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Abstract

TERRAIN AWARE TRAVERSE PLANNING FOR MARS ROVERS

by Gabrielle Hedrick

NASA is proposing a Mars Sample Return mission, to be completed within one Martian
year, that will require enhanced autonomy to perform its duties faster, safer, and more efficiently.
With its main purpose being to retrieve samples possibly tens of kilometers away, it will need to
drive beyond line-of-sight to get to its target more quickly than any rovers before. This research
proposes a new methodology to support a sample return mission and is divided into three compo-
nents: map preparation (map of traversability, i.e., ability of a terrain to sustain the traversal of a
vehicle), path planning (pre-planning and replanning), and terrain analysis. The first component
aims at creating a better knowledge of terrain traversability to support planning, by predicting rover
slip and drive speed along the traverse using orbital data. By overlapping slope, rock abundance
and terrain types at the same location, the expected drive velocity is obtained. By combining slope
and thermal data, additional information about the experienced slip is derived, indicating whether
it will be low (less than 30%) or medium to high (more than 30%). The second component involves
planning the traverse for one Martian day (or sol) at a time, based on the map of expected drive
speed. This research proposes to plan, offline, several paths traversable in one sol. Once online,
the rover chooses the fastest option (the path cost being calculated using the distance divided by
the expected velocity). During its drive, the rover monitors the terrain via analysis of its experi-
enced wheel slip and actual speed. This information is then passed along the different pre-planned
paths over a given distance (e.g., 25 m) and the map of traversability is locally updated given this
new knowledge. When an update occurs, the rover calculates the new time of arrival of the various
paths and replans its route if necessary. When tested in a simulation study on maps of the Columbia
Hills, Mars, the rover successfully updates the map given new information drawn from a modified
map used as ground truth for simulation purposes and replans its traverse when needed. The third
component describes a method to assess the soil in-situ in case of dangerous terrain detected dur-
ing the map update, or if the monitoring is not enough to confirm the traversability predicted by
the map. The rover would deploy a shear vane instrument to compute intrinsic terrain parameters,
information then propagated ahead of the rover to update the map and replan if necessary. Exper-
iments in a laboratory setting as well as in the field showed promising results, the mounted shear
vane giving values close to the expected terrain parameters of the tested soils.
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CHAPTER 1 Goal and High-level Statement

NASA has launched its next mission to Mars, which includes a rover similar to Curiosity
named Perseverance. The rover is designed to collect samples with the intent of bringing them
back to Earth during the following mission. There is thus a proposed Mars Sample Return mission
whose sole purpose is to bring the samples back.

West Virginia University’s Interactive Robotics Laboratory (WVUIRL), along with other
laboratories at WVU, is proposing to develop an autonomous rover capable of going from one start
point to a target and back, safely, to support efforts made at NASA towards a sample return mission.
The goal is to traverse the distance between theMars Ascent Vehicle (MAV) and the samples, which
could be up to ten kilometers, rapidly (the rover does not need to stop for science unlike current
and past missions), safely, efficiently and with limited human intervention.

This research primarily focuses on the terrain along the path the rover takes to get to the
samples. Terrain analysis and path planning are deeply interconnected, and this work proposes a
planning method that fully integrates the environment to achieve better performance. The main
goal is to create a rover that has a high level of autonomy and can tackle the challenges related to
a sample return mission as proposed by NASA.

There are three objectives to this research. The first objective consists of assessing the
Martian terrain prior to landing. This would allow a high-level analysis of traversability (i.e., ability
for a terrain to support a driving vehicle without reaching the failure point, which depends on the
robot itself as well as terrain properties [Papadakis, 2013]) at a given landing site and detection of
potentially dangerous areas ahead of time. The second objective consists of planning the traverse
one day at a time (i.e., at local scale, up to 800m as a daily driving objective) from one waypoint to
another with options to replan to ensure safety. Using orbital information available at the landing
site (e.g., topography) as well as an analysis of the rover’s surrounding terrains during driving,
the idea is to follow a path within a set time budget, while maintaining an accurate map of the
environment. The third objective is about providing the rover with means to assess and identify
a terrain autonomously, so as to avoid mobility problems during the traverse. If an unexpected
situation and/or a danger is detected, there needs to be a method for the rover to decide what to do
or where to go next. More specifically, this third part focuses on in-situ terrain monitoring as an
asset to path planning.

The main contribution of this work is to support an autonomous, fast traversing rover ca-
pable of integrating its environment into its planning on a daily basis. This research develops a
path planning algorithm at local scale (driving objective of a Martian day or sol) that fully takes
the terrain into account prior to and during planning.

The rest of the dissertation is organized as follows: after presenting the motivation behind
this research and background information related to the project, there will be a review of relevant
literature. The technical approach will follow, and the integrated results will be presented, while
future work will be mentioned at the end.
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CHAPTER 2 Introduction

2.1 Motivation

2.1.1 Missions to Mars

NASA’s most recent guidelines are to send humans toMars by 2033 [Chapman, 2020]. This
lays out a variety of challenges ahead, such as building a habitat or supporting manned missions
with limited input from Earth.

NASA’s spacecrafts reached Mars decades ago with the Viking mission that arrived at the
surface in 1976 [Soffen and Young, 1972]. It successfully landed a rover on Mars in 1997, called
Sojourner [Matijevic, 1997] on board the Pathfinder mission. NASA has since sent the twin rovers
Spirit and Opportunity that landed in January 2004 [Crisp et al., 2003], with Opportunity lasting
more than a decade (it was declared lost in February 2019). In the meantime, Mars Science Lab-
oratory, MSL, was launched to Gale Crater to explore the habitability of Mars [Grotzinger et al.,
2012]. As technology improves, missions become more complex and goals are set higher. Having
images back from Viking was an accomplishment in itself at the time; nowadays, with Curiosity,
chemical experiments are performed on board. From a rough picture of the surface of Mars, tech-
nology has now made it possible to collect samples and analyze their composition directly from the
surface of Mars. NASA has already launched its very next mission to the red planet, Perseverance,
and has proposed the Mars Sample Return (MSR) rover set to bring back samples collected by the
Curiosity-like rover [Witze, 2014].

2.1.2 Mars Sample Return (MSR) and the proposed fetch rover

The next proposed mission to Mars involves a fetch rover. Perseverance launched with
onboard instruments capable of collecting samples, and the following mission, MSR, would re-
trieve them. The sample return proposal brings a new level of complexity to engineers: it is mostly
designed to bring back samples (vs. performing science experiments in-situ), unlike any other
missions to the red planet. Its current timeline is set to be within one Martian year (roughly equiv-
alent to two Earth years) [MEPAG, 2008], ideally no more than 200 sols [Klein et al., 2014]. The
landing ellipse for Mars 2020 is roughly 11 km by 8 km [Golombek et al., 2017], and assuming
MSR will have the same landing area, then it might traverse potentially great distances in a short
amount of time (although it is not required to stop for science, its purpose being to retrieve sam-
ples). The mission calls for more autonomy beyond the pre-planning done by humans and this can
be seen at different levels: autonomy can be gained in path planning, navigation, decision mak-
ing, etc… NASA has begun to work towards this goal of enhanced autonomy by implementing a
Terrain Relative Navigation (TRN) software on board Perseverance to detect hazards during Entry,
Descent, Landing (EDL), to identify science targets to land next to and to avoid traversing long
distances [Johnson et al., 2015].
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This research focuses on a proposed fetch rover and its autonomous capability to support
NASA’s effort towards a sample return mission. More specifically, the terrain and path planning
components are extensively studied to propose a framework for such a mission.

2.1.3 More autonomy needed for MSR and future space missions

Future space missions, including MSR, will become more complex and some will go fur-
ther into the solar system, where no one has gone before. There is proposed research for a journey
to Uranus and Neptune [Mousis et al., 2018]. There are also proposed missions towards Saturn’s
moon Titan [Lorenz et al., 2018]. These missions require autonomy in robotics, as it would enable
going further than line-of-sight moving, ensure safety at every step, and allow more complex de-
signs to be put together with restricted budget and staffing [Fong et al., 2017].

To understand better how autonomy is becoming a necessary part of NASA’s future mis-
sions, it is important to know how the past and current Mars missions are organized in terms of
daily planning. Opportunity and Curiosity will be taken as examples to illustrate tactical opera-
tions. A typical sol (Martian day, about 40 minutes longer than on Earth) includes one downlink
and one uplink through the Deep Space Network (DSN), which means that Earth communicates
with Mars only a couple of times a day [Bajracharya et al., 2008]. The satellites around Mars act
as a relay to get the data to and from the rover at the surface. A “Direct-to-Earth” (DTE) trans-
mission is possible, however the amount of data transmitted is so limited that the team uses it as
a backup in instances where the relays are down (satellite in safe mode, etc…). The principle of
communication with the rovers is illustrated in Fig.2.1.

Figure 2.1: Communication between mission control on Earth and the rovers on Mars via satellites such as Mars
Reconnaissance Orbiter (MRO) and the Deep Space Network (DTE).

The downlink provides the engineering team with images and other results from the previ-
ous sols that they can use to navigate. It should be noted that Curiosity differs from Opportunity in
the sense that most of the time it undergoes tactical operations every day, therefore sols are planned
one after the other (except on weekends). Opportunity’s tactical planning, on the other hand, hap-
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pened every other day most of the time (restricted planning), and occasionally every day (nominal
planning), making it even more difficult to plan, since data received were not even from the sol
before. This difference impacts driving: if the rover was scheduled to drive on sol X, then the data
from the drive (distance actually driven and current position) are not available to the team until
downlink on sol X+2. Therefore, if planning occurred for sol X+1, the team still did not know
where the rover was at the time of planning, how far it had driven, and had to go off of results from
sol X-1. This meant that Opportunity could only drive at most twice in a week, whereas Curiosity
can move more often because of daily tactical planning. Communication with Mars, including its
frequency is thus the first limiting factor for surface missions.

Moreover, rover movement is limited to line-of-sight driving: when a drive is scheduled,
the team simulates the rover’s motion first, using available images, before sending the command to
Mars. The maximum distance driven in one sol can go up to 200 m, but has never been achieved
– to date, the longest drive is just under 143 m (Curiosity on sol 665, [NYT, 2020]) – and the av-
erage distance is 40 m per drive. Although both Curiosity and Opportunity have the capability of
driving autonomously if needed, as opposed to directed, the distances covered under autonomous
navigation “Autonav” mode are even less than for directed driving. Indeed, when the team can
assess the safety of the terrain via images prior to the drive, they can program the rover to “blind”
drive, i.e. without checking the surroundings first. This implies that the rover remains within line-
of-sight (i.e. path visible on pictures) and for MERs, it enabled speed up to 124m/h [Biesiadecki
et al., 2007]. With Autonav, the rover takes sets of pairs of stereo images to map hazards or rough
terrain, which slows down the rover given its limited computational power; MER speeds could be
between 10m/h and 36m/h with Autonav enabled [Biesiadecki et al., 2007]. Therefore, to cover
the same distance, Autonav will take a lot longer than a directed drive, possibly running into the
energy limitation before even completing a drive. Usually drives are not solely Autonav and only
a small portion is, as illustrated by sol 376 when Curiosity drove 10 m autonomously out of 43
m. MSL took almost three years to complete 10 km, and Opportunity drove an average of 3 km
in one Earth years [Schroeder, 2019]. For a mission such as the proposed fetch rover, that would
potentially have to drive several kilometers in a few months, these modes would be inadequate.
This leads to the following statement: there is a need to understand the terrain better to help future
missions become more autonomous.

2.1.4 The importance of understanding the terrain for planning

Despite having remote sensing data for Mars, including high resolution images (25 cm/px
for HiRISE, High Resolution Imaging Science Experiment [McEwen et al., 2007]) it is insufficient
for planning purposes [Gaines et al., 2016] as it does not capture current conditions at the surface
and translates into difficulty in preparing for day to day robotics operations. For example, upon
arriving at the Columbia Hills, Spirit encountered highly deformable soil that had not been detected
in orbital images (nor in ground data) and made traversability a challenge. [Johnson et al., 2015].
The rover underwent high sinkage (up to 10 cm), and the failure of the right front wheel actuator
made the traverse even worse, as Spirit was forced to drag its wheel along. It eventually got embed-
ded and stuck in a sand-filled crater. Moreover, these soils were covered in basaltic sand, making
them hidden on images, and it eventually led to the rover getting embedded [Johnson et al., 2015].
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Contact was officially lost following this incident in 2010. Opportunity encountered high wheel
sinkage situations at Endeavour Crater [Arvidson et al., 2011], and Curiosity experienced mobil-
ity difficulties with wheel damage (holes and dents) from roving on sharp rocks [Arvidson et al.,
2017]. The importance of understanding terrain properties prior to driving has since been widely
recognized. With MSR’s timeline being within one Martian year (687 days) [MEPAG, 2008] and
its main purpose being to retrieve samples up to 10 km away [Golombek et al., 2017], it is even
more important to enable the rover to account for the terrain autonomously. The integration of soil
information into the planning phase both offline and online could allow the rover to safely per-
form more frequent drives (potentially every sol) over longer distances than previous rovers and
therefore maintain its mission timeline.

2.2 Terrain related background information available to the fast traverse rover

This section explores the background work performed on autonomy and traversability for
future Mars missions that constitutes the foundation of this research. Path planning can be done on
different levels, including: global (prepared planning from start to goal) and local (planning from
one waypoint to the other along the path). The very first step of planning therefore involves under-
standing the terrain from orbit and obtaining as much information about traversability as possible.
This includes obtaining topography, detecting obstacles such as craters and rocks (although not all
can be detected from orbit) and analyzing terrain types to estimate the performance of the rover
and plan the entire traverse. Both processed orbital imagery and ground assessment methods are
extensively utilized in this work and are presented in the subsequent sections.

2.2.1 Processed orbital analysis to support traversability assessment

2.2.1.1 Cumulative Fractional Area (CFA)

Figure 2.2: Best fit ellipse and cylinder to estimate shadow and rock sizes [Golombek et al., 2012,Golombek et al.,
2008]. Photo credit:NASA.

One aspect of traversability assessment is the rock abundance along the traverse. As seen
with Curiosity, rocks can be detrimental to the rover by causing damage (e.g., holes and dents)
to the wheel [Arvidson et al., 2017] and/or can render the traverse difficult [Golombek and Rapp,
1997]. Studies have been made to estimate the size-frequency distribution of rocks onMars and the
Cumulative Fractional Area (CFA) covered by rocks of a given size and larger, using ground truth
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(i.e., rock sizes and diameters as seen on images) from the Viking missions. The derived model is
presented in Eq.2.1 [Golombek and Rapp, 1997]:

Fk(D) = ke(−q(k)D) (2.1)

where Fk is the cumulative fractional area covered by rocks of a given diameter D (D in meters),
k is the cumulative fraction of surface covered by rocks of all sizes or the total rock coverage, and
q(k) is the exponential factor for Mars given by Eq.2.2 [Golombek et al., 2003]:

q(k) =

(
1.79 +

0.152

k

)
(2.2)

The findings were later used to assess landing sites and the potentiality for hazards of a certain
size and bigger via orbital imagery [Golombek et al., 2003, Golombek et al., 2017]. Overlapped
images such as HiRISE (High Resolution Imaging Science Experiment) were used and rocks were
detected using the shadows the rocks cast on these images. An ellipse is fit to the shadow and the
rock size is estimated by approximating its shape to a cylinder with a diameter equal to the width of
the ellipse, as shown in Fig.2.2. Its height is the length of the ellipse projected onto the illumination
ray in combination with the Sun incidence angle [Golombek et al., 2008].

Several images covering the same regions are analyzed for rock detection, with techniques
such as blind deconvolution, shadow enhancement or shadow decomposition to process the images
with high accuracy and derive the rock abundance over selected areas [Golombek et al., 2003,
Golombek et al., 2008,Golombek et al., 2017]. Results are fit to a size-frequency rock distribution
to retrieve the Cumulative Fractional Area (CFA) or area covered by rocks of specific diameters
and bigger, which gives the possibility of generating maps of rock density, for rocks of minimum
sizes. When no minimum size is specified, CFA corresponds to the density of all rocks over a
chosen area.

2.2.1.2 Terrain classification software
Analyzing the terrain is another important part of traversability assessment and path plan-

ning at both global and local scale. NASA JPL has developed a software capable of classifying
terrains on Mars [Rothrock et al., 2016]. SPOC, the Soil Property and Object Classification, uses
different types of data to classify terrains:

• HiRISE (High Resolution Imaging Science Experiment) images. These pictures are taken
from orbit on board MRO. The resolution is 25 cm/px (SPOC-H). This version of the soft-
ware is used for Perseverance.

• Navcam images from the surface (Curiosity, Spirit and Opportunity) (SPOC-G). This version
is geared towards predicting slip from the surface and is currently used for MSL. Terrains are
split into 17 different categories [Rothrock et al., 2016] labeled from 0 to 16 [Rothrock et al.,
2016]. Initially only 11 terrain types were identified, but this classification has been refined
to account for an extra five types. This classification is used to determine traversability for a
rover and are the foundation on which this work was built. The performance of the classifier
as published in Rothrock et al. (2016) has been widely referenced throughout this research.
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Table 2.1: Presentation of the 17 terrain types as defined by SPOC (Rothrock, et al., 2016). All the images are credited
to NASA JPL.

Terrain Type
Number Illustration Terrain Type

Name Information

0 Smooth
Regolith

Opportunity -
Purgatory
Dune (sol
446)

1 Smooth
Outcrop

Curiosity -
Gale Crater
(sol 1292)

2 Fractured
Outcrop

Opportunity -
Endurance
Crater (sol

134)

3
Sparse

Ripples Firm
Substrate

Opportunity -
between

Erebus Crater
and Victoria
Crater (sol

802)

4
Moderate

Ripples Firm
Substrate

Opportunity -
landing site
(March 2004)

5 Rough
Regolith

Spirit -
Columbia

Hills (sol 836)

Continued on next page
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Table 2.1 – Continued from previous page
Terrain Type
Number Illustration Terrain Type

Name Information

6 Rough
Outcrop

Opportunity -
Cape York

7 Dense Ridges
Curiosity -

Murray Buttes
(sol 1448)

8 Rock Field
Curiosity -
Dingo Gap
(sol 528)

9
Sparse

Ripples Sandy
Substrate

Opportunity -
between

Erebus Crater
and Victoria
Crater (sol

802)

10
Moderate

Ripples Sandy
Substrate

Opporunity -
sol 2235

11 Solitary
Ripples

Opportunity -
Endurance
Crater

Continued on next page
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Table 2.1 – Continued from previous page
Terrain Type
Number Illustration Terrain Type

Name Information

12 Dense Linear
Ripples

Curiosity -
Bagnold Dune
(sol 1603)

13 Polygonal
Ripples

Opportunity -
Endurance
Crater (false
color image)

14 Sand Dune
Opportunity -
Purgatory
Dunes

15 Featureless
Sand

Opportunity -
Purgatory
Dune

16 Scarps

Opportunity -
Burns Cliff
(sol 287 to

294)

2.2.1.3 Tool to determine traversability on Mars
Once the terrain types are established, or at least an estimate of the terrain types, the fetch

rover needs to knowwhen to safely traverse. For example, terrain 16 is not traversable, but terrain 0
is easy to drive on. This is an essential part of path planning, as the algorithm should include a way
to predict the traversability of each terrain before planning a path. To go even further, traversabil-
ity can be scaled in terms of efficiency of driving. Two terrains can be safely traversable, but one
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Figure 2.3: Traversability classes output from MTTT [Ono et al., 2018]. Credit: Hedrick et al., 2020.

would be easier to drive on than the other, therefore allowing the rover to drive longer distances
or use less energy for a given time limit. This is the very reason why JPL has developed a soft-
ware aimed at helping the engineering team assess the surface mobility of a Curiosity-like rover on
Mars. It also brings in a more autonomous way to determine traversability. MTTT, theMars Terrain
Traversability Tool, uses HiRISE and CTX (Context Camera) to output traversability maps. The
software generates a map of terrain types using SPOC, analyzes slope via Digital Terrain Models
(DTM), calculates the CFA (Cumulative Fractional Area), takes into account a manual traversabil-
ity assessment, and generates a hazard map using ROIs (Regions of Interest). The outputs are a map
of traversable pixels, and a map of estimated traverse speed [Ono et al., 2018]. MTTT has been
further developed to account for new terrain types implemented by SPOC and to more precisely
model drive rates for each traversability class [Ono et al., 2018], as shown in Fig.2.3.

2.2.2 Terrain parameters to support traversability assessment

Beyond orbital analysis of the landing area to understand traversability and support global
planning, there is a need to confirm the safety of the terrain from the surface. This section explores
work on soil properties that can be used towards understanding the terrain locally.

2.2.2.1 Terrain properties indicative of traversability
There are three parameters that are important to traversability, as they characterize soil

strength, which can directly affect driving: cohesion, angle of internal friction and ultimate bearing
capacity.

Cohesion c and angle of internal friction, ϕ are intrinsic parameters characterizing soil
strength, a property crucial to a moving vehicle. Such parameters can also be used to classify
planetary materials [Sullivan et al., 2011]. Cohesion is the ability of a material to hold itself to-
gether and corresponds to the cohesive strength of a terrain. The angle of internal friction gives an
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Figure 2.4: Mohr circles from principal stresses σ1 and σ3 leading to the Mohr-Coulomb envelope and failure point.

estimate of the friction due to the material itself. For example, a terrain with zero cohesion, such
as loose rock debris, will still resist deformation due to friction, unless a stress is applied [Melosh,
2011]. Cohesion and friction are related to the normal and shear stresses via the following equation:

τ = c+ σntanϕ (2.3)

where τ is the maximum shear stress the soil can handle, and σn is the normal stress. Eq.2.3
represents the linear approximation of the Mohr-Coulomb failure envelope [Zoback, 2010]. The
intersection of the Mohr-Coulomb failure line with a circle of stresses (given by σ1, vertical stress
and σ3, confining pressure) determines the point of failure for this specific set of stresses (σ1, σ3).
The line perpendicular to the point of failure and intersecting the x-axis gives the normal stress σn
(Fig.2.4).

The bearing capacity can be defined as either allowable or ultimate. Both are used in civil
engineering to determine the capacity of a soil to bear a structure. The allowable bearing capacity
qa is the maximum load of stress that can be applied on a terrain that will assure safety against shear
failure and does not exceed the maximum tolerable settlement. The ultimate bearing capacity qult
is the maximum load that can be applied to a terrain before shear failure, and is related to qa by a
factor of safety Fs, usually between 2.0 and 4.0 [Brown, 1992]. In the case of Mars, knowing the
ultimate bearing capacity could help prevent an unwanted failure, which has happened before with
the Spirit rover (its wheel broke through a crusty layer of sand).

2.2.2.2 Measurement of various soil parameters
Direct methods to obtain c and ϕ are implemented in a laboratory, where samples of soil are

subjected to vertical stresses and confining pressure [Bishop and Henkel, 1962] in what is called
a triaxial test. Direct methods to derive qult include dropping a weight and measuring the depth of
the impact, or loading, where a plate of steel is placed on a leveled soil and settlement is measured
until it ceases.

