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Due to their energy density and softness that are comparable to humanmuscles dielectric

elastomer (DE) transducers are well-suited for soft-robotic applications. This kind of

transducer combines actuator and sensor functionality within one transducer so that

no external senors to measure the deformation or to detect collisions are required.

Within this contribution we present a novel self-sensing control for a DE stack-transducer

that allows to control several different quantities of the DE transducer with the same

controller. This flexibility is advantageous e.g., for the development of human machine

interfaces with soft-bodied robots. After introducing the DE stack-transducer that is

driven by a bidirectional flyback converter, the development of the self-sensing state and

disturbance estimator based on an extended Kalman-filter is explained. Compared to

known estimators designed for DE transducers supplied by bulky high-voltage amplifiers

this one does not require any superimposed excitation to enable the sensor capability

so that it also can be used with economic and competitive power electronics like the

flyback converter. Due to the behavior of this converter a sliding mode energy controller is

designed afterwards. By introducing different feed-forward controls the voltage, force or

deformation can be controlled. The validation proofs that both the developed self-sensing

estimator as well as the self-sensing control yield comparable results as previously

published sensor-based approaches.

Keywords: dielectric elastomers, self-sensing, control, soft material actuator, extended Kalman filter, stack-

actuator, flyback-converter

1. INTRODUCTION

Entirely soft-bodied robots exploit the full potential of robotic systems in terms of safe human-
machine-interactions and, thus, are in the scope of research. However, novel mechanical designs in
conjunction with smart and soft materials as well as innovative approaches for modeling and the
development of control strategies to handle such a highly sophisticated robot species are necessary
(Navarro et al., 2013; Robla-Gomez et al., 2017). Due to their behavior that resembles human
muscles, dielectric elastomers (DEs) are a promising approach that could pave the way for soft-
bodied robots. As a DE transducer consists of a very thin, elastomeric dielectric film covered with
compliant electrodes, its behavior can be described by a shape varying capacitor.

By applying a voltage vp to the electrodes of the DE transducer with permittivity ε0 · εr and
thickness d the resulting electrostatic pressure
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σel = ε0 · εr ·
(vp

d

)2
(1)

compresses the elastomer. This pressure is used to operate a
DE transducer in actuator mode. However, if the change of
the transducer’s capacitance is detected that is caused by its
deformation, a simultaneous operation as sensor is enabled. If
the deformation dependency of the capacitance is known, the
mechanical transducer state can be determined. By exploiting this
self-sensing capability, soft and smart transducers can be realized
that do not require additional external sensors and, thus, can be
comparably easy integrated into various applications not limited
to soft robotics.

For various types of DE transducers different approaches to
control their displacement or force (Maas et al., 2011; Sarban and
Jones, 2012; Rizzello et al., 2015; Wilson et al., 2016; Hoffstadt
and Maas, 2017, 2018b) or to use them for active vibration
attenuation (Dubois et al., 2008; Kaal and Herold, 2011; Sarban,
2011) have been presented previously. Within these approaches
the control variables are directly measured with external sensors,
so that the DE transducer is only operated as actuator. Due to the
additional sensor, these controls are referred to as sensor-based
control schemes.

Within this paper, the focus is given on the development of a
model-based self-sensing control for DE transducers that allows
to control the voltage, force and deformation of the transducer
without measuring any mechanical quantities. Figure 1 gives an
overview of the overall developed control circuit.

As shown in the center and on the right hand side of
Figure 1 the terminal voltage vDE and current iDE have to be
measured to enable the combined actuator-sensor-operation.
In order to determine the mechanical state based on these
measurement quantities adequate self-sensing algorithms are
required. Anderson et al. (2012) summarizes different approaches
for this purpose. The goal of most self-sensing algorithms is to
identify the capacitance of the DE transducer in a first step and
afterwards estimate the deformation and force based on a model
or experimentally obtained information about the deformation
dependency of the capacitance. For almost all approaches the
driving voltage vDE is superimposed with a harmonic excitation
that is used for the sensor functionality.

Chuc et al. (2008) and Jung et al. (2008) published
first frequency domain based approaches by experimentally
identifying changes of the electrical impedance of a DE
transducer under deformation when it is excited by a harmonic
voltage vDE. Beside the capacitance Cp they also considered losses
in the polymer and the electrode by adding the resistances Rs and
Rp, respectively, see Figure 1.

In Hoffstadt et al. (2014) another model-based identification
algorithm in the frequency domain is presented that estimates
the electrical parameters of a DE transducer by evaluating the
amplitudes of and the phase shift between the superimposed
terminal voltage and current. Furthermore, it was shown that
the behavior of a DE transducer can be sufficiently modeled by
neglecting the parallel resistance Rp representing losses in the

dielectric, if the DE transducer is excited with a comparable
high frequency.

The extended Kalman-filter introduced in Hoffstadt andMaas
(2018a) estimates the strain of a DE transducer without any
superimposed excitation so that it can be used independent of the
utilized power electronics. Other approaches in the time domain
estimate the charge qp of the capacitance Cp. Under further
consideration of the measured voltage vDE the capacitance Cp ≈

qp/vDE can be determined (Matysek et al., 2011; Gisby et al.,
2013).

Rizzello et al. (2017) developed a self-sensing algorithm based
on the recursive least squares (RLS) method. For this purpose,
he takes into account the equivalent circuit diagram with three
parameters (see Figure 1). In a first step, the parameters of
a discrete transfer function describing the behavior of the
considered circuit are estimated. As these parameters depend on
the electrical parameters, they can be calculated afterwards. For
the identification a harmonic excitation signal is superimposed.

Although several self-sensing approaches have been developed
only a few closed-loop self-sensing controller designs have been
published, so far. Gisby et al. (2011) controls the deformation
of a single-layer circular DE transducer by using the already
mentioned self-sensing approach (Gisby et al., 2013). Here, the
terminal voltage is PWM generated. While the deformation of
the DE transducer mainly depends on the mean of this voltage,
the included higher harmonics are used to enable the sensor
functionality. Themanually adjusted proportional gain controller
yields comparable low dynamics and accuracy. Therefore, Rosset
et al. (2013) extends this controller to a PI-controller, using
the same self-sensing approach (Gisby et al., 2013). Here, the
parameters of the controller are optimized for one particular
operating point of the nonlinear control plant. The derived
controller is used to control an optical grid.

Rizzello et al. (2016) systematically combines his RLS-
based self-sensing approach (Rizzello et al., 2017) with his
robust position controller (Rizzello et al., 2015) to control
the deformation of a DE membrane actuator. For the
combined actuator-sensor-operation the required driving voltage
determined by the controller is superimposed with a harmonic
excitation with a high frequency of 1 kHz and an amplitude of
75 V. Compared to the sensor-based control (Rizzello et al., 2015)
almost no drawbacks in terms of the accuracy are observed, while
the bandwidth of the closed-loop self-sensing control is reduced
due to the dynamics of the parameter identification.

