
Slicing of Concurrent Programs and its Application to
Information Flow Control

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

der Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Dennis Giffhorn

aus Wolfsburg

Tag der mündlichen Prüfung: 08. Mai 2012

Erster Gutachter: Prof. Dr.-Ing. Gregor Snelting

Zweiter Gutachter: Prof. Dr. Markus Müller-Olm

Acknowledgment

I am thankful to my adviser Prof. Gregor Snelting for providing the support, freedom and pro-
tection to do research without pressure. I thank Prof. Martin Müller-Olm for contributing the
second review of this thesis.

I would also like to thank my colleagues Matthias Braun, Sebastian Buchwald, Jürgen Graf,
Christian Hammer, Martin Hecker, Andreas Lochbihler, Denis Lohner, Manuel Mohr, Maxim-
ilian Störzer, Mirko Streckenbach, Daniel Wasserrab, and Andreas Zwinkau for fruitful discus-
sions and cooperations. Christian Hammer and Jürgen Graf were the other members in the Joana
team, who developed and provided innumerable algorithms without which my thesis would not
have been possible. Andreas Lochbihler’s comprehension of information flow control resulted
in several important improvements of my information flow control technique. The formal def-
initions and proofs of slicing and information flow control developed by Daniel Wasserrab and
Denis Lohner provided valuable inspirations.

I would like to give a special mention of my students who helped us to implement, extend
and maintain the Joana framework. Bo Li maintained and extended the Graphviewer, a tool that
graphically visualizes program dependence graphs. Martin Seidel was a great help in improving
the Joana Eclipse plugin, which integrates the Joana framework into the Eclipse framework.

A big ‘thank you’ goes to Alexandra Schmidt, Eva Reichhart, Eva Veitweber, Katja Weis-
shaupt, Sonja Klinger, Brigitte Sehan, Adolf Stockinger and Bernd Traub, whose skillful ad-
ministrative work made it possible to pass all kinds of bureaucratic obstacles.

The Valsoft/Joana project was funded in part by Deutsche Forschungsgemeinschaft (DFG
grant Sn11/9-1 and Sn11/9-2).

Karlsruhe, May 2011 Dennis Giffhorn

Zusammenfassung

Informationsflusskontrolle beschäftigt sich mit der Sicherheit von vertraulichen Daten während
ihrer Verarbeitung durch Software. Sie stellt sicher, dass die Software die vertraulichen Daten
weder unautorisierten Empfängern preisgibt, noch mit Daten aus unautorisierten Quellen ver-
mischt. Es handelt sich damit um ein Konzept, mit dem traditionelle Sicherheitstechniken wie
Verschlüsselung und Zugriffskontrolle ergänzt werden können, um die Sicherheit vertraulicher
Daten zusätzlich zu erhöhen.

Diese Dissertation präsentiert ein Verfahren zur Informationsflusskontrolle für nebenläufige
Programme mit Fäden und gemeinsamen Speicher. Das Verfahren garantiert die Sicherheit
vertraulicher Daten hinsichtlich eines angemessenen Angreifermodells und basiert auf Pro-

grammabängigkeitsgraphen (PAGs), einer sprachunabhängigen Darstellung des Informations-
flusses innerhalb eines Programms. Durch die Verwendung von PAGs kann das Verfahren auf
alle Programme angewandt werden, die in PAGs übersetzt werden können.

Die Dissertation ist Teil des Projekts ValSoft/Joana am Lehrstuhl für Programmierparadig-
men des Karlsruher Instituts für Technologie. Das Ziel dieses Projekts ist die Entwicklung
von hochpräzisen Techniken zur Informationsflusskontrolle für sicherheitsrelevante Software in
gängigen Sprachen wie Java oder C. Diese Techniken sollen Sicherheit garantieren, also keine
Lecks übersehen, und durch ihre hohe Präzision so wenig Fehlalarme wie möglich generieren.
Das Herz des Projekts ist Joana, ein Rahmenwerk zur Programmanalyse mittels PAGs, welche
den Informationsfluss innerhalb eines Programms mit sehr hoher Präzision wiedergeben. Joanas
Zielsprache ist Java, eine objektorientierte Sprache mit Fäden, gemeinsamen Speicher und einer
hohen Verbreitung, und damit auch einer hohen Relevanz. Joana beherrscht vollen Java Byte-
code, inklusive Objekten, dynamischer Bindung, Seiteneffekten von Prozeduraufrufen und Fä-
den, und ist derzeit in der Lage, PAGs für Java-Programme mit bis zu 30.000 Zeilen Code zu
generieren.

Zu Beginn dieser Dissertation zielte ValSoft/Joana auf die Analyse von Java-Programmen
für Chipkarten. Derartige Programme sind verhältnismäßig klein, und die dafür angebotene
Java-Variante, JavaCard, enthielt zu jenem Zeitpunkt keine Fäden. Das Joana-Rahmenwerk
war bereits in der Lage, PAGs für Java-Programme mit Fäden erzeugen, machte aber zu diesem
Zweck sehr konservative Annahmen, die zu sehr ungenauen Resultaten führten. Desweiteren
konnte das bereits vorhandene Verfahren zur Informationsflusskontrolle nur mit sequentiellen
Java-Programmen umgehen. Da Fäden ein integraler Bestandteil von Java sind, war es daher
notwendig, Joana mit entsprechenden Analysen für Fäden zu erweitern, um Joana auf beliebige

Java-Programme anwenden zu können. Dies war das Thema dieser Dissertation. Sie erbringt
dabei die folgenden Beiträge:

• Joana wurde durch eine Parallelitätsanalyse erweitert, welche diejenigen Teile eines Pro-
gramms identifiziert, die nebenläufig zueinander ausgeführt werden können. Mithilfe
dieser Analyse kann eine große Anzahl von Programmabhängigkeiten, die bisher von
Joana für nebenläufige Programme berechnet wurden, als redundant erkannt und verwor-
fen werden.

• PAGs werden üblicherweise mittels Graphtraversierung weiterverarbeitet und untersucht.
Ein PAG eines nebenläufigen Programms berücksichtigt alle möglichen Verschränkun-
gen der Fäden des Programms, wodurch der PAG Abhängigkeiten enthalten kann, die
auf zueinander inkompatiblen Verschränkungen beruhen, und somit auch Pfade, die in
der Realität von keiner Programmausführung verursacht werden können. Es bleibt den
Traversionsalgorithmen überlassen, diese unerfüllbaren Pfade zu erkennen und auszu-
schliessen. Zu diesem Zweck wurden in der Dissertation hochpräzise Traversionsalgo-
rithmen, die dieses Problem in Angriff nehmen, untersucht, verbessert, neu entwickelt
und miteinander verglichen.

• Die vorgenommenen Erweiterungen von Joana wurden schließlich zur Entwicklung eines
auf PAGs und ihrer Traversion basierenden Verfahrens zur Informationsflusskontrolle für
nebenläufige Programme verwendet. Das Verfahren garantiert die Vertraulichkeit des
untersuchten Programms unabhängig vom Scheduler und macht dabei im Verhältnis zu
anderen Ansätzen wenig Einschränkungen an das Programm.

Besonderes Augenmerk richtete der Autor dabei auf die Fähigkeit der entwickelten Algo-
rithmen, vollen Java Bytecode zu behandeln, sodass die zu analysierenden Programme keinen
sprachlichen Einschränkungen unterliegen. Zum anderen werden für viele behandelte Teil-
probleme mehrere Algorithmen mit unterschiedlicher Präzision, Laufzeitkosten und Implemen-
tierungsaufwand präsentiert, sodass Anwendern die Auswahl des geeignetsten Algorithmus
ermöglicht wird. Alle vorgestellten Algorithmen wurden vollständig ins Joana-Rahmenwerk
integriert. Es ist damit eines der wenigen, die PAG-basierte Analysen von nebenläufigen Java-
Programmen erlauben. Durch die Integration des entwickelten Verfahrens zur Informations-
flusskontrolle beinhaltet Joana unseres Wissens nach die erste implementierte Informations-
flusskontrolle für nebenläufige Programme, die in einer echten, weitverbreiteten Sprache ver-
fasst sind.

Abstract

Information flow control is concerned with the security of sensitive information being processed
by a software. It aims to ensure that software does not leak rightfully accessed sensitive infor-
mation to unauthorized sinks or taints it with data from unauthorized sources during its compu-
tations. It can be used supplementary to established security techniques like access control or
encryption to enhance the protection of sensitive information.

This thesis presents a practical technique for information flow control for concurrent pro-
grams with threads and shared-memory communication. The technique guarantees confiden-
tiality of information with respect to a reasonable attacker model and utilizes program depen-

dence graphs (PDGs), a language-independent representation of information flow in a program,
which allows to apply it to all programs that can be translated into a PDG.

The thesis is embedded in the ValSoft/Joana project of the Programming Paradigms Group
at the Karlsruhe Institute of Technology. The project aims to develop IFC techniques that an-
alyze security relevant software written in established languages, like C or Java, with maximal
precision, so that no information leaks are missed and very few false alarms are generated. Its
core is the Joana framework, a general-purpose program analysis framework based on PDGs,
highly precise representations of the possible information flows in a program. Joana focuses on
Java and is currently able to build PDGs for Java programs with up to 30.000 lines of code. It
is capable of full Java bytecode, including features like objects, dynamic dispatch, side effects
of procedure calls, exceptions and threads.

At the time this thesis started, ValSoft/Joana focused on analyzing Java programs for smart
cards, written in JavaCard. Such programs are comparatively small, and JavaCard did not sup-
port threads at that time. The Joana framework was already able to create PDGs for Java pro-
grams with threads, but made very conservative approximations in order to do so, leading to
very imprecise results. Furthermore, the already existing information flow control technique
was limited to sequential Java programs. Threads are an integral component of the Java lan-
guage, so full support of Java threads had to be integrated into Joana in order to analyze general
Java programs. This was the task of this thesis. It accomplishes that task by making the follow-
ing major contributions:

• It extends Joana with a may-happen-in-parallel analysis, which identifies those parts of
a Java program that may execute concurrently. Using this analysis, a large number of
dependences computed by the previous versions of Joana can be identified as redundant.

• PDGs are usually examined via graph traversal. A PDG of a concurrent program com-
prises all possible ways of interleaving of its threads, wherefore it may contain depen-
dences based on incompatible ways of interleaving and thus, paths that cannot be realized
by any program execution. It is left to the graph traversal algorithm to avoid these unreal-
izable paths. To this end, the thesis investigates, develops, improves and compares highly
precise algorithms for the traversal of PDGs that address that problem.

• The above enhancements of Joana are used to develop an information flow control tech-
nique for concurrent programs based on PDGs and their traversal. The technique guaran-
tees the confidentiality of successfully verified programs independent from the concrete
scheduler and is permissive compared with other approaches.

A crucial objective of the author was to develop algorithms capable of treating full Java
bytecode, to avoid restrictions on the syntax of the programs to be analyzed. Furthermore, for
many investigated subproblems, alternative algorithms are presented, which solve the subprob-
lem with different degrees of precision, runtime costs and implementation effort. This enables
a user to choose the algorithm that suits best. All presented algorithms have been integrated
into Joana, resulting in a PDG-based, general-purpose program analysis framework for full
Java bytecode, containing, to the best of our knowledge, the first reported implementation of
an information flow control technique for a contemporary language with threads and shared
memory.

Contents

Acknowledgment iii

Zusammenfassung v

Abstract vii

1 Introduction 1

1.1 About This Thesis . 3

1.2 Information Flow Control . 3

1.2.1 Noninterference . 4

1.2.2 Observational Determinism . 4

1.3 Slicing . 4

1.3.1 Slicing and Information Flow Control 6

1.3.2 Slicing as a Graph Reachability Problem 6

1.3.3 Slicing of Concurrent Programs . 7

1.4 Contributions . 8

1.5 Organization . 11

2 Slicing Sequential Programs 13

2.1 The Control Flow Graph . 13

2.1.1 Control Flow Paths in ICFGs . 14

2.1.2 Dominance and Postdominance . 15

2.2 Slicing Intra-Procedural Programs . 16

2.3 Slicing Interprocedural Programs . 17

2.3.1 Context-Sensitive Slicing . 19

2.4 Computation of System Dependence Graphs 20

2.4.1 Data Flow Analysis Frameworks . 21

2.4.2 Computation of PDGs and SDGs . 22

2.4.3 SDGs for Object-Oriented Languages 23

2.5 Context-Sensitive Slicing via Call Strings . 27

2.5.1 Context-Restricted Slicing . 30

2.5.2 Forward Slicing . 31

2.6 Evaluation . 31

2.6.1 Context-Sensitive Slicing . 33

2.6.2 Context-Restricted Slicing . 35

2.6.3 Study Summary . 36

2.7 Related Work . 37

3 Slicing Concurrent Programs 45

3.1 Thread Invocation Analysis . 50

3.2 The Threaded Control Flow Graph . 52

3.2.1 Reachability between contexts . 53

3.3 May-Happen-In-Parallel Analysis for Java . 54

3.3.1 Overview of Existing MHP Analyses for Java 55

3.3.2 Our MHP Analysis . 57

3.4 The Concurrent System Dependence Graph 64

3.4.1 Computation of CSDGs . 68

3.5 Context-Sensitive Slicing of Concurrent Programs 68

3.5.1 Context-Sensitive Paths in CSDGs . 70

3.5.2 The Iterated Two-Phase Slicer . 70

3.6 Timing-Sensitive Slicing . 73

3.6.1 Timing-Sensitive Paths in CSDGs and TCFGs 73

3.6.2 The Basic Idea of Timing-Sensitive Slicing 75

3.6.3 Runtime Complexity . 78

3.6.4 Restrictive State Tuples . 79

3.6.5 Thread Creation Inside Loops and Recursion 79

3.7 The Impact of MHP Information on Slicing . 79

3.8 Limitations of Timing-Sensitive Slicing . 84

3.9 Krinke’s Timing-Sensitive Slicer . 86

3.9.1 An Optimized Reachability Analysis . 88

3.9.2 Integration of MHP Information and Multi-Threads 90

3.9.3 Our Optimized Version of Krinke’s Slicer 90

3.10 Nanda’s Timing-Sensitive Slicer . 93

3.10.1 Context Representation and Reachability Analysis 93

3.10.2 Nanda’s Original Slicing Algorithm . 97

3.10.3 Correctness . 99

3.10.4 Improvement . 101

3.11 Trading Precision for Speed: The Timing-Aware Slicer 106

3.12 Evaluation . 108

3.12.1 The MHP Analysis . 110

3.12.2 Comparison of Timing-Sensitive Slicers 116

3.12.3 Precision and Runtime Behavior of Timing-Sensitive Slicing 121

3.12.4 On the Practicability of Context Graphs 125

3.12.5 Hot Spots . 125

3.12.6 Threats to Validity . 127

3.12.7 Study Summary . 130

3.13 Discussion . 131

3.14 Related Work . 132

4 Chopping 137

4.1 Chopping Sequential Programs . 138

4.1.1 Same-Level Chopping . 138

4.1.2 Unbound Chopping . 142

4.1.3 The Reps-Rosay Chopper for Sets of Nodes 143

4.2 The Fixed-Point Chopper . 146

4.3 Evaluation . 148

4.3.1 Precision . 149

4.3.2 Runtime Behavior . 150

4.3.3 Study Summary . 151

4.4 Context-Sensitive Chopping of Concurrent Programs 151

4.5 Timing-Sensitive Chopping . 155

4.5.1 Optimizations . 160

4.5.2 Correctness of TSC . 160

4.6 Evaluation . 162

4.6.1 Precision . 163

4.6.2 Runtime Behavior . 165

4.6.3 Detection of Empty Chops . 166

4.6.4 Study Summary . 167

4.7 Discussion . 169

4.8 Related Work . 169

5 Information Flow Control For Concurrent Programs 171

5.1 Background . 173

5.1.1 Noninterference . 174

5.1.2 Denning-Style Information Flow Control 175

5.1.3 Declassification . 176

5.1.4 Slicing-Based Information Flow Control 177

5.2 Information Leaks in Concurrent Programs . 179

5.3 Probabilistic Noninterference . 181

5.4 A Trace-Based Definition of Low-security Observational Determinism 182

5.4.1 Traces . 183

5.4.2 Dynamic Program Dependences and Trace-Slices 184

5.4.3 Trace-Slices . 185

5.4.4 Dynamic Control Dependence Determines Execution Orders 186

5.4.5 Low-Observable Behavior and Low-Equivalence of Traces 187

5.5 A Slicing-Based Security Constraint for Low-Security Observational Determinism 191

5.5.1 Security Constraint LSOD Enforces Low-Security Observational Deter-

minism . 192

5.5.2 A Sound Approximation of LSOD via Slicing of CSDGs 198

5.5.3 Limitations . 199

5.6 Slicing-Based Verification of LSOD . 199

5.6.1 Adding a Declassification Mechanism 201

5.6.2 Optimizations . 201

5.6.3 Pseudocode . 202

5.7 Evaluation . 205

5.7.1 Weak Probabilistic Noninterference . 205

5.7.2 Strong Security . 207

5.7.3 Low-Security Observational Determinism 210

5.7.4 Case Study . 212

5.7.5 Runtime Behavior . 216

5.7.6 Study summary . 218

5.8 Discussion and Future Work . 219

5.9 Related Work . 220

6 The Joana Framework 225

6.1 Related Work . 227

7 Conclusion 229

A The Java Programs Of Our Case Study 231

A.1 Program ‘SmithVolpano’ . 231

A.2 Program ‘Mantel’ . 233

A.3 Program ‘PasswordCheck’ . 236

B Curriculum Vitae 237

C List of Figures 239

D List of Tables 243

E Bibliography 245

F Index 259

1. Introduction

Information flow control is concerned with the security of sensitive information processed by
software. Whereas security of information is predominantly understood as an accessing prob-
lem, tackled by techniques such as access control or encryption, information flow control sees
it as a processing problem: Software that rightfully accesses sensitive information might in-
tentionally or unintentionally leak it to unauthorized sinks, violating its confidentiality, or taint
it with data from unauthorized sources, violating its integrity. It is complementary to access
control, encryption and likewise techniques and can be combined with them in order to achieve
end-to-end security, protecting sensitive information during its whole lifetime.

Figure 1.1 shows on the left side typical confidentiality violations in sequential programs.
The depicted program reads a secret PIN (we assume that it has the right to do so), copies it
to variable y and prints it directly to the screen. A somewhat more subtle leak happens inside
the if conditional. The output of 0 reveals that the PIN is smaller than 1234. Information flow
control is supposed to detect and prevent these information leaks. This can be done dynamically,
during the execution of the program, or statically, at compile-time. This thesis is concerned with
static information flow control.

Due to the complexity of modern software it is not realistic to find and eliminate information
leaks by manual inspection of program code. Static information flow control requires automated
techniques, which in turn have to be built on a strong theoretical foundation of what ‘security’
really means. Whereas static information flow control for sequential programs has been studied
for about 35 years and has already given birth to practical tools [58, 103, 132], it has not got that
far yet for concurrent programs. Concurrency is generally hard to reason about. Its semantics
is difficult to grab with formal methods, which makes it difficult to define a suitable security
concept. The existence of many different flavors of concurrency (e.g. threads vs distributed
systems, message passing vs shared memory) complicates that matter even more. There also

void main () :
x = i n p u tP I N () ;
i f (x < 1234)

p r i n t (0) ;
y = x ;
p r i n t (y) ;

void t h r e a d _ 1 () :
p r i n t (1) ;

void t h r e a d _ 2 () :
x = i n p u t P I N () ;
whi le (x > 0)

x−−;
p r i n t (2) ;

Figure 1.1.: Typical information leaks in sequential (left side) and concurrent programs (right side).

1

1. Introduction

void t h r e a d _ 1 () :
s k i p ;
s k i p ;
p r i n t (1) ;

void t h r e a d _ 2 () :
whi le (y > 0)

y−−;
p r i n t (2) ;

Figure 1.2.: Assume that the depicted program is scheduled by a Round-Robin scheduler switching
threads after each statement. If variable y is smaller than 1, 1 is always printed after 2,
otherwise, 2 is always printed after 1.

exist numerous kinds of schedulers, of which at least the most common should be taken into
account. Last but not least, concurrency gives rise to several special kinds of information leaks,
which have to be dealt with. The program on the right side of Fig. 1.1 provides an example for
those subtleties. It consists of two concurrently executing threads. The program always prints
1 and 2 to the screen, but their order depends on the interleaving. Assume that the scheduler
schedules after every executed statement and picks a thread with a certain probability. Then
PIN’s value alters the probabilities of the two possible output orders, because it defines the
number of iterations of the while loop. The higher the PIN, the higher is the probability that 1
is printed first. An attacker being aware of the concrete probability distribution and being able
to observe multiple program runs with the same PIN can deduce information about the PIN.
This kind of leak is called a probabilistic channel.

At first glance, it seems that probabilistic channels do not pose a real threat, because in
general a statistical evaluation of a number of program executions is needed to exploit them.
But if the scheduler in charge is deterministic, say, a Round-Robin, then probabilistic channels
behave similar to leaks resulting from conditional branching. Consider the example program
in Fig. 1.2, where the skip statements serve as placeholder for serious code and y is a global
variable, and assume that the scheduler switches threads after each statement. Then, if y is
smaller than 1, 1 is always printed after 2, otherwise, 2 is always printed after 1. The threads
could be put inside a loop that repeatedly forks and joins them and uses them to gradually leak
sensitive information via variable y.

This thesis presents a technique for static information flow control for concurrent programs
with threads and shared-memory communication that guarantees confidentiality of information
with respect to a reasonable attacker model. The technique utilizes program dependence graphs,
a language-independent representation of information flow in a program, which allows to apply
it to all programs that can be translated into a program dependence graph. In the context of this
thesis, the whole technique has been implemented for Java, an object-oriented language that
offers concurrency via threads and shared memory. To the best of the author’s knowledge, this
is the first existing realization of static information flow control for a mature, contemporary and
broadly used programming language with concurrency.

2

1.1. About This Thesis

1.1. About This Thesis

This thesis is embedded in the ValSoft/Joana project [6, 45], whose goal is the development of
practical information flow control techniques for realistic languages and programs. The project
aims to develop analyses that [6]

• guarantee security, i.e. miss no information leak,

• analyze established languages, like C or Java,

• process larger software systems with acceptable effort,

• offer maximal precision, so that very few false alarms are generated.

ValSoft/Joana consists of a general-purpose program analysis framework for Java, called
Joana [45], which has been developed by Christian Hammer [52], Jürgen Graf [49] and the
author. Today, Joana can handle Java programs with up to 30,000 lines of code and full Java
bytecode, including features like pointers, objects, dynamic dispatch, side effects of procedures,
recursion, exception handling and threads.

At the time this thesis started, Joana had only rudimentary support for threads and was in-
tended to analyze JavaCard [2] programs. JavaCard is a Java subset for smart cards, which
at that time (version 2.x) did not support threads. On top of Joana, Hammer [52] developed
an information flow control technique for full sequential Java bytecode. In order to use Joana
for analyzing general Java programs, support of Java threads had to be integrated into Joana,
because threads are an integral component of the language.

1.2. Information Flow Control

Programs contain various kinds of information flow, which may intentionally or unintentionally
unveil confidential data. The most intuitive kinds of information flow are explicit and implicit

flows, the former resulting from assignments and the latter from conditional branching. The
program on the left side of Fig. 1.1 leaks the input PIN via implicit and explicit flow. Statement
print(0) leaks information about the PIN being smaller than 1234, which is an illicit implicit
flow. The program also directly prints the PIN copied to variable y, which is an illicit explicit
flow. Concurrent programs may additionally contain probabilistic channels, an example being
the leak described in the program on the right side of Fig. 1.1. Information flow control (IFC)
aims to detect these and other kinds of information leaks. For that purpose, it needs a concrete
definition of when a program is secure. A widespread security policy for sequential programs
is noninterference [47].

3

1. Introduction

1.2.1. Noninterference

Intuitively, noninterference demands from a program that all possible program runs working on
the same public data, but on possibly different confidential data, must expose the same behavior
observable for an attacker. As a consequence, the attacker cannot distinguish the program runs
and thus cannot draw conclusions about the confidential data. Noninterference is defined for
deterministic programs only, because it assumes that one input leads to one observable behavior.
It thus cannot be applied to concurrent programs, where interleaving may cause several possible
observable behaviors for the same input, but there exist several convenient enhancements. One
of them is observational determinism [98, 121].

1.2.2. Observational Determinism

A major problem of IFC for concurrent programs is the existence of numerous different schedul-
ing strategies. Many existing approaches to IFC for concurrent programs do only account for
one or a couple of scheduling strategies and fail in case another scheduler is applied. Therefore,
scheduler independence should be a primary objective. Observational determinism offers an
elegant solution to that problem. It requires that the interleaving of statements contributing to
the observable behavior of a program has to be deterministic. From the point of view of an
attacker, an observational deterministic concurrent program behaves like a deterministic pro-
gram, because one input can only cause one observable behavior. Observational deterministic
programs are therefore free of probabilistic channels. Combining observational determinism
and noninterference results in a promising, scheduler-independent security policy for concur-
rent programs.

Several existing IFC techniques based on observational determinism [64, 145, 160] are flow-

insensitive and do not take the relative execution order of program statements into account.
These techniques impose drastic restrictions on programs for being classified as observational
deterministic, rendering them impractical for real programs (see sect. 5.7.3 for a comparison).
For a practical employment of observational determinism, flow-sensitivity seems to be compul-
sory. We therefore base our IFC technique on program dependence graphs and slicing.

1.3. Slicing

A slice of a program consists of all statements that may influence a given program point of
interest, the so-called slicing criterion. Consider the program on the left side of Fig. 1.3 and
assume we are interested in the value of variable c in statement 5. Its value is influenced by
statements 1, 3, 4 and 5. These statements either influence the value of variable c by defining or
modifying contributing variables or they decide whether statement 5 is actually executed. They
are a slice for variable c in statement 5.

4

1.3. Slicing

1 void main () :
2 a = i n p u t + 5 ;
3 b = i n p u t − 5 ;
4 i f b > 0
5 c = i n p u t ∗ b ;
6 e l s e
7 c = i n p u t ∗ a ;

1 void main () :
2
3 b = i n p u t − 5 ;
4 i f b > 0
5 c = i n p u t ∗ b ;

Figure 1.3.: A simple program and its slice for variable c in statement 5.

Slicing is a general-purpose technique used in numerous kinds of program analyses, such as:

• Debugging, where slicing is used to exclude program parts that cannot have influenced
erroneous program behavior [69, 140].

• Testing, where slicing aids in determining which components of a modified program can
be tested with tests from the old test suite, and for which components new tests have to
be written [20].

• Software complexity, where slicing is used for measurement of software complexity met-
rics, for example [155]: (1) coverage, a measure of the length of slices versus the length of
the program; (2) overlap, a measure of the number of statements in a slice which belong
to no other slice; (3) parallelism, the number of slices with few statements in common.

• Model checking, where slicing serves as a preprocessing step for the identification of pro-
gram parts unrelated to a given specification [61]. The model building process excludes
these parts and yields significantly smaller models.

• Clone detection, where slicing enables a very accurate detection of code duplicates [71].

The first formal definition of a slice stems from Mark Weiser [155, 156], who observed that
programmers debugging a program mentally create slices to exclude program parts that cannot
have caused the error. He suggested employing automatic slicing tools to support and alleviate
debugging. According to Weiser, a slice is defined as follows:

Definition 1.1. Let P be a program and (c,V) be a slicing criterion, consisting of a statement c

and a set of variables V . A sub-program S of P is a slice of P for (c,V) if

1.S is a valid program, and

2.whenever P halts for a given input, S also halts for that input, showing the same values

for the variables in V whenever c is executed.

5

1. Introduction

Of course, this definition always allows a trivial slice – the program itself. In order to ben-
efit from slicing, slices should be as small as possible. A statement-minimal slice for a slicing
criterion (c,V) is a slice that only contains statements that are guaranteed to influence (c,V) in
some execution. Unfortunately, the computation of statement-minimal slices is due to condi-
tional branching undecidable [156], which is in practice usually abstracted away by treating it
as non-deterministic branching. This leads to the issue of the precision of a slice and of differ-
ent slicing algorithms. In this thesis, the precision of a slice is understood as follows: First and
foremost, slices should be correct. A slice is correct if it contains all statements that can influ-
ence the slicing criterion in some execution, a slice failing to do so is called incorrect. A slice
S is more precise than another slice S′ for the same slicing criterion if both slices are correct
and S contains less statements than S′. If additionally S is a subset of S′, then S is strictly more

precise than S′.

1.3.1. Slicing and Information Flow Control

It is known for some time that slicing allows to enforce noninterference in sequential programs:
If the slice for the statements creating observable behavior is free of statements that process
confidential data, the program is noninterferent [7, 21, 137]. However, the technical challenges
concerning slicing of full-fledged languages and real-world applications have prevented imple-
mentations of slicing-based IFC until only recently. The first reported implementations stem
from Yokomori et al. [159], for Pascal, and from Hammer et al. [58], for sequential Java byte-
code. This thesis extends slicing-based IFC to concurrent programs with threads and shared
memory communication. For that purpose, it provides an in-depth investigation of slicing of
concurrent programs.

1.3.2. Slicing as a Graph Reachability Problem

Weiser computed slices via an iterative data flow algorithm. A few years later, Ottenstein and
Ottenstein [109] suggested computing slices by dint of a reaching analysis in program depen-

dence graphs (PDGs). A PDG P = (N,E) for program p is a directed graph, whose nodes in N

represent p’s statements1 and whose edges in E represent data dependences and control depen-

dences between them. Node b is data dependent on node a if it may use a value computed by a,
and it is control dependent on a if a’s evaluation controls the execution of b. Figure 1.4 shows
the PDG of the program in Fig. 1.3. The start node is defined to control the mere execution of
the program, which explains the outgoing control dependences. A formal description of PDGs
and their construction is given in chapter 2.

Slicing based on PDGs is somewhat limited compared with slicing based on data flow anal-
ysis: One has to choose a PDG node c as the slicing criterion and thereby restricts the set V

1In the remainder, the terms ‘node’ and ‘statement’ will be used interchangeably.

6

1.3. Slicing

1 void main () :
2 a = i n p u t + 5 ;
3 b = i n p u t − 5 ;
4 i f b > 0
5 c = i n p u t ∗ b ;
6 e l s e
7 c = i n p u t ∗ a ;

control dependence

data dependence

main

b = input - 5

b > 0

c = input * b

a = input + 5

c = input * a

Figure 1.4.: The PDG for the program in Fig. 1.3. The highlighted nodes form a slice for statement 5.

of variables of the slicing criterion (c,V) to the set of variables accessed by node c. A slice
of a PDG for a node n consists of all nodes that reach n. As an example, Fig. 1.4 highlights
the slice for statement 5. The advantage of PDG-based slicing is that the structure of PDGs
is not bound to a specific programming language, wherefore PDG-based slicing and applica-
tions based thereon are language-independent. Therefore, PDG-based slicing established next
to slicing based on data flow analysis.

We decided to use PDG-based slicing because of its language independence. The algorithms
presented in this thesis are much more complex than simple graph reachability and can thereby
be reused for all languages and programs for which PDGs can be generated.

1.3.3. Slicing of Concurrent Programs

PDG-based slicing of sequential programs is well-studied, and there exist sophisticated algo-
rithms for creating and slicing PDGs for contemporary sequential languages, including features
like pointers, objects, dynamic dispatch, side effects of procedures, recursion, exception han-
dling and many more [52, 152]. But many modern languages, like Java or C], have built-in
support for concurrent execution. Applications that use slicing to analyze such languages need
algorithms suitable for concurrent programs. Unfortunately, the precise and efficient algorithms
known for sequential programs cannot be applied. Concurrent programs with shared memory
exhibit a new kind of dependence, interference dependence [73], which is basically a data de-
pendence between concurrently executing statements. Figure 1.5 extends the program of Fig.
1.4 with a second thread, which assigns b to x, and modifies statement 2 to add x to input.
The resulting PDG contains two interference dependences.

The computation of interference dependence has to take all possible ways of interleaving into
account. Since different ways of interleaving may exclude each other, different interference
dependences may exclude each other, too. The highlighted nodes in Fig. 1.5 show the slice

7

1. Introduction

1 void t h r e a d _ 1 () :
2 a = i n p u t + x ;
3 b = i n p u t − 5 ;
4 i f b > 0
5 c = i n p u t ∗ b ;
6 e l s e
7 c = i n p u t ∗ a ;

8 void t h r e a d _ 2 () :
9 x = b ;

control dep.

data dep.

thread_1

b = input - 5

b > 0

c = input * b

a = input + x

c = input * a

thread_2

x = b

interference dep.

Figure 1.5.: A concurrent program and its PDG. The highlighted nodes form a slice for statement 7.

for statement 7 computed by collecting all reaching nodes. The slice includes statement 3, even
though it cannot influence statement 7 – it would have to be executed before statement 2 in order
to do so. This kind of imprecision is called timing-insensitivity. To make matters worse, it may
depend on the slicing criterion whether two interference dependences may exclude each other
or not. The detection of mutually exclusive interference dependences is therefore left to the
slicing algorithm. Krinke [73] discovered that by consulting the control flow during the slicing
process a slicing algorithm is able to avoid timing-insensitive results. If the slicing algorithm
computing the slice for statement 7 in Fig. 1.5 remembers that it has left thread 1 at statement
2 when it traversed to statement 9, it is able to detect that reentering thread 1 at node 3 is
timing-insensitive, because node 3 cannot execute before node 2.

1.4. Contributions

The following paragraphs summarize the contributions of this thesis.

MHP analysis An analysis of concurrent programs requires to identify those parts of a pro-
gram that may execute in parallel, which is done by a may-happen-in-parallel (MHP) analysis.
Prior to this work, Joana assumed that all threads of a program may execute entirely in parallel,
which led to a huge number of spurious interference dependences. We integrated a MHP analy-
sis into the framework, a combination of Nanda’s [106] and Barik’s [18] MHP analyses, which
complement one another very well. The MHP information is used to prune spurious interfer-
ence dependences. On average, we were able to remove 75% of all interference dependences
determined without the MHP analysis.

Timing-sensitive slicing The problem of timing-insensitive paths in PDGs of concurrent pro-
grams was first identified by Krinke [73], who also presented the first timing-sensitive slicing
algorithm [73, 75, 77]. However, he did not implement his algorithm and could therefore not

8

1.4. Contributions

investigate its practicability. Nanda [104, 105, 106] improved on his technique by developing
several crucial optimizations and reported the first implementation of a timing-sensitive slicer.
When we started our thesis, Krinke’s algorithm had not been implemented at all, and only one
implementation of Nanda’s algorithm had been reported [106], giving rise to several questions:

• Which algorithm is more precise?

• Which of them is more time efficient?

• Are the algorithms correct?

• Are the algorithms practical on practical programs?

As shown by Nanda, the algorithms have a worst case runtime complexity exponential in the
number of the threads of the analyzed program. However, as this is only the worst case, the
algorithms might behave well in most cases; this had not been investigated either. It was one
goal of this thesis to thoroughly examine and compare both algorithms.

Our investigation revealed that Nanda’s slicer is an important step forward, but still has sev-
eral shortcomings:

• It applies an optimization too greedily and may therefore omit valid edges and yield
incorrect slices. Unfortunately, the optimization is crucial for making timing-sensitive
slicing practical, so it cannot be removed. We describe how this problem can be solved.

• It cannot handle thread creation inside recursive procedures, only inside loops (Krinke’s
technique cannot handle either of both). We developed a mechanism that handles thread
creation inside loops and recursive procedures and can be integrated into both algorithms.

• It contains several bottlenecks, which we relieve by several new optimizations, leading to
a significant speedup.

• It exploits MHP information to yield more precise slices than Krinke’s algorithm. We
developed a new way to integrate MHP information into timing-sensitive slicers, which
improves precision even more.

We have integrated all these algorithms and improvements into Joana and evaluated them on
a large set of concurrent Java programs. The evaluation indicates that timing-sensitive slicing
currently scales up to programs with up to 5,000 - 10,000 lines of code and significantly reduces
the average size of the slices. For our benchmark, the timing-sensitive slices were on average
22% smaller than the timing-insensitive ones.

9

1. Introduction

1 void t h r e a d _ 1 () :
2 p = x ;
3 y = p ;

4 void t h r e a d _ 2 () :
5 a = y ;
6 x = a ;

control dependence

data dependence

thread_1

y = p

p = x

thread_2

x = b

a = y

interference dependence

Figure 1.6.: The highlighted chop chop(6,5), computed by collecting all nodes on paths between nodes
5 and 6, is timing-insensitive.

Timing-sensitive chopping Another analysis technique closely related to slicing is chopping.
Chopping answers the question of which statements are involved in conveying effects from
a statement s to another statement t. Chops are usually computed on PDGs, where a chop
chop(s, t) from s to t consists of all nodes on paths from s to t.

Chopping also found its way into information flow control: Snelting [137, 138] proposed
to use path conditions as witnesses for illicit information flow. A path condition between two
statements, s and t, is a necessary condition on the program state that a program run has to
satisfy in order to reach t, when coming from s. The path condition is composed of all predicates
influenced by s and influencing t, which in turn are determined by the chop from s to t. A path
condition for an information leak enables to reproduce situations in which that leak occurs and
thus possesses evidentiary value.

Prior to our work, no chopping algorithm for concurrent programs had been reported at all.
In order to make path conditions for concurrent programs possible, this thesis developed the
first chopping algorithms for concurrent programs. Similar to slicing, the precision of chops
of concurrent programs may suffer from timing-insensitivity. Consider the program shown in
Fig. 1.6, consisting of two concurrent threads which communicate via two shared variables, x
and y. Clearly, chop(6,5) should be empty, because statement 6 is executed after statement 5
and therefore cannot influence it. But if the chop is computed by collecting all nodes on paths
between statements 6 and 5, the result is chop(6,5)= {2,3,5,6}. We transferred the idea behind
timing-sensitive slicing to chopping and developed a timing-sensitive chopping algorithm.

Since timing-sensitive chopping is expensive and difficult to implement, we present six dif-
ferent chopping algorithms, which offer different degrees of precision, runtime performance
and implementation effort. An extensive evaluation on a set of concurrent Java programs shows
the benefits and drawbacks of these algorithms.

10

1.5. Organization

IFC for concurrent programs We present a flow-sensitive security property that prevents
illicit explicit and implicit flow and probabilistic channels in programs with threads and shared-
memory communication. The security property is based on observational determinism and
guarantees that a program is free of the these kinds of leaks if, putting it simply,

1.the program statements causing behavior observable for an attacker have a fixed inter-
leaving order and

2.the implicit and explicit flow in the program does not leak sensitive data.

We show that these conditions can be verified by analyzing PDGs. The resulting algorithm
has been integrated into Joana and can handle full Java bytecode. A comparison with other
security properties and an evaluation on a set of concurrent Java programs provides insights
into its practicability and power. To the best of our knowledge, this is the first implementation
of an IFC technique for concurrent programs written in a contemporary language.

The novelty of our IFC technique, besides of being implemented for Java, is that it is scheduler-
independent and at the same time comparatively permissive. The currently most popular se-
curity properties, strong security [128], weak probabilistic noninterference [135] or variants
thereof, are not based on observational determinism, hold only for a class of schedulers and
may break for others2. Other existing security properties based on observational determinism
are confined to message-passing languages and cannot detect probabilistic channels manifest-
ing in the interleaving orders of program output [160], forbid observable behavior behind loops
whose guards contain sensitive data [64] or impose restrictions on the number of statements that
are allowed to be executed between two observable statements [146]. These restrictions result
from the flow-insensitivity of the security properties. We are able to circumvent them by using
PDGs and slicing.

1.5. Organization

This thesis is organized as follows: Chapter 2 introduces PDGs and slicing for sequential
programs. Chapter 3 presents PDGs for concurrent programs, our MHP analysis and timing-
sensitive slicing. Chapter 4 is concerned with chopping of sequential and concurrent programs.
Chapter 5 presents our IFC technique for concurrent programs. Chapter 6 provides a brief
overview of Joana and chapter 7 concludes.

2They have other advantages, such as permitting a modular verification of libraries, which is not possible with
ours. A comparison can be found in section 5.7.

11

1. Introduction

12

2. Slicing Sequential Programs

This chapter serves as an entering guide to slicing and PDGs. It introduces PDGs and slicing
algorithms for interprocedural, sequential programs. The chapter is organized as follows: The
dependences in a PDG are based on properties of the control flow of the program, which is
usually represented by a control flow graph. The first section introduces control flow graphs
for intra- and interprocedural programs. The second section presents PDGs and slicing for
procedure-less programs. Section 2.3 defines PDGs and slicing algorithms for interprocedural
programs. Section 2.4 gives a brief overview of the computation of PDGs. Section 2.5 describes
a slicing technique that keeps track of the calling context of procedures during the slicing pro-
cess. Section 2.6 evaluates the presented slicing algorithms on a set of Java programs, partly
recapitulating well-known results and partly investigating new optimizations. Finally, section
2.7 presents related work.

2.1. The Control Flow Graph

Control flow graphs are broadly used to represent the control flow of a program. Each statement
or predicate of the program is represented by a node in the graph, and two nodes are connected
by a control flow edge if they can be executed back-to-back.The graph contains specific start
and exit nodes, which mark the start and termination of the program and do not represent any
statement or predicate.

Definition 2.1 (Control flow graph (CFG)). A control flow graph G = (N,E,s,e) of a procedure

or a procedure-less program p is a directed graph, where

• N is the set of nodes and each statement or predicate in p is represented by a node n ∈ N,

• E is the set of edges representing the control flow between the nodes,

• s is the start node, which has no incoming edges and reaches all nodes in N,

• e is the exit node, which has no outgoing edges and is reachable from every node in N.

Often, definitions of CFGs label the edges with true, false or the empty word in order to
model the branches of conditional constructs. Even more detailed annotations up to the point
of transition functions modeling the semantics of the program are possible. However, such
annotations of control flow edges are negligible in this thesis and are ignored.

13

2. Slicing Sequential Programs

1 void main () :
2 p = foo (2) ;
3 q = foo (p) ;
4 y = q ∗ 3 ;

5 i n t foo (f) :
6 re turn f + 1 ;

control f low edge
call or return edge foo return f+1 foo_exit

main p = foo(2) q = foo(p) y = q * 3 main_exit

Figure 2.1.: An interprocedural control flow graph.

Interprocedural programs are represented by interprocedural control flow graphs, in which
the CFGs of the single procedures are connected via call and return edges.

Definition 2.2 (Interprocedural control flow graph (ICFG)). An interprocedural control flow

graph G = (CFGq,main,Call) of a program q consists of the set CFGq of the CFGs of the

procedures of q, a distinguished procedure main and a set Call of call sites with the following

properties:

• For each pair pi, p j of procedures of q, the node sets Npi ,Np j and the edge sets Epi ,Ep j

are disjoint.

• Let cp be a node in procedure p that represents a call of procedure p′. Then there exists

a call site (cp →call sp′ ,ep′ →ret c′p) ∈ Call, where cp →call sp′ is a call edge from cp to

the start node sp′ of procedure p′ and ep′ →ret c′p is a return edge from the exit node ep′

of p′ to the direct successor c′p of cp in procedure p. We name cp a call node and c′p a

return node. Call site (cp →call sp′ ,ep′ →ret c′p) can be represented alternatively by the

tuple (cp,sp′).

• Every node in G is reachable from the start node of main and reaches the exit node of

main.

In order to simplify the computation of program dependence graphs, each CFG contains a
synthetic control flow edge from the start node to the exit node, and at each call site there exists
a synthetic control flow edge from the call node to the return node. Figure 2.1 shows the ICFG
of a program with two procedures.

2.1.1. Control Flow Paths in ICFGs

A path Φ in an ICFG is a possibly infinite sequence of nodes, 〈n1,n2, . . .〉, such that for every
consecutive pair (n j,n j+1) in the path the ICFG contains an edge from n j to n j+1.

14

2.1. The Control Flow Graph

Realizable paths A path is realizable if there exists an execution of the program that executes
the statements in the path in the same order. If a path is not realizable, it can be ignored, which
may improve the analysis results. Since evaluation of predicates is in general not statically
decidable, every path in a CFG is deemed realizable.1 In ICFGs we are interested in paths that
distinguish different calling contexts of the same procedure, so-called context-sensitive paths:
A path that enters a procedure and returns from it later should return to the same call site.
Since ICFGs represent a procedure by a single CFG and connect every call of that procedure
with that CFG, ICFGs may contain context-insensitive paths. For example, all paths in Figure
2.1 entering procedure foo at call node p = foo(2) and leaving it later on towards node
y = q * 3 are of that ilk. Following Reps and Rosay [120], context-sensitive paths in ICFGs
can be described by a language of matching parentheses:

Definition 2.3 (Context-sensitive paths in ICFGs). For each call site (c →call s,e →ret c′), label

the call edge with a symbol (s
c and the return edge with a symbol)s

c. Label all other edges with

l. A path from node m to node n in the ICFG is context-sensitive, abbreviated with m →∗
cs n,

iff the sequence of symbols labeling edges in the path is a word generated from nonterminal

realizable by the following context-free grammar H:

matched→ matched matched | (s
c matched)s

c | l | ε

unbalanced-right→ unbalanced-right)s
c matched | matched

unbalanced-left→ unbalanced-left (s
c matched | matched

realizable→ unbalanced-right unbalanced-left

Nonterminal matched describes ‘matched’ paths: paths that start and end in the same pro-
cedure and contain only accomplished procedure calls. ‘Unbalanced-right’ paths are sequences
of matched paths interrupted by unmatched procedure returns. They start in a procedure p and
end in a procedure in which p was called2. ‘Unbalanced-left’ paths are sequences of matched
paths interrupted by unmatched procedure calls. They start in a procedure p and end in a pro-
cedure that is called by p. A ‘realizable’ path is a concatenation of an unbalanced-right and an
unbalanced-left path. It starts in a procedure p, leaves it towards a procedure q in which p was
called and ends in a procedure r called by q.

2.1.2. Dominance and Postdominance

Several essential relations between the statements of a program can be derived from its ICFG.
Let m and n be two nodes in an ICFG:

• m dominates n if every realizable path from the start node to n passes through m.

1In certain cases it is possible to statically exclude certain branches or sequences of branches, but we do not
investigate that issue.

2Which in case of recursion may again be p.

15

2. Slicing Sequential Programs

• n postdominates m if every realizable path from m to the exit node passes through n.

• n strictly postdominates m if n postdominates m and n 6= m.

• n is the immediate postdominator of m if n 6= m and n is the first postdominator on every
realizable path from m to the exit node.

• n strongly postdominates m if n postdominates m and there is an integer k ≥ 1 such that
every realizable path from m of length ≥ k passes through n [110]. In effect, strong
postdominance dismisses realizable paths from m to n containing loops or recursion. It is
sensitive to the possibility of nontermination along paths from m to n.

2.2. Slicing Intra-Procedural Programs

Program dependence graphs were originally developed by Ferrante et al. [39] as an intra-
procedural data structure for the analysis of possible optimizations and parallelism in proce-
dures. A PDG G = (N,E) of a procedure-less program p is a directed graph, whose nodes
in N represent statements of p and whose edges in E represent data dependences and control

dependences between them. Data dependence, originally called flow dependence by Ferrante et
al. [39], is defined as follows:

Definition 2.4 (Data dependence). Let m,n be two nodes in a CFG. Let def (n) be the variables

defined by n and let use(n) be the variables used by n. Node n is data dependent on node

m, abbreviated by m →dd n, iff there exists a variable v ∈ def (m)∩ use(n) and a path Φ =

〈n1, . . . ,nk〉 in the CFG, for which n1 = m,nk = n and ∀1 < i < k : v /∈ de f (ni) holds.

The definition of control dependence is based on postdominance [39]:

Definition 2.5 (Control dependence). Let m,n be two nodes in a CFG. Node n is control depen-

dent on m, abbreviated by m →cd n, iff

1.there exists a path φ from m to n in the CFG such that n postdominates every node in φ ,

except for n and m,

2.and n does not postdominate m.

The PDG of a program p is built by computing the program dependences on the CFG of
p. Every node being part of a dependence is added to the PDG, and for every dependence one
corresponding edge is inserted. Due to the synthetic control flow edge between the start and exit
node of the CFG, every node in the CFG is at least involved in one control dependence, except
for the exit node. The exit node is usually omitted from the PDG because it is independent of
the other nodes. The slice of a PDG consists of all nodes that reach the slicing criterion:

16

2.3. Slicing Interprocedural Programs

Definition 2.6 (Slice of a PDG). Let G = (N,E) be a PDG. A slice of G for a slicing criterion

s ∈ N consists of the set of nodes {n | ∃ n →∗ s in G}, where n →∗ s denotes a transitive path

from n to s in G.

Additional dependences A program analysis may require additional kinds of dependences
for its purpose. One important example is weak control dependence [110, 115], which is used by
program analyses that have to account for program termination. Intuitively, a node n is weakly
control dependent on nodes that may cause the program to bypass n or to infinitely delay its
execution.

Definition 2.7 (Weak control dependence). Let m,n be two nodes in a CFG. Node n is weakly

control dependent on m iff there exist two successors m′,m′′ of m such that n strongly postdom-

inates m′, but not m′′.

2.3. Slicing Interprocedural Programs

Ottenstein und Ottenstein [109] showed how PDGs can be used for slicing, but did not inves-
tigate how to extend PDGs to programs with multiple procedures. A suitable extension is the
system dependence graph (SDG) of Horwitz, Reps and Binkley [63, 119]. The SDG G= (N,E)

of a program p is a directed graph, where N is the set of nodes and the edges in E represent
the dependences between them. The SDG is composed of the PDGs of the single procedures of
p. The PDGs are connected at call sites3, which consist of a call node c and the start node s of
the called procedure, connected through a call edge c →call s, and of synthetic parameter nodes

and -edges, which model parameter passing and result returning:

• For every passed parameter, there exists an actual-in node ai at the call node and a formal-

in node fi at the start node, connected via a parameter-in edge ai →pi fi.

• For every returned value, there exists an actual-out node ao at the call node and a formal-

out node fo at the start node, connected via a parameter-out edge fo →po ao.

• Formal-in and formal-out nodes are control dependent on the start node, actual-in and
actual-out nodes are control dependent on the call node.

• So-called summary edges between actual-in and actual-out nodes of one call site represent
transitive flow from a parameter to a return value in the called procedure.

Side effects of procedures, such as access to global variables and heap locations or exception
handling, are treated as additional parameters and return values [63]. That way, all interprocedu-
ral effects are modeled by parameter nodes and edges at the call sites. This is a well-formedness

3The call sites in an ICFG can be bijectively mapped to the call sites in the corresponding SDG. We therefore
use the term call site in both cases.

17

2. Slicing Sequential Programs

control dependence

data dependence

call or parameter edge

x > 0

x = x * x
x = -x

j = -1 call foo

print j

main

foo

call foo i = 1

print i

summary edge

i i j j

x x

return x

 main():

 i = 1;

 j = -1;

 i = foo (i);

 j = foo (j);

 print i;

 print j;

 foo(x):

 (x > 0)

 x = x * x;

 x = -x;

 x;

void

int

 if

 else

 return

Figure 2.2.: A system dependence graph. Parameter nodes are symbolized by rectangular nodes, where
the parameter nodes to the left of a call or start node are the actual-in or formal-in nodes,
the ones to the right are the actual-out or formal-out nodes. The highlighted nodes form the
context-sensitive slice for print j, as computed by the two-phase slicer. The light gray
nodes are visited in phase 1, the dark gray nodes in phase 2.

property of SDGs, which is exploited by the upcoming slicing algorithm. Figure 2.2 shows an
example program and its SDG.

Relationship between SDGs and ICFGs

The set of nodes of a SDG G= (N,E) can be partitioned into two disjoint sets, N =NPDG∪Nsyn,
where NPDG consists of the nodes of the PDGs and Nsyn contains the synthetic parameter nodes.
Similarly, the set of edges can be partitioned into two disjoint sets, E = EPDG ∪Esyn, where
EPDG consists of the edges of the PDGs and Esyn consists of the call-, parameter- and summary
edges. It should be clear that the sets of nodes of the SDG and of the corresponding ICFG
are in no subset relation. A node in the ICFG is missing in the SDG if it is not involved in
any program dependence, and the synthetic SDG nodes are missing in the ICFG. However, on
several occasions in this thesis, SDG nodes have to be mapped to ICFG nodes. In these cases,
we map actual-in and -out nodes to the associated call or return node and formal-in and -out
nodes to the start or exit node of the procedure:

18

2.3. Slicing Interprocedural Programs

Definition 2.8. Let G = (NPDG ∪Nsyn,_) be a SDG, and let ICFG = (NICFG,_) be the corre-

sponding ICFG. Function map : NPDG ∪Nsyn 7→ NICFG is defined as follows:

map(n) =

n n ∈ NPDG

c n is an actual-in node and c is the corresponding call node

r n is an actual-out node and r is the corresponding return node

s n is a formal-in node of procedure p and s is p’s start node

e n is a formal-out node of procedure p and e is p’s exit node

We assume that this mapping is done implicitly whenever necessary.

2.3.1. Context-Sensitive Slicing

The major difficulty of slicing interprocedural programs is to maintain context-sensitivity. Sim-
ilar to ICFGs, SDGs may contain context-insensitive paths. Context-sensitive paths in SDGs
can be described by the grammar for context-sensitive ICFG paths in definition 2.3 [120]:

Definition 2.9 (Context-sensitive paths in SDGs). Let G be a SDG. For each call site (c,s)

in G, label the associated call and parameter-in edges with a symbol (s
c, and the associated

parameter-out edges with a symbol)s
c. Label all other edges with l.

A path in G is context-sensitive, symbolized with →∗
cs, iff the sequence of symbols labeling

edges in the path is a word generated from nonterminal realizable by the context-free gram-

mar H in definition 2.3 (it will always be clear whether →∗
cs denotes a context-sensitive path in

a SDG or ICFG).

A context-sensitive slice of a SDG consists of all nodes on context-sensitive paths to the
slicing criterion.

Definition 2.10 (Context-sensitive slice). Let G = (N,E) be a SDG. A context-sensitive slice of

G for a slicing criterion s ∈ N consists of the set of nodes {n | ∃ n →∗
cs s in G}.

Two-phase slicing

Computing a slice of a SDG by collecting all nodes reaching the slicing criterion does not yield
context-sensitive slices. Fortunately, SDGs are purpose-built for context-sensitive slicing. Their
summary edges enable an efficient computation of context-sensitive slices in two phases [63]:
Phase 1 slices from the slicing criterion only ascending to calling procedures, where summary
edges are used to bypass call sites. If the slicer encounters a parameter-out edge, the adjacent
node is stored in a list L. Phase 2 slices from all nodes in L only descending to called procedures.
This two-phase approach is the most established slicing technique for interprocedural programs.

19

2. Slicing Sequential Programs

Algorithm 2.1 The two-phase slicer of Horwitz, Reps and Binkley [63].
Input: A SDG G, a slicing criterion s.
Output: The slice S for s.

