14 research outputs found

    A New 3-D Multistable Chaotic System with Line Equilibrium: Dynamic Analysis and Synchronization

    Get PDF
    This work introduces a new 3-D chaotic system with a line of equilibrium points. We carry out a detailed dynamic analysis of the proposed chaotic system with five nonlinear terms. We show that the chaotic system exhibits multistability with two coexisting chaotic attractors. We apply integral sliding mode control for the complete synchronization of the new chaotic system with itself as leader-follower systems

    A New Chaotic System with Line of Equilibria: Dynamics, Passive Control and Circuit Design

    Get PDF
    A new chaotic system with line equilibrium is introduced in this paper. This system consists of five terms with two transcendental nonlinearities and two quadratic nonlinearities. Various tools of dynamical system such as phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, bifurcation diagram and Poincarè map are used. It is interesting that this system has a line of fixed points and can display chaotic attractors. Next, this paper discusses control using passive control method. One example is given to insure the theoretical analysis. Finally, for the  new chaotic system, An electronic circuit for realizing the chaotic system has been implemented. The numerical simulation by using MATLAB 2010 and implementation of circuit simulations by using MultiSIM 10.0 have been performed in this study

    Adaptive Projective Lag Synchronization of T and Lu Chaotic Systems

    Get PDF
    In this paper, the synchronization problem of T chaotic system and Lu chaotic system is studied. The parameter of the drive T chaotic system is considered unknown. An adaptive projective lag control method and also parameter estimation law are designed to achieve chaos synchronization problem between two chaotic systems. Then Lyapunov stability theorem is utilized to prove the validity of the proposed control method. After that, some numerical simulations are performed to assess the performance of the proposed method. The results show high accuracy of the proposed method in control and synchronization of chaotic systems

    Fuzzy synchronization of chaotic systems with hidden attractors

    Get PDF
    Chaotic systems are hard to synchronize, and no general solution exists. The presence of hidden attractors makes finding a solution particularly elusive. Successful synchronization critically depends on the control strategy, which must be carefully chosen considering system features such as the presence of hidden attractors. We studied the feasibility of fuzzy control for synchronizing chaotic systems with hidden attractors and employed a special numerical integration method that takes advantage of the oscillatory characteristic of chaotic systems. We hypothesized that fuzzy synchronization and the chosen numerical integration method can successfully deal with this case of synchronization. We tested two synchronization schemes: complete synchronization, which leverages linearization, and projective synchronization, capitalizing on parallel distributed compensation (PDC). We applied the proposal to a set of known chaotic systems of integer order with hidden attractors. Our results indicated that fuzzy control strategies combined with the special numerical integration method are effective tools to synchronize chaotic systems with hidden attractors. In addition, for projective synchronization, we propose a new strategy to optimize error convergence. Furthermore, we tested and compared different Takagi-Sugeno (T-S) fuzzy models obtained by tensor product (TP) model transformation. We found an effect of the fuzzy model of the chaotic system on the synchronization performance

    Controlling Hyperchaotic Finance System with Combining Passive and Feedback Controllers

    Get PDF
    In this paper, a novel control method that combines passive, linear feedback, and dislocated feedback control methods is proposed and applied to the control of the four-dimensional hyperchaotic finance system which has been introduced and controlled with the linear feedback and speed feedback control methods by Yu, Cai, and Li (2012). The stability of the hyperchaotic finance system at its equilibrium points is ensured on the basis of a Lyapunov function. Computer simulations are used for verifying all the theoretical analyses visually. In the simulations, the proposed control method is also compared with the speed feedback and linear feedback control methods to observe its effectiveness. Finally, the comparative findings are discussed

    A Chaotic Quadratic Oscillator with Only Squared Terms: Multistability, Impulsive Control, and Circuit Design

    Get PDF
    Here, a chaotic quadratic oscillator with only squared terms is proposed, which shows various dynamics. The oscillator has eight equilibrium points, and none of them is stable. Various bifurcation diagrams of the oscillator are investigated, and its Lyapunov exponents (LEs) are discussed. The multistability of the oscillator is discussed by plotting bifurcation diagrams with various initiation methods. The basin of attraction of the oscillator is discussed in two planes. Impulsive control is applied to the oscillator to control its chaotic dynamics. Additionally, the circuit is implemented to reveal its feasibility

    Symmetry in Chaotic Systems and Circuits

    Get PDF
    Symmetry can play an important role in the field of nonlinear systems and especially in the design of nonlinear circuits that produce chaos. Therefore, this Special Issue, titled “Symmetry in Chaotic Systems and Circuits”, presents the latest scientific advances in nonlinear chaotic systems and circuits that introduce various kinds of symmetries. Applications of chaotic systems and circuits with symmetries, or with a deliberate lack of symmetry, are also presented in this Special Issue. The volume contains 14 published papers from authors around the world. This reflects the high impact of this Special Issue

    Low-Cost Inventions and Patents

    Get PDF
    Inventions have led to the technological advances of mankind. There are inventions of all kinds, some of which have lasted hundreds of years or even longer. Low-cost technologies are expected to be easy to build, have little or no energy consumption, and be easy to maintain and operate. The use of sustainable technologies is essential in order to move towards a greater global coverage of technology, and therefore to improve human quality of life. Low-cost products always respond to a specific need, even if no in-depth analysis of the situation or possible solutions has been carried out. It is a consensus in all industrialized countries that patents have a decisive influence on the organization of the economy, as they are a key element in promoting technological innovation. Patents must aim to promote the technological development of countries, starting from their industrial situations

    Optimization-based Estimation and Control Algorithms for Quadcopter Applications

    Get PDF
    corecore