Indirect methods include deploying an instrument in-situ, such as a cone penetrometer or a
shear vane. While the actual purpose of a penetrometer is tomeasure the soil compaction by pushing
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a pointed rod into the soil, it can give cohesion values for different angles of internal friction, as
demonstrated with the lunar missions, for which the following equation was used [Heiken et al.,
1991] :

qc = cNcξc + glBNγqξγq (2.4)

where qc is the cone resistance, c is the cohesion, ρ is the density of the lunar soil, gl is the acceler-
ation of lunar gravity, B is the width of the penetrometer, Nc, Nγq are the bearing capacity factors

Figure 2.5: Digital Cone Pen-
etrometer by Humbolt.

(i.e., function of the angle of internal friction, cone roughness and
coefficient of lateral stress), and ξc, ξγq are shape factors (functions
of width, depth and length). The cone resistance qc (a.k.a. ground
resistance) is retrieved from cone penetration tests by direct read-
ings of the instrument (Fig.2.5) and is usually given in kg/cm2.
Values for cone roughness, coefficient of lateral stress and soil den-
sity were assumed [Mitchell et al., 1972], and curves of cohesion
vs. angle of internal friction for lunar regolith were computed with
these values.

The cone penetrometer can also give the bearing capac-
ity. The relationship between cone resistance and bearing capacity
has been extensively studied over the years [Eslami and Gholami,
2003] and there is a direct correlation between qc and the ultimate
bearing capacity, established for footings as follows [Mayerhof,
1976]:

qult = qc
B

12.2

(
1 +

Df

B

)
(2.5)

where qult is the ultimate bearing capacity (kg/cm2), B is the width of footing (cm), qc is the
average of qc values in a zone (kg/cm2), andDf is the depth of footing (cm). In the case of a rover,
the footing would be the area covered by the rover and its depth would correspond to the sinkage.

Figure 2.6: Field shear vane with extension rods and dif-
ferent sizes of blades. Credit: Humbolt.

Another instrument selected for plane-
tary missions to retrieve soil properties, called a
cone vane, was used on the Lunakhod to obtain
the bearing capacity of the regolith. The cone
vane resembles a shear vane, which can pro-
vide the shear strength of a soil by application
of a vertical load to a set of blades that rotate
into the soil until it reaches the maximum shear
strength (which corresponds to τ in Fig.2.4).
There are three main types of shear vanes: the
geovane, the field shear vane (Fig.2.6) and the
pocket shear vane. The version that flew on
board the Russian rover was a hybrid field shear
vane and penetrometer, with bladesmounted on
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a rod displaying a pointed tip. The bearing capacity was calculated by taking the vertical load ap-
plied to penetrate the soil, divided by the area of the rod [Zacny et al., 2010].
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CHAPTER 3 Problem Statement

As previously stated, the main purpose of this research is to develop the technology to
support NASA in its effort towards the proposed MSR mission, a rover that would be able to drive
to the samples left by Perseverance, currently on its way to the red planet, collect them and bring
them back to the MAV (Mars Ascent Vehicle). This work focuses on local planning along the
traverse, as well as the integration of terrain information into the planning phase.

The overall statement is presented as objectives, information available, constraints, assump-
tions, challenges and contributions.

3.1 Objectives of the research

The purpose of this research is to support the autonomous, terrain-aware traversal of a rover
under Mars conditions for the driving objective of a sol. The detailed goals of this research include
identifying expected traversability information prior to planning, finding a planning approach that
balances offline and online methods to alleviate the use of the limited onboard computational re-
sources, implementing a fast replanning method if needed, updating the traversability information
along the drive and preparing for important discrepancies between what is expected and the actual
environment. Overall, all these detailed purposes aim at ensuring the safety of the rover and the
efficiency of the traverse.

This research is divided into three components, strongly connected to each other. The first
component consists of generating a map containing traversability information for each pixel. The
traverse from landing to samples is computed on this basemap. The second component is the
planning of the path for one sol (about 800 m on average), including implementation of a terrain
monitoring method to assess safety along the planned path, local update of the map and capability
to replan if needed. The third component is related to the implementation of a method to obtain
exact terrain information to support planning if simple monitoring techniques are not sufficient to
ensure safety. This is summarized in Fig.3.1: the traversability information map is used to plan the
path every sol, and a method to monitor/assess the terrain is implemented to support planning and
keep the map of traversability information up to date.

3.2 Information available to support this research

Different types of information specific to Mars surface missions are available to the rover
prior to its arrival on the planet. Jezero Crater was selected for Perseverance, and consequently,
for MSR [NASA, 2018]. Usually, there is an extensive orbital coverage over candidate landing
sites for detailed analysis and selection, which implies that orbital information such as HiRISE,
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Figure 3.1: Approach to path planning given terrain information.

thermal images, topography, etc, are available at Jezero Crater. These orbital images can be utilized
to generate the terrain type map as described in Rothrock et al. (2016), as well as a CFA map
[Golombek and Rapp, 1997]. In the case of MSR, due to the nature of its mission (retrieve samples
left by a previous rover), ground information will also be available, gathered by Perseverance. In
order to conduct this study in conditions as close as possible to the actual sample return mission,
it has been decided to perform simulations for this research using information from Gusev Crater,
Mars, instead of Jezero Crater. As home to the rover Spirit, it presents today with similar conditions
to what Jezero will present after Perseverance completes its mission. As Spirit’s landing site, Gusev
Crater and the Columbia Hills have orbital and ground coverage, and processed information such
as terrain type and CFA maps are already available. Approaches and results can then easily be
applied to Jezero in the future.

3.3 Constraints related to Mars missions

Several constraints that apply to missions in Mars-like environments need to be accounted
for during all phases of the project, such as limited availability of data. This constraint is related
to the type of data gathered by previous missions (surface and orbital) and the amount of data
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obtained from the various suites of instruments on board the spacecrafts. In addition, those data
have different resolutions, which add to the constraints related to this work. Instruments sent to
Mars have gathered data that range from 100 m (thermal inertia [Christensen et al., 2004]) to 25
cm/px (HiRISE [McEwen et al., 2007]). This research is also constrained by NASA’s current
objective of a short timeline, leading to limited time to complete the mission [Klein et al., 2014].
Moreover, as seen with previous rovers, there are limited online computational resources [Carsten
et al., 2007] that need to be taken into consideration.

In addition to environmental and mission constraints, other restrictions related to NASA
and ITAR (International Traffic in Arms Regulations) regulations apply to certain data sets. Those
will be identified throughout this research and solutions to account for them will be detailed.

3.4 Assumptions applicable to this research

Extensive work is being conducted atWVU regarding the fast traversal of a rover to support
the proposed MSR, and several topics are taken as assumptions in this research since not they are
not its direct focus, such as: known location (low uncertainty on localization); obstacle avoidance
for obstacles not otherwise detected from orbit; and the ability to monitor its behavior such as wheel
slip and actual speed.

Other assumptions are made to simplify the problems (without being subject to research at
WVU). Such examples include a pre-determined path from landing to sample and the availability of
daily communication with Earth. Some assumptions are made on the data sets as well: the terrains
are classified by SPOC into a fixed number of types (17), which means that if it is found that one
area is not of the expected type, then it has to be of one of the remaining 16. It is assumed that the
performance of SPOC is the same everywhere on Mars (i.e., the uncertainties of SPOC published
in Rothrock et al. (2016) over the Columbia Hills can be used at other locations), that uncertainties
related to terrain classification (i.e., SPOC output) are given and applicable to this research and that
it is the only data set to contain uncertainty (other orbital data sets, raw and/or processed, do not
contain any errors).

3.5 Challenges of a fast traversing sample return rover

The map preparation involves using a variety of raw data not georeferenced, with different
resolutions, and overlapping them to produce more useful information over the chosen landing.
Once the map is generated, the path planning process must incorporate the information given by
the map. Moreover, it should also contain an option for replanning if necessary, in real time, under
budget and computational resources constraints if they are defined. For example, a time budget
could be to drive 800m in a single sol and would ensure that the overall timeline of the mission is
respected, even though for past and current rovers this would be an unrealistic expectation [Biesi-
adecki et al., 2007]. Finally, gathering meaningful information about the terrain to help verify the
traversability information ahead as well as update the map locally is another challenge that will be
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addressed in this study.

3.6 Contributions of this work

The contributions are detailed for each component of this work and can be summarized as
follows: this research gives a planning framework that addresses challenges posed by Mars surface
missions, specifically in the case of a sample return. It proposes a method to incorporate terrain
information obtained from orbital analysis into the path planning and it gives efficient replanning
steps while keeping the onboard computational cost to a minimum. It also implements processes
along the traverse that confirm traversability of the terrain ahead of the rover.
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CHAPTER 4 Literature Review

4.1 Introduction

This Chapter focuses on reviewing the literature relevant to this project. As previously
stated, this work can be divided into three components: generation of a terrain map, path planning
and terrain assessment. The following areas will therefore be explored: path planning, terrame-
chanics (interaction between a vehicle and the ground) and current research on planetary explo-
ration.

4.2 Path planning

4.2.1 Overview and definitions

This part focuses on reviewing major path planning techniques relevant to the fetch rover
problem. Robot path planning has been studied extensively for decades, and the algorithms devel-
oped are still being improved nowadays. The following definitions will be used in this section:

• The configuration space is defined as “a set of possible transformations that could be applied
to the robot” [LaValle, 2006]. It is usually referred to as C-space.

• The free space, Cfree, is the part of the configuration space that is free for the robot to move
into and is collision free.

• The obstacle space, Cobs, as indicated by its name, is all the configuration space occupied by
obstacles.

Planning often involves a graph, which is a mathematical object of vertices and edges. A graph is
defined by a pair G = (V,E) of sets such that E ⊆ [V ]2 [Diestel, 2010]. V are vertices or nodes,
represented as dots, and E are edges, connecting vertices together. A graph is a convenient way
to simulate maps, where the vertices can represent (x, y, z) coordinates, and edges would be the
path from one vertex to another. The path planning problem thus becomes one of connecting edges
to go from A to B as efficiently as possible (in other words, it aims at minimizing a cost function
between A and B).

4.2.2 Sampling-based algorithms

These types of algorithms use sampling to create a graph representation of C-space, typically
when the map covers an extended area, or the robot requires modeling of certain constraints. There
are many advantages to sampling-based algorithms: they can be implemented online, in real time;
they do not require a representation of all the constraints and all C-space; and they adapt to different
resolutions. This also implies that they are well suited for high dimensional problems.

In 1991, Barraquand and Lacombe published a leading paper proposing an RPP, Random-
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ized Potential Planner [Elbanhawi and Simic, 2014], an algorithm based on random walk used to
escape minima within a potential field planner [Barraquand and Latombe, 1991]. As the name in-
dicates, potential field planners use a potential function to model Cfree and Cobs. It works similarly
to, for example, electrical potential. The idea is to create an artificial potential with goals modeled
as minima and obstacles as maxima [Hwang et al., 1992]. This research led to modern sampling-
based planners such as Probabilistic Roadmap (PRM, [Kavraki et al., 1996]) and Rapidly exploring
Random Tree (RRT, [LaValle, 1998]), both widespread in robotics due to their easy implementation
and the quality of their solutions [Elbanhawi and Simic, 2014].

The sampling process has seen different methods being published over the years, including:
visibility graphs [Nilsson, 1969,Lozano-Pérez andWesley, 1979], Delaunay triangulation [Lee and
Schachter, 1980], Voronoi [Canny, 1985], or more recently, adaptive roadmap [Elbanhawi et al.,
2013].

Since PRM and RRT are of significant importance, they are detailed below. They are widely
used in path planning because of their ability to explore the state space rapidly and find a feasible
solution that gets closer and closer to optimal with increasing computing time.

4.2.2.1 Probabilistic Road Map (PRM)

Algorithm 1: PRM
V ← {xinit} ∪ {SampleFreei}i=1,...,N−1;E ← ⊘
for v ∈ V do

U ← Near(G = (V,E), v, r) {v}
for u ∈ U do

if CollisionFree(v, u) then
E ← E ∪ {(v, u), (u, v)}

return G = (V,E)

PRM [Kavraki et al., 1996] is implemented as follows: C-space is sampled randomly where
there are no obstacles, creating the graph nodes, and each node is then linked by edges to its nearest
neighbors, assuming such edges are in free space. It therefore creates a network of edges in Cfree,
all considered when searching for the path. The algorithm then links the source node to the goal
node by travelling along the network of edges. Figure 4.1 illustrates the principle of the PRM
code using a simple geometry. The pseudocode is given in Algorithm 1, where V symbolized all
the vertices v of graph G, E is the family of edges and U is the family of new vertices u added
to the graph if collision free. The radius r determines how far around the considered node the
algorithm looks for neighboring points. This is the basic PRM, but there exist variants of this code,
such as lazy PRM, which reduces the number of collision checks, therefore decreasing the running
time [Bohlin and Kavraki, 2000]. This is one of many examples of PRM-based algorithms that are
not detailed here.

4.2.2.2 Rapidly exploring Random Tree (RRT)
In RRT [LaValle, 1998], a tree whose branches are edges is grown from a predefined source

node. A random sample is chosen within C-space, and the algorithm then searches for the closest
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Figure 4.1: Illustration of the implementation of a PRM algorithm: (a) C-space is sampled randomly, and (b) samples
are checked for collision. (c) nodes are connected to their nearest neighbors and (d) edges are checked for collision.
(e) the path from start to goal is found using the remaining edges.
Algorithm 2: RRT
V ← {xinit};E ← ⊘
for i = 1, ..., N do

xrand ← SampleFreei
xnearest ← Nearest(G = (V,E), xrand)
xnew ← Steer(xnearest, xrand) if ObstacleFree(xnearest, xnew) then

V ← V ∈ {xnew};E ← E ∈ {(xnearest, xnew)}

return G = (V,E)
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neighbor (which is, initially, the source node until the tree grows to more than one node). This
implies that the paths are built at the same time the tree is being constructed, unlike the PRMwhere
the graph is built first, and the paths are found afterwards. A branch of an RRT tree is grown from
the closest neighbor in the direction of the random sample and its length is determined by a step
size input. The pseudocode is given in Algorithm 2. The user also chooses how many iterations
the algorithm runs; the more iterations, the denser the tree is. However, even with a few iterations
the tree rapidly explores all the empty space and covers as much of it as possible. A step-by-step
illustration of the RRT algorithm is given in Fig. 4.2. It is possible to grow two trees, making it a
bidirectional RRT (RRT-Connect), from both the start node and the goal node [Kuffner and RRT-
Connect, 2000]. In this case, however, there must be a step that tries to connect the two trees as
they grow. There could be even more than two trees, called in this case a forest.

In the same manner that PRM evolved, RRT has different variants, including RRT*, that
chooses the best neighbor instead of the closest neighbor, with regards to cost. The pseudocode is
presented in Algorithm 2 [Carpin, 2006] and is described as follows:

• It selects a random point xrand among the free samples in the free configuration space.
• It then computes the vertex closest to xrand that belongs to the tree, xnearest.
• It computes a new vertex xnew in free space that meets the following requirements: it is within
a user-defined distance from xnearest and requires a steering angle that does not exceed the
user-defined maximum steering angle.

• It computes the cost of this new node, i.e. the cost of xnearest added to the cost of the path
from xnearest to xnew.

• It connects xnearest and xnew if it is collision free.
At this point of the algortithm, RRT* differs from RRT (so far, all the steps were similar). Indeed,
the next step is the rewiring of the tree. Instead of connecting to the nearest parent, it connects to the
best parent, meaning that within a certain distance of xnew, the tree is searched for a better parent
that would minimize the cost of a path going through xnew. The algorithm is shown in Algorithm
3. RRT* presents several advantages over RRT, primarily asymptotic optimality. Moreover, the
cost of the path from the same start point to the same goal is less with RRT* than it is with RRT.
The tree cost is also less in RRT*. Even if the computing time is higher, the algorithm achieves a
better path (in terms of cost) with RRT*.

4.2.3 Search algorithms

Search algorithms can be part of the planning process and many have been developed over
the years: Dijkstra, A* and D* are famous examples. Dijkstra developed an algorithm to find the
shortest path between two nodes in a graph [Dijkstra et al., 1959], and by extension, it can lead to
a tree of shortest paths between a source node and all other nodes (shortest path tree).

In 1968, A* was developed [Hart et al., 1968] and solved for the least-cost path in a graph, if
cost is the weight of the graph edges. It is an example of a best-first search algorithm used to solve
planning problems (i.e. it expands the most promising node). In the 80s, research focused on the
Mover’s problem, that is, a collision-free path for a moving object in a space containing obstacles.
An example paper published a solution combining aVoronoi diagram (samplingmethod, see below)
with a best-first search algorithm [Donald, 1987]. This algorithm was further developed to include
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Figure 4.2: Illustration of RRT: (a) random sampling; (b) selection of nearest neighbor, and if in free space, addition
of a new node at step-size distance from nearest neighbor with connecting edge; (c) random sampling; (d) Selection
of nearest neighbor and collision detection; (e) collision detection; (f) random sampling, selection of nearest neighbor
and addition of a node step-size away in the direction of random sample.

variants such as anytime A*, which adds a time limit to the original A* and also computes sub-
optimal solutions to the path. Lifelong Planning A* is another alternative to A*, which has edge
cost decreasing or increasing over time [Koenig and Likhachev, 2002]. The pseudocode for A* is
shown in Algorithm 4. D* can also be named as a famous example of a search algorithm [Stentz,
1993] and minimizes the cost of the path to the goal. It can be regarded as an extension of A*
(Focused Dynamic A*) [Stentz et al., 1995]. The cost is user-defined, meaning it could be related
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Algorithm 3: RRT*
V ← {xinit};E ← ⊘ ;
for i = 1, ..., n do

xrand ← SampleFreei ;
xnearestNearest(G = (V,E), xrand) ;
xnew ← Steer(xnearest, xrand) ;
if ObstacleFree(xnearest, xnew) then

Xnear ← Near(G = (V,E), xnew,min{γRRT∗(log(card(V ))/card(V ))1/d, η}) ;
V ← V ∪ {xnew} ;
xmin ← xnearestcmin ← Cost(xnearest) + c(Line(xnearest, xnew)) ;
foreach xnear ∈ Xnear do // connect along a minimum cost path

if CollisionFree(xnew, xnear) ∧ Cost(xnear) + c(Line(xnearest, xnew)) then
xnew ← xnear; cmin ← Cost(xnear) + c(Line(xnearest, xnew)) ;

E ← E ∪ {(xmin, xnew)} ;
foreach xnear ∈ Xnear do // rewire the tree

if CollisionFree(xnew, xnear) ∧ Cost(xnear) + c(Line(xnearest, xnew)) then
xparent ← Parent(xnear) ;

E ← (E\{(xparent, xnear)}) ∪ {(xnew, xnear)} ;

return G = (V,E) ;

to time (fastest path), safety (most secure path), etc… as in A*, but it also allows for replanning if
the configuration space happens to be different than initially assumed, which is a crucial feature of
real-world application [Corke, 2011]. Extensions of the D* algorithm include D* lite and field D*
among others. D* lite computes the shortest distances to the goal of each grid cell given a certain
gridmap, recalculates them when it runs into an unexpected obstacle and has to change the initial
planned path. It can efficiently recompute the shortest path by considering only the cells whose
distances to the goal have changed [Koenig and Likhachev, 2002]. Field D* is worth mentioning
as it was implemented on board Mars Exploration Rovers (MERs) in 2006 [Carsten et al., 2007].
While the other aforementioned algorithms consider discrete state transitionn field D*, on the other
hand, implements paths along continuous headings by using linear interpolation within each grid
cell [Ferguson and Stentz, 2005].

4.2.4 Planning with a budget constraint

In recent years, the idea of budget was suggested. Certain variables defined by the user
could fall under a certain limit for the algorithm to be successful, called a budget. For instance,
the rover traverse needs to be performed in a time limited setting (time budget) or the rover cannot
drive if it does not have enough energy (energy budget). Planners such as RRT* have been adapted
to this new setup, called Rapidly Exploring Information Gathering algorithm (RIG) [Hollinger and
Sukhatme, 2014]. Nodes in RIG-graph or RIG-tree represent location, cost and information all
together, which makes this planner well suited for exploratory missions like Perseverance. The
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Algorithm 4: A*
V ← {Start,Goal};E ← ⊘ ;
listopen ← {Start}; // list of nodes to be traversed
listclose ← ⊘; // list of already traversed nodes
g(Start) = 0; // cost from Start node to a node
h(Start) = Heursitic(Start,Goal); // estimated cost from node to Goal
f(Start) = g(Start) + h(Start); // total cost from Start to Goal
Path← ⊘; // output
if Goal(Start) = true then

Path← Start;
return

while listopen ̸= ⊘ do
sort(listopen);
n = listopen.pop();
children = expand(n);
foreach child ∈ children do

child.f ← (n.g + 1) + h(child);
if goal(child) = true then

Path← Path+ child;
return

if child ∩ listclose = ⊘ then
listopen ← child

listclose ← n
return Path

trajectories generated by the algorithm tend to maximize the information metric while being con-
tained within a budget. Some research with budget constraints went even further by proposing an
evolution of the path given new information gathered along the drive. The robot then adapts to new
costs of edges and replans its path accordingly [Hitz et al., 2017].

4.2.5 Planning under uncertainties

Uncertainties can take many forms: missing information about the environment, actuator
errors, modeling errors, etc… There are ways to account for such uncertainties during planning,
using methods like the Markov Decision Process (MDP) and reinforcement learning, where a be-
havior is rewarded positively or negatively, depending on what is wanted of the robot.

4.2.5.1 Markov Random Field (MRF) and belief propagation
An approach to path planning worth mentioning utilizes Markov Random Field (MRF) to

find the maximum-likelihood field of principal directions, using features detected by the vehicle
in its surroundings [Dolgov and Thrun, 2008]. This method was developed more specifically for
driving into confusing environments such as parking lots, and the argument could bemade thatMars
fits the description, with many options of directions to go to available to the rover. MRFs have been
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used for terrain classification applications as well, in support of generic path planning [Häselich
et al., 2014].