W1 = {s},W2 = {},S = {s} // two worklists and the result set

/* phase 1 */
repeat

remove first node n from W1
for all m → n // handle all incoming edges of n

if m 6∈ S // m has not been visited yet
S = S∪{m}
if m → n is not a parameter-out edge

W1 =W1∪{m}
else

W2 =W2∪{m}
until W1 = /0

/* phase 2 */
repeat

remove first node n from W2
for all m → n // handle all incoming edges of n

if m 6∈ S // m has not been visited yet
if m → n is not a parameter-in or call edge

W2 =W2∪{m}
S = S∪{m}

until W2 = /0

return S

In Fig. 2.2, the context-sensitive slice for statement print j is highlighted gray. The light gray
shaded nodes in Fig. 2.2 are visited in phase 1, the dark gray shaded nodes are visited in phase
2. Algorithm 2.1 shows pseudocode of this two-phase slicer, which has an asymptotic running
time of O(|E|).

2.4. Computation of System Dependence Graphs

This section briefly describes the computation of SDGs. Since this thesis is not engaged in com-
putation of SDGs in itself, the section is confined to an explanation of the most basic techniques
and only sketches the treatment of advanced language features like pointers and objects. For de-
tailed descriptions of SDG construction for contemporary, object-oriented languages we refer to
Walkinshaw’s PhD thesis [151], Hammer’s PhD thesis [52] and Graf’s recent publication [49].

20

2.4. Computation of System Dependence Graphs

2.4.1. Data Flow Analysis Frameworks

The computation of SDGs is based on data flow analysis. Data flow analyses usually work
on the control flow graph of the program and collect information about variables at program
statements. A typical example is the computation of reaching definitions, a well-known task
in compiler construction. Conveniently, reaching definitions are also used to compute data
dependences.

Definition 2.11 (Reaching definitions). Let m be a node in a CFG G, and let def (m) be the

set of variables defined at m. A definition of variable v at node m reaches a (not necessarily

different) node n if there exists a realizable path 〈n1, . . . ,nk〉 in G, for which k > 1, n1 = m,

nk = n and ∀1 < i < k : v /∈ def (ni) holds.

The reaching definitions in a program can be determined by an iterative data flow analysis,
which computes the reaching definitions for each node by iterating over the control flow graph
until reaching a fixed point. This technique uses the below presented functions gen and kill,
where gen describes which variables are defined at a node n and kill describes which reaching
definitions are ‘killed’, i.e. redefined at n. Let def (n) be the set of definitions at node n and
def (v) be the set of all definitions of variable v. Then gen and kill are defined as follows:

gen(n) = def (n)

kill(n) =
⋃

v∈def (n)

def (v)

A node n has the following semantics with respect to the set R of reaching definitions: All
definitions reaching n and not killed by n leave n together with the definitions generated by n:

JnK(R) = (R\ kill(n))∪gen(n)

This semantics can be extended to capture the effects of a CFG path Φ = 〈n1, . . . ,nk〉:

JΦK =

JKid Φ = 〈〉

J〈n2, . . . ,nk〉K◦ Jn1K otherwise

The set of all definitions that may reach a node n is determined by collecting all definitions
reaching n via some path from the CFG start node s to n. Since s does not define any variable,
we have an empty initial set of reaching definitions in the following equation:

ReachingMOP(n) =
⋃

Φ=〈s,...,n〉
JΦK(/0)

21

2. Slicing Sequential Programs

This formula is a meet-over-all-paths (MOP) solution. There exist infinite paths in the pres-
ence of loops, which make a direct computation of the MOP solution impossible. Fortunately,
there exists an alternative formula, computing a minimal-fixed-point (MFP) solution, which
provably coincides with the MOP solution:

ReachingMFP(n) =

 /0 n = s

JnK(
⋃

m→n ReachingMFP(m)) otherwise

The computation of the MFP solution is based on the theory of monotone data flow analysis

frameworks. A monotone data flow analysis framework consists of a lattice representing the
data flow facts and a monotone function space defined on the lattice. In our example, the data
flow facts are the sets of reaching definitions in program p, the lattice being the power set, and
the function space consists of the transfer functions JnK of all nodes n in the CFG of p. The
monotonicity of the function space guarantees the existence of a fixed point and the termination
of its computation.

A monotone data flow analysis framework is a distributive data flow analysis framework if the
transfer functions are distributive. It is proven that the MFP solution computed by a distributive
monotone data flow analysis framework coincides with the correct and precise MOP solution. It
is also proven that the equations of the reaching definitions fit in a distributive data flow analysis
framework.

2.4.2. Computation of PDGs and SDGs

The computation of a PDG for a procedure-less program or single procedure p works as follows:
Initially, the existing control and data dependences are computed on the CFG of p.

The control dependences are traditionally determined via the post-dominator tree of the pro-
gram, which can be extracted from the CFG via the Lengauer-Tarjan algorithm [86] in time
O(|N| ∗α(|N|)) (where α is the inverse Ackermann function). Then, for every control flow
edge m → n where n does not postdominate m, one traverses the post-dominator tree upwards
from n to the parent of m. Every visited node, including n, is control dependent on m. A detailed
description of this method can be found in Ferrante et al.’s publication [39].

The definition of data dependence can be rephrased in terms of reaching definitions: If the
definition of a variable v at node m reaches node n and n references v, then n is data dependent
on m. Computing the reaching definitions first and then checking every node for a usage of a
variable of a reaching definition retrieves the existing data dependences.

Having the data and control dependences, the PDG is populated with all nodes of the CFG
that are involved in at least one dependence and with one edge for each dependence.

22

2.4. Computation of System Dependence Graphs

From PDGs to SDGs

The computation of a SDG first creates the PDGs of the single procedures and connects them
to a SDG. Since procedures are single-entry single-exit regions in ICFGs, control dependences
in interprocedural programs can be computed intra-procedurally. The synthetic control flow
edge between the start and exit node of a CFG makes sure that no node in a CFG is control
dependent on a node outside. All nodes of the CFG lie in a branch of the start node and thus
can only postdominate nodes inside the CFG.

Like control dependences, data dependences remain intra-procedural. However, interproce-
dural effects have to be accounted for. Interprocedural effects arise from accesses to non-local
variables, e.g. global variables or heap locations. A side effect analysis [17] determines for each
procedure p the sets GMOD(p) and GREF(p) of all non-local variables modified (GMOD(p))
or referenced (GREF(p)) in p or in a procedure called by p. This is done by a fixed-point
analysis, which starts by collecting the modified and referenced variables for each procedure
in isolation. These results are propagated to calling procedures, and this need for propagation
leads to a fixed-point computation in the presence of recursion.

By using the results of the side effect analysis, the data dependences can be determined as in
the intra-procedural case on the basis of intra-procedural reaching definitions. For that purpose,
the interprocedural effects of procedures are mapped to their call nodes in the ICFG, which serve
as proxies for the called procedures during the data dependence computation. Any variable v

that may be defined or referenced by a called procedure is assumed to be defined or referenced
at the call node itself.

Having the results of the data dependence computation, the PDGs are connected at their call
sites. Data dependences involving call, start or exit nodes of the ICFG are deflected to the
fitting parameter nodes in the PDGs. Finally, summary edges are added to the evolving SDG.
Reps et al. [119] present a suitable algorithm, which commits an intra-procedural backward
traversal starting at each formal-out node. If such a traversal reaches a formal-in node, the
associated actual-in and -out nodes are connected by a summary edge. Since the insertion of a
new summary edge may lead to new intra-procedural paths, the computation is repeated until
no new summary edge has been added.

2.4.3. SDGs for Object-Oriented Languages

Data flow analyses for object-oriented languages, and for heap manipulating programming lan-
guages in general, need knowledge about variables that point to objects residing on the heap.
Heap manipulating languages usually allow different pointers to point to the same heap loca-
tion, which may cause data dependences that cannot be discovered by the hitherto presented
data flow analysis. Applied on the program in Figure 2.3 it would not find that statement 9

23

2. Slicing Sequential Programs

1 c l a s s O:
2 i n t x ;

4 void main () :
5 O p = new O () ;
6 O q = new O () ;
7 q = p ;
8 q . x = 2 ;
9 p r i n t p . x ;

p

q

O5

O6

p

q

O5

O6

Figure 2.3.: A program fragment and its points-to graphs computed by Andersens’s (mid) and Steens-
gaard’s algorithm (right side).

depends on statement 8 because it lacks knowledge about p.x in line 9 being identical with q.x

in line 8. A points-to analysis reveals which pointers may point to which heap locations.

Points-to analysis

A suitable representation of points-to information is the points-to graph, a directed graph whose
nodes are the pointers and heap location representatives in the analyzed program4. Its edges
describe which pointers may point to which other pointers or heap locations.

There exist roughly two classes of points-to algorithms, inclusion-based and unification-
based algorithms.

Andersen’s algorithm [13] is the origin of inclusion-based points-to analysis. It starts with
constructing an initial points-to graph from the assignments in the program and then iterates the
following rule until reaching a fixed-point: If the program contains an assignment p = q, then
p has to point to at least everything to which q points.

Steensgaard’s algorithm [141] in contrast computes equivalence classes of pointers, based on
the following rule: If the program contains an assignment p = q, then both p and q have to
point to the same. To this end, the nodes of p and q in the points-to graph are merged. His
algorithm is the origin of unification-based points-to analysis.

Figure 2.3 contains the points-to graphs of the example program resulting from Andersen’s
algorithm (mid) and from Steensgaard’s algorithm (right side). It can be seen that Steensgard’s
algorithm is less precise than Andersen’s. In the example, it gradually merges the pointers to
one single node, so that eventually every pointer points to every object. On the other hand,
his algorithm offers a near-linear runtime complexity of O(n ∗α(n)), where n is the number
of statements in the program and α is the inverse Ackermann function, whereas the runtime
complexity of Andersen’s algorithm is in O(n3). Therefore, both styles are in use.

4In order to avoid name conflicts, renaming techniques like static single assignment [36] are incumbent. In our
example, we simply annotate affected pointers and heap locations with the line number of their declaration.

24

2.4. Computation of System Dependence Graphs

These general algorithms are usually extended to suit individual languages or purposes. For
example, Streckenbach and Snelting [142] observed that exploiting the following properties of
Java significantly improves the results:

• Java is type correct. This information can be used to avoid spurious edges in the points-to
graph.

• Java has no function pointers, only dynamic dispatch. The possible targets of procedure
calls can be narrowed by type information.

• Java disallows pointer arithmetics and pointers pointing to other pointers. This means that
the paths in points-to graphs of Java programs have a maximal length of 1, which allows
to use optimized data structures for the graphs.

Alias analysis An important application of points-to information is the identification of alias-

ing pointers [62]. Two pointers are aliasing if they point to the same heap location. Since alias-
ing is statically undecidable [113], there are two kinds of approximations. Two pointers are
may-aliasing if they may point to the same heap location in some program execution. They are
must-aliasing if they are guaranteed to point to the same location in every program execution.

May-aliasing can be directly derived from the points-to information. Two pointers are said to
be may-aliasing if the intersection of their points-to sets is not empty. A sound computation of
data dependence in the presence of pointers has to take may-aliasing pointers into account.

It is difficult to determine must-aliasing using points-to information because points-to analy-
ses are usually may-analyses themselves: They collect all heap locations and pointers to which
some pointer may point during a program execution. Still, it is possible to define must-aliasing
on the basis of points-to information. Li and Verbrugge [87] observed that two pointers are
must-aliasing if their points-to sets are identical and contain only one heap location, and the
allocation site of that heap location is executed at most once in a program execution. To this
end, the allocation site must not be included in an intraprocedural control flow cycle or in a
recursion. Furthermore, multiple calls of the procedure containing the allocation site have to be
taken into account, by either distinguishing or disallowing them.

Dynamic dispatch Points-to information can also be used to improve the static analysis of
dynamic dispatch. A simple analysis of dynamic dispatch is to determine the set of possible
procedures via static lookup. By additionally consulting points-to information it is possible to
exclude those procedures for which a suitable object is missing in the points-to set.

Objects as parameters SDGs for object-oriented languages have to model objects that are
passed as parameters at procedure calls. Several authors [57, 88] suggest object trees as a

25

2. Slicing Sequential Programs

1 c l a s s A:
2 i n t x ;

3 c l a s s B :
4 A a ;

5 void foo (B b) :
6 b . a . x = 1 ;

control dependence
data dependence

b.a.x = 1

foo

b

a

x

b

a

x

Figure 2.4.: An example for object trees. Procedure foo changes field a.x of parameter b. The slice
for b.a.x = 1 is highlighted gray.

suitable representation. The root in such a tree is the object itself, each node represents a
field of the parent node and the leaves are the primitive types of which the whole object is
eventually composed. The edges in the tree are usually control dependence edges. The paths
in the tree mirror the access paths necessary to access a certain field and are traversed by the
slicing algorithms, so that dependences arising from access paths are correctly accounted for.
Figure 2.4 provides a small example, where procedure foo receives an object of type B and
assigns 1 to b.a.x. A slice for that assignment (highlighted gray) includes not only x but also
b and a, since it has to access them in order to access x. Note that object trees are also used as
formal-out nodes (the object tree on the right of node foo).

A major problem with object trees is the treatment of recursively defined objects, which may
result in infinite trees. Hammer [52, 57] developed an unfolding criterion for a sound abortion
of the unfolding process based on points-to information. In his own words [52, p. 54]:

“The idea is to stop unfolding, when the same field has been observed earlier in
this branch of the object tree and the base pointers of these two locations have
the same points-to sets. In this case, both locations are equivalent with respect
to all properties used for computing data dependences, so including the second
tree would just add the same information again, rendering one of these locations
redundant.”

Whereas Hammer’s unfolding criterion solves that problem, Graf [49] observed another one.
If two nodes in an object tree represent different pointers, but with the same may-alias situation,
their subtrees represent the same object. But if the nodes lie in different branches of the object
tree, their subtrees appear twice in the tree. This is a concession to the tree structure, which
unfortunately means that object trees grow larger the more imprecise the employed points-to
analysis is, because a more imprecise points-to analysis leads to more may-aliasing. Since

26

2.5. Context-Sensitive Slicing via Call Strings

bigger object trees lead to higher runtime costs of the summary edge computation, this is a
performance deadlock: A fast but comparatively imprecise points-to analysis causes a more
expensive summary edge computation, a more precise points-to analysis relieving the costs of
the summary edge computation is more expensive itself. As a remedy, Graf suggests merging
subtrees of pointers with the same aliasing situation. These object graphs shrink with more
imprecise points-to analyses and thus resolve the performance problem.

2.5. Context-Sensitive Slicing via Call Strings

Context-sensitive slicing via SDGs and two-phase slicing has one hitch: The computation of
summary edges employs a fixed-point search of all matched paths from actual-in to actual-out
nodes of each call site, whose runtime complexity is cubic to the maximal number of parameter
nodes in a PDG [119]. Evaluations indicate that the summary edge computation becomes a
severe bottleneck for huge programs (>100k lines of code)5. In order to circumvent this, several
authors [9, 25, 74] present techniques that omit summary edges and instead annotate nodes with
their current calling contexts during the graph traversal, which are used to check whether the
traversal towards a calling procedure preserves context-sensitivity. The most advanced solution
has been presented by Krinke [74], thus his approach is presented here. Working with calling
contexts during SDG traversal is a prerequisite for timing-sensitive slicing, and the technique
presented here is employed in chapter 3.

The data structure used by this alternative slicing technique is the interprocedural dependence

graph (IPDG), which is simply a SDG without summary edges. In order to compute context-
sensitive slices, visited nodes are annotated with call strings [131], a textual representation of
calling contexts.

Definition 2.12 (Call strings and contexts). Let G be an IPDG, and label each call site in G

with a unique identifier si. A call string [131] is a list of call sites 〈s1, . . . ,sk〉, where for every

1 ≤ i < k, si calls the procedure of si+1. Let n be a node of G and σ = 〈s1, . . . ,sk〉 be a call

string such that sk calls the procedure of n. The pair c = (n,σ) is a context of n. Indices are

often used to make clear to which node a context belongs, i.e. context cn is a context of node n.

A context-sensitive traversal of IPDGs is achieved by checking whether the traversal from
a procedure to its caller is in accordance with the call string of the current context. Given a
context (n,〈s1, . . . ,sk〉) and an edge m →e n, the following rules guarantee a context-sensitive
backward traversal:

• e ∈ {cd,dd} (control or data dependence)
This is an intra-procedural traversal. The traversal visits context (m,〈s1, . . . ,sk〉).

5This was stated by Paul Anderson from GrammaTech in his keynote at the SCAM conference in 2008. Gram-
maTech is the producer of CodeSurfer [35], which is currently the most advanced SDG generator for C/C++.

27

2. Slicing Sequential Programs

• e ∈ {po} (parameter-out edge)
The traversal descends to a called procedure, n is an actual-out node and belongs to a call
site s, which is appended to the call string. The traversal visits context (m,〈s1, . . . ,sk,s〉).

• e ∈ {pi,call} (parameter-in or call edge)
The traversal ascends to a calling procedure. Node m is an actual-in or call node and
belongs to a call site s, which is compared with the call site sk at the end of the call string.
If they match, the traversal is context-sensitive and visits context (m,〈s1, . . . ,sk−1〉). Oth-
erwise, the traversal is rejected.

For a context-sensitive forward traversal, we have to switch the implications of the second and
third rule.

Handling recursive calls

The usage of call strings bears a major problem: Recursive calls may lead to infinite call strings.
A possible solution to that problem is k-limiting call strings: If a call string exceeds length k, the
oldest element is removed. However, k-limiting introduces some context-insensitivity, because
in case a call string has been decomposed to the empty string, the traversal has to leave the
current procedure towards all call sites. Krinke’s solution is to represent a recursive cycle of
procedure calls by a single synthetic call site. Given a context (n,〈s1, . . . ,sk〉) and an edge
m →e n, a context-sensitive slice is achieved by modifying the second and third rule as follows:

• e ∈ {po} (parameter-out edge)
The traversal descends to a called procedure. Let s be the corresponding call site. If s

does not belong to a recursive cycle of procedure calls, we proceed as before. Otherwise,
s is a synthetic call site representing a recursive cycle. If sk = s, then we are already in
the recursive cycle. The call string is propagated unchanged, for not to create infinite call
strings, and the traversal visits context (m,〈s1, . . . ,sk〉). If sk 6= s, we add the call site to
the call string, visiting context (m,〈s1, . . . ,sk,s〉).

• e ∈ {pi,call} (parameter-in or call edge)
The traversal ascends to a calling procedure. If the corresponding call site s is not part of
a recursive cycle, we proceed as before. Otherwise, we compare the synthetic call site s

with the call site at the end of the call string. If they match, we have to propagate two dif-
ferent call strings: One that remains in the recursion and leaves the call string untouched,
visiting context (m,〈s1, . . . ,sk〉), and one that leaves the recursion by removing the last
element from the call string, visiting context (m,〈s1, . . . ,sk−1〉).

28

2.5. Context-Sensitive Slicing via Call Strings

Algorithm 2.2 Krinke’s IPDG slicer [74].
Input: An IPDG G, a slicing criterion s.
Output: The slice S for s.

W = {(s,σ) | σ is a call string of s} // initialize the worklist with all contexts of s
S = {} // the result set

repeat
remove first context (n,σ) from W
S = S∪{n}
for all m →e n // handle all incoming edges of n

if e ∈ {pi,call} // ascend to a calling procedure
Let s be the corresponding call site
if σ == σ ′s // s is the last element of σ ; this test guarantees context-sensitivity

if m has not been marked with σ ′

W =W ∪{(m,σ ′)}
mark m with σ ′

if s is recursive and m has not been marked with σ

// at recursive calls we additionally have to conserve call string σ

W =W ∪{(m,σ)}
mark m with σ

else if e ∈ {po} // descend to a called procedure
Let s be the corresponding call site
if s is recursive and σ == σ ′s and m has not been marked with σ

// we are in a recursive cycle – preserve the call string
W =W ∪{(m,σ)}
mark m with σ

else
σ ′′ = σs // append s to σ

if m has not been marked with σ ′′

W =W ∪{(m,σ ′′)}
mark m with σ ′′

else // intra-procedural edge – preserve call string σ

if m has not been marked with σ

W =W ∪{(m,σ)}
mark m with σ

until W = /0
return S

Algorithm 2.2 presents Krinke’s IPDG slicer, which uses the above rules to compute context-
sensitive slices of IPDGs. The algorithm is initialized with all possible contexts of the slicing
criterion. These contexts can be determined on the calling context graph [75] of the program6.

6Not to be confused with the more popular call graph.

29

2. Slicing Sequential Programs

Definition 2.13 (Calling context graph). A calling context graph G = {N,E} of a program is a

directed graph, whose set of nodes N consists of all call nodes of the program. E contains an

edge m → n between m,n ∈ N if m calls a procedure p and n is a call node inside p.

The nodes in the calling context graph are used as the representatives of the call sites. Recur-
sive cycles in the calling context graph are folded, yielding the synthetic call sites needed for
programs with recursive procedures. The possible call strings of a node n can be computed by
a backward depth-first search starting at the call nodes that call n’s procedure.

Optimizations

Let us take a look at the pseudocode of the IPDG slicer. It stands out that it has to check all the
time whether the currently reached context has already been visited. The comparison of contexts
is a bottleneck in the IPDG slicer because call strings can grow arbitrarily long. Krinke [74]
suggests k-limiting of call strings as a possible optimization and shows in his evaluation that a
choice of k = 4 offers a good trade-off between precision and speed. Since we need to remain
context-sensitive in order to compute timing-sensitive slices, we developed an alternative to k-
limiting. We suggest caching of call strings, so that contexts with the same call string share the
same data structure. This reduces the comparison of call strings to a comparison of pointers. For
that purpose, we arrange the set of possible call strings in a modified calling context graph, in
which every node represents a complete call string and from which the slicer queries the reached
call string when it enters or leaves a procedure. In contrast to k-limiting, this optimization
preserves context-sensitivity. Our evaluation in section 2.6 shows that this technique leads to a
significant speedup, and, despite the caching of call strings, even to lower memory consumption.

Krinke [74] furthermore observed that if a node n is annotated with two call strings σ ,σ ′

and σ is a prefix of σ ′, then σ ′ can be omitted because a context-sensitive traversal starting
at context (n,σ ′) visits a subset of the nodes that it visits for context (n,σ). However, notice
that call string σ ′ describes a recursive call of n’s procedure. Thus this situation does not
appear if recursive calls are folded and no k-limiting is used. Hence, we do not investigate that
optimization any further.

2.5.1. Context-Restricted Slicing

Binkley [23] noticed that the SDG/IPDG slicing approach presented so far is too imprecise in
situations like the following: Imagine that a program aborts with an error at a statement n,
but only for a certain invocation of n’s procedure (e.g. a faulty usage of a library). The two-
phase slicer and the IPDG slicer are context-sensitive, but they treat the slicing criterion n in a
context-insensitive manner: The computed slice for n is the slice for all possible contexts of n.
For the above scenario it would be suitable to have a slicer that computes a slice restricted to the

30

2.6. Evaluation

calling context in which n causes the program abortion. To this end, Krinke [78, 79] suggests
combining the two-phase slicer with the IPDG slicer. The resulting context-restricted slicer

receives a context c as the slicing criterion and employs the context-based traversal technique
of the IPDG slicer in phase 1, visiting only those procedures that form the calling context of
c. Phase 2 is equivalent to phase 2 of the two-phase slicer and collects the nodes in procedures
called underway. The pseudocode of this slicer is shown in Algorithm 2.3. Note that this
algorithm requires summary edges.

2.5.2. Forward Slicing

Slicing as introduced so far determines the set of nodes that may influence the slicing criterion.
Forward slicing [63] collects the set of nodes that may be influenced by the slicing criterion.

Definition 2.14 (Context-sensitive forward slice). A context-sensitive forward slice for slicing

criterion s in a SDG G consists of the set of nodes {n | ∃ s →∗
cs n in G}.

In situations where we have to distinguish both kinds of slicing we speak of backward and
forward slicing. Unless otherwise noted, the sole term ‘slicing’ always refers to backward
slicing.

The presented backward slicers are easily converted into forward slicers. The edges have to
be traversed forward and the treatment of interprocedural edges has to be inverted: Parameter-
out edges are treated by the forward slicers like parameter-in and call edges by the backward
slicers and vice versa.

2.6. Evaluation

We have implemented the presented slicing algorithms in Java and evaluated them on a set of 22
Java programs shown in Table 2.1. The programs in the upper part are small to medium-sized
Java programs taken from the Bandera [1] benchmark and solve a certain task in a concur-
rent manner (e.g. LaplaceGrid solves Laplace’s equation over a rectangular grid). The other
programs are real JavaME [4] applications, a Java variant for mobile devices, taken from the
SourceForge repository7. All these programs contain threads and were also used to evaluate our
algorithms for concurrent programs. The sequential slicing algorithms simply treat threads as
normal procedures and ignore all concurrency-related dependences. Our SDGs do not only in-
clude the source code of the program, but also parts of the called libraries. Column ‘LOC’ shows
how many lines of code of the source code and of library code are included in the SDGs. The
numbers for the library code were retrieved by analyzing the source code information present
in Java bytecode.

7http://sourceforge.net/

31

2. Slicing Sequential Programs

Algorithm 2.3 Krinke’s context-restricted slicer [79].
Input: A SDG G, a slicing criterion c (a context).
Output: The slice of G for c.

W1 = {c} // the worklist for phase 1
W2 = {} // the worklist for phase 2
S = {} // the slice

/* phase 1 */
repeat

remove first context (n,σ) from W1
S = S∪{n}
for all m →e n // handle all incoming edges of n

if e ∈ {pi,call} // ascend to a calling procedure
Let s be the corresponding call sites
if σ == σ ′s // this test guarantees context-sensitivity

if m has not been marked with σ ′

W1 =W1∪{(m,σ ′)}
mark m with σ ′

if s is recursive and m has not been marked with σ

// at recursive calls we additionally have to conserve call string σ

W1 =W1∪{(m,σ)}
mark m with σ

else if e ∈ {po} // descend to a called procedure
if m /∈ S // m has not been visited yet

W2 =W2∪{m}

else // intra-procedural or summary edge – preserve call string σ

if m has not been marked with σ

W1 =W1∪{(m,σ)}
mark m with σ

until W1 = /0

/* phase 2 */
repeat

remove first node n from W2
S = S∪{n}
for all m → n // handle all incoming edges of n

if m /∈ S∧m → n is not a parameter-in or call edge // do not ascend to calling procedures
W2 =W2∪{m}

until W2 = /0
return S

The implemented algorithms work on SDGs computed by the Joana framework [45]. The
evaluation was committed on a 2.2Ghz Dual-Core AMD workstation with 32 GB of memory
running Ubuntu 8.04 (Linux version 2.6.24) and Java 1.6.0. Each slicing algorithm had a work-
ing memory of 8 GB at his disposal.

32

2.6. Evaluation

Table 2.1.: Statistics of our benchmark programs.

Name LOC Nodes Edges Procs
src lib

Example 29 + 313 2509 36386 89
ProdCons 83 + 335 3331 39418 100
DiskScheduler 220 + 457 4389 43286 133
AlarmClock 187 + 366 4781 44328 124
DiningPhils 90 + 519 5115 125131 116
LaplaceGrid 175 + 531 6175 50359 161
SharedQueue 357 + 1138 11284 78022 199
EnvDriver 2677 + 472 19106 181407 180
KnockKnock 592 + 2471 35852 310325 506
DaisyTest 1114 + 2340 43138 433837 527
DayTime 371 + 4407 59708 626742 696
Logger 279 + 1165 10333 51614 227
Maza 921 + 1125 11235 66599 250
Barcode 783 + 1242 12344 63688 271
Guitar 761 + 1256 13257 67580 296
J2MESafe 512 + 1621 17754 124696 309
HyperM 366 + 1332 17768 91422 277
Podcast 2012 + 1965 23576 157303 407
GoldenSMS Key 1139 + 1736 21860 176376 362
GoldenSMS Msg 900 + 1913 26333 210493 414
GoldenSMS Rec 695 + 1796 22088 147465 370
Cellsafe 3024 + 2137 41707 860244 534

The evaluation consists of two parts. The first part compares the execution times and the
average slice sizes of the two-phase slicer, the IPDG slicer and a context-insensitive slicer,
which simply collects all nodes reaching the slicing criterion. The second part compares two-
phase slicing with context-restricted slicing.

2.6.1. Context-Sensitive Slicing

In this part of our evaluation, we measured the average slice sizes and runtime performance of
the two-phase slicer, 2P, of the context-insensitive slicer, CI, which collects all nodes reaching
the slicing criterion, and of two variants of the IPDG slicer. The first variant, I, uses our pro-
posed technique of caching call strings, the second variant, I-dyn, builds and decomposes call
strings during the slicing process, as originally proposed by Krinke [74]. As caching techniques
always bear the risk of exhaustive memory consumption, we additionally compared the mem-
ory consumption of I and I-dyn. The algorithms had to compute the slices for each node in the
SDGs.

33

2. Slicing Sequential Programs

Table 2.2.: Average sizes, in number of nodes, of the context-insensitive (cont.-ins.) and the context-
sensitive slices (cont.-sens.). The percentage values denote the ratio of context-sensitive to
context-insensitive slice sizes.

Name cont.-ins. cont.-sens. Name cont.-ins. cont.-sens.
Example 998 905 (91%) Logger 3954 2860 (72%)
ProdCons 1275 1139 (89%) Maza 4850 3981 (82%)
AlarmClock 2210 1291 (58%) Barcode 6640 2736 (41%)
DiskScheduler 1668 1154 (69%) Guitar 7411 3623 (49%)
DiningPhils 2688 1546 (57%) J2MESafe 10353 6444 (62%)
LaplaceGrid 3335 1774 (53%) HyperM 9505 3160 (33%)
SharedQueue 7657 3459 (45%) Podcast 14622 8316 (57%)
EnvDriver 9059 6770 (75%) GoldenSMS Key 12760 6232 (49%)
KnockKnock 22135 6715 (30%) GoldenSMS Msg 16013 6491 (41%)
DaisyTest 32258 23000 (71%) GoldenSMS Rec 13463 5576 (41%)
DayTime 46081 29566 (64%) Cellsafe 30040 22928 (76%)

Precision Table 2.2 shows the average size per slice and program in number of nodes of
the context-sensitive slices and the context-insensitive algorithm. The three context-sensitive
algorithms 2P, I and I-dyn computed the same slices and are summarized by columns cont.-

sens. The context-sensitive slices were always strictly more precise than the context-insensitive
ones. On average, they contained about 60% of the nodes in the context-insensitive slices, in
the best case, for KnockKnock, even only 30%.

Execution times Table 2.3 shows on the left side the average execution time per slice and
program in milliseconds. The middle part shows the average slowdown compared with the
fastest algorithm, the two-phase slicer, and the right side shows the slowdown of algorithm I-

dyn compared with I. Several entries are missing for I and I-dyn because for several programs
they ran out of memory and aborted.

One can see that context-insensitive slicing is significantly slower than two-phase slicing, on
average about 1.9 times. This well-known effect results from the huge gain of precision: For the
programs where the gain of precision was highest, e.g. HyperM and KnockKnock, the runtime
differences were highest, too.

The IPDG slicers were clearly slower than the other algorithms. The measured execution
times show that slicing based on call strings scales inferior to two-phase slicing. Algorithm I

was on average 22.1 times slower than 2P; in the worst case, for KnockKnock, it was even 280
times slower. The right side of Table 2.3 shows that caching of call strings results in a notable
speedup: Algorithm I was on average more than twice as fast as I-dyn.

34

2.6. Evaluation

Table 2.3.: Average execution time per slice in milliseconds (left side), average slowdown compared
with the two-phase slicer (mid), and average slowdown of dynamic context representation
compared with static context representation (right side).

Name CI 2P I I-dyn CI 2P I I-dyn I I-dyn
Example 7 5 10 22 1.26 1 1.97 4.08 1 2.07
ProdCons 6 5 22 60 1.22 1 4.38 12.21 1 2.79
AlarmClock 6 5 29 66 1.22 1 5.65 12.75 1 2.26
DiskScheduler 6 6 22 53 1.00 1 3.26 8.92 1 2.47
DiningPhils 19 13 40 83 1.45 1 3.06 6.42 1 2.10
LaplaceGrid 14 8 47 104 1.71 1 5.57 12.46 1 2.24
SharedQueue 23 10 159 343 2.33 1 16.21 34.96 1 2.16
EnvDriver 37 28 234 398 1.35 1 8.48 14.42 1 1.70
KnockKnock 94 25 7011 – 3.77 1 280.26 – 1 –
DaisyTest 174 100 – – 1.74 1 – – – –
DayTime 252 137 – – 1.84 1 – – – –
Logger 10 8 25 56 1.30 1 3.27 7.23 1 2.21
Maza 13 11 54 129 1.15 1 4.91 11.63 1 2.37
Barcode 17 7 15 27 2.46 1 2.22 3.91 1 1.76
Guitar 19 9 38 68 2.03 1 3.95 7.19 1 1.82
J2MESafe 33 18 166 421 1.85 1 9.23 23.49 1 2.55
HyperM 25 8 28 61 3.25 1 3.60 7.79 1 2.16
Podcast 46 25 127 271 1.85 1 5.13 10.92 1 2.13
GoldenSMS Key 40 18 433 1122 2.23 1 24.10 – 1 –
GoldenSMS Msg 49 20 203 524 2.52 1 10.43 26.86 1 2.58
GoldenSMS Rec 42 16 200 487 2.62 1 12.54 – 1 –
Cellsafe 210 151 5039 5520 1.39 1 33.31 36.49 1 1.10

Memory consumption Table 2.4 compares the memory consumption of our two variants of
the IPDG slicer. It shows the maximal used memory in megabytes per program. Several pro-
grams are missing because our profiling tool was restricted to 2 megabytes of memory, which
were exhausted for these programs. The measured values show that caching and reusing of call
strings significantly decreased memory consumption. On average, the dynamic context genera-
tion done by I-dyn consumed more than 2.5 times as much memory as algorithm I. In the worst
case, for SharedQueue, it needed more than 8 times as much memory. However, high memory
consumption remains the most important problem of context-sensitive slicing via call strings.

2.6.2. Context-Restricted Slicing

The second part of our evaluation investigates how much more precise context-restricted slicing
is in comparison with two-phase slicing. Again, we compared precision and runtime perfor-
mance of both algorithms. For that purpose, we computed the two-phase slices for all nodes
and the context-restricted slices for all contexts in the SDGs of our benchmark. The results are

35

2. Slicing Sequential Programs

Table 2.4.: Maximal memory in Mbytes consumed by the algorithms I-dyn and I. The percentage values
denote the ratio of I-dyn’s to I’s memory consumption.

Name I I-dyn Name I I-dyn
Example 88.21 116.63 (132%) Logger 114.32 132.62 (116%)
ProdCons 114.65 134.93 (118%) Maza 122.20 135.51 (111%)
AlarmClock 118.69 133.19 (112%) Barcode 117.91 138.75 (118%)
DiskScheduler 111.36 135.06 (121%) Guitar 120.64 144.12 (119%)
DiningPhils 117.40 140.92 (120%) J2MESafe 253.40 1398.99 (552%)
LaplaceGrid 115.47 216.01 (187%) HyperM 165.34 213.91 (228%)
SharedQueue 163.50 1335.93 (817%) Podcast 225.45 380.08 (169%)
EnvDriver 212.81 538.96 (253%) GoldenSMS Msg 303.32 1424.54 (470%)
GoldenSMS Key 733.60 1518.99 (207%) GoldenSMS Rec 383.69 729.66 (190%)

presented in Table 2.5. They show that the slice for a single context is on average 21% and
in the best case up to 35% smaller than the two-phase slice for the node of that context. This
is an expected result, since the comparison of context-insensitive and context-sensitive slicing
shows that accounting for the calling context has a strong impact on precision. But surpris-
ingly, the measured execution times show that context-restricted slicing was also similarly fast.
The context-restricted slicer was on average even 1.1 times faster than the two-phase slicer.
This competitiveness seems not to be limited to small and simple programs: For the biggest
programs enlisted in the Table, Cellsafe and KnockKnock, it was about 1.2 times faster. Un-
fortunately, context-restricted slicing has one flaw: If the program size gets too big, it struggles
with the memory consumption needed for the call strings. It was not able to slice the programs
DayTime and DaisyTest due to memory exhaustion. Therefore, these programs are missing in
Table 2.5.

A similar gain of precision of context-restricted slicing has been reported by Krinke [79].
Unfortunately, he did not report runtime costs, so it is unclear whether he experienced a similar
runtime performance.

2.6.3. Study Summary

Our comparison of context-insensitive and context-sensitive slicing recapitulates a well-known
result: Context-sensitive two-phase slicing is significantly more precise and usually faster than
context-insensitive slicing. Our evaluation further shows that IPDG slicing with unlimited call
strings is not competitive to two-phase slicing. It is much slower for our benchmark programs
and consumes too much memory, and its performance will decline even more for bigger pro-
grams. At the moment, its application seems to be restricted to cases where summary edges
are not available or where one needs to explicitly collect the set of visited contexts for other

36

2.7. Related Work

Table 2.5.: Two-phase slicing (2P) vs context-restricted slicing (CR): Average slice sizes (left side, num-
ber of nodes) and average execution times, (right side, in milliseconds). The values in brack-
ets denote the size ratio (left side) and the speedup (right side) of context-restricted slicing to
two-phase slicing.

Name 2P CR 2P CR
Example 905 760 (84%) 6 7 (0.86)
ProdCons 1139 905 (79%) 5 5 (0.97)
AlarmClock 1291 842 (65%) 7 5 (1.24)
DiskScheduler 1154 781 (68%) 5 4 (1.19)
DiningPhils 1546 1023 (66%) 12 9 (1.33)
LaplaceGrid 1774 1242 (70%) 7 6 (1.24)
SharedQueue 3459 2951 (85%) 10 9 (1.06)
EnvDriver 6770 5655 (84%) 28 32 (0.89)
KnockKnock 6715 4589 (68%) 25 20 (1.25)
Logger 2860 1990 (70%) 7 6 (1.15)
Maza 3981 3094 (78%) 12 11 (1.07)
Barcode 2736 2209 (81%) 7 7 (1,04)
Guitar 3623 3297 (91%) 10 11 (0.91)
J2MESafe 6444 5564 (86%) 20 19 (1.04)
HyperM 3160 2592 (82%) 8 7 (1.06)
Podcast 8316 6923 (83%) 24 23 (1.05)
GoldenSMS Key 6232 6011 (96%) 17 18 (0.94)
GoldenSMS Msg 6491 5327 (82%) 21 19 (1.08)
GoldenSMS Rec 5576 4854 (87%) 14 13 (1.08)
Cellsafe 22928 18546 (81%) 174 146 (1.19)
Total (79%) (1.09)

purposes. However, our caching optimization shows that IPDG slicing still offers opportunities
for optimizations.

The second part of our evaluation investigated slicing for individual contexts. It shows that
context-restricted slicing is much more precise than two-phase slicing and that it seems to be
similarly fast in practice. This suggests that context-restricted slicing is a viable alternative
to two-phase slicing if a slice for an individual context is required. This is an interesting re-
sult, which should be verified on a bigger benchmark. However, the practicability of context-
restricted slicing with unlimited call strings is currently limited by the high amount of memory
needed for the call strings, albeit in a lesser extent than IPDG slicing.

2.7. Related Work

There exists a vast amount of literature about slicing, of which this section presents only the
most related. In particular, the description of related work concerning slicing and program
dependence graphs for concurrent programs is postponed to chapter 3. Chopping, a technique

37

2. Slicing Sequential Programs

closely related to slicing, is presented in chapter 4. Exhaustive overviews of fundamental slicing
techniques can be found in Tip’s classic survey [147] and in the recent survey of Xu et al. [158].

Slicing was first introduced by Mark Weiser in 1979, who developed his approach in several
subsequent articles [155, 156]. His slicing algorithm consists of a data flow analysis work-
ing on the control flow graph of the program and is able to handle interprocedural programs,
albeit in a context-insensitive manner. Weiser stated that his algorithm can be refined to be
context-sensitive, but to disproportionately high runtime costs. He also pointed out that finding
statement-minimal slices is unsolvable because it is equivalent to solving the halting problem.

Karl and Linda Ottenstein [109] took the program dependence graph developed by Ferrante
et al. [39] and founded the methodology of PDG-based slicing. Horwitz, Reps and Binkley [63]
extended this intra-procedural approach to interprocedural programs. Their system dependence
graph enables context-sensitive slicing in time linear to the number of edges by using the two-
phase slicer. However, the computation of summary edges described in that article had a runtime
complexity of O(TotalSites∗Sites2 ∗Params4), where TotalSites is the total number of call sites
in the program, Sites is the maximal number of call sites in any procedure and Params is the
maximal number of formal-in nodes in any procedure’s PDG. The final breakthrough came
several years later, when Reps et al. [119] developed an asymptotically faster summary edge
algorithm. Forgács and Gyimóthy [40] identified the memory consumption of the summary
edge computation to be an important problem of the creation of SDGs of large programs. Their
solution uses the call graph of the program in question to partition the procedures of the program
into strongly connected components (SCCs) and computes the summary edges for each SCC in
reverse invocation order. This proceeding relieves the amount of intermediate results that have
to be cached during the computation.

Wasserrab and Lohner [153] developed a machine-checked proof formalized in Isabelle\HOL
that two-phase slicing is correct in terms of Weiser’s definition of slicing (definition 1.1). The
proof extends ICFGs to labeled transition systems, by annotating the edges with the semantic
effects of the source nodes. A two-phase slice is mapped to the ICFG by replacing the annota-
tions of all edges whose source nodes are not in the slice by no-ops. The proof shows that this
sliced ICFG weakly simulates the original ICFG with respect to the slicing criterion.

SDGs for object-oriented languages Some of the earliest work on SDGs for object-oriented
languages stems from Larsen and Harrold [85], who extended the SDG to a class dependence

graph (ClDG). The ClDG explicitly models the data members of classes as global variables and
passes them as parameters to every method of the class. The ClDGs of a program are connected
to a SDG and slicing is performed with the standard two-phase slicer. However, ClDGs are not
object-sensitive. Due to the representation of the data members as global variables they cannot
distinguish data members of different objects from the same class. Furthermore, the authors do
not describe how to handle data members that are objects themselves: data members seem to be

38

2.7. Related Work

restricted to basic types. In order to represent inheritance, the authors suggest an incremental
approach: ClDGs of derived classes reuse those ClDG portions of the base class that represent
methods being not overwritten by the derived class. A polymorphic method call is modeled
by adding one call site for each implementation of that method, grouped under a polymorphic

choice node. In a subsequent publication, Liang and Harrold [88] explained that the incremental
treatment of inheritance may produce incorrect slices. If a new derived class is added, the ClDG
of the base class is not updated. If the derived class introduces a new target for a polymorphic
method call inside a method of the base class, the ClDG of the base class fails to account for
that new possible target.

Tonella et al. [148] developed an object-sensitive SDG that does not represent data members
as global variables but extends the method signatures such that an object can pass its necessary
data members as soon as one of its methods is called. Their approach permits objects as param-
eters (parameter objects), but is field insensitive because it does not distinguish the fields of a
parameter object. A parameter object is always treated as an indivisible entity.

Liang and Harrold [88] picked up and improved the above approaches. They use Tonella et
al.’s technique to achieve object-sensitivity, and, in order to increase precision even further, they
suggest representing parameter objects as trees, where each node represents an object and the
children of a node represent its fields. Using object trees, they are able to identify and omit
those fields of a parameter object which do not need to be passed to the called method. In order
to cope with objects of recursively defined classes, the authors k-limit the unfolding of object
trees, so that a node at the k-limit represents an object and all of its fields and thus leaves some
field-insensitivity. In order to meet the shortcomings in [85], the authors describe in which cases
the class dependence graph of a base class has to be recomputed after a new derived class is
added, so that polymorphic calls are safely approximated.

As already described in section 2.4.3, Hammer and Snelting [57] addressed the problem of
parameter objects of recursively defined classes. They propose an unrolling technique based
on points-to information, which identifies where the unrolling of an object tree may be aborted
without losing precision. Thus, their solution is more precise than Liang and Harrold’s k-
limiting.

Graf [49] investigated the behavior of object trees in a large-scale evaluation and observed
that object trees and points-to analysis hamper each other: A faster but more imprecise points-to
analysis may result in larger object trees and thus raises the runtime costs of the summary edge
computation. Hence, one has either an expensive points-to analysis or an expensive summary
edge computation. Graf suggests merging subtrees of object trees with the same aliasing situa-
tion to object graphs. This resolves the performance deadlock because the size of object graphs
shrinks with the imprecision of the employed points-to analysis.

39

2. Slicing Sequential Programs

Allen and Horwitz [12] investigated how to include Java’s exception handling into SDGs
for Java programs. Their work describes which data and control dependences may arise from
exception handling in Java and integrates exception handling into the SDG computation by ex-
tending the control flow graph with exceptional control flow. In order to yield the additional
dependences, try, catch and throw statements are treated as pseudo-predicates, which re-
ceive additional outgoing control flow edges for the control flow in case of exceptions. Since
throwing of exceptions introduces different points of return in a procedure, a CFG receives one
exceptional-exit node for each type of exception that may be thrown by the method. A call
site of a procedure that may throw exceptions has multiple return nodes: One for the normal
termination of the called procedure and one for each handler of the possible exceptions (a catch

or throw node). These successors are connected with the corresponding exit or exceptional-exit
nodes via interprocedural control dependence edges.

Hammer [52] argues that Allen and Horwitz’ SDG extension is non-standard because the
lack of unique exit nodes in their CFGs leads to interprocedural control dependence edges.
Instead, he models the possible exceptions as additional formal-out and actual-out nodes and
connects them via standard parameter-out edges. The actual-out nodes have outgoing data
dependence edges to the corresponding catch or throw nodes in the PDG. That way, control and
data dependences can be computed with the traditional algorithms. His solution results in the
same transitive dependences as the one of Allen and Horwitz, albeit in not the same transitive
control dependences.

Variants of slicing Since slicing is more or less a generic program analysis technique, time
has led to a number of variants and specializations of slicing for special purposes. A detailed
formal investigation of the relationship between different forms of slicing has been published
by Binkley [24].

Slicing was originally developed to aid programmers during debugging. But since debugging
is usually confined to an erroneous program run and slicing comprises every possible program
run, slices often contain program parts not of interest for the particular program run. Korel
and Lasky [72] introduced dynamic slicing as a remedy, which computes a slice only for a
particular program run. Agrawal and Horgan [11] introduced the dynamic dependence graph

(DDG), which represents the statements of a program run and the dependences between them
and permits to compute dynamic slices via graph traversal. A major problem of dynamic slicing
is to get the size of DDGs into grip. Originally, each point in a program run received it own node
in the DDG. Several authors [11, 10, 162, 161] developed effective optimization techniques
identifying subgraphs in DDGs that can be reused without sacrificing precision.

Dicing, invented by Lyle and Weiser [91], intends to yield more accurate results for debug-
ging than traditional slicing. A dice is the set difference between the slice for a correct slicing
criterion and a slice for an incorrect slicing criterion, where a slicing criterion is called correct

40

2.7. Related Work

if it showed no erroneous behavior during the computation of a given test suite. Dicing removes
those parts of a slice that very unlikely contain the fault. However, dicing bears the risk of re-
moving the faulty statement if the given test suite is not reliable and the program contains more
than one bug [91].

Canfora et al. [29] introduced conditioned slicing. A conditioned slice of program p is com-
puted for a conditioned slicing criterion scond , which is annotated with a first order formula F

on a subset of the input variables of p. F reduces the set of possible inputs to the program and
therefore the set of feasible program executions. The conditioned slice for scond has only to
consider these feasible program executions and is therefore smaller than the traditional slice for
s. In order to compute a conditioned slice, p is first reduced to a conditioned program by a sym-
bolic executor, which identifies and omits infeasible program paths. The result is transferred to
the SDG G of p: The nodes absent in the conditioned program and the dependences that arise
only from paths identified as infeasible are marked as invalid. Then, a slice of G for s is com-
puted, which has to exclude the marked components. Fox et al. [41] implemented conditioned
slicing for a subset of C in the ConSIT system.

Amorphous slicing, invented by Harman and Danicic [59], combines program transforma-
tion and slicing to achieve smaller slices than with traditional slicing. Any transformation that
simplifies the program while preserving its semantics with respect to the slicing criterion is an
amorphous slice. Amorphous slicing has been found useful in applications where preserving
the syntax of the original program is not important, for example in program comprehension or
re-engineering. Harman et al. [60] present an improved, interprocedural amorphous slicer for
programs written in WSL, which has been implemented in the GUSTT system. The authors also
present a combination of amorphous and conditioned slicing, amorphous conditioned slicing.

Krinke [76] defined the concept of barrier slicing, where the slicing algorithm is given a set
of nodes or edges that must not be visited or traversed during the slice. The purpose of barrier
slicing is to permit the exclusion of program parts one is not interested in, e.g. library code,
and can drastically reduce the size of slices. The presented barrier slicer is an extension of the
two-phase slicer that additionally checks that the given barrier is not violated. Barrier slicing
requires to identify summary edges that are ‘blocked’ by the barrier, for which Krinke presents
an efficient algorithm.

Path slicing by Jhala and Majumdar [68] intends to reduce control flow paths before they
are fed to a model checker. The technique removes all parts of a control flow path that cannot
influence the last statement in the path via control or data dependence. This is achieved by a
combination of data flow analysis on the path and control dependence analysis on the whole
control flow of the program. In particular, path slicing is able to identify and remove irrelevant
loops and procedure calls from a given path, which greatly improves the performance of a
subsequent model checking.

41

2. Slicing Sequential Programs

Sridharan et al. [140] introduced thin slicing, which takes into account only those statements
that are part of a chain of assignments computing and propagating a value to the slicing crite-
rion. Thin slicing does not only exclude control dependences, but also data dependences that
do not directly contribute to the values used by the slicing criterion. For example, if a value
relevant to the slicing criterion is temporarily stored in a container, thin slicing ignores the data
dependences resulting from the internal mechanisms of the container.

Empirical studies A good portion of the publications on slicing contain some sort of eval-
uation. The survey of Binkley and Harman [26] identifies the most reliable and expressive
evaluations and bundles their results. It incorporates evaluations on the size of slices (for both
static and dynamic slicing), on the impact of points-to analysis, field- and flow sensitivity, on
the usability of existing slicing tools, on applications of slicing and on human comprehension.

A question of fundamental interest is the impact of context-sensitivity on the size of the
slices. Binkley and Harman’s survey cites two studies [25, 74], which compare naïve context-
insensitive slicing with two-phase slicing. Both report an increase of precision and runtime
performance in favor of the two-phase slicer. In the first study, the context-insensitive slices
were 50% bigger and 77% slower than the context-sensitive slices, in the second study, the
context-insensitive slices were on average 67% bigger and 30% slower. This win-win situation
is confirmed by our evaluation.

Another important question, addressing the usability of slicing, is to which extent a slice re-
duces the size of the overall program. Here the results of three studies [25, 90, 74] are mentioned
in the survey. All three studies were committed on C programs and report that context-sensitive
slices for interprocedural C programs contain on average about 30% of the whole program.
Again, this result is supported by our evaluation, where the context-sensitive slices contained
on average 32% of the whole program.

Krinke [74] evaluated the precision and runtime behavior of his IPDG slicer. In particular, he
investigated k-limiting of contexts and evaluated the effects of different k’s. His results indicate
that a choice of k = 4 is a good trade-off between precision and speed. A bigger k led only in a
few cases to increased precision, whereas the runtimes grew disproportionately. He concludes
that IPDG slicing should only be used in cases where summary edges are not available.

Binkley et al. [27] investigated the effects of several optimization techniques on graph-based
slicing, by evaluating these techniques on a benchmark with more than 1,000,000 lines of code.
The investigated optimizations consisted of four different kinds of strongly connecting compo-
nents, memory footprint reduction by bit packing and removal of redundant transitive edges.
These optimizations were used in different combinations to preprocess the SDGs before slicing
them with the two-phase slicer. The combination of all optimizations led to an average speedup
of 4.57. However, as the optimizations themselves require computation time, the authors cal-

42

2.7. Related Work

culated that these optimizations pay only off if the number of slices computed exceeds 1.7% of
the number of nodes in the SDG.

43

2. Slicing Sequential Programs

44

3. Slicing Concurrent Programs

This chapter discusses slicing of concurrent programs. The descriptions focus on Java’s con-
currency mechanism, which is based on threads and shared-memory communication, and are
intended to enable the reader to reproduce and implement the presented techniques. They may
have to be adjusted in order to handle languages with differing concurrency mechanisms. Pre-
liminary versions of this chapter have been published together with Christian Hammer [44, 46].

Concurrency in Java

In Java, threads are special objects of the Thread class, whose behavior is described by the
statements in their run() procedure. In order to create a thread, a user instantiates a Thread
object and calls a special procedure start() that forks the thread by executing its run()

procedure concurrently to the rest of the program. This can be done only once for each thread
object, subsequent calls of start() on the same thread object lead to exceptions. A call of
its join() procedure terminates the thread. The joining of threads is not mandatory, threads
may in principle run infinitely. Furthermore, the termination of a thread t does not imply the
termination of the threads started by t. Hence, threads may survive their parent threads. Threads
in Java are totally dynamic. Instantiating, starting and joining threads may happen in loops or
recursion, so there is no static bound on the number of threads. Static detection of the number
of threads that may exist during a program run is generally undecidable.

According to the Java Language Specification [48], the concurrent execution of threads in a
Java program can be achieved by time-slicing a single hardware processor, by using many hard-
ware processors, or by time-slicing many hardware processors. All threads share a single heap
for storage of objects and interact via monitor-style synchronization and shared variables. Syn-
chronization is achieved by embedding the code to be synchronized in synchronized blocks
or procedures, which only one thread is allowed to execute at a time. Each Java object provides
a monitor that a thread can lock or unlock. Synchronized blocks receive the object whose mon-
itor shall be used, synchronized procedures use the monitor of the reference object. If a thread
enters a synchronized block or procedure, it tries to acquire the lock on the associated monitor.
If the monitor is already locked by another thread, the thread blocks until the monitor becomes
available. A lock on a monitor is released if the possessing thread leaves the synchronized block
or procedure. A thread already holding a lock on a monitor may lock it multiple times, by en-
tering other synchronized blocks that use the same monitor. A monitor counts the number of its

45

3. Slicing Concurrent Programs

c l a s s ProdCons {
p u b l i c s t a t i c
vo id main (S t r i n g [] s) {

L i n k e d L i s t buf
= new L i n k e d L i s t () ;

/ / c r e a t e t h e t h r e a d s
P r o d u c e r prod1

= new P r o d u c e r (buf) ;
P r o d u c e r prod2

= new P r o d u c e r (buf) ;
Consumer cons1

= new Consumer (buf) ;
Consumer cons2

= new Consumer (buf) ;

/ / s t a r t t h e t h r e a d s
prod1 . s t a r t () ;
p rod2 . s t a r t () ;
cons1 . s t a r t () ;
cons2 . s t a r t () ;

/ / w a i t f o r t h e
/ / t h r e a d s t o f i n i s h
prod1 . j o i n () ;
prod2 . j o i n () ;
cons1 . j o i n () ;
cons2 . j o i n () ;

}
}

c l a s s P r o d u c e r ex tends Thread {
L i n k e d L i s t buf ;

p u b l i c P r o d u c e r (L i n k e d L i s t buf) {
t h i s . bu f = buf ;

}

p u b l i c vo id run () {
whi le (! enough ())

synchronized (buf) {
buf . add (1) ;
buf . n o t i f y A l l () ;

}
}

}

c l a s s Consumer ex tends Thread {
L i n k e d L i s t buf ;

p u b l i c Consumer (L i n k e d L i s t buf) {
t h i s . bu f = buf ;

}

p u b l i c vo id run () {
whi le (! enough ())

synchronized (buf) {
whi le (buf . i sEmpty ())

buf . w a i t () ;
buf . pop () ;

}
}

}

Figure 3.1.: A producer-consumer program written in Java.

current locks and all these locks have to be released before another thread can lock it. Java ad-
ditionally provides a wait-notify mechanism. Each object has a wait() procedure a thread may
call to release its locks on that object’s monitor and become inactive. An object keeps a waitlist
containing all threads that are inactive due to calling its wait() procedure and provides the
procedures notify() and notifyAll() to reactivate these threads. Calling notifyAll()

reactivates all waiting threads, notify() reactivates an arbitrarily chosen thread.