Within the referenced publications costly and bulky high-
voltage amplifiers were used to feed the DE transducer. However,
due to the capacitive behavior of DE transducers voltage-fed
current sources are well suited instead of high-voltage amplifiers
(Eitzen et al., 2011a). Here, compact and efficient driving
electronics can be realized when using switched-mode operated
topologies like the bidirectional flyback converter. This converter
allows not only to supply the DE transducer with a certain voltage
but also to recover the energy stored in the DE transducer when
discharging it.

Under consideration of the properties of the bidirectional
flyback converter and the DE transducer, we previously published
sensor-based position and force controls in Hoffstadt and Maas
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FIGURE 1 | Fundamental structure of the proposed closed-loop position control for DE stack-actuators fed by a bidirectional flyback-converter.

(2017, 2018b) that use the directly measured deformation as
feedback-signal, cf. Figure 1. Within this publication we extend
them to a self-sensing controller that is able to universally
control the voltage, force or deformation of the DE transducer
by just measuring the terminal voltage vDE and current iDE. For
this purpose, in the following section 2 the considered control
plant comprising a DE stack-transducer (Maas et al., 2015)
fed by a bidirectional flyback converter (Eitzen et al., 2011b;
Hoffstadt and Maas, 2016) is introduced and modeled. The
design of the novel self-sensing state and disturbance estimator
is presented in section 3. Due to the non-linear behavior of the
control plant an extended Kalman-filter (EKF) is used for this
purpose (Welch and Bishop, 2001). The developed estimator
does not require any superimposed excitation. The subsequently
presented controller design (Hoffstadt and Maas, 2017, 2018b)
is based on the sliding mode control approach (DeCarlo et al.,
1988) as this is well suited for the considered control plant and
its characteristic behavior. The self-sensing estimator and control
are experimentally validated in section 5. Finally, section 6
summarizes the developed approaches and the result.

2. MODEL OF THE DE TRANSDUCER
SYSTEM

Figure 2A shows a schematic representation of the considered
DE stack-transducer withN layers. This multilayer design is used
to scale the deformation 1z in z-direction, as one single layer
has an initial thickness of only d0 = 50 µm. Details about the
design and the manufacturing were published by Maas et al.
(2015). The static strain-force-behavior is shown in Figure 2B.
The transducer generates higher tensile forces Fact at smaller
strains εz = 1z/z0, with z0 = N · d0. By increasing the initial
electric field strength E0 = vDE/d0 the electrostatic pressure
according to Equation (1) increases so that higher forces and

strains are obtained. The blocking-force Fact(εz = 0) and the no-
load strain εz(Fact = 0) represent two characteristic points of the
strain-force behavior.

An analytical model for this transducer is published in
Hoffstadt and Maas (2015). In Figure 2 the modeled results of
the static strain-force behavior are compared with measurement
results and a finite element analysis (FEA) published by Kuhring
et al. (2015). The analytical model is based on the structure shown
on the right of Figure 1. The actuator tension σact is given by the
force equilibrium:

σact = β · σel − σelast − ηE · ε̇z − E1 · εE1 , with β =
Ae

A
. (2)

Here, σelast is the elastic material tension that is calculated using
the Neo-Hookean approach with the Young’s modulus Y to
consider the hyperelastic, non-linear material behavior:

σelast =
Y

3
·

(
1

1− εz
− (1− εz)

2

)

. (3)

Beside this reversible elastic behavior, viscoelastic properties are
taken into account with the viscosity ηE and theMaxwell element
with stiffness E1 and viscosity η1. Furthermore, with the area ratio
β it is considered that the electrostatic pressure σel acts only on
the area Ae covered with electrode, while all other tensions are
assumed to homogeneously act on the whole transducer areaA in
z-direction. Instead of applying Equation (1) for the electrostatic
pressure σel, here it is determined depending on the energyUc,diel

in the electric field of the capacitance Cp:

β · σel =
2

V
· Uc,diel. (4)

The bidirectional flyback converter control proposed inHoffstadt
and Maas (2016) enables three discrete input states in terms of
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FIGURE 2 | Schematic design (A) and static strain-force characteristics (B) of the considered silicone-based DE stack-actuators.

the feeding power p̄. Beside an off-state, the DE can be charged
and discharged with almost constant power depending on the
characteristic energy increment 1Umax transfered during every
switching period TS of the converter:

p̄ =









+p̄max = +1Umax
TS

, charging

0, off-state

−p̄max = −1Umax
TS

, discharging

with 1Umax =
1

2
· Lm · Im,max. (5)

The energy increment 1Umax depends on the magnetizing
inductance Lm of the converter and the magnetizing current
Im,max adjusted by its inner control. Under further consideration
of losses pRe dissipated in the electrode material the power p̄′ =
p̄ − pRe feeds the capacitance of the DE transducer. With this,
the electromechanically coupled behavior of a DE transducer
can be modeled based on a power balance yielding the state
space representation

ẋ =









ε̇z
V

mB·z
2
0
·

σact−σload
1−εz

ε̇z −
E1
η1

· εE1

−2 · Uc,diel ·
(

ε̇z
1−εz

+ 1
τp

)









+







0
0
0
1






· p̄′,

with x =







εz
ε̇z
εE1

Uc,diel






.

(6)

Beside the strain εz and the energy Uc,diel the state vector x

includes the velocity ε̇z as well as the strain εE1 of the stiffness E1
of the Maxwell element. Depending on the supplied input power
p̄′ and an external load σload the inner states of the DE transducer
with volume V and accelerated mass mB can be calculated with
Equation (6).

For the subsequently developed self-sensing state estimator
models describing the strain dependency of the electrical
transducer parameters are required, too. The series resistance Rs
mainly comprises losses in the contacting of the DE transducer
and electrodes that are applied on the initial area Ae,0 of every
layer. It was shown Hoffstadt et al. (2016) that this resistance is
almost constant in the relevant range of deformation. In contrast,
the capacitance Cp for the N layers connected in parallel is
given by:

Cp = N · ε0 · εr ·
Ae,0

d0
·

1

(1− εz)
κ = Cp,0 ·

1

(1− εz)
κ (7)

The change of the initial capacitance Cp,0 also depends on the
factor κ . In case of an absolutely homogeneous deformation
without constraints, κ = 2 would apply. However, due to a
passive area aroundAe that is required for insulation purposes, as
well as due to stiffmechanical interfaces applied on the top and/or
bottom of the transducer, here the factor is slightly decreased
to κ = 1.85.