MRF, also known as Undirected Graphical Models (UGMs), are defined as an undirected
graph G = {V,E} where V is the set of nodes νi, i ∈ [1...n] in the graph G and E is the set of
edges ε in the graph G. The neighboring nodes of vertex i (i.e., nodes linked to νi by an edge) is
denoted Ni (often referred to as the Markov blanket of νi, since in a UGM the Markov blanket is
equivalent to the neighborhood). Each node νi in the graph G is associated with a random variable
ui that satisfies three properties:

• The pairwise Markov property: if there are no direct edges between node νi and νj then they
are conditionally independent given the rest:

ui ⊥ uj|V \νi, νj ⇐⇒ Gi,j = 0 (4.1)

• The local Markov property: the conditional probability at nodes νi depends on the neighbor-
ing nodes only and are conditionally independent of all the other nodes not in the neighbor-
hood:

ui|{uj}j∈V \i = p(ui|{uj}j∈Ni
) (4.2)

• The global Markov property; for three sets of nodesA, B and C in graph G, with set C sepa-
rating setA from setB, then the nodes inA and the nodes inB are conditionally independent
given the nodes in C. This can be written as:

p(uA ⊥ uB|uC) (4.3)

with C a separating subset of G.
MRFs or UGMs can be utilized for belief propagation frameworks, where inference is used be-
tween nodes to propagate a belief of one node to others. Probabilistic inference methods have been
suggested for the first time in very recent years [Toussaint, 2007], proposing to implement belief
propagation on Bayesian network (from directed graphs, unlike MRFs that come from undirected
graphs). One of the main methods for belief propagation is the sum-product message passing al-
gorithm [Kschischang et al., 2001], which, as the name indicates, aims at passing a message from
one node to the others along the edges. The message passed from node νi to node νj in graph G
is the product of all messages received by νi from incoming edges, and summed over all possible
configurations of node νj . These n configurations can be represented as an nxn square matrix,
called edge potential matrix. The product of all incoming messages can be illustrated as a factor
node in a factor graph, located between variable nodes. Variable nodes x refer to nodes that are as-
sociated to random variables (e.g., xi, variable associated with node νi) and factor nodes f refer to
function nodes that are not shown in classical graphs, but are represented in their factorized coun-
terparts (Fig.4.3). Those factor nodes translate the operation of local functions between variable
nodes (in the case of sum-product message passing, the factor node represents the product of local
functions, summed over all configurations of the variable). An illustration of a message passing
process is shown in Fig.4.4. The equations for the belief propagation are detailed in Eq.4.4, 4.5 and
4.6 [Kschischang et al., 2001], using the nomenclature of Fig.4.4:

ϕ(xi) =
∑
{f}

µf→xi
(xi) (4.4)
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(a) Directed graph. (b) Equivalent factor graph.

Figure 4.3: (a) Directed graph and (b) equivalent factor graph.

Figure 4.4: Message passing on a couple of nodes.

µf→xi
(xi) =

∑
{x}\xi

f(n(f)) ∏
xj∈n(f)\xi

µxj→f (xj)

 (4.5)

µxi→f (xi) =
∏

h∈n(xi)\f

µh→xi
(xi) (4.6)

where µf→x(x) is the message passed from a factor node f to the variable node x and µx→f (x) is
the message passed from a variable node x to a factor node f .

4.2.5.2 Other approaches
Inspired by the PRM algorithm, researchers have developed an algorithm called Belief

Roadmap (BRM). It uses the same principle as PRM but with a belief graph, meaning it samples
belief poses, i.e. estimated poses of the robot. The search part of this algorithm computes a path
that optimizes the probability of being at the goal point by incorporating the resulting covariance at
the next node [Prentice and Roy, 2009]. PRM also inspired FIRM, the Feedback-based Information
Roadmap, that accounts for motion and sensing uncertainties [Agha-Mohammadi et al., 2014]. Us-
ing basemap methods directly in belief space does not guarantee nodes are reachable and creates a
dependability of edge costs to one another. By utilizing feedback controllers to construct the belief
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graph, FIRM goes around these difficulties and offers a generalized PRM. Another “adaptation” of
a common algorithm is RRBT (Rapidly exploring Random Belief Tree), which uses principles of
RRT* applied to belief space [Bry and Roy, 2011]. The nodes and edges propagate beliefs and the
overall tree tends to minimize uncertainties while avoiding obstacles.

Another approach are Markov Decision Processes. They are an important part of decision
making with uncertainties and have been around since at least the fifties [Bellman, 1957]. The pro-
cess is based on actions and states: at each time step the robot is in a certain state and is moved to the
next state by an action. The state transition to the next step depends on the previous step, however
the process satisfies the Markov property (i.e., the conditional probability distribution over futures
states depends on the current state only, regardless of past events). Moving to a new state generates
a reward (or a cost), and such reward function defines the behavior of the model overall [Russell
and Santos Jr, 2019]. MDP can be generalized to belief states instead of configuration space, in
this case called Partially Observable Markov Decision Process (POMPD). POMDPs are usually
applied when the world cannot be observed completely, relying on belief instead of actual states.
Belief space is the space of believed states, i.e. the probability distribution over states [Bonet and
Geffner, 2000]. It can also be understood as state uncertainty and takes into account the history over
previous states. POMDP comes with two curses: the curse of dimensionality and the curse of his-
tory. The first comes from the fact that a belief is a probability distribution over all possible states.
The second comes from the belief capturing information from a history of actions and observations,
therefore growing exponentially over time. Decision making under uncertainties is extremely im-
portant to model everyday problems in a realistic way, and methods such as POMDP are well suited
to solve these. The advantage of POMDPs is their ability to handle a multitude of uncertainties of
different kinds [Aberdeen, 2003] and they can be used for a lot of real problems, such as: ma-
chine maintenance, deep-space navigation, machine vision, interplanetary rovers, or even business
application such as marketing and network troubleshooting [Cassandra, 1998]. POMDPs cannot,
usually, be solved exactly [Kurniawati and Yadav, 2016] and research has thus focused on finding
approximate solutions to face this challenge [Aberdeen, 2003]. There are offline approaches that
compute the policy over the entire belief space (but they can take a significant amount of time to
find a solution [Ross et al., 2008]), and online methods that compute the policy only at time of ex-
ecution [Paquet et al., 2006,Ross et al., 2008], thus requiring real-time heavy computation. Some
authors have suggested amix of online and offlinemethods, to take advantage of bothmethods, [Pa-
quet et al., 2006, Ross et al., 2008]. Path planning is a very common application of POMDPs, as
incorporating uncertainties into the planning phase allows for more realistic scenarios for mobile
robots. However, among the three main types of uncertainty (environment, sensor and motion),
most POMDPs only consider sensor and motion, not environment [Kurniawati et al., 2012]. This
type of uncertainty is usually directly treated within the planning method as a modified planning
algorithm, such as an extended PRM [Missiuro and Roy, 2006] or RRT [Kewlani et al., 2009].
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4.3 Terramechanics

4.3.1 Definition

Another way to assess traversability that can be done in real time is through the study of
terramechanics, which is the interaction of a vehicle with a terrain. More specifically, it is the study
of how a vehicle responds to driving on a given surface [Muro, 2004]. Several forces and stresses
play a role in terramechanics, including pressure of the wheels onto the terrain and normal and
shear stresses created by the wheel when driving. These determine a response from the soil such as
a deformation and a resistance to sinkage (compaction resistance). It has a variety of applications,
ranging from agriculture to military operations and planetary rovers.

4.3.2 Historical background

Early work on the mechanics of off-road vehicles can be dated as far back as 1913 in
Germany [Bekker and Bekker, 1962]. This field of study has become especially important since
World War II [Wong, 2008]. If it was not an independent discipline at the time, it became its
own field following the work of Dr. M.G. Bekker, who set the path to modern terramechanics in
the 60s [Wong et al., 1989]. Application to planetary surface missions was mentioned as early as
1962 [Bekker and Bekker, 1962] and has been an expanding field for the past two decades. Lunar
rovers were used to study traversability of the regolith and identify soil properties [Carrier, 2006].

Figure 4.5: Curiosity wheel showing holes after
traversing rough terrain with sharp rocks. Credit:
NASA JPL.

With the launch of several surface missions back
to the Moon and especially to Mars, terramechan-
ics has been a growing focus. After the loss of the
rover Spirit at Gusev Crater in 2010, it has become
even more important to understand terrain proper-
ties and how vehicles interact with the terrain they
are driven on. Spirit traversed compacted terrain at
the beginning while on Gusev plains, however, upon
arriving at the Columbia Hills, it encountered highly
deformable sulfate rich soil that made traversability
a challenge [Johnson et al., 2015]. Moreover, these
soils were covered in basaltic sand, making them
hidden on images. The rover underwent high sink-

age (up to 10 cm), and the failure of the right front wheel actuator made the traverse even worse as
Spirit was forced to drag its wheel along. It eventually got embedded in a sand filled crater when
the left side of the rover tilted into the crater and the wheel got stuck in sand [Johnson et al., 2015].
Failure to extricate Spirit led to the end of its mission in 2010. Opportunity encountered high wheel
sinkage situations at Endeavour Crater when it came across the Purgatory ripple field [Arvidson
et al., 2011]. Finally, Curiosity also experienced mobility difficulties with wheel damage (holes
and dents) from roving on sharp rocks [Arvidson et al., 2017]. To better understand the mobility
and difficulties experienced by the rover, the team turned to terramechanics. Understanding the
terrain and its interaction with the wheels may have prevented any damage, and there is a real need

28



to understand terramechanics to prevent mobility issues [Arvidson, 2014].

4.3.3 Terramechanics equations for a driven wheel

The foundations of terramechanics rely on equations translating the interaction between a
driven wheel and the ground. They were derived for a single rigid wheel on a rigid terrain, and
the research in the field is based on this set of equations. The derivation is shown in Appendix A
(inspired from a previousmaster’s thesis completed atWashingtonUniversity in St.Louis). Overall,
these equations are meant to understand the behavior of a terrain under the pressure of a driving
wheel. Themain force behind the driving traction is the shear stress in the longitudinal direction τ , a
function of the normal stress σn [Agarwal et al., 2019]. These stresses are influenced by the type of
wheel and the type of soil. Throughout the history of the field, authors have been working towards
better understanding every aspect of the interaction between the wheel and the underlying terrain,
and all the changes the soil undergoes when a vehicle drives on it. It is important to understand
the pressure created, the shear stresses within the terrain, the displacement of the soil, the resultant
sinkage, and how the wheel responds to the terrain as well, through slip and skid. Most of the
equations are compiled in Wong’s Theory of Ground Vehicles (2008) and is highly inspired by the
work by Bekker in 1960 and 1969, in his Introduction to Terrain-Vehicle Systems.

4.3.4 Rover problem

Let’s now consider a vehicle with multiple wheels; it must develop enough thrust to com-
pensate all the resistances it encounters, especially up slope [Wong, 2008]. The drawbar pull (net
force)Fd is defined as the difference between the thrustF and the sum of all resistance forces acting
on the rover ΣRR [Wong, 2008] as shown in Fig. 4.6 (Eq.4.7 and 4.8). The approximation is made
that it is in a steady-state operating condition over a drive (rover commanded to drive at constant
velocity). In this case, the drawbar pull should approach zero, which means the thrust developed
balances the total resistance:

Fd = F −
∑

RR (4.7)

∑
RR = Ra +Rν +Rc ± wtsinθs (4.8)

Ra is the aerodynamic resistance (usually not a significant factor that affects the performance of
the rover since it is driving slowly, no more than 35 m/hr), R is the motion resistance, Rc is the
compaction resistance, wt is the weight of the vehicle (constant, 180kg*3.75m/s2 = 669.6N ) and
θs is the slope angle. When the rover drives up slope the negative sign is used, and when it goes
down slope the positive sign is used. The motion resistance is the obstacle resistance that increases
when the rover encounters an obstacle. Thus, the main factors that are taken into consideration
in the drawbar pull as the vehicle drives are the thrust, the slope angle, the presence of obstacles,
and the compaction resistance, i.e., sinkage. The amount of shearing between the vehicle and the
terrain will determine slip or skid, thus the thrust, and how the vehicle will respond during its drives.
Therefore, the soil parameters, which control the shear stress, are crucial. Note that here rover slip
and skid are considered (also called 3D slip and 3D skid), as opposed to wheel slip and skid as
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Figure 4.6: Drawbar pull, thrust and resistances for a vehicle driving uphill. Credit: G.Coutrot.

derived in the basic equations of terramechanics. 3D slip i3D is defined as follows:

i3D = 100

(
1− da

dc

)
(4.9)

where i3D is slip (when positive), da is actual distance driven and dc is commanded distance. When
i3D is negative, it actually represents skid is,3D.

4.3.5 Deformable wheels

4.4 Exploration rovers: terramechanics and terrain information integrated into path plan-
ning under terrain uncertainty

As said previously, planetary applications of terrain information into planning have been
mentioned as early as 1962, and 30 years ago, papers were already publishing research regarding
autonomous navigation for a planetary rover with intent to go to Mars [Miller et al., 1989].

Planetary rovers present a different challenge. First, they require a certain autonomy that
varies frommission to mission, because they operate far from the human handler, and the command
cannot be executed right after being sent to the robot. For example, it takes 8 to 42 minutes to reach
Mars. Furthermore, the commands have to go through the DSN for both uplink and downlink, and
each happens only once a day [Bajracharya et al., 2008]. One thing is certain, the more advanced
the missions get, the more autonomy is needed to complete them. Secondly, terrains on planetary
bodies are unknown, therefore driving on them presents some uncertainty. How will the rover
behave? Is it safe to drive along the initial planned path or is it necessary to replan? Thirdly, there
are computational limits on board a rover even with the advancement of technology. Currently, the
Mars rovers rely primarily on images taken on the surface and are limited by how far the camera
can see. Scientists and engineers on Earth are able to analyze the images and process the path of
the rover for the next few sols. Increased autonomy has been a focus for a long time to allow the
rover to take over certain tasks, such as terrain and path assessment.
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4.4.1 Terramechanics and path planning

With recent missions to Mars, there has been an increasing interest into terramechanics to
better understand Mars terrains, as well as improve the safety of driving. Indeed, terramechanics
as applied to planetary vehicles has two outcomes: one, understanding how the rover behaves
on a certain terrain improves the safety of driving; and two, the behavior the rover exhibits can
give information about the terrain itself, specifically soil properties, through the Reece moduli and
Mohr-Coulomb equation (Eq.2.3). As seen in the derivation (Appendix A), terrain parameters and
rover variables such as wheel diameter are related by many equations in terramechanics. Therefore,
scientists have started using terramechanics as a mean to gain knowledge into planetary surfaces
[Arvidson et al., 2014].

Before introducing terramechanics, the terrain component was accounted for during path
planning using sensors only [Gat et al., 1990]. However, most sensors do not give an accurate
indication of the terrain type, nor do they tell how the rover could behave on it. Terrain topography
and vehicle dynamics began to be analyzed as part of the planning process, going beyond simple
obstacle avoidance [Shiller and Chen, 1990].

Not until the late 90s did terramechanics, as applied to rovers, make an appearance. The
modeling of off-road vehicles and their interaction with the environment began to be considered for
planetary rovers. A few mentioned planetary exploration as an application of planning for off-road
vehicles, but it was not the focus of the papers. Some research was then done specifically with the
intent of applying terramechanics to Mars missions, using a physics-based model involving both
the rover and the environment [Farritor et al., 1998]. Slip, soil deformations, soil compaction and
wheel elastic deformation were integrated into a model used in path planning [Amar and Bidaud,
1997]. Mars was in the spotlight after the Pathfinder mission successfully landed in July 1997 and
NASA was planning for other missions to be sent to the red planet, making autonomy a crucial
topic (which it still is, considering the increasing complexity of the proposed missions).

Work mostly focused on planning in rough terrain, with some considering the uncertainty
of planning [Iagnemma et al., 1999]: the algorithm starts with a regular A* search and an estimate
of the terrain roughness to map a path. Then, a physical model of the rover rigorously analyzes the
path to determine its feasibility. If necessary, A* replans the path. The algorithm takes into account
terrain uncertainty, wheel/ground interaction uncertainty, model uncertainty and path following
uncertainty. Numerous papers were published regarding the integration of terramechanics into path
planning, following the same scheme: the algorithm plans a first path, then the rover evaluates the
terrain based on wheel/ground interaction, and finally the path is recomputed if necessary. This
is well illustrated in Ishigami et al. (2007), with an algorithm that uses wheel slip as a method of
terrain evaluation. A traversability index has been proposed, combining slope, terrain roughness
(irregularity), hardness (e.g. compacted, loose, etc…), and continuity (e.g. cliffs, valleys, etc)
[Howard et al., 2001]. Others have suggested to integrate a full dynamic model of the robot into
the path planning, comprised of two sub-models: 1) a vehicle sub-model to get a mobility profile,
and 2) a terramechanics sub-model to obtain interaction forces on deformable soils. Such model
is used to calculate a dynamic mobility index to assess feasible paths to get to a target but could
be computationally expensive [Ishigami et al., 2011]. More research was done towards planetary
exploration in subsequent years to improve on autonomy.
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Monitoring terrain characteristics has clearly been identified as an important task to be per-
formed to improve effectiveness of a mission. Wheel slip, torque, sinkage and drawbar pull are
among the parameters suggested to sense the terrain [Iagnemma et al., 2003]. The rationale be-
hind considering wheel slippage among others is due to regolith covering planetary bodies such
as the Moon and Mars. Wheels will slip on such surfaces, as has been proven by Spirit and Op-
portunity [Arvidson et al., 2011], and it can be measured in multiple ways, such as using a simple
IMU (Inertial Measurement Unit) or proprioceptive sensors [Kilic et al., 2019]. One suggested
method uses onboard cameras to classify terrains remotely and predict slip. The terrains are di-
vided into three categories: traversable, not traversable, and uncertain, and D* is used to compute
the optimal path. This system has been specifically intended for planetary rovers after seeing the
difficulties encountered on Mars [Helmick et al., 2008]. However, the major drawback of most slip
predictionmethods is that they are performed online, requiring significant computational resources,
and are often limited to line-of-sight estimations. To remedy the issue, a software has been devel-
oped capable of modeling drives on a user-defined terrain, called ARTEMIS (Adams –based Rover
Terramechanics and Mobility Interaction Simulator) that simulates traverses for Opportunity and
Curiosity [Zhou et al., 2014]. The software has been validated with the single wheel experiment
at MIT [Iagnemma et al., 2004, Senatore et al., 2014], as well as test in the JPL Mars Yard and
field experiments in the Mojave Desert, and is currently used to simulate drives for the Curiosity
rover [Zhou et al., 2017]. However, similarly to most slip prediction methods, this is also con-
strained to limited distances on ground assessed via ground images, since orbital imagery is usually
not enough to characterize a terrain, as it does not capture current conditions at the surface [Gaines
et al., 2016]. To address this issue and in an effort to render missions more autonomous, NASA
is conducting research on terrain classification and traversability map with SPOC [Rothrock et al.,
2016] and MTTT [Ono et al., 2016], respectively. Both were used to assess driving at the Persever-
ance landing site candidates and could become essential to studying terramechanics for planetary
applications. The main differences between ARTEMIS and MTTT is the modeling of the rover
itself in ARTEMIS and the larger scale of MTTT.

4.4.2 Path planning under terrain uncertainty

Path planning in real environment presents threemain types of uncertainty: motion, sensing,
and environment [Kurniawati et al., 2012]. Most of the time, environmental uncertainty is treated
within the planning method as a modified planning algorithm, such as an extended PRM [Missi-
uro and Roy, 2006]. This approach suggests changing the sampling method such that it is biased
towards region of higher certainty, leading to better paths for a small number of nodes. However,
in the case of equal terrain uncertainty across the map, this method might not provide good results.
Moreover, the authors specify that it cannot be applied to higher dimensions (i.e., 3D). Another
approach that also integrates terrain uncertainty into path planning is a modified RRT [Kewlani
et al., 2009], which uses a mobility-based heuristic to compute paths. More specifically, it com-
putes a new heuristic based on the probability of rollover, and therefore takes into account slope
uncertainty. However, this method requires online computation, which can be limited on board a
planetary rover.

Research has been done in path planning for planetary rovers to increase their autonomy, for
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example by gathering valuable scientific information autonomously and using it to navigate [Gird-
har and Dudek, 2016]. Even though it is a path planning method, it is geared towards scientific
exploration more than towards planning a path from A to B. This concept closely resembles a map
update, where the rover gathers information about its environment online to update its knowledge
and plan its traverse accordingly. This has been demonstrated to work for local planning in an
unknown, off-road environment [Fankhauser et al., 2018], and for planning in hazardous envi-
ronments containing radioactive materials [Mascarich et al., 2019]. However, the mapping and
planning phases are both performed online, which might not be suitable for a planetary rover with
limited onboard resources and time to perform computations. Another recent article also proposed

Figure 4.7: Principle of a spectrometer as a guide to exploration: scientists create a hypothetical geology map that can
be updated as the rover gains more scientific information about the terrain [Candela et al., 2017].

to integrate the environment directly into the path planning, where the initial map is a belief map
of geological units assessed by scientists (hypothesis). The rover is equipped with a spectrometer,
and updates its route as it is gaining information about the terrain (proof) through Bayesian infer-
ence [Candela et al., 2017]. The principle is illustrated in Fig. 4.7. This paper was inspired by
previous work on incorporating Bayesian processes to make planetary rovers more independent in
their scientific exploration [Arora et al., 2016]. However, this method might not be easy to imple-
ment for a sample return rover, as the systematic use of a spectrometer would be time consuming
(about three hours each time [Gellert et al., 2009]) and could be computationally demanding, espe-
cially for a mission whose main purpose is not to conduct science experiments in real time. Using
a different instrument could potentially alleviate this difficulty, provided the hardware is easy to
implement and deploy (e.g., cone penetrometer or shear vane [Rahmatian and Metzger, 2010],
detailed in the next subsection).

4.4.3 Geotechnical properties of soils that can support planning

Approaches to terrain uncertainty presented in previous sections were focused on integrat-
ing geology into planning. As mentioned before, the use of instruments to investigate the envi-
ronment has been explored and this section details such research performed on geotechnical ex-
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periments for planetary missions, mostly applied to the Moon. Geotechnics as a means to assess
traversability on other worlds was closely studied in the 70s, with the Lunakhod rovers and the
Apollo missions. Direct methods to measure geotechnical properties are impractical to implement
on other planets (see section 2.2.2); therefore, indirect methods were considered. Experiments were
sent to the Moon on manned and unmanned missions to retrieve properties of the regolith [Zacny
et al., 2010]. Indeed, the Apollo astronauts were equipped with a cone penetrometer to measure
bulk density and angle of internal friction [Costes et al., 1971]. A cone vane penetrometer (a cone
penetrometer with shear vanes) was carried on the Lunakhod rover to take measurements of the
bearing capacity of the Lunar soil [Costes et al., 1971]. On Mars, the rover wheels were used to de-
rive the intrinsic parameters c and ϕ to better understand the soil [Sullivan et al., 2011]. For future
missions, similar instruments to what was flown to the Moon by the Soviet Union or the United
States have been proposed, with improved capabilities, to support more extensive geotechnical
studies on other planets [Chhaniyara et al., 2012]. Such examples include a percussive dynamic
cone penetrometer [Zacny et al., 2010], a low velocity penetrometer [Seweryn et al., 2014] or a
Geovane [Rahmatian and Metzger, 2010].
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CHAPTER 5 Technical Approach

5.1 Introduction

As stated in Chapter 3, this research can be divided into three parts: orbital analysis (global
map), path planning (pre-planning and replanning), and terrain assessment (in-situ analysis). This
Chapter will detail the three components, each one based on the previous. The first step is to obtain
the map of traversability information that will be used for path planning. The second step is the
path planning map at local scale (up to 800 m) along the traverse. Computing the path involves
choosing a planer with options for replanning in case the initial path is no longer the fastest and
safest one, so that the rover completes its traverse efficiently and safely. This step also includes a
map update algorithm to keep the most up-to-date information about the environment given by the
rover as it drives and a method to monitor the terrain to verify the information given by the map
provided to the rover before driving. And finally, the third step addresses in-situ terrain analysis
to support planning. To avoid further mobility problems that could potentially lead to aborting the
mission, the rover should be equipped with onboard capabilities to assess complicated situations
and make the appropriate decision regarding its path. This step should be considered an emergency
case that should be avoided, but is necessary to guarantee safety of the rover when everything else
(orbital analysis, terrain monitoring and map update) is not sufficient to safely assess the traverse.
All three steps are detailed in this Chapter and results are presented in Chapter 6.