Example The program in Figure 3.1 shows a simple producer-consumer example written in
Java and is taken from Naumovich et al. [107]. The producer and consumer threads share a
linked list used as a buffer. The main procedure forks the threads by calling their start()
procedures and joins them at the end of the program. The threads execute their synchro-
nized blocks repeatedly until the not shown procedure enough() returns ‘true’. Both syn-
chronized blocks use the buffer’s monitor for synchronization. If a producer enters its syn-

46

chronized block, it adds a value to the buffer and wakes up all threads in the waitlist of the
buffer by calling buf.notifyAll(). After leaving the synchronized block, the producer re-
leases the lock. If a consumer enters its synchronized block and finds the buffer empty, it calls
buf.wait() to release the lock and becomes inactive. If it is woken up by a producer’s call of
buf.notifyAll(), it has to lock the buffer’s monitor again in order to proceed execution. It
may do so after the locking thread has left its synchronized block (depending on the scheduler’s
choice), and in that case will leave the innermost while-loop, remove one element from the
buffer and release the lock by leaving the synchronized block.

Note: The above example shows that the Java syntax is very verbose. We therefore use more
compact pseudocode in the forthcoming examples.

The Java memory model

According to the Java Virtual Machine (JVM) specification [89], a Java program has a main
memory in which all variables are stored. A thread of the program does not work on the main
memory but on a local working memory that contains a copy of each variable known to the
thread. The value of a variable in a working memory may be different from its values in the
main memory and in the working memories of the other threads because the memories only
have to synchronize on special occasions. The concrete rules for that mechanim are defined
in the JVM specification and in the Java memory model [93]. Basically, only the execution
of a synchronization operation guarantees that the working memories of the involved threads
are synchronized. This mechanism may lead to the situation where a thread reading a shared
variable x may not be aware of another thread having redefined x in the meantime if these two
actions are not properly synchronized, i.e. if they form a data race. A data flow analysis for
concurrent Java programs has to account for that behavior.

Interference dependence

Shared-memory communication gives rise to a special kind of data dependence, so-called inter-

ference dependence [73]. A statement n is interference-dependent on statement m if n may use
a value computed at m and m and n may execute concurrently.

Figure 3.2 shows a program fragment consisting of two threads that communicate through
the shared variables x and y. The SDGs of both threads are connected via two interference
edges representing the interference dependences. Interference dependences cross procedure
borders arbitrarily and thus are not captured by traditional summary edges. As a consequence
of this, the two-phase slicer for sequential programs cannot be applied; it may even compute
incorrect slices [106]. An example is given in section 3.5, after all the necessary concepts have
been introduced. Nanda [106] extended the two-phase slicer to a context-sensitive slicer for
concurrent programs. This extension is presented in section 3.5.2.

47

3. Slicing Concurrent Programs

i n t x , y ;

void t h r e a d _ 1 () :
x = y + 1 ;
y = 0 ;

void t h r e a d _ 2 () :
i n t a = y ;
x = < i n p u t > ;
i f a > 0

i n t b = 0 ;
e l s e

y = 0 ;

thread_2

a > 0

a = y

b = 0

thread_1

control dep.

data dep.

interference dep.

x yx y y x

x = y + 1

x

y = 0

y = 0

x = <input>

y

Figure 3.2.: Interference dependences between two threads.

Timing-insensitivity

An interference dependence makes an implicit requirement on the interleaving of the involved
threads: The source of the dependence must be able to execute before the sink. Different
interference dependences may exclude each other, because their underlying requirements on
the interleaving are incompatible. This is actually the case in Fig. 3.2. The two interference
dependences in the example exclude each other, because the one basically requires thread_2
to execute before thread_1 and the other one thread_2 to execute after thread_1. If a
slicer ignores this incompatibility, it may produce timing-insensitive slices. As an example, let
us compute the slice for node x = y + 1 by simply collecting all reaching nodes. The result
is highlighted gray. But the light gray node y = 0 in thread_1 cannot influence the slicing
criterion, because it cannot execute before x = y + 1. Krinke [73] coined the term time travel

for that kind of imprecision, because a program execution would have to journey through time
in order to create a suitable execution order.

The problem is complicated even more by procedure calls, because it may be the case that two
interference dependences exclude each other only in certain calling contexts of their procedures.
In such a case the interference dependences may exclude each other for one slicing criterion but

may be compatible for another one, which prevents a treatment directly in the SDGs. Figure
3.3 extends the program in Fig. 3.2 and puts the code of thread_1 into procedure foo. The

48

i n t x , y ;

void t h r e a d _ 1 () :
foo () ;
p r i n t (x) ;
foo () ;
p r i n t (x) ;

void foo () :
x = y + 1 ;
y = 0 ;

void t h r e a d _ 2 () :
i n t a = y ;
x = < i n p u t > ;
i f a > 0

i n t b = 0 ;
e l s e

y = 0 ;

Figure 3.3.: Timing-insensitivity is even more complicated for interprocedural programs.

slice for the first print(x) does not contain node y = 0 because here the timing-insensitive
situation described in Fig. 3.2 appears. But the slice for the second print(x) does contain y

= 0, because here the second interference edge can be traversed to node y = 0 from the first
invocation of foo. Thus, the detection of mutually exclusive interference dependences has to
be done during the slicing process. Krinke [73, 75, 77] and Nanda [104, 105, 106] developed
suitable timing-sensitive slicing algorithms, which are inspected in detail in this chapter.

Organization of this chapter

The analysis of concurrent programs requires information about which parts of the program may
actually execute in parallel, which is determined by a may-happen-in parallel (MHP) analysis.
Section 3.1 presents our thread invocation analysis for Java, which determines which threads
may exist at runtime, section 3.2 introduces the threaded control flow graph and section 3.3
describes our MHP analysis.

Since concurrency and shared memory communication introduce new kinds of program de-
pendences, the system dependence graph has to be extended. Section 3.4 presents the concur-

rent system dependence graph (CSDG), and section 3.5 describes Nanda’s extension of the two-
phase slicer for computing context-sensitive slices of CSDGs [106]. The subsequent sections
deal with timing-sensitive slicing: Section 3.6 introduces the foundations, section 3.7 inves-
tigates the impact of MHP information on timing-sensitive slicing, and section 3.8 discusses
limitations of timing-sensitive slicing. Sections 3.9 and 3.10 describe the timing-sensitive slic-
ing algorithms of Krinke and Nanda as well as our extensions and optimizations. Section 3.11
presents a new slicing algorithm that is not completely timing-sensitive, but significantly faster
in practice. Section 3.12 presents an extensive evaluation of the presented algorithms. Section
3.13 discusses several open issues and future work and section 3.14 summarizes related work.

49

3. Slicing Concurrent Programs

3.1. Thread Invocation Analysis

A thread invocation analysis determines which threads may exist during a program run. For
languages like Java, where it is possible to create threads inside loops and conditional struc-
tures, this cannot be decided in general by a static analysis, thus a conservative approximation
is needed. In the context of slicing it is sound to determine too much existing threads, but
unsound to determine too few. Our thread invocation analysis employs contexts (cf. sect. 2.5)
for identifying and distinguishing the threads in a program and is inspired by Barik’s MHP
analysis [18]. Via the calling context graph (def. 2.13) of the analyzed program we collect all
contexts of the run() procedures of its thread classes. As long as threads are not created inside
loops or recursive procedures, each of these thread contexts represents exactly one thread of the
program.

The topmost example in Fig. 3.4 illustrates that case. The depicted program possesses at run-
time at most four threads: the main thread, one of kind thread_1 and two of kind thread_2.
The graph on the right of the program is its calling context graph, where forks are treated like
ordinary procedure calls. The numbers of the nodes correspond to the line numbers of the pro-
gram. The program possesses the thread contexts {(main,〈〉),(thread_1,〈2〉),(thread_2,〈3〉),
(thread_2,〈2,5〉)}, which exactly represent the four possible threads.

If a thread is created inside a loop or recursive procedure, we assume conservatively that
infinitely many threads of the corresponding thread class are created. These threads are repre-
sented by a single thread context marked as a multi-thread. The second example in Fig. 3.4 dis-
plays a program that creates threads inside a loop. Collecting the thread contexts yields the con-
texts (main,〈〉), (thread_1,〈2〉), (thread_2,〈2,8〉), (thread_1,〈4,6〉) and (thread_2,〈4,6,8〉).
The first three contexts each represent exactly one thread, the other two contexts originate from
the while-loop and are marked as multi-threads. Multi-threads originating from loops are
identified by screening thread contexts for call sites inside loops, in our example node 4.

The third example shows a program that creates a thread inside a recursive procedure. It has
five thread contexts: (main,〈〉), (thread_1,〈2〉),(thread_2,〈2,8〉),(thread_1,〈{3,6},5〉) and
(thread_2,〈{3,6},5,8〉), where {3,6} denotes the synthetic call site representing the recursive
cycle formed by call sites 3 and 6. The first three contexts each represent one thread. The
other two contexts represent the threads invoked inside the recursive procedure and are marked
as multi-threads. These multi-threads can be identified searching for synthetic call sites in the
thread contexts.

The fourth example illustrates the case where threads invoke themselves recursively, either
directly or indirectly. Here we have the contexts (main,〈〉), (thread_1,〈2〉), (thread_2,〈3〉),
(thread_1,〈2,{5,7}〉), (thread_1,〈3,{5,7}〉), (thread_2,〈2,{5,7}〉) and (thread_2,〈3,{5,7}〉.
The last four thread contexts result from the recursion and are marked as multi-threads. They
can be identified by looking in the thread contexts for synthetic call sites.

50

3.1. Thread Invocation Analysis

1 void main () :
2 f o r k t h r e a d _ 1 () ;
3 f o r k t h r e a d _ 2 () ;

4 void t h r e a d _ 1 () :
5 f o r k t h r e a d _ 2 () ;

6 void t h r e a d _ 2 () :
7 . . .

call edge

2 3

5

1 void main () :
2 f o r k t h r e a d _ 1 () ;
3 whi le (. . .) :
4 foo () ;

5 void foo () :
6 f o r k t h r e a d _ 1 () ;

7 void t h r e a d _ 1 () :
8 f o r k t h r e a d _ 2 () ;

9 void t h r e a d _ 2 () :
10 . . .

call edge

2

8

4

6

1 void main () :
2 f o r k t h r e a d _ 1 () ;
3 foo () ;

4 void foo () :
5 f o r k t h r e a d _ 1 () ;
6 foo () ;

7 void t h r e a d _ 1 () :
8 f o r k t h r e a d _ 2 () ;

9 void t h r e a d _ 2 () :
10 . . .

call edge

2

8

{ 3 , 6 }

5

1 void main () :
2 f o r k t h r e a d _ 1 () ;
3 f o r k t h r e a d _ 2 () ;

4 void t h r e a d _ 1 () :
5 f o r k t h r e a d _ 2 () ;

6 void t h r e a d _ 2 () :
7 f o r k t h r e a d _ 1 () ;

call edge

2

{ 5 , 7 }

3

Figure 3.4.: Four cases distinguished by our thread invocation analysis. From top to bottom: (1) Thread
creation without loops or recursion. (2) Thread creation inside a loop. (3) Thread creation
inside a recursive procedure. (4) Two threads creating each other recursively.

51

3. Slicing Concurrent Programs

3.2. The Threaded Control Flow Graph

A suitable representation of the control flow in a concurrent program with fork-join style paral-
lelism is the threaded control flow graph (TCFG). A TCFG consists of the ICFGs of the single
threads of the program, connected via fork and join edges. A TCFG has to account for the
fact that threads in Java and likewise languages are created dynamically so that their concrete
number is generally not decidable by a static analysis, and due to thread creation inside loops
or recursion even an upper bound may not exist. Thus, it is not possible to model each potential
thread as a separate subgraph in the TCFG. Instead, we follow Hammer’s [52, chapt. 3] idea of
modeling threads in analogy to procedures: A TCFG contains one ICFG per thread class.

Definition 3.1 (Threaded control flow graph (TCFG)). A threaded control flow graph G =

(ICFGp,main,F,J) of a program p consists of the set ICFGp of ICFGs of the thread classes of

p, of a distinguished ICFG main, and of two sets, F and J, of fork and join edges. A TCFG has

the following properties:

• For each pair (T,T ′) of ICFGs in ICFGp, the node sets NT ,NT ′ and the edge sets ET ,ET ′

are disjoint.

• The ICFGs are connected via fork and join edges. Set F contains a fork edge (fT ,sT ′)

if fT is a fork node in ICFG T that invokes a thread of the thread class represented by

ICFG T ′ and sT ′ is the start node of T ′. Set J contains a join edge (eT , jT ′) if jT ′ is a join

node in ICFG T ′ that joins a thread of the thread class represented by ICFG T and eT is

the exit node of T .

• Every node in the TCFG is reachable from the start node of main.

Several properties of that definition merit discussion:

• The definition requires the ICFGs in a TCFG to be disjoint. Since threads may share
procedures (e.g. libraries), this means that the CFGs of shared procedures have to be du-
plicated. We make this requirement to simplify matters; in practice, it is recommended
to share the CFGs amongst different ICFGs because CFG duplication may drastically in-
crease the size of TCFGs. Yet, CFG sharing introduces the problem of thread insensitive

paths: A CFG may be entered coming from one ICFG and may be left towards another
one. Fortunately, thread sensitivity can be achieved unproblematically by assigning each
thread a unique ID and annotating nodes with the current ID during traversal [52, chapt.
3]. By requiring ICFGs to be disjoint we can omit this treatment in our descriptions and
in the pseudocode of our algorithms.

52

3.2. The Threaded Control Flow Graph

i n t x , y ;

void main () :
i n t p = x − 2 ;
f o r k t h r e a d _ 2 ;
i n t q = foo (p) ;
y = q ∗ 3 ;

i n t foo (i n t f) :
re turn f + 1 ;

void t h r e a d _ 2 () :
i n t a = y + 1 ;
i n t b = y ;
i f (a > 0) :

j o i n main ;
e l s e :

x = b / a ;

fork or join edge

control f low edge

call or return edge

main

 thread_2

 foo return f+1 exit

p = x-2 fork thread_2 q = foo(p) y = q * 3

a = y + 1 b = y a > 0
join main

x = b/a

exit

exi t

Figure 3.5.: A TCFG of a program with two threads.

• In many languages, including Java, threads do not have to be joined at all and may run
infinitely, even after the main thread has terminated. Thus, a TCFG does not possess a
unique exit node.

Figure 3.5 shows a TCFG of a program with two threads.

3.2.1. Reachability between contexts

An important concept for analyzing TCFGs is reachability between contexts. Let n be a node
in a TCFG, and let G be n’s ICFG. The call string of a context of n in the TCFG consists of
the call string of the thread context of a thread represented by G, appended with a call string
of n in G, computed as described in section 2.5. Thus, a context in a TCFG belongs to a fixed
thread.

Krinke [75] defines reachability between contexts as follows: A context (m,σm) of a node m

directly reaches another context (n,σn) of a (not necessarily different) node n, written (m,σm)

(n,σn), if one of the following cases holds:

53

3. Slicing Concurrent Programs

1.There exist a control flow edge m → n in the TCFG and σm = σn.

2.There exist a call edge m → n in the TCFG such that s symbolizes the call site and

• σm = σ and σn = σs, or

• σm = σn = σs and s is a synthetic call site
(the definition treats recursive cycles in analogy to the IPDG slicer in section 2.5).

3.There exist a return edge m → n in the TCFG such that s symbolizes the call site and

• σm = σs and σn = σ , or

• σm = σn = σs and s is a synthetic call site.

Krinke’s work ignores forking and joining of threads, so we extend that definition with cases
for fork and join edges. Let thread(c) return the longest prefix of the call string of context c that
forms the call string of a thread context.

4.There exist a fork edge m → n in the TCFG such that s symbolizes the call site and

– σm = σ and σn = σs, or

– thread((m,σm)) = σn and s is a synthetic call site
(the second case treats threads that invoke themselves recursively; such threads share
the same thread context).

5.There exist a join edge m → n in the TCFG
(since the joining of a thread does not need to take place in the same procedure and not
even in the same thread as the forking, join edges impose no restrictions).

According to Krinke, a context c reaches another context c, written c ∗ c′, if there exists
a sequence 〈c1, . . . ,ck〉 of contexts with c = c1,c′ = ck and ∀1 ≤ i < k : ci ci+1. It follows
directly from this definition that reachability between contexts is transitive.

3.3. May-Happen-In-Parallel Analysis for Java

A may-happen-in-parallel (MHP) analysis identifies those program parts that may execute con-
currently. Since an optimal static MHP analysis is undecidable, a suitable conservative ap-
proximation is required. For many purposes, including slicing, it is sound to assume too much
parallelism, but unsound to omit some. Too much parallelism may lead to spurious interference
dependences, but too few parallelism may prune valid ones.

The degree of concurrency in a Java program is influenced by the fork and join points of
threads and by synchronization. Figure 3.6 shows the control flow graph of a program consisting
of two threads, where main forks and joins thread_1. The statements lock l and unlock l

54

3.3. May-Happen-In-Parallel Analysis for Java

entry thread_0

.S1

if (...)

S5

S2

S6

S3

S7

end if

S8

join thread_1

S9

entry main

x = a

if (...)

end if

join thread_1

fork thread_1

lock l

entry thread_1

y = a

...

...

...

...

...

lock l

unlock l

unlock l

a = 0

Region 1

Region 2

Region 3

Region 4

Region 5
control f low edge

fork or join edge

entry thread_0

.S1

if (...)

S5

S2

S6

S3

S7

end if

S8

join thread_1

S9

entry main

x = a

if (...)

end if

join thread_1

fork thread_1

lock l

entry thread_1

y = a

...

...

...

...

...

lock l

unlock l

unlock l

a = 0

Region 1

Region 2

Region 3

Region 4

Region 5

Region 7

Region 6

Figure 3.6.: Thread regions of a threaded program. On the left side: thread regions without synchroniza-
tion. On the right side: thread regions with synchronization.

symbolize monitor-style synchronization, where lock l locks monitor l and unlock l re-
leases it. A simple and sound MHP analysis is to assume that all threads may entirely happen
in parallel to each other. In the current example, this assumption ignores forking, joining and
synchronization and concludes that main and thread_1 may happen in parallel. However, this
assumption leads to a very imprecise computation of interference dependences1. In our exam-
ple, it leads to a spurious interference edge from statement a = 0 in thread_1 to statement
x = a in main. We therefore aim for a more precise solution.

3.3.1. Overview of Existing MHP Analyses for Java

To date, there does not exist a scalable MHP analysis for full Java suitable for slicing that
includes synchronization. The central problem is that such an analysis must only take synchro-
nization into account that is guaranteed to happen (must-synchronization). Since synchroniza-
tion in Java works by locking monitor objects, the computation of must-synchronization for
Java programs in turn requires must-aliasing of monitor objects. Since must-alias analyses have

1As we show in our evaluation in section 3.12.1.

55

3. Slicing Concurrent Programs

been investigated only sparely, a satisfactorily approach to computing must-synchronization
remains an open problem.

The most precise solution has been presented by Li and Verbrugge [87], an extension of
Naumovich et al.’s MHP analysis [107]. It determines for every pair (s,s′) of statements whether
s and s′ may happen in parallel. The analysis works on a parallel execution graph (PEG), which
is derived from the control flow graph of the input program and models forking, joining and
synchronization operations. Operations that access monitor objects whose aliasing situation
is ambiguous are duplicated such that each copy represents a must-alias situation. The PEG
imposes several restrictions on the input program. Every possibly existing thread has to be
modeled in the PEG as a separate subgraph, which means that the number of threads created
inside loops or recursive procedures has to be bounded statically. PEGs also require inlining of
procedures containing synchronization operations in order to achieve context-sensitivity, hence
such procedures must not be involved in a recursion. The MHP analysis on the PEG has a
runtime complexity cubic to the number of PEG nodes and seems to be practical only for PEGs
with up to 2000 nodes [87].

Nanda [106] segments Java threads at fork and join points into thread regions and determines
concurrency on the level of these regions. In summary, a thread region starts behind a fork node,
at a join node or at a node where two distinct thread regions meet, and it consists of the nodes
dominated by its start node. All nodes in one thread region may happen in parallel to the same
set of nodes, thus it suffices to compute and store the MHP information on the level of thread
regions. Figure 3.6 shows on the left side the thread regions of the depicted example program.
It can be determined that only regions 2 and 3 as well as 2 and 4 may happen in parallel.
This analysis is not as precise as the one of Li and Verbrugge / Naumovich et al. because it
ignores synchronization, but on the other hand it is able to handle recursion completely and
can be extended to handle multi-threads. It is also possible to extend the analysis to include
synchronization. In Figure 3.6, the acquisition of monitor l before the fork of thread_1
assures that regions 2 and 3 cannot happen in parallel. The computation of thread regions
would have to treat lock and successors of unlock as additional starting points of thread
regions. The result is shown on the right side of Fig. 3.6. Having that information, the analysis
would be able to determine that only regions 2 and 3, 2 and 4 as well as 7 and 4 may happen
in parallel. However, this would require an analysis of must-synchronization and to date no
implementation of such an extension has been reported. A weak point of Nanda’s approach is
that it lacks a thread invocation analysis and assumes that the number of threads is statically
known. However, it can be extended to deal with multi-threads.

Barik’s [18] MHP analysis for Java is divided into two phases. The first phase computes
initial MHP information on the level of threads, the second phase refines that information on
the level of single statements. The first phase is based on the thread creation tree (TCT), which

56

3.3. May-Happen-In-Parallel Analysis for Java

void main () :
i f (. . .) :

f o r k t h r e a d _ 1 ;
e l s e :

f o r k t h r e a d _ 2 ;
thread_1 thread_2

main

void main () :
f o r k t h r e a d _ 1 ;
f o r k t h r e a d _ 2 ; thread_1 thread_2

main

Figure 3.7.: Two programs and their thread creation trees.

represents the thread invocation structure of a program: A node in the tree represents a thread t,
its parent represents the thread that forks t and its children represent the threads that t forks. A
thread θ is called an ancestor of another thread θ ′ if its representative in the TCT is an ancestor
of that of θ ′. Figure 3.7 shows two programs, whose main threads create two other threads, and
their TCTs. The MHP computation in the first phase precisely determines the MHP information
between threads that are not in an ancestor relation in the TCT, by using context-sensitive ICFG
paths and must-join information. It assumes, however, that each thread may happen in parallel
to all of its ancestors in the TCT. For example, it would state that in the two programs in Fig.
3.7 the main threads happen in parallel to threads 1 and 2. This imprecision is removed in the
second phase, which computes precise MHP information between statements from threads in an
ancestor relation in the TCT. Barik’s MHP analysis is capable of full Java, including recursion
and multi-threads, but also ignores synchronization.

We chose to use Nanda’s analysis and to improve it by adding our thread invocation analysis
and by using the first phase of Barik’s analysis as an optimization. For our purposes, the analysis
of Li and Verbrugge / Naumovic et al. imposes too much restrictions on Java programs. The
usage of thread regions is compelling, because it avoids to compute and store MHP information
on a per-statement level, which promises a good scalability compared with the other presented
approaches. Inspired by Barik’s technique, our MHP analysis determines the MHP information
on the level of threads whenever possible and uses Nanda’s thread region analysis otherwise.

3.3.2. Our MHP Analysis

In order to simplify matters, we assume in this section that a TCFG contains one ICFG per
thread distinguished by the thread invocation analysis. The presented technique can be applied
to our TCFGs by annotating nodes with thread IDs during the analysis, but using such annota-
tions here would unnecessarily complicate the presentation.

57

3. Slicing Concurrent Programs

In analogy to thread contexts, a fork site context is the context of a fork site. The fork site
context of a thread can be trivially derived from the call stack of the thread context. Given a
fork site context f , we say that f indirectly forks a thread θ if it forks θ or an ancestor of θ .

In order to remain conservative, our MHP analysis only accounts for must-joins. A join node
of a thread θ is a must-join of θ if the points-to analysis reveals that θ is the only possible
thread joined there. In particular, multi-threads have no must-joins.

Given a TCFG G, we assume that two nodes m,n in G cannot happen in parallel if one of the
following cases holds:

1. m and n belong to the same thread θ and θ is not a multi-thread.

2. m and n belong to different threads and one node is dominated by a must-join of the thread
of the other node.

3. m and n belong to different threads and there exists no fork site context that indirectly
forks the thread of one node via an outgoing fork edge and reaches the other node via a
different outgoing edge.

The first case deals with the problem of multi-threads. If a loop or recursion may fork mul-
tiple threads of the same thread class, we assume conservatively that these threads happen in
parallel. The second case treats thread joining conservatively. If, say, node n is dominated by
a must-join of m’s thread, then it is guaranteed that m’s thread has ceased to exist at the time a
program execution executes n. The third case captures the necessary prerequisite for a parallel
execution of m and n. There must exist a fork site context which actually forks the control flow
of the program such that m is executed in the one branch and n in the other. Actually, the first
case is comprised by the third, but for clarity this special case is distinguished.

Only in these cases our MHP analysis is allowed to identify two nodes as not happening in
parallel.

Thread regions

Nanda [106] defines thread regions as follows:

Definition 3.2 (Thread region). Let G be a TCFG. Node n starts a thread region R in G if n is

a start node of a thread, a join node, a direct successor of a fork node, or a node where two

distinct thread regions meet (called a merge node). A node m belongs to R if n is the closest

start node of a thread region that dominates m.

Thread regions work on the level of nodes and ignore calling contexts. Precision could be
increased by using contexts instead of nodes, but our corresponding experiments exhibited dis-
proportionately high computation times.

58

3.3. May-Happen-In-Parallel Analysis for Java

Nanda’s original MHP analysis lacks a thread invocation analysis and assumes that the num-
ber of threads is statically known. In particular, it ignores the issue of multi-threads. Thus, we
present an extended MHP relation for thread regions that incorporates multi-threads:

Definition 3.3 (MHP relation ‖region). Let G be a TCFG, let Q and R be two thread regions

in G, and let θ be R’s thread and θ ′ be Q’s thread. Q and R may happen in parallel, written

Q ‖region R, if

1. θ = θ ′ and θ is a multi-thread, or

2. θ 6= θ ′, neither start node of one of the two regions is dominated by a must-join of the

thread of the other region, and

• there exists a fork site context f in G that indirectly forks the thread of the one

region via an outgoing fork edge and reaches the start node of the other region via

a different outgoing edge.

The following relation determines whether two nodes may happen in parallel.

Definition 3.4 (MHP relation ‖node). Let G be a TCFG. Two nodes m,n in G may happen in

parallel, written m ‖ n, if there exist two thread regions Q,R in G such that m ∈ Q,n ∈ R and

Q ‖region R.

Relation ‖node meets our requirements for a sound MHP analysis. Two nodes in the same
thread are only reported not to happen in parallel if the thread is not a multi-thread, two nodes
in different threads, if one of both is dominated by the must-join of the thread of the other or if
there exists no fork site context that indirectly forks the thread of one node via an outgoing fork
edge and reaches the other node via a different outgoing edge.

Since we assumed so far that each thread is represented by a separate ICFG, we introduce a
last MHP relation, ‖, which accounts for our TCFGs having only one ICFG per thread class. It
can be applied to pairs of nodes and to pairs of nodes annotated with concrete threads.

Definition 3.5 (MHP relation ‖). Let G be a TCFG.

• Two annotated nodes (m,θm),(n,θn) in G may happen in parallel, written (m,θm) ‖
(n,θn), if there exist two thread regions Q,R in G such that m ∈ Q,n ∈ R, Q belongs

to thread θm, R belongs to thread θn and Q ‖region R.

• Two nodes m,n in G may happen in parallel, written m ‖ n, if there exist two threads

θm,θn such that m belongs to θm, n belongs to θn and (m,θm) ‖ (n,θn).

59

3. Slicing Concurrent Programs

MHP information on the level of threads

Barik [18] observed that two threads that do not indirectly fork or join each other or synchronize
with each other either happen entirely in parallel or not at all. A more fine-grained analysis is
only necessary for the other threads. We use that observation to optimize the thread regions
approach.

Our analysis of MHP information on the level of threads differs from Barik’s because his
analysis considers threads in an ancestor relation to happen in parallel in order to yield a sound
result. We do not follow that approach because we intend to use MHP information on the level
of threads only to optimize the MHP analysis based on thread regions. Thus, we determine
concurrency on the level of threads as follows:

Definition 3.6 (MHP relation ‖thread). Let θ0 and θ1 be two threads. Let t0 and t1 be their

representatives in the corresponding TCT and let ta be their lowest common ancestor. Let θa be

the thread represented by ta.

If θa 6= θ0 ∧θa 6= θ1, let f0 be the fork site context in θa that indirectly forks θ0 and let f1 be

the fork site context in θa that indirectly forks θ1.

θ0 and θ1 may happen in parallel, written θ0 ‖thread θ1, if

1. θa is a multi-thread, or

2. θa 6= θ0 ∧ θa 6= θ1 and ∃i ∈ {0,1} : fi reaches f1−i in θa’s ICFG via a non-trivial path

(length > 0).

The first rule addresses threads forked by a multi-thread. We conservatively assume that in
such a situation an unbound number of threads is created and that these threads may happen in
parallel. The second rule deals with the situation where two threads are subsequently forked by
the same ancestor.

Let us apply the above rules to the example programs in Fig. 3.7. The analysis of the upper
program shows that thread_1 and thread_2 cannot happen in parallel, because none of the
rules applies: Their last common ancestor, the main thread, is not a multi-thread, and none of
the fork sites reaches the other. The analysis of the lower program yields a different result: Here
thread_1 and thread_2 may happen in parallel, because the fork site of thread_1 reaches
the fork site of thread_2.

Relation ‖thread is integrated into relation ‖region. The idea is that the second part of rule 2 of
‖region can be partitioned into two cases. In the first case, the two regions R and Q referred to
by the rule belong to two different threads and neither of them is an ancestor of the other. In the
second case, one of the threads is an ancestor of the other.

In the first case, the regions may only happen in parallel if the lowest common ancestor is
able to fork both threads in the same program execution. This is the case if the lowest common

60

3.3. May-Happen-In-Parallel Analysis for Java

ancestor is a multi-thread, which is covered by rule 1 of relation ‖thread, or if one of the fork site
contexts in the lowest common ancestor that indirectly fork the two threads is able to reach the
other one in the ICFG of the lowest common ancestor, which is covered by rule 2 of relation
‖thread.

In the second case, the thread θ of one of the regions, say R, is the ancestor of the other
thread. Here, the nodes may only happen in parallel if R’s thread is a multi-thread, which is
covered by rule 1 of relation ‖thread, or if the fork site context in θ which indirectly forks Q’s
thread is able to reach the start node of R in the ICFG of θ .

This leads to the following redefinition of relation ‖region:

Definition 3.7 (MHP relation ‖region (redefined)). Let G be a TCFG, let R0 and R1 be two thread

regions in G, and let θ0 be R0’s thread and θ1 be R1’s thread.

R0 and R1 may happen in parallel, written R0 ‖region R1, if

1. θ0 = θ1 and θ0 is a multi-thread, or

2. θ0 6= θ1, neither start node of one of the two regions is dominated by a must-join of the

thread of the other region, and

• θ0 ‖thread θ1, or

•∃ i ∈ {0,1} such that θi is an ancestor of θ1−i and there exists a fork site context f

in θi that indirectly forks θ1−i and reaches the start node of Ri in the ICFG of θi via

a non-trivial path.

Our MHP algorithm

The computation of MHP information on the level of threads and the thread region analysis can
be intertwined to an efficient algorithm based on context-sensitive forward traversal of ICFGs.
For that purpose, the context-restricted slicer in Alg. 2.3 is adapted to work on ICFGs and
to traverse forward: Phase 1 traverses return and control flow edges, phase 2 traverses call and
control flow edges. The depicted algorithm collects the MHP information in four steps. The first
step handles multi-threads and threads forked within a multi-thread. The second step determines
threads that may happen in parallel due to being forked subsequently by the same ancestor. This
is done by implementing the second rule of definition 3.6. The third step accounts for thread
regions that lie sequentially behind a fork site. They may happen in parallel to all thread regions
of the forked thread and its descendant threads. The fourth step refines the hitherto computed
result by analyzing must-joins. All thread regions whose start nodes are dominated by a must-
join of a thread θ cannot happen in parallel to the thread regions of θ .

61

3. Slicing Concurrent Programs

Algorithm 3.1 Computation of MHP information.
Input: A TCFG G, the set T of thread contexts from the thread invocation analysis.
Output: A map Mregs : ThreadRegions×ThreadRegions 7→ {true, f alse},

and a map Mthreads : Threads×Threads 7→ {true, f alse}

Compute the set R of thread regions.
Initialize maps M and T by setting all values to false.
Let regions(θ) be the set of thread regions in thread θ .
Let θ(c) be the thread of context c.
Let Desc(θ) be the set of all threads of which θ is an ancestor.

/* Step 1: handle multi-threads */
for all multi-threads θ

// collect all descendant threads
for all (θ ,θ ′) ∈ (Desc(θ)∪{θ})× (Desc(θ)∪{θ}) // all these threads may happen in parallel

Mthreads(θ ,θ
′) = true

Mthreads(θ
′,θ) = true

/* Step 2: determine the threads that are forked subsequently by the same ancestor */
Compute the set F of all fork site contexts (can be easily derived from set T).
Let θ f be the thread forked by fork site context f .
for all (f , f ′) ∈ F ×F : f 6= f ′∧θ(f) == θ(f ′) // all pairs of fork site contexts in the same thread

if f reaches f ′ in the ICFG of θ(f) // use Alg. 3.6
// the threads and their descendant threads may happen in parallel
for all (θ ,θ ′) ∈ (Desc(θ f)∪{θ f })× (Desc(θ f ′)∪{θ f ′})

Mthreads(θ ,θ
′) = true

Mthreads(θ
′,θ) = true

/* Step 3: all threads forked by a fork site f may happen in parallel to the thread regions behind f */
for all f ∈ F

Compute the set S of nodes reachable by f in the ICFG of θ(f) // adapt Alg. 2.3 for that task
// the regions in θ and in descendant threads may happen in parallel to the regions lying in S
for all θ ∈ (Desc(θ f)∪{θ f })

for all q ∈ regions(θ)
for all thread regions r lying in S

Mregs(q,r) = true
Mregs(r,q) = true

/* Step 4: refine the result with must-join information */
Let J be the set of all join nodes in G that are identified as must-joins
for all j ∈ J

Let θ be the thread joined by j
for all r ∈ R : j dominates r’s start node

for all thread regions q of θ

Mregs(q,r) = f alse
Mregs(r,q) = f alse

return M

62

3.3. May-Happen-In-Parallel Analysis for Java

Implementation and runtime complexity The start nodes of the thread regions are identified
through a technique that iteratively colors the nodes in the TCFG in order to find the thread
regions starting at merge nodes. In each iteration, each node reachable in its ICFG by an already
determined start node of a thread region on a context-sensitive path containing no other start
nodes and no nodes already labeled with another start node is labeled with that start node. These
paths can be determined via a forward traversal analogically to two-phase slicing, because the
control flow edges between the call and return nodes of the call sites make up for the summary
edges. The traversal can be confined to the ICFG because thread regions are thread-local. If
the traversal arrives at a node already labeled with another start node, a merge node starting a
new thread region is found. This proceeding is iterated until no new merge node can be found;
the coloring resulting from the last iteration represents the thread regions. The technique has an
asymptotic running time of O(|N|2 ∗ |E|): One iteration has a runtime complexity of O(|N| ∗
|E|), because for each already determined start node at most all edges have to be traversed
once, and in the worst case |N| iterations are necessary. In comparison, algorithms computing
the interprocedural dominance relation [143], which would be necessary for determining the
thread regions directly via dominance, have a runtime complexity of O(|N|3 ∗ |E|). The price
paid for this speedup is that the result of our technique is not completely context-sensitive,
because bypassing a procedure call via the mentioned control flow edge might miss a start node
of a thread region in the bypassed procedure. In effect, the TCFG is partitioned into more thread
regions than necessary.

The nodes dominated by the must-joins are determined in a similar way. For each must-
join, these are all nodes not reachable by the start node of the TCFG via context-sensitive
paths not containing the join node. Thus, for each must-join the edges of the TCFG have
to be traversed at most once, leading to a runtime complexity of O(|N| ∗ |E|). However, the
number of must-joins is expected to be very small in practice. Similar to the identification of
the thread regions, this proceeding is not completely context-sensitive and may omit nodes that
are in fact dominated by a must-join. This means that the result of our implementation is only a
conservative approximation of relation ‖region.

The handling of multi-threads in step 1 requires at most O(|T |2) accesses to map Mthreads,
where |T | is the number of thread contexts. In step 2, the analysis of whether a fork site context
reaches another one in an ICFG requires the traversal of at most all of its edges (a suitable
algorithm, Alg. 3.6, is described later in section 3.9.1). Furthermore, for each pair of fork site
contexts, O(|T |2) accesses to map Mthreads may be necessary. Thus, step 2 has a complexity
of O(|T |2 ∗ |E|+ |T |4). Step 3 may require for each fork site context a complete traversal of
the according ICFG and O(|T | ∗ |R|2) accesses to map Mregs, where |R| is the number of thread
regions, leading to an overall complexity of O(|T | ∗ |E|+ |T |2 ∗ |R|2). Step 4 may require
O(|N| ∗ |R|2) accesses to map Mregs.

63

3. Slicing Concurrent Programs

This leads to a runtime complexity of the MHP analysis of O(|N|2 ∗ |E|+ |T |2 ∗ |E|+ |T |4 +
|T |2 ∗ |R|2 + |R|2 ∗ |N|). Since |N| > |T |, |N| > |R|, |R| ≥ |T | and |E| ≥ |N| − 1, this notation
can be simplified to O(|N|2 ∗ |E|+ |T |2 ∗ |R|2). Thus, the costs of the analysis are dominated
by the identification of the thread regions and the accesses to map Mregs in step 3. In our
evaluation presented in section 3.12.1, the number of distinguished threads was always a single-
digit, whereas the number of thread regions often exceeded 1,000, and the most time-consuming
part was the computation of the thread regions.

3.4. The Concurrent System Dependence Graph

This section presents the concurrent system dependence graph (CSDG), our extension of the
SDG for modeling concurrent programs, developed by Christian Hammer [52], Jürgen Graf
and the author. Similar to TCFGs, a CSDG is composed of the SDGs of the thread classes of
the program, which are connected via different kinds of concurrency-related dependences [52,
chapt. 3]. To keep matters simple, we assume in the forthcoming descriptions that the SDGs are
disjoint, as we did for TCFGs. Several authors provide extended SDGs for concurrent programs,
more or less similar to the CSDG [61, 75, 106, 163, 164]. Differences and similarities are
summarized in section 3.14.

The most important concurrency-related dependence is interference dependence [73].

Definition 3.8 (Interference dependence). A node n is interference dependent on node m, ab-

breviated by m →id n, if n may use a value computed at m and m and n may happen in parallel.

Note that in contrast to data dependence interference dependence ignores the issue of reach-
ing definitions. It does not require the existence of a possible interleaving under which the value
computed at m in fact reaches n. As a consequence, the computation of interference dependence
is separated from the computation of data dependence, which remains thread-local. According
to Hammer [52, chapt. 3], this treatment safely approximates the effects of the Java memory
model.

Hammer [52, chapt. 3] followed the work of Zhao et al. [164] to model forking of threads
similarly to procedure calls via fork sites, where shared variables are passed as parameters. Fork

and fork-in edges, abbreviated by → f ork and → f i, are defined in analogy to call and parameter-
in edges. Thread joining is modeled similarly via join sites, where the final states of the shared
variables modified in the joined thread are passed to the join site via join-out edges, abbreviated
by → jo.

Example Figure 3.8 shows the CSDG of a program consisting of two threads that communi-
cate via shared variables x and y. The program finally prints variable x, whose value depends
on the interleaving of statement x = <input> in thread 1 and x = y + 1 in thread 2. The

64

3.4. The Concurrent System Dependence Graph

i n t x , y ;

void main () :
f o r k t h r e a d _ 1 () ;
f o r k t h r e a d _ 2 () ;
j o i n t h r e a d _ 2 () ;
j o i n t h r e a d _ 1 () ;
p r i n t x ;

void t h r e a d _ 1 () :
i n t a = y ;
x = < i n p u t > ;
i f a > 0

i n t b = 0 ;
e l s e

y = 0 ;

void t h r e a d _ 2 () :
x = y + 1 ;
y = 0 ;

thread_1

a > 0

a = y

b = 0

thread_2

main

 fork

thread_2
 fork

thread_1

control dep.

data dep.

fork, fork-in or

join-out edge

interference dep.

x y

x y

x y
x y y

xx y y

print x

x

x = y + 1

x

x

 join

thread_2

 join

thread_1

y = 0

y = 0

x = <input>

y

y

Figure 3.8.: A concurrent program and its CSDG. The highlighted nodes are the slice for print x
computed by collecting all reaching nodes.

gray highlighted nodes are the slice for print x computed by collecting all reaching nodes.
Node print x is not interference dependent on x = <input> and x = y + 1 because it
cannot happen in parallel to them. The CSDG accounts for the dependence of print x on
these statements by passing the final states of x in the threads to their join sites. Node print
x is data dependent on both actual-out nodes for x, since it may use either of these values, de-
pending on the interleaving of the threads. In order to yield both data dependences, the kill-sets
of join nodes are defined to be empty. Note that this leads to an additional data dependence

65

3. Slicing Concurrent Programs

void t h r e a d _ 1 () :
l o c k l ;
x = x + 1 ;
un lo ck l ;

void t h r e a d _ 2 () :
l o c k l ;
x = x − 1 ;
un lo ck l ;

Figure 3.9.: Two threads synchronizing their access to shared variable x.

from the formal-in node for x at the beginning of main to print x because the analysis of
data dependence remains thread-local and the definition is not killed by the join nodes.

Please note that for the sake of simplicity many subsequent example programs and CSDGs
consist only of two threads and lack a common main-procedure.

Synchronization-related dependences

The presence of synchronization complicates the detection of interference dependences. Con-
sider the program fragment in Figure 3.9. Both threads read and write shared variable x, so
intuitively there should be interference dependences between x = x + 1 and x = x - 1 in
both directions. However, these two statements cannot happen in parallel due to synchroniza-
tion. Instead of introducing a cumbersome parameter-passing mechanism at the beginning and
at the end of synchronized blocks, we refine the definition of interference dependence to ex-
clude the effects of synchronization. Note that our MHP analysis delivers exactly the required
MHP information.

Definition 3.9 (Interference dependence (redefinition)). A statement n is interference-dependent

on statement m, abbreviated by m →id n, if n may use a value computed at m and m and n may

happen in parallel up to synchronization.

Synchronization may also cause additional dependences. Hatcliff et al. [61] investigated
dependences induced by synchronization in Java programs and introduced synchronization- and
ready dependence. Synchronization dependence embeds a node n into its innermost enclosing
synchronization block. The node is defined to be synchronization dependent on the lock and
unlock operations of that block. A node n is ready dependent on a node m if m may delay n’s
execution infinitely by blocking n’s thread via synchronization operations before it reaches n or
completes its execution.

We do not use these dependences for the following reasons: Hatcliff et al. aim for executable
slices and thus have to preserve the semantics of synchronization operations and of program
termination. For that purpose, a node n has to be synchronization dependent on the unlock
operation of the innermost enclosing synchronization block. However, this contravenes our
concept of slicing, because the lock release does not influence n (it executes after n). Ready
dependence is defined in the spirit of weak control dependence and captures possible nontermi-

66

3.4. The Concurrent System Dependence Graph

void t h r e a d _ 1 () :
l o c k l ;
w a i t l ;
p r i n t 0 ;
un lo ck l ;

void t h r e a d _ 2 () :
l o c k l ;
un lo ck l ;
n o t i f y l ;

print 0

lock l

lock l

unlock l

unlock l

wait l

notify l

control dep.

data dep.

interference dep.

synchronization dep.

ready dep.

pr int 0

lock l

lock l

unlock l

unlock l

wait l

notify l

Figure 3.10.: Two concurrent threads and two possible ways of modeling the dependences induced by
synchronization. The upper CSDG fragment uses interference- and control dependences to
model these dependences, the lower one uses synchronization- and ready dependences.

nation induced by synchronization. Since we do not aim for termination-sensitive slices, we do
without ready dependence, too. Instead, we use Nanda’s [106] idea to cover the dependences
induced by synchronization via control- and interference dependence instead. This works for
Java, because Java’s locking, waiting and notifying operations reference and modify objects
and thus create appropriate interference dependences. Only a single extension is needed: Syn-
thetic control flow edges are inserted from a lock operation to the successor of its associated
unlock operation. These synthetic edges render nodes (transitively) control dependent on the
lock operation of the innermost enclosing synchronization block.

67

3. Slicing Concurrent Programs

Example Figure 3.10 shows a program fragment consisting of two threads that synchronize
on a shared object l. The upper CSDG fragment depicts our modeling of the program, the lower
one uses synchronization- and ready dependence. For clarity, the start nodes of the threads and
the parameter passing are omitted. Let us explain the depicted dependences. In the upper graph,
every node part of a synchronization block is control dependent on the lock operation, due to
our synthetic control flow edges. In the lower graph, synchronization dependence accounts for
these dependences, but also leads to dependences from the unlock operations to all nodes in
the synchronization blocks. Since monitors in Java are associated with objects, each access
to a monitor in the program fragment is interference dependent on the three synchronization
operations in the other thread. The ready dependences between the locks and unlocks and
between wait l and notify l are safely approximated by these interference dependences.
The ready dependences between wait l and its thread-local successors are lacking in the upper
graph, since we do not aim for termination-sensitive CSDGs.

3.4.1. Computation of CSDGs

For a detailed description of how CSDGs are computed by the Joana framework we refer to
Hammer’s PhD thesis [52]. In summary, a CSDG is constructed as follows: First, a standard
SDG comprising the whole program is computed, treating forking and joining of threads as
ordinary procedure calls. Then, a preliminary set of interference dependences is computed. For
that purpose, the program is assumed to have two threads of each thread class at runtime, except
for the main thread, which is unique. Additionally, all threads of the program are assumed to
happen in parallel. These assumptions make sure that all possible interference dependences
between threads of different thread classes and between threads of the same thread class are
included. The points-to information computed in the first step is used to identify pairs of state-
ments in different threads that read and write the same heap locations, which yields the interfer-
ence dependences. In a postprocessing step, our MHP analysis is used to identify and remove
redundant interference edges. Finally, the call- and parameter edges at the fork- and join sites
are converted to fork-, fork-in and join-out edges.

3.5. Context-Sensitive Slicing of Concurrent Programs

The two-phase slicer for sequential programs cannot be used to slice CSDGs, because summary
edges do not capture interprocedural effects of interference dependences [106]. Since interfer-
ence dependences cross procedure borders arbitrarily and violate the well-formedness property
of SDGs of propagating all interprocedural effects through call sites, their effects cannot be
summarized by conventional summary edges. Figure 3.11, taken from Hammer’s PhD the-
sis [52], shows a minimalist producer-consumer-style example with an interference dependence

68

3.5. Context-Sensitive Slicing of Concurrent Programs

i n t x ;

void t h r e a d _ 1 () :
i n t a = 2 ;
s e t (a) ;

void t h r e a d _ 2 () :
i n t b = g e t () ;
p r i n t b ;

void s e t (i n t a) :
x = a ;

i n t g e t () :
re turn x ;

data dependence

summary edge

call- or parameter edge

interference edge

control dependence

thread_1

set

a = 2x x

x = a

call set

x a x

x a x

thread_1

get

print bx

return x

call get

x

x return

return

Figure 3.11.: A small producer-consumer program and its CSDG. The two-phase slice for print b is
highlighted dark gray. It omits the light gray nodes, which belong to a correct slice.

between the producer and the consumer. The shaded nodes highlight the statement-minimal
slice for print b, the darker nodes mark the slice computed by the two-phase slicer. The
slicer visits thread_1 only in the second phase by traversing the interference edge, which
means that the slicer cannot leave procedure set towards the main procedure of thread_1.
Hence, the call of of set will not be visited, even though it belongs to the slice.

69

3. Slicing Concurrent Programs

3.5.1. Context-Sensitive Paths in CSDGs

In order to slice CSDGs context-sensitively, we have to define what context-sensitivity means in
the presence of threads. To this end, we extend the definition of context-sensitive paths in SDGs
with interference dependence, fork-, fork-in- and join-out edges, summarized as concurrency

edges in the remainder. Intuitively, if a path traverses a concurrency edge m → n towards n,
the calling context of m is lost: The thread that has been left is allowed to execute further in
parallel, so if the path reenters that thread later, one cannot demand that it reenters the thread
at the original calling context. Furthermore, the traversal may reach n in any possible calling
context of n, because m interferes with every possible instance of n. Thus, a path p in a CSDG
is context-sensitive if it consists of a sequence p1, . . . , pn of sequential, context-sensitive paths,
where each pair (pi, pi+1), 0 ≤ i < n, is connected via a concurrency edge.

Definition 3.10 (Context-sensitive paths in CSDGs). In addition to definition 2.9, label con-

currency edges with conc. A path in the CSDG of a concurrent program is context-sensitive,

iff the sequence of symbols labeling edges in the path is a word generated from nonterminal

conc_realizable by grammar Hconc, which extends grammar H of definition 2.3 as follows:

matched → matched matched | (s
c matched)s

c | l | ε

unbalanced_right → unbalanced_right)s
c matched | matched

unbalanced_left → unbalanced_left (s
c matched | matched

realizable → unbalanced_right unbalanced_left

conc_realizable → (realizable conc)∗ realizable

Since that definition includes its counterpart for sequential programs, we reuse the notation
→∗

cs for context-sensitive paths in CSDGs. The definition of context-sensitive slices of CSDGs
is a generalization of the one for SDGs:

Definition 3.11 (Context-sensitive slices). Let G = (N,E) be a CSDG.

A context-sensitive backward slice of G for a node s ∈ N consists of the set of nodes

{n | ∃ n →∗
cs s in G}.

A context-sensitive forward slice of G for s consists of the set of nodes

{n | ∃ s →∗
cs n in G}.

3.5.2. The Iterated Two-Phase Slicer

The following extension of the two-phase slicer enables context-sensitive slicing of CSDGs:
The two-phase slicer is embedded in a loop that iterates over a list W of nodes and calls the

70

3.5. Context-Sensitive Slicing of Concurrent Programs

i n t x , y ;

void main () :
x = 0 ;
y = 1 ;
f o r k t h r e a d _ 1 () ;
i n t p = x − 2 ;
i n t q = p + 1 ;
y = q ∗ 3 ;

void t h r e a d _ 1 () :
i n t a = y + 1 ;
i n t b = a ∗ 4 ;
x = b / 2 ;

data dependence

summary edge

call- or parameter edge

interference edge

control dependence

 fork
thread_1

y = 1

1

2 3

4

5 6

7

8

9

10

11 12

13

14

15

entry
main

x = 0

 start
thread_1

p = x - 2

q = p + 1

y = q * 3

a = y + 1

 b = a * 4

x = b / 2

x y

x y

Figure 3.12.: A CSDG of a concurrent program. In order to keep the graph as simple as possible, the
formal-in nodes of main and the formal-out nodes of thread_1 for x and y are not
shown. The highlighted nodes form the context-sensitive slice for node 14.

two-phase slicer for every n ∈ W . Initially, W contains only the slicing criterion. If the two-
phase slicer encounters a concurrency edge, it does not traverse the edge but inserts the adjacent
node into W . The resulting slice consists of the nodes visited in all iterations of the two-phase

71

3. Slicing Concurrent Programs

Algorithm 3.2 I2P: Hammer’s [52] version of Nanda’s iterated two-phase slicer [106].
Input: A CSDG G, a slicing criterion s.
Output: The slice S for s.

W = {s} // a worklist
M = {s 7→ true} // maps visited nodes to true (phase 1) or false (phase 2)

repeat
remove first node n from W
for all e = m → n // handle all incoming edges of n

// if m hasn’t been visited yet or we are in phase 1 and m has been visited only in phase 2
if m 6∈ dom M∨ (¬M(m)∧ (M(n)∨ e is a concurrency edge))

// if we are in phase 1 or if e is not a call or parameter-in edge, add m to W
if M(n)∨ e is not a call or parameter-in edge

W =W ∪{m}
/* determine how to mark m */
if M(n)∧ e is a parameter-out edge

// we are in phase 1 and e is a parameter-out edge: mark m with phase 2
M = M∪{m 7→ false}

else if ¬M(n)∧ e is a concurrency edge
// we are in phase 2 and e is a concurrency edge: mark m with phase 1
M = M∪{m 7→ true}

else
// mark m with the same phase as n
M = M∪{m 7→ M(n)}

until W = /0
return dom M

slicer. This iterated two-phase (I2P) slicer was first described by Nanda [106] and can be
implemented to yield context-sensitive slices in O(|E|): A node already been visited in phase 1
during a previous two-phase slice has not to be visited again, because its own slice has already
been covered by that two-phase slice. This is not the case for a node which has only been visited
in phase 2 yet, because phase 2 omits parameter-in and call edges. It has to be visited again
if reached in phase 1 of another two-phase slice or via a concurrency edge. This means that
each edge has to be traversed at most twice, once in phase 2 and later again in phase 1. As an
example, let us compute the slice for node 14 in the CSDG in Fig. 3.12. The algorithm first
computes a thread-local slice for node 14 using the two-phase slicer and visits the nodes {14,
13, 12, 10}. Nodes 9, 6 and 4 are not visited but added to list W . The slicer now subsequently
computes thread-local slices for these nodes and updates W as needed. The two-phase slice for
node 9 visits the nodes {9, 8, 7, 2, 1} and inserts node 15 into W . The two-phase slice for node
6 visits nodes {6, 4, 3} (node 1 has already been visited in phase 1), the one for node 4 can be
omitted, because node 4 has already been visited in phase 1. The last two-phase slice for node
15 visits node 15. The resulting slice, highlighted in Fig. 3.12, consists of all visited nodes.

