15 research outputs found

    Rikitake dynamo system, its circuit simulation and chaotic synchronization via quasi-sliding mode control

    Get PDF
    Rikitake dynamo system (1958) is a famous two-disk dynamo model that is capable of executing nonlinear chaotic oscillations similar to the chaotic oscillations as revealed by palaeomagnetic study. First, we detail the Rikitake dynamo system, its signal plots and important dynamic properties. Then a circuit design using Multisim is carried out for the Rikitake dynamo system. New synchronous quasi-sliding mode control (QSMC) for Rikitake chaotic system is studied in this paper. Furthermore, the selection on switching surface and the existence of QSMC scheme is also designed in this paper. The efficiency of the QSMC scheme is illustrated with MATLAB plots

    A New 3-D Multistable Chaotic System with Line Equilibrium: Dynamic Analysis and Synchronization

    Get PDF
    This work introduces a new 3-D chaotic system with a line of equilibrium points. We carry out a detailed dynamic analysis of the proposed chaotic system with five nonlinear terms. We show that the chaotic system exhibits multistability with two coexisting chaotic attractors. We apply integral sliding mode control for the complete synchronization of the new chaotic system with itself as leader-follower systems

    Control of chaos in nonlinear circuits and systems

    Get PDF
    Nonlinear circuits and systems, such as electronic circuits (Chapter 5), power converters (Chapter 6), human brains (Chapter 7), phase lock loops (Chapter 8), sigma delta modulators (Chapter 9), etc, are found almost everywhere. Understanding nonlinear behaviours as well as control of these circuits and systems are important for real practical engineering applications. Control theories for linear circuits and systems are well developed and almost complete. However, different nonlinear circuits and systems could exhibit very different behaviours. Hence, it is difficult to unify a general control theory for general nonlinear circuits and systems. Up to now, control theories for nonlinear circuits and systems are still very limited. The objective of this book is to review the state of the art chaos control methods for some common nonlinear circuits and systems, such as those listed in the above, and stimulate further research and development in chaos control for nonlinear circuits and systems. This book consists of three parts. The first part of the book consists of reviews on general chaos control methods. In particular, a time-delayed approach written by H. Huang and G. Feng is reviewed in Chapter 1. A master slave synchronization problem for chaotic Lur’e systems is considered. A delay independent and delay dependent synchronization criteria are derived based on the H performance. The design of the time delayed feedback controller can be accomplished by means of the feasibility of linear matrix inequalities. In Chapter 2, a fuzzy model based approach written by H.K. Lam and F.H.F. Leung is reviewed. The synchronization of chaotic systems subject to parameter uncertainties is considered. A chaotic system is first represented by the fuzzy model. A switching controller is then employed to synchronize the systems. The stability conditions in terms of linear matrix inequalities are derived based on the Lyapunov stability theory. The tracking performance and parameter design of the controller are formulated as a generalized eigenvalue minimization problem which is solved numerically via some convex programming techniques. In Chapter 3, a sliding mode control approach written by Y. Feng and X. Yu is reviewed. Three kinds of sliding mode control methods, traditional sliding mode control, terminal sliding mode control and non-singular terminal sliding mode control, are employed for the control of a chaotic system to realize two different control objectives, namely to force the system states to converge to zero or to track desired trajectories. Observer based chaos synchronizations for chaotic systems with single nonlinearity and multi-nonlinearities are also presented. In Chapter 4, an optimal control approach written by C.Z. Wu, C.M. Liu, K.L. Teo and Q.X. Shao is reviewed. Systems with nonparametric regression with jump points are considered. The rough locations of all the possible jump points are identified using existing kernel methods. A smooth spline function is used to approximate each segment of the regression function. A time scaling transformation is derived so as to map the undecided jump points to fixed points. The approximation problem is formulated as an optimization problem and solved via existing optimization tools. The second part of the book consists of reviews on general chaos controls for continuous-time systems. In particular, chaos controls for Chua’s circuits written by L.A.B. Tôrres, L.A. Aguirre, R.M. Palhares and E.M.A.M. Mendes are discussed in Chapter 5. An inductorless Chua’s circuit realization is presented, as well as some practical issues, such as data analysis, mathematical modelling and dynamical characterization, are discussed. The tradeoff among the control objective, the control energy and the model complexity is derived. In Chapter 6, chaos controls for pulse width modulation current mode single phase H-bridge inverters written by B. Robert, M. Feki and H.H.C. Iu are discussed. A time delayed feedback controller is used in conjunction with the proportional controller in its simple form as well as in its extended form to stabilize the desired periodic orbit for larger values of the proportional controller gain. This method is very robust and easy to implement. In Chapter 7, chaos controls for epileptiform bursting in the brain written by M.W. Slutzky, P. Cvitanovic and D.J. Mogul are discussed. Chaos analysis and chaos control algorithms for manipulating the seizure like behaviour in a brain slice model are discussed. The techniques provide a nonlinear control pathway for terminating or potentially preventing epileptic seizures in the whole brain. The third part of the book consists of reviews on general chaos controls for discrete-time systems. In particular, chaos controls for phase lock loops written by A.M. Harb and B.A. Harb are discussed in Chapter 8. A nonlinear controller based on the theory of backstepping is designed so that the phase lock loops will not be out of lock. Also, the phase lock loops will not exhibit Hopf bifurcation and chaotic behaviours. In Chapter 9, chaos controls for sigma delta modulators written by B.W.K. Ling, C.Y.F. Ho and J.D. Reiss are discussed. A fuzzy impulsive control approach is employed for the control of the sigma delta modulators. The local stability criterion and the condition for the occurrence of limit cycle behaviours are derived. Based on the derived conditions, a fuzzy impulsive control law is formulated so that the occurrence of the limit cycle behaviours, the effect of the audio clicks and the distance between the state vectors and an invariant set are minimized supposing that the invariant set is nonempty. The state vectors can be bounded within any arbitrary nonempty region no matter what the input step size, the initial condition and the filter parameters are. The editors are much indebted to the editor of the World Scientific Series on Nonlinear Science, Prof. Leon Chua, and to Senior Editor Miss Lakshmi Narayan for their help and congenial processing of the edition