5.2 Orbital traversability map: slip and velocity prediction

The orbital slip prediction was done in collaboration with Dr. Ono at NASA JPL.

5.2.1 Problem statement

5.2.1.1 Objectives
The goal is to get traversability information (slip and velocity) at the landing site that could

support ground assessment of the terrain. More specifically, the objective is to obtain an estimation
of expected slip and a map of expected drive velocity over any given area using only orbital data.

5.2.1.2 Information
Information available for this research are orbital data and ground information. In particu-

lar, coverage at previous landing sites (e.g., Gusev Crater or Meridiani Planum) gives topographic
information about the area, as well as thermal (e.g., thermal inertia). Terrain types and traversabil-
ity classes from MTTT are also available (see subsection 2.2.1.3), and rock abundance has been
analyzed at previous landing sites. Similarly, slip checks performed by rovers are available for
areas visited by previous surface missions.
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5.2.1.3 Constraints
The constraints on this research are mostly on the data: for example, the available data have

varying resolutions, sometimes as low as 100m/pixels(px) (e.g., thermal inertia [Fergason et al.,
2006b]). Moreover, not all areas on Mars have orbital and ground (e.g., slip checks) coverage,
limiting the analysis to rover landing sites. And, even when available, the coverage might not be
complete, as is the case with the DTM or terrain type map over Opportunity’s traverse.

5.2.1.4 Assumptions
Several assumptions can be listed, including: the fact that the data needed for slip and drive

speed predictions are available; that SPOC performance (i.e., the uncertainty related to terrain type
prediction) as described in Rothrock et al. (2016) for Gusev Crater is the same at other locations
on Mars; and that only the terrain types data contain uncertainty, while the other data sets do not.

5.2.1.5 Challenges
The main challenge is to use data with different resolutions and overlap the sets over studied

areas. Another challenge is to propose a method that relies solely on orbital analysis, in order to
apply this work to more areas and better support the mission.

5.2.1.6 Contributions
While this section focuses on preparing a map of the landing site containing both velocity

and slip information, the contributions come from the slip prediction method. It has indeed been
fully developed at WVUIRL with the collaboration of JPL, whereas the process to obtain expected
drive speed is the product of NASA.

The contributions of the research on slip prediction are the following:
• To propose a method that allows for direct prediction of slip using orbital data only.
• To provide a means of predicting slip that can support ground terrain assessment.
• To give traversability information over extended distances, as long as the orbital coverage is
available, which means that a path can be analyzed with greater certainty prior to the mission
landing.

5.2.2 Orbital data sets

5.2.2.1 Terrain types and traversability classes
Terrain types have been presented in subsection 2.2.1.2. They are based on HiRISE images

that have a resolution of 25 cm/px, which implies that the terrain type maps share the same res-
olution. Terrain types can be grouped into five traversability classes, as explained in subsection
2.2.1.3.

To obtain a prediction of rover velocity along the traverse, a map of terrain is needed. To
simplify the process, given that only terrain classes are required for velocity prediction according
to the MTTT output shown in Fig.2.3, the five classes were mapped without taking individual
types into account. The traversability class map was derived from the DTM, and compared against
HiRISE images: the untraversable class was matched with craters, and sandy terrains were matched
with ejecta blankets and dunes or ripples when they could be detected. Rough terrain was built using
grey threshold values from the DTM and the rest of the map was set to benign terrain by default.
Therefore, classes 1 and 2 (benign and rough) do not correspond to actual geological units, unlike
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Figure 5.1: Manually interpreted map of traversability classes [Hedrick et al., 2020] (comprised of several terrain
types each as shown in Ono et al. (2018)).

classes 3 and 5. The end product has a resolution of 1 m/px, similar to that of the basemap DTM
and an example over Gusev Crater is shown in Fig.5.1. Due to class 1 and 2 being built with grey
scale values, they presented with a lot of noise in the southwest part of the map where the values
are close to the cutoff. While geological data would show extended area of one or the other, this
manually interpreted map shows alternating pixels of one with the other. The north and east parts
of the map are less affected by the issue, with values further from the cutoff.

5.2.2.2 Cumulative Fractional Area (CFA)
CFA maps have a resolution of 1m/px. Similar to what is presented in the previous para-

graph, a map of rock abundance is necessary to the analysis of speed prediction.
To build the rock abundance map, CFA was divided into three ranges (low or 1, <7%,

medium or 2, between 7% and 15%, and high or 3, >15%), which is what is needed for velocity
prediction as shown in Fig.2.3. The manually interpreted CFA map was built based on visible
craters, assuming that rocks are more abundant around them (high CFA, corresponding to the ejecta
blanket), a little less inside them (medium CFA) and a lot less abundant everywhere else (low
CFA) [Collins et al., 2012]. The DTM was once more used to build this CFA map, as craters are
easily visible in topographic information. The end product has therefore a resolution of 1 m/px,
similar to that of the original data set and DTM. An example over Gusev Crater is shown in Fig.5.2.

5.2.2.3 Slope
Slope also plays a significant role in traversability. The Mars Exploration Rovers (MERs)

avoided slope greater than 30◦ due to potential sliding on steeper slope [Biesiadecki et al., 2006].
Testing has been conducted to understand traversability on different slopes for Spirit and Opportu-
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Figure 5.2: Manually interpreted map of CFA ranges: 1 - low rock abundance (< 7%), 2 - medium rock abundance
(between 7% and 15%) and 3 - high rock abundance (> 15%) [Hedrick et al., 2020].

nity [Lindemann and Voorhees, 2005] and Curiosity [Heverly et al., 2013]. Slope is derived from
Digital Terrain Models (DTMs) over selected areas, which have a resolution of 1 m/px. It is ob-
tained from the gradient of the height from the DTM times the heading angle in the rover’s direction
as shown in Eq.(5.1).

S =

(
∂h
∂x
∂h
∂y

)
·
(
cosθ
sinθ

)
(5.1)

Where h is the height given by the DTM, (x, y) are the coordinates of the location for which slope
is calculated (pixel of 1 square meter), and θ is the heading angle, given by Eq.(5.2)

θ = atan
x

y
(5.2)

The slope is calculated at the (x, y) location by deriving the gradient for the average height over 9
pixels (the pixel (x, y) and the 8 surrounding pixels).

It should be noted that for the velocity study, as shown in Fig.2.3, only five ranges of slope
are needed: < 10◦, between 10◦ and 15◦, between 15◦ and 10◦, between 20◦ and 25◦, and>25◦ [Ono
et al., 2018]. The topography of Gusev Crater and the Columbia Hills is shown as an example in
Fig.5.3.

5.2.2.4 Thermal inertia
Thermal inertia is derived from theMarsOdyssey Thermal Emission Imaging System (THEMIS)

nighttime temperatures [Fergason et al., 2006b]. Thermal inertia depends on several factors includ-
ing particle size, degree of induration, rock abundance, and exposure of bedrock at the subsurface
(within a few centimeters of the surface). It translates the ability of a material to store heat during
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Figure 5.3: Digital Terrain Model (DTM) of the Columbia Hills. Credit:NASA/Washington University in St. Louis.

the day and release it at night [Putzig et al., 2005]. The mathematical definition is as follow:

I ≡
√
kρc (5.3)

Where I is the thermal inertia in Thermal Inertia Units (TIU , with 1TIU = 1Jm2K−1s−½. [Putzig

Figure 5.4: Thermal inertia map over Gusev Crater. Values are in Thermal Inertia Unit. Credit: USGS.
et al., 2005]), k is the bulk thermal conductivity, ρ is the bulk density and c is the specific heat
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of the surface layer. Usually, the surface layer considered is up to a few centimeters below the
surface [Putzig et al., 2005], called skin depth. Thermal inertia can bring a lot of information
crucial to terrain classification. In general, high thermal inertia translates into indurated material
such as bedrock, which implies that the rover would have less difficulty driving on such terrain.
Low thermal inertia is associated with loose material such as sand, which is more challenging to
traverse [Cunningham, 2017]. Fig.5.4 shows an example of thermal inertia data over the Columbia
Hill, Mars. Thermal inertia maps have a resolution of 100m/px.

5.2.3 Velocity prediction

5.2.3.1 Velocity categories

Figure 5.5: Velocity categories [Hedrick et al., 2020]: A - 64.8 m/hr; B - 52.5m/hr; C - 24.2-48.5m/h; D - 10.9-40.8
m/hr; E - 10.9 m/hr; and F - untraversable (>15% CFA or >25◦ slope, not shown).

According to Fig.2.3, it is possible to predict the rover speed by overlapping three geological
data sets: traversability classes from Ono et al. (2018), slope, and CFA [Golombek and Rapp,
1997]. As mentioned before, terrains can be categorized into five traversability classes: benign,
rough, sand, no-Autonav and untraversable [Ono et al., 2018]. However, at Gusev Crater, the
no-Autonav class (class 4) is absent, simplifying the problem to only 4 classes [Rothrock et al.,
2016]. Within each class, for given values of slope and CFA, an expected speed of the rover is
calculated [Ono et al., 2018]. Therefore, by overlapping the CFA, DTM and traversability class
maps over each 1x1m2 cell, it is possible to estimate an expected speed of the vehicle across each
meter of the map. Figure 5.5 shows the categories of speed given traversability class, CFA and
slope, labeled A to F.

5.2.3.2 Map of velocity categories
This map is built over an area potentially covering the equivalent of the journey from land-

ing to samples (Spirit’s traverse was taken as a reference in Fig.6.1a. To build the map, CFA,
traversability classes and slope information are needed, but only the DTM is public information.
New maps were therefore visually interpreted and labeled using HiRISE images and DTM over the
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chosen area, as described in subsection 5.2.2. Even if additional uncertainty could be present in the
traversability class map due to the fact that the map had to be manually labeled, it is assumed that
the data set provides a reasonable approximation of theMars conditions for evaluating the proposed
planning algorithms, and that the uncertainty from the classifier used in Rothrock et al. (2016) can
be applied to this work.

5.2.4 Slip prediction

This analysis was performed using actual data sets via a limited release by JPL.
To predict slip, both Endeavour Crater and Gusev Crater were considered as potential can-

didates given the availability of ground truth at these locations (i.e., slip checks). However, for
Endeavour Crater, terrain types and CFA were not available, and only public data such as slope
and thermal inertia had been obtained. The first step is to run a Principal Component Analysis
(PCA) to identify the most useful data sets for slip prediction.

5.2.4.1 Principal Component Analysis (PCA)

Table 5.1: Principal Component Analysis (PCA) results showing PCs (Principal Components) 1 to 4 with the contri-
bution of each variable (in %).

PC1 PC2 PC3 PC4
Variance explained 46.51% 28.21% 14.83% 10.46%
Thermal inertia 6.250% 65.62% 14.78% 13.35%

Slope 19.82% 30.70% 44.60% 48.80%
Terrain types 34.94% 0.9800% 40.55% 23.53%

CFA 38.99% 2.710% 0.07450% 58.23%

A Principal Component Analysis (PCA) on all four variables (thermal inertia, slope, terrain
types and CFA), centered and standardized, is performed. It revealed that the first three principal
components (PCs) contribute to 89.54% of the data, almost 90%, and the first two alone contributes
to 74.71% of the data, almost 75%. The biplot in Fig.5.6 shows that if terrain types and CFA con-
tribute the most to PC1, slope and thermal inertia contribute the most to PC2 and most importantly,
to the total explained variance by dimension one and two, at 53.70% and 39.23% respectively
(Fig.5.6). Thermal inertia and slope are thus retained as the main contributing variables and the
needed predictors for slip analysis.

5.2.4.2 Classifier training to predict slip
5.2.4.2.1 Data points available

The data are taken from both the Opportunity and Spirit rovers, at Meridiani Planum and
Gusev Crater, respectively. Slip was recorded only when Visual Odometry (VO) was enabled (re-
ferred to as “slip checks”) [Maimone et al., 2007]. However, VO was not always an option since
it did not allow for fast speed [Biesiadecki et al., 2007], and consequently, few data points were
available for this study, as shown in Fig. 5.7. 2073 data points were collected for Spirit (MER
A, Fig.5.7b) and 3250 for Opportunity (MER B, Fig.5.7a). Even though more slip checks were
performed at Meridiani, processed DTM coverage is not available everywhere which limits the
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Figure 5.6: Biplot showing the contribution of each variable to the first two PCs that explain 75% of the data. TI:
thermal inertia; TT: terrain types; CFA: cumulative fractional area.

number of points available for use in this research.
5.2.4.2.2 Data processing

Slope has been identified for a long time as a factor generating slip experienced by rovers
[Bouguelia et al., 2017], but the role of thermal inertia was not as clearly defined until recently
[Cunningham, 2017]. It is related to terrain properties as explained in section 5.2.2 and is important
for predicting slip, as demonstrated by the PCA analysis in section 5.2.4.1.

The slope and thermal data are combined to train a classifier to predict ranges of slip: lower
than 30% or higher than 30%. This threshold was taken from a similar classification used in
Bougelia et al. (2017) with classes medium slip (30 − 60%) and high slip (> 60%) combined
into one category. While their work focuses on tracking ranges of slip from ground data and rover
behavior, this research aims at producing a classifier that will allow slip prediction exclusively from
orbit. In order to obtain the value for slope and thermal inertia at the location of the slip check, the
raw data are imported into Matlab® to be georeferenced. The longitude and latitude for each cell
are computed by referencing the center of the cell to Mars coordinates (Mars Equidistant Cylindri-
cal projection [Rosiek et al., 2003]). The next step consists of locating the slip checks, as the data
provided are referenced with a time stamp (spacecraft clock or sclk) for each VO measurement.
To derive coordinates from the time stamp, the rover position is used, since it is already associated
with a sclk. It is first converted from site frame, a local system of coordinates [Pyrzak et al., 2006],
to longitude and latitude. Then a shape-preserving piecewise cubic interpolation method is applied
to obtain longitudes and latitudes at which slip checks were performed. Finally, once the locations
of each slip check are computed, the values of thermal inertia at these locations are obtained by
simply matching their locations to those of the slip checks. The same matching is performed on the
DTM, with the additional step of averaging the height at these locations with the eight surrounding
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(a) MERB traverse (total length: 45.16 km) and slip
checks.

(b)MERA traverse (total length: 7.751 km) and slip checks (the part where checks were
performed is zoomed in).

(c) Legend

Figure 5.7: Data points available for this study. (a) Almost the entire traverse for Opportunity provides slip checks
but the middle segment does not include processed DTM coverage. (b) Most of Spirit traverse is not available (no
VO performed), but the entire traverse has processed DTM coverage. (c) Legend indicating the traverse with no slip
checks, the slip checks that have DTM coverage and the slip checks that do not.

cells to derive the gradient in the rover direction (see section 5.2.2). It has indeed been shown that
averaging the values of the DTM over several cells can lead to better estimate of the slope [Warren
et al., 2004]. The output of this procedure is a matrix whose lines correspond to one location of
slip check and its associated values of thermal inertia and slope.

5.2.4.2.3 Classifier training
Once the matrix of slope, thermal inertia and slip values at measurement locations is ob-

tained, the data are prepared for training a classifier. It involves converting the slip data to two
categories, that is, “low” and “high”, which correspond to 0 − 30% and above 30%, respectively.
Bouguelia et al. (2017) chooses to divide slip into three categories, however, for the scope of this
work it was decided to focus on values less or above 30%. Slope and thermal inertia are also cate-
gorized into different classes. Slope categories are taken from Ono et al. (2018), where the ranges
considered are 0 − 5◦, 5 − 10◦, 10 − 15◦, 15 − 20◦, 20 − 15◦ and above 25◦. However, slope
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above 15◦ are already considered complex terrain [Biesiadecki et al., 2007], therefore only three
categories of slope are considered: 0 − 10◦, 10 − 15◦ and above 15◦. Each category is then split
to account for the direction of the slope, that is, up or down. Thermal inertia is also divided into
categories, with high thermal inertia above 200 TIU and low thermal inertia below 200 TIU .

Multiple classification methods are considered, including: trees, naive Bayes or nearest
neighbors. The Spirit data are used for training the classifier (referred to as the A set) and the data
from Opportunity are used for validating the trained classifier (referred to as the B set). However,
it should be noted that among the two categories, both for the training data and the testing data,
the first category is over-represented. For all data sets combined, there is a total of 5323 slip check
points with the required orbital coverage, with 4491 belonging to class “low” (84.4%) and only 832
belonging to class “high” (15.6%). Among the A set (from Spirit’s traverse), 1600 are category
“low” (77.2%) and 473 are “high” (22.8%). Among the B set (from Opportunity’s traverse), 2891
are “low” (89%) and 354 are “high” (11%). This led to an imbalanced class problem for training
the classifier that needed to be taken into account. There are ways to handle the class imbalance
so that the model does not get biased towards the most represented category, including tuning
the misclassification cost matrix or using boosting and/or sampling methods [Weiss, 2004] such
as AdaBoost (Adaptive Boosting) [Liu et al., 2008] or RUS (Random Under Sampling). Boosting
methods consist of creating one strong classifier, referred to as an ensemble classifier, by combining
several weak ones [Opitz and Maclin, 1999] to improve performance [Rokach, 2010]. Sampling
methods consists of sampling the overrepresented class to match the number of samples in the
underrepresented one. Authors have also proposed to combine both sampling and boostingmethods
to improve even further the performance of a classifier when handling imbalanced data, called
RUSboost [Seiffert et al., 2008]. When compared to different algorithms, RUSboost was proved to
perform better than sampling or boosting methods alone [Seiffert et al., 2009]. Certain classifiers
are better suited for such algorithms, such as decision trees, because of the high speed at which
they perform [Gashler et al., 2008].

5.3 Terrain-aware path planning

After preparing a map containing traversability information, the next step is to plan one sol
at a time by addressing path planning on segments of the traverse. Once again, the Columbia Hills
are used as an example due to extensive data available at the site.

5.3.1 Problem statement

5.3.1.1 Objectives
The goal of this work is to develop a local path planning and real-timemap update algorithm

to support the autonomous traverse of a sample return rover on partially unknown terrains for the
driving objective of a sol on Mars. This planning process would be repeated each sol until the
traverse from the landing site to the sample locations is completed. This algorithm should take
into consideration the lack of terrain information for Mars, and produce a fast and computationally
efficient online replanning method to address any path issues that could arise based on terrain
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information gained along the path. The cost of a path is defined as the time of traversal from the
start point to the goal for a given sol, and an optimal path is one that minimizes the traverse time.

5.3.1.2 Information
The information available to this research in the context of MSR are slip checks performed

by Spirit at Gusev crater and the maps of traversability presented in section 5.2, containing infor-
mation on expected velocity and slip. Definitions of the available data used to build the map are
reminded below:

• Terrain types: direct output of SPOC [Rothrock et al., 2016]. At the Columbia Hills, the
following are found: SR - Smooth Regolith and SO - Smooth Outcrop, RR - Rough Regolith
and RO - Rough Outcrop, SRF - Sparse Ripples Firm and SRS - Sparse Ripples Sandy, DLR
- Dense Linear Ripples and PR - Polygonal Ripples.

• Traversability class: each class of traversability is comprised of two terrain types (see Table
5.4). The classes are: benign (1), rough (2), sandy (3), no-Autonav (4) and untraversable (5).
As a reminder, at Gusev Crater, class 4 has not been found [Rothrock et al., 2016].

• Cumulative Fractional Area (CFA): fraction of area covered by rocks [Golombek and Rapp,
1997].

• Velocity categories: lettered A to F, they represent the expected rover velocity given the
slope, CFA and traversability class as they are presented in Ono et al. (2018), as shown in
Fig.5.5.

5.3.1.3 Constraints
Several constraints mentioned in the overall statement apply to the path planning specif-

ically, including a time budget (limited time each sol to perform a drive), limited computational
resources for real time operations and a set daily goal from which the rover cannot deviate.

5.3.1.4 Assumptions
The main assumptions for the planning process are: the path from landing to samples is

already computed and this research focuses on segments of it; obstacle avoidance is performed for
small obstacles not detectable from orbit and directly in the path; the rover has reasonably accurate
knowledge of its position at all times; only the traversability class data set contains uncertainty in-
herited from SPOC; and the rover can continuously drive for up to eight hours per sol. Even though
a solar powered rover such asMERs was designed to drive at most four hours by design and in prac-
tice even less [Biesiadecki et al., 2007], better performance is expected in the future [Bajracharya
et al., 2008]. Moroever, it is assumed that the computational resources are at least equivalent to
those of Mars 2020 with a Virtex-5QVs Field Programmable Gate Array (FPGA) [Johnson et al.,
2017] and RAD750 Single Board Computer (SBC) [Rabideau and Benowitz, 2017]. Scheduler
algorithms of complexity up toO(TN3

a ) (T number of timelines andNa number of activities) have
been developed for such computers [Rabideau and Benowitz, 2017] and it is assumed that any algo-
rithms of equal or lower complexity can therefore be handled by similar computational resources.
Moreover, the MSR rover will not need to save energy to analyze scientific targets that would take
away time otherwise allotted to driving. Finally, the assumption is made that the rover can monitor
its wheel slip and actual speed, and can gather in-situ terrain information (see section 5.4).
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5.3.1.5 Challenges
A few challenges can be identified, such as the replanning approach in real time with lim-

ited computationl resources on board and limited time to finish the traverse. Another challenge
is to convert terrain monitoring into terrain information that can be used in planning. Finally, de-
termining if the path ahead is safe to traverse is the most challenging task the rover will have to
face.

5.3.1.6 Contributions
The main contribution of this work is a novel terrain-aware planning framework that sup-

ports the MSR mission concept by enabling a rover to drive safely over significant distances (be-
yond line-of-sight). It includes:

• A planning algorithm forMars rovers that can incorporate orbital terrain information, such as
class, presence of rocks, and slope, to allow the rover to autonomously assess its environment
prior to driving.

• An algorithm that converts rover parameters (slip, speed) into terrain information to lower
the uncertainty about the terrain.

• A planning process that gives the vehicle options to reroute if a more efficient path is found
without requiring heavy real-time computation, resulting in faster decision making and re-
planning.