Figure 3.2 shows a more compact implementation developed by Hammer [52]. It is based on
a single map, which maps the visited nodes to the phase in which they have been visited. The

72

3.6. Timing-Sensitive Slicing

condition of the first ‘if’ inside the forall-loop checks if the adjacent node m has to be visited.
This is the case if m has not been visited yet, or if it has been visited only in phase 2 and we are
currently in phase 1 or intend to traverse a concurrency edge. The next conditional realizes the
two-phase slicing technique: If the intended traversal happens in phase 2, parameter-in and call
edges have to be ignored. The last conditionals decide how to mark m in the map, according to
two-phase slicing. If a concurrency edge has been traversed, the reached node is always treated
as being visited in phase 1.

3.6. Timing-Sensitive Slicing

The remainder of this chapter investigates the timing-sensitive slicing algorithms of Krinke [73,
75, 77] and of Nanda [105, 104, 106]. Unless otherwise noted, our descriptions of Krinke’s
work refer to [75], and our descriptions of Nanda’s work refer to [106].

3.6.1. Timing-Sensitive Paths in CSDGs and TCFGs

A slice is timing-sensitive if it contains only those nodes that lie on a timing-sensitive path to the
slicing criterion. Krinke developed the first definition of timing-sensitive paths, which is based
on reachability between contexts. For that purpose, contexts in a CSDG have to be mapped to
the corresponding contexts in the TCFG, which is done by mapping the node of the context to
its counterpart in the TCFG via the following extension of function map (definition 2.8) for fork
and join sites. In the remainder, we assume that this mapping is done implicitly whenever the
reaches relation is applied to contexts in a CSDG.

Definition 3.12. Let G = (NPDG ∪Nsyn,_) be a SDG, and let ICFG = (NICFG,_) be the corre-

sponding ICFG. Function map : NPDG ∪Nsyn 7→ NICFG is defined as follows:

map(n) =

n n ∈ NPDG

c n is an actual-in node and c is the corresponding call or fork node

r n is an actual-out node and r is the corresponding return or join node

s n is a formal-in node of procedure p and s is p’s start node

e n is a formal-out node of procedure p and e is p’s exit node

The MHP relation ‖ for contexts is a context-sensitive variant of definition 3.3.

Definition 3.13 (Relation ‖ for contexts). Let (n,σ),(m,σ ′) be two contexts in a CSDG G, and

let θ((n,σ)) and θ((m,σ ′)) be their threads. Then (n,σ) and (m,σ ′) may happen in parallel,

written (n,σ) ‖ (m,σ ′), if

• θ((n,σ)) = θ((m,σ ′)) and θ((n,σ)) is a multi-thread, or

73

3. Slicing Concurrent Programs

• θ((n,σ)) 6= θ((m,σ ′)), neither n nor m is dominated by a must-join of the thread of the

other context, and

– there exists a fork site context f in G that indirectly forks the thread of the one con-

text via an outgoing fork edge and reaches the other context via a different outgoing

edge.

There exists a context edge between two contexts if their nodes are connected via an edge in
the CSDG and its traversal is in accordance with the call strings of the contexts. Context edges
are defined in analogy to Krinke’s directly reaches relation presented in section 3.2.1.

Definition 3.14 (Context edge). Let (m,σm),(n,σn) be two contexts in a CSDG G. We say that

G contains a context edge from c to d, denoted by (m,σm) → (n,σn), iff one of the following

cases holds:

1.There exists a control or data dependence m → n in G and σm = σn.

2.There exist a call or parameter-in edge m → n in G such that s symbolizes the call site

and

• σm = σ and σn = σs, or

• σm = σn = σs and s is a synthetic call site.

3.There exist a parameter-out edge m → n in G such that s symbolizes the call site and

• σm = σs and σn = σ , or

• σm = σn = σs and s is a synthetic call site.

4.There exist a fork or fork-in edge m → n in G such that s symbolizes the call site and

• σm = σ and σn = σs, or

• thread((m,σm)) = σn and s is a synthetic call site.

5.There exist a join-out edge m → n in G.

6.There exist an interference dependence m → n in G and (m,σm) ‖ (n,σn)

(interference edges should only be traversed if the contexts may happen in parallel).

A context path describes a path through a CSDG that is in accordance with the call strings of
the involved contexts.

Definition 3.15 (Context path). A sequence of contexts 〈cn1 , . . . ,cnk〉 in a CSDG G is a context

path, denoted by cn1 →∗ cnk , if for every consecutive pair (cn j ,cn j+1) in the sequence, G contains

a context edge from n j to n j+1.

74

3.6. Timing-Sensitive Slicing

It follows directly from that definition that two context paths, c →∗ d and d →∗ c′, can be
connected to a new context path, c →∗ d →∗ c′. It is also easy to see that the nodes of the
contexts in a context path form a context-sensitive path.

It remains to define which context paths are timing-sensitive. We follow the work of Krinke
and define which context paths correspond to a valid interleaving of the involved threads. MHP
information and the reaches relation ∗ are used to identify whether a context path is timing-
sensitive. This is the case if all contexts in the path that cannot happen in parallel can be
executed by the program in the relative order in which they appear in the path, up to conditional
branching.

Definition 3.16 (Timing-sensitive path). A context path c1 →∗ ck is a timing-sensitive path,

written c1 →∗
ts ck, iff ∀1 ≤ j < i ≤ k : ci ‖ c j ∨ ci ∗ c j.

This condition is almost the same as used by Krinke in his definition of threaded witnesses [77].
It ensures that a path Φ describes a valid interleaving of the threads involved in Φ. The major
difference between Krinke’s definition of timing-sensitive paths and ours is that Krinke bases
his directly on sequences of contexts and reachability between contexts, whereas ours is based
on context paths and context edges as an additional, intermediate layer. We introduced them
because we have to require explicitly that a context edge resulting from an interference depen-
dence implies that the two contexts may happen in parallel. Krinke assumes that all threads
happen in parallel, which implicitly fulfills that requirement.

Having defined timing-sensitive paths, it remains to define timing-sensitive slices:

Definition 3.17 (Timing-sensitive slices). Let G = (N,E) be a CSDG.

A timing-sensitive backward slice of G for a node s ∈ N consists of the set of nodes

{n | ∃cn →∗
ts cs in G}.

A timing-sensitive forward slice of G for s consists of the set of nodes

{n | ∃cs →∗
ts cn in G}.

3.6.2. The Basic Idea of Timing-Sensitive Slicing

It follows an explanation of the basic idea of timing-sensitive slicing. To keep matters simple,
we assume that all threads of a program may happen in parallel. The inclusion of more precise
MHP information is discussed in section 3.7.

In order to compute timing-sensitive slices, one needs to avoid timing-insensitive paths. A
very important observation has been made by Krinke in his prepending property, which we
redefine in terms of our context paths.

75

3. Slicing Concurrent Programs

Theorem 3.1 (Prepending property). Let Φ = c1 →∗
ts ck be a timing-sensitive path in a CSDG

G. Let e = c0 → c1 be a context edge in G. Path c0 → c1 →∗
ts ck is timing-sensitive iff

• e is thread-local, or

• c0 reaches the first context c in Φ that cannot happen in parallel to c0.

Proof. It follows directly from definition 3.15 that c0 → c1 →∗
ts ck is a context path. It remains

to show ∀1 ≤ i ≤ k, c0 ∦ ci ⇒ c0 ∗ ci. For that purpose, it suffices to show that c0 reaches
the first context c in Φ that cannot happen in parallel to c0. Since all threads may happen in
parallel and Φ is timing-sensitive, we have c0 ∦ ci ⇒ c ∦ ci ∧ c ∗ ci. From c0 ∗ c follows
c0 ∗ ci because ∗ is transitive. Thus, the second case is already shown. It remains the case
of thread-local edges.

If e is thread-local, then the first context c in Φ that cannot happen in parallel to c0 is c1, and
e is either an intra-procedural dependence, a call or parameter-in edge or a parameter-out edge.
We rewrite c0 = (m,σm) and c1 = (n,σn).

• e is a data or control dependence
According to definition 3.14, σm = σn. It follows from the definitions of data and control
dependence that there exists a path of control flow edges from m to n. Thus, c0 ∗ c1.

• e is a call or parameter-in edge or a parameter-out edge
Since the context of a parameter-passing node is mapped to the context of the associated
call-, return-, start- or exit node, c0 directly reaches c1 via a call edge or return edge.

The prepending property says that nothing needs to be done as long as the context-sensitive
traversal of a CSDG or TCFG remains thread-local, and in case a concurrency edge is traversed
a single reachability check is sufficient. This observation permits to develop slicing algorithms
that remain on timing-sensitive paths throughout the traversal. The timing-sensitive slicing
algorithms of Krinke and of Nanda work on the level of contexts and annotate every visited
context c with a state tuple Γ, which maps each thread to the lastly visited context of that thread
on the path taken so far.

Definition 3.18 (Configuration). Let cn be a context and Γ be a state tuple. The tuple (cn,Γ) is

a configuration of node n.

Configurations store the information necessary to check the prepending property and thus
allow to detect whether the backward traversal of a concurrency edge c → d results in a timing-
insensitive path: If c belongs to a thread θ and cold is the state of θ in the state tuple with which
d is annotated, then it is compulsory that c may reach cold in the TCFG. Otherwise, the traversal

76

3.6. Timing-Sensitive Slicing

would result in a timing-insensitive path and is rejected. In our example in Figure 3.12, this
situation arises when the slicer traverses from node 7 to node 15 (in that example each node
has exactly one context, which is simply represented by the node itself). Thread thread_1 has
previously been left at node 13 via the incoming interference edge. Therefore, the slicer needs
to check whether it is possible to reach node 13 from node 15 in the TCFG. This is not the case,
hence the traversal should be rejected.

The basic algorithm

Algorithm 3.3 gives an overview of the algorithmic details of timing-sensitive slicing. It shows
the basic structure of both Krinke’s and Nanda’s algorithms, which can be viewed as extensions
of the iterated two-phase slicer: They iterate a context-sensitive slicing algorithm for sequen-
tial programs and determine which encountered concurrency edges can be traversed without
creating a timing-insensitive path. For that purpose, each visited context is annotated with a
state tuple that maps each thread to its lastly visited context. The iterated slicer for sequential
programs works on configurations in order to determine at which configurations the current
thread can be left and can be imagined as an extension of the IPDG slicer of section 2.5. It
receives a configuration (c,Γ) and returns the thread-local slice for c and the set I of visited
configurations of nodes with incoming interference dependences. In order to compute set I, it
has to propagate and update state tuples during the slice: Following each backward traversal of
an edge, the reached context c is annotated with a copy of the state tuple of the previous context,
where the entry of c’s thread is set to c. Similar to the iterated two-phase-slicer, the thread-local
slicer is called iteratively for every configuration visited via a valid traversal of a interference
dependence.

The depicted algorithm works as follows: Initially, it determines all possible contexts C(s)

of the given slicing criterion, node s. Then, it annotates each context c ∈ C(s) with an initial
state tuple Γ, where the execution state of c’s thread is set to c and the states of the other threads
are set to an initial, nonrestrictive state ⊥: Every traversal of an interference dependence edge
towards a thread in this initial state is valid by definition. These configurations are inserted
into a worklist W . The algorithm iterates over worklist W and computes for each configuration
(c,Γ) ∈ W the thread-local slice S for c and the set I of visited configurations of nodes with
incoming interference edges. Then, it determines the valid interference dependences: For each
configuration (in,Γin) ∈ I of a node n and each interference dependence m →id n, the set of
valid contexts Cm of node m is determined. A context cm of m is valid if cm may reach the
context stored as the state of cm’s thread in Γi. Every valid context cm ∈ Cm is annotated with
an updated state tuple Γm, where the entry of cm’s thread is set to cm and the other entries are
set to the same values as in Γi, the resulting configuration is added to worklist W . The resulting
slice is the union of all thread-local slices.

77

3. Slicing Concurrent Programs

Algorithm 3.3 Timing-sensitive slicing of concurrent programs.
Input: A CSDG G, a slicing criterion s.
Output: The slice S for s.

Let C(n) be the set of all possible contexts of node n
Let θ(c) be the thread of context c
Let Γ(θ) be the context stored in state tuple Γ for thread θ

Let [c/θ]Γ return a new state tuple Γ′ by mapping thread θ in state tuple Γ to context c
Let SeqSlice(c,Γ) return the thread-local slice S for context c and and the set I of visited configu-
rations of nodes with incoming interference dependences

/* Initialize the slicer */
Γ0 = (⊥, . . . ,⊥) // initially, every thread is in a nonrestrictive state
W = {(c,Γc) | c ∈C(s)∧Γc = [c/θ(s)]Γ0}
M = {}∪W // mark the visited configurations

repeat
remove first configuration (c,Γc) from W

/* Compute a thread-local slice S for c and the set I of visited configurations of nodes with incoming
interference dependences */
(S, I) = SeqSlice(c,Γc)
S = S∪S

/* Compute which interference edges can be validly traversed */
for all (i,Γi) ∈ I

for all m →id n : n is node of context i
/* Compute the valid contexts of m */
Cm = {cm ∈C(m) | Γi(θ(cm)) ==⊥∨ cm reaches Γi(θ(cm))}

/* Update worklist W */
for all w ∈ {(cm,Γm) | cm ∈Cm ∧Γm = [cm/θ(cm)]Γi}

if w /∈ M
W =W ∪{w}
M = M∪{w}

until W = /0
return S

3.6.3. Runtime Complexity

The asymptotic running time of timing-sensitive slicing is dominated by a possible combinato-
rial explosion in the state tuples, because a context can be visited repeatedly with different state
tuples. Nanda determined a worst-case complexity of O(|N|pt), where p is the calling depth of
the call graph, |N|p is an upper bound for the number of contexts, and t is the number of entries
in the state tuples.

78

3.7. The Impact of MHP Information on Slicing

3.6.4. Restrictive State Tuples

Nanda identified combinatorial explosion in the state tuples to be the major performance prob-
lem and introduced restrictive state tuples as a remedy.

Definition 3.19 (Restrictive state tuples). Let Γ = [c1, . . . ,ck] and Γ′ = [d1, . . . ,dk] be two state

tuples. State tuple Γ is restrictive to Γ′ iff ∀1 ≤ i ≤ k : ci reaches di.

If c is a context and Γ and Γ′ are state tuples such that Γ is restrictive to Γ′, then a slice for
configuration (c,Γ) is a subset of the slice for configuration (c,Γ′), because Γ imposes more
restrictions on the set of valid interference dependences than Γ′ does. This property allows to
identify and eliminate redundant configurations. According to our evaluation, the usage of this
optimization is mandatory for a practical employment of timing-sensitive slicing.

3.6.5. Thread Creation Inside Loops and Recursion

The state tuples in the described algorithm have to model every thread that may exist at runtime,
which requires a way to cope with multi-threads. A simple solution is to give an upper bound
for the number of threads created there. But often such an upper bound is not estimable, and the
incorrectness resulting from an arbitrarily chosen number may be inadmissible. Our solution is
based on the following observation: A context from a multi-thread may happen in parallel to all
contexts of the same thread. Due to our current assumption that all threads may happen in par-
allel, this means that a context from a multi-thread may happen in parallel to all contexts of the
program. Thus, a traversal towards a context in a multi-thread via an interference dependence
always results in a timing-sensitive path. Our solution represents a multi-thread by a single
entry in the state tuples and excludes it from the updating mechanism, whereby it remains in
the initial state throughout the slicing process.

Note that the iterated two-phase slicer implicitly accounts for multi-threads, because it treats
every encountered interference dependence as valid.

3.7. The Impact of MHP Information on Slicing

MHP information about a concurrent program affects the precision of slicing in two different
ways. Obviously, more precise MHP information may prune more spurious interference de-
pendences. Consider the example shown in Figure 3.13. The program consists of three threads
communicating via shared variables x and y. The conservative assumption that all threads hap-
pen entirely in parallel would result in an interference dependence from node 20 to node 13. It
can be pruned if the MHP information factors in that thread_2 is forked only after node 13.

MHP information affects precision also in a second, more subtle way during the computation
of a slice. The example in Figure 3.13 demonstrates that more precise MHP information allows

79

3. Slicing Concurrent Programs

i n t x , y ;

void main () :
x = 0 ;
y = 1 ;
f o r k t h r e a d _ 1 () ;
i n t p = x − 2 ;
i n t q = p + 1 ;
y = q ∗ y ;

void t h r e a d _ 1 () :
i n t a = y + 1 ;
f o r k t h r e a d _ 2 () ;
i n t b = a ∗ 4 ;
x = b / 2 ;

void t h r e a d _ 2 () :
y = 0 ;

 fork
thread_2

 start
thread_2

y = 0

16

18

19

20

y

y

 fork
thread_1

y = 1

1

2 3

4

5 6

7

8

9

10

11 12

13

14

15

entry
main

x = 0

 start
thread_1

p = x - 2

q = p + 1

y = q * y

a = y + 1

 b = a * 4

x = b / 2

x y

x y

17

data dependence

summary edge

call- or parameter edge

interference edge

control dependence

Figure 3.13.: More precise MHP information results in more precise slices: The gray nodes denote the
timing-sensitive slice for node 14 in case all threads are deemed to happen in parallel. The
dark gray nodes denote the slice if the fork sites of the threads are taken into account.

to detect more timing-insensitivity. The set of shaded nodes marks the timing-sensitive slice for
node 14 in case all threads are deemed to happen entirely in parallel. The dark gray nodes mark

80

3.7. The Impact of MHP Information on Slicing

i n t x , y ;

void t h r e a d _ 1 () :
i f (. . .)

x = 1 ;
e l s e

f o r k t h r e a d _ 1 () ;
y = x ;

void t h r e a d _ 2 () :
p r i n t y ;

thread_1

x = 1

if (...)

thread_2

print y

fork thread_2

y = x

1

2

3

5

6

7

8
[I,8]

[5,8]

[3,8]

control dep.

interference dep.

data dep.

fork edge

_

Figure 3.14.: The prepending property allows to traverse path Φ = 3 → 6 → 8. In case the threads
are assumed to happen in parallel, Φ is timing-sensitive. More precise MHP information
revealing that node 3 and thread_2 are exclusive identifies Φ as timing-insensitive.

the slice in case the fork sites of the threads are accounted for. In the latter case, the traversal
of edge 20 →id 9 towards node 20 can be identified as invalid: In order to influence the slicing
criterion, node 20 has to be executed before nodes 9 and 13. Since thread_2 is started only
after node 13, this is impossible. Note that edge 20 →id 9 cannot be removed from the CSDG!
For slicing criteria other than node 14 its traversal might be valid.

Integrating more precise MHP information into the timing-sensitive slicer

For simplicity, Alg. 3.3 assumes that all threads of a program may happen in parallel to each
other. In order to exploit more elaborate MHP information, it has to be adjusted.

Krinke developed his prepending property under the assumption that all threads happen in
parallel to each other. This information is exploited by the property so that is does not hold
for general MHP information. Figure 3.14 provides an example. The shown program consists
of two threads, where thread_2 is forked only if the if-conditional evaluates to ‘false’. The
prepending property allows us to traverse from node 8 over node 6 to node 3: The traversal from
node 8 to node 6 is valid because the nodes may happen in parallel. The traversal from node 6 to
node 3 is valid because the connecting edge is thread-local. If we assume that both threads may
happen in parallel, then this path is timing-sensitive: Nodes 6 and 8 may happen in parallel,
nodes 3 and 8 may happen in parallel, too, and node 3 reaches node 6. However, if we know
more precisely that node 3 and thread_2 are exclusive, then this path is not timing-sensitive
anymore: Nodes 3 and 8 cannot happen in parallel anymore, therefore node 3 must be able to
reach node 8 in order to make the path timing-sensitive, which it does not.

Our above observation means that slices computed via the prepending property are not timing-
sensitive with respect to general MHP information, the problem being that paths can become
timing-insensitive after the traversal of a thread-local edge. A possible way to compute timing-

81

3. Slicing Concurrent Programs

sensitive slices with respect to general MHP information is to store the complete path taken so
far and to check before each edge traversal whether the resulting path would be timing-sensitive.
However, this would lead to impractically many reachability checks, therefore it seems that
some precision has to be sacrificed.

State tuples on the level of thread regions Nanda uses the following technique to integrate
her MHP information into the slicer: State tuples contain one entry per thread region, and a
context c about to be visited via an interference edge has to reach the context stored at the
position of c’s thread region in the current state tuple. After the traversal of an edge towards a
context c, the entries of all thread regions that cannot happen in parallel to c’s thread region are
set to c. That way, situations where parts of two threads cannot happen in parallel are treated
more precisely than by Alg. 3.3. In the example of Fig. 3.13, thread 2 would be represented by
one thread region, whose state is set to node 13 at the time the slicer visits node 13, because
it cannot happen in parallel to it. At the attempted traversal from node 9 to node 20 the state
of that region is still node 13, so the traversal can be identified as invalid. On the contrary,
the approach significantly enlarges the state tuples: Our evaluation in chapter 3.12 reveals that
middle-sized programs with 2 or 3 threads may possess more than thousand thread regions. The
approach is also not able to detect the timing-insensitivity in Fig. 3.14.

State tuples accounting for non-existing threads Our proposed solution needs only one
entry per thread in the state tuples. It focuses on information about whether a thread cannot
exist at all at the currently visited context. For that purpose, our state tuple mechanism uses the
following special states:

•⊥ , the nonrestrictive state, is used for existing threads that have not been visited yet and
for multi-threads.

•> , the exclusive state, is used for threads that cannot exist if the slicer reaches the current
context, because their fork site context cannot have been executed before the current
context.

Relation may-exist determines whether a given thread θ may have been forked before a given
context c.

Definition 3.20 (May-exist). Let θ be a thread and c be a context, and let s be the context of

θ ’s start node. Thread θ may exist at context c, written may-exist(c,θ), if

• there exists a fork site context f that reaches s via one outgoing edge and reaches c via a

different outgoing edge, or

• s reaches c.

82

3.7. The Impact of MHP Information on Slicing

Algorithm 3.4 Procedure update: Updating state tuples.
Input: A context c and a state tuple Γ.
Output: A state tuple Γ′.

Γ′ = Γ // create a copy of Γ

Let θ(c) be the thread of c
if θ(c) is not a multi-thread // leave multi-threads alone

Γ′ = [c/θ(c)]Γ′ // set θ(c)’s state to c
for all threads θ // deactivate threads

if ¬ may-exist(c,θ) // check whether θ cannot exist anymore
Γ′ = [>/θ]Γ′ // set θ ’s state to >

return Γ′

Relation may-exist is a conservative approximation of the ‖ relation for contexts and can be
computed for every thread θ during the construction of the CSDG, by collecting for each fork
site context all reachable contexts via a call-string-based traversal of the TCFG.

Lemma 3.1. Let c,d be two contexts, and let θ(c) and θ(d) be the threads of c and d. If c ‖ d,

then may-exist(c,θ(d)) and may-exist(d,θ(c)).

Proof. According to definition 3.13, we have the following cases:

1. θ(c) = θ(d) and θ(c) is a multi-thread, or

2. θ(c) 6= θ(d), neither node of one of the two contexts is dominated by a must-join of the
thread of the other context, and

• there exists a fork site context f in G that indirectly forks the thread of the one con-
text via an outgoing fork edge and reaches the other context via a different outgoing
edge.

In case 1, the context of the start node of θ(c) reaches c and d, thus may-exist(c,θ(d)) and
may-exist(d,θ(c)). In case 2, it follows from the existence of fork site context f that may-
exist(c,θ(d)) and may-exist(d,θ(c)).

The may-exist relation is used during the slice to deactivate a thread in the state tuples as soon
as the traversal visits a context c at which the thread may not exist. This means that the thread
can also not exist at contexts which lie before c in a timing-sensitive path. Therefore, a deac-
tivated thread cannot be reactivated during the remaining traversal. This updating mechanism
is depicted in Algorithm 3.4. Called with a context c and a state tuple Γ, it sets the state of c’s
thread to c if that thread is not a multi-thread. Every thread for which may-exist(c,θ) does not
hold is set to state >.

It remains to extend the reaches relation as follows: Let C be the set of contexts of a program
p, then ∀c ∈ C∪{⊥,>} : c ∗ ⊥ and > ∗ c. The effect of this extension is that a traversal
towards a thread in state ⊥ is always valid and a traversal towards a thread in state > is always

83

3. Slicing Concurrent Programs

rejected. This mechanism cannot lead to a rejection of a timing-sensitive path, which is shown
by the next lemma.

Lemma 3.2. Let c0 →∗
ts ck be a timing-sensitive path in a CSDG G. Let θ be the thread of c0.

For every 0 ≤ i ≤ k, may-exist(ci,θ) holds.

Proof. Let ci be a context in the path. Since the path is timing-sensitive, it follows that either
c0 ∗ ci or that c0 ‖ ci. In the first case, the context of the start node of θ reaches ci, too, because
‘reaches’ is transitive, so may-exist(ci,θ) holds. In the second case, it follows from lemma 3.1
that may-exist(ci,θ) holds.

Let us apply our mechanism to our examples. In Fig. 3.13, the state of thread 2 is set to state
> as soon as the traversal arrives at node 13. The traversal from node 9 to node 20 is rejected
because state > is not reachable. Like Nanda’s approach, our mechanism is not able to detect
the timing-insensitivity in Fig. 3.14. Its advantage is that it gets along with one entry per thread
in the state tuples. Furthermore, in contrast to the MHP information used by Nanda’s approach
the may-exist information is context-sensitive. We therefore expect to yield smaller slices.

3.8. Limitations of Timing-Sensitive Slicing

The definition of timing-sensitive paths is based on the assumption that every program execution
of the analyzed program executes the statements in accordance with the order specified by the
TCFG. Unfortunately, during the execution of a program its code may be reordered (by a just-
in-time compiler, the processor or the memory architecture [48]), which may turn previously
timing-insensitive paths into valid ones. Consider the example in Fig. 3.15. It shows a program
fragment of two threads, on the left side their ICFGs and on the right side a possible actual
execution order at runtime. For Java programs, this reordering is feasible, because the accesses
to the shared variables are not properly synchronized [48, chapt. 17]. The timing-sensitive slice
for statement 2 computed by using the ICFGs on the left side consists of the statements 1, 2,
4 and 5. The interference dependence between statements 3 and 5 is not traversed because it
would result in a timing-insensitive path. But as a result of the reordering on the right side
statement 3 is in fact able to influence the slicing criterion.

If statement reordering may turn timing-sensitive slices incorrect, what does that mean for
timing-sensitive slicing? Fortunately, the Java language specification [48] makes a strong guar-
antee for Java programs that are correctly synchronized, i.e. that contain no data races. If a Java
program is correctly synchronized, then all executions of the program will appear to be sequen-

tially consistent [48, §17.4.5]. If an execution is sequentially consistent, then all inter-thread

actions in it occur in a total order consistent with program order [48, §17.4.3]. Inter-thread ac-
tions are actions that may interact with other threads, such as reads or writes to shared variables,

84

3.8. Limitations of Timing-Sensitive Slicing

thread_1

b = input - 5

a = input + c

thread_2

c = b

1

2

3

4

5

thread_1

a = input + c

thread_2

c = b

1

2

3

4

5b = input - 5

Figure 3.15.: Statement reordering at runtime may switch statements 2 and 3.

forks and joins, or synchronization actions; an action whose statement may cause a concurrency
edge in our CSDGs is an inter-thread action. The program order of a thread t is a total order of
t’s inter-thread actions. It is defined as “. . . a total order that reflects the order in which these
actions would be performed according to the intra-thread semantics of t " [48, §17.4.3].

Using that guarantee we can show for correctly synchronized Java programs that statements
that occur only in timing-insensitive paths to a slicing criterion cannot influence the slicing
criterion.

Theorem 3.2. Let G be the CSDG of a correctly synchronized Java program and let s be a node

in G. A node that occurs only in timing-insensitive paths to s cannot influence s.

Proof. Let n be a node such that no context path from a context cn of n to a context cs of s is
timing-sensitive: @cn →∗

ts cs ∈ {cn →∗ cs}. Let Φ = cn →∗ c → d →∗
ts cs be a timing-insensitive

path such that the sub-path d →∗
ts cs is timing-sensitive and c → d denotes the interference de-

pendence at which Φ becomes timing-insensitive (we can ignore the other kinds of dependences
because of the prepending property; only at interference dependences the TCFG is used to ver-
ify the timing-sensitivity of the resulting path). According to the prepending property, path
c → d →∗

ts cs is timing-insensitive because c fails to reach the first context f in the sub-path
d →∗

ts cs that belongs to the same thread. Note that at f the thread must have been left via a
concurrency edge, so c,d and f generate inter-thread actions.

If a Java program is correctly synchronized, then every execution of that program is se-
quentially consistent and exhibits a total order of its inter-thread actions that is consistent with
program order [48, §17.4.3 and §17.4.5]. Every execution E of p that realizes the dependences
of sub-path d →∗

ts cs has to execute actions generated by d and f . If E also executes an action
generated by c, then E must execute that action behind the last action generated by f , because
c cannot reach f in the TCFG.

In order to let cn influence cs via path Φ, the actions in an execution E have to be reordered
such that an action generated by c appears before an action generated by d and before an action
generated by f . But this order of inter-thread actions is not consistent with the program order
of the thread of c′ and f ′.

85

3. Slicing Concurrent Programs

In summary, code reordering performed at runtime limits the application of timing-sensitive
slicing to correctly synchronized Java programs. Similar results are not known for other lan-
guages. The problem of statement reordering has not been addressed by any previous approach
to timing-sensitive slicing [31, 75, 106, 111, 112, 122]. The I2P slicer is not affected by state-
ment reordering because it traverses each encountered interference edge and ignores execution
orders.

3.9. Krinke’s Timing-Sensitive Slicer

This section describes Krinke’s original timing-sensitive slicer, provides several extensions and
optimizations and presents pseudocode suitable for reproduction.

Krinke’s original slicer is very close to Alg. 3.3. He assumes that all threads may happen
in parallel and that a program has a statically known number of threads. His threaded ICFG

consists of one ICFG per thread, and all ICFGs are disjoint. His threaded IPDG contains one
IPDG per thread, which are connected via interference edges. Forking and joining of threads
is not modeled, all threads are assumed to start directly after the program start and to run until
program termination. These assumptions permit a ‘lazy’ updating of state tuples. It suffices to
update state tuples only after the traversal of an interference dependence. As a consequence,
his thread-local slicer does not need to work with state tuples at all. It is a slight modification
of Alg. 2.2 that additionally returns the set of contexts at which the corresponding thread can
be left. Since that algorithm turned out to be quite expensive, Krinke suggested the following
optimization: The thread-local slice S for a context c is computed via the much faster context-
restricted slicer (Alg. 2.3). Then, the nodes on all SDG paths between the node of c and those
nodes in S where the thread can be left are collected in a set Chop. This can be done efficiently
via chopping (cf. chapter 4). Finally, the contexts at which the thread can be left are determined
by computing a slice for c with the modification of Alg. 2.2, but only along the paths formed by
the nodes in Chop. Algorithm 3.5 presents pseudocode for Krinke’s original algorithm.

Improvement Since Krinke did not implement his slicer, it offered several opportunities for
improvement. We applied the following major optimizations:

• Development and integration of a fast, scalable analysis of reachability between contexts.

• Integration of more precise MHP information.

• Handling of multi-threads.

• Integration of the restrictive state tuple optimization.

• Integration of forking and joining of threads.

The remainder of this section describes these optimizations in detail.

86

3.9. Krinke’s Timing-Sensitive Slicer

Algorithm 3.5 Krinke’s original timing-sensitive slicer.
Input: A CSDG G = (N,E), a slicing criterion s.
Output: The slice S for s.

Let C(n) be the set of all possible contexts of node n
Let θ(c) denote the thread of context c
Let Γ(θ) be the context stored in state tuple Γ for thread θ

Let [c/θ]Γ return a copy of Γ in which thread θ is mapped to context c
Let IPDG(c) be a modified IPDG slicer that returns the thread-local slice S for c and the set I of visited
contexts at which the thread can be left

/* Initialization */
Γ0 = (⊥, . . . ,⊥) // initially, every thread is in a nonrestrictive state
W = {(c,Γc) | c ∈C(s)∧Γ = [c/θ(s)]Γ0}
M = { }∪W // mark the visited configurations

repeat
remove first configuration (cn,Γ) from W
Compute the thread-local slice S for cn via the context slicer (Alg. 2.2)
S = S∪S

/* Determine at which contexts the thread can be left */
Inodes = {m ∈ S | ∃m′ ∈ N : ∃m′ →id m ∈ E}
Compute a chop Chop(Inodes,n) (cf. chapter 4)
Compute (S′, I) = IPDG(cn), but only along the nodes in Chop(Inodes,n)

/* Determine the valid interference dependences */
for all i ∈ I

Γi = [i/θ(cn)]Γ // cn’s thread is left at context i ⇒ update state tuple
for all m →id m′ : m′ is the node of context i

// compute the valid contexts of m
Cm = {cm ∈C(m) | θ(cm) 6= θ(cn)∧ (Γi(θ(cm)) ==⊥∨ cm reaches Γi(θ(cm)))}

// Update worklist W
for all w ∈ {(cm,Γm) | cm ∈Cm ∧Γm = [cm/θ(cm)]Γi}

if w /∈ M
W =W ∪{w}
M = M∪{w}

until W = /0
return S

87

3. Slicing Concurrent Programs

3.9.1. An Optimized Reachability Analysis

The slicing algorithm needs an analysis of reachability between contexts in order to determine
valid traversals of interference dependences and to determine restrictive state tuples. Krinke
suggests a context-driven traversal of the TCFG, similar to the IPDG slicer. We propose a more
efficient algorithm.

Due to our proposed update mechanism for state tuples, the computation of valid traversals of
interference dependences and of restrictive state tuples can be confined to a reachability analysis
in ICFGs. In fact, it is not even necessary to leave and enter procedures at all. Consider the
following example program:

void main () :

foo () ;

s k i p ;

b a r () ;

void foo () :

i n t i = 0 ;

void b a r () :

i n t j = 1 ;

Let start be the context of int i = 0 and target be the context of int j = 1. The call
string of start consists of the call f oo(), the call string of target consists of the call bar(). It
is easy to see that start reaches target. The approach based on the IPDG slicer performs the
following steps to reach target: First, it traverses from start to the intra-procedural successor of
call foo(), statement skip. Then, it traverses from skip to bar(). And finally, it traverses
from bar() to target. These three steps are performed by every successful reachability analysis:
In the first step, the ICFG is traversed from start back to that procedure where the call strings of
start and target start to diverge, which we call the last shared procedure. In the second step, the
analysis traverses intra-procedurally from the return node of the call that leads to start to the call
that leads to target. And in the third step, it traverses from the latter call to target. But the first
and third step are redundant: The first step always succeeds, since a call string can always be
decomposed and since there always exists a last shared procedure (all procedures are reachable
from the main procedure). The third step always succeeds, too: The call string of target shows
that there is a valid path from its call in the last shared procedure to target. So only the second
step requires actual checking. This leads to the following reachability algorithm:

1.Determine the longest call string pre that prefixes both the call strings of source and
target. The topmost element of pre is the call of the last shared procedure.

2.Determine the calls in the call strings of source and target that directly follow the prefix.
These are the calls in the last shared procedure that lead to source and target. We call
them source_call and target_call, respectively.

88

3.9. Krinke’s Timing-Sensitive Slicer

Algorithm 3.6 Algorithm reach: Determining reachability between contexts in ICFGs.
Input: An ICFG G, two contexts source and target in G.
Output: ‘true’ if source reaches target in G, ‘false’ otherwise.

Let pre be the longest common prefix of source and target

if source == target or source == X or target == ⊥ // special cases being always ‘true’
return true

else if source == ⊥ or target == X // special cases being always ‘false’
return false

else if pre contains a synthetic call site
return true

else
// determine the call sites of source and target in the last shared procedure
source_call = source.call_string[pre.length]
target_call = target.call_string[pre.length]
Let source_succ be the return node of source_call

if source_succ reaches target_call intra-procedurally in G
return true

return false

3.Perform an intra-procedural reachability analysis from the return node of source_call to
target_call in the last shared procedure. If it is successful, then source reaches target,
otherwise not.

Several modifications are required to deal with recursive calls. We exploit that recursive calls
are represented by synthetic call site in the call strings. There are the following cases:

• The prefix pre contains a synthetic call site.
In this case the reachability check succeeds: start and target belong to procedures called
(transitively) from the same recursive cycle, which means that start and target reach each
other.

• One of source_call or target_call is a synthetic call site.
This case does not influence our algorithm, since start and target are not called from
within the same recursive cycle. Context source reaches target if source_call reaches
target_call in the last shared procedure.

• None of the previous cases applies.
The algorithm is not influenced.

Hence, step 1 of our algorithm is modified as follows:

89

3. Slicing Concurrent Programs

1.Determine the longest call string pre that prefixes both the call strings of source and
target. The topmost element of pre is the call of the last shared procedure. If pre contains
a synthetic call site, then source reaches target. Otherwise, proceed with step 2.

Figure 3.6 presents pseudocode for that algorithm.

3.9.2. Integration of MHP Information and Multi-Threads

We integrated our technique introduced in section 3.7 into Krinke’s slicer so that it can process
the information of our MHP analysis. Multi-threads are treated as described in section 3.6.5. A
consequence of these extensions is that the thread-local slicer now has to propagate and update
state tuples. Algorithm 3.7 is an appropriately enhanced version of Krinke’s thread-local slicer.
The algorithm also realizes the restrictive state tuple optimization. For that purpose, it receives
a set M from the surrounding slicing algorithm that contains the already visited configurations.

3.9.3. Our Optimized Version of Krinke’s Slicer

Algorithm 3.8 presents pseudocode for our optimized version of Krinke’s slicer. A very impor-
tant optimization, which is for space reasons not shown in the pseudocode, is that one iteration
of the main loop should not process only the next configuration in W but all configurations in
W belonging to the same thread at once. The slicing and chopping algorithms can be trivially
extended to process a set of slicing or chopping criteria. This optimization strongly reduces the
number of invocations of the context-restricted slicer and of the chopping algorithm.

Forking and joining of threads has been integrated as follows: Every context reachable via a
join-out edge is identified as valid. At the traversal of a fork or fork-in edge the fork site context
of the current thread is used to take only that context of the adjacent (fork or actual-in) node
whose call string equals the call string of the fork site context.

90

3.9. Krinke’s Timing-Sensitive Slicer

Algorithm 3.7 Procedure seq: An IPDG slicer that propagates state tuples.
Input: A CSDG G, a configuration (s,σs,Γs), a set M storing the visited configurations.
Output: The thread-local slice S for (s,σs) and the set I of configurations at which the thread can be left

via concurrency edges.

W = {(s,σs,Γs)} // initialize the worklist
S = {}, I = {}
repeat

remove first configuration (n,σ ,Γ) from W
S = S∪{n}
for all m →e n // handle all incoming edges of n

if e ∈ {conc}
I = I ∪{(n,σ ,Γ)} // when encountering a concurrency edge, store (n,σ ,Γ) in I

else if e ∈ {pi,call} // ascend to a calling procedure
Let cm be the corresponding call site
if σ = σ ′.cm // this test guarantees context-sensitivity

Γ′ = update(m,σ ′,Γ) // update state tuple (Alg. 3.4)
if @(m,σ ′,Γ′′) ∈ M : Γ′ is restrictive to Γ′′ // detect redundant configurations

W =W ∪{(m,σ ′,Γ′)}
M = M∪{(m,σ ′,Γ′)}

if cm is recursive // at recursive calls we also have to conserve call string σ

Γ′′ = update(m,σ ,Γ)
if @(m,σ ,Γ′′′) ∈ M : Γ′′ is restrictive to Γ′′′

W =W ∪{(m,σ ,Γ′′)}
M = M∪{(m,σ ,Γ′′)}

else if e ∈ {po} // descend into a called procedure
Let cn be the corresponding call site
if cn is recursive and σ = σ ′.cn // preserve the call string in recursive cycles

Γ′ = update(m,σ ,Γ)
if @(m,σ ,Γ′′) ∈ M : Γ′ is restrictive to Γ′′

W =W ∪{(m,σ ,Γ′)}
M = M∪{(m,σ ,Γ′)}

else
σ ′′ = σ .cn // append cn to σ

Γ′ = update(m,σ ′′,Γ)
if @(m,σ ′′,Γ′′) ∈ M : Γ′ is restrictive to Γ′′

W =W ∪{(m,σ ′′,Γ′)}
M = M∪{(m,σ ′′,Γ′)}

else // intra-procedural edge – preserve call string σ

Γ′ = update(m,σ ,Γ)
if @(m,σ ,Γ′′) ∈ M : Γ′ is restrictive to Γ′′

W =W ∪{(m,σ ,Γ′)}
M = M∪{(m,σ ,Γ′)}

until W = /0
return (S, I)

91

3. Slicing Concurrent Programs

Algorithm 3.8 Our optimized version of Krinke’s timing-sensitive slicer.
Input: A CSDG G, a slicing criterion node s.
Output: The slice S for s.

Let C(n) be the set of all possible contexts of node n
Let θ(c) denote the thread of context c
Let Γ(θ) be the context stored the state of thread θ in state tuple Γ

Let [c/θ]Γ return a copy of Γ in which thread θ is mapped to context c

/* Initialization. */
Γ0 = (⊥, . . . ,⊥) // initially, every thread is in the nonrestrictive state
W = {(s,σ ,Γ′) | (s,σ) ∈C(s)∧Γ′ = update(s,σ ,Γ0)} // update via Alg. 3.4
M = {}∪W // stores the visited configurations

repeat
remove first configuration (n,σn,Γn) from W
Compute the thread-local slice S for (n,σn) with the context-restricted slicer (Alg. 2.3)
S = S∪S

/* Determine at which contexts the thread of n can be left */
Inodes = {m ∈ S | ∃m′ ∈ N : ∃m′ →conc m ∈ E}
Compute a chop Chop(Inodes,n)
Compute (S′, I) = seq(G,cn,M), but only along the nodes in Chop(Inodes,n)

/* Determine the valid concurrency edges */
for all (i,σi,Γi) ∈ I

Let m′ be the node of context i
for all incoming concurrency edges m →e m′

C′
m = /0

if e = id // interference edge
/* Proceed with those contexts of m that lie in another thread

(unless we are in a multi-thread) and reach the state of their thread
in Γi. Use the reachability analysis in Alg. 3.6. */

C′
m = {cm ∈C(m) | (θ(cm) 6= θ(cn)∨θ(cn) is a multi-thread)∧ cm reaches Γi(θ(cm))}

else if e = jo // join-out edge
C′

m =C(m)
else // fork or fork-in edge; make sure to traverse to the right fork site

Let (f ,σ f) be the fork site context of θ(cn).
C′

m = {(m,σm) ∈C(m) | σm = σ f }

/* Update worklist W. */
for all (m,σm) ∈C′

m
Γm = update(m,σm,Γi) // update via Alg. 3.4
/* Check whether Γm is a restrictive state tuple. */
if @(m,σm,Γ

′
m) ∈ M : Γm is restrictive to Γ′

m
W =W ∪{(m,σm,Γm)}
M = M∪{(m,σm,Γm)}

until W = /0
return S

92

3.10. Nanda’s Timing-Sensitive Slicer

3.10. Nanda’s Timing-Sensitive Slicer

This section describes Nanda’s timing-sensitive slicer, who picked up Krinke’s algorithm and
extended it into several directions. She reported the first known implementation of a timing-
sensitive slicer and thus was able to develop several crucial optimizations. Most importantly, she
introduced the restrictive state tuple optimization (cf. section 3.6.4) and developed a compact
representation of call strings by single integers. Furthermore, she was the first to investigate the
relationship between timing-sensitive slicing and MHP information and integrated the results of
her thread regions analysis into her slicer. Her interprocedural threaded control flow graph and
her threaded system dependence graph are similar to our TCFG and CSDG. Fork sites and join
sites are modeled the same, where we adopted her modeling of join sites. The major difference
is that her ICFGs and SDGs are really disjoint, whereas in our graphs shared CFGs and PDGs
are not duplicated. Furthermore, it is not entirely clear whether her graphs contain one ICFG
or SDG per thread class or per thread. It seems that the latter is the case, although no thread
invocation analysis which could be used to identify the existing threads is mentioned.

An important result of our investigation is that Nanda’s original algorithm may compute in-
correct slices, because it uses the restrictive state tuple optimization too greedily. We describe
that problem and present a remedy. Furthermore, we developed several new optimizations,
which are also presented. A preliminary version of the following descriptions has been pub-
lished in [43].

3.10.1. Context Representation and Reachability Analysis

Since timing-sensitive slicing uses contexts to memorize the execution states of threads, an
efficient technique for working with contexts is mandatory. Nanda argues that call strings are
impractical, because they grow with the size of the target program and thus lead to poor runtime
performance and high memory consumption. Her slicer represents contexts by single integers
instead. For that purpose, a preprocessing step collects and enumerates all possible contexts.
This preprocessing step in turn employs call strings, but has to be executed only once. The
result can be stored in form of a context graph, where each node represents one context.

The preprocessing step folds cycles in interprocedural control flow graphs and creates an
interprocedural strongly connected regions (ISCR) graph, in which context-sensitive paths are
free of cycles. This permits a topological enumeration of the remaining contexts in reverse
postorder. Nanda realizes the preprocessing step with a rather intricate algorithm, wherefore we
present a less complicated alternative. It consists roughly of four steps:

1.Create one ICFG for every thread distinguished by the thread invocation analysis.

2.Fold cycles in ICFGs context-sensitively.

93

3. Slicing Concurrent Programs

Figure 3.16.: Folding strongly connected components removes information about calling contexts.

3.Inline procedures.

4.Enumerate contexts in reverse postorder.

Create one ICFG for every thread distinguished by the thread invocation analysis The
technique requires to have one ICFG per thread or multi-thread distinguished by the thread
invocation analysis. To this end, the ICFGs of the thread classes have to be duplicated as often
as is necessary.

Fold cycles in ICFGs context-sensitively The challenge in folding cycles in ICFGs is to do
so in a context-sensitive manner so that no precision is lost. Simply folding strongly connected
components is not sufficient, for which Fig. 3.16 presents an example. In the depicted ICFG
node 6 reaches node 3, but only via context-insensitive paths. A context-sensitive analysis is
able to detect and reject these paths. This is not possible anymore in the resulting folded graph.
Instead of folding strongly connected components, only context-sensitive cycles are folded. A
suitable two-phase algorithm has been presented by Krinke [75]:

94

3.10. Nanda’s Timing-Sensitive Slicer

Figure 3.17.: ISCR graph with folded context-sensitive cycles (mid) and with inlined procedures (right).

• Phase 1 removes all return edges and folds the remaining strongly connected components.
After that, the return edges are put back.

• Working on the graph resulting from phase 1, phase 2 removes all call edges and folds
the remaining strongly connected components. Afterwards, the call edges are put back.

The graph in the middle of Fig. 3.17 shows the result of this proceeding for our example. The
loop is folded only intra-procedurally, the recursive call- and return-cycles are folded separately.

Inline procedures The next step inlines procedures called from within a loop or recursive
procedure. For that purpose, all nodes of procedures called by a fold node are added to the fold
node, and the call and return edges between the fold node and these procedures are deleted. The
control flow edges between call nodes and their direct intra-procedural successors are replaced
by no flow edges, which are needed later for the reachability analysis. The result for our example
is shown on the right side of Fig. 3.17. Note that this step duplicates nodes; in our example,
nodes 10, 11, 12 and 13 exist twice after the inlining.

Enumerate contexts in reverse postorder In order to enumerate the contexts, a context

graph is generated from the ISCR graph. In a context graph, each node represents a single
context, hence paths in that graph are always context-sensitive. The existing contexts are col-
lected by a call-string driven traversal of the ISCR graph, edges are added accordingly. Since

95

3. Slicing Concurrent Programs

Figure 3.18.: An ICFG and its context graph.

context-sensitive paths in the ISCR graph are free of cycles, no treatment of recursion is needed.
Finally, the contexts in the context graph are enumerated in reverse postorder. The finished con-
text graph for our example is shown in Fig. 3.18, where the enumeration is represented by roman
numbers.

Reachability analysis

Nanda’s reachability analysis between two contexts consists of a backward traversal of the
context graph. The reverse postorder enumeration of the nodes in the context graph guarantees
that a node n has a smaller number than a node m if it reaches m. Nanda exploits that property
to quickly check whether procedure calls can be jumped over during the reachability analysis.
Assume that we want to know whether node VI can be reached by node I in the context graph
in Fig. 3.18. By the time the traversal arrives at node V, it decides whether to traverse the
incoming return edge by looking at the associated call node II. As II ≮ I, node I cannot lie in
that procedure, and the traversal jumps directly to node II.

Context graphs and concurrency

Until now, the creation of context graphs did not mention any treatment of concurrency-related
edges as fork and join edges may cause cycles whose treatment is not clear. As a consequence
of this, the ICFG of each thread is processed by the above technique separately, resulting in a

96

3.10. Nanda’s Timing-Sensitive Slicer

set of disjoint context graphs. However, Nanda’s update mechanism for state tuples may assign
a thread region a context stemming from another thread, which may lead to invocations of the
reachability analysis for contexts from different threads. For that purpose, she precomputes
for each thread region R the set of thread regions reachable in the TCFG by the start node of R.
These precomputed results are used whenever a reachability analysis for contexts from different
threads is needed. Since these results are computed on the level of nodes, the reachability
analysis loses precision at this point.

We are able to solve that problem by using our thread invocation analysis. After the construc-
tion of the context graphs of the threads, we use the information of that analysis to connect via
fork edges the nodes representing fork site contexts with the start nodes of the corresponding
context graphs. Since the topological enumeration of the contexts of a context graph has been
done independently from the other context graphs, the traversal of fork edges requires special
treatment. Our reachability analysis is presented in section 3.10.4.

Practicability of context graphs

In general, the employment of context graphs should be considered carefully, because their size,
compared with the size of the original TCFGs, does not scale well. However, we found that for
programs within reach of timing-sensitive slicers context graphs are actually manageable, as
long as effective cycle folding techniques are applied. An evaluation is presented in section
3.12.4.

3.10.2. Nanda’s Original Slicing Algorithm

Nanda’s original slicing algorithm iterates a modified two-phase slicer which queries the context
graphs to retrieve the context of a node. It basically works as follows: After traversing an edge
m → n towards m in the CSDG, where cn is the current context of n, all contexts Cm of m are
retrieved from the context graph. Then, a reachability analysis on the context graph discards
every context cm ∈Cm that cannot reach cn. The slicer proceeds with the remaining contexts.

MHP information In order to yield more precise slices than Krinke’s algorithm, Nanda lets
her slicer exploit the MHP information from her thread region analysis (cf. section 3.3). To this
end, state tuples contain one entry per thread region, as described in section 3.7. Because her
MHP analysis lacks a thread invocation analysis and thus provides no information about multi-
threads, her slicing algorithm uses the following conservative approximation to handle threads
created within loops: Let l be a loop that forks a thread θ . During the computation of the ISCR
graphs, all nodes of l and the nodes of t are folded into one single fold node. Since now every
node of thread θ has the same context, every interference edge traversal towards an instance of
θ is identified as valid. She does not address thread creation inside recursive procedures.

97

3. Slicing Concurrent Programs

Algorithm 3.9 Nanda’s original timing-sensitive slicer.
Input: A CSDG G, a slicing criterion node s.
Output: The slice S for s.

Let C(n) be a sorted set of all contexts of node n
Let θ(c) denote the thread of context c
Let r(c) denote the thread region of context c

W = /0,W1 = /0,W2 = /0 // three worklists
M = /0 // stores visited configurations
Γ0 = [⊥, . . . ,⊥] // an initial state tuple, having one entry per thread region
for all cs ∈C(s)
insert(Γ0,cs,W,M)

repeat // iterate a modified 2-phase-slicer until W is empty
remove first configuration (n,cn,Γn) from W
W1 =W1∪{(n,cn,Γn)} // initialize the next iteration

while W1 6= /0 // phase 1, only ascend to calling procedures
remove first configuration (n,cn,Γn) from W1
S = S∪{n} // add node n to the slice
for all m → n

if m → n is a concurrency edge // edge leaves the thread
for all cm ∈C(m) : θ(cm) 6= θ(cn) // make sure we really switch threads

if reaches(cm,Γ[r(cm)]) // remain on timing-sensitive paths
insert(Γn,cm,W,M)

else if m → n is a parameter-out edge // postpone to phase 2
for all cm ∈C(m) : θ(cm) == θ(cn) // remain in this thread

if reaches(cm,cn) // proceed only with the reaching contexts
insert(Γn,cm,W2,M)

else // intra-procedural edges, call- and parameter-in edges
for all cm ∈C(m) : θ(cm) == θ(cn) // remain in this thread

if reaches(cm,cn) // proceed only with the reaching contexts
insert(Γn,cm,W1,M)

while W2 6= /0 // phase 2, only descend to called procedures
remove first configuration (n,cn,Γn) from W2
S = S∪{n} // add node n to the slice
for all m → n

if m → n is a concurrency edge // edge leaves the thread
for all cm ∈C(m) : θ(cm) 6= θ(cn) // make sure we really switch threads

if reaches(cm,Γ[r(cm)]) // remain on timing-sensitive paths
insert(Γn,cm,W,M)

else if m → n is not a parameter-in or call edge
for all cm ∈C(m) : θ(cm) == θ(cn) // remain in this thread

if reaches(cm,cn) // proceed only with the reaching contexts
insert(Γn,cm,W2,M)

until W = /0
return S

98

3.10. Nanda’s Timing-Sensitive Slicer

Algorithm 3.10 insert: Manages the updating of the worklists.
Input: A state tuple Γold , a context cm, a worklist W , a set M.

/* Create an updated state tuple. */
Γm = Γold // create a copy of Γold
for all thread regions r that do not execute in parallel to c’s thread region

Γm = [c/r]Γm // set r’s state to c

/* Run the restrictive state tuple optimization. */
for all (m,cm,Γ

′
m) ∈ M :

if Γm is restrictive to Γ′
m

return // the new configuration is redundant

W =W ∪{(m,cm,Γm)} // insert the configuration into the worklist
M = M∪{(m,cm,Γm)} // mark it as visited

The slicer Algorithm 3.9 shows the original slicing algorithm. It consists of a main loop that
iterates a two-phase slicer working with configurations. The two-phase slicer iterates over the
worklists W1 and W2, the main loop over worklist W . A set M is used to mark already visited
configurations. Worklist W is initialized with all configurations of slicing criterion s, by calling
procedure insert (Alg. 3.10) with every context cs of s and an initial state tuple with all entries
set to the nonrestrictive state ⊥. Procedure insert works as follows: It copies the given state
tuple and sets the states of all thread regions which cannot happen in parallel to the thread region
of the given context c to c. After that, it applies the restrictive state tuple optimization to filter
redundant configurations.

When the embedded two-phase slicer traverses an edge m → n, coming from a context cn,
it determines all valid contexts of the reached node m. If the traversed edge is a concurrency
edge, these are all contexts of m whose visiting would not cause a timing-insensitive path. To
this end, a context cm of m has to reach the context stored as the state of cm’s thread region in
the current state tuple. For all other kinds of edges, all contexts of m which reach context cn

are valid. Via procedure insert (Alg. 3.10) the valid contexts are annotated with updated state
tuples and inserted into the suitable worklist.

