12,424 research outputs found

    Application of sliding mode controller in DC/AC and DC-DC power converter system

    Get PDF
    Maintaining good voltage regulation at output and having fast dynamic response under sudden load fluctuation are extremely important in distributed generation (DG) as well as uninterrupted power supply (UPS) systems. This work presents a fixed frequency hysteresis current (FFHC) controller, which is implemented on the basis of sliding mode control (SMC) technique and fixed frequency current controller with a hysteresis band. The controller have the benefit of hysteretic current control having fast dynamic responses and reduces the disadvantages of the variable switching frequency. For this work elliptical sliding surface was taken.These have been verified and compared with the carrier based pulse width modulated (PWM) voltage controller under the same load fluctuation. The proposed method is then applied to islanded single phase - voltage source inverter (VSI) system. The results show that the dynamic response is quite faster than that of widely used PWM-controlled inverter systems. The DC voltage that is required for the inverter input is supposed to given from the output of PV panel with buck converter.In PV system sliding mode control is used to track the maximum power point .Here inverter and buck converter connected to PV array are taken separately

    Discussion of the technology and research in fuel injectors common rail system

    Get PDF
    Common rail is one of the most important components in a diesel and gasoline direct injection system. It features a high-pressure (100 bar) fuel rail feeding solenoid valves, as opposed to a low-pressure fuel pump feeding unit injectors. Third-generation common rail diesels now feature piezoelectric injectors for increased precision, with fuel pressures up to 2,500 bar. The purpose of this review paper is to investigate the technology and research in fuel injectors common rail system. This review paper focuses on component of common rail injection system, pioneer of common rail injection, characteristics of common rail injection system, method to reduce smoke and NOx emission simultaneously and impact of common rail injection system. Based on our research, it can be concluded that common rail injection gives many benefit such as good for the engine performance, safe to use, and for to reduce the emission of the vehicle. Fuel injection common rail system is the modern technology that must be developed. Nowadays, our earth is polluting by vehicle output such as smoke. If the common rail system is developed, it can reduce the pollution and keep our atmosphere clean and safe

    Robust and fast sliding-mode control for a DC-DC current-source parallel-resonant converter

    Get PDF
    Modern DC-DC resonant converters are normally built around a voltage-source series-resonant converter. This study aims to facilitate the practical use of current-source parallel-resonant converters due to their outstanding properties. To this end, this study presents a sliding-mode control scheme, which provides the following features to the closed-loop system: (i) high robustness to external disturbances and parameter variations and (ii) fast transient response during large and abrupt load changes. In addition, a design procedure for determining the values of the control parameters is presented. The theoretical contributions of this study are experimentally validated by selected tests on a laboratory prototype.Peer ReviewedPreprin

    Sliding modes in electrical drives and motion control

    Get PDF
    In this paper application of Sliding Mode Control (SMC) to electrical drives and motion control systems is discussed. It is shown that in these applications simplicity in implementation makes concepts of SMC a very attractive design alternative. Application in electrical drives control is discussed for supply via different topologies of the supply converters. Motion control is discussed for single degree of freedom motion control systems as an extension of the control of mechanical coordinates in electrical drives. Extension to multi-body systems is discussed very briefly

    Switching frequency regulation in sliding mode control by a hysteresis band controller

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksFixing the switching frequency is a key issue in sliding mode control implementations. This paper presents a hysteresis band controller capable of setting a constant value for the steady-state switching frequency of a sliding mode controller in regulation and tracking tasks. The proposed architecture relies on a piecewise linear modeling of the switching function behavior within the hysteresis band, and consists of a discrete-time integral-type controller that modifies the amplitude of the hysteresis band of the comparator in accordance with the error between the desired and the actually measured switching period. For tracking purposes, an additional feedforward action is introduced to compensate the time variation of the switching function derivatives at either sides of the switching hyperplane in the steady state. Stability proofs are provided, and a design criterion for the control parameters to guarantee closed-loop stability is subsequently derived. Numerical simulations and experimental results validate the proposal.Accepted versio