5.3.2 Approach

The path planning process is split into an offline path planning phase and an online map
update and replanning loop. This approach was chosen to alleviate, as much as possible, the use of
computational resources onboard. The offline planning creates paths for the rover to use during its
traverse, whereas the online part is dedicated to measurements of the terrain andmap updates, given
new terrain information, with possible replanning if needed (i.e., terrain has changed significantly).
The overall process is presented in Fig.5.8 and detailed in the next subsections.

5.3.2.1 Path planning approach
To reduce the computational cost online, several paths are computed offline prior to begin

the traverse of a sol, to give the rover options to reroute in real time if necessary. This approach
enables the rover to quickly replan its traverse without involving heavy computations, should the
terrain be different than expected. Rerouting could be triggered by any significant change detected
by the rover as it drives and it is assumed that various methods such as slip monitoring or instrument
deployment can detect terrain variations. The start and goal locations are chosen so that the rover
would not take more than eight hours to drive from one to the other (Fig.6.6). To plan the paths, a
graph is first built using a Probabilistic RoadMap (PRM [Kavraki et al., 1996]) and anA* algorithm
[Stentz, 1993] then computes paths from start to goal. The cost of the traverse is the sum of the
cost of the edges along the path given by Eq.5.4.

ec =
le
Ve

(5.4)

Where ec is the edge cost (in hours), le is the length of an edge in meters and Ve is the maximum
velocity encountered by the rover along the edge (inm/hr). This ensures that the heuristic chosen
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Figure 5.8: Diagram showing the one-time offline planning and the online loop comprised of update and replanning
Credit: Hedrick et al., 2020.

is admissible, which means that it is never overestimated. Each cell corresponds to a pixel on the
orbital images, with a resolution of 1m/px. The velocity over a pixel is obtained from Rothrock et
al. (2016) by overlapping the slope, traversability class, and the rock abundance for each cell (see
subsection 5.2.3.1). The slope is derived from the DTM using Horn’s method in the direction of
driving (simplified to “up” or “down”) as shown in Ono et al. (2018). The traversability class and
CFA values are obtained from the maps described in subsection 5.2.3.2. To compute several paths
to the goal, Yen’s k-shortest paths algorithm [Yen, 1970] is implemented on the node following the
spur node of the latest computed path. The algorithm was modified to incorporate the following:
maximum cost of each path (i.e., time budget); and minimum distance from each node on previous
paths to avoid computing paths too close to each other. The number of paths with this no-go corridor
around it can be changed, and the width of the corridor cannot be longer than twice the maximum
length of an edge. With this method, the maximum number of options generated is the number of
edges of the second-to-last computed path, and it allows for both diversity and overlapping of the
paths.

5.3.2.2 Terrain monitoring: noisy measurements
The terrain monitoring on the nodes along the path can be referred to as “noisy measure-

ment”, which is a measurement of conditions corresponding to a specific ProbabilityMass Function
(PMF) of velocity categories C given wheel slip and drive speed. It is assumed that the rover has
access to its wheel slip S and actual speed V while driving, both of which are then converted into
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terrain information with the method described below.
The PMF of velocity category given slip and speed, p(Ci|Si ∩ Vi), can be expressed using

Bayes rule, where Si is the measured slip at cell i and Vi is the velocity observed at cell i. Bayes
rule gives:

p(Ci|Si ∩ Vi) =
p(Si ∩ Vi|Ci) ∗ p(Ci)

p(Si ∩ Vi)
(5.5)

where p(Si ∩ Vi) is derived from p(Si) and p(Vi) and p(Si ∩ Vi|Ci) is derived from p(Si|Ci) and
p(Vi|Ci).

p(Si) and p(Si|Ci) are obtained from Spirit’s slip checks at Gusev Crater used in section
5.2. Given the availability of a velocity category map at the Columbia Hills, slip distributions over
each velocity category are studied. The distributions presented in this section were analyzed using
the manually interpreted map described in subsection 5.2.3. The PDFs for slip are derived by fitting
a curve to the data for each categories, except for E, not represented at Gusev. Slip seems to follow
a log-normal distribution for which parameters are presented in Table 5.2. The exception to the rule
is category F which shows two maxima (see Fig.5.10a), including one in the very high slip region
(to be expected).

Table 5.2: Slip probability distributions parameter, per velocity category, derived from Spirit’s slip checks

Velocity
Category

Mean (%) Standard
Deviation

PDF

A 2.7812 0.92170 Log-normal
B 1.5054 0.77050 Log-normal
C 2.0309 0.67210 Log-normal
D 1.4897 0.55190 Log-normal

The variation of speed within each category has not been reported in Ono et al. (2018). To
obtain the PDFs of each category and understand how the velocity changes from A to F and varies
within each category, the following process is applied:

• If the category is described by a range, a Gaussian distribution is assumed. The mean is taken
and the range is considered to cover a total of six standard deviations (since 97% of the data
lie within three standard deviations of the mean).

• If the category is described by a single number, however, assumptions on the distribution
as well as maximum and minimum velocities are made. The number given in Ono et al.
(2018) is taken for the mean, and maximum values are obtained from different drive modes’
maximum attainable velocity as described in Biesiadecki et al. (2007). It is assumed that
each drive mode corresponds to one specific category, such as blind drive being possible
only on category A terrain.

The assumption for the best fit distribution is assumed to be Gaussian for category A to C and log-
normal for category F. The reason for choosing log-normal distribution for lower speed category
is to ensure that most data points will fall under a very low range of velocity in accordance with
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difficulties created by the terrain class, the slope and/or the rock abundance. Given the conditions
required for the rover to drive within category F, it is unlikely that the rover will achieve greater
speeds. A log-normal distribution also ensures that the data points remain in the positive range. It
is to be noted once again that in this work, there is no category E at Gusev Crater. The following
table summarizes the numbers used to build the velocity PDFs for categories with only one given
value: The illustration of a distribution of velocity and slip for each traversability class is shown in

Table 5.3: Velocity categories and their characteristics for those with only one given number [Ono et al., 2018]

Category Mean Maximum [Biesiadecki
et al., 2007]

Standard
Deviation

PDF

A 64.8 m/hr 124 m/hr 124−64.8
3

Normal

B 54.5 m/hr 96.0 m/hr 96−54.5
3

Normal

F 0.00 m/hr 10.0 m/hr 10
3

Log-normal

Fig.5.9 with category A given as an example.

Figure 5.9: Slip vs. velocity with marginal distribution over category A (encompasses terrain types 1 and 2).

The distributions are plotted and shown in Fig.5.10.
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Figure 5.10: PDFs of (a) slip and (b) speed for each velocity category.

Once the PDFs for velocity and slip are established over the entire map, as well as the PDFs
for each category, the joint probabilities p(Si ∩ Vi) and p(Si ∩ Vi|Cwi

) can be computed using a
partition in 2D-bin counts with specific bin edges in both dimensions. Amatrix is obtained, with the
lines corresponding to the slip dimension and the columns corresponding to the velocity dimension.
The cells are populated given the probability of slip and velocity to fall within the specific bin given
by the line number and column number, respectively.

Assuming that the rover can monitor its own wheel slip and actual speed, at each measure-
ment i it will convert this information into a PMF of category by simply calculating the probability
that the measurement (S, V )i falls into one of the categories, given the combined values of slip and
speed as stated in Eq.5.5. For simulation purposes, these “measurements” are computed from an
altered map referred to as the “truth” map (1m/px). The alterations were made so that the map re-
mains as close as possible to real situations: for example, class 1 has 10.5% chance to be mistaken
for class 2, but class 6 can hardly be misclassified, with a prediction accuracy of 99.8% [Rothrock
et al., 2016] (Table 5.4).

5.3.3 Map and map update

The map known to the rover prior to planning is a belief map, specifying the probability
distribution over the expected velocity categories of each of the grid cells. This belief map is built
from the map of velocity obtained in subsection 5.2.3 by initializing with the PMF of the velocity
of each pixel. The derivation of the PMFs is presented in the next subsections.

5.3.3.1 Belief map
5.3.3.1.1 Class confusion matrix

The uncertainty contained in the traversability class map are derived from the SPOC uncer-
tainty presented in Rothrock et al. (2016). The class confusion matrix (Table 5.4), i.e., the matrix
showing the performance of the terrain classifier, has been adapted to traversability classes instead
of terrain types as publised in Rothrock et al. (2016) by implementing the following steps:
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• The proportion of each class present at the Columbia Hills was computed by simply adding
the proportions of each terrain belonging to the class:

pci =
∑
j

ptj⊂ci (5.6)

where pci is the proportion of class i and ptj⊂ci is the proportion of terrain type j included in
class i.

• Each terrain proportion within a class was calculated using the following formula:

pti⊂cj =
pTi

pcj
(5.7)

where pti ⊂ cj is the proportion of terrain type i in class j, pTi
is the proportion of terrain

type i at the Columbia Hills as observed by Rothrock et al. (2016) and pcj is the proportion
of class j at the Columbia Hills as calculated previously.

• Each value within the confusion matrix was calculated based on the proportion of each ter-
rain within each class and the probability given by the confusion matrix for that terrain in
Rothrock et al. (2016):

P (cj) =
∑
i

pti⊂cjP (ti) (5.8)

where P (cj) is the performance of the model for class j (computed as explained above),
pti ⊂ cj is the proportion of terrain type i in class j and P (ti) is the performance of the
model for terrain type i (from Rothrock et al. (2016)).

Table 5.4: Confusion matrix for traversability classes (1 to 5 [Ono et al., 2018]) derived from Rothrock et al. (2016).
Terrains included in the classes are: SR - Smooth Regolith, SO - Smooth Outcrop (class 1), RR - Rough Regolith,
RO - Rough Outcrop (class 2), SRF - Sparse Ripples Firm, SRS - Sparse Ripples Sandy (class 3), DLR - Dense
Linear Ripples, and PR - Polygonal Ripples (class 5). As specified before, no class 4 was detected at the Columbia
Hills [Rothrock et al., 2016].

Prediction
SR+SO class 1 RR+RO class 2 SRF+SRS class 3 DLR+PR class 5

Ground
Truth

SR+SO 84.0% 7.50% 0.200% 0%
RR+RO 10.5% 81.3% 1.20% 0.200%
SRF+SRS 5.20% 10.6% 98.4% 0%
DLR+PR 0.300% 0.600% 0.200% 99.8%

Given this confusion matrix for each traversability class, the PMFs for the velocity categories can
be derived under the assumption that only the traversability class set contains uncertainty.

5.3.3.1.2 Probability Mass Functions (PMFs) of velocity categories
For each category (see Fig.5.5), it is first determined what classes of terrain are included,

what the proportions of each class within the category are, and finally, the probability that the
prediction matches the ground truth is calculated. Each column of the matrices corresponds to the
belief PMF of velocity categories for each combination of CFA and slope and each row is the “true”
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PMF of categories (i.e., the “measurement”). To illustrate the derivation, an example is taken for
CFA less than 7% and slope between 20◦ and 25◦. This combination of CFA and slope gives only
two possible categories of velocity: E (10.9m/hr) and F (untraversable). E includes class 1 and 2.
Moreover, within these ranges of CFA and slope, category F can only be class 3 or 5. To calculate
the probability that category E is mistaken for F, the following steps are followed:

• The relative proportions of class 1 and class 2 within E are obtained, called pc1⊂E and pc2⊂E ,
respectively:

pci⊂Cj
=

∑
k

ptk⊂ci∑
i

pci
(5.9)

where pci⊂Cj
is the proportion of class ci within categoryCj , ptk⊂ci is the proportion of terrain

type k within class ci and pci is the proportion of class i at the site of interest, calculated from
Eq.5.6.

• The relative proportions of class 3 and class 5 within F is calculated, called pc3⊂F and pc5⊂F ,
respectively.

• The numbers in Table 5.4 corresponding to the performance of the model for each predicted
class (1 and 2) compared against each true class (3 and 5) is taken, calledP (c1|c3) (probability
of the model to give class 1 knowing that it is in fact 3), P (c1|c5), P (c2|c3) and P (c2|c5).

The final equation is the following:

P (E|F ) = pc1⊂E(pc3⊂F ∗ P (c1|c3) + pc5⊂F ∗ P (c1|c5))+
pc2⊂E(pc3⊂F ∗ P (c2|c3) + pc5⊂F ∗ P (c2|c5))

(5.10)

Which gives, in this case:
0.54(0.436 ∗ 5.2%+ 0.564 ∗ 0.3%) + 0.46(0.436 ∗ 10.6%+ 0.564 ∗ 0.6%) = 8.31%.

Table 5.5: CFA ≤ 7% and 20◦ < slope ≤ 25◦.

Prediction
E F

Truth E 82.8% .340%
F 8.31% 99.2%

This number is entered in Table 5.5. The other cells are calculated using a similar process
(rows and columns of zeros are not shown for clarity purposes). All of the matrices corresponding
to different values of slope and CFA are presented in Appendix B

5.3.3.1.3 Belief map of velocity category
Given the matrices of PMFs, the map of velocity category from subsection 5.2.3 is initial-

ized by taking the column of each matrix (believed PMFs) corresponding to the category of each
pixel of the map given CFA and slope. For example, if a pixel has a CFA less than 7%, slope under
10◦ and the initial map obtained in subsection 5.2.3 shows category A for that pixel, then its value
on the belief map will be the corresponding PMF of [0.840, 0, 0.105, 0.0520, 0, 0.000300].
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5.3.3.2 Local Map Update
The map update allows the rover to keep a local up-to-date velocity map at 1 m/px using

constant monitoring of the terrain while driving (see section 5.3.2.2). The belief map known to the
rover contains uncertainty due to the terrain classifier errors [Rothrock et al., 2016]. This work has
been done in collaboration with Nicholas Ohi at WVUIRL.

5.3.3.2.1 Edge potential matrices
The edge potential matrices, representing the conditional relations between velocity cate-

gories in adjacent nodes on the underlying PRM graph, are built after the PMF matrices derived in
subsection 5.3.3.1.2 and presented in Appendix B. When used as edge potentials in the map update
framework, the columns of the matrices of PMFs are normalized, so each sums to 100%.

5.3.3.2.2 Belief propagation framework
Each cell s in the map has an associated belief state of the velocity category of that cell

ϕ(s). The initial belief state of a cell is derived from the PMF of velocity categories, by tuning
the probabilities towards the most likely categories as seen from ground images assumed to be
available to MSR from Perseverance. Here, for simulation purposes, the truth map is used to set
the initial conditions.

The dimensionality of the problem is reduced by estimating the belief at the nodes of the
PRM graph used for path planning in the local area around the location where the measurement was
taken. The graph used for belief propagation is found as a minimum spanning tree of the subgraph
of the PRM graph (with a time complexity ofO(|E|log|ν|), where |E| is the number of edges in the
graph and |ν| the number of nodes), consisting of the subset of nodes less than or equal to a graph
distance of N away from the measured node. This minimum spanning tree of the local subgraph
around the measurement is referred to as the belief propagation tree, the nodes of this graph are the
set {x}, and the belief state of a particular node xi is ϕ(xi), representing a Markov Random Field
(MRF). The belief of the rest of the cells in the local area of the map is then updated by linearly
interpolating between nodes in the belief propagation tree.

The edge potential functions ψ(xi, xj) represent conditional relations between neighboring
nodes in the graph and describe how the state of xj should be updated, based on the state of xi. A
measurement taken at a particular node zi directly results in a new belief state for that node ϕ(xi|zi).
The objective of the map update is to propagate this new information to the rest of the graph and
infer the marginal PMFs of each node. In other words, the algorithm updates the belief states of
all other nodes, given the measurement, ϕ(xj|zi),∀j ̸= i. The minimum spanning tree of the local
subgraph is found, so that exact inference can be performed using the sum-product message passing
algorithm [Kschischang et al., 2001] described in section 4.2.5.1. The belief propagation is imple-
mented with the UGM Matlab® Toolbox [Schmidt, 2012]: the belief propagation tree (i.e., MRF)
is first factorized, and given the measured node (message to be passed), the marginal distributions
of each leaf are then computed using equations 4.4, 4.5 and 4.6, leading to a complexity of O(|ν|2)
(ν vertices of the tree, in this work |ν| < 100). If a tree leaf overlaps with a previously measured
node, the measurements overwrite any information passed on to the leaf, under the assumption
that the measurements, even noisy, are more accurate than the updated information resulting from
the message passing. Those nodes (currently and previously measured) are referred to as clamped
nodes in the belief propagation algorithm.
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5.3.4 Replanning

Replanning is used to optimize the remaining time to the goal. After each map update, if
the most likely velocity category along the path the rover is driving on is different than the believed
velocity, the costs of the pre-planned paths are recalculated using Eq.5.4 with the new velocities.
If there is an available path among the proposed options with a lower cost than the current path
the rover is following, and if there is a connection (i.e., a segment of a pre-computed path from
the rover’s location to the potential new path) this option is selected to continue the traverse. The
complexity of the replanning algorithm is simplyO(nlog|ν|) in time andO(log|ν)| in space, where
ν are the vertices on the paths.

5.4 Parameters and instrumentation to assess terrains

As previously mentioned, there is a need for increased autonomous driving distance due to
the potential size of the landing ellipse and the plan for a duration of only 100 to 200 sols for the
MSR mission [Klein et al., 2014]. While this research proposes methods to increase autonomy,
such as a map of expected mobility performance and a path planning that fully takes into account
the environment, there might still be need for a more accurate terrain assessment when all the other
methods have failed to correctly capture the situation. If the terrain monitoring referred to as noisy
measurements is not enough to confirm that the terrain ahead is safe, or if there is a confusion
between terrains, including one that could present mobility difficulties, the rover needs to have
access to a different method to assess the terrain and support planning.

5.4.1 Problem statement

5.4.1.1 Objectives
The objective is to equip the rover with the capability of gathering in-situ terrain information

in a timely manner (i.e., a few minutes) to support planning, at an accuracy equal to or greater than
a human operator. It would allow the vehicle to make decisions regarding its traverse when slip
and speed monitoring is not sufficient to confirm a safe path, and/or when a dangerous terrain is
detected in the vicinity of the rover. This new knowledge would be used to update the map with
lower uncertainty using the belief propagation framework described in section 5.3.3.

5.4.1.2 Information
The information available are the rover wheel slip and actual drive speed (i.e., noisy mea-

surements). For simulation purposes, the noisy measurements are implemented by simply taking
the most likely values for slip and speed for each category the rover will traverse according to the
truth map. Amap of expected velocity and expected slip, locally updated after noisymeasurements,
is also available (see section 5.2).

5.4.1.3 Constraints
The main constraint is to choose an instrument that meets the following requirements: it

can be adapted to operate remotely, it can be easily deployed and the output can be processed fast,
to support planning in a timely manner. MSR’s primary mission is not to explore, but to retrieve
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samples left by Perseverance, thus it needs to be fast and efficient. The method of choice to gather
in-situ information needs to reflect the mission’s goal.

5.4.1.4 Assumptions
An important assumption in assessing the results of experimentation is that everything ap-

plicable to experiments on Earth is also applicable to experiments onMars. An instrument on Earth
and its manipulation on a given terrain will result in similar conclusions when operated on Mars
on a similar soil. For example, a cone penetration test in sand is interpreted in the same manner
on both planets. Results are thus assumed to be valid when carried out on Mars. In addition, it
is assumed that a terrain is “dangerous” when falling within categories D to F. While it might not
present an actual danger to the rover (e.g., moderate ripples with firm substrate), the risk of encoun-
tering mobility difficulties is higher on such terrains than on traversability classes one and two at
slopes lower than 20◦ (i.e., velocity categories A to C).

5.4.1.5 Challenges
The main challenge is to have experiments widely applied on Earth adapted to a rover. Any

tool chosen needs to be mounted on the rover, and any experiments must be performed remotely,
regardless of terrain conditions (i.e., flat, tilted, etc...).

5.4.1.6 Contributions
The main contributions of this work are the following:

• To provide an easy option to gather intrinsic soil parameters that can be used to identify a
terrain when needed.

• To give a way of identifying a terrain with little to no human intervention.
• To obtain results in a timely manner (i.e., a few minutes) to allow a fast traversing rover to
quickly make a decision regarding its path given the terrain characteristics.

5.4.2 Instrument to assess terrain properties

5.4.2.1 Choice of instrumentation
The two instruments considered to support in-situ terrain assessment are the cone penetrom-

eter (see Fig.2.5) that can give access to cohesion, angle of internal friction and ultimate bearing
capacity, and the shear vane (see Fig.2.6), which can indicate the shear strength and bearing capac-
ity of a soil.

Figure 5.11: Pocket shear vane with standard blades (left)
and two other sizes of blades. Credit: Gilson inc.

While the geovane and field shear vane
are lengthy instruments, similar to the cone
penetrometer, the pocket shear vane is a light
weight, compact tool, ideal for remote oper-
ations on planetary rovers (Fig.5.11). It also
gives outputs that can be easily processed, as
they do not require additional parameters to be
estimated (e.g., bearing capacity factors needed
for Eq.2.4 for calculating c and ϕ with the cone
penetrometer). The advantage of the penetrom-

eter, however, is to give cohesion and angle of internal friction, which play an essential role in

55



identifying a terrain that the bearing capacity cannot fulfill.
Rahmatian and Metzger (2010) have suggested modifying the pocket shear vane to ob-

tain several normal stresses and their corresponding shear stresses, which would lead to a Mohr-
Coulomb linearized envelope, thus giving the cohesion and angle of internal friction of a soil
(Fig.2.4). The failure point being of interest, along with its corresponding Mohr-Coulomb cri-
terion, the linearization is an acceptable approximation for this research [Labuz and Zang, 2012].
Therefore, the pocket shear vane is selected to support path planning and terrain assessment as a
base instrument for building a modified version that could give the desired c and ϕ. In general, the
pocket shear vane seems to better meet the requirements of a fast deployment and an easy anal-
ysis of the results compared to other possible instruments (e.g., a spectrometer, that can take up
to three hours just for deployment [Gellert et al., 2009], or even a cone penetrometer). Moreover,
for a rover on Martian soil, assumptions can be made that the confining pressure σ3 is negligible
and the vertical stress σ1 is simply the load of the vehicle [Sullivan et al., 2011], as illustrated in
Fig.5.12. With these assumptions, the Mohr circle at failure (i.e., the circle whose tangent is the
Mohr-Coulomb envelope) gives the maximum shear stress τmax (or wheel rotation at constant ve-
locity [Sullivan et al., 2011]) and the maximum load (or weight) the soil can bear, which is by
definition the ultimate bearing capacity qult (Fig.5.12).

Figure 5.12: Mohr-Coulomb envelope and failure point shown for a vertical load (rover weight) on a terrain. The
confining pressure is negligible [Sullivan et al., 2011]. When reaching failure, σ1 represents the maximum load the
terrain can sustain, which is by definition the ultimate bearing capacity.