A very effective optimization Nanda developed is to sort the contexts in C(n), the set of con-
texts of a node n, in descending order of their topological numbers. This enables the restrictive
state tuple optimization to detect more redundant configurations of node n.

3.10.3. Correctness

As pointed out in previous work [44, 46], Nanda’s original algorithm may compute incorrect
slices, which we demonstrate at an example. The basic algorithm is correct, but it applies the
restrictive state tuple optimization after each edge traversal, which might prune valid interfer-
ence edges when applied in phase 2. The restrictive state tuple optimization is based on the

99

3. Slicing Concurrent Programs

control dependence

summary edge

call or parameter edge

interference edge

entry main

foo() bar()

f = xin

1

2

3 4

5

b = xin

 entry
 foo

x = f in call m()

m = xin

entry bar

x = b in call m()

m = xin
x = mout x = mout

entry m

x = x + a

x = m in m = xout

 entry
thread_1

x = z +1

z = x

x = fout x = bout

f = xout b = xout

a = a+x

a = a in

a = aout

a = ain a = aout

a = 1

a = 0in b = aout

6

7 8

9

10 11 12 13

14 15

16 17

18

19 20 21

22 23

24 25

26
27

28 29

30

31

32
33

35

b = b + x

36

x = 1

37

x = 1

34

data dependence

Figure 3.19.: Incorrect slice computed by Nanda’s algorithm.

observation that a slice for a configuration (n,cn,Γ) cannot contain more nodes than a slice for
a configuration (n,cn,Γ

′) if Γ is restrictive to Γ′. However, this does only hold in phase 1 of the
presented slicer. If the slice for configuration (n,cn,Γ

′) is confined to phase 2 and the slice for
configuration (n,cn,Γ) is not, then the latter slice may contain more nodes, since phase 2 does
not ascend to calling procedures.

Figure 3.19 shows a CSDG for which the slicer computes incorrect slices. It consists of two
threads, the main thread and thread_1. To keep matters simple, we assume that the threads
may happen in parallel. Procedure m is called by procedures foo and bar. Thus, each node
of procedure m has two different contexts, where the context resulting from procedure foo

reaches the context resulting from procedure bar. All other nodes have one context. We denote
every context of a node with the node itself, nodes of m receive a subscript foo or bar (e.g.
30bar denotes node 30 in the calling context of procedure bar). The shaded nodes represent
the timing-sensitive slice for node 26, the darker shaded nodes represent the slice computed by
Nanda’s slicer. It performs the following steps:

Initialization Worklist W is initialized with configuration (26,26, [26,⊥]).

100

3.10. Nanda’s Timing-Sensitive Slicer

First iteration The first configuration in W , (26, [26,⊥]), is taken out and inserted into W1.
In phase 1, the algorithm visits nodes {26,25,24,23,34,33,22,20,19,18,7,6,5,1}, traverses
the interference edge 37 →id 26 towards node 37 and inserts configuration (37, [26,37]) into
worklist W . The configurations (33bar, [33bar,⊥]), (33 f oo, [33 f oo,⊥]), (34bar, [34bar,⊥]) and
(34 f oo, [34 f oo,⊥]) are visited and inserted into worklist W2. In phase 2, the algorithm visits the
nodes {34,33,32,31,30,29,28,27}, where for every node n the configurations (nbar, [nbar,⊥])

and (n f oo, [n f oo,⊥]) in W2 are inserted into worklist W2. It also traverses the interference edges
37 →id 31 and 37 →id 30 and inserts the configurations (37, [31bar,37]) and (37, [30bar,37])
into worklist W . The configurations (37, [31 f oo,37]) and (37, [30 f oo,37]) are discarded by the
restrictive state tuples optimization.

Second iteration The next configuration in W , (37, [26,37]), is taken out and inserted into
W1. In phase 1, the algorithm visits the nodes {37,36,35}. At node 36, with state tuple
[26,36], the thread can be left via interference edge 30 →id 36 towards node 30. Contexts 30 f oo

and 30bar are valid according to the reachability analysis, since both can reach the current state
of main, context 26. But the state tuples of the resulting configurations, (30 f oo, [30 f oo,36])
and (30bar, [30bar,36]), are restrictive to the state tuples of the earlier inserted configurations
(30 f oo, [30 f oo,⊥]) and (30bar, [30bar,⊥]). Thus these configurations are discarded. The same
happens at interference edge 32 →id 36 and during the following iterations for the remaining
configurations in woklist W , (37, [31bar,37]) and (37, [30bar,37]): Procedure m cannot be en-
tered again, wherefore the algorithm omits nodes that belong to the slice.

The remedy The application of the restrictive state tuples optimization has to distinguish
between phase 1 and phase 2: A state tuple of a configuration visited in phase 1 must only be
checked against the state tuples of other configurations visited in phase 1.

3.10.4. Improvement

Besides the problem concerning the restrictive state tuple optimization, we detected several
opportunities for optimizations.

Integrating MHP information

We replaced Nanda’s treatment of threads created inside loops with our treatment of multi-
threads. That way, her algorithm becomes capable of handling threads created inside recursive
cycles. We also replaced her update mechanism for state tuples with ours. Nanda’s reachability
analysis is adjusted accordingly and is shown in Alg. 3.11.

101

3. Slicing Concurrent Programs

Algorithm 3.11 reaches: Our extension of Nanda’s reachability analysis.
Input: Two contexts, s and t, the context graph G of the program.
Output: true if s reaches t, false otherwise.

if t ==⊥ or s ==>
// every state reaches the nonrestrictive state, the exclusive state reaches every state
return true

else if s ==⊥ or t ==>
// the nonrestrictive state can only reach itself, the exclusive state can only be reached by itself
return false

else // θ(s) == θ(t) is guaranteed
/* The following code is Nanda’s original reachability analysis (enriched with a treatment of fork
edges). */
W = {t} // a worklist
M = {t} // marks the visited contexts

repeat // traverse G backwards, starting from t
remove first context c from W
if c = s // s reaches t

return true
if c < s // c cannot be reached by s ⇒ skip c
continue

for all d → c // traverse backwards all incoming edges
if d → c is a fork edge // ignore fork edges – s and t belong to the same thread
continue

else if d → c is a return edge // check if we can bypass the procedure
Let d′ be the context connected with c through a no flow edge (d′ is the procedure call)
if d′ < s // s cannot be in the procedure called by d′ ⇒ jump directly to d′

if d′ /∈ M
W =W ∪{d′}
M = M∪{d′}

else if d /∈ M // enter procedure
W =W ∪{d}
M = M∪{d}

else if d → c is a call or control flow edge and d /∈ M
W =W ∪{d}
M = M∪{d}

until W = /0

return false // s does not reach t

102

3.10. Nanda’s Timing-Sensitive Slicer

Algorithm 3.12 Our repaired and optimized version of Nanda’s slicer.
Input: A CSDG G, a slicing criterion node s.
Output: The slice S for s.

Let C(n) be a sorted set of all contexts of node n
Let θ(c) denote the thread of context c
Let proc(c) denote the procedure ID of context c

W = /0,Winner = /0 // two worklists
M = /0 // a set storing the visited contexts
Γ0 = [⊥, . . . ,⊥] // an initial state tuple, having one entry per thread
for all cs ∈C(s)
insert(Γ0,cs,W,M)

repeat // iterate a thread-local slicer until W is empty
remove first configuration (n,cn,Γn) from W
Winner =Winner ∪{(n,cn,Γn)} // initialize the next iteration

while Winner 6= /0
remove first configuration (n,cn,Γn) from Winner

S = S∪{n} // add node n to the slice

for all m → n
if m → n is an interference edge

for all cm ∈C(m) : θ(cm) 6= θ(cn)∨θ(cn) is a multi-thread // switch threads
if reaches(cm,Γ[θ(cm)]) // remain on timing-sensitive paths
insert(Γn,cm,W,M)

else if m → n is a fork or fork-in edge
Let cm be the context of m connected with cn through an outgoing fork edge
if cm 6= ε // if cm does not exist, the traversal is context-insensitive
insert(Γn,cm,W,M)

else if m → n is a join-out edge
for all cm ∈C(m)
insert(Γn,cm,W,M)

else if m → n is a parameter-in or call edge
Let cm be the context of m directly predecessing cn or equal to cn in cn’s context graph
if cm 6= ε // if cm does not exist, the traversal is context-insensitive
insert(Γn,cm,Winner,M)

else if m → n is a parameter-out or call edge
Let cm be the context of m directly predecessing cn or equal to cn in cn’s context graph
insert(Γn,cm,Winner,M)

else // m → n is an intra-procedural edge
for all cm ∈C(m) : proc(cm) == proc(cn)∧ reaches(cm,cn) // remain in the procedure
insert(Γn,cm,Winner,M)

until W == /0

return S

103

3. Slicing Concurrent Programs

The reachability analysis as a bottleneck

After each traversal of a dependence edge m → n towards m, where cn is the current context of
n, Nanda’s slicer has to identify the valid contexts of m. These are determined via a reachability
analysis, which can be a bottleneck in programs where statements have many different contexts.
In order to speed up the traversal of thread-local dependence edges we annotate contexts with
procedure IDs, which are assigned during the construction of the context graphs. These proce-
dure IDs are used as follows: If the slicer traverses an intra-procedural dependence edge, it has
to process only those contexts C′

m of m with the same procedure ID as cn. The slicer proceeds
with all contexts cm ∈ C′

m that reach cn. There may in fact be several contexts of m with the
same procedure ID as cn, which happens if a procedure in the context graph contains several
fold nodes and all of them contain the procedures of m and n. In such a case the reachability
analysis is used to remove the contexts of m that cannot execute before context cn.

If the slicer traverses an interprocedural edge m → n coming from context cn, it exploits that
parameter-passing nodes are mapped to the associated call, entry, exit or return nodes. The
context of node m we are looking for is either the direct predecessor of cn in the context graph
or it equals cn, which is the case if both contexts are folded in the same fold node.

The fork edges used by us to connect the context graphs are used by our timing-sensitive
slicer to traverse fork and fork-in edges precisely. Let e = m → n be a fork or fork-in edge
encountered by the slicer, where cn is the current context of node n. The slicer investigates the
context c connected with cn via an outgoing fork edge. If c is a context of m, the slicer proceeds
with that context. Otherwise, the traversal is rejected.

Our resulting algorithm

Algorithm 3.12 illustrates, in combination with Algs. 3.4, 3.11 and 3.13, our repaired and opti-
mized variant of Nanda’s slicer. It no longer needs two-phase slicing for the thread-local slicer
because it retrieves the context reached by an interprocedural traversal directly from the con-
text graphs and remains context-sensitive that way. Strictly speaking, the outer loop could be
omitted, too; however, its usage partitions the slice into a sequence of thread-local slices, which
greatly alleviates debugging, so we recommend to implement it that way.

Since this algorithm turns out to be the most performant in terms of precision and runtime
costs, its correctness is proven by the following theorem.

Theorem 3.3. Let G be a CSDG and S be a slice of G for node s computed by Alg. 3.12. The

following holds for every node n in G:

∃cn →∗
ts cs in G ⇒ n ∈ S.

104

3.10. Nanda’s Timing-Sensitive Slicer

Algorithm 3.13 insert: Manages the updating of the worklists.
Input: A state tuple Γold , a context cm, a worklist W , a set M.

/* Create an updated state tuple. */
Γm = update(cm,Γold) // call Alg. 3.4

/* Run the restrictive state tuple optimization. */
for all (m,cm,Γ

′
m) ∈ M :

if @ thread θ : ¬reaches(Γm[θ],Γ
′
m[θ])

return // the new element is redundant

/* Insert the configuration into the worklist and mark it as visited. */
W =W ∪{(m,cm,Γm)}
M = M∪{(m,cm,Γm)}

Proof. We have to show that the slicer visits context cn, which we do by a backward iteration
over path Φ = cn →∗

ts cs. Assume that the iteration arrives at a context edge cm → c, then we
have to show three properties to conclude that the slicer traverses that edge and visits context
cm. First, worklist Winner must at some point contain a configuration of c. Second, the slicer
must be able to detect the context edge. And third, it must be able to add a configuration of cm

to W or Winner.

Since the initialization of the algorithm is bound to add a configuration of cs to worklist W , we
have a starting point for our iteration. Now, take the next context edge cm → co in Φ. We know
that worklist Winner contains at some point at least one configuration (o,co,Γ) of co. Since the
number of possible configurations is finite and each configuration can be added to the worklists
at most once, the configuration is eventually processed by the thread-local slicer. Trivially, the
slicer finds the CSDG edge e = m → o associated with the context edge. It remains to show that
it is able to retrieve context cm, which is shown by a case distinction over the kind of edge e.

• e is an interference edge
Let θ(cm) be cm’s thread. First, lemma 3.2 shows that θ(cm) has not been deactivated by
our update mechanism during the hitherto traversal of the path. Thus, the state of cm’s
thread in Γ is either ⊥ or a context d on the subpath of Φ starting behind cm or a context
d′ reachable by d (the latter case accounts for the restrictive state tuple optimization). If
the state is ⊥, then the slicer is trivially able to find cm. Otherwise, the update mechanism
guarantees that d stems from θ(cm) and that θ(cm) is not a multi-thread. Since Φ is
timing-sensitive, cm reaches d (and d′, since ‘reaches’ is transitive). Therefore, the slicer
is able to find cm.

• e is a fork or fork-in edge
The slicer retrieves the context c that is connected with cn via an outgoing fork edge. If c

is a context of m, the slicer proceeds with that context. Thus, the slicer is able to find cm.

105

3. Slicing Concurrent Programs

• e is a join-out edge
The slicer proceeds with all contexts of m.

• e is an intra-procedural edge
Context cm must stem from the same procedure as co and must be able to reach co. Oth-
erwise, the dependence denoted by e would not exist. Thus, the slicer is able to find
cm.

• e is an interprocedural edge
Since the context of a parameter-passing node is mapped to the context of the associated
call-, return-, start- or exit node, context cm is either a direct predecessor of co in the
context graph or, if the contexts are folded in the same fold node, it equals co. Thus, the
slicer is able to find cm.

Having found cm, the slicer can proceed in two different ways: it embeds cm in some configu-
ration and either adds it to W or Winner or rejects it due to the restrictive state tuple optimization,
which means that a configuration of cm has been added to W or Winner sometime earlier. Either
way, at least one configuration of cm has been added to W or Winner.

Since path Φ is finite, the iteration eventually reaches the first edge in Φ and the slicer adds a
configuration of cn to W or Winner and thus, n to the slice S.

The algorithm is not completely timing-sensitive for general MHP information, due to the
problem with the prepending property described in section 3.7. Furthermore, join-out edges
and intra-procedural dependences are treated conservatively. Concerning intra-procedural de-
pendences, the slicer proceeds with all contexts of the source node of the traversed dependence
edge which reach the current context c. As stated before, there may in fact be several contexts
of the source node with the same procedure ID as c, which happens if a procedure in the con-
text graph contains several fold nodes and all of them contain the two nodes connected by the
dependence edge. Here the algorithm may consider contexts of the source node as valid that are
not connected with c via an outgoing context edge.

3.11. Trading Precision for Speed: The Timing-Aware Slicer

The presented timing-sensitive slicers show that the handling of contexts is difficult and ex-
pensive. Therefore, we present and investigate another algorithm, whose purpose is to trade
precision for speed and simplicity. It represents the execution states of threads only by nodes
and thereby circumvents the handling of contexts. Therefore, it has a much smaller asymptotic
runtime complexity of O(Nt). The algorithm assumes that all threads may happen in parallel
to each other and thus does not need a MHP analysis. In order to compute correct slices, it
only requires the results of a thread invocation analysis. A weaker form of the restrictive state

106

3.11. Trading Precision for Speed: The Timing-Aware Slicer

Algorithm 3.14 The timing-aware slicer.
Input: A CSDG G, a slicing criterion node s.
Output: The slice S for s.

Γs = (⊥, . . . ,⊥) // initial state tuple (one entry for each thread)
if θ(s) is not a multi-thread

Γs = [s/θ(s)]Γ0 // set the state of θ(s) to s

W = {(s,Γs)} // the main worklist
R = {(s,Γs)} // store the visited worklist elements
M = {s 7→ true} // maps visited nodes to true (phase 1) or false (phase 2)

repeat
remove first element (n,Γ) from W
for all m →e n

if e ∈ {fork,fi, jo}∨ e == id ∧ (θ(m) 6= θ(n)∨θ(n) is a multi-thread)∧m reaches Γ(θ(m))
/* Lazy updating of state tuples. */
Γ′ = [n/θ(n)]Γ // remember where n’s thread has been left
if θ(m) is not a multi-thread

Γm = [m/θ(m)]Γ′ // update state tuple

/* Use a weaker form of the restrictive state tuple optimization. */
if @(m,Γ′

m) ∈ R : Γm is restrictive to Γ′
m

// the state tuple is not restrictive
W =W ∪{(m,Γm)}
R = R∪{(m,Γm)}
M = M∪{m 7→ true}

else if m 6∈ dom M∨M(n)∧¬M(m)
// at thread-local edges we basically perform two-phase slicing
if M(n)∨m →e n is not a parameter-in or call edge

// since all threads are deemed to happen in parallel,
// state tuples have only to be updated after switching threads
W =W ∪{(m,Γ}
if M(n)∧m →e n is a parameter-out edge

M = M∪{m 7→ false}
else

M = M∪{m 7→ M(n)}
until W = /0

return dom M

tuple optimization based on reachability between nodes is used to identify and omit redundant
configurations. Algorithm 3.14 presents pseudocode of this timing-aware slicer, which is a
modification of the iterated two-phase slicer. We are not aware of any previous work describing
a similar algorithm.

107

3. Slicing Concurrent Programs

3.12. Evaluation

We have implemented the presented slicing algorithms in Java. The implementations work on
CSDGs computed by ValSoft/Joana. Our evaluation investigates the impact and practicability of
our MHP analysis (section 3.12.1), the precision and runtime behavior of the presented slicing
algorithms (sections 3.12.2, 3.12.3 and 3.12.5) and the practicability of context graphs (section
3.12.4). The evaluation was done on a 2.2Ghz Dual-Core AMD workstation with 32 GB of
memory running Ubuntu 8.04 (Linux version 2.6.24) and Java 1.6.0. Each slicer had a working
memory of 8 GB at his disposal.

Our benchmark consists of 33 programs, whose statistics are shown in Table 3.1. The pro-
grams in the upper part stem from the Bandera [1] benchmark and solve a certain task in a
concurrent manner. For example, LaplaceGrid solves the Laplace equation over a rectangular
grid. The programs in the middle part stem from the Java Grande multi-threaded benchmark [3],
from which we took only the most advanced versions of the programs (size ‘B’ or ‘C’). The
programs in the lower part are real JavaME [4] applications taken from the SourceForge repos-
itory2, which use threads for realizing graphical user interfaces. Table 3.1 reports the number
of nodes, edges and procedures in their CSDGs3. Column ‘LOC’ shows how many lines of
code of the source code and of library code the CSDGs comprise. The numbers for the library
code were retrieved by analyzing the source code information present in the Java bytecode.
Column ‘Thread Classes’ shows how many different thread classes a program contains (sub-
classes of java.lang.Thread, plus the main thread). The entries in column ‘Single Threads’
denote for each thread class the number of unique threads that may exist at runtime, the entries
in column ‘Multi-threads’ denote the number of identified multi-threads. The total number of
distinguished threads is given in the last column. For example, KnockKnock contains three
thread classes. The first one is the main thread, of which one single instance exists at runtime
(the first entry in the tuple in column ‘Single Threads’). The second thread class is instantiated
inside a loop, wherefore the second entry in the tuple in column ‘Multi-threads’ indicates the
existence of one multi-thread. There exists one single instance of the third thread class (the last
entry in the tuple in column ‘Single Threads’). In total, our analysis distinguishes three threads
in KnockKnock. Note that the existence of both single threads and multi-threads of the same
thread class is absolutely possible, albeit not happening in our benchmark programs.

Several of these programs have been used in our previous publications [46, 43], partly with
very different statistics. The CSDGs in [46] were computed by Joana’s old CSDG generator
based on the Harpoon framework [65]. Since that framework is no longer maintained, Jürgen
Graf rewrote our generator from scratch [49] on top of the WALA framework [5]. Besides from
being built on different frameworks, the generators differ in the way how parameter objects

2http://sourceforge.net/
3The number of edges are higher than the ones given in Table 2.1, because there concurrency edges were ignored.

108

3.12. Evaluation

Table 3.1.: Statistics of our benchmark programs.

Name LOC Nodes Edges Procs. Thread Single Multi- Total
src lib Classes Threads threads

Example 29 + 313 2509 36411 89 2 (1,1) (0,0) 2
ProdCons 83 + 335 3331 39614 100 2 (1,0) (0,2) 3
DiskScheduler 220 + 457 4389 43645 133 2 (1,0) (0,1) 2
AlarmClock 187 + 366 4781 44952 124 3 (1,2,1) (0,0,0) 4
DiningPhils 90 + 519 5115 125377 116 2 (1,0) (0,1) 2
LaplaceGrid 175 + 531 6175 50876 161 2 (1,0) (0,1) 2
SharedQueue 357 + 1138 11284 78797 199 2 (1,2) (0,0) 3
EnvDriver 2677 + 472 19106 181428 180 2 (1,1) (0,0) 2
KnockKnock 592 + 2471 35852 312678 506 3 (1,0,1) (0,1,0) 3
DaisyTest 1114 + 2340 43138 437937 527 2 (1,0) (0,1) 2
DayTime 371 + 4407 59708 632146 696 2 (1,1) (0,0) 2
ForkJoin 326 + 1265 16972 59921 194 2 (1,0) (0,1) 2
Sync 370 + 1261 17315 62033 194 2 (1,0) (0,2) 3
Barrier 421 + 1265 17579 62471 199 2 (1,0) (0,2) 3
Series 422 + 1277 17709 61014 211 2 (1,0) (0,1) 2
LUFact 749 + 1271 18888 65449 214 2 (1,0) (0,1) 2
SOR 431 + 1388 19151 66418 234 2 (1,0) (0,1) 2
SparseMatmult 432 + 1390 19502 67646 236 2 (1,0) (0,1) 2
Crypt 557 + 1386 19973 69547 236 2 (1,0) (0,2) 3
MolDyn 777 + 1278 22373 90331 222 2 (1,0) (0,1) 2
RayTracer 943 + 1316 23481 90346 268 2 (1,0) (0,1) 2
MonteCarlo 1422 + 2129 35009 150313 460 2 (1,0) (0,1) 2
Logger 279 + 1165 10333 52307 227 2 (1,1) (0,0) 2
Maza 921 + 1125 11235 67677 250 2 (1,1) (0,0) 2
Barcode 783 + 1242 12344 64674 271 2 (1,1) (0,0) 2
Guitar 761 + 1256 13257 68684 296 2 (1,1) (0,0) 2
J2MESafe 512 + 1621 17754 126409 309 2 (1,1) (0,0) 2
HyperM 366 + 1332 17768 97575 277 3 (1,1,4) (0,0,0) 6
Podcast 2012 + 1965 23576 159116 407 3 (1,1,1) (0,0,0) 3
GoldenSMS Key 1139 + 1736 21860 177911 362 2 (1,1) (0,0) 2
GoldenSMS Msg 900 + 1913 26333 215399 414 3 (1,2,1) (0,0,0) 4
GoldenSMS Rec 695 + 1796 22088 149039 370 2 (1,1) (0,0) 2
Cellsafe 3024 + 2137 41707 862654 534 2 (1,1) (0,0) 2

are treated (object trees vs object graphs), in the treatment of library code (the old one uses
stubs for all java.lang classes, see [52], chapt. 6) and in the available points-to analyses.
In [43], we used the old CSDG generator for the programs also present in [46] to keep the
results comparable. These were the programs Example, ProdCons, DiningPhils, LaplaceGrid,
AlarmClock and SharedQueue. The other CSDGs, particularly those for the JavaME programs,
were built by the new generator because the old one could not manage them. The CSDGs used

109

3. Slicing Concurrent Programs

in this evaluation are all computed by the new generator. As it has been developed further
since the time the evaluation in [43] was done, the current CSDGs of these programs also differ
slightly from those used there.

There are some limitations to the CSDGs of the JavaME programs. Their computation did
not include all used libraries because the graphs would have grown too big. This means that
some parts of the programs are missing in the TCFGs and CSDGs because some callbacks from
the library to the programs are missed.

3.12.1. The MHP Analysis

The first part of the evaluation investigates the costs and benefits of our MHP analysis.

Pruning spurious interference edges

Joana’s CSDG generator uses a wide-spread trick to safely approximate the interference depen-
dences in concurrent programs [52]: It assumes that a program has two threads of each thread
class at runtime, except for the main thread, which is unique. Furthermore, all threads of the
program are assumed to happen in parallel. These assumptions make sure that all possible in-
terference dependences between threads of different thread classes and between threads of the
same thread class are included. In a postprocessing step, we use our MHP analysis to iden-
tify and remove redundant interference edges. Table 3.2 shows the impact of that refinement
on our benchmark. On average, about 75% of all interference edges could be removed. Pro-
gram EnvDriver showed the most drastic impact – all of the previously 1661 interference edges
have been removed. An inspection of its code reveals that the sole purpose of EnvDriver’s main
thread is to invoke the other thread, in which all the work is happening, so in fact there are no in-
terference dependences between these two threads. Since the CSDG generator assumed that the
program contains two concurrently executing instances of the second thread class, it computed
1661 interference edges between the statements of that class. An interesting pattern appears in
the lower part of the Table: The JavaME programs Maza, Barcode, Guitar, J2MESafe, Gold-
enSMS Key, GoldenSMS Rec and Cellsafe have identical interference edges. They result from
JavaME initialization code present in all of these programs. Similar to EnvDriver, these pro-
grams do their work mainly in the second thread, whereas the main thread primarily serves for
initialization.

Table 3.2 furthermore shows that our MHP analysis is performant enough for our benchmark
programs. The execution times, which also include the thread invocation analysis, ranged be-
tween 0.1 and 2.3 seconds. The main reason for that performance is that the number of thread
regions and of the distinguished threads is small compared to the size of the programs.

There exist other evaluations of interference dependence computations that use the Java
Grande benchmark. Ranganath and Hatcliff [116, 117] explain how escape analysis can be

110

3.12. Evaluation

Table 3.2.: Costs and effects of our MHP analysis.

Number of interference edges Number of Runtime
Name before after thread regs. TCFG nodes (in sec.)
Example 8 4 (50%) 9 966 .2
ProdCons 1383 175 (13%) 205 1088 .2
DiskScheduler 1583 338 (21%) 277 1484 .1
AlarmClock 1805 309 (17%) 204 1375 .1
DiningPhils 3164 225 (7%) 252 2262 .1
LaplaceGrid 2009 496 (25%) 391 1881 .2
SharedQueue 3060 754 (25%) 407 3242 .2
EnvDriver 1661 0 (0%) 7 8694 .2
KnockKnock 10320 1262 (12%) 2010 9023 .6
DaisyTest 11873 2619 (22%) 1935 7985 1.2
DayTime 52777 3807 (7%) 1619 11857 .9
ForkJoin 3766 220 (6%) 708 9501 .6
Sync 3819 266 (7%) 732 9620 .6
Barrier 3240 264 (8%) 715 9683 .7
Series 42 34 (81%) 732 9886 .5
LUFact 1334 806 (60%) 732 10787 .6
SOR 1005 181 (18%) 834 10542 .6
SparseMatmult 395 25 (6%) 846 10760 .6
Crypt 839 169 (20%) 862 11054 .6
MolDyn 12649 6161 (49%) 788 12870 .9
RayTracer 6754 5382 (80%) 1023 11648 1.0
MonteCarlo 4954 523 (11%) 1627 15000 2.3
Logger 280 32 (11%) 681 3118 .5
Maza 279 5 (2%) 662 3303 .3
Barcode 279 5 (2%) 846 3728 .3
Guitar 279 5 (2%) 868 4298 .3
J2MESafe 279 5 (2%) 977 4611 .3
HyperM 9208 8139 (88%) 623 3942 .4
Podcast 3140 128 (4%) 1316 5809 .5
GoldenSMS Key 279 5 (2%) 1164 5081 .4
GoldenSMS Msg 6114 4661 (76%) 1318 5972 .7
GoldenSMS Rec 287 5 (2%) 1172 5457 .7
Cellsafe 279 5 (2%) 1812 10424 1.0
Total 149143 37015 (25%)

used to prune spurious interference dependences. They use a variation of Ruf’s thread alloca-
tion analysis [123] to determine which threads may exist at runtime and to detect multi-threads.
This information is combined with an escape analysis to determine which objects are shared
between which threads. Only these objects are considered by their computation of interference
dependences. However, their approach does not include a MHP analysis, hence all threads are
assumed to happen in parallel to each other. Hammer [52] compared their interference com-

111

3. Slicing Concurrent Programs

Table 3.3.: The number of interferences in the Java Grande benchmark computed by Ranganath and
Hatcliff [116], Hammer [52] and us. The Table has been taken from page 167 of Hammer’s
PhD thesis [52] and extended with our results.

Name Results Results Our Real
from [116] from [52] results numbers

ForkJoin 16 11 0 0
Sync 36 26 46 6
Barrier 29 17 26 7
Series 8 8 32 0
LUFact 24 276 750 139
SOR 23 115 179 85
SparseMatmult 14 11 23 1
Crypt 58 95/31 135 0
MolDyn 209 5288 5924 ?
RayTracer 166 221 1133 ?
MonteCarlo 11 126 157 ?

putation with that in the old Joana CSDG generator, which differed from theirs by using our
MHP analysis, by working on CSDGs with Hammer’s object trees as highly precise represen-
tations of parameter objects and by using a context-sensitive points-to analysis. He used the
same benchmark as Ranganath and Hatcliff for that purpose and concluded that both techniques
yield a similar gain of precision on average. Table 3.3 summarizes the Table on page 167 in
Hammer’s PhD thesis [52] and extends it with our results. It shows per program the number of
interferences computed by Ranganath and Hatcliff, by Joana’s old CSDG generator as reported
by Hammer and by the new generator. The rightmost column depicts the real number of inter-
ference dependences in the program as identified by Hammer. The numbers refer only to the
interference dependences in the source code of the programs and exclude those in library code,
wherefore our numbers differ from those in Table 3.2.

The comparison shows that the interference dependence computation in the new CSDG gen-
erator is less precise than that in the old one, the only exception being program ForkJoin. We
identified Joana’s points-to analysis as the causer of that imprecision. The points-to analysis
we used is an Andersen-style analysis following a 0-1-CFA policy, which means that it dis-
tinguishes the allocation sites of objects, but is context-insensitive and does not distinguish
different contexts of one allocation site. This may lead to the situation where local objects
in different threads are not distinguished by the points-to analysis and are later interpreted as
shared variables by the computation of interference dependence. This conclusion is supported
by Hammer’s evaluation, who noted that context-sensitivity has an important influence on the
precise identification of shared objects. A context-sensitive points-to analysis is currently not

112

3.12. Evaluation

Table 3.4.: Precision of the thread invocation analysis.

Real number of Our results
Name classes threads classes threads mult.
Example 2 (1,1) 2 (1,1) (0,0)
ProdCons 2 (1,6) 2 (1,0) (0,2)
DiskScheduler 2 (1,3) 2 (1,0) (0,1)
AlarmClock 3 (1,2,1) 3 (1,2,1) (0,0,0)
DiningPhils 2 (1,5) 2 (1,0) (0,1)
LaplaceGrid 2 (1,2) 2 (1,0) (0,1)
SharedQueue 2 (1,2) 2 (1,2) (0,0)
EnvDriver 2 (1,1) 2 (1,1) (0,0)
KnockKnock 3 (1,15,1) 3 (1,0,1) (0,1,0)
DaisyTest 2 (1,4) 2 (1,0) (0,1)
DayTime 2 (1,1) 2 (1,1) (0,0)
ForkJoin 2 (1,∞) 2 (1,0) (0,1)
Sync 2 (1,∞) 2 (1,0) (0,2)
Barrier 2 (1,∞) 2 (1,0) (0,2)
Series 2 (1,∞) 2 (1,0) (0,1)
LUFact 2 (1,∞) 2 (1,0) (0,1)
SOR 2 (1,∞) 2 (1,0) (0,1)
SparseMatmult 2 (1,∞) 2 (1,0) (0,1)
Crypt 2 (1,∞) 2 (1,0) (0,2)
MolDyn 2 (1,∞) 2 (1,0) (0,1)
RayTracer 2 (1,∞) 2 (1,0) (0,1)
MonteCarlo 2 (1,∞) 2 (1,0) (0,1)
Logger 2 (1,1) 2 (1,1) (0,0)
Maza 2 (1,1) 2 (1,1) (0,0)
Barcode 3 (1,1,1) 2 (1,1) (0,0)
Guitar 3 (1,1,1) 2 (1,1) (0,0)
J2MESafe 2 (1,1) 2 (1,1) (0,0)
HyperM 6 (1,1,4,1,1,1) 3 (1,1,4) (0,0,0)
Podcast 3 (1,1,1) 3 (1,1,1) (0,0,0)
GoldenSMS Key 3 (1,1,1) 2 (1,1) (0,0)
GoldenSMS Msg 3 (1,1,1) 2 (1,1) (0,0)
GoldenSMS Rec 2 (1,1) 3 (1,1,2) (0,0)
Cellsafe 3 (1,1,2) 2 (1,1) (0,0)

available in Joana. An alternative could be a thread-sensitive points-to analysis [99], which is
tailored to precisely identify shared variables.

The approach of Ranganath and Hatcliff seems to be superior for the bigger programs. How-
ever, Hammer stated that their technique does not account for interferences resulting from array
access, wherefore their results for programs LUFact and SOR are smaller than the real number
of interference dependences. It is not clear if this explains their much smaller results for the last
three programs, because these are too big for a manual examination.

113

3. Slicing Concurrent Programs

Thread invocation analysis

Table 3.4 compares the results of our thread invocation analysis with the manually determined
number of threads that may exist at runtime in the programs. Some interesting cases are de-
scribed closer.

Program ProdCons has no specific thread classes for the producer and consumer threads but
uses the Runnable interface to realize them and instantiates each one thread with the producer-
and consumer-Runnable. This happens inside a loop, which is executed three times. The anal-
ysis approximates the loop by recognizing both invocations as multi-threads. DiskScheduler’s
main thread creates threads of the other thread class in a loop that is executed three times, which
are approximated as a multi-thread by the analysis. DiningPhils starts five philosopher-threads
in a loop, which are subsumed by one multi-thread. LaplaceGrid starts a worker thread in a loop
that is executed twice, which is subsumed by one multi-thread. KnockKnock has three thread
classes: the class of the main thread, a TCP server and a class for service threads maintaining
the communication with a client. The main thread starts one TCP server that holds 5 – 15 ser-
vice threads. Since the service threads are started inside a loop, the analysis subsumes them by
a multi-thread. DaisyTest starts 4 threads in a loop, which are subsumed by a multi-thread.

Most programs from the Java Grande benchmark consist of a main thread and a second thread
class and start in a loop a user-defined number of threads of that class. Amongst them are
ForkJoin Barrier, Series, LUFact, SOR, SparseMatmult, MolDyn, RayTracer and MonteCarlo.
Our analysis identifies these threads as multi-threads. Sync uses the Runnable interface to
create two different kinds of threads in a loop. Our analysis reports two multi-threads, which
distinguish these two kinds of threads. Crypt starts a user-defined number of threads in one
loop to encrypt and later the same number of threads do decrypt. Again, our analysis reports
two multi-threads.

The results for the JavaME programs show the current limitations of our analysis. At some
point the TCFGs of these programs cut the called libraries off, so several threads resulting from
callbacks are missing. All investigated JavaME programs contain at least a main thread and an
event-handler thread. Several programs, Logger, Maza, Barcode, J2MESafe and GoldenSMS
Rec, consist only of these threads. Podcast contains a third thread, whose task is to update
clients. GoldenSMS Msg uses a third thread to create a text box for SMS messages. Barcode
uses a media player from the Java ME library that internally uses threads, but is missing in the
TCFG. Guitar contains a thread that is missing due to a missing callback from the event handler
thread. In GoldenSMS Key, a file chooser implemented as a thread is missing. Cellsafe uses a
thread to import and export stored data, which is missing. In HyperM, even three thread classes
are missing, each of which is instantiated once.

114

3.12. Evaluation

Table 3.5.: Runtime costs in seconds of the MHP analyses of Li and Verbrugge [87], of Barik [18] and
of us.

Results from [87] Results from [18] Our results
Name Threads PEG nodes Time Threads ICFG nodes Time TCFG nodes Time
ForkJoin 4 109 .61 – – – 9501 .6
Sync 5 255 9.28 – – – 9620 .6
Barrier 5 262 21.61 – – – 9683 .7
Series 3 109 .91 2 53+21 .01 9886 .5
LUFact 3 105 .80 2 57+57 .03 10787 .6
SOR 3 101 .72 2 48+69 .03 10542 .6
SparseMat. 3 85 .32 2 68+20 .01 10760 .6
Crypt 5 121 1.55 3 52+61+61 .08 11054 .6
MolDyn 3 144 3.22 2 280+758 13.12 12870 .9
RayTracer 3 211 7.10 2 387+221 2.03 11648 1.0
MonteCarlo 3 132 .84 2 520+316 3.19 15000 2.3

Comparison with Li and Verbrugge and with Barik

Li and Verbrugge [87] used the Java Grande benchmark to evaluate their MHP analysis. We
summarized their analysis in section 3.3.1. The left part of Table 3.5 presents some of their
results. Their technique requires a fixed number of threads, which explains the values in column
‘Threads’. Column ‘PEG nodes’ denotes the number of nodes in their parallel execution graphs,
on which the MHP analysis takes place. Column ‘Time’ shows the execution times of their
analysis in seconds. It consists of the time needed to create the PEGs and to compute the MHP
information. The execution times cannot be compared directly with ours because they used
different (slower) hardware, and they did not include the libraries called within the programs.
However, it seems that their analysis starts to get expensive if the PEG of a program exceeds
200 nodes. If the impact of synchronization on the MHP information can be neglected, our
MHP analysis is a promising alternative.

Barik [18] also used parts of the Java Grande benchmark to evaluate his MHP analysis. The
right part of Table 3.5 presents some of his results. It shows the number of threads distinguished
by his analysis, which are the same as identified by our analysis. Again, the execution times
cannot be compared directly with ours because he did not include the libraries called within
the programs. However, the execution times seem not to scale well. There is a significant
discrepancy between the times for the biggest three programs and for the other programs.

Nanda [106] does not provide an evaluation of her thread region analysis.

115

3. Slicing Concurrent Programs

Table 3.6.: Table of features.
Name MHP analysis Runtime Capable of Granularity of

complexity multi-threads state tuples
I2P all threads parallel O(|E|) yes none
S all threads parallel O(|N|t) yes threads
K all threads parallel O(|N|pt) no threads
GK thread regions O(|N|pt) yes threads
GN thread regions O(|N|pt) yes threads
GNR thread regions O(|N|pt) yes threads
GNP all threads parallel O(|N|pt) yes threads
GNT thread regions O(|N|pt) yes thread regions
N thread regions O(|N|pt) loops only thread regions

Further remarks
I2P Alg. 3.2; is timing-insensitive
S Alg. 3.14; uses context-insensitive state tuples
K Alg. 3.5
GK Alg. 3.8
GN Alg. 3.12
GNR Alg. 3.12, but uses reachability analysis after each edge traversal
GNP Alg. 3.12, but assumes all threads happen in parallel to each other
GNT Alg. 3.12, but with Nanda’s state tuple mechanism
N Alg. 3.9, but without the faulty restrictive state tuple optimization

3.12.2. Comparison of Timing-Sensitive Slicers

This part of the evaluation investigates which one of the presented timing-sensitive slicing al-
gorithms is the most practical. It compares the precision and runtime behavior of the following
algorithms: The iterated two-phase slicer (I2P), whose results serve as a measure of quality,
the timing-aware slicer of section 3.11 (S), Krinke’s original algorithm (K) and our optimized
version (GK), and several variants of Nanda’s algorithm. The first variant, GN, is Alg. 3.12
and contains all our suggested optimizations. We inspect three other variants, each of which
omits one of our major optimizations: Variant GNT uses Nanda’s update mechanism for state
tuples, variant GNP assumes that all threads happen in parallel to each other and variant GNR
uses reachability analysis after each edge traversal to determine the reached contexts. Finally,
we inspect a version of Nanda’s original algorithm, N, in which the faulty application of the
restrictive state tuple optimization has been repaired. Table 3.6 summarizes the algorithms.

We use a different benchmark for this comparison, because Krinke’s original algorithm needs
a statically bound number of threads and because several of the investigated algorithms do
not scale well enough. It is described in Table 3.7 and consists of variations of the programs
Example, ProdCons, DiskScheduler, LaplaceGrid and AlarmClock, in which the information
about the existing threads has been manipulated. Our CSDGs and TCFGs store the results

116

3.12. Evaluation

Table 3.7.: The programs of the benchmark.

Name Nodes Edges Procs. Thread Single Total
classes threads

Example-1 2509 36411 89 2 (1,1) 2
Example-2 2509 36411 89 2 (1,2) 3
Example-3 2509 36411 89 2 (1,3) 4
ProdCons-1 3331 39614 100 2 (1,2) 3
ProdCons-2 3331 39614 100 2 (1,4) 5
ProdCons-3 3331 39614 100 2 (1,6) 7
DiskScheduler-1 4389 43645 133 2 (1,1) 2
DiskScheduler-2 4389 43645 133 2 (1,2) 3
DiskScheduler-3 4389 43645 133 2 (1,3) 4
LaplaceGrid-1 6175 50876 161 2 (1,1) 2
LaplaceGrid-2 6175 50876 161 2 (1,2) 3
LaplaceGrid-3 6175 50876 161 2 (1,3) 4
AlarmClock-1 4781 44952 124 3 (1,2,1) 4
AlarmClock-2 4781 44952 124 3 (1,4,2) 7
AlarmClock-3 4781 44952 124 3 (1,6,3) 10

of the thread invocation analysis in form of annotations. The MHP analysis and the slicing
algorithms process these annotations and trust their accurateness. By manually changing these
annotations we transformed the multi-threads into single threads. In order to observe how the
algorithms cope with combinatorial explosion of state tuples, we artificially raised the number
of threads. In the programs with a ‘-1’ suffix, the multi-threads have been converted to single
threads. In the programs with a ‘-2’ suffix, the numbers of all threads, except for the main
thread, have been duplicated, and in the programs with a ‘-3’ suffix, the numbers of all threads,
except for the main thread, have been triplicated. Our implementation of CSDGs contains one
SDG per thread class and not one for each existing thread, so it was not necessary to modify the
original CSDGs. Thus, the three CSDGs of one program have the same number of nodes and
edges. Different behavior of a slicing algorithm for different versions of one program must be
caused by the different numbers of threads.

The results

For each program we randomly determined 100 slicing criteria, computed the slices with each
algorithm and measured the size of the slices and the computation times. Table 3.8 shows the
average size per slice in number of nodes, Table 3.9 shows the average computation time per
slice in seconds. Missing values mean that the corresponding slicer was not able to compute the
slices in reasonable time (denoted by ‘–’) or ran out of memory (denoted by ‘*’).

117

3. Slicing Concurrent Programs

Table 3.8.: Average size per slice in number of nodes.

Name I2P S K GK GN, GNR N, GNT GNP
Example-1 900.55 900.55 900.55 900.55 900.55 900.55 900.55
Example-2 900.55 900.55 900.55 900.55 900.55 900.55 900.55
Example-3 900.55 900.55 900.55 900.55 900.55 900.55 900.55
ProdCons-1 1532.74 1532.02 – 1358.60 1358.60 1452.74 1513.92
ProdCons-2 1532.74 1532.74 – 1358.60 1358.60 1453.46 1514.64
ProdCons-3 1532.74 1532.74 – – 1358.60 1453.46 1514.64
DiskScheduler-1 2059.74 1895.37 – 1628.02 1628.02 1676.82 1878.93
DiskScheduler-2 2059.74 2036.54 – 1628.02 1628.02 1817.67 2020.10
DiskScheduler-3 2059.74 2036.62 – – 1628.02 1817.75 2020.18
LaplaceGrid-1 3445.53 3420.37 – 2667.37 2667.37 3094.81 3259.80
LaplaceGrid-2 3445.53 3445.53 – – 2775.17 – 3369.70
LaplaceGrid-3 3445.53 3445.53 – – 2775.17 – 3369.85
AlarmClock-1 2807.46 2792.79 – – 2652.17 – 2754.92
AlarmClock-2 2807.46 2792.80 – – – * –
AlarmClock-3 2807.46 2792.80 – – – * –

Precision Table 3.8 shows that the investigated algorithms are able to compute distinctly
smaller slices than the iterated two-phase slicer, I2P. The slices computed by our most precise
slicer, GN, were on average about 13% smaller than the ones computed by I2P. In the best
case, for LaplaceGrid-1, the slices were even about 22% smaller. The results also show that the
way how MHP information is integrated has a significant impact on the precision. The slices
computed by algorithm GNP, which assumes that all threads happen in parallel to each other,
were on average only 2% smaller than the I2P slices. Algorithm GN was also more precise
than Nanda’s original algorithm, N, its slices being on average 5% smaller. The reason for that
difference is that her state tuple mechanism may require reachability analyses between contexts
from different threads and her reachability analysis is context-insensitive in these cases. Our
improved algorithm circumvents that imprecision, because our update mechanism for the state
tuples ensures that the reachability analysis is always thread-local and our may-exist analysis is
context-sensitive. Algorithms GK and GNR computed the same slices as GN, because they also
use our state tuples mechanism. Algorithms GNT and N computed the same slices, because
they both use Nanda’s mechanism. The slices computed by algorithm S were only marginally
smaller than those computed by I2P, except for program DiskScheduler-1, where they were
8% smaller. This indicates that the context of the execution states of threads is important for
detecting timing-insensitivity.

It is remarkable that an increasing number of threads decreases the benefit of timing-sensitive
slicing, whereas the computation times rise significantly: The more threads of a thread class
exist, the more interference edge traversals find a thread that is in a suitable execution state.

118

3.12. Evaluation

Table 3.9.: Average execution time per slice in seconds.

Name I2P S K GK GN GNR GNT N GNP
Ex-1 .007 .008 .452 .006 .006 .016 .007 .017 .007
Ex-2 .006 .008 .625 .008 .007 .019 .008 .021 .011
Ex-3 .007 .009 1.006 .010 .009 .021 .013 .017 .008
PC-1 .009 .203 – 41.093 .062 .734 8.852 10.497 .165
PC-2 .009 .646 – 655.975 .217 .872 49.235 53.622 .820
PC-3 .009 3.851 – – .745 1.480 211.617 213.983 3.289
DS-1 .010 .094 – 29.866 .119 39.511 47.825 174.426 .602
DS-2 .010 .335 – 252.562 .134 38.845 90.319 270.657 1.793
DS-3 .010 .670 – – .146 40.426 227.507 556.789 4.403
LG-1 .019 .369 – 384.564 2.992 81.259 896.453 1618.964 9.860
LG-2 .021 1.051 – – 13.380 194.790 – – 65.736
LG-3 .022 1.512 – – 21.647 288.537 – – 407.848
AC-1 .015 .562 – – 54.434 – – – 78.750
AC-2 .017 2.517 – – – – * * –
AC-3 .016 15.913 – – – – * * –

Runtime behavior The average execution times presented in Table 3.9 foremost show that
timing-sensitive slicing is expensive and cannot compete with the I2P slicer. They also show
that among all timing-sensitive slicers our version of Nanda’s algorithm, algorithm GN, is the
most performant.

The results of the different variants of Nanda’s algorithm in this comparison show the effec-
tiveness of our new optimizations. Foremost, it pays off to have one entry per thread in the state
tuples instead of having one entry per thread region. This can be seen by comparing algorithms
GN and GNT: Algorithm GN was on average 359 times faster than GNT; in the best case, for
DiskScheduler-3, it was even 1563 times faster. This is so because the state tuples in GNT are
much bigger. For example, GNT’s state tuples for DiskSchelduler-3 have 279 entries, whereas
GN’s state tuples have only 4 entries. Another consequence is that GNT consumes much more
memory than GN. For AlarmClock-2 and -3, it ran out of memory and aborted.

A comparison of algorithms GN and GNR shows that the reachability analysis after each
edge traversal originally suggested by Nanda can be a serious bottleneck. Our optimization
based on procedure IDs used in GN led to an overall speedup of 81.5; in the best case, for
DiskScheduler-1, GN was even 330 times faster. Both effects culminate in Nanda’s original
algorithm, N, which contains none of our suggested optimizations and was not able to slice
several of our programs in reasonable time. For the programs which were sliced by both GN
and N, GN was on average 855 times faster. A very interesting result is that algorithm GN was
even faster than algorithm GNP, which assumes that all threads happen in parallel to each other

119

3. Slicing Concurrent Programs

Table 3.10.: Total number of elements visited via interference edges.

Name I2P S K GK N GN
Ex-1 105 106 1321 105 104 104
Ex-2 105 112 1322 107 105 105
Ex-3 105 118 1323 109 106 106
PC-1 5006 22490 – 375922 36607 15528
PC-2 4983 105782 – 1356744 135609 74170
DS-1 4951 5496 – 256494 24742 21681
DS-2 4955 27628 – 799596 61495 21681
LG-1 6785 10923 – 1182994 62504 182790

and thus has a much simpler update mechanism for state tuples. The reason seems to be the
increased precision of GN.

The runtime measurements reveal that Krinke’s original algorithm scales poorly. The rea-
son is in our opinion that Krinke did not provide an implementation and thus was not able
to investigate optimizations. Our improved variant, algorithm GK, is able to compete with
Nanda’s original algorithm. However, it cannot compete with algorithm GN. Its representation
of contexts via call strings declines performance in bigger programs, because the size of the call
strings can grow arbitrarily. Furthermore, it has to distinguish more contexts than GN, because
the virtual inlining of procedures during the construction of the context graphs strongly reduces
the number of distinguished contexts.

Iterations of the embedded thread-local slicers Table 3.10 shows for several programs and
algorithms the total number of elements visited via interference edges. This number is equiv-
alent to the number of iterations of the embedded thread-local slicers. The Table shows that
the number of iterations may grow very fast if the number of threads are raised. The usage
of the restrictive state tuple optimization strongly relieves this combinatorial explosion, which
can be seen by comparing the numbers for K and GK. The numbers for GK are often more
than ten times bigger than those for GN or N, because GK has to distinguish more contexts.
Algorithm GN commits less iterations than algorithm N, because our state tuple mechanism
may subsume state tuples that are distinguished by Nanda’s mechanism (since ours does not
distinguish thread regions). Algorithm S is even less affected, because its state tuples use nodes
instead of contexts.

Interestingly, the number of iterations committed by the I2P slicer also vary for different
versions of the same program, even though they should not be affected at all, since I2P does not
have any state tuples at all. A repeated execution of the test for I2P even resulted in completely
different numbers. The reason for that behavior is that there may exist nodes belonging to the
slice which the I2P slicer may visit during phase 2 of a thread-local slice or directly via an

120

3.12. Evaluation

interference edge. It then depends on the order in which the slicer traverses the edges whether
it visits such a node first via the interference edge or during phase 2 of a thread-local slice. In
the first case it has to visit the node once, in the latter case, twice. Since our implementation
of that algorithm (Alg. 3.2) does not prioritize different kinds of edges, this order may vary in
different executions.

Summary The comparison shows that Nanda’s slicing technique is much more practical than
Krinke’s. This is due to the more adequate context representation as single integers and the
usage of context graphs, which reduce the number of distinguished contexts. Our new opti-
mizations raised its performance even more: Algorithm GN was on average 855 times faster
than the original version, N, and its computed slices were on average 5% smaller. The most
important of our optimizations is our new update mechanism for state tuples, which allows to
exploit MHP information and still gets by with one entry per thread in the state tuples.

Another important result of this comparison is that an employment of MHP information does
not only raise precision, but may also lead to a significant speedup. Algorithm GNP, which
assumes that all threads happen in parallel to each other, had only slightly smaller slices than
algorithm I2P and was even slower than our most precise algorithm, GN. Therefore, we recom-
mend to base an employment of timing-sensitive slicing on a MHP analysis and its information.

3.12.3. Precision and Runtime Behavior of Timing-Sensitive Slicing

As a consequence of the previous comparison, we investigated the algorithms I2P, S and GN in
greater detail, by slicing the programs presented in Table 3.1. For that purpose, we randomly
determined 1000 slicing criteria for each program, computed the slices with each algorithm and
compared the size of the slices and the execution times. Table 3.11 presents on the left side the
average size per size in number of nodes, and on the right side the average execution time per
slice in seconds. The entries for DayTime and algorithm GN are missing, because the slicer
could not finish the computation in reasonable time. For the same reason, we computed only
100 slices of KnockKnock, DaisyTest, MolDyn MonteCarlo and RayTracer.

In Table 3.12 these results are refined. The left side of the table compares the precision of the
algorithms. The first column shows the ratio of the overall number of nodes in the CSDGs to
the average size of the I2P slices. The other columns show the ratio of the average slice sizes of
the first algorithm to those of the second algorithm given in the column title. The columns on
the right side of the Table show the slowdown of the more precise algorithms compared with
the less precise algorithms. Due to the missing values for GN, program DayTime is omitted.

Precision The I2P slices contained on average about 44% of all nodes of the program, which
is a significantly larger share than observed for context-sensitive slices of sequential programs

121

3. Slicing Concurrent Programs

Table 3.11.: Average size per slice in number of nodes (left side), and average execution time per slice in
seconds (right side).

size per slice (nodes) time per slice (sec.)
Name I2P S GN I2P S GN
Example 867.02 866.99 866.99 .006 .007 .007
ProdCons 1497.33 1497.33 1395.71 .009 .070 .068
DiskScheduler 1974.53 1954.40 1544.10 .010 .030 .112
AlarmClock 2692.50 2680.26 2580.27 .011 .242 53.018
DiningPhils 2883.88 2882.15 1921.40 .025 .042 .169
LaplaceGrid 3353.35 3353.35 2783.88 .014 .068 10.195
SharedQueue 7441.98 7363.39 5573.03 .030 1.630 19.258
EnvDriver 8502.59 8502.59 8502.59 .047 8.503 65.021
KnockKnock 22799.23 22799.23 13884.86 .113 7.051 6323.566
DaisyTest 32625.10 32625.10 26956.22 .243 12.222 867.701
DayTime 47402.67 46619.00 – .285 14.025 –
ForkJoin 8834.12 8834.12 3546.72 .029 .145 18.267
Sync 9107.79 9107.79 4848.33 .031 .459 23.286
Barrier 9275.34 9275.34 4723.45 .029 .377 6.202
Series 3440.31 3438.73 2755.25 .009 .012 .215
LUFact 3855.47 3853.02 2966.56 .010 .043 .271
SOR 3716.99 3716.92 2912.47 .010 .025 .252
SparseMatmult 3721.57 3721.48 2904.01 .011 .019 .273
Crypt 4251.60 4251.60 2414.78 .012 .056 1.141
MolDyn 13948.87 13948.87 6568.77 .047 6.729 409.502
RayTracer 14206.14 14206.14 6599.66 .032 1.095 333.824
MonteCarlo 21265.17 21262.29 9855.67 .094 2.783 278.504
Logger 3012.45 2945.36 2934.46 .010 .013 .013
Maza 4007.72 3981.26 3981.26 .011 .013 .021
Barcode 3356.62 2931.10 2931.10 .010 .009 .024
Guitar 3679.38 3619.26 3619.26 .011 .012 .016
J2MESafe 6409.32 6383.09 6383.09 .020 .022 .036
HyperM 9536.75 9468.15 8038.71 .037 75.574 76.285
Podcast 12170.88 11903.72 8645.34 .069 .187 .442
GoldenSMS Key 6852.48 6792.74 6792.74 .021 .029 .110
GoldenSMS Msg 12151.87 12151.29 8718.54 .050 7.829 30.390
GoldenSMS Rec 5789.61 5639.93 5639.93 .021 .023 .051
Cellsafe 23993.88 23938.91 23938.91 .218 .224 .272

(cf. sect. 2.7). Particularly, the slices for the programs from the Bandera benchmark contained
on average about 54% of all nodes.