In analogy, the strain dependency of the parallel resistance Rp
reads as follows:

Rp =
1

N
· ρp ·

d0

Ae,0
· (1− εz)

κ = Rp,0 · (1− εz)
κ . (8)

This resistance represents losses in the dielectric with the specific
resistance ̺p.

Although Cp and Rp vary with the strain εz the resulting time
constant τp is independent of the strain:

τp = Rp · Cp = ε0 · εr · ρp = const. (9)
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3. EKF-BASED SELF-SENSING
ALGORITHM

In Hoffstadt and Maas (2018a) we already published a self-
sensing estimator based on a discrete, extended Kalman-
filter that estimates the strain of the DE transducer without
superimposed excitation. However, for the closed-loop operation
beside the inner states of the transducer also the disturbance σload
has to be estimated. For example, this load tension might result
from a collision of an external device or human with a soft-
bodied robot equipped with DE transducers. Therefore, a new
and extended approach based on Equation (6) is applied here. As
mentioned above, the goal is to determine the electromechanical
state of the DE transducer based on the measured terminal
voltage vDE and the current iDE. However, in Equation (6)
the energy Uc,diel represents the electrical state. Therefore,
a modification of the model is required to design the self-
sensing estimator.

For this purpose, the change of the charge qp on the
capacitance Cp is taken into account. It can be calculated under
consideration of the current iDE and the leakage current vp/Rp =

qp/τp, see Figure 1:

q̇p = iDE −
vp

Rp
= iDE −

1

τp
· qp, with qp = Cp · vp. (10)

As the charge depends on the measured current and the invariant
time constant τp from Equation (9), it is used as input variable
uqv in the following. Furthermore, if instead of the energy Uc,diel

the charge qp is considered, the electrostatic pressure can be
expressed by:

β · σel =
2

V
· Uc,diel =

q2p

V · Cp (εz)
, with Uc,diel =

1

2
·

q2p

Cp (εz)
.

(11)
Additionally, the voltage vp across Cp depends on the terminal
voltage vDE reduced by the voltage drop Rs · iDE across the series
resistance Rs that is assumed to be constant here:

vp =
qp

Cp (εz)
= vDE − Rs · iDE. (12)

This voltage will be used as output variable yqv afterwards.
Beside the mechanical states included in x and Equation (6)

the external load σload has to be estimated as disturbance, too. As
it represents an unknown disturbance it is assumed (according
to Isermann and Munchhof, 2011) that it is constant during one
sample time T of the discrete EKF implemented on a DSP. By
applying σ̇load = 0 in combination with Equations (10)–(12) a

fourth order system can be established for the estimation:

˙xqv = fqv
(

xqv, uqv
)

=








ε̇z

γ1 ·
σact(qp)−σload

1−εz

ε̇z −
E1
η1

· εE1
0







,

with xqv =







εz
εz
εE1
σload






, γ1 =

V

mB · z20
and

yqv = gqv
(

xqv, uqv
)

=
(1− εz)

κ

Cp,0
· qp = vp = vDE,m − Rs · iDE,m.

(13)

According to Adamy (2014) the observability of the nonlinear
system (13) is given if the determinant of the observability
matrix QB,qv is not zero. This matrix can be calculated under

consideration of the Lie derivatives Lifqvgqv, with i = 0, ..., 3:

QB,qv

(

xqv, uqv
)

=













∂L0fqv gqv(xqv ,uqv)

∂xqv
∂L1fqv gqv(xqv ,uqv)

∂xqv
∂L2fqv gqv(xqv ,uqv)

∂xqv
∂L3fqv gqv(xqv ,uqv)

∂xqv













=












∂gqv(xqv ,uqv)
∂xqv

∂L1fqv gqv(xqv ,uqv)

∂xqv
∂L2fqv gqv(xqv ,uqv)

∂xqv
∂L3fqv gqv(xqv ,uqv)

∂xqv












(14)
Beside material parameters that are different from zero, the
determinant ofQB,qv depends on the charge qp and the strain εz :

det
(

QB,qv

(

xqv, uqv
))

= q4p ·
γ 2
1 ·κ

4·E21
η1·C4

p(εz)·(1−εz)
6 6= 0,

for εz < 1 and qp 6= 0. (15)

The strain εz is always smaller than one, and thus does not
influence the observability. However, the uncharged state with
qp = 0 is not observable. In contrast for example to piezoelectric
materials, this is due to the fact that the DE materials do
not contain inherent dipoles causing a charge separation under
deformation. Instead, a DE transducer has to be electrically
pre-charged so that a current flow or change of voltage can
be detected when it is deformed. Furthermore, the restricted
observability for qp = 0 is not only a drawback of the proposed
approach. All referenced self-sensing methods have the same
issue, but the usually superimposed voltage excitations ensure
that this operating point does not occur. As this superimposed
excitation is not required for the EKF-based estimator a certain
amount of charge qp,min is always applied, here.

This results in the structure of the EKF-based self-sensing state
and disturbance estimator shown in Figure 3. As the EKF will
be implemented on a DSP its discrete implementation according
to Welch and Bishop (2001) is applied. Using the external
estimation of the charge by filtering the measured current
iDE,m has the advantage, that the state vector xqv only includes
mechanical states that have to be estimated with the EKF.
Furthermore, the parameterization effort increases significantly
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FIGURE 3 | Structure of the proposed self-sensing state and disturbance estimator based on an extended Kalman-filter.

with increasing system order so that it is meaningful to use a
system with order n = 4 instead of n = 5.

For the implementation of the Kalman-filter algorithm
according to Figure 3 the system (13) has to be linearized in the
predicted state x̂qv,p,k:

Aqv,k =
∂fqv

(

xqv, uqv
)

∂xqv

∣
∣
∣
∣
∣
x̂qv,p,k ,uqv,k

=








0 1 0 0

aqv,21
−γ1·ηE
1−ε̂z,p

−γ1·E1
1−ε̂z,p

−γ1
1−ε̂z,p

0 1 − E1
η1

0

0 0 0 0







, (16)

with aqv,21 =
γ1

1− ε̂z,p
·

[

σ̂act,p
(

uqv,k
)

− σ̂load,p

1− ε̂z,p
−

dσ̂elast,p

dε̂z,p
−

dσ̂el,p

dε̂z,p

]

,

and
dσ̂el,p

dε̂z,p

(11)
=
(7)

−
κ · q2p ·

(

1− ε̂z,p
)κ−1

V · Cp,0
.