    Self-Sensing Control for Soft-Material Actuators Based on Dielectric Elastomers

    Get PDF
    Due to their energy density and softness that are comparable to human muscles dielectric elastomer (DE) transducers are well-suited for soft-robotic applications. This kind of transducer combines actuator and sensor functionality within one transducer so that no external senors to measure the deformation or to detect collisions are required. Within this contribution we present a novel self-sensing control for a DE stack-transducer that allows to control several different quantities of the DE transducer with the same controller. This flexibility is advantageous e.g., for the development of human machine interfaces with soft-bodied robots. After introducing the DE stack-transducer that is driven by a bidirectional flyback converter, the development of the self-sensing state and disturbance estimator based on an extended Kalman-filter is explained. Compared to known estimators designed for DE transducers supplied by bulky high-voltage amplifiers this one does not require any superimposed excitation to enable the sensor capability so that it also can be used with economic and competitive power electronics like the flyback converter. Due to the behavior of this converter a sliding mode energy controller is designed afterwards. By introducing different feed-forward controls the voltage, force or deformation can be controlled. The validation proofs that both the developed self-sensing estimator as well as the self-sensing control yield comparable results as previously published sensor-based approaches.TU Berlin, Open-Access-Mittel - 201

    Fuzzy second order sliding mode control of a unified power flow controller

    Get PDF
    Purpose. This paper presents an advanced control scheme based on fuzzy logic and second order sliding mode of a unified power flow controller. This controller offers advantages in terms of static and dynamic operation of the power system such as the control law is synthesized using three types of controllers: proportional integral, and sliding mode controller and Fuzzy logic second order sliding mode controller. Their respective performances are compared in terms of reference tracking, sensitivity to perturbations and robustness. We have to study the problem of controlling power in electric system by UPFC. The simulation results show the effectiveness of the proposed method especiallyin chattering-free behavior, response to sudden load variations and robustness. All the simulations for the above work have been carried out using MATLAB / Simulink. Various simulations have given very satisfactory results and we have successfully improved the real and reactive power flows on a transmission lineas well as to regulate voltage at the bus where it is connected, the studies and illustrate the effectiveness and capability of UPFC in improving power.В настоящей статье представлена усовершенствованная схема управления, основанная на нечеткой логике и режиме скольжения второго порядка унифицированного контроллера потока мощности. Данный контроллер обладает преимуществами с точки зрения статической и динамической работы энергосистемы, например, закон управления синтезируется с использованием трех типов контроллеров: пропорционально-интегрального, контроллера скользящего режима и контроллера скользящего режима нечеткой логики второго порядка. Их соответствующие характеристики сравниваются с точки зрения отслеживания эталонов, чувствительности к возмущениям и надежности. Необходимо изучить проблему управления мощностью в энергосистеме с помощью унифицированного контроллера потока мощности (UPFC). Результаты моделирования показывают эффективность предложенного метода, особенно в отношении отсутствия вибрации, реакции на внезапные изменения нагрузки и устойчивости. Все расчеты для вышеуказанной работы были выполнены с использованием MATLAB/Simulink. Различные расчетные исследования дали весьма удовлетворительные результаты, и мы успешно улучшили потоки реальной и реактивной мощности на линии электропередачи, а также регулирование напряжения на шине, к которой она подключена, что позволяет изучить и проиллюстрировать эффективность и возможности UPFC для увеличения мощности

    Adaptive Backstepping Controller Design for Stochastic Jump Systems

    Get PDF
    In this technical note, we improve the results in a paper by Shi et al., in which problems of stochastic stability and sliding mode control for a class of linear continuous-time systems with stochastic jumps were considered. However, the system considered is switching stochastically between different subsystems, the dynamics of the jump system can not stay on each sliding surface of subsystems forever, therefore, it is difficult to determine whether the closed-loop system is stochastically stable. In this technical note, the backstepping techniques are adopted to overcome the problem in a paper by Shi et al.. The resulting closed-loop system is bounded in probability. It has been shown that the adaptive control problem for the Markovian jump systems is solvable if a set of coupled linear matrix inequalities (LMIs) have solutions. A numerical example is given to show the potential of the proposed techniques
    corecore