The slices computed by algorithm S were on average only about 0.8% smaller than the I2P
slices. Only for the JavaME programs the algorithm was able to yield notably smaller slices,
being on average about 2.2% smaller than the I2P slices. Similar to the results of section 3.12.2,

122

3.12. Evaluation

Table 3.12.: Average size ratio (in percent, left side), and slowdown (right side) per slice.

size ratio (percent) slowdown
Name I2P vs S vs GN vs GN vs S vs GN vs GN vs

#nodes I2P I2P #nodes I2P I2P S
Example 34.6 100.0 100.0 34.6 1.2 1.2 1.0
ProdCons 44.9 100.0 93.2 41.9 7.8 7.6 1.0
DiskScheduler 45.0 99.0 78.2 35.2 3.0 11.2 3.7
AlarmClock 56.3 99.6 95.8 54.0 23.0 5027.3 218.7
DiningPhils 56.4 99.9 66.6 37.6 1.7 6.9 4.0
LaplaceGrid 54.3 100.0 83.0 45.1 4.8 721.5 151.0
SharedQueue 66.0 98.9 74.9 49.4 54.5 644.0 11.8
EnvDriver 44.5 100.0 100.0 44.5 181.1 1384.6 7.7
KnockKnock 63.6 100.0 60.9 38.7 62.5 56089.8 896.8
DaisyTest 75.6 100.0 82.6 62.5 50.2 3565.4 71.0
ForkJoin 52.1 100.0 40.2 20.9 4.9 619.9 126.1
Sync 52.6 100.0 53.2 28.0 15.0 759.6 50.7
Barrier 52.8 100.0 50.9 26.9 12.9 212.0 16.5
Series 19.4 99.9 80.1 15.6 1.4 23.8 17.4
LUFact 20.4 99.9 76.9 15.7 4.2 26.6 6.4
SOR 19.4 100.0 78.4 15.2 2.6 26.4 10.3
SparseMatmult 19.1 100.0 78.0 14.9 1.7 24.2 14.3
Crypt 21.3 100.0 56.8 12.1 4.6 92.6 20.3
MolDyn 62.4 100.0 47.1 29.4 142.9 8696.2 60.9
RayTracer 60.5 100.0 46.5 28.1 34.5 10517.5 304.9
MonteCarlo 60.7 100.0 46.4 28.2 29.5 2953.4 100.1
Logger 29.2 97.8 97.4 28.4 1.4 1.3 1.0
Maza 35.7 99.3 99.3 35.4 1.2 1.9 1.6
Barcode 27.2 87.3 87.3 23.8 0.9 2.4 2.7
Guitar 27.8 98.4 98.4 27.3 1.1 1.5 1.4
J2MESafe 36.1 99.6 99.6 36.0 1.1 1.8 1.6
HyperM 53.7 99.3 84.3 45.2 2049.4 2068.7 1.0
Podcast 51.6 97.8 71.0 36.7 2.7 6.4 2.4
GoldenSMS Key 31.4 99.1 99.1 31.1 1.4 5.3 3.8
GoldenSMS Msg 46.2 100.0 71.8 33.1 155.9 605.3 3.9
GoldenSMS Rec 26.2 97.4 97.4 25.5 1.1 2.4 2.2
Cellsafe 57.5 99.8 99.8 57.4 1.0 1.3 1.2
Bandera avg. values 54.1 99.7 83.5 44.3 39.0 6745.9 136.7
Java Grande avg. values 40.1 100.0 59.5 21.4 23.1 2177.5 66.2
JavaME avg. values 38.4 97.8 91.4 34.5 201.6 245.3 2.1
Total 43.9 99.2 78.0 33.1 89.4 2940.9 66.2

these numbers show that the context of the execution states of threads matters if one aims to
avoid timing-insensitive paths.

The slices computed by algorithm GN were by far the most precise. On average, they were
about 22% smaller than the I2P slices and about 21% smaller than the S slices. In the best case,

123

3. Slicing Concurrent Programs

for ForkJoin, its slices were even almost 60% smaller. There is a significant discrepancy be-
tween the results for the three parts of our benchmark. Whereas the GN slices for the programs
from the JavaME benchmark were on average only about 8.6% smaller than the I2P slices, the
GN slices for the Java Grande programs were about 40.5% smaller. This could mean that the
benefit of timing-sensitive slicing depends on the application area.

The timing-sensitive slices contained on average 33% of all nodes of the benchmark pro-
grams, which is comparable with the ratio of the size of context-sensitive slices to the overall
number of nodes in sequential programs. It seems that timing-sensitivity has the same impact
on the precision of slices of concurrent programs as context-sensitivity has for sequential pro-
grams.

Execution times As expected, the I2P slicer had no problems with slicing the benchmark,
since its asymptotic running time is linear to the number of edges.

The execution times of S seem very high compared with its small gain of precision. They
are on average 89 times higher than those of I2P. However, to be fair, we have not exhausted
the possibilities for optimizing this algorithm. In particular, it could be improved to exploit our
MHP information, which it currently does not.

The high precision of algorithm GN is accompanied by significantly increased runtime costs,
which do not scale well. In the worst case, for KnockKnock, GN was more than 56,000 times
slower than I2P. Notably, its runtime costs for the JavaME programs were in most cases ac-
ceptable, only the costs for GoldenSMS-Msg and HyperM were disproportionately higher than
those of I2P. Interestingly, its runtime costs for the JavaME programs have the same dimensions
as those of algorithm S. Since the main difference of GN and S is the propagation of contexts
in GN, this similarity indicates that the investigated JavaME programs have comparatively few
contexts per node.

Observations An important observation is that neither the gain of precision nor the runtime
costs of timing-sensitive slicing seem to be predictable, even not for programs of roughly the
same size. Compare, for example, the results for AlarmClock and DiningPhils or for the three
GoldenSMS programs, where the gain of precision and the runtime costs vary strongly. Fur-
thermore, strongly increased precision and strongly increased runtime do not necessarily ac-
company each other, for which again AlarmClock and DiningPhils are good examples. Thus,
it is hard to estimate whether timing-sensitive slicing of a program pays off or is unsuccessful,
as it is, for example, for AlarmClock. We cannot even use algorithm S as an aid in such an
estimation, because its gain of precision is not related to the one of GN (again, AlarmClock and
DiningPhils).

Another important observation is that the mere size of a program does not seem to domi-
nate the runtime costs of timing-sensitive slicing. Even though Cellsafe has almost 9 times as

124

3.12. Evaluation

much nodes and more than 19 times as much edges as AlarmClock, GN computed its slices
195 times faster. The runtime costs seem also not to depend on the number of interference
edges: DaisyTest has 8 times as much interference edges as DaisyTest, but GN sliced it 7 times
faster. It is currently not clear which property of a CSDGs is mainly responsible for the dis-
proportionately high runtime costs of timing-sensitive slicing for programs like AlarmClock,
KnockKnock, RayTracer or HyperM.

3.12.4. On the Practicability of Context Graphs

In general, the employment of context graphs should be considered carefully, because their
size, compared with the size of the original TCFGs, does not scale well. Since Nanda’s slicing
technique strongly depends on context graphs, we measured the size of the context graphs
of our benchmark programs and the time needed for their computation. We found that for
programs within reach of the timing-sensitive slicer context graphs are actually manageable if
effective cycle folding is used. Table 3.13 compares the size of the TCFGs, of the CSDGs and
of the context graphs of our benchmark programs4. The last column shows the time needed for
the computation of the context graphs. Even though the context graphs are much bigger than
the TCFGs, having about 15 times more nodes and edges in the worst case (for GoldenSMS-
Key), their size is comparable with the size of the CSDGs. In the worst case, for GoldenSMS-
Key, the context graph has only about 3.5 times more nodes and has even less edges than the
corresponding CSDG. Remarkably, the context graphs have in all cases fewer edges than the
CSDGs. This effect is due to the strong cycle folding committed by the computation of the
ISCR graphs. However, the results reveal nevertheless that context graphs do not scale with the
size of the programs: The bigger the programs, the bigger is the difference between the size of
the TCFGs, the CSDGs and the context graphs. An aggravating factor is that the computation
times increase strongly, from 0.1 seconds for DiningPhils to 51.2 seconds for DayTime.

3.12.5. Hot Spots

During our evaluation, we observed that the timing-sensitive slices for different slicing criteria
of the same program did not require the same computation times. There were certain slicing
criteria whose slices needed significantly more computation time than the others. We analyzed
the impact of such hot spots to see whether there is only a handful of them in a program which
consume the lion’s share of the overall computation time. In that case it could be beneficial to
analyze how such hot spots arise, i.e. if there are certain patterns of dependences in a CSDG
which cause them. Then an analysis that detects hot spots could help to trade precision for

4The number of edges in the TCFGs seem to be quite high compared with the number of nodes. This results
from exceptional flow being modeled by conditional branching: Most Java statements may throw exceptions
and thus have more than one possible successor.

125

3. Slicing Concurrent Programs

Table 3.13.: The size and computation time of the context graphs of our benchmark programs.

Name TCFGs CSDGs context graphs time
nodes edges nodes edges nodes edges (sec.)

Example 966 1,696 2,509 36,411 812 1,396 0.4
ProdCons 1,088 1,927 3,331 39,614 770 1,331 0.2
DiskScheduler 1,484 2,624 4,389 43,645 7,949 13,203 1.1
AlarmClock 1,375 2,430 4,781 44,952 2,092 3,517 0.2
DiningPhils 2,262 4,203 5,115 125,377 2,853 5,083 0.1
LaplaceGrid 1,881 3,328 6,175 50,876 8,376 13,908 0.8
SharedQueue 3,242 5,639 11,284 78,797 7,266 11,956 0.5
EnvDriver 8,694 15,230 19,106 181,428 38,264 62,317 1.7
KnockKnock 9,023 14,937 35,852 312,678 62,854 95,888 6.2
DaisyTest 7,985 14,384 43,138 437,937 83,032 137,695 20.4
DayTime 11,857 21,298 59,708 632,146 176,098 292,220 51.2
ForkJoin 9,501 12,905 16,972 59,921 31,624 44,581 4.0
Sync 9,620 13,083 17,315 62,033 30,254 42,731 4.4
Barrier 9,683 13,149 17,579 62,471 29,850 42,162 4.5
Series 9,886 13,453 17,709 61,014 33,495 47,154 4.2
LUFact 10,787 14,641 18,888 65,449 33,902 47,677 3.8
SOR 10,542 14,359 19,151 66,418 43,818 62,348 7.5
SparseMatmult 10,760 14,659 19,502 67,646 43,898 62,452 8.4
Crypt 11,054 15,045 19,973 69,547 43,736 62,246 7.3
MolDyn 12,870 17,360 22,373 90,331 42,960 59,938 5.7
RayTracer 11,648 16,036 23,481 90,346 59,440 82,856 8.8
MonteCarlo 15,000 21,030 35,009 150,313 65,816 92,932 25.3
Logger 3,118 5,441 10,333 52,307 4,719 7,895 0.2
Maza 3,303 5,729 11,235 67,677 26,218 43,367 4.1
Barcode 3,728 6,513 12,344 64,674 18,286 29,966 0.9
Guitar 4,298 7,540 13,257 68,684 10,034 16,854 0.5
J2MESafe 4,611 8,043 17,754 126,409 26,262 43,184 1.6
HyperM 3,942 6,969 17,768 97,575 18,682 30,731 1.2
Podcast 5,809 10,198 23,576 159,116 41,944 67,078 3.6
GoldenSMS Key 5,081 8,871 21,860 177,911 77,519 128,905 10.0
GoldenSMS Msg 5,972 10,416 26,333 215,399 60,309 99,943 6.5
GoldenSMS Rec 5,457 9,485 22,088 149,039 51,262 84,848 4.7
Cellsafe 10,424 18,448 41,707 862,654 98,869 157,512 11.1

speed: For a hot spot, one could apply the fast iterated two-phase slicer instead of expensive
timing-sensitive slicing. To this end, we computed 100 slices of our benchmark programs with
the algorithms I2P and GN and measured the execution times for every single slice. Figures
3.20 and 3.21 show the results for SharedQueue, HyperM, Barcode and Cellsafe, which are
representative. The upper chart of each program shows the gain of precision of the timing-

126

3.12. Evaluation

sensitive slices compared with the I2P slices. A gain of precision of x% means that the timing-
sensitive slice is x% smaller than the I2P slice. The lower chart of each program shows for each
slice its portion of the overall runtime costs in percent. The slices are sorted in the order of their
execution, the same x-coordinate in the charts of the same program corresponds to the same
slice.

The results for SharedQueue and HyperM in Fig. 3.20 are promising, because they suggest
that there are very few hot spots in a program and that they do not necessarily correlate with
those slices in which the most precision is gained. A conservative treatment of these hot spots
could improve the runtime behavior without sacrificing too much precision. However, Fig. 3.21
indicates the opposite: The hot spots in Barcode and Cellsafe are exactly those slices that are
responsible for the overall gain of precision. Treating them conservatively would reduce the
gain of precision of timing-sensitive slicing to zero.

The results also show that the hot spots may have a different impact on the runtime costs.
In Cellsafe they are responsible for almost 100% of the overall runtime costs. However, in the
other programs their impact is not that drastic. If we classify a hot spot as a slice that consumed
more than 5 times the average runtime, then their portion of the overall runtime is 46% for
SharedQueue, 63% for HyperM and 22% for Barcode. Even though these portions are large,
they seem to be not large enough to tackle the explosion of runtime costs by a conservative
treatment of hot spots.

What can we conclude from this analysis? Timing-sensitive slicing is expensive even if it
does not raise precision due to absence of timing-insensitive paths. Instead of detecting hot spots
it could be useful to search for patterns of interference dependences in CSDGs that guarantee
absence of timing-insensitive paths and to deactivate the detection of timing-insensitive paths
for these interference dependences.

3.12.6. Threats to Validity

Since evaluations depend on the quality of the benchmark, we want to discuss possible flaws of
our program selection.

Our case study lacks big programs. The size of a program does not necessarily influence
the number of thread-shared data, so the algorithms might work well for bigger programs with
sparse interference dependences. This assumption is nourished by the results for programs like
Cellsafe and Podcast.

In most parts of our evaluation, we have only computed 100 - 1000 slices per program,
because timing-sensitive slicing was not fast enough for several of our bigger programs. Com-
puting the slices for every node in these programs would not have been possible in reasonable
time. However, we argue that our sample slices are sufficient for a qualitative comparison of

127

3. Slicing Concurrent Programs

Figure 3.20.: Hot spots and gain of precision of 100 slices in ‘SharedQueue’ and ‘HyperM’. The di-
agrams show that there are very few hot spots in these programs and that they do not
correlate with the slices which strongly increase the overall precision.

128

3.12. Evaluation

Figure 3.21.: Hot spots and gain of precision of 100 slices in ‘Barcode’ and ‘Cellsafe’. Here the hot spots
are almost identical with the slices which strongly increase the overall precision.

129

3. Slicing Concurrent Programs

the algorithms in terms of precision and runtime behavior, even though the concrete numbers
might differ for a different set of slicing criteria.

Since our slicing criteria were created randomly without any filtering technique, our results
should be verified for concrete applications of slicing, whose settings may a priori exclude some
kinds of slicing criteria. In particular, we did not remove slicing criteria whose slices were
completely thread-local. Excluding these slicing criteria from the evaluation would increase
the average gain of precision significantly, because thread-local slices do not contain timing-
insensitive paths.

Further threats to validity are possible bugs in our implementations, because these algorithms
are extremely complicated.

3.12.7. Study Summary

Timing-sensitive slicing is able to decrease the size of the slices significantly – about 22%
on average in our tests – but at a high price: The execution times rise dramatically and are
dependent on the numbers of threads in the analyzed program. The application area of these
algorithms is bound to concurrent programs with a low number of threads, since increasing
numbers of threads decrease the precision benefits, while at the same time raising execution
times. The iterated two-phase slicer is by far the most efficient algorithm. Additionally, it
is easy to implement, so we recommend its use for slicing bigger concurrent programs, for
programs with high numbers of threads and in application areas where its imprecision is of
minor interest.

In our opinion, a vital requirement for the application of timing-sensitive slicing is to use
Nanda’s restrictive state tuple optimization and her context representation. Exploiting MHP
information in the timing-sensitive slicers does not only raises precision, but can even decrease
computation times, so we also recommend it. Our optimizations have shown to be very effective
and should be included into implementations of these algorithms. Our optimized version of
Nanda’s algorithm, GN, proved to be the currently most performant and precise timing-sensitive
slicer.

Our hot spot analysis shows that avoiding hot spots would not ease the exponential growth of
computation costs, because the dimension of the cost reduction would be too small. Moreover,
avoiding hot spots might lower precision, although hot spots and gain of precision do not nec-
essarily correspond. An alternative could be to identify patterns of dependences in CSDGs that
guarantee absence of timing-insensitive paths, in which case the detection of such paths could
be deactivated. Such an optimization would not lower precision.

We presented an earlier version of this evaluation in [46]. However, that evaluation focused
on the comparison of timing-sensitive slicers, similar to section 3.12.2, and did not contain a part
comparable with section 3.12.3. An evaluation of the MHP analysis and of context graphs was

130

3.13. Discussion

lacking, too. Furthermore, we developed several of our optimizations only after that publication,
most importantly our new update mechanism for state tuples. The MHP analysis used in [46]
was a preliminary version of the one presented in this chapter, lacking, for example, information
about thread joining. Eventually, the benchmark used here contains more and more complex
programs as the one in [46], where the biggest program had approximately 18.000 nodes and
140.000 edges.

Nanda provides an evaluation of her algorithm [106]; however, it is difficult to compare its
results with ours because the original algorithm may compute incorrect slices by pruning valid
interference edges. We fixed the algorithm according to section 3.10.3, which avoids such
pruning, but raises execution times.

Krinke did not implement his algorithm. To the best of our knowledge, our implementation
is the first, so we could not compare it with another one.

3.13. Discussion

We want to discuss several issues of slicing of concurrent programs in this section.

Context- vs timing-sensitivity

We seem to be the first to explicitly distinguish context-sensitive and timing-sensitive slicing
of concurrent programs, our motivation being that timing-insensitivity may appear in programs
without procedures. Nanda [106] equates context- with timing-sensitivity and calls her timing-
sensitive slicer ‘context-sensitive’, her I2P slicer ‘imprecise’. Krinke [75] seems to distinguish
context- and timing-sensitivity, but he does not investigate timing-insensitive context-sensitive
slicing of concurrent programs.

Java’s happens-before relation

An interesting question is whether Java’s happens-before relation [48, 93] can be used to im-
prove our MHP analysis. The happens-before relation is defined in the context of the Java
memory model [93]. As summarized at the beginning of this chapter, the Java memory model
may give rise to situations where a thread reading a shared variable x may not be aware of
another thread having redefined x in the meantime. This may occur if the two actions are not
properly synchronized, i.e. if they form a data race. The happens-before relation relates two
actions in a program execution if the later executed action is guaranteed to observe the effects
of the earlier executed action. If in a program execution an action a writes a variable x and an
action b reads it and a happens before b, then b is guaranteed to read the value written to x by
a.

131

3. Slicing Concurrent Programs

void t h r e a d _ 1 () :
l o c k l ;
x = 1 ;
un lo ck l ;

void t h r e a d _ 2 () :
l o c k l ;
y = x ;
un lo ck l ;

Figure 3.22.: An example illustrating the happens-before relation. Dependent on which lock action a
program execution executes first either x = 1 happens-before y = x or y = x happens-
before x = 1.

The happens-before order [48, §17.4.5] of a program execution is defined as the transitive
closure of the program order (cf. section 3.8) and the synchronizes-with relation [48, §17.4.4].
The synchronizes-with relation relates inter-thread actions that synchronize with each other. For
example, an unlock action on a monitor l synchronizes-with all subsequent lock actions on l, a
write to a volatile variable y synchronizes-with all subsequent reads of y. The important thing
about the happens-before order is that it is dynamic; different program executions may exhibit
different happens-before orders. Particularly, happens-before does not impose an execution
order on the related actions. As an example, consider the program fragment in Fig. 3.22, in
which two threads access a shared variable x. We assume that the lock and unlock statements
work on the same lock l. The happens-before order of a program execution involving these
threads depends on which lock action is performed first. If the one in thread 1 wins the race,
then x = 1 happens-before y = x, otherwise, y = x happens-before x = 1. This example
illustrates that happens-before generally does not contain enough information to improve the
results of our MHP analysis. The underlying problem is that Java’s synchronization mechanism
does not impose a fixed execution order between two synchronized blocks. However, in special
cases synchronization may lead to a fixed execution order, and an analysis for detecting these
special cases could improve the MHP analysis. Developing such an analysis remains future
work.

Developing new optimizations

Our evaluation shows that additional optimizations are needed in order to make timing-sensitive
slicing practical for bigger programs. In particular, it is necessary to identify which properties
of a CSDG lead to disproportionately high execution times, while other SDGs of similar size
are processed with acceptable costs. We suspect specific patterns of interference dependences
to be responsible. Having identified these patterns, special optimizations could be developed to
treat them.

3.14. Related Work

In this section we summarize the most related work.

132

3.14. Related Work

Slicing concurrent programs

Probably the first author who addressed slicing of concurrent programs was Cheng [32, 33]. He
defines the process dependence net (PDN) to represent dependences in parallel or distributed
programs without procedures, where the concurrent tasks communicate via channels. Chen’s
target language is Occam 2, a concurrent language close to the CSP calculus, but he states that
his system is also able to convert programs written in C, Ada or Pascal into PDNs. PDNs con-
tain, besides data-, control- and weak control dependences, selection dependences, which are a
form of control dependence for nondeterministic choice operators (such as the ALT command
in Occam 2), synchronization dependences, which exist between statements reading and writ-
ing a channel, and communication dependences, which are Chen’s counterpart to interference
dependence. PDNs are sliced via simple graph reachability.

Zhao et al. [164] extended Cheng’s PDN to the system dependence net (SDN) to represent
concurrent object-oriented programs. Their language of choice is CC++ (Compositional C++),
an extension of C++ with cobegin-coend concurrency, shared memory and rendezvous syn-
chronization. The SDN integrates the dependences used in the PDN into Larsen and Harold’s
ClDGs [85] (cf. sect. 2.7). In a subsequent publication, Zhao [163] developed the multi-threaded

dependence graph (MDG) for Java, which is similar to our CSDG and additionally contains syn-
chronization dependences. A statement s is synchronization dependent on a statement t if either
s is a wait() and t the corresponding notify(), or if s is a join node and t is the exit of the
joined thread. SDNs and MDGs are sliced via the two-phase slicer, extended to additionally
traverse the concurrency-related dependences in both phases. Nanda [106] has shown that this
treatment of concurrency-related dependences may yield incorrect slices.

Hatcliff et al. [61] use slicing in their Bandera project, a tool set for compiling Java programs
into inputs of several existing model-checkers, to identify and omit program parts unrelated
to a given specification. Their dependence graph is similar to the CSDG, but lacks summary
edges and additionally contains synchronization and ready dependences (cf. sect. 3.4) and weak
control dependences. Their slicer works similar to the IPDG slicer, but k-limits the size of the
call strings and additionally traverses interference edges. Thus, it is timing-insensitive and not
completely context-sensitive.

Ramalingam [114] proved that synchronization-sensitive context-sensitive slicing of concur-
rent programs is undecidable. The proof consists of reducing Post’s Correspondence Problem to
the synchronization-sensitive context-sensitive reachability problem. Most approaches to slic-
ing of concurrent programs sacrifice synchronization-sensitivity in favor of context-sensitivity,
and it would be interesting to see the results of an opposite approach, favoring synchronization-
sensitivity. However, Taylor [144] came to the daunting conclusion that a synchronization-
sensitive analysis, for rendezvous-style synchronization, is even for intra-procedural programs
without branches and loops NP-hard.

133

3. Slicing Concurrent Programs

Müller-Olm and Seidl [102] have shown that optimal slicing of concurrent interprocedural
programs is undecidable. An optimal slice is statement-minimal under the abstraction of con-
ditional branching as nondeterministic branching. The undecidability is proven by reducing
the termination problem for two-counter machines to the decision problem of whether a state-
ment s belongs to the optimal slice for a slicing criterion c. The problem becomes solvable
when procedure calls are forbidden, but is still PSPACE-hard. In a subsequent publication,
Müller-Olm [101] observed that the common assumption of statements executing atomically
intended to simplify program analyses actually increases their complexity. If that assumption is
abandoned, the problem of precise interprocedural analysis of variable dependences in parallel
programs investigated in [102] becomes decidable. The paper shows how the set of possible
program executions needed for that purpose, called bridging runs, can be characterized by a
constraint system, so that the dependences can be analyzed via abstract interpretation. The run-
time complexity of the resulting algorithm is exponential in the number of the shared variables
and polynomial in the program size.

Mohapatra et al. [100] investigated dynamic slicing of concurrent object-oriented programs.
Their algorithm statically builds a kind of CSDG and computes on it the dynamic slice during
the program execution. After each step in the program execution, the algorithm marks all depen-
dences in the CSDG which turned active and unmarks all which ceased to exist. The authors
report a space complexity of O(N2) and a runtime complexity of O(N ∗m) for the dynamic
phase of their algorithm, where N is the number of nodes and m the maximal in-degree in the
CSDG. They have implemented their algorithm in the system DSCOP, where it can be used to
dynamically slice programs written in a subset of Java.

Timing-sensitive slicing Chen and Xu [31] present a different approach to deal with timing-
insensitivity in Java programs. They incorporate synchronization in their concurrent control

flow graphs (CCFGs) such that thread-local control flow edges between calls of wait() and
their direct successors are removed and redirected over the notifying thread via wait and syn-
chronization edges. Having constructed the CCFG of a program, all edges and nodes which
cannot be reached from its entry node are removed. Then, one SDG per thread is created and
connected via interference dependences, the result being the concurrent program dependence

graph (CPDG). During the slicing process, their proposed slicing algorithm identifies and omits
nodes that cannot be part of the slice because they cannot be executed before the nodes in the
intermediate slice. This is determined on the level of nodes, ignoring calling contexts, hence the
detection of timing-insensitivity is context-insensitive. Furthermore, the slicer itself traverses
the CPDG context-insensitively. However, embedding that algorithm into the iterated two-phase
slicer seems to be straightforward. We suspect that the precision of the suchlike improved al-
gorithm is in the range of our timing-aware slicer, which also treats timing-insensitivity in a
context-insensitive manner. However, the authors do not report an implementation and do not

134

3.14. Related Work

provide empirical data. A shortcoming of their approach is that the construction of a CCFG
requires to inline procedures that call synchronized procedures or contain synchronized blocks,
hence it cannot completely handle recursion.

Rousseau [122] presents a slicer for a subset of Ada that is able to compute timing-sensitive
slices. The slicer is embedded in QUASAR, a program analysis tool based on model checking,
where it serves as a preprocessing step to reduce the size of the models. The slicer does not
work on a CSDG but on the abstract syntax tree of the program and determines the program
dependences on the fly. It computes the dependences by using stacks, on which the statements
reside for which the dependences still have to be computed. For each thread, the slicer maintains
one stack, effectively simulating the state tuples used in the timing-sensitive slicers of Krinke
and Nanda. The author argues that this on-the-fly-computation is more performant than to
compute a whole CSDG. However, if several slices of the same program are needed, this may
lead to computing the same dependences repeatedly, hence that claim is disputable. The author
does not provide empirical data supporting his claim, hence the runtime performance of his
algorithm remains unclear.

Qi and Xu [111] present the task communication reachability graph (TCRG) to compute
timing-sensitive slices of Ada programs. The TCRG is basically a control flow graph that
unrolls the symbolic execution committed by Krinke’s and Nanda’s algorithms and describes
all possible execution orders of a program. For that purpose, its nodes represent configurations
(def. 3.18) and the edges model control flow between them. By using an optimization similar
to restrictive state tuples it is possible to subsume many configurations by one representative,
so it is not necessary to include all possible configurations in the graph. A data flow analysis
on the TCRG creates as special dependence graph, in which all paths are context- and timing-
sensitive. Context- and timing-sensitive slices can be computed via simple graph reachability.
The authors do not present an evaluation of their technique.

In a subsequent publication [112], Qi et al. present the threaded interaction reachability

graph (TIRG), a sort of control flow graph in which the possible ways of interleaving are un-
rolled – each node in a TIRG corresponds to a possible interleaving situation. This permits
not only to build a dependence graph free of context- and timing-insensitive paths, as with
the TCRG, but also to identify situations where an interference dependence is intercepted by a
killing definition. Hence, their approach promises extremely precise slices. However, several
issues are still to be solved. Most importantly, TIRGs not only unroll the possible ways of inter-
leaving, but also have to inline procedures, presumably leading to monstrous sizes (to date, no
empirical data has been reported). Thus, compression techniques have to be developed in order
to get their sizes into grip. A possible starting point could be the work on dynamic dependence
graphs for dynamic slicing, which at the beginning experienced similar problems.

135

3. Slicing Concurrent Programs

Concurrency analysis for Java

Naumovich et al. [107] present a may-happen-in-parallel (MHP) analysis for Java programs that
computes for every pair (s,s′) of statements whether s and s′ may execute concurrently. Their
approach considers fork and join points as well as synchronization and is more precise than the
technique we used. The analysis works on a parallel execution graph (PEG) which is derived
from the control flow graph of the input program. PEG creation imposes several restrictions on
the input program, most notably absence of recursion, because procedures have to be inlined.
The MHP analysis on the PEG has a runtime complexity cubic to the number of PEG nodes and
seems to be practical only for PEGs with < 2000 nodes [87].

Li and Verbrugge [87] implemented Naumovich et al’s MHP analysis based on the Soot
framework and developed several PEG simplification techniques, which may strongly reduce
PEG sizes. These techniques basically identify areas in the PEG that can be merged to a single
node. Their evaluation results suggest that MHP analysis for Java can be made practical for
programs of reasonable size. However, restrictions like absence of recursion still persist.

Ruf [123] investigated synchronization removal techniques for Java programs and developed
a thread allocation analysis for determining the number of instances a thread class may have
at runtime. Basically, the analysis collects the allocations of thread objects in the program and
determines conservatively how often such an allocation may be executed. Since a Java thread
can only be started once, counting the allocations of thread objects conservatively approximates
the existing threads. Our thread invocation analysis in section 3.1 was inspired by that work.

Lammich and Müller-Olm [81] present a conflict analysis for concurrent interprocedural pro-
grams with monitor-style synchronization. Their setting is similar to Java and permits dynamic
thread creation and reentering of already acquired monitors. The analysis decides whether a
conflict situation is reachable by checking whether the synchronization permits to reach the
involved statements simultaneously, which is shown to be NP-hard. It determines via which
paths the statements can be reached sequentially and then uses the acquisition histories of the
monitors to check which of these paths can be interleaved. The crucial idea is to break down
the paths into macrostep paths, which are same-level paths prepended by a single procedure
call. That way the analysis achieves context-sensitivity without keeping track of calling con-
texts. The authors present an algorithm using abstract interpretation with an asymptotic running
time exponential in the number of monitors. This technique could be adapted to prune spurious
interference dependences: If there exists no valid interleaving in which the usage of a variable
uses a certain definition of that variable, then the corresponding interference dependence can be
removed.

136

4. Chopping

This chapter investigates chopping of concurrent programs. Chopping answers the question
of which statements are involved in conveying effects from a statement s to another statement
t. Chops are usually computed on dependence graphs, where a chop chop(s, t) from s to t

consists of all nodes on paths from s to t. Prior to our work, no chopping algorithm for concur-
rent programs has been reported at all. We developed the first published context-sensitive and
timing-sensitive chopping algorithms for concurrent programs and present them in this chapter.

A simple way to compute chop(s, t) for s and t is to intersect the forward slice for s with
the backward slice for t. However, this may result in context-insensitive chops, even if context-
sensitive slicing is used, because the slices (= sets of nodes) do not contain information about
calling contexts. Consider the program in Fig. 4.1: Statement 3 is not influenced by statement 2,
so chop(2,3) should be empty. But the forward slice for statement 2 consists of the statements
{2,4,5}, the backward slice for statement 3 of the statements {3,4,5}, so the intersection results
in chop {4,5}. Reps and Rosay [120] developed the first context-sensitive chopping algorithm
for sequential interprocedural programs. Their algorithm is the state of the art for chopping
sequential programs. We abbreviate it with RRC throughout the thesis.

The RRC is, however, rather complicated to implement, and its asymptotic running time
is not linear to the size of the analyzed program. We present a new chopping technique for
sequential programs that is not entirely context-sensitive, but is easy to implement and very fast
in practice, offering a genuine alternative for quick deployment. We evaluated the precision and
runtime costs of this new technique together with several variants of the RRC on a set of 22
Java programs.

Unfortunately, the Reps-Rosay chopper cannot be applied directly to concurrent programs
because it relies on all interprocedural effects being summarized by summary edges. We show
how to extend it to compute context-sensitive chops in concurrent programs. After that, we

1 void main () :
2 i n t m = foo () ;
3 i n t n = foo () ;

4 i n t foo () :
5 re turn 1 ;

Figure 4.1.: A small example illustrating context-insensitive chopping.

137

4. Chopping

transfer the techniques for timing-sensitive slicing to chopping and present a timing-sensitive
chopping algorithm for concurrent programs.

Since detection of timing-insensitive paths is expensive and difficult to implement, we de-
veloped six chopping algorithms for concurrent programs. These algorithms offer different
degrees of precision, from imprecise (but fast) over context-sensitive to timing-sensitive. We
implemented these algorithms and evaluated their precision and runtime costs on a set of con-
current Java programs. Context-sensitive chopping reduced the chop sizes up to 25%, while
moderately increasing execution times. Timing-sensitive chopping strongly reduced the chop
sizes – up to 90% in the best case –, but at the expense of considerably increased execution
times.

This chapter is organized as follows: Section 4.1 introduces chopping algorithms for sequen-
tial programs, on which those for concurrent programs are based. Section 4.2 presents our new,
almost context-sensitive chopping algorithm for sequential programs. Section 4.3 concludes
the part about chopping of sequential programs with one of the few published evaluations
of these algorithms. Section 4.4 is concerned with context-sensitive chopping of concurrent
programs and presents a suitable extension of the Reps-Rosay chopper. Section 4.5 explains
timing-sensitive chopping and presents our resulting algorithms. Our chopping algorithms are
evaluated in section 4.6. Section 4.7 discusses several issues and future work and section 4.8
summarizes related work.

Previous publications by the author contain preliminary versions of this chapter [42, 43].

4.1. Chopping Sequential Programs

Concerning sequential programs, there exist two different kinds of chopping, same-level and
unbound chopping. Same-level chopping requires from the chopping criterion (s, t) that s and
t stem from the same procedure p and considers only matched paths from s to t. Unbound
chopping permits arbitrary chopping criteria and takes all paths from s to t into account. Figure
4.2 illustrates that difference: The unbound chop from return x to x=x*x consists of the gray
shaded nodes because the return value of the first call of foo is fed to the second. The same-
level chop from return x to x=x*x is empty because inside one invocation of foo return

x does not influence x=x*x.

4.1.1. Same-Level Chopping

Since same-level chopping is used to compute unbound chops, it is briefly explained in this
section. The basis of all presented chopping algorithms is the intra-procedural chop. An intra-
procedural chop from a node s to a node t in procedure p consists of all nodes on paths from s

138

4.1. Chopping Sequential Programs

control dependence
data dependence

call or parameter edge
x = x * x

int a call foo int b

entry main

entry foo

call foo

summary edge

 main ():
 a = foo(1);
 b = foo(a);

 foo (x):
 x = x * x;
 x; 1 a a b

x x
return x

void
int
in t

in t

re tu rn

int

Figure 4.2.: Same-level vs unbound chopping: The unbound chop for (return x, x=x*x) consists of
the gray shaded nodes, the same-level chop is empty. Note that the SDG contains special
summary edges from call nodes to actual-out nodes, which are needed for chopping.

to t in p’s PDG. It is commonly computed by intersecting the intra-procedural backward slice
for t with the intra-procedural forward slice for s.

Definition 4.1 (Intra-procedural chop). Let G be the PDG of a procedure p. Let s and t be two

nodes in G. The intra-procedural chop of G for chopping criterion (s, t) consists of the set of

nodes

{n | ∃ a path from s to t in G that contains n}.

Jackson and Rollins [67] extended intra-procedural chopping to same-level chopping, where
the nodes on paths through procedures called underway are added to the chop. A (context-
sensitive) same-level chop from a node s to a node t of the same procedure consists of all nodes
on matched paths from s to t.

Definition 4.2 (Same-level chop). The same-level chop of a SDG G for chopping criterion (s, t)

consists of the set of nodes

{n | ∃ a matched path from s to t in G that contains n}.

Jackson and Rollins suggested computing same-level chops through an iterated approach that
exploits summary edges. To this end, SDGs have to be extended with summary edges from call
nodes to the associated actual-out nodes. Their approach first computes an intra-procedural
chop from s to t. Then, for every traversed summary edge ai →su ao, it computes another intra-
procedural chop for criterion (fi, fo), where fi is the formal-in- or entry node connected with the
actual-in- or call node ai, and fo is the formal-out node connected with the actual-out node ao.

139

4. Chopping

Algorithm 4.1 SMC: Krinke’s Summary-Merged Chopper [74].
Input: A chopping criterion (s, t).
Output: The same-level chop from s to t.

W = /0 // a worklist
M = /0 // marks processed summary edges

Let C be the intra-procedural chop for (s, t).
for all call sites c in C

// collect all summary edges at c that lie in the chop and put them as one element into W
W =W ∪{{(ai,ao) | ai,ao ∈C,∃ summary edge ai →su ao at c}}

repeat
remove first element L from W

// build the chopping criterion (S, T) for L
S = /0,T = /0
for all (ai,ao) ∈ L

Let fi be the formal-in- or call node connected with ai
Let fo be the formal-out node connected with ao
if (fi, fo) /∈ M // tuple has not been marked yet

M = M∪{(fi, fo)} // mark tuple as visited
S = S∪{fi}
T = T ∪{fo}

// compute the chop for (S, T) and update the worklist
Let C′ be the intra-procedural chop for (S,T)
C =C∪C′

for all call sites c in C′

W =W ∪{{(ai,ao) | ai,ao ∈C′,∃ summary edge ai →su ao at c}}

until W = /0
return C

This step is repeated until no new summary edge is visited. The same-level chop consists of all
nodes visited in that process.

Jackson and Rollins’ approach computes a new chop for every pair of {formal-in, entry}
and formal-out nodes that have a summary edge between the corresponding {actual-in, call}
and actual-out nodes included in the chop. Therefore, it may traverse the same edges multiple
times – since two of such chops may overlap – and has an asymptotic running time bounded by
O(|E| ∗MaxFormalIns2), where MaxFormalIns is the maximum number of formal-in nodes in
any procedure’s PDG. Krinke [74] developed an improved algorithm, which relieves that redun-
dancy and is significantly faster in practice: If two summary edges of one call site are included
in the chop, one does not need to compute two separate chops. Instead, a single chop between
the set of corresponding {formal-in, entry} nodes and the set of corresponding formal-out nodes
exhibits the same precision and traverses a smaller number of edges. Krinke’s improved algo-

140

4.1. Chopping Sequential Programs

Algorithm 4.2 Reps and Rosay’s same-level chopper [120].
Input: A chopping criterion (s, t).
Output: The same-level chop from s to t.

M = /0,B = /0,F = /0,ActOut = /0
Let C be the intra-procedural chop for (s, t)

// initialize a worklist with all summary edges that lie in the chop
W = {(m,n) | m,n ∈C,∃ a summary edge m →su n}

repeat
remove first element (m,n) from W
Let fi be the formal-in or entry node connected with m
Let fo be the formal-out node connected with n

if (fi, fo) /∈ M
M = M∪{(fi, fo)}

if F(fi) = /0 // store the intra-procedural forward slice for fi in F
F(fi) = forw_slice(fi)

if B(fo) = /0 // store the intra-procedural backward slice for fo in B
B(fo) = back_slice(fo)
ActOut(fo) = {n ∈ back_slice(fo) | n is an actual-out node}

for all x ∈ B(fo)
if x ∈ F(fi) // x belongs to the chop

C =C∪ x
B(fo) = B(fo)\{x}
if x is an actual-out or call node

for all summary edges x →su y with y ∈ ActOut(fo)
W =W ∪{(x,y)}

until W = /0
return C

rithm, called Summary Merged Chopper and depicted in Alg. 4.1, exploits that observation as
follows: After computing the initial intra-procedural chop for s and t, all traversed summary
edges of visited call sites are collected. Then, for every visited call site, a new chop is com-
puted between the set of corresponding {formal-in, entry} nodes and the set of corresponding
formal-out nodes. This procedure is repeated with the newly visited summary edges until no
new summary edges is visited. The resulting chop consists of all nodes visited in the process.

Though significantly faster in practice, the Summary Merged Chopper has still the same
runtime complexity. An asymptotically faster technique with O(|E| ∗MaxFormalIns) has been
proposed by Reps and Rosay [120]. We explain that technique on its pseudocode in Figure
4.2. Starting from the initial intra-procedural chop for (s, t), it computes for every summary

141

4. Chopping

edge ai →su ao being part of the chop the corresponding {formal-in, entry}/formal-out pair
(fi, fo). Then, it stores the intra-procedural forward slice for fi in map F (= forward) and the
intra-procedural backward slice for fo in map B (= backward). It further stores for fo the set
of actual-out nodes lying in the intra-procedural backward slice for fo. Then, every node x that
lies in both the intra-procedural backward slice for fo and the intra-procedural forward slice for
fi stored in the maps B and F is added to the chop and is removed from the stored backward
slice for fo. The removal guarantees that each node is touched at most once. If x is a formal-in
or entry node and there is a summary edge x →su y to an actual-out node y lying in the intra-
procedural backward slice for fo, then this edge is added to the worklist. That way, the algorithm
iteratively processes the procedures called within the chop.

4.1.2. Unbound Chopping

An unbound chop1 chop(s, t) for criterion (s, t) takes all realizable paths from s to t into account.
In the remainder of this thesis, the sole term ‘chop’ usually refers to unbound chopping. The
term ‘unbound chopping’ is only used where we have to distinguish between same-level and
unbound chops.

Definition 4.3 (Unbound context-sensitive chop). The unbound context-sensitive chop of a SDG

G for chopping criterion (s, t) consists of the set of nodes

{n | ∃s →∗
cs t in G that contains n}.

Reps and Rosay [120] developed a sophisticated algorithm that chops programs context-
sensitively. It exploits that in a SDG all interprocedural effects are propagated via call sites
and summarized by summary edges. Figure 4.3 gives a schematic overview: The ovals sym-
bolize procedures, upgoing edges are procedure calls and downgoing edges are returns. The
two graphs show how the chopper proceeds in computing chop(s, t). First, it determines the
common callers of s and t, i.e. the procedures that (indirectly) call both the procedures of s and
t. This is achieved by computing a forward slice for s and a backward slice for t, which only
visit the calling procedures. Intersecting them reveals the common callers and the set of nodes
A in these procedures that belong to the chop. This is shown in the upper graph. In the next
step, the RRC collects the nodes in the procedures leading from A to s or t that belong to the
chop. For the procedures leading to s, this is done by intersecting the forward slice of s and the
backward slice of A, where the forward slice visits only the calling procedures and the backward
slice visits only the called procedures. For the procedures leading to t, this works analogously.
The result is shown in the lower graph as light gray highlighted areas. This step ignores the
procedures called underway by the visited nodes – in our example procedures 5 and 7. In a

1Also called non-same-level chop in several publications.

142

4.1. Chopping Sequential Programs

Figure 4.3.: Schematic overview of the Reps-Rosay chopper for chopping criterion (s, t). The upper part
shows step 1, the lower part shows steps 2 and 3.

third step, these omitted procedures are analyzed via same-level chopping, starting from the
summary edges between the nodes collected in step 2. The resulting chop consists of the nodes
collected in steps 2 and 3. By exploiting summary edges in the second step and using same-level
chopping in the third step, the algorithm maintains context-sensitivity. According to Reps and
Rosay, RRC’s asymptotic running time is in O(|E|∗MaxFormalIns) if their same-level chopper
shown in Alg. 4.2 is used for step 3. Algorithm 4.3 shows its pseudocode; function slc, which
computes the same-level chops, is realized by extending Alg. 4.2 to sets of chopping criteria.

4.1.3. The Reps-Rosay Chopper for Sets of Nodes

Though not explicitly stated by Reps and Rosay [120], the RRC is also able to compute context-
sensitive chops for chopping criteria consisting of sets S, T of nodes, the result being the union
of the chops for every pair (s, t) ∈ S×T . For that purpose, the underlying slicers in the RRC
are extended to compute slices for sets of nodes. This extension is needed for the computation

143

4. Chopping

Algorithm 4.3 RRC: The Reps-Rosay chopper [120].
Input: A chopping criterion (s, t).
Output: The unbound context-sensitive chop from s to t.

Let slc be a function that computes a same-level chop for a set of chopping criteria.
Let f1 be a forward two-phase slicer that only commits phase 1.
Let b1 be a backward two-phase slicer that only commits phase 1.
Let f2 be a forward two-phase slicer that only commits phase 2.
Let b2 be a backward two-phase slicer that only commits phase 2.

/* Step 1: collect the nodes in the common callers of s and t */
A = f1({s})∩b1({t})

/* Step 2: collect the nodes in the procedures leading from A to s and t */
C1 = f1({s})∩b2(A)
C2 = f2(A)∩b1({t}
Chop =C1 ∪C2

/* Step 3: collect the nodes in procedures called underway */
// collect all traversed summary edges
// distinguishing the branches C1 and C2 ensures that the edge has actually been traversed,
// because otherwise ai could have been visited in C1 and ao in C2
S = {(ai,ao) | ∃ ai →su ao∧ (ai,ao ∈C1 ∨ai,ao ∈C2)}

// build the chopping criteria for the same-level chopper
W = {(fi, fo) | ∃(ai,ao) ∈ S : (fi, fo) is {formal-in, entry}/formal-out pair of (ai,ao)}
Chop = Chop ∪ slc(W)

return Chop

of context-sensitive chops of concurrent programs, and thus we prove its correctness in this
subsection.

Following grammar H in definition 2.3, let m →∗
unbr n denote an unbalanced-right path in

a SDG. Similarly, let m →∗
unbl n denote an unbalanced-left path. Reps and Rosay define the

following operations to compute context-sensitive chops in SDGs [120]:

• funbr(S) = {n | ∃s ∈ S : s →∗
unbr n} (conforms to f1 in Alg. 4.3)

• funbl(S) = {n | ∃s ∈ S : s →∗
unbl n} (conforms to f2 in Alg. 4.3)

• bunbl(T) = {n | ∃t ∈ T : n →∗
unbl t} (conforms to b1 in Alg. 4.3)

• bunbr(T) = {n | ∃t ∈ T : n →∗
unbr t} (conforms to b2 in Alg. 4.3)

In other words, funbr is the set of nodes lying on unbalanced-right paths starting at a node
s ∈ S, funbl is the set of nodes lying on unbalanced-left paths starting at a node s ∈ S, bunbr is
the set of nodes lying on unbalanced-right paths leading to a node t ∈ T and bunbl is the set of
nodes lying on unbalanced-left paths leading to a node t ∈ T . The operations funbr and bunbl can

144

4.1. Chopping Sequential Programs

be implemented by forward and backward two-phase slicers committing only phase 1, i.e. only
ascending to calling procedures, funbl and bunbr can be implemented by forward and backward
two-phase slicers committing only phase 2, i.e. only descending to called procedures [120].

The RRC employs a function SLC(e) that takes a summary edge e = ai →su ao and computes
a same-level chop for the corresponding {formal-in, entry}/formal-out pair. However, its con-
crete functionality is irrelevant for this proof. As explained in greater detail further above, the
RRC performs the following 3 steps to compute the chop RRC(s, t) [120]:

1. A = funbr({s})∩bunbl({t}),

2. Chop = (funbr({s})∩bunbr(A))∪ (funbl(A)∩bunbl({t})),

3.for every summary edge e on unbalanced-right paths from s to nodes in A, or on unbalanced-
left paths from nodes in A to t: Chop =Chop∪SLC(e).

We claim that the algorithm RRC(S,T) for sets of nodes S and T , consisting of the steps

1. A = funbr(S)∩bunbl(T),

2. Chop = (funbr(S)∩bunbr(A))∪ (funbl(A)∩bunbl(T))),

3.for every summary edge e on unbalanced-right paths from nodes in S to nodes in A or on
unbalanced-left paths from nodes in A to nodes in t: Chop =Chop∪SLC(e).

computes the same result as the union of the chops RRC(s, t) for all possible pairs (s, t)∈ S×T .

Lemma 4.1. RRC(S,T) =
⋃

s∈S
t∈T

RRC(s, t)

Proof.

‘⊇’Every node n ∈ RRC(s, t) for s ∈ S, t ∈ T is also in RRC(S,T). This follows directly from
the definitions of funbr, funbl, bunbr and bunbl.

‘⊆’We have to show that for every node n ∈ RRC(S,T) there exist s ∈ S, t ∈ T such that
n ∈ RRC(s, t). We distinguish two cases: n is added to the chop either in step 2 or in step
3.

– n is added in step 2:
There must exist s ∈ S, t ∈ T,w ∈ A such that either s →∗

unbr n →∗
unbr w →∗

unbl t or
s →∗

unbr w →∗
unbl n →∗

unbl t holds. Thus n ∈ RRC(s, t).

– n is added in step 3:
This means that n is added to the chop due to the same level chop SLC(e) for a
summary edge e = es →su et . Thus, there must exist s ∈ S, t ∈ T,w ∈ A such that

145

4. Chopping

control dependence
data dependence

call or parameter edge b = b * 2

int x call foo int y

entry main

entry foo

call foo

summary edge

 main ():
 s = 0;
 x = foo(s, 1);
 t = x;
 y = foo(1, t);

 foo (a, b):
 b = b * 2;
 a + b;

1 x t y

b a + b

return a+b

s

a

int s = 0 in t t = x

1

1

2 3

4 5 6

7 8 9

10 11
12

13

14

15 16

17 18

19

void

int
in t
in t

in t

in t in t in t

re tu rn

Figure 4.4.: Chops for chopping criterion (2,8). The highlighted nodes denote the chop determined by
computing the backward slice for node 8 on the forward slice for node 2. The dark gray
nodes denote the context-sensitive chop.

either s →∗
unbr es →su et →∗

unbr w →∗
unbl t or s →∗

unbr w →∗
unbl es →su et →∗

unbl t holds.
Therefore, e is also visited by the chop RRC(s, t) in step 2, which means that SLC(e)

is added to that chop. Hence n ∈ RRC(s, t).

Note that this extended algorithm retains the asymptotic running time of the original because
all employed operations remain the same.

4.2. The Fixed-Point Chopper

In this section we present a new chopping technique for sequential programs, which is not
entirely context-sensitive, but almost as precise in practice, very fast and easy to implement.

Although the RRC is known for 15 years, intersection-based chopping is often considered a
convenient alternative for a quick deployment. A well-known optimization computes a forward
slice for s and then a backward slice for t restricted to the subgraph traversed by the forward
slicer. The resulting backward slice is already the chop, eliminating the intersection. Its runtime
complexity is in O(|E|), like that of the underlying two-phase slicer. Moreover, it already
removes some spare nodes from the chop. For example, it detects that chop(2,3) in the program
of Fig. 4.1 is empty, as statement 3 is not in the forward slice for statement 2.

During our work, we made the following observation: Computing another forward slice on
the result of the above algorithm may result in an even more precise chop, for which Fig. 4.4

146

4.2. The Fixed-Point Chopper

Algorithm 4.4 Fixed-point chopping: Computing almost context-sensitive chops.
Input: A chopping criterion (s, t).
Output: The chop from s to t.

Let f (c,M) be a two-phase forward slicer that only visits nodes in set M.
Let b(c,M) be a two-phase backward slicer that only visits nodes in set M.

/* Compute the initial chop. */
F = f (s,N) // N be the set of all nodes in the SDG
Chop = b(t,F)
changed = true
/* Iterate until reaching a fixed-point. */
repeat

Tmp = f (s,Chop)
Tmp = b(t,Tmp)

// if we have reached a fixed-point, set changed to false
if (Tmp == Chop)

changed = false

Chop = Tmp

until ¬changed
return Chop

provides an example. The context-sensitive chop for node pair (2, 8) consists of the dark gray
nodes: Variable s is passed as a parameter to foo and flows via the return statement into variable
t. If we employ the algorithm described above, the resulting chop also contains nodes 16 and
17: The forward slice for node 2 consists of the nodes {2,4,15,18,19,6,7,8,10,11,16,17,12,13},
the backward slice for node 8, restricted to these nodes, is the set {8,7,6,19,18,17,16,15,4,2}.
Nodes 17 and 16 were visited by the forward slicer in the context of the second invocation of
foo, which does not influence node 8. But that information is not available anymore in the set
representing the forward slice, thus the backward slicer traverses from node 18 to the nodes 17
and 16. If we compute a second forward slice for node 2, restricted to that set of nodes, we are
able to remove these spurious nodes. The forward slice visits the nodes {2,4,15,18,6,7,8}, which
is in this example the context-sensitive result. This will not always be the case, but repeating
that optimization may gradually remove more spurious nodes, resulting in a fixed-point style
algorithm shown in Alg. 4.4. However, fixed-point chopping is not generally context-sensitive,
for which Fig. 4.5 provides an example. The context-sensitive chop for (14, 12) consists of the
dark gray nodes, but fixed-point chopping additionally includes node 13. Although this new
algorithm has an asymptotic runtime complexity of O(|E| ∗ |N|), our evaluation indicates that
the fixed-point is reached very fast, usually after the second iteration of the loop.