Based on this the discrete transition matrix 8qv can be
approximated by (Ifeachor and Jervis, 2002):

8qv ≈ I+ Aqv,k · T, (17)

where I represents the unity matrix of order n = 4. The output
vector cT

qv,k
is calculated by the jacobian of the output function

gqv in Equation (13) with respect to the state vector xqv:

cTqv,k =
∂gqv

(

xqv, uqv
)

∂xqv

∣
∣
∣
∣
∣
x̂qv,rmp,k,uqv,k

=
[

−
κ·(1−ε̂z,p)

κ−1

Cp,0
· uqv,k 0 0 0

]

.

(18)

With these information the predicted state x̂qv,p,k and the related
covariance matrix Pp,k can be determined in the prediction step
(denoted by the index p) of the algorithm shown in Figure 3.
In the following correction the Kalman matrix K and covariance

matrix Pk are calculated to update the estimated state vector x̂qv,k.
The covariance matrices of the measurement and system noise
Rvv andQww, respectively, will be parameterized in the validation
section 5. With the information, included in the state vector xqv,k
and Equation (4) to calculate the energy Uc,diel based on the
charge qp, all state variables in x from Equation (6) as well as the
load σload can be determined.

4. SELF-SENSING SLIDING MODE
CONTROL

The considered control plant modeled with Equation (6) has
a strongly non-linear behavior. Furthermore, the bidirectional
flyback converter allows to supply discrete feeding powers p̄ so
that it can be described by the three-point switch in Equation (5).
Due to these properties the design of a variable structure control
is well suited. In Hoffstadt and Maas (2017) a position controller
based on the model (6) was introduced that uses the sliding
mode control (SMC), for this purpose. Additionally, a SMC force
controller was published in Hoffstadt and Maas (2018b). In the
following it will be shown that this controller cannot be used to
solely control the force Fact of the DE transducer but also the
strain εz and the voltage vp by applying different feed-forward
structures to one and the same controller. This flexibility makes
the approach advantageous for sophisticated applications like
in soft robotics. The detailed design of the controller shown in
Figure 4 can be found in Hoffstadt and Maas (2018b) and will be
summarized in the following.

In case of the SMC a static setpoint state vector x∗ has to
be defined including setpoints for every state variable. Under
consideration of the static force equilibrium

lim
t→∞

σact (t) = β · σel − σelast
(4)
=

2

V
·Uc,diel − σelast

!
= σload (19)

resulting from Equation (2) setpoints for the energyU∗
c,diel

can be
derived. On the one hand, the energy can be calculated depending
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FIGURE 4 | Detailed structure of the controller (blue box in Figure 1) including a feed-forward structure to either control the voltage, strain or force and a three-point

controller with hysteresis and adaption of the inner flyback converter control.

on a setpoint strain ε∗z :

U∗
c,diel

(

ε∗z
)

=
V

2
·
(

σelast
(

ε∗z
)

+ σload
)

. (20)

To achieve this strain the electrostatic pressure caused by the
energy according to Equation (4) has to compensate the elastic
material tension σelast(ε

∗
z ) given by Equation (3) as well as the

influence of the disturbance σload. On the other hand, if the DE
transducer should generate a certain force F∗act = A · σact the
corresponding energy U∗

c,diel
is given by:

U∗
c,diel

(

F∗act
)

=
V

2
·

(
F∗act
A (εz)

+ σelast (εz)

)

,

with σload =
F∗act
A (εz)

and A (εz) =
A0

1− εz
.

(21)

In this case, the influence of the elastic deformation has to be
compensated, i.e., the energy has to be increased with increasing
strain εz (see Figure 2B).

Beside these approaches, the energy U∗
c,diel

can be also
determined depending on a setpoint voltage v∗p across the
capacitance Cp(εz) in Equation (7):

U∗
c,diel

(

v∗p

)

=
1

2
· Cp (εz) · v

∗
p
2. (22)

With Equations (20)–(22) three approaches exist to define a
setpoint value for the energy U∗

c,diel
. For the system (6) also a

setpoint for the strain ε∗z is required, while the other two state
variables are zero during steady state ε̇z = εE1 = 0, respectively.
However, especially if the force or voltage should be controlled
by applying Equations (21) or (22), they should be independent
of the strain, i.e., that no setpoint ε∗z can be defined in this case.
To overcome this issue, the control design is based on a reduced
system (23) with ε̇z , εE1 and Uc,diel as state variables while the

strain εz together with the load tension σload is considered to be a
disturbance, here:

ẋU =





ε̈z
ε̇E1

U̇c,diel



 =







V
mB·z

2
0
·

σact−σload
1−εz

ε̇z −
E1
η1

· εE1

−2 · Uc,diel ·
(

ε̇z
1−εz

+ 1
τp

)







︸ ︷︷ ︸

fU (xU ,z)

+





0
0
1





︸ ︷︷ ︸

bU

·p̄′,

with z =

[

εz
σload

]

.

(23)

In this case, the setpoint state vector reads as:

ẋ∗U =
[

0 0 U∗
c,diel

]T
. (24)

4.1. Design of the Sliding Mode
The control operation with a SMC is characterized by two
phases. During the sliding mode the system is led toward its
setpoint x∗ on the switching function S(1x) = S(x − x∗) = 0.
Within the reaching phase it is ensured, first, that this switching
function is reached from any arbitrary initial state. According to
DeCarlo et al. (1988) one comparable simple approach for the
design of the switching function is obtained if the system is in
standard canonical form (denoted by the index R). To determine
a corresponding transformation matrix T, the system (23) has
to be linearized yielding the system matrix AU for the estimated
state x̂U :

AU =
∂fU (xU , z)

∂xU

∣
∣
∣
∣
xU=x̂U

=







−γ1·ηE
1−ε̂z

−γ1·E1
1−ε̂z

γ1·2/V
1−ε̂z

1 −E1
η1

0

−
2·Ûc,diel

1−ε̂z
0 − 2· ˆ̇εz

1−ε̂z
− 2

τp






.

(25)
As the system behaves linear concerning the input u, the
constant input vector bU is already given in Equation (23). With
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these information the following transformation matrix T can be
derived as proposed by Kalman (1960):

T = −
V

2
·
1− ε̂z

γ1
·






0 −1 0

−1 E1
η1

0

t31 t32 − 2
V ·

γ1
1−ε̂z




 (26)

with t31 =
E1

η1
+

γ1 · ηE

1− ε̂z
and t32 =

E1

η1
·

(
γ1 · η1

1− ε̂z
−

E1

η1

)

.

