13 research outputs found

    Slicing AADL Specifications for Model Checking

    Get PDF
    To combat the state-space explosion problem in model checking larger systems, abstraction techniques can be employed. Here, methods that operate on the system specification before constructing its state space are preferable to those that try to minimize the resulting transition system as they generally reduce peak memory requirements. We sketch a slicing algorithm for system specifications written in (a variant of) the Architecture Analysis and Design Language (AADL). Given a specification and a property to be verified, it automatically removes those parts of the specification that are irrelevant for model checking the property, thus reducing the size of the corresponding transition system. The applicability and effectiveness of our approach is demonstrated by analyzing the state-space reduction for an example, employing a translator from AADL to Promela, the input language of the SPIN model checker

    Causally consistent dynamic slicing

    Get PDF
    We offer a lattice-theoretic account of the problem of dynamic slicing for π-calculus, building on prior work in the sequential setting. For any particular run of a concurrent program, we exhibit a Galois connection relating forward slices of the initial configuration to backward slices of the terminal configuration. We prove that, up to lattice isomorphism, the same Galois connection arises for any causally equivalent execution, allowing an efficient concurrent implementation of slicing via a standard interleaving semantics. Our approach has been formalised in the dependentlytyped programming language Agda

    Static slicing of explicitly synchronized languages

    Get PDF
    Static analysis of concurrent languages is a complex task due to the non-deterministic execution of processes. If the concurrent language being studied allows process synchronization, then the analyses are even more complex (and thus expensive), e.g., due to the phenomenon of deadlock. In this work we introduce a static analysis technique based on program slicing for concurrent and explicitly synchronized languages in general, and CSP in particular. Concretely, given a particular point in a specification, our technique allows us to know what parts of the specification must necessarily be executed before this point, and what parts of the specification could be executed before it. Our technique is based on a new data structure that extends the Synchronized Control Flow Graph (SCFG). We show that this new data structure improves the SCFG by taking into account the context in which processes are called and, thus, it makes the slicing process more precise. The technique has been implemented and tested with real specifications, producing good results. After formally defining our technique, we describe our tool, its architecture, its main applications and the results obtained from several experiments conducted in order to measure the performance of the tool. © 2012 Elsevier Inc. All rights reserved.This work has been partially supported by the Spanish Ministerio de Economia y Competitividad (Secretaria de Estado de Investigacion, Desarrollo e Innovacion) under grant TIN2008-06622-C03-02 and by the Generalitat Valenciana under grant PROMETEO/2011/052. Salvador Tamarit was partially supported by the Spanish MICINN under FPI grant BES-2009-015019.Leuschel ., M.; Llorens Agost, ML.; Oliver Villarroya, J.; Silva Galiana, JF.; Tamarit Muñoz, S. (2012). Static slicing of explicitly synchronized languages. Information and Computation. 214:10-46. https://doi.org/10.1016/j.ic.2012.02.005S104621

    A survey of program slicing techniques

    Get PDF

    An Analysis of the Current Program Slicing and Algorithmic Debugging Based Techniques

    Full text link
    This thesis presents a classification of program slicing based techniques. The classification allows us to identify the differences between existing techniques, but it also allows us to predict new slicing techniques. The study identifies and compares the dimensions that influence current techniques.Silva Galiana, JF. (2008). An Analysis of the Current Program Slicing and Algorithmic Debugging Based Techniques. http://hdl.handle.net/10251/14300Archivo delegad

    A Graph Coloring Approach to Dynamic Slicing of Object-Oriented Programs

    Get PDF
    Program slicing is a decomposition technique, which produces a subprogram from the parent program relevant to a particular computation. Hence slicing is also regarded as a program transformation technique. A dynamic program slice is an executable part of a program whose behavior is identical, for the same program input, to that of the original program with respect to a variable of interest at some execution position. Dynamic slices are smaller than static slice, which can be used eciently in dierent software engineering activities like program testing, debugging, software maintenance, program comprehension etc. In this dissertation, we present our work concerned with the dynamic slicing of object-oriented programs. We have developed a novel algorithm, which incorporates graph coloring technique to compute dynamic slice of object-oriented programs. But in order to achieve the goal efficiently, we have contradicted the constraints of the traditional graph coloring theory. Moreover, the state restriction of the slicing criterion is taken into consideration, in addition to the dependence analysis. The advantage of our algorithm is that, it is more time ecient than the existing algorithms. We have named this algorithm, as Contradictory Graph Coloring Algorithm (CGCA)

    Slicing of Concurrent Programs and its Application to Information Flow Control

    Get PDF
    This thesis presents a practical technique for information flow control for concurrent programs with threads and shared-memory communication. The technique guarantees confidentiality of information with respect to a reasonable attacker model and utilizes program dependence graphs (PDGs), a language-independent representation of information flow in a program