147

4. Chopping

control dependence
data dependence

call or parameter edge

int x call foo int y

entry main

entry foo

call foo

summary edge

 main ():
 x = foo(1);
 y = foo(x);

 foo (a):
 t = a;
 b = t;
 s = b;
 s;

1 x y

a s

return s

x

int t = a in t b = t int s = b

in t
in t
in t

in t

in t
in t

void

re tu rn

int

1

2

3
4

5 6

7

8

9

10

11

12 13 14 15

16

Figure 4.5.: Fixed-point chopping is not context-sensitive in general.

4.3. Evaluation

We have integrated the presented algorithms for unbound chopping into the Joana framework
and evaluated them on the benchmark used in section 2.6, using the same hardware and settings.
For each benchmark program, we randomly determined 10,000 chopping criteria consisting of
one source and one target node. We measured the average chop sizes and execution times of our
fixed-point chopper FC, the simple intersection-based chopper SIC and the RRC. For a more
in-depth investigation, we further employed the algorithms IC (intersection chopper), which
determines the chop for (s, t) by computing the forward slice for s on the backward slice for
t, and Opt-1, which iterates the while-loop of FC only once. Additionally, we combined the
RRC with the three same-level chopping algorithms introduced in section 4.1.1 and examined
the runtime differences. In summary, we evaluated the following algorithms:

• SIC, intersects the forward slice for s with the backward slice for t.

• IC, computes the forward slice for s on the backward slice for t.

• FC, the fixed-point chopper of Alg. 4.4.

• Opt-1, executes the while-loop of FC only once.

• RRC, the Reps-Rosay Chopper.

• RRC-Unopt, uses Jackson and Rollins’ iterative approach to compute the same-level
chops in the last step of RRC.

• RRC-SMC, uses Krinke’s Summary-Merged Chopper to compute the same-level chops.

148

4.3. Evaluation

Table 4.1.: Average size per chop (number of nodes). Column ‘RRC’ subsumes our three RRC variants,
which always computed the same chops.

Name SIC IC Opt-1 FC RRC
Example 329.03 323.58 316.39 316.39 316.39
ProdCons 556.39 535.61 535.61 535.61 535.61
DiskScheduler 455.18 379.49 376.52 376.52 375.77
AlarmClock 770.06 628.87 608.76 608.76 608.56
DiningPhils 584.31 458.49 447.77 447.77 447.57
LaplaceGrid 895.43 739.92 731.66 731.66 731.29
SharedQueue 2335.69 2254.26 2252.76 2252.76 2251.94
EnvDriver 3326.14 3263.47 3248.71 3248.71 3248.35
KnockKnock 1798.35 1291.63 1258.56 1258.56 1235.91
Daisy 11843.49 10762.85 10750.78 10750.78 10750.78
Daytime 21454.00 20654.90 20492.54 20492.53 20480.94
Logger 889.01 873.53 873.15 873.15 873.14
Maza 1440.62 1390.85 1332.75 1332.75 1315.49
Barcode 528.93 414.26 403.73 403.73 401.93
Guitar 922.66 878.58 868.41 868.41 867.44
J2MESafe 2667.09 2475.75 2438.80 2438.80 2428.10
HyperM 267.65 202.19 190.00 190.00 189.32
Podcast 3197.20 2547.91 2461.84 2461.84 2456.19
GoldenSMS_Key 2163.53 1989.03 1952.65 1952.59 1947.89
GoldenSMS_Msg 1513.91 1243.03 1218.25 1218.25 1205.29
GoldenSMS_Rec 1402.34 1228.43 1193.48 1193.48 1187.30
Cellsafe 16202.76 15604.19 15398.24 15398.24 15130.68

4.3.1. Precision

Table 4.1 shows the average chop size for each chopping algorithm and benchmark program.
Since all evaluated RRC variants compute the same chops, they are subsumed by column
‘RRC’. The measured values demonstrate that context-sensitive chopping is able to reduce chop
sizes significantly: The RRC chops are on average 13.3% smaller than the ones based on naïve
intersection (SIC), in the best case even about 31.3% (for KnockKnock).

The simple, well-known optimization applied in IC turns out to be very effective: The RRC
chops are on average only 2.2% smaller than the IC chops. Fixed-point chopping reduces
imprecision even more: The FC chops are on average only 0.4% bigger than the RRC chops.
For 10 out of our 22 programs, the difference is even below 0.1%. Notably, several of our larger
programs are amongst these 10 programs (e.g. Daisy and DayTime), so FC’s effectiveness is
not restricted to small and simple programs.

The differences between Opt-1 and FC are marginally small – in Table 4.1 they are only
visible for DayTime and GoldenSMS_Key. In fact, only for 47 out of our 220,000 chopping

149

4. Chopping

Table 4.2.: Average execution time per chop (in milliseconds).

Name SIC IC Opt-1 FC RRC
Unopt. SMC Orig.

Example 9 7 9 9 48 17 17
ProdCons 12 10 13 13 74 33 26
DiskScheduler 12 9 11 12 45 21 18
AlarmClock 13 9 12 13 68 25 23
DiningPhils 24 18 23 25 62 41 38
LaplaceGrid 18 13 18 21 77 35 29
SharedQueue 33 23 37 37 1,274 74 139
EnvDriver 76 59 94 124 18,325 151 1,097
KnockKnock 73 40 49 58 556 83 83
Daisy 206 149 254 326 103,880 1,468 2,784
DayTime 347 279 501 721 296,799 1,295 8,491
Logger 16 9 14 14 230 22 40
Maza 25 16 26 36 896 38 100
Barcode 15 8 10 11 52 8 14
Guitar 25 16 22 24 245 21 36
J2MESafe 47 31 50 67 4,239 106 218
HyperM 22 13 14 15 36 7 12
Podcast 65 41 61 77 2,761 63 180
GoldenSMS_Key 52 31 48 64 4,183 112 284
GoldenSMS_Msg 48 23 33 42 2,120 60 140
GoldenSMS_Rec 39 23 32 41 1,598 56 114
Cellsafe 400 353 658 951 185,975 1,553 5,213

criteria – 26 in AlarmClock, 18 in DayTime and 1 in each Maza, J2MESafe and GoldenSMS-
Msg – Opt-1 and FC computed different results. For these 47 chops, FC needed three loop
iterations, two iterations removing spurious nodes and a last one to detect the fixed-point. For
the other chops, it iterated the loop twice, thus basically performing Opt-1 plus an additional
loop iteration detecting the fixed-point.

4.3.2. Runtime Behavior

Table 4.2 shows the average execution time per chop in milliseconds the different algorithms
needed. The execution times measured for our three RRC variants reveal that the 3rd step
of RRC – the computation of the same-level chops – is the critical part concerning runtime
performance. The naïve iterative approach taken in RRC-Unopt did not scale well for our larger
programs. For Cellsafe, GoldenSMS-Rec and EnvDriver it was more than 100 times slower than
RRC-SMC. Surprisingly, RRC-SMC was the most performant variant, even though the original

150

4.4. Context-Sensitive Chopping of Concurrent Programs

RRC is asymptotically faster. It was faster than RRC for 15 out of 22 programs, particularly for
the larger programs. On average, it was 2.2 times faster than RRC.

Given its imprecision, algorithm SIC performed rather poorly. For 4 programs it was even
slower than RRC-SMC. IC was by far the fastest algorithm, followed by Opt-1 and FC. Algo-
rithm RRC-SMC emerged to be competitive with the intersection based algorithms, even being
fastest for HyperM. On average, RRC-SMC needed only twice as much time as the fastest
algorithm, IC.

4.3.3. Study Summary

Concerning context-sensitive chopping, our evaluation shows that the unoptimized version of
RRC is not practical. An application should always employ one of the optimized versions. Sur-
prisingly, RRC-SMC was on average twice as fast as the original RRC and seems to be the most
practical variant for middle-sized programs. However, as the original RRC is asymptotically
faster than RRC-SMC, this might be different for larger programs.

In our opinion, naïve intersection-based chopping as done by algorithm SIC turns out to be
impractical: In view of its imprecision it exhibits a poor runtime performance. It also has no
advantage in being easy to implement because IC, Opt-1 and FC have a similar implementation
effort – one basically needs context-sensitive backward and forward slicers. Algorithms FC
and Opt-1 emerge as a genuine alternative to RRC-SMC: FC is almost as precise, its runtime
is often faster and it is much easier to implement. A very interesting algorithm is Opt-1: Its
computed chops were in almost all cases identical to the FC chops and it is noticeably faster.

4.4. Context-Sensitive Chopping of Concurrent Programs

A context-sensitive chop of a CSDG is defined as follows:

Definition 4.4 (Context-sensitive chops). The (unbound) context-sensitive chop of a CSDG G

for chopping criterion (s, t) consists of the set of nodes

{n | ∃s →∗
cs t in G that contains n}.

Intersection-based chopping in combination with the iterated two-phase slicer enables fast
and simple chopping of concurrent programs. Our first algorithm, abbreviated with CIC (con-

current intersection chopper), intersects the backward slice for t and the forward slice for s

computed with the I2P slicer. This algorithm is the easiest chopping algorithm for concurrent
programs. Our second algorithm, the iterated two-phase chopper (I2PC) computes a backward
slice for t and then a forward slice for s, which only visits the nodes already visited during the
backward slice. Its runtime complexity is in O(|E|), like that of the underlying I2P slicer. Our

151

4. Chopping

w = p * p

thread_3

int p = z

control dependence

data dependence
interference dependence

main

i = 0

 j = w

v = i

j = j + 1

 thread_1

k = v

x = k + 1
z = z+y

print(z)

l = l + 1

thread_2

y = l * w

z = x

1

2

3

6

l = v
4

5

7
8

9
10

11

12

13

14

15

16

17

18

12 thread_2():
13 z = x;
14 z = z + y;
15 print(z);

16 thread_3():
17 p = z;
18 w = p * p;

 v,w,x,y,z; // shared variables

 1 main():
 2 i = 0;
 3 j = w;
 4 v = i;
 5 j = j + 1;

 6 thread_1():
 7 k = v;
 8 l = v;
 9 x = k + 1;
10 l = l + 1;
11 y = l * w;

void

void

void

void

int
in t

in t
in t

in t

in t

Figure 4.6.: The context-sensitive chop for chopping criterion (2,5).

third algorithm, CFC, extends the fixed-point chopper from section 4.2 by substituting the two-
phase slicers with iterated two-phase slicers. It has the same runtime complexity as the original
fixed-point chopper.

As in the case of sequential programs, intersection-based chopping of concurrent programs
is not context-sensitive. Unfortunately, the RRC cannot be applied to concurrent programs, due
to interference dependence. Interference edges cannot be treated as the other kinds of edges
because they cross procedure borders arbitrarily, breaking the well-formedness of SDGs for
sequential programs. Our context-sensitive algorithm, the context-sensitive chopper (CSC), is
an extension of the RRC able to handle interference dependence and has the same runtime
complexity. The CSC is based on the following observation: A chop in a concurrent pro-
gram can be divided into a set of sequential chops. Figure 4.6 presents an example: It shows
four threads communicating via shared variables (for simplicity of presentation, all threads are
assumed to happen in parallel to each other). The chop from statement 2 to statement 5 in
main is highlighted gray. It can be partitioned into the thread-local sets {2,3,4,5}, {7,9,11},
{13,14} and {17,18}. As one looks closer, these sets correspond to the sequential chops
RRC({2,3},{4,5}) = {2,3,4,5}, RRC({7,11},{9,11}) = {7,9,11}, RRC({13,14},{13}) =
{13,14}, and RRC({17},{18}) = {17,18}. These chopping criteria have the following prop-
erty: The source criterion contains every node at which the whole chop enters the according
thread via a concurrency edge and the original source criterion if it lies in that thread, e.g. {2,3}
in main. The target criterion contains every node at which the whole chop leaves the thread via

152

4.4. Context-Sensitive Chopping of Concurrent Programs

Algorithm 4.5 CSC: Context-sensitive chopping of concurrent programs.
Input: A chopping criterion (s, t).
Output: The chop from s to t.

// collect the set I of concurrency edges lying in the I2PC chop
// this should be done during the I2PC chop, to increase performance
I = {m → n | m,n ∈ I2PC(s, t)∧m → n is a concurrency edge}
S = {s} // a set for the source criterion
T = {t} // a set for the target criterion

// build the chopping criterion
for all m → n ∈ I

S = S∪{n} // add sink node n to the source criterion
T = T ∪{m} // add source node m to the target criterion

// compute the chop with the Reps-Rosay chopper
C = RRC(S,T)
return C

a concurrency edge and the original target criterion if it lies in that thread, e.g. {4,5} in main.
So if we have the concurrency edges that belong to the whole chop, we are able to compute
the single sequential chops context-sensitively using the RRC. The CSC employs the I2PC to
determine these edges, using a modified I2PC that collects the concurrency edges I that lie in
its chop. Then, it picks for every thread T the concurrency edges E ⊆ I that enter T and the
concurrency edges L ⊆ I that leave T . Let NE be the sink nodes of the edges E, i.e. the nodes
where T is entered, and let NL be the source nodes of the edges L, i.e. the nodes where T is
left. The chop RRC(NE ,NL) is the context-sensitive sequential chop from NE to NL. The chop
for the whole program consists of the union of these chops for all threads. This algorithm has
the same asymptotic runtime behavior as the original RRC: The worst-case runtime complexity
of the I2PC is in O(|E|). As the subgraphs of the single threads in a CSDG are disjoint, the
computation of the sequential chops using the RRC is in O(|E| ∗MaxFormalIns). Thus CSC’s
worst-case runtime complexity is in O(|E| ∗MaxFormalIns).

Figure 4.5 shows pseudocode for the CSC. The second step can be computed by a single
call of RRC because the subgraphs of the threads in a CSDG are disjoint and RRC ignores
concurrency edges: The source criterion is formed by the sink nodes of all concurrency edges
in I plus the original source criterion, and the target criterion is formed by the source nodes of all
concurrency edges in I plus the original target criterion. In our example, the concurrency edges
are I = {4 →id 7,9 →id 13,13 →id 17,18 →id 3}. The source criterion is S = {2,3,7,13,17},
the target criterion is T = {4,5,9,13,18}, and the chop CSC(2,5) is computed by RRC(S,T).

At first glance, it is not clear that CSC is context-sensitive, because set I is computed by a
context-insensitive technique. However, we can show that each concurrency edge in I belongs
to the context-sensitive chop. If we traverse a concurrency edge towards node n in thread θ ,

153

4. Chopping

then we do not know in which calling context we reach n, since interleaving cannot be forecast
in general. We have to assume conservatively that we reach n in every possible context of n.
Hence, if a concurrency edge m → n is in I, then every possible instance of n is in the context-
sensitive forward slice for s and there must exist at least one instance of n in the context-sensitive
backward slice for t. Thus, according to definition 3.10, there exists a context-sensitive path
from s to t via edge m → n.

Theorem 4.1. Let G be a CSDG, and let CSC(s, t) be the chop from s to t in G computed by the

algorithm in Fig. 4.5. For every node n in G, the following holds:

n ∈CSC(s, t)⇔∃ a context-sensitive path s →∗ n →∗ t.

Proof.

‘⇒’For every node v ∈CSC(s, t), there exist nodes s′ ∈ S and t ′ ∈ T such that v ∈ RRC(s′, t ′)

(which follows from lemma 4.1), thus there exists a context-sensitive sequential path
p : s′ →∗ v →∗ t ′ that can be generated from nonterminal realizable by grammar Hconc

of definition 3.10. We are left to show that we can extend p to a context-sensitive path
q : s →∗ s′ →∗ v →∗ t ′ →∗ t. We distinguish four cases:

1. s = s′∧ t = t ′

In this case, q = p and is therefore context-sensitive.

2. s = s′∧ t 6= t ′

According to the creation of set T of the chopping criterion in Alg. 4.5, there exists a
context-sensitive path t ′→ t ′′→∗ t such that t ′→ t ′′ is a concurrency edge (because t ′

has to be visited by the backward slicer after traversing a concurrency edge). Thus
t ′ → t ′′ →∗ t has the form conc (realizable conc)∗ realizable. The concatenation
s′ →∗ v →∗ t ′ → t ′′ →∗ t can be generated from nonterminal conc_realizable.

3. s 6= s′∧ t = t ′

According to the creation of set S of the chopping criterion in Alg. 4.5, there exists a
context-sensitive path s →∗ s′′ → s′ such that s′′ → s′ is a concurrency edge (because
s′ has to be visited by the forward slicer after traversing a concurrency edge). Thus
it has the form (realizable conc)∗ conc. The concatenation s →∗ s′′ → s′ →∗ v →∗ t ′

can be generated from nonterminal conc_realizable.

4. s 6= s′∧ t 6= t ′

This is simply the combination of the two previous cases.

‘⇐’We can rewrite the path as s →∗ s′ →∗ v →∗ t ′ →∗ t such that s′ →∗ v →∗ t ′ is a context-
sensitive sequential path, s′ is either s or is preceded by a concurrency edge and t ′ is

154

4.5. Timing-Sensitive Chopping

 call foo

control dependence

data dependence

call or parameter edge

1

4 5

6

3

9

interference dependence

main thread_1

p = x-2

y = q * 3

a = y + 1

 b = a-4

x = b/a

 x, y;

 main():
 p = x - 2;
 q = foo(p);
 y = q * 3;

 foo(f):
 f + 1;

 foo

return f+1
summary edge

2

7

8

10

11

12

13

14 thread_1 ():
 a = y + 1;
 b = a * 4;
 x = b / a;

 p q

 f f+1

void
int
in t

in t in t

in t
in t

void

re tu rn

int

Figure 4.7.: Chops for chopping criterion (8,13). The gray shaded nodes mark the context-sensitive
chop, the dark gray shaded nodes mark the timing-sensitive chop.

either t or succeeded by a concurrency edge. We have to show that s′ ∈ S and t ′ ∈ T .
In that case the algorithm is guaranteed to compute the chop RRC(s′, t ′), from which
v ∈ CRC(s, t) follows. We have that s, t,s′, t ′ ∈ I2PC(s, t) because the path is context-
sensitive, wherefore the backward slicer and later the forward slicer of the I2PC chopper
visit these nodes. If s′ = s or t ′ = t, s′ ∈ S or t ′ ∈ T follows trivially. For the other cases,
the concurrency edge incoming to s′ or outgoing from t ′ lies in the I2PC chop and is added
to set I. It follows s′ ∈ S and t ′ ∈ T .

4.5. Timing-Sensitive Chopping

A chop chop(s, t) is timing-sensitive if it contains exactly the nodes on all timing-sensitive paths
between s and t in the CSDG.

Definition 4.5 (Timing-sensitive chop). A timing-sensitive chop of a CSDG G for a chopping

criterion (s, t) consists of the set of nodes

{n | ∃cs →∗
ts cn →∗

ts ct in G}.

155

4. Chopping

control dependence

data dependence

3

5

interference dependence

 b,c,n,y;

 1 main ():
 2 y = 0;
 3 z=y+b+c;

 4 thread_1 ():
 5 b = n+y;
 6 a = b;
 7 c = y+a;

 8 thread_2():
 9 n = 1 / c;
10 m = n;

2

4

6

7

8

9

main thread_1 thread_2

y = 0

z = y + b + c

b = n + y

a = b

c = y+a

n = 1/c

m = n

1

10

in t

in t

in t

in t

void

void

void

Figure 4.8.: Intersecting timing-sensitive slices does not yield timing-sensitive chops. The suchlike com-
puted chop for chopping criterion (2,3) contains time travels.

Since context-sensitive chopping treats interference dependence as being transitive, its com-
puted chops may be timing-insensitive. Consider the example in Fig. 4.7. The gray shaded
nodes are the context-sensitive chop CSC(8,13). However, node 14 cannot influence node 13,
because it cannot be executed before node 13. Similarly, node 8 cannot influence nodes 2, 4
and 7, so all these nodes should be removed from the chop. The first intuitive idea is to employ
timing-sensitive slicing algorithms for that task. One first computes the context-sensitive chop
CSC(s, t) and then removes every node that is not in both the timing-sensitive backward slice
for t and the timing-sensitive forward slice for s. This technique would determine the dark gray
shaded nodes as the chop for (8,13), which is timing-sensitive. However, it does not always
compute timing-sensitive chops, for which Fig. 4.8 provides an example. The depicted graph
shows the suchlike computed chop for criterion (2,3). The timing-sensitive backward slice for
node 3 consists of the nodes {1, 2, 3, 4, 5, 6, 7, 8, 9}. The timing-sensitive forward slice for
node 2, computed on these nodes2, visits the nodes {2, 3, 5, 6, 7, 9}, which also form the re-
sulting chop. Unfortunately, node 2 cannot influence node 3 via node 9: All paths from node
2 to node 3 via node 9 contain the path 7 → 9 → 5, which is timing-insensitive, as it leaves
thread_1 at node 7 and reenters it later at node 5. We therefore call this algorithm the almost

timing-sensitive chopper (ATSC). A straightforward solution is to inspect every possible path
in the chop for timing-insensitivity. Fortunately, there is an easier and more efficient solution.

Let us examine why ATSC is not timing-sensitive. To keep matters simple, we assume that all
threads of a program may happen entirely in parallel. The prepending property in definition 3.1
ensures that a path traversed by a context-sensitive slicer can only become timing-insensitive
due to leaving and reentering a thread via concurrency edges. As explained in section 3.6,

2The well-known optimization, to omit the intersection.

156

4.5. Timing-Sensitive Chopping

Table 4.3.: The state tuples for chop(2,3) in Fig. 4.8.

Node State tuples in the backward slice State tuples in the forward slice
2 [2,⊥,⊥], [2,7,⊥], [2,5,⊥] [2,>,>]
3 [3,⊥,⊥] [3,>,>], [3,5,>], [3,7,>]
5 [3,5,⊥] [2,5,>]
6 [3,6,⊥] [2,6,>]
7 [3,7,⊥] [2,7,>]
9 [3,5,9] [2,7,9]

propagating the execution states of threads in form of state tuples during the slice enables to
remain on timing-sensitive paths. Let us take a look at the state tuples computed by the chop
AT SC(2,3) in Fig. 4.8. Every node has only one context, so we represent it simply by the
node itself. The initial state tuple for the backward slice for node 5 is [⊥,⊥,⊥], where the
first entry denotes main’s state, the second thread_1’s state and the third thread_2’s state.
The slicer visits the gray highlighted nodes3 with state tuples {(3, [3,⊥,⊥]), (2, [2,⊥,⊥]),

(7, [3,7,⊥]), (6, [3,6,⊥]), (5, [3,5,⊥]), (2, [2,7,⊥]), (2, [2,5,⊥]), (9, [3,5,9])}. The traversal
from (9, [3,5,9]) to node 7 is rejected because node 5 is not reachable from node 7. The initial
state tuples for the forward slice for node 2 is [>,>,>] (dual to ‘⊥’, ‘>’ represents a state that
reaches every context). The slicer visits the gray shaded nodes with state tuples {(2, [2,>,>]),

(3, [3,>,>]), (5, [2,5,>]), (6, [2,6,>]), (7, [2,7,>]), (3, [3,5,>]), (3, [3,7,>]), (9, [2,7,9])}.
The traversal from (9, [2,7,9]) to node 5 is rejected because node 5 is not reachable from node
7. Table 4.3 summarizes these state tuples.

We observe the following property of state tuples: A state tuple for a context c computed by
the timing-sensitive backward slicer for a slicing criterion t represents a sequence of interference
dependences over which c may influence t. For example, state tuple [3,5,9] of node 9 describes
the sequence 9 →id 5 →id 3, through which node 9 may influence node 3. State tuple [2,7,⊥] of
node 2 describes the sequence 2 →id 7, through which node 2 may influence node 3, provided
that node 3 is executed after node 7. A program execution may only trigger such a sequence
if its threads have not executed further than the associated state tuple. Assume that a program
execution reaches node 9 in state [3,6,9], then it is impossible for node 9 to influence node 3
via 9 →id 5 →id 3 in that program run because node 5, which is needed to transfer the effects
of node 9 to node 3, has already been executed. The program execution must not exceed the
states in state tuple [3,5,9] before reaching node 9. Formally, the state tuple describing its
thread execution states has to be restrictive to [3,5,9]. This observation can be generalized as
follows: Let Γback(c, t) be the set of state tuples in which the timing-sensitive backward slice
for a node t visited a context c. If a program execution reaches context c with state tuple Γ,

3We ignore the visited nodes that lie outside the chop.

157

4. Chopping

Algorithm 4.6 insertChop: Manages the updating of the worklists.
Input: A state tuple Γold , a context cm, a worklist W , a set M, a set STATES.

/* Create an updated state tuple. */
Γm = updateChop(cm,Γold)

/* Run the restrictive state tuple optimization. */
for all (m,cm,Γ

′
m) ∈ M :

if @ thread θ : ¬reaches(Γ′
m[θ],Γm[θ])

return // the new element is redundant

/* Check wheter the traversal is timing-sensitive wrt. the backward slice. */
for all (m,cm,Γ

′
m) ∈: STATES

if ∃ thread θ : ¬reaches(Γm[θ],Γ
′
m[θ])

return // the traversal is not timing-sensitive

/* Insert the configuration into the worklist and mark it as visited. */
W =W ∪{(m,cm,Γm)}
M = M∪{(m,cm,Γm)}

Algorithm 4.7 Procedure updateChop: Updating state tuples.
Input: A context c and a state tuple Γ.
Output: A state tuple Γ′.

Γ′ = Γ // create a copy of Γ

Let θ(c) be the thread of c
if θ(c) is not a multi-thread // leave multi-threads alone

Γ′ = [c/θ(c)]Γ′ // set θ(c)’s state to c
return Γ′

then Γback(c, t) must contain at least one state tuple Γback to which Γ is restrictive. Otherwise, c

cannot influence t in this program execution.

The state tuples computed by a timing-sensitive forward slicer have a similar property. They
indicate if in a certain program execution slicing criterion s may influence a context c. In
contrast to the state tuples computed by the backward slicer, these state tuples mean that a
program execution has to execute at least as far in order to trigger the associated sequence of
interference dependences. Consider the state tuple [2,7,9] of node 9. Assume that a program
execution reaches node 9 in state [1,7,9], then it is impossible for node 2 to influence node 9 via
2→id 7→id 9 in that program run – main must have reached node 2 to do so. Or more formally,
state tuple [2,7,9] has to be restrictive to the state tuple in which the program execution reaches
node 9.

We transfer that observation to chopping. Assume that the chopping algorithm ATSC visits
context c with state tuples Γback(c, t) during the backward slice and state tuples Γforw(c,s) during
the forward slice. There must exist state tuples Γforw ∈ Γforw(c, t), Γback ∈ Γback(c,s) such that
Γforw is restrictive to Γback, otherwise c cannot be in the timing-sensitive chop for s and t,
because no program execution is able to satisfy both conditions. In our example, Γforw(9,2) for

158

4.5. Timing-Sensitive Chopping

Algorithm 4.8 TSC: A timing-sensitive chopper.
Input: A CSDG G, a chopping criterion (s, t).
Output: The chop from s to t.

Compute the timing-sensitive slice for t via Alg. 3.12
Let STATES be the set of state tuples created during the slice for t
W = /0,Winner // two worklists
M = /0 // a set storing the visited contexts
Γ0 = [>, . . . ,>] // an initial state tuple, having one entry per thread
for all cs ∈C(s)
insertChop(Γ0,cs,W,M,STATES)

repeat // iterate a thread-local forward slicer until W is empty
remove first configuration (n,cn,Γn) from W
Winner =Winner ∪{(n,cn,Γn)} // initialize the next iteration

while Winner 6= /0
remove first configuration (n,cn,Γn) from Winner

S = S∪{n} // add node n to the slice
for all n → m

if n → m is an interference edge
for all cm ∈C(m) : θ(cm) 6= θ(cn)∨θ(cn) is a multi-thread // switch threads

if reaches(Γ[θ(cm)],cm) // remain on timing-sensitive paths
insertChop(Γn,cm,W,M,STATES)

else if n → m is a fork or fork-in edge
Let cm be the context of m connected with cn through n → m
if cm 6= ε // if cm does not exist, the traversal is context-insensitive
insertChop(Γn,cm,W,M,STATES)

else if n → m is a join-out edge
for all cm ∈C(m)
insertChop(Γn,cm,W,M,STATES)

else if n → m is a parameter-out edge
Let cm be the context of m directly successing cn or equal to cn in cn’s context graph
if cm 6= ε // if cm does not exist, the traversal is context-insensitive
insertChop(Γn,cm,Winner,M,STATES)

else if n → m is a parameter-in or call edge
Let cm be the context of m directly successing cn or equal to cn in cn’s context graph
insertChop(Γn,cm,Winner,M,STATES)

else // n → m is an intra-procedural edge
for all cm ∈C(m) : proc(cm) == proc(cn)∧ reaches(cn,cm) // remain in the procedure
insertChop(Γn,cm,Winner,M,STATES)

until W = /0
return S

node 9 is {[2,7,9]} and Γback(9,3) is {[3,5,9]}. There exists no possible program execution in
which node 2 influences node 3 via node 9, because a state tuple Γ to which [2,7,9] is restrictive
cannot be restrictive to [3,5,9]. Our last algorithm, the timing-sensitive chopper (TSC), exploits
that property to compute timing-sensitive chops. Its pseudocode is shown in Fig. 4.8. Called for

159

4. Chopping

a chopping criterion (s, t) it first calls our timing-sensitive backward slicer, Alg. 3.12, for t and
retrieves the set STATES of all configurations that were visited during the backward slice. Then,
it performs a timing-sensitive forward slice for s, which is basically dual to Alg. 3.12. The major
difference is that the update mechanism for the state tuples shown in Alg. 4.7 does not deactivate
threads anymore because the traversal is in forward direction. Procedure insertChop in Alg.
4.6 is an extension of Alg. 3.13, which checks additionally whether the determined state tuple
of context cm is restrictive to any state tuple of a configuration of cm stored in STATES. Note
that the restrictive state tuple optimization in insertChop is inverted: Concerning forward
slicing, a state tuple Γ is redundant if the same context has been annotated with a state tuple Γ′

restrictive to Γ.

4.5.1. Optimizations

A very effective optimization for ATSC and TSC is to compute first a chop with the I2PC
algorithm to detect if the chop is empty. In that case, they do not not need to execute the
expensive timing-sensitive slicers and simply return the empty set.

4.5.2. Correctness of TSC

The following theorems prove that TSC computes correct chops. Theorem 4.2 proves that the
forward slicer computes correct forward slices, given that set STATES contains all possible
configurations of the program.

Theorem 4.2. Let G = (N,E) be a CSDG. Let S be the set of nodes visited by the forward slicer

in Alg. 4.8 for a slicing criterion s ∈ N. If STATES contains all possible configurations of the

nodes in G, the following holds for every node n in G:

∃cs →∗
ts cn in G ⇒ n ∈ S.

Proof. We have to show that the slicer visits context cn, which we show by a forward iteration
over path Φ = cs →∗

ts cn. Assume that the iteration arrives at a context edge c → cm, then we
have to show three properties to conclude that the slicer traverses that edge and visits context
cm. First, worklist Winner must at some point contain a configuration of c. Second, the slicer
must be able to detect the context edge. And third, it must be able to add a configuration of cm

to W or Winner.
Since the initialization of the algorithm is bound to add a configuration of cs to worklist W , we

have a starting point for our iteration. Now, take the next context edge cm → co in Φ. We know
that worklist Winner contains at some point at least one configuration (o,co,Γ) of co. Since the
number of possible configurations is finite and each configuration can be added to the worklists
at most once, the configuration is eventually processed by the thread-local slicer. Trivially, the

160

4.5. Timing-Sensitive Chopping

slicer finds the CSDG edge e = o → m associated with the context edge. It remains to show that
it is able to retrieve context cm, which is shown by a case distinction over the kind of edge e.

• e is an interference edge
Since Φ is timing-sensitive, the state σ of cm’s thread in Γ is either > or a context d on
the subpath of Φ ending at cm or a context d′ that reaches d on the subpath of Φ ending at
cm (the latter case accounts for the restrictive state tuple optimization). If the state is >,
then the slicer is trivially able to find cm. Otherwise, the update mechanism guarantees
that d stems from cm’s thread, which is not a multi-thread. Since Φ is timing-sensitive, d

reaches cm (and d′ reaches cm, since ‘reaches’ is transitive). Therefore, the slicer is able
to find cm.

• e is an interference edge
Let θ(cm) be cm’s thread. First, lemma 3.2 shows that θ(cm) has not been deactivated by
our update mechanism during the hitherto traversal of the path. Thus, the state of cm’s
thread in Γ is either ⊥ or a context d on the subpath of Φ starting behind cm or a context
d′ reachable by d (the latter case accounts for the restrictive state tuple optimization).

• e is a fork or fork-in edge
The slicer retrieves the context c that is connected with cn via an incoming fork edge. If c

is a context of m, the slicer proceeds with that context. Thus, the slicer is able to find cm.

• e is a join-out edge
The slicer proceeds with all contexts of m.

• e is an intra-procedural edge
Context cm must stem from the same procedure as co and must be reachable by co. Oth-
erwise, the dependence denoted by e would not exist. Thus, the slicer is able to find
cm.

• e is an interprocedural edge
Since the context of a parameter-passing node is mapped to the context of the associated
call-, return-, start- or exit node, context cm is either a direct successor of co in the context
graph or, if the contexts are folded in the same fold node, it equals co. Thus, the slicer is
able to find cm.

Having found cm, the slicer can proceed in two different ways: it embeds cm in some configu-
ration and either adds it to W or Winner or rejects it due to the restrictive state tuple optimization,
which means that a configuration of cm has been added to W or Winner sometime earlier. Either
way, at least one configuration of cm has been added to W or Winner.

161

4. Chopping

Since path Φ is finite, the iteration eventually reaches the last edge in Φ and the slicer adds a
configuration of cn to W or Winner and thus, n to the slice S.

Theorem 4.2 proves that TSC computes correct chops.

Theorem 4.3. Let G be a CSDG and T SC(s, t) be be the chop from s to t in G computed by

Algorithm 4.8. The following holds for every node n in G:

∃cs →∗
ts cn →∗

ts ct in G ⇒ n ∈ T SC(s, t).

Proof. We have to show that both slicers visit context cn. This is clear for the backward slicer,
because the path is timing-sensitive. The forward slicer only visits cn if it can visit every context
c in the subpath cs →∗

ts cn with a state tuple Γ
forw
c restrictive to that state tuple Γback

c with which
the backward slicer has visited c. We show by an iteration over the subpath cs →∗

ts cn that this
is the case. The iteration terminates because the subpath is finite.

The iteration starts at cs, which is initially annotated with a state tuple Γ
forw
cs in which the state

of cs’s thread is cs and the states of the other threads are set to >. We know that the state of cs’s
thread in Γback

cs
must also be cs, so it follows that Γ

forw
cs is restrictive to Γback

cs
.

We now traverse from the current context ci in the path to the successor ci+1. Let Γ
forw
ci+1 be the

state tuple with which the forward slicer visits ci+1 and let Γback
ci+1

be the state tuple with which
the backward slicer has visited ci+1. For every thread θ , we have the following three cases:
θ ’s state in Γ

forw
ci+1 is either >, a context c j lying on the subpath from cs to ci+1 or a context d j

that reaches a context c j lying on the subpath from cs to ci+1. The latter case accounts for the
restrictive state tuple optimization.

Since > reaches every context, it remains to handle the second and third case. We know that
θ ’s state in Γback

ci+1
cannot be > because otherwise the backward slicer would not be able to visit

context c j later on. It must either be ⊥, a context ck lying on the subpath from ci+1 to ct or a
context dk reachable by a context ck lying on the subpath from ci+1 to ci+1. Due to our update
mechanism, c j and ck stem from thread θ . Since the whole path is timing-sensitive and the
reaches relation is transitive, it follows that θ ’s state in Γ

forw
ci+1 reaches θ ’s state in Γback

ci+1
.

It follows that Γ
forw
ci+1 is restrictive to Γback

ci+1
.

Since the TSC employs Alg. 3.12, its chops are not completely timing-sensitive.

4.6. Evaluation

We have integrated the presented chopping algorithms for concurrent programs into Joana and
evaluated them on the benchmark used in section 3.12, using the same hardware and settings.

162

4.6. Evaluation

For each benchmark program, we randomly determined 1,000 chopping criteria consisting of
one source and one target node, with the exception of KnockKnock, DaisyTest, DayTime, Mol-
Dyn, RayTracer and MonteCarlo, where we determined only 100 chopping criteria, because
the algorithms ATSC and TSC were not performant enough. We measured the average chop
sizes and execution times of our chopping algorithms. Furthermore, we investigated whether
the more precise algorithms are able to detect more empty chops than the imprecise ones. This
is valuable information for analyses that employ chopping as a preprocessing step, because if a
chop chop(s, t) is empty, it is guaranteed that s cannot influence t in any possible program run.
In that case, the applications may omit the actual main analysis. In summary, we evaluated the
following algorithms:

• CIC, intersects the forward slice for s with the backward slice for t, computed by the I2P
slicer.

• I2PC, computes a backward slice for t on the forward slice for s, using the I2P slicer.

• CFC, basically the fixed-point chopper shown in Alg. 4.4, but employing the I2P slicer.

• CSC, our context-sensitive chopper shown in Alg. 4.5.

• ATSC, the almost timing-sensitive chopper.

• TSC, our timing-sensitive chopper shown in Alg. 4.8.

4.6.1. Precision

Table 4.4 shows the average chop size for each chopping algorithm and program. ATSC and
TSC have no entries for DayTime, because they could not compute the chops in reasonable
time. Table 4.5 summarizes these results for the three parts of our benchmark and presents, for
a chosen number of pairs of chopping algorithms, the ratio of the sizes of the chops.

Context-sensitive chopping The context-sensitive chops computed by CSC were on average
6% smaller than the imprecise ones computed by CIC, and even about 25% smaller for several
programs (for Barcode, Series, LUFact, SOR and SparseMatmult). Similar to their pendants for
chopping of sequential programs, the intersection-based algorithms I2PC and CFC were almost
as precise as the context-sensitive CSC. On average, the CSC chops were only 0.9% smaller
than the I2PC chops and 0.1% smaller than the CFC chops.

It is interesting that context-sensitivity has not the same impact on chopping concurrent pro-
grams as it has on chopping sequential programs. A subset of these programs was used in the
evaluation in section 4.3, where the context-sensitive chops were 13% smaller than the naïve
intersection-based ones. The cause of that effect seems to be that the context-sensitive traversal
of a CSDG drops the current context when it switches threads via concurrency edges.

163

4. Chopping

Table 4.4.: Average size per chop (number of nodes).

Program CIC I2PC CFC CSC ATSC TSC
Example 303.87 295.97 289.60 289.60 289.60 289.60
ProdCons 669.53 669.51 669.50 669.50 579.43 577.00
DiskScheduler 890.64 890.58 889.75 889.75 511.8 508.24
AlarmClock 1522.56 1522.49 1522.49 1522.49 1385.10 1041.08
DiningPhils 1436.51 1436.32 1436.30 1436.30 688.93 677.53
LaplaceGrid 1798.02 1797.48 1796.60 1796.60 1152.95 993.88
SharedQueue 4212.27 4212.05 4212.05 4212.05 2560.50 2361.00
EnvDriver 3292.04 3192.71 3179.76 3179.42 3179.76 3179.42
KnockKnock 16416.76 16416.52 16390.63 16390.63 6906.12 4016.11
DaisyTest 32697.40 32697.40 32697.40 32697.40 22843.76 21910.71
DayTime 37943.78 37943.52 37906.23 37906.22 – –
ForkJoin 4457.70 4457.61 4457.61 4457.61 469.00 414.08
Sync 4601.54 4601.44 4601.43 4601.43 671.39 619.23
Barrier 4421.42 4421.34 4421.34 4421.33 680.43 631.81
Series 660.55 499.19 490.76 490.41 142.24 133.19
LUFact 790.57 615.77 607.89 607.67 150.06 130.26
SOR 637.77 485.12 479.16 479.04 104.65 95.06
SparseMatmult 616.53 469.99 462.39 462.26 100.67 97.53
Crypt 885.66 762.85 754.58 754.46 123.93 108.25
MolDyn 6615.36 6614.94 6614.94 6614.94 1084.02 867.56
RayTracer 6227.53 6227.53 6226.61 6226.61 1049.43 709.74
MonteCarlo 12942.14 12941.90 12941.90 12941.30 2904.15 2605.22
Logger 1104.71 1091.19 1091.12 1091.12 1067.17 1065.24
Maza 1982.63 1939.92 1885.45 1853.05 1864.51 1722.78
Barcode 814.74 662.49 628.68 628.30 418.35 403.36
Guitar 758.01 708.88 702.90 701.35 695.86 690.64
J2MESafe 2330.52 2173.46 2139.00 2127.47 2122.38 2108.45
HyperM 6014.95 6012.18 6012.18 6012.18 4972.65 2785.19
Podcast 6686.62 6670.88 6670.82 6670.81 2695.41 2637.46
GoldenSMS Key 2270.08 2080.67 2046.56 2043.10 2003.32 1989.76
GoldenSMS Msg 5589.13 5571.21 5548.79 5548.31 2605.53 2191.40
GoldenSMS Rec 1544.05 1368.98 1345.15 1341.50 1213.81 1209.51
Cellsafe 14288.65 13817.44 13624.31 13513.02 13528.37 13361.42

Timing-sensitive chopping The results show that timing-sensitive chopping drastically re-
duces the chop sizes. The TSC chops had on average only half the size of the CIC or CSC
chops. In individual cases, the chop sizes were reduced by 90% (for ForkJoin and RayTracer).
There is also a significant difference between the precision of ATSC and TSC. The TSC chops
were on average 9.6% smaller than the ATSC chops, in the best case, for KnockKnock, even
more than 40%.

164

4.6. Evaluation

Table 4.5.: Average ratio of the chop sizes per part of the benchmark for chosen pairs of chopping algo-
rithms. Each column shows the ratio of the average slice sizes of the first algorithm to those
of the second algorithm given in the column title.

I2PC vs CSC vs CSC vs CSC vs TSC vs TSC vs
CIC I2PC FPC CIC CSC ATSC

Bandera 99.5% 99.7% 100.0% 99.2% 66.2% 90.5%
Java Grande 90.2% 99.4% 100.0% 89.7% 16.9% 87.8%
JavaME 94.7% 98.3% 99.7% 93.1% 78.6% 93.0%
Total 94.8% 99.1% 99.9% 94.0% 53.5% 90.4%

Table 4.5 indicates that the benefits of timing-sensitive chopping may depend on the appli-
cation area. The gain of precision for the programs in the Java Grande benchmark was much
higher than for the other parts of the benchmark. For the Java Grande benchmark, the TSC
chops contained on average only 16.9% of the nodes contained in the context-sensitive chops,
whereas for the JavaME benchmark they contained on average about 78.6% of that nodes.

Program EnvDriver shows an interesting result: The ATSC chops were bigger than the CSC
chops. Since EnvDriver’s CSDG does not contain interference edges and thus no timing-
insensitivity, this means that ATSC is due to its intersection-based nature not context-sensitive.

4.6.2. Runtime Behavior

Table 4.6 shows the average execution time in seconds the algorithms needed for one chop.

Context-sensitive chopping Since context-sensitive chopping of concurrent programs gains
less precision compared to intersection-based chopping than in the sequential case, the CSC
is also somewhat slower than intersection-based chopping. Algorithms CIC, I2PC and even
CFC were distinctly faster than CSC. Particularly for bigger programs, KnockKnock, DayTime,
DaisyTest and MonteCarlo, CIC and I2PC were more than 10 times faster than CSC. By far the
most performant chopper in our evaluation was I2PC.

Timing-sensitive chopping The runtime evaluation shows that the high precision of timing-
sensitive chopping is at the expense of their execution times. Only for the smaller programs
ATSC and TSC could keep up with the other algorithms. For the other programs, performance
declined as expected, due to their exponential asymptotic running time. In the worst case, for
KnockKnock, a TSC chop needed almost 200 minutes on average to compute a single chop,
ATSC even needed almost 220 minutes. Noteworthy, TSC has due to its increased precision a
similar runtime performance as ATSC and even outperforms it for several programs.

165

4. Chopping

Table 4.6.: Average execution time per chop (in seconds).

Program CIC I2PC CFC CSC ATSC TSC
Example .007 .005 .007 .019 .015 .029
ProdCons .013 .011 .015 .063 .071 .128
DiskScheduler .016 .012 .023 .077 .105 .174
AlarmClock .022 .018 .029 .135 101.793 114.086
DiningPhils .050 .045 .075 .195 .212 .373
LaplaceGrid .026 .021 .045 .154 6.722 7.131
SharedQueue .058 .047 .084 .402 13.350 13.500
EnvDriver .080 .058 .125 .197 47.987 49.548
KnockKnock .249 .217 .592 2.910 13107.446 11831.954
DaisyTest .510 .498 1.020 9.546 1362.810 1350.079
DayTime .619 .580 1.674 8.177 – –
ForkJoin .075 .054 .093 .364 17.960 18.311
Sync .073 .053 .094 .368 19.374 18.862
Barrier .070 .050 .086 .336 5.821 5.867
Series .022 .011 .016 .030 .174 .184
LUFact .024 .013 .019 .035 .214 .225
SOR .022 .011 .016 .028 .166 .184
SparseMatmult .024 .012 .018 .030 .193 .204
Crypt .027 .014 .025 .046 .503 .518
MolDyn .109 .080 .146 .532 369.483 353.073
RayTracer .111 .085 .210 .539 2039.421 1768.135
MonteCarlo .219 .173 .325 2.164 169.804 178.996
Logger .020 .012 .019 .043 .055 .090
Maza .032 .022 .050 .081 .437 .449
Barcode .023 .012 .020 .027 .034 .049
Guitar .024 .012 .018 .028 .066 .085
J2MESafe .050 .031 .068 .129 .529 .633
HyperM .093 .074 .137 .483 268.581 244.084
Podcast .103 .078 .140 .409 .498 .826
GoldenSMS Key .062 .037 .076 .170 2.339 2.286
GoldenSMS Msg .111 .081 .201 .584 30.071 23.872
GoldenSMS Rec .044 .025 .046 .089 .650 .671
Cellsafe .424 .353 .946 1.988 235.551 210.810

4.6.3. Detection of Empty Chops

Table 4.7 shows how many empty chops our algorithms determined for our chopping criteria.
Even though context-sensitive chopping increased precision only about 4% on average, it was
very effective in finding additional empty chops. On average, it determined 55.7% of the chops
to be empty, compared to 42.1% empty chops found by algorithm CIC. Interestingly, I2PC, CFC
and CSC found exactly the same number of empty chops. Algorithm TSC found considerably

166

4.6. Evaluation

Table 4.7.: Percentage rate of chops within our chopping criteria that the chopping algorithms detected
to be empty.

Program CIC I2PC CFC CSC ATSC TSC
Example 57.1 63.8 63.8 63.8 63.8 63.8
ProdCons 52.9 53.1 53.1 53.1 56.3 56.3
DiskScheduler 50.4 52.5 52.5 52.5 62.1 62.1
AlarmClock 42.3 43.6 43.6 43.6 46.6 55.7
DiningPhils 44.7 48.6 48.6 48.6 59.9 59.9
LaplaceGrid 40.5 45.6 45.6 45.6 56.4 59.3
SharedQueue 41.4 43.6 43.6 43.6 59.9 62.0
EnvDriver 46.9 59.5 59.5 59.5 59.5 59.5
KnockKnock 20.0 28.0 28.0 28.0 44.0 59.0
DaisyTest 0.0 0.0 0.0 0.0 23.0 24.0
ForkJoin 43.9 45.8 45.8 45.8 79.3 79.4
Sync 42.8 45.2 45.2 45.2 71.6 71.7
Barrier 45.8 47.5 47.5 47.5 71.4 71.5
Series 46.0 79.9 79.9 79.9 89.8 90.0
LUFact 43.8 78.0 78.0 78.0 89.6 89.6
SOR 50.0 82.4 82.4 82.4 92.1 92.1
SparseMatmult 49.1 80.7 80.7 80.7 90.6 90.6
Crypt 49.0 80.5 80.5 80.5 92.0 92.0
MolDyn 41.0 45.0 45.0 45.0 71.0 71.0
RayTracer 54.0 54.0 54.0 54.0 81.0 81.0
MonteCarlo 34.0 40.0 40.0 40.0 72.0 72.0
Logger 52.6 65.9 65.9 65.9 66.6 66.9
Maza 52.1 56.7 56.7 56.7 57.1 57.2
Barcode 43.2 72.8 72.8 72.8 78.3 79.2
Guitar 52.3 76.0 76.0 76.0 76.2 76.2
J2MESafe 42.7 64.8 64.8 64.8 64.9 64.9
HyperM 34.9 42.0 42.0 42.0 42.5 64.4
Podcast 40.0 47.3 47.3 47.3 61.7 61.7
GoldenSMS Key 32.0 66.3 66.3 66.3 67.1 67.1
GoldenSMS Msg 38.4 55.3 55.3 55.3 66.7 68.1
GoldenSMS Rec 37.3 72.0 72.0 72.0 73.4 73.4
Cellsafe 26.1 44.6 44.6 44.6 44.8 44.8
Total 42.1 55.7 55.7 55.7 66.6 68.3

more empty chops than the other algorithms. On average, 68.3% of its computed chops were
empty.

4.6.4. Study Summary

Finally, we want to summarize the results of our evaluation.

167

4. Chopping

Context-sensitive chopping Compared to naïve intersection-based chopping, context-sensi-
tive chopping reduced chop sizes about 6% on average and about 25% in the best cases. Since
this gain of precision is smaller than in the case of sequential programs, CSC’s runtime per-
formance is not as competitive as that of its pendant for sequential programs. Nevertheless,
CSC seems to be practical for practical programs. As in the case of chopping for sequential
programs, there are no arguments in favor of algorithm CIC. Algorithms I2PC and CFC have a
similar implementation effort, are equally performant or even faster and are more precise. Since
both are also almost as precise as CSC, with respect to both chop sizes and finding empty chops,
they are genuine alternatives to CSC.

Timing-sensitive chopping Timing-sensitive chopping strongly increased precision. The
TSC chops were on average about 46.5% smaller than the context-sensitive chops. The TSC
also detects a significant number of empty chops that are considered not empty by the intersec-
tion-based and context-sensitive choppers. However, one has to pay a price for that precision.
The algorithms TSC and ATSC do not scale well, because the underlying technique has a worst-
case exponential runtime behavior. Overall, TSC computes smaller chops than ATSC and is able
to outperform ATSC due to its increased precision, thus we consider TSC superior to ATSC.

Threats to validity Since evaluations depend on the quality of the benchmark, we want to
discuss possible flaws of our program selection.

Our case study lacks big programs and consists only of 33 programs. Table 4.6 shows that
the execution times of timing-sensitive chopping may vary greatly between programs of similar
size (e.g. AlarmClock and DiningPhils). In order to make a robust statement about the practica-
bility of timing-sensitive chopping, an extended runtime evaluation on a much bigger and more
differentiated benchmark is needed.

In most parts of our evaluation, we have only computed 100 - 1000 chops per program.
Computing all possible chops would not have been possible in reasonable time. However, we
argue that our sample chops are sufficient for a qualitative comparison of the algorithms in
terms of precision and runtime behavior, even though the concrete numbers might differ for a
different set of chopping criteria.

Since our chopping criteria were created randomly without any filtering technique eliminat-
ing ‘nonsensical’ chopping criteria, our results should be verified for concrete applications of
chopping, whose settings may a priori exclude some kinds of chopping criteria.

Further threats to validity are possible bugs in our implementations, because the timing-
sensitive algorithms are extremely complicated.

168

4.7. Discussion

4.7. Discussion

TSC basically computes one forward and one backward slice, therefore it bears the same worst-
case runtime complexity as timing-sensitive slicing, being O(|N|pt). The present evaluation
and our recent evaluation of timing-sensitive slicing [46] indicate that timing-sensitive slicing
and chopping, using the optimizations developed so far by Krinke [75], Nanda [106] and us,
can handle programs with 5,000 -10,000 lines of code in reasonable time. New optimizations
to further relieve the combinatorial explosion remain an important issue for future work.

An interesting capacity of timing-sensitive chopping is its ability to detect empty chops that
are deemed non-empty by more imprecise techniques. Future work could explore if it is possi-
ble to detect these empty chops without computing the complete timing-sensitive forward and
backward slices. This could result in a practical timing-sensitive scanner for empty chops.

We have published earlier versions of this chapter [42, 43], which also contain evaluations of
the chopping algorithms executed on a subset of the benchmark used here. Several differences
shall be pointed out: Since Joana’s SDG generator has been developed further since then [49],
the CSDGs differ both in size and structure. Furthermore, we have developed several of our
optimizations only later, hence the ATSC and TSC algorithms used in the earlier versions do
not correspond to those presented here. This affects particularly the runtime behavior of the
algorithms. However, the qualitative results in [42, 43] support those observed in this chapter.

4.8. Related Work

Chopping originates from Jackson and Rollins’ work on modularizing SDGs for reverse en-
gineering [67]. They define chops to be confined to a single procedure. The source and the
target of a chop must be within the same procedure, and only that procedure’s code is analyzed.
They suggest an iterative approach to extend such an intra-procedural chop to procedures called
within that chop: If the chop contains a call to another procedure, another intra-procedural chop
is computed, where the parameter variables of the called procedure form the source criterion,
and the return variables of the called procedure form the target criterion. This kind of chop-
ping is called same level chopping, because it does not take callers of the initial procedure into
account.

Reps and Rosay [120] extend Jackson and Rollins’ same-level chopping to unbound chop-
ping. Their chopping algorithm, the RRC described in section 4.1.2, is context-sensitive and
the state-of-the-art algorithm for sequential programs. The authors integrated their algorithm
in the Wisconsin Program-Slicing Tool for C, which was the foundation of CodeSurfer [15], a
commercial program analysis tool for C.

Krinke [74] developed a new same-level chopper called summary-merged chopper, which is
context-sensitive, as the iterative approach of Jackson and Rollins, and much faster in practice.

169

4. Chopping

In a subsequent work [76], he introduces the concept of barrier chopping and slicing, where a
user can specify a barrier consisting of nodes or edges which must not be crossed by the chop-
ping algorithm. This permits to exclude program parts from the analysis one is not interested
in, e.g. library calls. Krinke implemented all these algorithms in the VALSOFT system [75].

170

5. Information Flow Control For Concurrent Programs

Information flow control is concerned with the security of sensitive information processed by
software. Whereas security of information is predominantly understood as an accessing prob-
lem, tackled by techniques such as access control or encryption, information flow control sees
it as a processing problem: Software that rightfully accesses sensitive information might in-
tentionally or unintentionally leak it to unauthorized sinks, violating its confidentiality, or taint
it with data from unauthorized sources, violating its integrity. It is complementary to access
control, encryption and likewise techniques and can be combined with them in order to achieve
end-to-end security, protecting sensitive information during its whole lifetime.

Sensitive information flow in a program can refer to confidentiality or integrity. Information
flow preserves confidentiality if information from confidential sources does not flow to unau-
thorized recipients. It preserves integrity if information from unauthorized sources does not
flow to confidential recipients. Biba [22] observed that integrity is dual to confidentiality, so an
IFC technique verifying the one can be adopted to verify the other one. This thesis focuses on
confidentiality, the presented techniques can be adopted to verify integrity as well.