For the considered single input single output (SISO) system a
linear switching function is defined:

S (1xR) = cT · 1xR,U =
[

c1 c2 c3
]

· T ·
(

x̂U − x∗U
)

,

with 1xR,U = T ·
(

x̂U − x∗U
)

. (27)

During the sliding mode S (1xR) = 0 as well as Ṡ (1xR) =

0 applies. This behavior is obtained by the equivalent input
(DeCarlo et al., 1988)

ueq = −
(

cT · bR,U
)−1

· cT · AR,U · 1xR,U ,

with AR,U = T · AU · T−1 and bR,U = T · bU . (28)

With this input the dynamics during the sliding mode only
depend on the coefficients ci, with i = 1, 2, 3, of the switching
function in Equation (27):

1ẋR,U = AR,U · 1xR,U + bR,U · ueq

=

[

I− b ·
[

cT · b
]−1

· cT
]

· AR,U · 1xR,U

=





0 0 0
0 0 1
0 − c1

c3
− c2

c3



 · 1xR =

[

0 0T

0 Ã1

]

· 1xR,U .

(29)

An other characteristic property of the SMC approach is that
during the sliding mode the system order n is reduced by the
number of inputs p (here p = 1). Thus, the dynamics during
the sliding mode can be defined by a pole placement under
consideration of Ã1. For a second order element with damping
coefficient D and cut-off frequency ωg this results in:

det
(

s · I− Ã1,U

)

= s2 +
c2

c3
· s+

c1

c3

!
= s2 + 2 · D · ωg · s+ ω2

g

with c3 = 1, ⇒ c1 = ω2
g , c2 = 2 · D · ωg.

(30)

4.2. Reachability
To reach this sliding mode a proper controller function
u

(

1xR,U
)

has to be determined and parametrized under
consideration of the properties of the feeding power electronics.
One approach to prove the reachability is based on an
investigation of the Laypunov function V

(

1xR,U
)

= 1/2 ·

S2
(

1xR,U
)

. To ensure stable steady-state behavior the time
derivate of the Lyapunov function has to be negative:

V̇
(

1xR,U
)

= S
(

1xR,U
)

· Ṡ
(

1xR,U
) !
< 0. (31)

The derivative of the switching function is given by:

Ṡ
(

1xR,U
)

= cT · T ·
(

AU · 1xU + bU · u
(

1xR,U
))

= ζ1 · 1ε̇z + ζ2 · 1εE1 + ζ3 · 1Uc,diel + u
(

1xR,U
)

, with

(32)

ζ1 =
V

2 · γ1

(

ω2
g − 2 · D · ωg ·

(

γ1 · ηE +
E1

η1

)

+γ 2
1 · η2E + γ1 · E1 ·

(
ηE

η1
− 1

)

+
E21
η21

)

,

(33a)

ζ2 =
V · E1

2 · γ1 · η1
·

(

ω2
g + 2 · D · ωg ·

(

γ1 · η1 −
E1

η1

)

−2 · γ1 · E1 − γ 2
1 · ηE · η1 +

E21
η21

)

and

(33b)

ζ3 = 2 · D · ωg −
2

τp
−

E1

η1
− γ1 · ηE, for x̂U = 0. (33c)

The coefficients ζ1, ζ2 and ζ3 depend on material parameters as
well as the damping ratio D and cut-off frequency ωg. These two
controller parameters are chosen in such a way that the influence
of the state variables1ε̇z and1εE1 on Equation (32) vanishes. By
solving ζ1 = 0 and ζ2 = 0 the following parameters result:

ωg,0 =

√

γ1 · E1 ·
η1 + ηE

η1
and (34a)

D0 =
1

2
·

√

(E1 + γ1 · η1 · ηE)
2

γ1 · E1 · η1 · (η1 + ηE)
. (34b)

According to Equation (5) the input power p̄ supplied by the
bidirectional flyback converter can be described by a three-point
controller. However, for the design of the SMC the off-state with
p̄ = 0 can be neglected in a first step. Under consideration
p̄ = ±p̄max a two-point controller is defined:

u
(

1xR,U
)

= sgn
(

S
(

1xR,U
))

· ̺. (35)

The parameter ̺ = ±p̄max will be chosen so that the reachability
is ensured.

By inserting Equations (34), (34b), and (35) into Equation (32)
the time derivative of the switching function simplifies to:

Ṡ
(

1xR,U
)

= − 2
τp

· 1Uc,diel + u
(

1xR,U
)

= 2
τp

· U∗
c,diel

+ sgn
(

S
(

1xR,ε
))

· ̺. (36)

The control parameter ̺ is determined by applying a case-by-case
analysis to satisfy Equation (31):

I.: S
(

1xR,U
)

> 0, ⇒ u
(

1xR,U
)

= +̺,

⇒ Ṡ
(

1xR,U
)

=
2

τp
· U∗

c,diel + ̺
!
< 0,

II.: S
(

1xR,U
)

< 0, ⇒ u
(

1xR,U
)

= −̺,

⇒ Ṡ
(

1xR,U
)

=
2

τp
· U∗

c,diel − ̺
!
> 0.

(37)
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As the energy U∗
c,diel

will always be equal to or larger than zero,
both inequalities are solved by choosing:

̺ = −p̄′max ⇒ p̄′max >
2

τp
· U∗

c,diel. (38)

Especially during steady state the introduced two-
point controller will permanently switch between the
positive and negative input power ±p̄max. To avoid this
chattering, the controller is extended to a three-point
controller with hysteresis, as already shown in Figure 4:

p̄∗ =







+p̄max, for S
(

1xR,U
)

≤ −δS or −δS < S
(

1xR,U
)

< 0 ∧Ṡ
(

1xR,U
)

> 0

0, else

−p̄max for S
(

1xR,U
)

≥ δS or 0 < S
(

1xR,U
)

< δS ∧Ṡ
(

1xR,U
)

< 0
. (39)

On the one hand, the off-state of the flyback converter
is now taken into account, while on the other hand the
hysteresis with threshold δS will significantly reduce the
switching frequency in closed-loop operation. In Figure 4

an output limitation is also depicted that switches off the
control, when the energy Ûc,diel exceeds a maximum value
Uc,diel,max. Furthermore, to improve the steady state behavior
the inner control of the flyback converter is adapted. Depending
on the absolute value of the switching function |S(1xR,U)|,
the maximum magnetizing current I∗m,max and thus the
feeding power p̄ according to Equation (5) is varied. This
ensures, that for large control deviations corresponding to
large values of |S(1xR,U)| the maximum feeding power is
supplied for achieving the maximum dynamics. In contrast,
for small control deviations the power is reduced for a
higher accuracy by also adapting the hysteresis threshold δS.

Further details can be found in Hoffstadt and Maas (2017,
2018b).