5.4.2.2 Hand held pocket shear vane
The pocket shear vane gives only the value for shear stress (i.e., τ ), while the vertical stress

is applied by a human operator. As suggested in Rahmatian and Metzger (2010), the pocket shear
vane can be modified to bear a controlled amount of weight (and therefore, a controlled normal
stress can be applied). The modification is shown in Fig.5.13 and consists of a 3D printed cast
with slots tailored to calibration weights. The maximum total weight available is 0.55 kg and the
minimum is 0.17 kg. By applying different weights to obtain several measurements at the same
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Figure 5.13: Modified pocket shear vane tester including: a 3D printed cast with weight slots; calibration weights.

location, a range of normal stresses and their associated shear stresses can be plotted. The Mohr-
Coulomb envelope can be obtained from these measurements and the resulting slope and y-axis
intersection would give ϕ and c, respectively.

5.4.2.3 Mounted shear vane
To make the pocket shear vane remotely operable, the human actions must be replicated

by electronic motions and the stresses obtained digitally. The process is detailed in the subsequent
paragraphs and has been performed in collaboration with Dylan Covell at WVUIRL.

As seen in Fig.5.14, the instrument is integrated into an actuated payload equipped with a
potentiometer and a pair of shear load cells oriented perpendicular to each other. This prototype
was designed to minimize undesired skew and payload footprint, while remaining simple to man-
ufacture. The T-slot guide rails provide an adaptable means of connecting this sensor to the IRL’s
autonomous Fast Traversing Rover (FTR) for Mars sample collection while allowing the instru-
ment to be tested independently. Moreover, the T-slot linear bearings contain no moving parts, an
ideal trait for the dusty Martian environment. The linear servos are used over a stepper motor and
lead screw to protect from dust and debris.

Once the payload frame is resting on the ground, a linear servo presses down on the shear
vane and the resulting normal force is read via the load cell oriented perpendicular to the ground.
The output voltage of the load cell is amplified before reaching the arduino, which is then output
as an equivalent weight by the HX711 library. The rated repeatability of the load cells is +/- 10 g
or 0.05% of the maximum range of 20 kg . This weight value is converted to a normal stress using
Eq.5.11:

σn =
Wg

S
(5.11)

Where σn is the normal stress, W is the weight of the instrument, g is the gravity (9.81m/s2 for
Earth) and S is the surface covered by the blades. S is specified in the instrument’s instruction
manual and is equal to 0.000491m2. The measurement from the shear vane is given in kg/cm2 and
converted to kg/m2. The shear stress is obtained from the measurement simply by multiplying by
g.

The resulting shear stress can then be obtained via two methods: the potentiometer output,
that models the position of the shear vane dial; and the output of the load cell, aligned with the tor-
sional neutral axis, is amplified before the arduino reads the voltage. The HX711 library takes this

57



voltage and outputs an equivalent weight, which is then converted to a shear stress using Eq.5.12:

τ =
W ∗ d ∗ r

J
(5.12)

Where τ is the shear stress (Pa),W is the measured weight (N ), d = 0.02m is the distance between
the effective weight W and the neutral axis, r = 0.00635m is the distance between the center of
the load cell and the stressed surface, and J = 1.8221 × 10−9m4 is the polar moment of inertia.
Therefore, Eq.5.12 can simply be rewritten as:

τ = 6.97× 104W (5.13)

(a) Refined payload prototype (b) Main components in refined payload. (c) Current physical prototype.

Figure 5.14: Automated shear vane test prototype. Credit: D. Covell.

This prototype is composed of the electronic hardware found in Table 5.6 and controlled via
MATLAB® through an Arduino Uno. The Arduino library for the load cell amplifier [Giacoboni,
2020] greatly enables a seamless integration of the load cells into MATLAB®. The first prototype
of the refined payload shown inside the center rover compartment (Fig.5.15) is currently estimated
to weigh 7.3 kg and take up a 39.4 cm tall x 16.8 cm wide x 22.9 cm deep box.

5.4.3 Instrument deployment

The instrument is to be deployed if monitoring slip and speed is not sufficient to assess the
terrain. There are two main cases in which such an exact measurement would be necessary:

• A dangerous terrain is detected ahead: anything that falls under category D to F (see Assump-
tion subsection 5.4.1.4) with a probability greater than 75%. This type of exact measurement
trigger will be referred to as “danger”.
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Table 5.6: Prototype Hardware and Estimated Maximum Energy Consumption. Credit: D. Covell.

Component Maximum Power
Consumption (W )

Company

Arduino Uno R3 2.5 Arduino
CTS 282T33L502A26C2

Potentiometer
0.005 Digi-Key

FA-PO-150-12-2 Linear Actuator 60 Firgelli Automation
High Current DC Motor Driver 0.08 Firgelli Automation

667oz-in NEMA-17 Stepper Motor 20.4 Phidgets
CZL635 20 kg Load Cell 0.025 Phidgets

DRV8825 Stepper Motor Driver 0.005 Pololu
HX711 Load Cell Amplifier 0.008 Sparkfun

Figure 5.15: Mounted shear vane device inside Fast Traverse Rover (FTR). Credit: D. Covell.

• The noisy measurement is not sufficient to differentiate between two or more categories, at
least one of them is dangerous and/or one of them would trigger a replanning event should it
be the actual category the rover is about to traverse. The confusion happens when the prob-
abilities of two or more terrains is between 25% and 75%. This type of exact measurement
trigger will be referred to as “confusion”, but is often related to a potential dangerous terrain
ahead as well (meaning, category D or F has a probability greater than 25% but lower than
75%).

Once the exact measurement is performed, the results are analyzed to retrieve c and ϕ, from which
the traversability class is identified. Once known, it is paired with CFA and slope to obtain the
corresponding velocity category. For Mars, the range of expected values for intrinsic parameters
corresponding to each traversability class is presented in Table 5.7. They are estimated after the
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Table 5.7: Parameters associated with each traversability class on soft terrains. Values are retrieved from the survey
presented in Sullivan et al. (2011).

Traversability class 1 2 3 4 5
Cohesion (kPa) 3± 3 4± 2 5.5 0 0

Angle of internal friction (◦) 34± 3 37± 1 30 30-41 30-41

study performed in Sullivan et al. (2011) that lists various Martian terrain properties derived from
terramechanics experiments.
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CHAPTER 6 Results

This chapter explores the results of slip and speed prediction as presented in the previous
chapter, as well as the path planning algorithm with integrated terrain monitoring and map update.
It also presents testing results of the pocket shear vane, hand-held and mounted.

6.1 Map of traversability

6.1.1 Velocity prediction

(a) Spirit’s traverse on HiRISE image.
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(b) Traversability class (1-5) map.
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(d) DTM and trial numbers.

Figure 6.1: (a) HiRISE image (PSP 001777 1650 RED A 01) with Spirit’s traverse. Spirit’s traverse is shown in blue.
(b) traversability classes (1, 2, 3, 5). (c) CFA map: 1, low CFA (<7%), 2, medium CFA (between 7% and 15%) and 3,
high CFA (>15%). (d) DTM with subset maps numbered according to each trial performed (see Table 6.1 in section
5.3). The maps are 2915m by 3540m and the subset maps measure 301m by 401m.
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For this section, the manually interpreted maps shown in section 5.2.2 are used. The method
implemented to generate them led to each data set having the same resolution of 1m/px and being
already georeferenced, since they were built from the same basemap. Therefore, each pixel on the
velocity gridmap was easily computed with values of slope, CFA and traversability class of the
corresponding pixels. Each map is shown in Fig.6.1 and compared with the HiRISE image of the
chosen area (Gusev Crater), with Fig.6.1a having a resolution of 25 cm/px and Fig.6.1b, 6.1c and
6.1d having a resolution of 1m/px. The squares correspond to the subset maps used to test the path
planning approach presented in section 5.3. An example of the final product is shown in Fig.6.2
and corresponds to the square labeled 1.
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Figure 6.2: Example map of velocity categories (subset of the Columbia Hills area shown in Fig.6.1). This example
is labeled 1 on Fig.6.1d.

6.1.2 Slip prediction

6.1.2.1 Classifier training
As a result of the PCA analysis in section 5.2.4.1, the classifier is trained on the A set (i.e.,

Spirit’s data) with the variables contributing the most to the explained variance, that is, thermal
inertia and slope. The best results are obtained using a decision tree classifier [Olshen et al., 1984]
with a RUSboost algorithm [Seiffert et al., 2008] and a penalty cost of 5 for “low” misclassified as
“high” and 1.5 for “high” misclassified as “low”. The classifier algorithm is first chosen based on
overall performance and has the following characteristics: maximum number of split is 50 and the
number of learners is set to 30. The samemodel is then trainedwithout thermal inertia as a predictor.
The performance of the classifier is presented in Fig.6.3. The overall performance is 68.7% for the
classifier with two predictors and drops to 49.6% when using only slope as a predictor. Low slip
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Figure 6.3: Confusion matrices showing the performance of the trained model on data set B2 for (a) thermal inertia
and slope as predictors and (b) slope only as predictor.

prediction increases from 40% to 72% when adding thermal inertia; however, high slip prediction
shows better results when the algorithm is trained with one predictor only. Overall, the conclusion
tends to confirm the PCA analysis that thermal data are an important component of slip prediction
analysis.

6.1.2.2 Validation on new data
All data from the B set are used to test the trained classifier. The results are presented in

Fig.6.4, where the algorithm using thermal inertia and slope as predictors (Fig.6.5a) and the model
taking only slope as predictor (Fig.6.5b) are tested.

The results show that the overall performance of the model is good (72.0%) and decreases
significantly (down to 56.3%) when using only slope as a predictor. This confirms that thermal
inertia is an important value to consider when predicting slip. The model is capable of predicting
low slip and high slip pretty well, scoring 71.9% and 72.0%of the data, respectively. When thermal
inertia is dropped and slope only is used, the model goes barely above average for low slip data,
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Figure 6.4: Confusion matrices on test data sets A and B1 for (a) model with 2 predictors and (b) model with 1
predictor. Cells in green shows the correct prediction whereas red cells shows the errors from the classifier. The
overall performance is displayed in the bottom right cell.

predicting only 61.3%, and does not even correctly categorize more than a quarter of the high slip
data, scoring only 15.9%. The model trained with only slope as predictor therefore performs poorly
and these results reinforce previous conclusions: thermal inertia is a valuable asset to add to the
prediction of mobility performance.

6.2 Terrain-aware path planning

To test the performance of the path planning algorithm, small portions of the end product
from the maps in Fig.6.1 are selected, chosen so that they cover the distance traversable in one sol
(i.e., taking no more than eight hours), and are 301m x 401m. Five simulations are performed on
five different maps (see locations on Fig.6.1), to demonstrate that the algorithm give valid results
independently of the location. These simulations have been run on the manually interpreted maps,
which are very noisy on the south andwest of the chosen area. More specifically, because of the grey
value cutoff for classes 1 and 2, the lower left part of the map displayed unrealistic alternation of
terrain on neighboring pixels (see section 5.2.3). Therefore, tests are run on the north and east parts
of the map, where the noise was negligible. The start and goal locations are generated randomly
with the constraints that the time it takes the rover to go from one to the other is no more than eight
hours. Noisy measurements are performed at every nodes, and the tree depth was set to four nodes
for all trials. As previously mentioned in section 5.4.3, when an exact measurement is performed,
it is for one of the two following reasons: dangerous terrain ahead (“danger”) or confusion between
terrain (“confusion”).
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6.2.1 Measurements and cost calculation

(a) Map of expected velocity categories. (b) Map of actual velocity categories.

Figure 6.5: Comparison of (a) expected velocity categories at the Columbia Hills and (b) actual velocity categories
based on further analysis of HiRISE images at this specific location. The image shows that there could be a rougher
terrain near the craters, reflected in the “truth” map in (b).

For simulations purposes, measurements are sampled from the “truth” map as mentioned in
subsection 5.3.3, using the following methods:

• For noisy measurements, values for slip and speed are sampled from the distributions pre-
sented in subsection 5.3.2.2 according to the categories along the path shown on the “truth”
map. For example, if the path is crossing category C, which is initially believed to be A,
then the slip and speed the rover experienced are sampled from C, even though the initial
map shows category A. To smooth the transition from one value to another, the ranges from
which slip and speed are sampled are made more narrow than what the actual PDFs would
normally give. Moreover, the slip prediction classifier is run to determine whether slip will
be more or less than 30%. The resulting numbers are then analyzed individually to ensure
a smooth transition from one to the other. This means that if the rover goes at a speed of
30 km/hr, then the previous speeds as well as the following need to be reasonably close
to this value. Indeed, it is unlikely that the rover will go from 5 m/hr to 30 m/hr or 60
m/hr (and vice versa) in a couple of meters. It is more likely that the rover will accelerate
or decelerate gradually, over 15 or 20 m. Abrupt changes led, in fact, to impossible results
from the simulations. Moreover, the slip prediction classifier was run over each map used in
the trials and slip was sampled according to the results, which showed that it was expected
to be mostly less than 30% on all of the trial maps.

• For exact measurements, categories are directly sampled from the “truth” map, i.e., if the
rover is crossing C, then the exact measurement will return category C with 100% accuracy.
Details on how the exact measurement can analyze a terrain to output the correct velocity
category with low certainty is detailed in section 5.4 and results are shown in section 6.3.

An example of a “truth” map is presented in Fig.6.5 over the subset map number 1 (see Fig.6.1 for
location).
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The costs calculated in the planning process correspond to the time it takes the rover to
reach the goal, given its actual velocity from the noisy measurements generated, which have been
derived from the “truth” map as mentioned above. When replanning occurs due to a change of
category, the cost of the initial path, had the terrain not changed, is calculated in a similar manner,
with the assumption of what velocity the rover would have experienced without a change of terrain
and according to the geology given by the “truth” map. This cost is then compared to the cost of the
new traverse that includes replanning (if applicable) and change of terrain. In other words, “noisy
measurements” have been generated along each path, regardless of whether the rover traverses it,
and used to compare costs of different paths and/or their combinations. The costs given do not take
into account the time it takes to perform an exact measurement.

For all the trials, monitoring (a.k.a., noisy measurement) is performed at every node and
the maximum length of a branch of the belief propagation tree is N = 4 nodes (also known as tree
depth).

6.2.2 Trial one
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Figure 6.6: Inital map of velocity categories A to F, with 37 paths. Credit: Hedrick et al., 2020.

In this example, there are 37 paths computed within the allotted budget (costs are between
5.5 and 6.5 hours) with a path length between 354.5m and 430.2m. The slip prediction classifier
indicates that the rover should experience less than 30% slip everywhere in the area. Initially, all
paths are traversing category A.

During the traverse, noisymeasurements are performed and it appears that one of them led to
detecting a dangerous terrain ahead, which in turn led to performing an exact measurement. It was
determined, through propagation of this new information acquired, that there was no danger ahead.
Later, following an actual change of terrain detected (leading to a change of velocity category from
A to C), the rover finds that the initial path chosen is no longer the fastest. By propagating this new
information ahead, as seen with the belief propagation tree in Fig.6.8, it gains sufficient knowledge

66



50 100 150 200 250 300 350 400

Meters

50

100

150

200

250

300

M
et

er
s

A

B

C

D

E

F

Start

Goal

Actual path

Initial path

Path after replanning

Exact measurement

Replanning event

(a) Actual path and its components shown on the locally updated map.
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(b) Actual path on “truth” map from which measurements are sampled.
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(c) Actual path and its components shown on updated map with a focus
on the exact measurement, replanning and local update.
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(d)Actual path shown on the “truth”map fromwhich the measurements
are sampled, showing the accuracy of the update on a local scale.

Figure 6.7: Trial 1: actual path on (a) updated map and (b) “truth” map. One exact measurement is performed due to
potential dangerous terrain ahead. One replanning event occurs in the traverse, saving about seven minutes.

to make a decision regarding its traverse and chooses a faster and safer path. A different option is
indeed found that minimizes the remaining time to the goal by avoiding the terrain in category C
for as long as possible (Fig.6.7), thus gaining about seven minutes. A close-up view of the exact
measurement followed by a replanning event is shown in Fig.6.7c.

This example shows that the diversity of the paths is needed to offer less costly alternatives
from the current route, and that having overlapping segments is necessary to allow for quick devia-
tions from the original path. The rover gets to its goal in five hours and 39minutes in the simulation,
and would have taken five hours and 46 minutes along the initial route. It also demonstrates that
noisy measurements can be enough to make replanning decisions when a more difficult terrain is
found along the initial route. Even if the time saved from replanning is not significant (only about
seven minutes), choosing to cross a lower category (A instead of C) means that the rover decides
on a safer path as well as (slightly) faster. Indeed, by definition, category C carries more risk than
category A, due to potentially rougher terrains being traversed.
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(a) Belief propagation tree detecting a more difficult terrain ahead,
leading to a replanning event.
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(b) Belief propagation tree updating the map locally, after a replanning
event.

Figure 6.8: Belief propagation tree passing the message of a newly detected category C, which is more challenging
than A. The message passing leads to the rover making the decision to choose a faster path south of its original traverse,
that would cross less of the more difficult terrain.
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Figure 6.9: Belief propagation tree with noisy measurement giving category A (even though, in truth, it is located on
a patch of category C) but detecting accurately category C ahead.

6.2.3 Trial two

There are 70 options, with length varying from 311.5 m to 334.0 m. The results are pre-
sented in Fig.6.10. The slip is predicted to be less than 30% along all the options, with the exception
of the tip of each one (about 5 nodes) that shows slip higher than 30%.

The rover continues along its initial path until it reaches its goal. Based on noisy measure-
ments only, it detects that the map is inaccurate and that it is traversing category C instead of the
expected D (see close-up view on Fig.6.10c).
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(a) Actual path (equivalent to initial path) shown on the updated map.
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(b) Actual path on “truth” map from which measurements are sampled.
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(c) Zoom on the area updated by belief propagation after measurements.

Figure 6.10: Trial 2: actual path (equivalent to initial path) on (a) updated map and (b) “truth” map. There is no
replanning necessary, even after an exact measurement is performed due to potential dangerous terrain detected ahead.

6.2.4 Trial three

This trial has the shortest completion time of all, and features 26 paths, covering distances
between 123 m and 138 m, each covering areas that should trigger less than 30% slip according
to the slip prediction classifier. One replanning event happens to avoid more difficult terrain. The
traverse and its components are shown in Fig.6.11, with a close-up view of the area where the
replanning event took place. The rover completes its traverse in two hours four minutes, instead of
two hours and seven minutes, had it followed the initial route. If the time saved from replanning
is not significant (only about three minutes), choosing to cross a lower category (A instead of C)
means that the rover chooses a safer path, as well as a (slightly) faster one. As in trial one (see
subsection 6.2.2), even if the time saved is not significant (three and a half minutes), the replanning
goes beyond saving time only, by choosing safer categories to traverse.
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(a) Actual path and its components shown on the updated map.
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(b) Actual path on “truth” map from which measurements are sampled.
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(c) Close view of the actual path and its components shown on the up-
dated map.
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(d) Close view of the actual path on the “truth” map, showing the chal-
lenges of its initial route.

Figure 6.11: Trial 3: actual path on (a) updated map and (b) “truth” map. One replanning event is performed to avoid
more difficult terrain.

6.2.5 Trial four

In this example, there are 36 paths available, covering distances between 420m and 428m,
with slip predicted to be less than 30% all along, according to the classifier. One exact measure-
ment was performed due to a confusion of terrains (B and D) detected, and the outcome determined
that the terrain was simply category B (see Fig.6.12). Fig.6.12e shows that the area is not correctly
captured by the local update, even with the exact measurement identifying category B. The “truth”
category is correctly shown on the pixel the measurement is taken, but the algorithm fails to ade-
quately update the end leaves of the belief propagation tree. However, it updates the map to show
a more difficult area than it actually is, which is a better alternative and means that the rover is
actually crossing safer terrain than expected. Similarly to what is explained in subsection 6.2.2
about the possible confusion between A and C, given how close B and C are, the confusion in the
update is not unreasonable, nor is it detrimental to the rover and the planning process.
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(a) Actual (initial) path shown on the updated map.
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(b) Actual path (initial path) shown on “truth” map.
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(c) Close view of the path on locally updated map.
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(d) Close view of the actual path on “truth” map.
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(e) Exact measurement site (due to confusion).
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(f) “Truth” category at the exact measurement site.

Figure 6.12: Trial 4: actual path on (a) updated map and (b) “truth” map .
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6.2.6 Trial five

This trial shows 65 paths covering distances between 269 m and 297 m and the classifier
predicts less than 30% slip everywhere. The situation shown in this trial is more challenging that
previous ones, because the rover is near a crater. Initially, the crater is thought to be surrounded by
category C, where the “truth” map actually shows category D. Upon detecting that the rover is in
fact on a more dangerous terrain, it replans its traverse as many times as necessary to go through
areas that are less challenging, as shown in Fig.6.13. It shows on the “truth” map that the rover
eventually follows the safer terrain for as long as possible (Fig.6.13d), and is able to do so by
jumping from one pre-planned option to another (Fig.6.13c). The rover gains about two and a half
minutes and more goes intly,mportathrough areas that present less of a danger to the rover.
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(a) Actual path and its components shown on the updated map.

50 100 150 200 250 300

Meters

20

40

60

80

100

120

140

160

180

200

220

M
et

er
s

A

B

C

D

E

F

Start

Goal

Initial path

Actual path

(b) Actual path on “truth” map from which measurements are sampled.
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(c) Close view of the replanning nodes.
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(d) Close view of the actual path on the “truth” map.

Figure 6.13: Trial 5: actual path on (a) updated map and (b) “truth” map with three replanning events. The replanning
leads to following a safer terrain (C instead of D).

6.2.7 Summary of trials and discussion

The trials in Table 6.1 show that replanning is not always needed, nor are exact measure-
ments (noisy measurements are, most of the time, sufficient for the rover). If the remaining time
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to the goal after an update is still the shortest along the current path, the rover maintains its course.
They also demonstrate that replanning acts as a safety feature, by avoiding more dangerous terrain
when possible and limiting the risks the rover could encounter. Moreover, these trials show that
exact measurements are very seldomly acquired, which is an advantage considering the time and
energy cost of deploying an instrument, as simple as it could be. The map update is not always
accurate when further from the measured nodes (i.e., end of a tree branch), but it tends to update
the cells to a more dangerous terrain than it actually is. There are several examples of this in trial
4 (see Fig.6.12) and trial 5 (see Fig.6.13). When outside the areas covered by the belief trees, the
rover simply keeps the beliefs without updating them.

However, these results need to be put in the context of simulation. They were obtained by
randomly sampling slip and speed along the path according to the true category from the “truth”
map (see section 6.2.1), and real experienced slip combined with actual speed might lead to slightly
different results, such as even less exact measurements or more replanning events.

Table 6.1: Trials 1 to 4 (see Fig.6.1 for location).

Trials, distance start-goal 1(344m) 2(283m) 3(116m) 4(344m) 5(231m)
Categories along path A,C A,C A,C,D A,B,C,D A,D
Cost initial path (esti-
mated)

5.55hrs 7.39hrs 1.96hrs 4.45hrs 5.11hrs

Replanning events 1 0 1 0 3
Actual cost of initial path 5.77hrs 5.74hrs 2.12hrs 7.25hrs 5.56 hrs
Cost final path 5.65hrs 5.74hrs 2.06hrs 7.25hrs 5.52hrs
Time saved 6.6 min N/A 3.6 min N/A 2.4 min
Exact measurement 1 0 0 1 0
Reason for exact measure-
ment

Danger N/A N/A Confusion
(B,D)

N/A

6.3 Instrumentation for in-situ soil analysis

The modified pocket shear vane was tested in known soils (per United Soil Classification
System, or USCS), in the laboratory and in the field, to verify that the modifications would lead
to adequate results from which cohesion, angle of internal friction and bearing capacity could be
retrieved.