    Analysis Techniques for Concurrent Programming Languages

    Full text link
    Los lenguajes concurrentes est an cada d a m as presentes en nuestra sociedad, tanto en las nuevas tecnolog as como en los sistemas utilizados de manera cotidiana. M as a un, dada la actual distribuci on de los sistemas y su arquitectura interna, cabe esperar que este hecho siga siendo una realidad en los pr oximos a~nos. En este contexto, el desarrollo de herramientas de apoyo al desarrollo de programas concurrentes se vuelve esencial. Adem as, el comportamiento de los sistemas concurrentes es especialmente dif cil de analizar, por lo que cualquier herramienta que ayude en esta tarea, a un cuando sea limitada, ser a de gran utilidad. Por ejemplo, podemos encontrar herramientas para la depuraci on, an alisis, comprobaci on, optimizaci on, o simpli caci on de programas. Muchas de ellas son ampliamente utilizadas por los programadores hoy en d a. El prop osito de esta tesis es introducir, a trav es de diferentes lenguajes de programaci on concurrentes, t ecnicas de an alisis que puedan ayudar a mejorar la experiencia del desarrollo y publicaci on de software para modelos concurrentes. En esta tesis se introducen tanto an alisis est aticos (aproximando todas las posibles ejecuciones) como din amicos (considerando una ejecuci on en concreto). Los trabajos aqu propuestos di eren lo su ciente entre s para constituir ideas totalmente independientes, pero manteniendo un nexo com un: el hecho de ser un an alisis para un lenguaje concurrente. Todos los an alisis presentados han sido de nidos formalmente y se ha probado su correcci on, asegurando que los resultados obtenidos tendr an el grado de abilidad necesario en sistemas que lo requieran, como por ejemplo, en sistemas cr ticos. Adem as, se incluye la descripci on de las herramientas software que implementan las diferentes ideas propuestas. Esto le da al trabajo una utilidad m as all a del marco te orico, permitiendo poner en pr actica y probar con ejemplos reales los diferentes an alisis. Todas las ideas aqu presentadas constituyen, por s mismas, propuestas aplicables en multitud de contextos y problemas actuales. Adem as, individualmente sirven de punto de partida para otros an alisis derivados, as como para la adaptaci on a otros lenguajes de la misma familia. Esto le da un valor a~nadido a este trabajo, como bien atestiguan algunos trabajos posteriores que ya se est an bene ciando de los resultados obtenidos en esta tesis.Concurrent languages are increasingly present in our society, both in new technologies and in the systems used on a daily basis. Moreover, given the current systems distribution and their internal architecture, one can expect that this remains so in the coming years. In this context, the development of tools to support the implementation of concurrent programs becomes essential. Futhermore, the behavior of concurrent systems is particularly difficult to analyse, so that any tool that helps in this task, even if in a limited way, will be very useful. For example, one can find tools for debugging, analysis, testing, optimisation, or simplification of programs, which are widely used by programmers nowadays. The purpose of this thesis is to introduce, through various concurrent programming languages, some analysis techniques that can help to improve the experience of the software development and release for concurrent models. This thesis introduces both static (approximating all possible executions) and dynamic (considering a specific execution) analysis. The topics considered here differ enough from each other to be fully independent. Nevertheless, they have a common link: they can be used to analyse properties of a concurrent programming language. All the analyses presented here have been formally defined and their correctness have been proved, ensuring that the results will have the reliability degree which is needed for some systems (for instance, for critical systems). It also includes a description of the software tools that implement the different ideas proposed. This gives the work a usefulness well beyond the theoretical aspect, allowing us to put it in practice and to test the different analyses with real-world examples All the ideas here presented are, by themselves, approaches that can be applied in many current contexts and problems. Moreover, individually they serve as a starting point for other derived analysis, as well as for the adaptation to other languages of the same family. This gives an added value to this work, a fact confirmed by some later works that are already benefiting from the results obtained in this thesis.Tamarit Muñoz, S. (2013). Analysis Techniques for Concurrent Programming Languages [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/31651TESI

    Dependence Communities in Source Code

    Get PDF
    Dependence between components in natural systems is a well studied phenomenon in the form of biological and social networks. The concept of community structure arises from the analysis of social networks and has successfully been applied to complex networks in other fields such as biology, physics and computing. We provide empirical evidence that dependence between statements in source code gives rise to community structure. This leads to the introduction of the concept of dependence communities in software and we provide evidence that they reflect the semantic concerns of a program. Current definitions of sliced-based cohesion and coupling metrics are not defined for procedures which do not have clearly defined output variables and definitions of output variable vary from study-to-study. We solve these problems by introducing corresponding new, more efficient forms of slice-based metrics in terms of maximal slices. We show that there is a strong correlation between these new metrics and the old metrics computed using output variables. We conduct an investigation into dependence clusters which are closely related to dependence communities. We undertake an empirical study using definitions of dependence clusters from previous studies and show that, while programs do contain large dependence clusters, over 75% of these are not ‘true’ dependence clusters. We bring together the main elements of the thesis in a study of software quality, investigating their interrelated nature. We show that procedures that are members of multiple communities have a low cohesion, programs with higher coupling have larger dependence communities, programs with large dependence clusters also have large dependence communities and programs with high modularity have low coupling. Dependence communities and maximal-slice-based metrics have a huge number of potential applications including program comprehension, maintenance, debugging, refactoring, testing and software protection
    corecore