PDF
    NASA is proposing a Mars Sample Return mission, to be completed within one Martian year, that will require enhanced autonomy to perform its duties faster, safer, and more efficiently. With its main purpose being to retrieve samples possibly tens of kilometers away, it will need to drive beyond line-of-sight to get to its target more quickly than any rovers before. This research proposes a new methodology to support a sample return mission and is divided into three compo-nents: map preparation (map of traversability, i.e., ability of a terrain to sustain the traversal of a vehicle), path planning (pre-planning and replanning), and terrain analysis. The first component aims at creating a better knowledge of terrain traversability to support planning, by predicting rover slip and drive speed along the traverse using orbital data. By overlapping slope, rock abundance and terrain types at the same location, the expected drive velocity is obtained. By combining slope and thermal data, additional information about the experienced slip is derived, indicating whether it will be low (less than 30%) or medium to high (more than 30%). The second component involves planning the traverse for one Martian day (or sol) at a time, based on the map of expected drive speed. This research proposes to plan, offline, several paths traversable in one sol. Once online, the rover chooses the fastest option (the path cost being calculated using the distance divided by the expected velocity). During its drive, the rover monitors the terrain via analysis of its experienced wheel slip and actual speed. This information is then passed along the different pre-planned paths over a given distance (e.g., 25 m) and the map of traversability is locally updated given this new knowledge. When an update occurs, the rover calculates the new time of arrival of the various paths and replans its route if necessary. When tested in a simulation study on maps of the Columbia Hills, Mars, the rover successfully updates the map given new information drawn from a modified map used as ground truth for simulation purposes and replans its traverse when needed. The third component describes a method to assess the soil in-situ in case of dangerous terrain detected during the map update, or if the monitoring is not enough to confirm the traversability predicted by the map. The rover would deploy a shear vane instrument to compute intrinsic terrain parameters, information then propagated ahead of the rover to update the map and replan if necessary. Experiments in a laboratory setting as well as in the field showed promising results, the mounted shear vane giving values close to the expected terrain parameters of the tested soils

    Temporospatial Context-Aware Vehicular Crash Risk Prediction

    Get PDF
    With the demand for more vehicles increasing, road safety is becoming a growing concern. Traffic collisions take many lives and cost billions of dollars in losses. This explains the growing interest of governments, academic institutions and companies in road safety. The vastness and availability of road accident data has provided new opportunities for gaining a better understanding of accident risk factors and for developing more effective accident prediction and prevention regimes. Much of the empirical research on road safety and accident analysis utilizes statistical models which capture limited aspects of crashes. On the other hand, data mining has recently gained interest as a reliable approach for investigating road-accident data and for providing predictive insights. While some risk factors contribute more frequently in the occurrence of a road accident, the importance of driver behavior, temporospatial factors, and real-time traffic dynamics have been underestimated. This study proposes a framework for predicting crash risk based on historical accident data. The proposed framework incorporates machine learning and data analytics techniques to identify driving patterns and other risk factors associated with potential vehicle crashes. These techniques include clustering, association rule mining, information fusion, and Bayesian networks. Swarm intelligence based association rule mining is employed to uncover the underlying relationships and dependencies in collision databases. Data segmentation methods are employed to eliminate the effect of dependent variables. Extracted rules can be used along with real-time mobility to predict crashes and their severity in real-time. The national collision database of Canada (NCDB) is used in this research to generate association rules with crash risk oriented subsequents, and to compare the performance of the swarm intelligence based approach with that of other association rule miners. Many industry-demanding datasets, including road-accident datasets, are deficient in descriptive factors. This is a significant barrier for uncovering meaningful risk factor relationships. To resolve this issue, this study proposes a knwoledgebase approximation framework to enhance the crash risk analysis by integrating pieces of evidence discovered from disparate datasets capturing different aspects of mobility. Dempster-Shafer theory is utilized as a key element of this knowledgebase approximation. This method can integrate association rules with acceptable accuracy under certain circumstances that are discussed in this thesis. The proposed framework is tested on the lymphography dataset and the road-accident database of the Great Britain. The derived insights are then used as the basis for constructing a Bayesian network that can estimate crash likelihood and risk levels so as to warn drivers and prevent accidents in real-time. This Bayesian network approach offers a way to implement a naturalistic driving analysis process for predicting traffic collision risk based on the findings from the data-driven model. A traffic incident detection and localization method is also proposed as a component of the risk analysis model. Detecting and localizing traffic incidents enables timely response to accidents and facilitates effective and efficient traffic flow management. The results obtained from the experimental work conducted on this component is indicative of the capability of our Dempster-Shafer data-fusion-based incident detection method in overcoming the challenges arising from erroneous and noisy sensor readings

    New Fast Fall Detection Method Based on Spatio-Temporal Context Tracking of Head by Using Depth Images

    Get PDF
    © 2015 by the authors; licensee MDPI, Basel, Switzerland. In order to deal with the problem of projection occurring in fall detection with two-dimensional (2D) grey or color images, this paper proposed a robust fall detection method based on spatio-temporal context tracking over three-dimensional (3D) depth images that are captured by the Kinect sensor. In the pre-processing procedure, the parameters of the Single-Gauss-Model (SGM) are estimated and the coefficients of the floor plane equation are extracted from the background images. Once human subject appears in the scene, the silhouette is extracted by SGM and the foreground coefficient of ellipses is used to determine the head position. The dense spatio-temporal context (STC) algorithm is then applied to track the head position and the distance from the head to floor plane is calculated in every following frame of the depth image. When the distance is lower than an adaptive threshold, the centroid height of the human will be used as the second judgment criteria to decide whether a fall incident happened. Lastly, four groups of experiments with different falling directions are performed. Experimental results show that the proposed method can detect fall incidents that occurred in different orientations, and they only need a low computation complexity

    Direct observations of causal links in plastic events and relevance to earthquake seismology

    Get PDF
    Earthquakes are complex physical processes driven by stick-slip motion on a sliding fault. After the main event, a series of aftershocks is usually observed. The latter are loosely defined as earthquakes that follow a parent event and occur within a prescribed space-time window. In seismology, it is currently not possible to establish an unambiguous causal relation between events, and the nearest-neighbor metric is commonly used to distinguish aftershocks from independent events. Here, we employ a soft-glass model as a proxy for earthquake dynamics, previously shown to be able to correctly reproduce the phenomenology of earthquakes, together with a technique that allows us to clearly separate independent and triggered events. We show that aftershocks in our plastic event catalog follow Omori's law with slopes depending on the triggering mode, an observation possibly useful for seismology. Finally, we confirm that the nearest-neighbor metric is indeed effective in separating independent events from aftershocks

    Backwards is the way forward: feedback in the cortical hierarchy predicts the expected future

    Get PDF
    Clark offers a powerful description of the brain as a prediction machine, which offers progress on two distinct levels. First, on an abstract conceptual level, it provides a unifying framework for perception, action, and cognition (including subdivisions such as attention, expectation, and imagination). Second, hierarchical prediction offers progress on a concrete descriptive level for testing and constraining conceptual elements and mechanisms of predictive coding models (estimation of predictions, prediction errors, and internal models)
    • …
    corecore