5. EXPERIMENTAL VALIDATION

5.1. Test Setup for the Experimental
Validation
Figure 5 schematically depicts the test setup used for the
experimental validation of the self-sensing estimator and the self-
sensing control. It consists of a bidirectional flyback converter
that supplies the DE transducer with voltages up to 2.5 kV

(Hoffstadt and Maas, 2016). The voltage vDE,m is measured with
the voltage probe TT-SI 9010 fromTestec, while the current iDE,m
is determined by the voltage drop across the shunt resistance
Ris =1 k�. Details about the utilized DE transducers can be
found in Maas et al. (2015). If no-load scenarios are investigated
in the following, the displacement of the DE transducer is directly

TABLE 1 | Parameters of the utilized silicone based DE stack-transducer and the

self-sensing controller.

Y ηE E1 η1 V mB N · d0 = z0 τp

1.08 MPa 490 Pa·s 155 kPa 1.7 kPa·s 1.4 cm3 0.5 g 9.6 mm 24 s

Cp,0 Rs Rvv ωg D Imin Imax δS

6 nF 135 k� 4 V2 2.430 rad/s 3 4 A 8 A 4 · 1Umax

FIGURE 5 | Test setup for the experimental validation comprising a bidirectional flyback converter, a voltage and current measurement, a DE stack-transducer and a

test rig with linear drive, while the data logging and the different controls are implemented on the real-time system.
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FIGURE 6 | Comparison of the EKF-based estimation results of the proposed self-sensing filter with a sensor-based filter for the no-load scenario.

measured with the laser sensor OptoNCDT ILD 2300 from
Micro-Epsilon. To apply loads to the DE transducer the test rig
on the right hand side of Figure 5 will be used. It consists of
a force measurement with the force sensor 9217A from Kistler
and a voice coil linear drive VM8054-630 from Geeplus. The
DE transducer can be attached between the force measurement
and the linear drive. Via the voice coil load profiles with high
dynamics can be applied to the DE transducer, while the resulting
actuator force Fact,m is measured. Here, the same laser sensor as
for the no-load scenariosmeasures the displacement of the rigidly
coupled voice coil and DE transducer.

The proposed self-sensing algorithm and the energy control
are implemented on the DSP of a real-time system from dSPACE
operating with a sample rate of fDSP = 20 kHz. The system
contains also a fast FPGA board. On this board the control of the
flyback converter and the signal conditioning for the measured
voltage and current vDE,m and iDE,m are performed.

5.2. Validation of the EKF-Based
Self-Sensing Algorithm
Before the closed-loop self-sensing operation is investigated,
the estimation results obtained with the suggested self-sensing
approach are compared to results estimated with the sensor-
based observer introduced in Hoffstadt and Maas (2017, 2018b).
The parameters of the silicone based DE stack-transducer with
N = 192 layers are listed in Table 1. This table also includes
parameters for the controller used in the following section.

Figure 6 compares the estimation results of the proposed self-
sensing approach with the sensor-based estimator. The voltage
controlled bidirectional flyback converter supplies the DE stack-
transducer stepwise with voltages of vDE =1.5, 2.5, and 2 kV,
respectively. The charge qp determined by filtering the measured
current iDE,m according to Equation (10) is used as input for
the self-sensing filter, while the sensor-based estimator uses the
energy Uc,diel as input.
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FIGURE 7 | Comparison of the EKF-based estimation results of the proposed self-sensing filter with a sensor-based filter when a load force is applied to the DE

transducer.

The measurement noise Rvv = 4 V2 required for the
implementation of the EKF can be determined experimentally.
For this, the output function gqv in Equation (13) and the
properties of the voltage probe and current measurement via the
shunt have to be taken into account. One of the main issues
when designing an EKF is to find an appropriate choice of
Qww. Here, the numerical optimization approach presented by
Powell (2002) is used to minimize the error between simulated
and estimated state variables by varying the entries of the
symmetric matrix Qww. For the system introduced in section 3
this optimization yields:

Qww,qv

= ζqv ·







4, 8 · 10−8 −1, 7 · 10−9 −2, 2 · 10−8 −9, 3 · 10−4

−1, 7 · 10−9 4, 9 · 10−5 1, 5 · 10−4 4, 4 · 10−1

−2, 2 · 10−8 1, 5 · 10−4 1, 6 · 10−9 −1, 7 · 10−5

−9, 3 · 10−4 4, 4 · 10−1 −1, 7 · 10−5 7, 6 · 104






.

(40)

The entries represent in a certain way the uncertainty of the
model (13) to describe the dynamics of the state variables. While
all entries of the matrix are comparable small, the one in the

fourth row and column is very large. This is due to the unknown
dynamics of the load tension that is considered with σ̇load =

0 in Equation (13). As the dynamics of the state estimation
can be adjusted by the absolute values of the entries in Qww

the scaling factor ζqv is introduced. It gives the opportunity to
adjust a compromise between sufficient dynamics, reliable state
estimation and noise suppression.

In Figure 6 the no-load scenario with Fload = A · σload =

0 is considered. As can be seen in the comparison of the
measured and estimated strains εz in the top right plot, almost
no deviations between the approaches in terms of dynamics
and accuracy occur. Due to parameter deviations the sensor-
based filter estimates small load forces especially during transient

operation. For the self-sensing filter with ζqv = 10−3 a
comparable small factor is applied here. With this negligible

deviations in the estimated load force occur without affecting the
estimation results of the state variables shown on the right.

Figure 7 compares the estimation results obtained when a

load force of Fload = 2 N is stepwise applied to the DE stack-

transducer with the force controlled voice coil actuator. When
the tensile load is applied the strain of the DE transducer reduces
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FIGURE 8 | Comparison of the sensor-based and self-sensing sliding mode energy control. In both cases two-point controllers (2PC) with I∗m,max = 8 A and

I∗m,max = 4 A as well as the three-point controller (3PC) with hysteresis and adaption of the inner flyback converter control are considered.

from εz ≈ 1.9% to εz ≈ 1.1%. In voltage controlled operation
this causes a reduction of charge and energy as can be seen in
the top left plot. The saw tooth profile in the charge qp and
energy Uc,diel is caused by the voltage control of the flyback
converter that is based on a hysteresis controller. The sensor-
based filter estimates the strain as well as the load force with
errors less than |errε| ≤ 1% and |errF| ≤ 4%, respectively. For
the self-sensing filter two parameterization with ζqv = 10−3

and ζqv = 1 are investigated. While with ζqv = 10−3 the
strain and force are estimated with errors below |errε| ≤ 1%
before the load is applied and after it is released, the dynamics
of the estimation is not sufficient to consider the influence of
the load correctly. In contrast, with ζqv = 1 the influence of the
load is accurately estimated. However, with this setting the noise
suppression especially for charge states below qp ≤ 5 µAs is not
sufficient. Therefore, for the following investigations of the self-
sensing control the scaling factor is switched from ζqv = 10−3 to
ζqv = 1 if the charge exceed qp ≤ 5µAs. This ensures an accurate

estimation of the inner transducer states at low charge states as
well as an accurate detection of a load force and its influence on
the states.