6.3.1 Hand-held pocket shear vane

6.3.1.1 Testing settings
The hand-held modified pocket shear vane is tested in samples with known parameters

(referred to as controlled samples), as well as in the field, in visually identified soils (referred to
as in-situ). The controlled samples are the following (the official USCS label is specified for each
one):
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• Clay of low plasticity (USCS CL)
• Silt loam, compacted (USCS ML, OL, MH, OH)
• Fine sand (USCS SW, SP)

The in-situ soils are the following:
• Silt loam, saturated (USCS ML, OL, MH, OH)
• Sand (USCS SW, SP)

Several tests are run for each load for each of the controlled samples (five per sample), whereas
only one test per load is performed in-situ, to stay as close as possible to conditions on Mars (i.e.,
limited capability to perform tests). A Mohr-Coulomb type curve is then fit to the results before
being linearized to compute the intrinsic parameters. The mass range to obtain different loads goes
from 0.176 g to 0.546 g. The curve is a power equation of the form:

τ = aσb
n + c (6.1)

Where τ is the shear stress, σn is the normal stress, and a, b, c are constants defining the curve. The
normal stress is obtained from the range of weights available, using Eq.5.11.

6.3.1.2 Results of tests in laboratory setting
6.3.1.2.1 Clay of low plasticity (USCS CL)

(a) Dry clay of low plasticity. Ex-
pected c = 86kPa and 27◦ ≤ ϕ ≤
35◦.
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(b) Mohr-Coulomb envelope and linearization giving c = 85kPa and ϕ = 33◦.

Figure 6.14: Clay of low plasticity. Results give c = 85kPa and ϕ = 33◦. Some data points overlap with each other.
Photo credit: agrclassroomstore.com.

Dry clay is of low plasticity, with an expected cohesion of 86 kPa when compacted, and
an angle of internal friction between 27°and 35°. The tests results for compacted dry clay are
presented in Fig.6.14. One set of tests has been eliminated due to inadequate testing, showing
results significantly lower than the rest of the points.

The tests gave a cohesion c = 85kPa and an angle of internal friction ϕ = atan(0.6500) =
33.02◦. TheMohr-Coulomb curve is given by Eq.6.1 with the following coefficient (with 95% con-
fidence bound) a = 327.8(−312.6, 968.2), b = 0.5892(0.3713, 0.8072) and c = 0. The goodness
of fit for dry clay is characterize by R2 = 0.7469.
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6.3.1.2.2 Silt loam, compacted (USCS ML, OL, MH, OH)
Next, compacted silt loam is tested. The sample is placed in a container and manually com-

pacted by applying a load to the sample before the tests were conducted. Compacted silt loam
has a cohesion of 60 to 90 kPa and an angle of internal friction between 25°and 32°. The results
are presented in Fig.6.15. The compacted silt loam led to the following results: c = 90kPa and
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(a) Mohr-Coulomb envelope and linear approximation giving c = 90kPa and ϕ = 29◦.
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(b) Zoom on the part of the curve with data points. (c) Silt Loam. Expected c = 60− 90kPa and 25◦ ≤ ϕ ≤
32◦.

Figure 6.15: Compacted silt loam. Results give c = 90kPa and ϕ = 29◦. Some data points overlap with each other.
Photo credit: agrclassroomstore.com.

ϕ = atan(0.5625) = 29.36◦. TheMohr-Coulomb curve is given by Eq.6.1 with the following coef-
ficient (with 95% confidence bound) a = 1960(−6.63e04, 7.022e04), b = 0.3983(−2.671, 3.468)
and c = −5.027e04(−5.559e05, 4.554e05). The goodness of fit for compacted silt loam is charac-
terize by R2 = 0.6234.

6.3.1.2.3 Fine sand (USCS SW, SP)
The third sample material tested is well graded, fine grain, cohesionless sand with an ex-

pected angle of internal friction ranging between 36°and 41°.
The results show c = −0.9278kPa and ϕ = atan(0.4639) = 24.88◦ for fine, well

graded sand. The Mohr-Coulomb curve is given by Eq.6.1 with the following coefficient (with
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(a) Fine grain, well graded sand. Expected
c = 0kPa and 36◦ ≤ ϕ ≤ 41◦
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(b)Mohr-Coulomb envelope and linear approximation giving c = −1kPa and ϕ = 25◦

Figure 6.16: Tests in fine grain sand material of known parameters. Photo credit: agrclassroomstore.com.

95% confidence bound) a = 102.7(−639.8, 845.2), b = 0.7039(−0.003083, 1.411) and c =
−3.217e04(−8.106e04, 1.671e04). The goodness of fit for fine, well graded sand is characterize
by R2 = 0.9463.

6.3.1.3 Results of tests in field setting
6.3.1.3.1 Sand (USCS SW, SP)

A sand pit under dry conditions is chosen, where the cohesion is expected to be 0kPa
(cohesionless) and the angle of internal friction is usually between 37°and 38°for such material.
The results are presented in Fig.6.17b, where the resulting Mohr-Coulomb envelope is shown.

From the plotted data in Fig. 6.17, the retrieved cohesion is c = 10.5kPa and the angle
of internal friction is ϕ = atan(0.0800) = 4.57◦. The Mohr-Coulomb curve is given by 6.1 with
the following coefficient (with 95% confidence bound) a = −2.615e11, (−5.793e12, 5.27e12),
b = −2.095(−4.723, 0.5321) and c = 1.217e04(7598, 1.675e04). The goodness of fit of the Mohr-
Coulomb envelope is characterized by R2 = 0.9652

6.3.1.3.2 Silt loam, saturated (USCS ML, OL, MH, OH)
Another experiment is conducted in the field, in saturated silt loam. The results are pre-

sented in Fig. 6.18.
The retrieved cohesion fromFig. 6.18 is c = 20kPa and friction angle isϕ = atan(0.5333) =

28.07◦. The Mohr-Coulomb curve is given by Eq.6.1 with the following coefficient (with 95%
confidence bound) a = −2.544e10(−2.006e12, 1.955e12), b = −1.885(−11.6, 7.829) and c =
2.108e04(1.007e04, 3.209e+04). The goodness of fit of the Mohr-Coulomb envelope for this test
is characterized by R2 = 0.6821.

6.3.1.4 Interpretation of results
The results are summarized in Table 6.2b. Overall, the tests give cohesions and angles of

internal friction within the expected range for the material. The exceptions to the rule are the sand
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(a) Sand pit in which tests were performed. c = 0
and ϕ = 37◦ − 38◦.
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(b) Mohr-Coulomb envelope and linear approximation giving c = 10.5kPa and ϕ =
4.6◦

Figure 6.17: Test of the pocket shear vane in cohesionless sand under dry conditions. Photo credit: G. Hedrick.

(a) Cheat Lake site, expected c = 10kPa− 20kPa and
ϕ = 25◦ − 32◦.
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(b) Mohr-Coulomb envelopes and linear approximation giving c = 20kPa and ϕ =
28◦.

Figure 6.18: Hand-held instrument tested in Silt Loam, saturated (in-situ). Photo credit: G. Hedrick.

samples, that give a negative cohesion in one case and an unrealistic angle of internal friction in
the other. This shows the limitation of the proposed method to cohesive soils only, known to be
present on Mars [Sullivan et al., 2011].

6.3.2 Mounted shear vane

6.3.2.1 Testing settings
Given the results of the hand-held pocket shear vane, that it generally does not operate

correctly in cohesionless soil, the controlled sample retained for testing the mounted instrument
is the clay of low plasticity (USCS CL). Several tests are run for each load (five per load), and
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Table 6.2: Results of cohesion and angle of internal friction from testing. In green are adequate results, and in red,
inadequate results.

(a) Results of cohesion measurements compared against expected values.

Description USCS Expected (kPa) Result (kPa)
Controlled samples

Clay of low plasticity, compacted CL 86 85
Silt loam, compacted ML, OL, MH, OH 60− 90 90

Sand, fine grain, well graded SW, SP 0 -1
Field testing

Sand SP 0 10.5
Silt loam, saturated ML, OL, MH, OH 10− 20 20

(b) Results of angle of internal friction measurements compared against expected values.

Description USCS Expected (°) Result (°)
Controlled samples

Clay of low plasticity, compacted CL 27− 35 33
Silt loam, compacted ML, OL, MH, OH 25− 32 29

Sand, fine grain, well graded SW, SP 36− 41 25
Field testing

Sand SW, SP 37− 38 4.9
Silt loam, saturated ML, OL, MH, OH 25− 32 28

a Mohr-Coulomb type curve (see 6.1) is fit to the results before being linearized to compute the
intrinsic parameters. The loads are obtained for masses ranging from 100 g to 500 g.

The instrument is then tested in the saturated silt loam (USCSML, OL, MH, OH) with only
three sets of data per load, to stay as close as possible to the conditions in which it would operate on
Mars. The normal stress is obtained from the range of weights available, using Eq.5.11. Due to the
unpredictability of field testing, results that are known to be unrealistic are omitted from the data.
For example, when the instrument is not properly deployed (such as tilted, not touching the ground
evenly, etc...) the resulting values are excluded. Moreover, the potentiometer consistently output
impossible results and therefore, it was quickly discarded from the analysis. All results presented
in this section are thus derived from the load cell outputs.

6.3.2.2 Results of tests in laboratory setting
The retrieved cohesion is c = 90kPa and angle of internal friction is ϕ = atan(0.6667) =

33.69◦. Unlike the tests with the hand-held instruments, the data for the mounted shear vane are
more widespread, leading to a goodness of fit characterized by R2 = 0.3466. The variables’
values for Eq.6.1 are the following (with a 95% confidence bound): a = 2.338e + 05(−1.601e +
07, 1.648e + 07), b = 0.06755(−2.917, 3.052) and c = −3.632e + 05(−1.866e + 07, 1.794e +
07). The estimated maximum power consumption is 83.056W , and the total power consumption
of the payload per data collection should not exceed 2.5 kJ . These values do not include the
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(a) Dry clay of low plasticity. Ex-
pected c = 86kPa and 27◦ ≤ ϕ ≤
35◦.
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(b) Mohr-Coulomb envelope and linearization giving c = 90kPa and ϕ = 34◦.

Figure 6.19: Mounted instrument tested in Clay of low plasticity, compacted. Results give c = 90kPa and ϕ =
34◦. Some data points overlap with each other, while others were eliminated due to being unrealistics. Photo credit:
agrclassroomstore.com.

resources expended to transition the rover from a driving stance to a squat in order to conduct the
experiment, or the minute movement needed to position the mounted shear vane over fresh soil for
a new measurement.

6.3.2.3 Results of tests in field setting
The retrieved cohesion is c = 20kPa and angle of internal friction is ϕ = atan(0.4333) =

23.43◦. Unlike the tests with the hand-held instruments, the data for the mounted shear vane are
more widespread, and a lot of points had to be eliminated because the position of the instrument led
to false readings. The goodness of fit for the curve is characterized byR2 = 0.8938. The variables’
values for Eq.6.1 are the following (with a 95% confidence bound): a = 2.338e + 05(−1.601e +
07, 1.648e+07), b = 0.06755(−2.917, 3.052) and c = −3.632e+05(−1.866e+07, 1.794e+07).

6.3.2.4 Interpretation of results
The mounted shear vane appears to be sensitive to its tilt and gives false results when op-

erating at an angle. Therefore, many data points are ignored because of inadequate leveling of the
payload. The overall results are presented in Table 6.3. The values are not as accurate as they are
with the hand-held instrument, due to the mounted shear vane being sensitive to testing conditions.
However, it remains within 5% of the expected value, which is acceptable (e.g., cohesion of 90kPa
instead of 86kPa).

6.3.3 Estimate of ultimate bearing capacity for various soils

In section 5.4.2.1 it was shown that an estimate of the ultimate bearing capacity qult can be
derived from plotting the Mohr circle at the point of failure. The results for each tested soil are
presented below.
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(a) Silt loam, saturated. Expected
c = 10−20kPa and 25◦ ≤ ϕ ≤
32◦.
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(b) Mohr-Coulomb envelope and linearization giving c = 20kPa and ϕ = 23.5◦.

Figure 6.20: Mounted instrument tested in Silt loam, saturated (in-situ). Results give c = 20kPa and ϕ = 24◦. Some
data points overlap with each other, while others were eliminated. Photo credit: G. Hedrick.

Table 6.3: Results of cohesion and angle of internal friction from testing.

(a) Results of cohesion measurements compared against expected values.

Description USCS Expected (kPa) Result (kPa)
Controlled samples

Clay of low plasticity, compacted CL 86 90
Field testing

Silt loam, saturated ML, OL, MH, OH 10− 20 20

(b) Results of angle of internal friction measurements compared against expected values.

Description USCS Expected (°) Result (°)
Controlled samples

Clay of low plasticity, compacted CL 27− 35 34
Field testing

Silt loam, saturated ML, OL, MH, OH 25− 32 23.5

6.3.3.1 Hand-held shear vane: derived Mohr circles
For both clay and silt loam, the Mohr circles at the point of failure are plotted and the results

are shown in Fig.6.21. The same analysis can be performed with in-situ data as shown in Fig.6.22.
The compacted clay and silt loam show qult of 310 kPa and 308 kPa, whereas in-situ saturated
silt loam can only bear about 66 kPa maximum.
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(a) Mohr circle at failure and Mohr-Coulomb envelope for clay of
low plasticity, compacted.
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(b) Mohr circle at failure and Mohr-Coulomb envelope for silt
loam, compacted.

Figure 6.21: Estimation of the ultimate bearing capacity for laboratory tests. Compacted clay shows qult = 310kPa
and compacted silt loam can hold up to qult = 308kPa.
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Figure 6.22: Mohr circle at failure and Mohr-Coulomb envelope for in-situ silt loam, saturated. The result show that
saturated silt loam can bear qult = 66kPa at most.

6.3.3.2 Mounted shear vane: derived Mohr circles
The same analysis than previously presented for the hand-held device is performed for the

mounted shear vane, with the plots shown in Fig.6.23. The same soils analyzed with curves ob-
tained from the mounted instruments give similar results to what was derived from theMohr circles
of the hand-held shear vane: the compacted clay shows qult = 330kPa and the saturated silt loam
tested in-situ can hold up to 60 kPa.

6.3.3.3 Overall results
The results are summarized in Table 6.4 and compared with values widely used in civil

engineering for the study of foundations [NYC, 2020]. While the allowable bearing capacity qa is
the value used for construction, the ultimate bearing capacity is easily found by converting qa to
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(a) Mohr circle at failure and Mohr-Coulomb envelope for clay of
low plasticity, compacted.
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(b) Mohr circle at failure and Mohr-Coulomb envelope for in-situ
silt loam, saturated.

Figure 6.23: Estimation of the ultimate bearing capacity for laboratory and field tests. Compacted clay shows qult =
330kPa and saturated silt loam can hold up to qult = 60kPa.

qult according to the following formula [Das, 2007]:

qa =
qult
Fs

(6.2)

with Fs the factor of safety, usually ranging from 2 to 5, although typically set to 3 [Terzaghi and
Peck, 1948]. The values for the ultimate bearing capacity derived for all tested soils fall within
the expected range for such terrains, indicating that the method can be used for rover missions to
obtain an estimate of qult on Martian terrains.

Table 6.4: Estimated ultimate bearing capacity for various soils derived from the Mohr circles at the point of failure.

Description USCS Maximum qa Minimum qult (Fs = 2) Result (kPa)
Controlled samples

Clay of low plasticity,
compacted

CL 192− 479 384 310-330

Silt loam, compacted ML, OL,
MH, OH

144− 287 288 308

Field testing
Silt loam, saturated ML, OL,

MH, OH
< 37.5 < 75 60-66

6.3.4 Conclusion

As seen with the hand-held experiments, the modified pocket shear vane leads to useful
results of cohesion and internal friction that can be used to compute parameters of cohesive soils.
From such results, an estimate of the ultimate bearing capacity of each soil is also successfully
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derived. When mounted, the instrument performs adequately as well, and is capable of giving in-
trinsic parameters needed to identify a terrain, as well as an estimate of its ultimate bearing capacity
that can indicate when soil failure will occur under the rover’s wheels. The pocket shear vane’s ease
of use, its light weight, compact form and versatile function makes it a great candidate for planetary
surface missions.

The transition to remote operation shows that many improvements can be made to the
mounted instrument. One way to improve its operation involves selecting components that are
better suited for such a design. For instance, the current linear servo struggles to precisely ap-
ply axial load, especially at weights higher than 3 kg. A lead screw and stepper motor would be
able to apply force more precisely than the potentiometer-based linear servo. Also due to lack of
linear servo precision in the current prototype, it was found that the device performs better under
light loads (for masses between 100 - 500 g). In the future, utilizing more sensitive load cells that
have a maximum weight closer to the light loads targetted in the experiment will greatly increase
the accuracy of individual measurements. It should also be noted that the prototype shown in this
dissertation is a proof of concept, and the device performance will be improved in the next ver-
sion by utilizing higher quality components that will increase stiffness and precision of the overall
mechanism.

In addition to improving on the current design to obtain more accurate results, future work
includes testing under a wider range of conditions, as well as developing an algorithm to auto-
matically interpret the results and compute the cohesion and angle of internal friction on board.
Additionally, this instrument will be mounted on a physical robot currently under construction at
WVUIRL, and further testing will be conducted with the shear vane fully integrated. This research
will also lead to studying other types of instruments, such as a cone penetrometer, to be able to
predict soil parameters in cohesionless terrain.

6.4 Summary of results

This Chapter demonstrates that the proposed approach to increase autonomy by useful re-
sults. From orbit, traversability information such as expected velocity and slip range can be re-
trieved. From the surface, a fast and efficient terrain monitoring via terramechanics supports plan-
ning and map update effectively. Finally, a shear vane to further assist the rover if needed shows
that the traversability can be analyzed at all times, even when monitoring does not provide conclu-
sive results.

83



CHAPTER 7 Discussion and Conclusion

This research implements a novel approach to planetary rover traverse planning by fully
integrating terrain information into the planning phase. At different levels, it supports increased
autonomy of future Mars rovers, specifically for applications to a sample return mission. This work
proposes to gather various terrain information from orbit to support planning and further assist the
rover from the surface with a fast and efficient terrain monitoring method. This research also
presents a complete process to reduce uncertainty in identifying a terrain, should the main method
be insufficient to give the rover proper knowledge of its surrounding. This framework aligns well
with requirements for a sample return mission, as it provides a method to fast traverse partially
unknown terrains.

7.1 Discussion and future work

7.1.1 Map of traversability information

Orbital data can be processed to derive a map containing traversability information, more
specifically expected rover speed and wheel slip. The combination of data sets has been shown to
effectively predict rover velocity, and the classifier trained with thermal inertia and topography has
demonstrated its ability to give a range of expected slip with an acceptable accuracy relying only on
orbital imagery. This information can then be used to plan a traverse more effectively, without the
need for ground data, and limit the potential encounters of mobility difficulties (for example, areas
showing more than 30% slip could be avoided). Such a map can help enhance rover autonomy,
needed for a sample return mission.

While the expected velocity map can be derived at a scale as up as 1m/px, the prediction
of slip is a lot more affected by data resolution. Future work includes studying the possibility of
interpolating thermal inertia to higher resolution using other data sets such as HiRISE or CRISM
(Compact Reconnaissance Imaging Spectrometer for Mars), the latter allowing for derivation of
spectra over selected areas at a resolution between 12m/px and 18m/px [Fox et al., 2016]. This
interpolation can be supported by ground data provided by the mini-TES instrument (mini-Thermal
Emission Spectrometer) on board the twin rovers Spirit and Opportunity [Fergason et al., 2006a].

7.1.2 Terrain-aware path planning

The local path planning method successfully integrates terrain information, at the rover
location and ahead of the vehicle, and implements a fast replanning process by having many path
options before starting the drive each sol. Terrain information is obtained via monitoring of rover
slip and actual drive speed, then propagated along the different paths that are at the rover’s disposal
at all times. This information is compared against the prior knowledge of the rover and if there are
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discrepancies, the map of velocity is updated locally. The terrain monitoring affects the local area
and effectively supports planning by allowing for fast and efficient replanning.

If the algorithm captures correctly the actual terrain in the vicinity of the rover, it should
be noted that it relies on new ground information given prior to driving. The initialization of the
map reflects potential undetected terrain ahead that can be confirmed or refuted by the belief prop-
agation framework. For simulation purposes, high resolution orbital images were used for the ini-
tialization (e.g., HiRISE), but for MSR, the ground data from Perseverance can be utilized instead.
Future work regarding the path planning method includes: further development of the algorithm
to overcome the need for a secondary assessment using ground images; research on integration
of lower-level motion planning algorithms and online risk assessment; and decision making un-
der unexpected situations. These results will also be tested on a physical robot in a Mars analog
environment, at which point the “truth” map would be replaced by actual monitoring of the terrain.

7.1.3 Instrument deployment in support of planning

The instrument chosen to give in-situ information with reduced uncertainty about the ter-
rain to be fed into the planning process in support of noisy measurements successfully fulfills its
requirements by outputting valid values of intrinsic parameters and bearing capacities for a given
soil. Moreover, the instrument can be deployed easily and give results in a few minutes, which is
in line with the objectives of a sample return mission.

This prototype is in the early stages of development. Many potential improvements have
already been identified in section 6.3.4 that target the material (e.g., higher quality components)
or choice of parts (e.g., more sensitive load cells). More work will also be done to implement an
automatic result interpretation procedure. The next step is to improve the design to better adapt to
field testing, mainly, to overcome the sensitivity to tilt that could become a liability when deployed
in a Mars-like environment. Moreover, this instrument will eventually be mounted on the rover
developed at WVUIRL (therefore not relying on linear guide rails for use) and tested in Mars-
like conditions. This involves integrating the deployment of the shear vane to the terrain-aware
planning algorithm presented in section 5.3, where it would be used when an exact measurement
is triggered.