    A preliminary investigation into the effects of nonlinear response modification within coupled oscillators

    Get PDF
    This thesis provides an account of an investigation into possible dynamic interactions between two coupled nonlinear sub-systems, each possessing opposing nonlinear overhang characteristics in the frequency domain in terms of positive and negative cubic stiffnesses. This system is a two degree-of-freedom Duffing oscillator coupled in series in which certain nonlinear effects can be advantageously neutralised under specific conditions. This theoretical vehicle has been used as a preliminary methodology for understanding the interactive behaviour within typical industrial ultrasonic cutting components. Ultrasonic energy is generated within a piezoelectric exciter, which is inherently nonlinear, and which is coupled to a bar-horn or block-horn to one, or more, material cutting blades, for example. The horn/blade configurations are also nonlinear, and within the whole system there are response features which are strongly reminiscent of positive and negative cubic stiffness effects. The two degree-of-freedom model is analysed and it is shown that a practically useful mitigating effect on the overall nonlinear response of the system can be created under certain conditions when one of the cubic stiffnesses is varied. It has also bfeen shown experimentally that coupling of ultrasonic components with different nonlinear characteristics can strongly influence the performance of the system and that the general behaviour of the hypothetical theoretical model is indeed borne out in practice

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    Cone-like Invariant Manifolds for Nonsmooth Systems

    Get PDF
    This thesis deals with rigorous mathematical techniques for higher-dimensional nonsmooth systems and their applications. The dynamical behaviour of these systems is a nonlocal problem due to the lack of smoothness. Motivated by various examples of nonsmooth systems in applications, we propose to explore the concept of invariant surfaces in the phase space which is separated by a discontinuity hypersurface. For such systems the corresponding Poincaré map can be determined; it turns out that under suitable conditions an invariant cone occurs which is characterized by a fixed point of the Poincaré map. The invariant cone seems to serve in a similar way as a generalisation of the classical center manifold for smooth differential systems. Hence, the stability of the whole system can be reduced to investigate the stability on the two-dimensional surface of the cone. Motivated to study the generation of invariant cones out of smooth systems, a numerical procedure to establish invariant cones and their stability is presented. It has been found that the flat degenerate cone in a smooth system develops under nonsmooth perturbations into a cone-like configuration. Also a simple example is used to explain a paradoxical situation concerning stability. Theoretical results concerning the existence of invariant cones and possible mechanisms responsible for the observed behavior for general three dimensional nonsmooth systems are discussed. These investigations reveal that the system possesses a rich dynamic behavior and new phenomena such as, for instance, the existence of multiple invariant cones for such system. Our approach is developed to include the case when sliding motion takes place on the manifold. Sliding dynamical equations are formulated by using Filippov's method. Existence of invariant cones containing a segment of sliding orbits are given as well as stability on these cones. Different sliding bifurcation scenarios are treated by theoretical analysis and simulation. As an application we have investigated the dynamics of an automotive brake system model under the excitation of dry friction force which has served as a motivating example to develop our concepts. This model belongs to the class of nonsmooth systems of Filippov type which is investigated from direct crossing and a sliding motion point of view. Existence of invariant cones and different types of bifurcation phenomena such as sliding periodic doubling and multiple periodic orbits are observed. Finally, extensions to nonlinear perturbations of nonsmooth linear systems have been obtained by using the nonsmooth linear system as basic system. If the basic system possesses an attractive invariant cone without sliding motion, we have shown that locally the Poincaré map contains the necessary information with regard to attractivity of the invariant cone. The existence of a generalized center manifold reduction of nonlinear system has been proven by using Hadamard graph transformation approach. A class of nonlinear systems having a cone-like invariant "manifold" is presented to illustrate the center manifold reduction and associated bifurcation. The scientific contributions of parts of this thesis are presented in [32,39,66]

    18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems: Proceedings

    Get PDF
    Proceedings of the 18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems, which took place in Dresden, Germany, 26 – 28 May 2010.:Welcome Address ........................ Page I Table of Contents ........................ Page III Symposium Committees .............. Page IV Special Thanks ............................. Page V Conference program (incl. page numbers of papers) ................... Page VI Conference papers Invited talks ................................ Page 1 Regular Papers ........................... Page 14 Wednesday, May 26th, 2010 ......... Page 15 Thursday, May 27th, 2010 .......... Page 110 Friday, May 28th, 2010 ............... Page 210 Author index ............................... Page XII

    Second International Workshop on Harmonic Oscillators

    Get PDF
    The Second International Workshop on Harmonic Oscillators was held at the Hotel Hacienda Cocoyoc from March 23 to 25, 1994. The Workshop gathered 67 participants; there were 10 invited lecturers, 30 plenary oral presentations, 15 posters, and plenty of discussion divided into the five sessions of this volume. The Organizing Committee was asked by the chairman of several Mexican funding agencies what exactly was meant by harmonic oscillators, and for what purpose the new research could be useful. Harmonic oscillators - as we explained - is a code name for a family of mathematical models based on the theory of Lie algebras and groups, with applications in a growing range of physical theories and technologies: molecular, atomic, nuclear and particle physics; quantum optics and communication theory

    Fourth SIAM Conference on Applications of Dynamical Systems

    Get PDF
    corecore