5.3. Validation of the Self-Sensing Control
The parameters of the sliding mode energy controller designed
in section 4 are listed in Table 1. The damping coefficient D = 3
and cut-off frequency ωg = 2.430 rad/s were determined with
Equation (34). The hysteresis threshold δS = 4 · 1Umax for the
three-point controller in Equation (39) is set to a multiple of the
energy increment 1Umax transfered during one switching period
TS of the flyback converter. Figure 8 compares the closed-loop
operation of the sensor-based controller published in Hoffstadt
and Maas (2018b) and the proposed self-sensing controller.
First of all, no feed-forward control approaches as suggested in
Equations (20)–(22) are considered. Instead, three setpoint steps
for the energy U∗

c,diel
are applied that correspond to voltages of
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FIGURE 9 | Bandwidth of the sensor-based and self-sensing sliding mode energy control for the three investigated controller settings.

FIGURE 10 | Comparison of a simple hysteresis voltage control with the sensor-based and self sensing energy three-point controller using a voltage

feed-forward control.

vDE = 1.5 kV, 2.5 kV and 2 kV for the silicone based DE-
stack-transducer, respectively. For both, the sensor-based and
the self-sensing control two-point controllers (2PC) according
to Equation (35) with I∗m,max = 8 A and I∗m,max = 4 A are
investigated as well as the three-point controller (3PC) with
hysteresis and adaption of the inner flyback converter control
from Equation (39) and Figure 4. The DE stack-transducer is
attached between the force measurement and the blocked voice
coil so that it cannot deform (εz = 0) to avoid disturbances.

Via the setpoint I∗m,max for the current control of the flyback
converter its feeding power is adjusted according to Equation (5).
Due to the reduced power it takes a longer time to adjust the
setpoint energies with the two-point controller with I∗m,max = 4 A
compared to the one with I∗m,max = 8 A. In contrast, the reduced
feeding power results in a higher accuracy during steady state.
The standard deviation for the time interval between 50 and
60 ms increases from 0.03 mJ (2PC, I∗m,max = 4 A) to 0.05 mJ
(2PC, I∗m,max = 8 A) for the sensor-based control and from 0.1 to
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FIGURE 11 | Comparison of the sensor-based and self-sensing energy control with position feed-forward control and an explicit sliding mode position control.

0.3 mJ for the self-sensing control, respectively. The adaptive
three-point controller with hysteresis combines the advantageous
of the two mentioned two-point controllers by automatically
choosing the maximum current I∗m,max = 8 A right after setpoint
steps and reducing this current to I∗m,max = 4 A at steady state.
This fundamental behavior applies for both the sensor-based and
self-sensing control. Although the dynamics of both approaches
are comparable, a small oscillation around the setpoint can be
observed in case of the self-sensing control that results in the
higher standard deviation.

Furthermore, it can be seen that the two-point controllers
permanently switch between the maximum charging and
discharging power p̄ = ±p̄max during steady state. By extending
the controller to a three-point controller with hysteresis, the
switching frequency can be significantly reduced by more than
80% in case of the sensor-based control and 30% in case of the
self-sensing control.

Figure 9 depicts the comparison of the bandwidth of the
introduced controller settings. For this purpose, the small
signal behavior is considered. A harmonic setpoint U∗

c,diel
with

increasing frequency, an offset of Ūc,diel = 12 mJ and an
amplitude of Uc,diel,amp = 2 mJ is applied. The sensor-based two-
point controller with I∗m,max = 8 A and the three-point controller
have a high -3 dB cut-off frequency of about 400 Hz. This is
also obtained with the self-sensing control. However, disruptive
amplitude peaks of about 5 dB result in the already observed
oscillation. By reducing the feeding power p̄ with I∗m,max = 4 A,
the cut-off frequency is reduced to 200 Hz, while the amplitude
peaks are suppressed.

5.4. Energy Control With Voltage
Feed-Forward Control
By applying Equation (22) for the feed-forward control depicted
in Figure 4 the voltage vp across the capacitance Cp can be
controlled. In Figure 10 the results of the sensor-based and
self-sensing energy three-point controller are compared to the
behavior obtained with the hysteresis voltage control for the
bidirectional flyback converter suggested in Hoffstadt and Maas
(2016).
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FIGURE 12 | Disturbance reaction of the sensor-based and self-sensing energy control with position feed-forward control and an explicit sliding mode position control.

For the hysteresis voltage control a threshold of 1vDE = 30 V
was chosen. If the control deviation |v∗DE − vDE,m| exceeds this
threshold the control activates the flyback converter to charge or
discharge the DE transducer. Afterwards the converter is turned
into idle state again. The three-point controller suggested here
behaves more or less the same. The only difference is that with the
controller settings from Table 1 a threshold of vp ≈ 16 V results.
This smaller threshold increases on the one hand the steady state
accuracy. However, the switching frequency is on the other hand
a bit higher compared to the simple hysteresis voltage control.
Concerning the sensor-based and self-sensing energy control a
comparable behavior as shown and explained in Figure 8 can be
observed here, too.

5.5. Energy Control With Position
Feed-Forward Control
If the setpoint energy U∗

c,diel
of the control structure in Figure 4

is determined with Equation (20) the proposed energy control
can be used to adjust a certain strain ε∗z , although the strain

is not part of the state vector xU . To compensate the influence
of a disturbance, the estimated load σ̂load is considered in
Equation (20). In contrast, an explicit position control based
on the model (6) was derived in Hoffstadt and Maas (2017).
Figure 11 shows the comparison of the explicit (Position-3PC)
and energy-based position control (Energy-3PC) for the no-load
case of the DE stack-transducer. Both approaches are realized
as sensor-based and self-sensing control with the adaptive three-
point controller from Equation (39).

The explicit and energy-based position control show
comparable dynamics and accuracy for both the sensor-
based and the self-sensing control. The different setpoints
are adjusted within a few milliseconds. By increasing the
strain setpoint ε∗z the energy U∗

c,diel
also increases according

to Equation (20). Instead of the energy, the voltage vDE is
depicted in Figure 11 as it is measured directly and can be
interpreted more intuitively. With Equation (22) a relationship
between the voltage vp ≈ vDE is given. As the no-load
case is considered here, for a constant setpoint of the strain
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FIGURE 13 | Comparison of the sensor-based and self-sensing sliding mode energy control with force feed-forward control. In both cases two-point controllers (2PC)

with I∗m,max = 8 A and I∗m,max = 4 A as well as the three-point controller (3PC) with hysteresis and adaption of the inner flyback converter control are considered.