7.1.4 Terrain-aware traverse planning as a framework to support a sample return mis-
sion

While this work has been presented as three separate sections, the proposed framework is an
integration of all three parts into overall terrain-aware traverse planning, with an orbital analysis of
the area used to plan the path and terrain assessment methods to correct any discrepancies found in
the aforementioned analysis. This new approach to planning a rover mission on the surface of Mars
shows promising results, as shown in Chapter 6. Future research has been identified throughout
this work that would strengthen the proposed approach, which could eventually lead to a novel
process to tackle tactical operations for MSR.
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7.2 Conclusion

At different levels, this research offers a framework that complies with the requirements
of a Mars Sample Return mission, such as faster traverse and increased autonomy. The proposed
approach analyzes the landing area from orbit to surface in a series of steps aimed at providing
a safer and more autonomous way to plan and complete a traverse: first, the site is studied from
orbit to gather traversability information about the terrain. This translates into a map of expected
wheel slip and rover speed that can fully support planning. Next, this research suggests an effective
method to plan the traverse for the driving objective of a sol using the aforementioned map. An
easy replanning process that saves computational resources is implemented by computing offline
several options, prior to driving, that the rover can choose from in real-time, should it be required to
deviate from its initial route. To promote rover safety and ensure the adequacy of the information
about the environment given by the map, a simple and fast method to gather terrain information
is proposed, with the rover analyzing its wheel slip and actual speed and converting them into
useful data that can confirm the a priori information. This research demonstrates that the rover can
successfully update its map of expected velocity on a local scale if it discovers discrepancies with
a priori values. This work also implements a feature that complements terrain monitoring with
an easy to use, compact, light-weigh instrument that gives terrain information with certainty in a
timely manner, therefore supporting effective planning.

This is summarized in Fig.7.1 and shows that all parts of this work are strongly connected
to each other. The path planning relies on the analysis of orbital data, while its execution depends
on terrain assessment through monitoring and in-situ analysis. Figure 7.1 shows that the map,
constructed using raw and processed orbital data, is the foundation for planning the drive for a
sol. During the traverse, the rover gathers terrain information to confirm traversability, and when
it does not match the aforementioned map, an update is performed around the rover location. This
locally updated version is then used in planning the following sol. The loop continues until the
rover reaches the samples and completes its mission. As it retains information about prior changes,
it acquires new and more adequate knowledge about its environment and renders the following
planning phases less challenging. Thus, the overall framework proposed in this research supports
a more autonomous rover, suitable for Mars Sample Return.
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Figure 7.1: Framework supporting more autonomy for a Mars Sample Return mission.
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APPENDIX A
Terramechanics Equations

Table A.1: Parameters used in Appendix A.

Parameters Description Unit
b Wheel width

Meters

R Wheel radius
D Wheel diameter
z Depth of point of interest
z0 Sinkage
l(θ) Length rolled upon
d(θ) Soil deformation

X
Coordinate of point of interest in the horizontal driving

direction
dX Elemental displacement in the X direction

Y
Coordinate of point of interest in the vertical driving

directoin
dY Elemental displacement in the Y direction
KT Elemental length of trajectory l(θ)

KH
Component ofKT in the direction of the resultant between

Td andW
ix Shear displacement
θ Angle between resultant p andKT

Degrees

θe
Entry angle defined by position where a point on the wheel
circumference first comes into contact with the terrain

ξ Angle between resultant p andKT
ϵ Angle of resultant between Td andW to vertical axis
η Angle between KT and Rω

α
Angle between vertical radius and radius passing by the

point of interest
θs Slope angle
V Longitudinal (drive direction) velocity Meters

per
Second

Vs Slip velocity
ω Angular velocity
ne Engine speed
q Vertical pressure

Pascals

σn Normal stress
τ Shear stress

τmax Maximum shear stress
p Resultant between normal and shear stresses

Continued on next page

102



Table A.1 – Continued from previous page
Parameters Description Unit

W Load
Td Effective driving torque

q′
Component of p(θ) to direction of ϵ to vertical axis

(applied stress)
Te Engine torque
Rγ Compaction resistance

Newtons
Fd Drawbar pull
F Thrust
RR Sum of resisting force
Ra Aerodynamical resistance

A.1 Pressure and shear stress

The pressure and shear stress are derived from plate tests [Bekker, 1960] and mapped into a
cylindrical geometry [Bekker, 1969]. Shear stress is the main source of driving traction and thus the
main source of slip and skid, parameters modeled in terramechanics. The equations for shear stress
vs. shear displacement are first established below for shear boxes and bevameter plates experiments
and then mapped into a cylindrical geometry to be applied to a wheel. The pressure q is given by
the Bekker-Reece pressure-sinkage equation assuming a homogeneous soil under a plate of width
b [Reece, 1965]. This equation is inspired by Terzaghi’s bearing capacity theory [Wong, 2012]:

q =
(
ck′c + γbk′ϕ

) (z0
b

)n
(A.1)

where kc’ is the Reece cohesion modulus (unitless), kϕ’ is the Reece friction modulus (unitless), γ
is the soil weight density (N/m3), n is the pressure-sinkage exponent, c is cohesion (kPa) and z0 is
sinkage (m). Locally, a wheel can be approximated by a plate at the point of application of pressure
and the above equation is thus applied for a wheel geometry. The shear stress – shear displacement
relationship for a plastic soil is given by Janosi (1961):

τ = τmax

(
1− exp

(
jx
kx

))
(A.2)

where jx is the soil shear displacement, kx is the longitudinal shear deformationmodulus and τmax is
the maximum shear stress possible before failure of the soil, given by the Mohr-Coulomb criterion:

τmax = c+ σntanϕ (A.3)

where c is the cohesion, σn is the normal stress and ϕ is the angle of internal friction. In the case
of a wheel, the shear stress at the interface between the wheel and the soil is a function of the soil
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Figure A.1: Driven wheel with velocities and forces applied on a given pointK on the circumference of the wheel. θ
is the angle between the dead center of the wheel and the point of study and θe is the entry angle defined by the position
where a point on the wheel circumference first comes into contact with the terrain, which is related to sinkage (a high
entry angle means high sinkage and vice versa) [Wong, 2008].

shear displacement [Wong, 2008] derived for cylindrical geometry. The soil shear displacement
derivation is based on the slip velocity (Vs) analysis on the wheel-soil interface as shown in Fig.A.1.
There are two cases that need to be distinguished: the wheel slipping and the wheel skidding. The
soil shear displacement is defined as follows:

jx =

∫ t

0

Vsdt (A.4)

where Vs is the slip velocity given by Eq. A.5 and illustrated by Fig.A.2.

Vs = Rω − V cosθ (A.5)

is the angle between the studied pointK of application of forces and the dead center of the wheel.
Slip and skid for a wheel are given by Eq. A.6 and A.7, respectively:

i = 1− V

Rω
(A.6)

is = 1− Rω

V
(A.7)

From Fig.A.2 the soil shear displacements for slip and skid patterns are derived, starting with the
longitudinal speed V (velocity in the drive direction) given by Eq. A.8 and A.9 (case slip and skid
respectively):
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Figure A.2: Simplified scheme of the driven wheel showing slip velocity and slip i.

Vs = Rω −Rωcos(θ)(1− i)⇐⇒ Vs = Rω(1− cosθ(1− i)) (A.8)

Vs = Rω − cos(θ) Rω

1− is
⇐⇒ Vs = Rω

(
1− cosθ

1− is

)
(A.9)

θ is the angle between the dead center of the wheel and the point of study, and θe is the entry
angle defined by the position where a point on the wheel circumference first come into contact
with the terrain, which is related to sinkage: a high entry angle means high sinkage and vice versa.
Equations A.8 and A.9 are put into Eq. A.4:

jx =

∫ t

0

Vsdt⇐⇒ jx =

∫ t

0

Rω(1− cosθ(1− i))dt (A.10)

jx =

∫ t

0

Vsdt⇐⇒ jx = dt (A.11)

Moreover:
ω =

dθ

dt
(A.12)

Equation A.12 is put into Eq. A.10 to get the shear soil displacement for a wheel slipping through
soil [Wong, 2008]:

jx = R

∫ θf

θ

1− cos(θ)(1− i)dθ

= R

∫ θf

θ

dθ −R(i− 1)

∫ θf

θ

cosθdθ

= R ((θ − θf )− (1− i)(sinθf − sinθ))

(A.13)
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The same replacement is done with Eq. A.11 to obtain the shear soil displacement in case of wheel
skid [Wong, 2008]:

jx = R

∫ θf

θ

1− cos(θ) R

1− is
dθ

= R

∫ θf

θ

dθ − R

(1− is)

∫ θf

θ

cosθdθ

= R

(
(θ − θf )−

sinθf − sinθ
1− is

) (A.14)

The shear soil displacement depends on the size of the wheel and the entry angle, i.e. sinkage.

A.2 Soil deformation under a driven wheel

Under a driven wheel the soil experiences deformation that can be measured at a given point
K [Muro, 2004]. The soil deformation d(θ) is the length of the trajectory l(θ) in the direction of
applied stress q’(θ), the component of resultant stress p(θ) to the direction of resultant of loadW
and driving torque Td (Fig.A.3). KT is an elemental length of trajectory of l(θ) directed in the
same direction as the resultant velocity vector of the vehicle velocity V and the circumferential
speed Rω. KH is the component of KT in the direction of the angle of driving torque Td to load
W (Fig.A.4 (a)).

V represents longitudinal velocity, R radius of the wheel, ω angular velocity, τ shear stress
at point K, and σn normal stress at point K. d(θ) is derived, θ being the angle between the dead
center of the wheel and pointK, defined as follows [Muro, 2004]:

d(θ) =

∫ θf

θ

KHdθ (A.15)

From the geometry in Fig.A.4 (b), d(θ) is retrieved:

d(θ) =

∫ θf

θ

KTcos(β)dθ (A.16)

and Fig.A.4 (c) gives:

d(θ) =

∫ θf

θ

KTcos(90− (θ + ζ + η))dθ ⇐⇒ d(θ) =

∫ θf

θ

KTsin(θ + ζ + η)dθ (A.17)

ϵ is the angle between the resultant driving torque Td and the loadW (Fig.A.4), and η is the angle
betweenKT andRω. LetG(X,Y ) be the location of an arbitrary point on a wheel slipping through
soil, which drives l(θ) in a plane (X,Y ) as defined in Fig.A.5 (Wong, 2001). dX and dY are thus
elemental displacement in the X and Y direction of the driven wheel. X and Y are given by the
following equations:

X = R (α(1− i) + sinα) (A.18)
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Figure A.3: Driven wheel with forces and stresses applied on a given point K on the circumference. The angles
between the different stresses and forces are given in the figure [Muro, 2004].

Figure A.4: Enlarged area from Fig.A.3 showing: (a) vectors KT and KH , (b) angle between vectors and stresses
and (c) shear and normal stresses added to the other stresses at a given point on the wheel [Muro, 2004].
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Figure A.5: Wheel driving andmotion on a (X,Y ) plane at a given point on the circumference, referred to asG(X,Y ).
This point touches the ground at point C, V is the longitudinal velocity and R the radius of the wheel [Muro, 2004].

Y = R(1 + cosα) (A.19)
whereα is the angle between the vertical radius and the radius passing by the studied pointG(X,Y )
and i is the wheel slip. The length driven by the wheel at point G is thus:

l(θ) =
√
dX2 + dY 2 =

√
1 +

(
dX

dY

)2

dX (A.20)

And from Eq. A.18 and A.19, dX and dY are retrieved for a wheel slipping through soil:

dX = d(R(α(1− i) + sinα)) = (1− i) + cosα (A.21)

dY = d(R(1 + cosα)) = −Rsinα (A.22)
Hence:

dX

dY
= − sinα

(1− i) + cosα
(A.23)

This is put in Eq. A.20 as well as Eq. A.21 and A.22:

l(θ) =

∫ αf

α

√1 +

(
sinα

R(1− i) + cosα

)2

R(1− i+ cosα

 dα (A.24)

From the geometry:

α = π − θ
αf = π − θf

cosα = cos(π − θ) = cosθ

sinα = sin(π − θ) = −sinθ

(A.25)
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Thus Eq. A.24 is rewritten as follows:

l(θ) =

∫ θ

θf

√1 +

(
sinθ

1− i+ cosθ

)2

R(1− i+ cosθ)

 dθ

= R

∫ θ

θf

√
(1− i+ cosθ)2 + (sinθ)2dθ

= R

∫ θ

θf

√
(1− i)2 + 2(1− i)cosθ + 1dθ

(A.26)

Equation A.26 is put into Eq. A.21 and A.22, given thatKT is an elemental length of trajectory of
l(θ):

d(θ) =

∫ θf

θ

FTsin(θ+ζ+η) = R

∫ θ

θf

(√
(1− i)2 + 2(1− i)cosθ + 1

)
sin(θ+ζ+η)dθ (A.27)

The angle η can be retrieved from the geometry as shown in Fig.A.6:

Figure A.6: Enlarged area from Fig.A.3 at pointK giving the geometry of tanη.

tanη =
(1− i)sinθ
Rω − V cosθ

=
(1− i)sinθ

1− (1− i)cosθ

(A.28)
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Equations A.28 is put into Eq. A.27, giving the soil deformation in case of slip:

d(θ) = R

∫ θ

θf

(√
(1− i)2 + 2(1− i)cosθ + 1

)
sin

(
θ + ζ + tan−1 (1− i)sinθ

1− (1− i)cosθ

)
dθ

(A.29)
The same derivation can be made in case of wheel skid, giving the following expression for the soil
deformation [Muro, 2004]:

d(θ) = R

∫ θ

θf

√( 1

1− i

)2

+ 2

(
1

1− i

)
cosθ + 1

 sin

(
θ + ζ + tan−1

(
sinθ

1− i− cosθ

))
dθ

(A.30)
As well as the soil shear displacement, the soil deformation is a function of the size of the wheel
(dependence on radius R) and how much contact the wheel makes with the terrain underneath
(dependence on angle θ).

A.3 Compaction resistance

A wheel creates compaction resistance Rc from the work done on compacting soil [Wong,
2008]. From the previous section the pressure exerted by the wheel on the surface at a given point
K is known:

q = keqz
n

keq =
1

bn
(
ck′c + γbk′ϕ

) (A.31)

with k′c and k′ϕ the Reece moduli defined earlier, n the pressure-sinkage exponent, c cohesion and
γ the soil weight density. Let L be the work per unit area required to compress the soil:

L =
Rcl

bl
(A.32)

with l the distance rolled upon. L is the integration of force over distance, as follows [Muro, 2004]:

L =

∫ z0

0

qdz =

∫ z0

0

keqz
ndz = keq

zn+1
0

n+ 1
(A.33)

where z0 is depth of sinkage, q is pressure, b is the wheel width,D its diameter, l the distance rolled
upon, W the load and σn is normal stress at a given point K (Fig.A.7). From Eq. A.31 and Eq.
A.33 an expression for the compaction resistance is retrieved [Wong, 2008]:

Rc = Lb⇐⇒ Rc = keqb
zn+1
0

n+ 1
(A.34)

The equation is then rearranged. The load applied to a wheel can be written as follows:

W = b

∫ θf

0

Rσncosθdθ (A.35)
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Figure A.7: Compaction resistance Rc shown for a driven wheel with the normal stress σn, sinkage z0, and load W
for a driven wheel of diameterD. dx and dz are elements of contact area between wheel and soil at a studied pointK
at a depth z, q is vertical pressure,B is the center of the wheel andA is the vertical projection ofB at depth z. V is the
longitudinal velocity, Θ is the angle between the bottom of the wheel and point K and θe is the entry angle [Bekker,
1969].

From Fig.A.8:

Rσncosθdθ = −qdx (A.36)

where dx is an element of contact area between wheel and ground. Thus:

W =

∫ z0

0

−qbdx = −
∫ z0

0

bkeqz
ndx (A.37)

From the geometry shown in Fig.A.8 and using the Pythagorean Theorem:

AB =
D

2
− (z0 − z)

x2 =

(
D

2

)2

− (AB)2
(A.38)
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Figure A.8: Stresses and forces at pointK on the circumference of a driven wheel [Muro, 2004].

Thus:

x2 =

(
D

2

)2

− (
D

2
− (z0 − z))2

=

(
D

2

)2

−

((
D

2

)2

− 2
D

2
(z0 − z) + (z0 − z)2

)
= D(z0 − z)− (z0 − Z)2

= (z0 − z)(D − (z0 − z))
= D(z0 − z)for(z0 − z)small

(A.39)

Differentiating the above equation gives:

2xdx = −Ddz ⇐⇒ dx =
−Ddz
2x

(A.40)

that is put into Eq. A.35 along with Eq. A.31:

W = −
∫ z0

0

bkeqz
ndx (A.41)
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A variable substitution is made in the above equation. Let t2 = z0 − z. Then dz = −2tdt. Thus:

W = bkeq

∫ z0

0

zn
√
D

2
√
z0 − z

dz

= bkeq

∫ t=
√
z0

t=0

(z0 − t2)n
√
D

2t
dz

= bkeq
√
D

∫ t=
√
z0

t=0

(z0 − t2)dt

(A.42)

A Taylor development gives:

(z0 − t2)n ≈ (zn0 − nzn−1
0 t2 + ...) (A.43)

Hence:

W = bkeq
√
D

∫ t=
√
z0

t=0

(zn0 − nzn−1
0 t2)dz

= bkeq
3− n
3

√
Dz0z

n
0

(A.44)

Rearranging the above equation an expression for sinkage z0 is retrieved:

z
2n+1

2
0 =

3W

bkeq(3− n)
√
D
⇐⇒ z0 =

(
3W

bkeq(3− n)
√
D

) 2
2n+1

(A.45)

Sinkage given in Eq. A.45 is replaced in the relationship giving the compaction resistance (Eq.
A.34) [Wong, 2008]:

Rc = keqb
Zn+1

0

n+ 1

= keqb

(
3W

bkeq(3−n)
√
D

) 2n+2
2n+1

n+ 1

=
1

(n+ 1)(3− n)
2n+2
2n+1

(
ck′c+γbk′ϕ

bn−1

) 1
2n+1

(
3W√
D

) 2n+2
2n+1

(A.46)

Load and compaction resistance (thus load and sinkage) are related, and the equation reflects the
intuitive statement that the higher the load is, the more sinkage the wheel creates.
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APPENDIX B
Probability Mass Functions of velocity categories

The PMFs of velocity categories matrices under CFA and slope conditions are presented in
Tables B.1 through B.11. The edge potential matrices can be derived from the PMFs matrices by
normalizing the columns.

Table B.1: CFA ≤ 7% and slope ≤ 10◦.

Prediction
A B C D E F

G
ro
un
d
Tr
ut
h A 84.0% 0% 7.50% .200% 0% 0%

B 0% 0% 0% 0% 0% 0%
C 10.5%S 0% 81.3% 1.20% 0% .200%
D 5.20% 0% 10.6% 98.4% 0% 0%
E 0% 0% 0% 0% 0% 0%
F .300% 0% .600% .200% 0% 99.8%

Table B.2: CFA ≤ 7% and 10◦ < slope ≤ 15◦.

Prediction
A B C D E F

G
ro
un
d
Tr
ut
h A 84.0% 0% 7.50% 0% 0% .0872%

B 0% 0% 0% 0% 0% 0%
C 10.5% 0% 83.3% 0% 0% .636%
D 0% 0% 0% 0% 0% 0%
E 0% 0% 0% 0% 0% 0%
F 2.44% 0% 4.96% 0% 0% 99.2%

Table B.3: CFA ≤ 7% and 15◦ < slope ≤ 20◦.

Prediction
A B C D E F

G
ro
un
d
Tr
ut
h A 0% 0% 0% 0% 0% 0%

B 0% 84.0% 7.50% 0% 0% .0872%
C 0% 10.5% 81.3% 0% 0% .636%
D 0% 0% 0% 0% 0% 0%
E 0% 0% 0% 0% 0% 0%
F 0% 2.44% 4.96% 0% 0% 99.2%
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Table B.4: CFA ≤ 7% and 20◦ < slope ≤ 25◦.

Prediction
A B C D E F

G
ro
un
d
Tr
ut
h A 0% 0% 0% 0% 0% 0%

B 0% 0% 0% 0% 0% 0%
C 0% 0% 0% 0% 0% 0%
D 0% 0% 0% 0% 0% 0%
E 0% 0% 0% 0% 82.8% .340%
F 0% 0% 0% 0% 8.31% 99.2%

Table B.5: ≤ 7% and slope > 25◦.

Prediction
A B C D E F

G
ro
un
d
Tr
ut
h A 0% 0% 0% 0% 0% 0%

B 0% 0% 0% 0% 0% 0%
C 0% 0% 0% 0% 0% 0%
D 0% 0% 0% 0% 0% 0%
E 0% 0% 0% 0% 0% 0%
F 0% 0% 0% 0% 0% 100%

Table B.6: ≤ 7% and 10◦ < slope ≤ 15◦.

Prediction
A B C D E F

G
ro
un
d
Tr
ut
h A 84.0% 0% 7.50% 0% 0% .0872%

B 0% 0% 0% 0% 0% 0%
C 10.5% 0% 81.3% 0% 0% .636%
D 0% 0% 0% 0% 0% 0%
E 0% 0% 0% 0% 0% 0%
F 2.44% 0% 4.96% 0% 0% 99.2%

Table B.7: 7% < CFA ≤ 15% and slope ≤ 10◦.

Prediction
A B C D E F

Truth

A 0% 0% 0% 0% 0% 0%
B 0% 84.0% 7.50% 0% 0% .200%
C 0% 10.5% 81.3% 0.200% 0% 1.20%
D 0% .300% .600% 99.8% 0% .200%
E 0% 0% 0% 0% 0% 0%
F 0% 5.20% 10.6% 0% 0% 98.4%
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Table B.8: 7% < CFA ≤ 15% and 10◦ < slope ≤ 15◦.

Prediction
A B C D E F

G
ro
un
d
Tr
ut
h A 0% 0% 0% 0% 0% 0%

B 0% 84.0% 7.50% 0% 0% .0872%
C 0% 10.5% 81.3% 0% 0% .636%
D 0% 0% 0% 0% 0% 0%
E 0% 0% 0% 0% 0% 0%
F 0% 2.44% 4.96% 0% 0% 99.2%

Table B.9: 7% < CFA ≤ 15% and 15◦ < slope ≤ 20◦.

Prediction
A B C D E F

G
ro
un
d
Tr
ut
h A 0% 0% 0% 0% 0% 0%

B 0% 84.0% 7.50% 0% 0% .0872%
C 0% 10.5% 81.3% 0% 0% .636%
D 0% 0% 0% 0% 0% 0%
E 0% 0% 0% 0% 0% 0%
F 0% 2.44% 4.96% 0% 0% 99.2%

Table B.10: 7% < CFA ≤ 15% and 20◦ < slope ≤ 25◦.

Prediction
A B C D E F

G
ro
un
d
Tr
ut
h A 0% 0% 0% 0% 0% 0%

B 0% 0% 0% 0% 0% 0%
C 0% 0% 0% 0% 0% 0%
D 0% 0% 0% 0% 0% 0%
E 0% 0% 0% 0% 82.8% .340%
F 0% 0% 0% 0% 8.31% 99.2%

Table B.11: CFA > 15% and any slope.

Prediction
A B C D E F

G
ro
un
d
Tr
ut
h A 0% 0% 0% 0% 0% 0%

B 0% 0% 0% 0% 0% 0%
C 0% 0% 0% 0% 0% 0%
D 0% 0% 0% 0% 0% 0%
E 0% 0% 0% 0% 0% 0%
F 0% 0% 0% 0% 0% 100%
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