ε∗z a constant setpoint for the energy U∗
c,diel

or the voltage
results, respectively.

In addition, Figure 12 depicts the disturbance reaction of the

different position control approaches. For this purpose, a tensile
load force of F∗

load
= 0.5 N is applied by the linear drive of the

test rig in Figure 5, while the setpoint strain is constantly set to

ε∗z = 1%. Right after the load is applied, the strain deviates from

its setpoint due to the influence of the disturbance. However, the

load is estimated with the sensor-based as well as the self-sensing
EKF. According to Equation (20) the setpoint energy U∗

c,diel
, or

voltage v∗DE, respectively, is increased to compensate the influence

of the disturbance σ̂load. In Figure 12 this behavior can be seen

in the response of the corresponding voltage vDE in the third
subplot. This compensates the influence of the disturbance within
approx. 15 ms. In case of the energy-based position control a
slightly higher control deviation can be observed after the load
steps. This is mainly due to the fact, that the energy control

only reacts on control deviations of the energy Uc,diel, while the
explicit position control considers the control deviation of the
strain εz directly.

5.6. Energy Control With Force
Feed-Forward Control
Beside the two validated approaches, Equation (21) offers
the opportunity to realize a force feed-forward control under
consideration of the current elastic material tension σelast(ε̂z)
based on the proposed energy control as already depicted in
Figure 4. As for the previous two approaches, the controller
settings are the same as listed in Table 1. However, in Figure 13

also the two-point controller with Im,max = 8 A and Im,max = 4 A
is considered again. The deformation of the DE stack-transducer
is blocked in this case to investigate the control behavior
caused by setpoint steps without any disturbance. In general, a
comparable behavior to the pure energy control in Figure 8 can
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FIGURE 14 | Disturbance reaction of the sensor-based and self-sensing energy control with force feed-forward control.

be observed here, too. According to Equation (21) a constant
energy setpoint U∗

c,diel
is obtained for a certain force F∗act and

εz = 0. In comparison to the two-point controllers the adaptive
three-point controller from Equation (39) ensures the highest
possible dynamics by the maximum current Im,max = 8 A
during transient operation as well as good steady state accuracy
with significantly reduced switching frequency by reducing the
current to Im,max = 4 A. The self-sensing control adjusts
the different setpoint forces with dynamics that are absolutely
comparable to the sensor-based control.

In Figure 14 also the disturbance reaction of the energy-based
force control is shown. In this case a variable strain εz adjusted
by the position-controlled linear drive acts as a disturbance. The
stepwise change of the strain to ε∗z = 1% causes a reduction of
the force Fact in the first moment. However, by increasing the
setpoint energy U∗

c,diel
, or voltage v∗DE, respectively, according

to Equation (21) the influence is compensated comparable
to the behavior observed for the disturbance reaction of the

energy-based position control in Figure 12. The sensor-based
control offers a marginal better control quality what is caused
by the slightly higher dynamics of the sensor-based state and
disturbance estimation.

The investigation of the pure energy control in Figures 8, 9 as
well as of the different feed-forward controls in the Figures 10–
14 proved that both high dynamics and good steady state
accuracy are obtained with the proposed self-sensing control
approach. The developed self-sensing EKF estimates not only
the inner states of the DE transducer but also an external load
tension. In case of the position feed-forward control this allows
to compensate the influence of a disturbance load. In contrast,
if the force feed-forward control is applied the elastic material
tension caused by a deformation of the DE transducer is reliably
compensated. Furthermore, extensions to an adaptive three-
point controller enabled a reduction of the switching frequency
of up to 80% to increase the energy efficiency without reducing
the bandwidth of about 400 Hz and the steady state accuracy.
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6. CONCLUSION

DE transducer combine high energy densities and multi-
functional operation modes. Multilayer topologies like the DE
stack-actuator considered here have also high force densities
with considerable absolute deformations so that they are well-
suited to be used as active skins or as end effector in soft-
robotic applications. But, beside the transducer design also
appropriate control and sensing algorithms are required to enable
the combined actuator-sensor-operation in closed loop operation
without external sensors to measure mechanical states. The
design of such a self-sensing state and disturbance estimator as
a universal energy control that uses the information from a novel
self-sensing estimator were addressed within this contribution.

For this purpose, in section 2 the control plant comprising a
DE stack-transducer fed by a bidirectional flyback converter and
its model to describe the electormechanically coupled behavior
was summarized. To characterize the electrical behavior the
model includes the energy Uc,diel as one state variable. Based
on this model subsequently a self-sensing state and disturbance
estimator was developed that estimates the mechanical state
of the transducer as well as an external load force by just
measuring the terminal voltage and current. Due to the non-
linear system behavior an EKF was used for this purpose. It
allows to estimate the transducer state without any superimposed
voltage excitation as used for other self-sensing approaches. The
validation results have shown that almost no confinements in
terms of dynamics and accuracy compared to the sensor-based
estimator are obtained. The sensor-based estimator requires a
measurement of the terminal voltage and the displacement.

The developed energy control uses the information provided
by the self-sensing EKF for closed loop operation. Due to the
behavior of the bidirectional flyback converter, that either charges
or discharges a DE transducer with almost constant power when
enabled, the sliding mode control approach was applied. By
controlling the energy in the capacitance of the DE transducer
it is possible to control the voltage, force or displacement of
the transducer by using different feed-forward control structures.
The setpoint energy required to achieve a certain actuator force

or displacement was obtained under consideration of the static
force equilibrium included in the derived model. Within the
validation it was shown that a precise control of the voltage, force
and displacement with high dynamics and a bandwidth of up
to 400 Hz is achieved with this approach. The step response as
well as the disturbance reaction yield comparable dynamics and
accuracy for both the sensor-based and self-sensing control.

Although here a DE stack-transducer was considered, the
developed self-sensing EKF and control approach can also
be applied to other topologies well-suited for soft robotic
applications like DE-based minimum energy structures or
membrane actuators. The utilized bidirectional flyback converter
represents an efficient and competitive converter topology and
can also be used to supply any kind of DE transducer. In
case of soft-bodied robots equipped with DE transducers and
the mentioned converter the suggested self-sensing control
approach can be used to control the impedance of the robot
by applying the proposed force and displacement feed-forward
controls in combination with a human-machine-interface model.
If under consideration of the utilized test setup a charge
of at least qp = 5 µAs is applied, the proposed self-
sensing filter can also detect collisions or interactions. This
could be used e.g., in human machine interfaces or active
skins, so that the control can react on these events. While
for these applications the force and displacement control
are most important, the voltage control could be used to
avoid exceeding limitations that would cause a damage of
the transducer.
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