Types of information leaks

Programs contain various kinds of information flow, which may intentionally or unintentionally
unveil confidential data. The most intuitive kinds of information flow are explicit and implicit

flow, the former resulting from assignments and the latter from conditional branching. The pro-
gram on the left side of Fig. 5.1 leaks at statement print(0) information about the input PIN
being smaller than 1234, which is an illicit implicit flow. The program also directly prints the
PIN stored in variable y, which is an illicit explicit flow. Concurrent programs may additionally
contain possibilistic and probabilistic channels. Possibilistic channels are information leaks
that depend on the program’s interleaving – a program run may leak information or not. This
happens in the program in the mid of Fig. 5.1, which only leaks the PIN via print(x) if the
assignment x = y happens between the two statements of thread 1. Probabilistic channels also
depend on interleaving, but leak information through the probability distribution of interleaving
orders. The program on the right side of Fig. 5.1 serves as an example: There is no possibilistic
channel leaking information about the PIN in this program, because the printed value of x is
always 0 or 1. But the PIN’s value may alter the probabilities of these possible outputs, because
the running time of the loop may influence the interleaving order of the two assignments to

171

5. Information Flow Control For Concurrent Programs

void main () :
x = i n p u tP I N () ;
i f (x < 1234)

p r i n t (0) ;
y = x ;
p r i n t (y) ;

void t h r e a d _ 1 () :
x = i n p u t () ;
p r i n t (x) ;

void t h r e a d _ 2 () :
y = i n p u t P I N () ;
x = y ;

void t h r e a d _ 1 () :
x = 0 ;
p r i n t (x) ;

void t h r e a d _ 2 () :
y = i n p u tP I N () ;
whi le (y != 0)

y−−;
x = 1 ;
p r i n t (2) ;

Figure 5.1.: Examples for information leaks in sequential programs (left), for a possibilistic channel
(mid) and for probabilistic channels (right). The threads are meant to execute concurrently.

x. Assume that the scheduler picks each thread with the same probability and schedules after
every executed statement. If the PIN is 0, then 0 is printed with probability 44

64 , if PIN is 1, this
probability raises to 57

64 . If an attacker knows these probability distributions and can repeatedly
observe program runs with the same PIN, he is able to deduce information about it. Note that
the program contains another probabilistic channel: The PIN may also influence the probability
in which order the two print-statements are executed.

Lampson [83] declares all kinds of information flow other than explicit flow as channels,
arguing that they propagate information only as a secondary effect. Following Sabelfeld and
Myers [126], information leaks can be categorized as follows:

• Illicit explicit flow leaks information through assignments.

• Illicit implicit flow leaks information through conditional branching.

• Possibilistic channels leak information by changing the set of possibly occurring events.

• Probabilistic channels leak information by changing the probability with which an event
occurs.

• Termination channels leak information about data which caused (or not caused) nonter-
mination. The program on the right side of Fig. 5.1 contains a termination channel: If the
input PIN is negative, the loop diverges and 2 is never printed to the screen.

• Timing channels leak information by influencing the time which elapses between two
events. Timing channels can be a serious threat to security, an infamous case being the
timing attack on RSA encryption [70].

• Resource channels leak information through the degree of usage of resources, such as
memory, disk space or CPU.

172

5.1. Background

• Physical channels leak information by changing the degree of physically measurable en-
tities, such as heat or noise development or power consumption.

Since channels manifest themselves in very different ways, the usage of different, specific
countermeasures seems to be the most promising approach. Physical channels can best be
avoided by physical isolation of the hardware, resource channels can be encountered by denying
unauthorized users information about resources. Timing channels can be closed by delaying the
returning from a critical computation until a fixed time interval has passed. The other kinds
of channels as well as explicit and implicit flow are the subject of language-based information
flow control. Language-based IFC inspects the code of a program in order to reconstruct and
validate the information flow between the program statements. This thesis investigates the usage
of language-based IFC for the detection of information leaks in concurrent programs. It thereby
excludes timing-, resource- and physical channels. In the remainder, the terms ‘information
flow control’ and ‘IFC’ refer to language-based information flow control.

5.1. Background

The degree of confidentiality granted by an IFC technique depends on its security policy, its at-

tacker model, its security property, the classification of the program in question and the security

constraint used to enforce the security property.

The security policy defines the admissible flows of information, which are usually specified
by means of a set of security levels and a flow relation on pairs of security levels. The
information flows in a program must be in accordance with this flow relation. The security
policy may additionally define exceptions of the flow rules, so-called declassifications [129],
which permit inevitable leakage of information in a controlled manner.

The attacker model defines the abilities of an attacker. A common assumption is that the
attacker knows the source code and is able to see certain parts of the program behavior, the
so-called observable behavior. Unfortunately, there is no real agreement on which parts of the
program behavior should be taken into account. Typical points of contention are whether an
attacker is able to observe the sheer termination of the program or not, whether he is able to
observe parts of the memory at any time or is restricted to I/O events, or whether he is able to
exploit timing-, physical- or resource channels. Defining a reasonable attacker model is a major
prerequisite for the development of an IFC technique.

The classification of a program states which of its parts constitute its observable behavior and
which parts provide information of a certain security level. Typical methods of classification
are the assignment of security levels to variables, to events, or to I/O streams.

The security property defines restrictions on the observable behavior a program has to adhere
in order to be secure with respect to the given security policy, attacker model and classification.

173

5. Information Flow Control For Concurrent Programs

The security constraint defines necessary constraints on the source code of a program, whose
abidance guarantees that the program satisfies the security property. They usually, but not nec-
essarily, constrain the syntax of the program.

5.1.1. Noninterference

A widely accepted security policy, which is also used in this work, is the noninterference pol-

icy [47]. Given a set of security levels and a flow relation on pairs of security levels, it
requires that information of a level l′ may only interfere with information of a level l if l′ l

holds. In the context of language-based IFC noninterference is usually understood as follows:
There exists an attacker who is authorized with a certain security level l, which permits him to
observe program behavior classified with l or a level l′ l. A program is said to be noninter-
ferent if data of a level h 6 l does not affect that behavior.

Note that level l partitions the set of security levels into two equivalence classes: A class
low containing l and all levels l′ l and a class high containing the remaining levels. We will
often use these two equivalence classes to simplify our explanations. The program behavior
observable by the attacker is the low-observable behavior. Keep in mind that this partition into
high and low is always relative to the level of a certain attacker. Different attackers may have
different levels, and a program has to be noninterferent with respect to all possible attackers.

Security properties based on noninterference typically require that changes in the high input
data of a program do not change the low-observable behavior. As a consequence, the low-
observable behavior of the program contains no exploitable information about the high input
data, so that an attacker cannot draw conclusions about it by observing program runs.

The input a program receives during its execution can be seen as a list, whose content is
predetermined at the program start and whose elements are consumed subsequently by input
reading operations. In order to signal which input value has which security level, we assume
one input list per security level. Two inputs are said to be low-equivalent if for each security
level l ∈ low the corresponding lists are equal. Two program runs are called low-equivalent

if their low-observable behavior is indistinguishable for the attacker. Based on these terms,
security properties based on noninterference typically have the following form:

Definition 5.1 (Noninterference). A program p is noninterferent if it satisfies the following

condition: Whenever p is run on two low-equivalent inputs, then the resulting program runs are

low-equivalent.

This is an abstract security property, which has to be instantiated with a suitable definition
of low-observable behavior. We will do so in section 5.4.

174

5.1. Background

5.1.2. Denning-Style Information Flow Control

Some of the earliest work on IFC has been published by Denning and Denning [37, 38].
Even though the notion of noninterference was defined only several years later by Goguen
and Meseguer [47], their technique enforces an intuitive understanding of noninterference. The
ideas presented in their publications serve as the very foundation of today’s noninterference-
based IFC techniques and are therefore summarized here.

Denning [37] suggested arranging security levels in a complete bound lattice such that piece
of information of a certain level is only allowed to influence other pieces of the same or a higher
level. Such a lattice is called a security lattice. It permits to use the meet and join operators
to compute the actual security level of information flowing through a program statement. We
use the security lattice L= (L,v,t,u,⊥,>), taken from [52], in the remainder. L is the set of
security levels, v defines their partial order, u and t are the meet and join operations, ⊥ is the
bottom element and > is the top element1.

Denning formulates her IFC technique with the help of an abstract program S, which is
recursively defined by:

1.(Statement) S is an elementary statement, e.g. an assignment or I/O.

2.(Composition) There exist S1 and S2 such that S = S1;S2.

3.(Choice) There exist S1, . . . ,Sm and an m-valued variable c such that S = c : S1, . . . ,Sm.

Point 3 declares conditional structures, where ‘:’ is a choice operator that uses variable c to
choose among the alternatives S1, . . . ,Sm.

The abstract program works on a storage M = {a,b, . . .}, which is a set of locations. Each
location is assigned a security level from the security lattice in charge. This assignment can be
static, where it is constant throughout the program execution, or dynamic, where it depends on
the content of the location. The security level of a location a is addressed by lvl(a).

Program S is declared secure if all program statements are secure. An elementary statement,
b = a1, . . . ,an, is secure if any explicit flow caused by it is secure. This is the case if

(lvl(a1)t·· ·t lvl(an))v lvl(b)

holds after the execution of the statement, i.e. the security level of location b permits the storage
of the result of the computation. The choice operator S = c : S1, . . . ,Sm is secure if each Sk is
secure and the implicit flows caused by it are secure: Let b1, . . . ,bn be the possible locations in
which S1, . . . ,Sm may store their computations, then the implicit flows are secure if

lvl(c)v (lvl(b1)u·· ·u lvl(bn))

1It is always possible to extend a given lattice with > and ⊥.

175

5. Information Flow Control For Concurrent Programs

holds after the execution of S, i.e. the information about the branching is allowed to flow into
the locations written to in the branches. Finally, the composition S1;S2 is secure if S1 and S2 are
secure.

The subsequent work of Denning and Denning [38] extends the above mechanism to a certi-
fication procedure committed by a compiler. For that purpose, they convert the above abstract
flow rules into a concrete certification semantics, which is processed by the compiler during the
semantic analysis.

5.1.3. Declassification

The information flow rules defined by a security lattice are generally too restrictive for practical
programs, because some leakage of information is often inevitable. For example, a password
check leaks information about the given password being correct or not. Suchlike information
leaks are often unavoidable and it should be possible to permit them. The idea of declassification

is to mark leaks as acceptable, so that the IFC analysis does not reject the program.

Sabelfeld and Sands [129, 130] identify four different dimensions of declassification, namely
what information is declassified, where is it declassified, when is it declassified and who declas-
sified it. They further argue that declassification mechanisms should satisfy four basic princi-
ples:

1.Semantic consistency
Semantics-preserving transformations of declassification-free subprograms should not
change the (in)security of a program.

2.Conservativity
A security policy which allows declassification should be weaker than noninterference.
A secure program without declassification should be noninterferent.

3.Monotonicity of release
Adding a declassification should not turn a secure program insecure.

4.Non-occlusion
A declassification should not mask other covert information leaks.

To date, there does not exist a dominating approach to declassification, because most exist-
ing approaches only address one or two dimensions of declassification, and even within one
dimension no approach was yet able to become widely accepted. Thus, there does not exist
a generally accepted extension of noninterference that accounts for declassification. A good
overview, categorization and comparison of existing declassification mechanisms is presented
in Sabelfeld and Sands’ recent publication [130].

176

5.1. Background

5.1.4. Slicing-Based Information Flow Control

The currently predominant approach to enforce noninterference is the employment of non-
standard type systems, which encode the elements of the security lattice via a type hierarchy
such that the subtype relation corresponds to the partial order relation of the lattice [126]. Den-
ning’s flow rules are translated into typing rules such that a well-typed program is noninterfer-
ent. These security-type systems have several advantages and disadvantages, which have been
closely investigated by Hammer [52, 53]: IFC based on security-type systems is fast and scales
well, its soundness can be rigorously proven with proof techniques like automated theorem
provers [139] and it (often) allows a modular verification of programs. Modularity is a strongly
desired property, because it enables to certify libraries as secure. On the contrary, modularity is
achieved through conservativity – security-type systems are usually context-, flow- and object-
insensitive, which, according to Hammer, may result in many false alarms. Furthermore, the
integration of a security-type system into a programming language results in a new, separate
language. It is not possible to analyze existing programs with a security-type system without
(manually) converting the programs into the corresponding language. And finally, the imple-
mentation of a security-type system for mature languages is difficult and has to be redone for
every desired language, wherefore only a few such systems are known to exist; for example,
FlowCaml [132], a language similar to OCaml, or Jif [103], a Java-like language.

Several authors suggest using dependence graphs and slicing to address these difficulties [52,
58, 138, 159]. It is known for some time that slicing allows to enforce noninterference in
sequential programs: If the slice for the statements that constitute the low-observable behavior
is free of statements reading high input, the program is noninterferent [7, 21, 138]. However, the
technical challenges concerning the creation of SDGs for full-fledged languages and real-world
applications have prevented implementations of slicing-based IFC until only recently. The first
reported implementations stem from Yokomori et al. [159], for Pascal, and from Hammer et
al. [52, 58], for sequential Java bytecode. A machine-checked proof that slicing of sequential
interprocedural programs can be used to enforce noninterference has recently been published
by Wasserrab and Lohner [153].

Slicing-based IFC promises higher precision, due to its context-, flow- and object-sensitivity,
and it can be applied to existing programs and languages. Moreover, it permits to decouple
the IFC algorithm from the concrete programming language: The same algorithm can be used
for every language for which a SDG generator is available. Of course, slicing-based IFC also
has its weaknesses. The construction of a SDG is a whole-program analysis that analyzes
procedures only in the context of their usage in the analyzed program. To date, there exists no
method to create a SDG for a library which accounts for every possible usage of the library.
Thus, a modular verification of information flow via SDGs and slicing is currently not possible.

177

5. Information Flow Control For Concurrent Programs

Furthermore, slicing-based IFC has higher runtime costs than type systems and therefore a
limited range, and proving its soundness is difficult.

The approach of Hammer et al. [52, 58] is currently the most sophisticated, as it allows
the usage of arbitrary security lattices and provides a declassification mechanism. The user
annotates statements identified as sources of information with a provided security level, P, and
statements which output information with a required security level, R. The technique verifies
whether information flowing to a statement with a required security level is allowed to do so.
For that purpose, it basically realizes Denning’s flow rules by a monotone data flow analysis
framework (cf. sect. 2.4.1) working on SDGs. The lattice of data flow facts is the security lattice
L in charge, and the transfer-function of a node n, fn(l) = (lukill(n))tgen(n), is composed of
the gen-function

gen(n) =

P(n) n is annotated with a provided security level

⊥ otherwise

and the kill-function

kill(n) =>.

The gen-function returns the provided level, if existing, and otherwise ⊥, the identity element
for t. Statements do not kill information flowing through, wherefore the kill-function always
returns >, the identity element for u.

The actual security level S(n) of information flowing to a node n is determined by the frame-
work functions out(n) = fn(in(n)) and in(n) =

⊔
m∈pred(n) out(m):

S(n) = out(n) = gen(n)t
⊔

m∈pred(n)

S(m).

Hammer shows that the transfer functions are monotone and distributive, which means that
S(n) always has a minimal fixed point, which is due to the distributivity of the transfer functions
equivalent to the precise meet-over-all-paths solution. The final solution of S(n) describes the
maximal level of information that may actually flow through node n.

Having the minimal fixed point solutions S(n) for all nodes n in the SDG, it remains to check
whether the information flow violates the flow rules of lattice L. This is the case if the required
security level of any statement s disallows information of the actual security level S(s). Hence,
the following equation must hold for every node n in the SDG :

S(n)v

R(n) n is annotated with a required security level

> otherwise.
[5.1]

178

5.2. Information Leaks in Concurrent Programs

Declassification

Hammer et al.’s approach includes a declassification mechanism, which can be categorized as a
where-declassification [130]. A declassification is a node d with both a provided and a required
security level. Incoming information is converted to level P(d), and the computation of the
actual security level is adjusted as follows:

S(n) =

P(n) n is a declassification

gen(n)t
⊔

m∈pred(n) S(m) otherwise

In order to prevent declassifications from declassifying arbitrary information, the security
levels of incoming information have to be smaller than d’s required level, R(d). This leads to
the following equation that must hold for every declassification d in the SDG in order to avoid
illicit information flow. For all other nodes in the SDG, equation 5.1 must hold.

R(d)w
⊔

m∈pred(d)

S(m)

The authors proved that the following restrictions to the declassification mechanism guaran-
tee conservativity and monotonicity of release2. Let d be a declassification:

• R(d)w
⊔

m∈pred(d) S(m), and

• R(d)w P(d), i.e. declassification works only ‘down the lattice’.

5.2. Information Leaks in Concurrent Programs

Programs with threads and shared-memory communication may contain possibilistic and prob-
abilistic channels. Interleaving can lead to a set of possible observable behaviors per input and
possibilistic and probabilistic channels may manifest in these sets. IFC for concurrent programs
has to deal with these channels.

If a program contains a possibilistic channel, then changes in the high input data can cause
different sets of possible low-observable behaviors. Probabilistic channels are even more subtle;
here changes in the high input data may alter the probability of a low-observable behavior. Note
that possibilistic channels imply probabilistic channels: If a change in the high input data leads
to different sets of possible low-observable behaviors due to a possibilistic channel, several of
these behaviors have probability 0 in one set and > 0 in the other, thus there is also a proba-
bilistic channel. On the other hand, a program containing probabilistic channels may indeed
produce the same sets of possible low-observable behaviors, only with different probabilities.
We focus on detecting probabilistic channels, covering possibilistic channels implicitly.

2It is not clear whether these are necessary conditions.

179

5. Information Flow Control For Concurrent Programs

Probabilistic channels

Looking closer at probabilistic channels reveals that there exist different kinds of them. Con-
sider again the program on the right side of Fig. 5.1 and assume that the output of the print-
statements constitutes its low-observable behavior. We described two probabilistic channels in
that program in the introduction, which in fact represent two different kinds of probabilistic
channels: The first kind are probabilistic data channels, which leak information via the quality
of an observable event. In the example, print(x) leaks information about the PIN, because the
probability distribution of the interleaving order of statements x = 0 and x = 1 is influenced
by the running time of the loop and thus transfers information about the PIN to the printed value
of x. The second kind are probabilistic order channels, which leak information via the relative
ordering of observable events. In the example, the probability distribution of the relative order
of print(x) and print(2) contains information about the PIN, again because the running
time of the loop influences the outcome of that interleaving.

We distinguish these two kinds of probabilistic channels because they require different treat-
ment. Probabilistic data channels can be tracked down by inspecting implicit and explicit flow,
whereas the detection of probabilistic order channels requires an inspection of the possible in-
terleaving of low-observable events.

Preconditions of probabilistic channels

According to Zdancevic and Myers [160], probabilistic channels have two necessary precondi-
tions.

First, a program must contain conflicts, which may occur between two concurrently executing
statements whose interleaving order is not fixed. There is a data conflict if both statements
access the same shared variable v and at least one of them defines v. The example on the right
side of Fig. 5.1 contains two data conflicts, between statement x = 1 in thread 2 and statements
x = 0 and print(x) in thread 1. Data conflicts may cause probabilistic data channels. There
is an order conflict if both statements produce observable behavior. The example contains one
order conflict, between print(x) and print(2). Order conflicts may cause probabilistic
order channels.

Second, there must exist a program part whose execution time depends on high data and
influences the outcome of a conflict. Without such a program part a conflict is benign. In
our example, all conflicts are influenced by the loop, whose running time depends on the PIN.
Hence, the data and order conflicts transfer information about the PIN to the observable behav-
ior, resulting in the probabilistic data and order channels.

Note that it is not sufficient to consider only loops or conditional structures as candidates
for such program parts. A single statement may execute with different speed when fed with
different data, due to techniques like caching or pipelining. These different execution times can

180

5.3. Probabilistic Noninterference

be sufficient to influence the outcome of a conflict. An in-depth investigation of the effects of
caching on program security has been committed by Agat [8].

5.3. Probabilistic Noninterference

A suitable abstract security property for concurrent programs is probabilistic noninterference

[150]. An input of a concurrent program p may cause a set of possible program runs, each of
them with a certain probability, which add up to 1. Probabilistic noninterference can be defined
as follows:

Definition 5.2 (Probabilistic noninterference). A program p is probabilistic noninterferent if for

all pairs (t,u) of low-equivalent inputs the following holds:

Let Θ be the set of possible program runs resulting from t and u. For each T ∈ Θ, the

following must hold: Let T be the set of program runs possibly caused by t that are low-

equivalent to T . Let U be the analogical set for u. Then the sum of the probabilities of the

program runs in T must equal the sum of those in U.

There emerged two general approaches to enforce probabilistic noninterference: The first
approach aims to ensure that high input cannot influence the probability of the outcome of a
conflict (e.g. [28, 94, 128, 135, 150]). This is usually done by enforcing security constraints
based on probabilistic bisimulation [84], a form of bisimulation in which transitions are labeled
with probabilities, which is used to guarantee that two low-equivalent inputs cause the same
possible low-observable behaviors with the same probabilities.

The second approach aims to ensure that conflicts cannot influence the low-observable be-
havior (e.g. [64, 98, 121, 145, 160]). This is achieved by using security constraints that guar-
antee low-observational determinism [98, 121]. In a low-observational deterministic program
a certain input may still cause a set of possible program executions, but all of them are low-
equivalent. From the point of view of an attacker the program behaves deterministically. If ad-
ditionally all program runs resulting from low-equivalent inputs are low-equivalent, the program
is low-security observational deterministic [98, 121], which is a specialization of probabilistic
noninterference:

Definition 5.3 (Low-security observational determinism). A program p is low-security obser-

vational deterministic if it satisfies the following condition: Whenever p is run on two low-

equivalent inputs, then all possible program runs are low-equivalent.

The differences between these two approaches are subtle, but have important consequences.
The first approach is generally less restrictive, because it is closer to the definition of proba-
bilistic noninterference. For example, security properties based on the second approach often
reject programs that do not work with high data at all, simply because their low-observable

181

5. Information Flow Control For Concurrent Programs

behavior is not deterministic [64, 145, 160]. The second approach, however, makes the con-
crete scheduling strategy insignificant, because it cannot manifest in the probabilities of the
low-observable behaviors. It allows to define scheduler-independent security properties, which
hold for every possible scheduler. In turn, independence from the scheduler is the major prob-
lem of the first approach. There exists no reasonable scheduler-independent security property
based thereon, and much effort is spent in the development of security properties that comprise
as many scheduling strategies as possible. For example, strong security [128], a well-known se-
curity property of this category, comprises the class of schedulers whose scheduling strategies
cannot be influenced by high data.

We chose to base our IFC technique on low-observational determinism, because we consider
dependence from schedulers dangerous. If the confidentiality of a program is only guaranteed
for a certain set of schedulers, it is fragile: It can be intentionally or unintentionally flawed
by choosing an inappropriate scheduler. Since we have a flow-sensitive program analysis at
hand, we were able to reduce the restrictions coming with low-observational determinism to a
minimum.

Zdancevic and Myers [160] showed that programs complying with the following security
constraint are low-security observational deterministic: (1) The program parts contributing
to the low-observable behavior are free of conflicts, which means that the program is low-
observational deterministic, and (2) the implicit and explicit flow in the program does not trans-
fer high data to the low-observable behavior. This observation was the main inspiration for our
IFC technique.

5.4. A Trace-Based Definition of Low-security Observational Determinism

In this section we develop our security property, a trace-based definition of low-security ob-
servational determinism. To this end, we define the low-observable behavior of programs via
traces.

We are interested in three aspects of a program statement: (1) The sets of variables it defines
or uses, (2) whether it branches the control flow, and (3) to which other statements it may happen
in parallel. Since other aspects are of no interest, we forgo to define a concrete programming
language. Instead, we assume several wellformedness properties of the structure of the program
and of the semantics of the statements, similar to those made by Wasserrab et al. [154]:

• The control flow of the program can be modeled by a TCFG as defined in definition 3.1.

• The execution of a statement leaves all variables that are not in its def -set unchanged.

• The semantic effect of a statement s is deterministic and depends solely on the values of
the variables in its use-set. Assume that two program states agree on all values of the

182

5.4. A Trace-Based Definition of Low-security Observational Determinism

variables in the use-set. Then the states resulting from executing s agree on all variables
in the def -set of s and both traces proceed with the same branch in the control flow.

• The first usage of a variable in a trace has to be preceded by at least one definition (no
undefined variables).

5.4.1. Traces

Let p be a program that operates on a set Var of variables. Ops(p) is the (possibly infinite) set
of all possible operations executed by p. An operation is an instance of a statement and stmt(o)

maps operation o to that statement. use(o) = use(stmt(o)) is the set of variables used by o,
and def (o) = def (stmt(o)) is the set of variables defined by o. Operations are unique, i.e. an
operation is executed at most once in a trace and is uniquely identifiable among different traces,
by the sequence of procedure calls and predicates leading to the operation. How this is done
exactly is described in definition 5.5.

A memory m is a map from variables to values, where m(v) denotes the value of v in m. The
undefined value is denoted by ⊥. The projection of a memory m to a subset V ⊆ Var of variables
is denoted by m |V . Two memories m and m′ are equal with respect to a set V ⊆ Var, written
m |V= m′ |V , iff ∀v ∈V : m(v) = m′(v).

A trace T of a program p is a (possibly infinite) list of ordered configurations

(m0,o0,m0) · · ·(m j,o j,m j) · · ·

where a configuration (mi,oi,mi) in T consists of an operation oi ∈ Ops(p), the memory mi

right before oi’s execution and the resulting memory mi. For every two adjacent configurations,
(mi,oi,mi) and (mi+1,oi+1,mi+1), mi = mi+1 holds. All traces of the same program start with
the same operation start, representing the program start. Traces are thought to be maximal,
which means that they are either infinite or describe a finished program execution. We write
o ∈ T to express that T executes operation o.

Input of a program is realized by one input list per security level. The input is predefined at
the program start, but is not part of the initial memory of the program. It has to be explicitly
made accessible by import statements, which import an input list by writing its content into the
memory. This simulates the opening of an input stream and prevents that high data is in the
system before it is explicitly needed. If an operation reads input, it removes the first element of
the list, hence the input list is in its use-set and in its def -set.

183

5. Information Flow Control For Concurrent Programs

5.4.2. Dynamic Program Dependences and Trace-Slices

In order to model information flow in traces, we employ dynamic versions of data and control
dependence. These dependences are sufficient, because in a trace procedure calls and interleav-
ing are inlined.

Dynamic control dependence

Xin and Zhang [157] introduced a context-sensitive definition of dynamic control dependence,
which suits best for our purpose. It is based on branching points, operations with at least two
possible direct successors in the control flow graph. Intuitively, an operation o is dynamically
control dependent on the branching point of the innermost enclosing conditional, or, if o is a
procedure entry, on the operation that invoked that procedure. We have to extend their definition
to programs with threads.

Xin and Zhang define dynamic control dependence via regions, which in turn are based on
postdominance (cf. sect. 2.1.2). For every possible branch, a branching point b directs one
region. A region of one branch of b contains all operations that are executed in this branch
between b and its immediate dynamic postdominator d and belong to the same thread as d. The
immediate dynamic postdominator d of b is the first operation executed after b, whose statement
stmt(d) postdominates stmt(b). Xin and Zhang have shown that the regions of one thread in an
execution are either disjoint or nested, which allows to define dynamic control dependence via
regions.

Definition 5.4 (Dynamic control dependence (from [157], extended to threads)). Let T be a

trace of a program p. An operation o ∈ T is dynamically control dependent on operation b ∈ T ,

written b
dcd
99K o, iff

• o is a thread entry and b is the corresponding fork operation, or

• o is a procedure entry and b is the operation that invoked that procedure, or

• b is the director of the innermost enclosing region of o.

Xin and Zhang have also shown that every operation in a trace is dynamically control depen-
dent on exactly one other operation, except for operation start, which is independent. Hence,
dynamic control dependence can be used to uniquely identify operations among different traces:

Definition 5.5 (Uniqueness of operations). Let oi and o j be two operations that are executed in

different traces. Then oi = o j iff stmt(oi) = stmt(o j) and

1.o i = o j = start, or

184

5.4. A Trace-Based Definition of Low-security Observational Determinism

6 3 7 4 9 10

63 7 7’ 9 104 8

1 main():
2 fork thread_1();
3 l = 0;
4 print(l);

5 thread_1():
6 h = inputPIN();
7 while (h != 0)
8 h--;
9 l = input();
10 print(l2);

dyn. data dependence

dyn. control dependence

void

void

1 5

1 5

s 2

2s

Figure 5.2.: A program and two possible traces. The first trace results from input (inputPIN() = 0, in-
put() = 0), the second from (inputPIN() = 1, input() = 0).

2.b i = b j, where bi is the operation on which oi is dynamically control dependent and b j is

the operation on which o j is dynamically control dependent.

This recursive definition terminates, because the trace-prefixes ending at oi and o j are finite.

The uniqueness of operations makes dynamic control dependence a static property. Every
operation which is executed in at least one trace is dynamically control dependent on exactly
one other operation, the only exception being operation start.

An important concept for us is the transitive closure of dynamic control dependences of an
operation o, written DCD(o). DCD(o) is a list 〈b1, . . . ,bn〉 of operations, ordered by dynamic
control dependence, such that b1 = start, bn = o and each bi+1 is dynamically control dependent
on bi. DCD(o) is a static property, which according to definition 5.5 characterizes operation o.

Dynamic data dependence

Definition 5.6 (Dynamic data dependence). Let T be a trace of a program p. An operation o is

dynamically data dependent on operation a in T , written a
v
99K o, iff there exists a variable v ∈

use(o)∩def (a), o executes after a in T and there is no operation o′ with v ∈ def (o′) executing

between a and o in T .

Figure 5.2 shows two possible traces of an example program.

5.4.3. Trace-Slices

The operations and dependences in a trace form a sort of dependence graph, which can be sliced
with respect to an operation o.

185

5. Information Flow Control For Concurrent Programs

Definition 5.7 (Trace-slice). Let T be a trace of a program p. The trace-slice S(o,T) of T for

an operation o ∈ Ops(p) is an acyclic graph consisting of all operations and dependences in T

which lie on a path to o. In case o /∈ T , S(o,T) is empty.

The data slice for o restricts the trace slice to paths consisting only of dynamic data depen-
dences.

Definition 5.8 (Data slice). The data slice D(o,T) of a trace T for an operation o is an acyclic

graph consisting of all operations and dynamic data dependences in T which lie on a path to o.

In case o /∈ T , D(o,T) is empty.

The potential influence of o consists of all operations that are able to influence o in any
possible execution.

Definition 5.9 (Potential influence). Let Θ be the set of all possible traces of a program p.

The potential influence of an operation o, Pot(o), is the smallest set closed under the following

rules:

o ∈ Pot(o),

T ∈ Θ : q
v
99K q′ ∈ T ∨q

dcd
99K q′ ∈ T q′ ∈ Pot(o)

q ∈ Pot(o)

Trace-slices and data slices allow us to reason about information flow in single traces and to
show whether single traces are free of information leaks. The potential influence allows us to
reason about information flow in all possible traces and to show whether all possible traces are
free of information leaks.

5.4.4. Dynamic Control Dependence Determines Execution Orders

Dynamic control dependence determines the relative execution order of operations that cannot
happen in parallel. Xin and Zhang [157] observed that a branching point b imposes a total
execution order on all operations being dynamically control dependent on b and lying in the
same branch of b. Based on that observation, it can be shown that two operations of the same
thread have a definite relative execution order:

Observation 5.1. Let q and r be two different operations of the same thread, and let T and U be

two traces which both execute q and r. Further, let T execute q before r. Then U also executes

q before r.

Proof. Let branching point b be the last operation in the common prefix pre of DCD(q) and
DCD(r) (pre contains at least start). Let bq be the direct successor of b in DCD(q), and let br

be the direct successor of b in DCD(r). These are the operations where DCD(q) and DCD(r)

186

5.4. A Trace-Based Definition of Low-security Observational Determinism

start to diverge. Note that it is possible that bq = q or br = r. We present the proof for the case
bq 6= q and br 6= r. The proofs for the other cases can be easily derived from it.

Since T executes q before r, it executes bq before br. This is so because the regions directed
by bq and br have to be disjoint (otherwise, they would be nested and then one of both operations
would be part of prefix pre). According to Xin and Zhang’s observation, U also executes bq

before br, because both are dynamically control dependent on b and lie in the same branch of
b. Since the regions directed by bq and br are disjoint, U executes the operations in bq’s region
before the operations in br’s region. Thus, it executes q before r.

We extend that observation to operations which cannot happen in parallel:

Observation 5.2. Let q and r be two different operations which cannot happen in parallel, and

let T and U be two traces which both execute q and r. Further, let T execute q before r. Then

U also executes q before r.

Proof. There are two cases: If q and r belong to the same thread, the claim follows from
observation 5.1. Otherwise, our MHP information guarantees that either q executes before r’s
thread is forked, or that r executes after q’s thread has been joined. Both cases impose a definite
execution order between q and r, thus U executes q before r.

The execution of a branching point b in a trace triggers the execution of all operations in the
chosen branch which are dynamically control dependent on b. The only way to prevent their
execution is to delay them infinitely.

Definition 5.10 (Infinite delay of operations). Let T be a trace of a program and let T execute b.

Let o be an operation dynamically control dependent on b that belongs to the branch b chooses

to execute. If o /∈ T , then T infinitely delays o.

The motivation behind that definition is to express that trace T is bound to execute o, unless it
is hindered by infinitely repeating a loop or recursive cycle. The following observation follows
directly from definition 5.10:

Observation 5.3. Let T and U be two traces of a program, and let T execute operation o. Let

b be the operation on which o is dynamically control dependent. If U executes b and b chooses

the same branch as in T , then U executes o or infinitely delays o.

5.4.5. Low-Observable Behavior and Low-Equivalence of Traces

The following attacker model is the foundation of our security property.
Valid information flow is specified by a security lattice L. Operations can be classified with

a level l ∈ L, which means that their effects are visible to an attacker with a level l or higher.
To this end, we adopt the classification mechanism of Hammer et al. [58]: The user annotates

187

5. Information Flow Control For Concurrent Programs

statements with a source or a sink level (called provided and required levels in [58]). A source
level x means that the annotated statement provides data of level x to the program, e.g. by read-
ing input from an input stream. A sink level x expresses that the annotated statement exposes its
data to recipients authorized with level x, e.g. by printing it to the screen. The classification of
a program is mapped to the operations being instances of annotated statements. In the remain-
der, we often use the terms ‘source’ and ‘sink’ as abbreviations for statements and operations
annotated with a source or sink level.

The attacker in our model has the following capabilities: He knows the program’s source code
and is authorized with a certain security level l ∈L, which permits him to observe the execution
of operations classified as a source or sink of level x ∈ low, where low is the set containing
l and all levels smaller than l. Such an operation is called a low-observable operation. A
configuration in a trace associated with a low-observable operation is called a low-observable

event. The following function eventlow defines which properties of a low-observable event,
(m,o,m), are observable to the attacker, where λ is the empty word:

eventlow((m,o,m)) =

(m |use(o),o) o is a source of level x ∈ low

(m |def (o),o) o is a sink of level x ∈ low

λ otherwise.

In effect, the attacker sees which low-observable operation is responsible for the event, since he
knows the source code, and he sees the values of the involved variables. If the event involves a
source o, the attacker sees o and the values of the variables used by o in memory m. If the event
involves a sink o, the attacker sees o and the values of the variables defined by o in memory m.
Since the attacker is also able to see in which order a trace executes low-observable events, the
low-observable behavior of a trace is a sequence of low-observable events:

Definition 5.11 (Low-observable behavior). Let T = (m0,o0,m0) · · ·(mi,oi,mi) · · · be a trace.

The low-observable behavior of T is a list of low-observable events, which results from the

application of function eventlow to every configuration in T :

obslow(T) = eventlow((m0,o0,m0)) · · ·eventlow((mi,oi,mi)) · · · .

The attacker is also aware of the probability with which an input causes a certain low-
observable behavior, which allows him to exploit probabilistic channels. Besides timing chan-
nels and physical and resource channels we also exclude termination channels from our attacker
model, because their treatment would impose severe restrictions on the programs.

188

5.4. A Trace-Based Definition of Low-security Observational Determinism

1 void main () :
2 x = i n p u t P I N () ;
3 whi le (x > 0)
4 p r i n t (" x ") ;
5 x−−;
6 whi le (t rue)
7 s k i p ;

1 void main () :
2 x = i n p u tP I N () ;
3 whi le (x != 0)
4 x−−;
5 p r i n t (1) ;

1 void main () :
2 x = i n p u tP I N () ;
3 whi le (x == 0)
4 s k i p ;
5 p r i n t (" x ") ;
6 whi le (x == 1)
7 s k i p ;
8 p r i n t (" x ") ;
9 . . .

10 whi le (x == 42)
11 s k i p ;
12 p r i n t (" x ") ;
13 . . .

Figure 5.3.: Three tough nuts for termination-insensitive definitions of low-equivalent traces. The pro-
gram on the left must be rejected because it gradually leaks the PIN, the one in the mid could
be accepted because its leak is a termination channel. The program on the right exploits ter-
mination channels to leak the input PIN.

Low-equivalent traces

Developing a termination-insensitive definition of low-equivalent traces turns out to be a major
sticking point. Trivially, two events (m,o) and (n,q) are equal if m = n and o = q holds, and
two low-observable behaviors are equal if they consist of the same number k of events and for
every 0 ≤ i ≤ k the according events are equal. A manifest way to define low-equivalent traces
is to require equal low-observable behaviors, which permits one trace to terminate and the other
to not terminate. But this requirement effectively forbids low-observable events behind loops
whose guards contain high data, which we believe to be too restrictive in practice. Consider
the program in the middle of Fig. 5.3, whose input in line 2 is high data and whose print-
statement is low-observable. If a run of the program does not terminate, the print-statement
is delayed infinitely, which leads to the conclusion that the input was < 0. We want to permit
this and similar programs, because these leaks are a sort of termination channel.

Several existing definitions [146, 160] that aim to permit these termination channels declare
traces low-equivalent if their low-observable behavior is equal up to the length of the shorter
sequence of low-observable events. But as pointed out by Huisman et al. [64], this may lead to
unintended information leaks. Consider the program on the left side of Fig. 5.3, whose traces
always diverge, and assume that the input PIN is high data and that the executions of statement
4 comprise its low-observable behavior. The program exposes the input PIN by printing an
equal number of x’s to the screen. If low-equivalence of traces is confined to the length of the
shorter sequence of low-observable events, this behavior is perfectly legal, because all traces
with low-equivalent inputs are equal up to the length of the shorter sequence.

189

5. Information Flow Control For Concurrent Programs

In order to solve that problem, we suggest the following approach: If we have two finite
traces, then they are low-equivalent if their low-observable behaviors are equal. If both traces
are infinite, then the low-observable behaviors must be equal up to the length of the shorter
sequence, and the low-observable events missing in the other trace must be missing due to
infinite delay. This additional constraint makes sure that the missing events leak information
only via termination channels. Similarly, if one of both traces is finite and the other is infinite,
then the finite trace must have at least as much low-observable events as the infinite one, the
low-observable behaviors must be equal up to the length of the shorter sequence and the low-
observable events missing in the infinite trace must be missing due to infinite delay. Or more
formally:

Definition 5.12 (Low-equivalence of traces, ∼low). Let p be a program and let T and U be two

traces of p. Let obslow(T) = (m0,o0) · · · and obslow(U) = (n0,q0) · · · be their low-observable

behaviors. Let kT be the number of events in obslow(T) and kU be the number of events in

obslow(U). T and U are low-equivalent, written T ∼low U, if one of the following cases holds:

1.T and U are finite, k T = kU , and ∀0 ≤ i ≤ kT : mi = ni ∧oi = qi.

2.T is finite and U is infinite, and

• kT ≥ kU ,

•∀ 0 ≤ i ≤ kU : mi = ni ∧oi = qi, and

•∀ kU < j ≤ kT , U infinitely delays an operation b ∈ DCD(o j).

3.T is infinite and U is finite, and

• kU ≥ kT ,

•∀ 0 ≤ i ≤ kT : mi = ni ∧oi = qi, and

•∀ kT < j ≤ kU , T infinitely delays an operation b ∈ DCD(o j).

4.T and U are infinite, and

• if kT = kU , then ∀0 ≤ i ≤ k : mi = ni ∧oi = qi.

• if kT > kU , then ∀0 ≤ i ≤ kU : mi = ni ∧oi = qi, and

∀kU < j ≤ kT , U infinitely delays an operation b ∈ DCD(o j).

• if kT < kU , then ∀0 ≤ i ≤ kT : mi = ni ∧oi = qi, and

∀kT < j ≤ kU , T infinitely delays an operation b ∈ DCD(o j).

Note that ∼low is reflexive and symmetric, but not transitive.
Thanks to our additional constraints, we are able to reject the program on the left side of

Fig. 5.3, because the missing low-observable events are not missing due to infinite delay. The

190

5.5. A Slicing-Based Security Constraint for Low-Security Observational Determinism

program in the mid, however, is accepted. Our definition of low-equivalent traces exploits
that we have a program analysis, slicing, at hand, which enables us to analyze whether low-
observable events are missing due to infinite delay. We compare our definition with several
others in section 5.7.3.

It should be mentioned that definition 5.12 leaves room for pathological programs like that
on the right side of Fig. 5.3. It encodes the possible positive values of the high input into a
sequence of x’s before it enters a nonterminating loop, but all of its traces are considered low-
equivalent. This is a problem experienced by many existing termination-insensitive approaches
to IFC; for example, Hammer et al.’s IFC technique [58] and the Jif security-type system [103]
accept this or similar programs. To date, we are not aware of a satisfactorily solution to this
problem. Some ideas are discussed in section 5.8.

Low-Security Observational Determinism

It remains to insert our definition of low-equivalent traces into our chosen security property.

Security Property 1 (Low-security observational determinism). Program p is low-security ob-

servational deterministic if the following holds for every pair (t,u) of low-equivalent inputs:

Let T and U be the sets of possible traces resulting from t and u. ∀T,U ∈ T∪U : T ∼low U.

We proceed by investigating how this security property can be enforced via slicing.

5.5. A Slicing-Based Security Constraint for Low-Security Observational Determinism

In order to detect probabilistic channels in traces, we have to map data and order conflicts to
operations. To this end, we define that two operations may happen in parallel if their statements
may happen in parallel, which is a sound, albeit imprecise, approximation.

Definition 5.13 (Data and order conflicts). Let a and b be two operations that may happen in

parallel.

• There is a data conflict from a to b, written a
dconf
 b, iff a defines a variable v that is used

or defined by b.

• There is an order conflict between a and b, written a
oconf
! b, iff both operations are low-

observable.

Note that conflicts are ignored by trace-slices, data slices and potential influences. We say that
an operation o is potentially influenced by a data conflict if there exists an operation b ∈ Pot(o)

and an operation a ∈ Ops(p) such that a
dconf
 b holds. We make and prove the following claim:

Security Constraint 1 (LSOD). A program p is low-security observational deterministic if

191

5. Information Flow Control For Concurrent Programs

6 3 7 4 9 10

63 7 7’ 9 104 8

1 main():
2 fork thread_1();
3 l = 0;
4 print(l);

5 thread_1():
6 h = inputPIN();
7 while (h != 0)
8 h--;
9 l = input();
10 print(l2);

dyn. data dependence

dyn. control dependence

void

void

1 5

1 5

s 2

2s

Figure 5.4.: A program and two possible traces. The first trace results from input (inputPIN() = 0, in-
put() = 0), the second from (inputPIN() = 1, input() = 0). The shaded nodes represent the
low-observable behavior.

1.no low-observable operation o is potentially influenced by an operation reading or im-

porting high input,

2.no low-observable operation o is potentially influenced by a data conflict, and

3.there is no order conflict between any two low-observable operations.

The first rule ensures that the implicit and explicit flow to o does not transfer high data.
The second rule ensures that high data cannot influence the data flowing to o via interleaving.
The third rule ensures that high data cannot influence the execution order of low-observable
operations via interleaving.

5.5.1. Security Constraint LSOD Enforces Low-Security Observational Determinism

The proof of our claim is based on the following observation: Let T and U be two traces of
program p with the same input. If the trace-slices of T and U for an operation o are equal,
then o uses the same values and writes the same results to the same variables in both traces.
This observation can be specialized with respect to low-equivalent inputs: If T and U have low-
equivalent inputs, the trace-slices for o are equal and no operation in these trace-slices reads or
imports high input, then o uses the same values and writes the same results to the same variables
in T and U . It follows that T and U are low-equivalent if this holds for every low-observable
operation in T and U and if the traces execute the low-observable operation in the same relative
order. A program is low-security observational deterministic if this holds for all traces with
low-equivalent inputs.

Consider Fig. 5.4 as an example. Assume that the operations 4, 9 and 10 are low-observable.
The two inputs and the two traces are low-equivalent with respect to this classification. The

192

5.5. A Slicing-Based Security Constraint for Low-Security Observational Determinism

traces execute the low-observable operations in the same order, the trace-slices of these opera-
tions are free of operations reading or importing high input and each of these operations has the
same trace-slices in both traces. Unfortunately, this does not hold for all possible traces result-
ing from these inputs. For example, in the upper trace operations 4 and 9 could be swapped, the
resulting trace is not low-equivalent to those shown in the Figure.

We start by proving that if an operation o has equal data slices in T and U and no operation
in the data slices reads or imports high input, then o uses the same values in both traces and
computes the same results. We introduce the following abbreviations: Let (m,o,m) be a config-
uration in a trace T . To = m|use(o) denotes the part of memory m that contains the variables used
by o, and To = m|def (o) denotes the part of memory m that contains the variables defined by o.

Lemma 5.1. Let T and U be two traces of a program p with low-equivalent inputs. Let o ∈
Ops(p) be an operation. If D(o,T) = D(o,U) and no operation in these data slices reads or

imports high input, then To =Uo and To =Uo.

Proof. If D(o,T) and D(o,U) are empty, the lemma trivially holds – T and U do not execute
o. Otherwise, we exploit that D(o,T) is an acyclic directed graph in which all paths are finite.
We show that the lemma in fact holds for every operation q in D(o,T), by an induction over the
length of the longest path in the data slice that ends at q. The induction terminates because the
number of operations and the length of the longest path in D(o,T) is finite.

The base case handles all operations in D(o,T) without incoming dynamic data dependences.
Let q be such an operation. Trivially, Tq = Uq because q does not use any variables. Hence, q

writes constant values to the variables in def (q) or imports low input. It follows Tq =Uq.

In the induction step we have an operation q which is dynamically data dependent on a set
Q of operations and whose longest incoming path of dynamic data dependences has length
n+1. We know for each q′ ∈ Q that D(q′,T) = D(q′,U), Tq′ =Uq′ and Tq′ =U′q, as its longest
incoming path of dynamic data dependences has length ≤ n and thus q′ was already covered by
the induction.

• Tq =Uq

Let q′
v
99K q be a dynamic data dependence due to a variable v ∈ use(q). We know that

Tq′(v) =Uq′(v). The dynamic data dependence signals that there are no redefinitions of v

executed between q′ and q in T and U . It follows that Tq(v) = Tq′(v) =Uq(v).

• Tq =Uq

Operation q uses the same data for its computations in T and U and possibly imports low
input. Thus, it writes the same values to the variables in def (q).

193

5. Information Flow Control For Concurrent Programs

Since a data slice D(o,T) is a subgraph of the trace-slice S(o,T), lemma 5.1 also holds in
case the trace-slices S(o,T) and S(o,U) are equal.

Corollary 5.1. Let T,U be two traces of a program p with low-equivalent inputs. Let o ∈
Ops(p) be an operation. If S(o,T) = S(o,U) and no operation in these trace-slices reads or

imports high input, then To =Uo and To =Uo.

If we have two traces with low-equivalent inputs, all low-observable operations satisfy the
conditions of corollary 5.1 and the traces execute these operations in the same relative order,
then the traces are low-equivalent.

Corollary 5.2. Let p be a program. Let T and U be two finite traces of p with low-equivalent

inputs. T and U are low-equivalent if for every low-observable operation o, S(o,T) = S(o,U)

holds and no operation in the trace-slices reads or imports high input and T and U execute the

same low-observable operations in the same relative order.

Proof. We have to show obslow(T) = obslow(U). The condition of the corollary ensures that T

and U execute the same low-observable operations in the same relative order.

Let o be the i-th low-observable operation. If o is classified as a source, the corresponding
events are (m|use(o),o) in T and (n|use(o),o) in U . If o is classified as a sink, the corresponding
events are (m|def (o),o) in T and (n|def (o),o) in U . According to corollary 5.1, m|use(o) = n|use(o)

and m|def (o) = n|def (o) hold, therefore the events are equal. Since this holds for every low-
observable event in T and U , obslow(T) = obslow(U) follows.

The following two corollaries cover the cases where one or both of the two traces are infinite.

Corollary 5.3. Let p be a program. Let T and U be two infinite traces of p with low-equivalent

inputs such that obslow(T) is of equal length or longer than obslow(U) (switch the names if

necessary). T and U are low-equivalent if

• they execute the shared low-observable operations in the same relative order,

• for every low-observable operation o ∈ U S(o,T) = S(o,U) holds and no operation in

the trace-slices reads or imports high input

• and for every low-observable operation o ∈ T and o /∈U U infinitely delays an operation

b ∈ DCD(o).

Proof. Similar to the proof of corollary 5.2, we can use corollary 5.1 to show that T and U

have the same low-observable behavior up to the last low-observable event in U . Thus, T and
U satisfy case 2 in definition 5.12.

194

5.5. A Slicing-Based Security Constraint for Low-Security Observational Determinism

Corollary 5.4. Let p be a program. Let T and U be two traces of p with low-equivalent inputs,

such that T is finite and U is infinite (switch the names if necessary). T and U are low-equivalent

if

• obslow(T) is of equal length or longer than obslow(U),

• T and U execute the shared low-observable operations in the same relative order,

• for every low-observable operation o ∈ U S(o,T) = S(o,U) holds and no operation in

the trace-slices reads or imports high input

• and for every low-observable operation o ∈ T and o /∈U U infinitely delays an operation

b ∈ DCD(o).

Proof. Similar to the proof of corollary 5.2, we can use corollary 5.1 to show that T and U

have the same low-observable behavior up to the last low-observable event in U . Thus, T and
U satisfy case 4 in definition 5.12.

If all pairs of traces with low-equivalent inputs satisfy one of these three corollaries, the
program is low-security observational deterministic.

Corollary 5.5. A program p is low-security observational deterministic if for every pair (t,u) of

low-equivalent inputs the following condition holds: Let T and U be the sets of possible traces

resulting from t and u. Then every pair of traces T,U ∈ T∪U is low-equivalent according to

corollary 5.2, 5.3 or 5.4.

Proof. This follows directly from definition 1.

It remains to show that a program is low-security observational deterministic if it satisfies
our security constraint LSOD. The following lemma shows that an operation o has a unique
trace-slice if it is not potentially influenced by a data conflict.

Lemma 5.2. Let p be a program and o be an operation of p. If o is not potentially influenced

by a data conflict, then S(o,T) = S(o,U) holds for all traces T and U which execute o.

Proof. The proof is done by an induction over the operations in T . The induction shows that
S(q,T) = S(q,U) holds for each q ∈ T which potentially influences o.

Base case: The induction starts at start, which potentially influences o (via a chain of dy-
namic control dependences). Operation start is executed by both T and U , and both trace-slices
for start contain only start.

195

5. Information Flow Control For Concurrent Programs

Induction step: We take the next operation q executed by T . If q does not potentially influence
o, we have nothing to show. Otherwise, we know for all operations r on which q depends in T

that S(r,T) = S(r,U) because they were already covered by our induction (r ∈ Pot(o)). Note
that this implicitly shows that r is executed in U .

First, we show that all dependences of the form r
v
99K q or r

dcd
99K q in S(q,T) are also in

S(q,U). This is clear for r
dcd
99K q ∈ S(q,T) because q is dynamically control dependent on

exactly one operation. A dependence r
v
99K q in S(q,T) is in S(q,U) if q executes after r in U

and there exists no operation c that redefines v and executes between r and q in U .

1. q executes after r in U :
Since q and r must not form a data conflict, they cannot happen in parallel. According to
corollary 5.1, q executes after r in U .

2.There exists no c with v ∈ def (c) which executes between r and q in U :
Assume there exist redefinitions of v between r and q in U , and let c be the last of them
before q executes. It follows that c is potentially influencing o because q is dynamically
data dependent on c in U . There are two cases: Either c,r and q cannot happen in parallel
to each other or at least two of them may happen in parallel.

a)In the latter case, they form at least one data conflict which potentially influences o.
This contradicts the assumption of the lemma.

b)Otherwise, corollary 5.1 requires T to also execute c between r and q. But this
means that the dependence r

v
99K q does not exist in T because c redefines v, and

that is a contradiction.

Thus, every dependence r
v
99K q and r

dcd
99K q in S(q,T) is also in S(q,U). It remains to show

that q does not depend on additional operations in U .

• There exists no additional dynamic control dependence r′
dcd
99K q in U because q is dynam-

ically control dependent on exactly one operation.

• There exists no dynamic data dependence c
v
99K q in U which does not exist in T :

Assume that q is dynamically data dependent on an operation c in U due to a variable v

but not in T . This means that q is dynamically data dependent on a different operation r

in T due to v. Hence, c executes between r and q in U but not in T . In can be shown in
analogy to point 2 that such an operation c cannot exist.

It follows that q has the same incoming dependences in T and in U . According to the in-
duction, S(r,T) = S(r,U) holds for every r on which q is dependent in T and U . Therefore,
S(q,T) = S(q,U) holds.

196

5.5. A Slicing-Based Security Constraint for Low-Security Observational Determinism

Next, we show that if a trace T executes an operation o that is not potentially influenced by a
data conflict or an operation reading or importing high input, then all traces U whose inputs are
low-equivalent to the one of T either execute o or delay it infinitely.

Corollary 5.6. Let p be a program and let o be an operation of p that is not potentially influ-

enced by a data conflict or an operation reading or importing high input. Let T be a trace of p

and Θ be the set of possible traces whose inputs are low-equivalent to the one of T . If o ∈ T ,

then every U ∈ Θ either executes o or infinitely delays an operation in DCD(o).

Proof. We assume that U ∈ Θ does not execute o and show that in this case U infinitely delays
an operation in DCD(o). There exist two adjacent operations in DCD(o), b and b′, such that
b ∈ U and b′ /∈ U . This holds because the first element in DCD(o) is start, which is always
executed, and the last element in DCD(o) is o, which is not executed. We apply lemma 5.2 to
show S(b,T) = S(b,U) and then lemma 5.1 to show that b evaluates in U with the same results
as in T and thus chooses the same branch in T and U . According to observation 5.3, it follows
that U infinitely delays b′.

If there is no order conflict between the low-observable operations of program p, then all
traces with low-equivalent inputs have the same relative execution order of low-observable op-
erations up to infinite delay:

Corollary 5.7. Let p be a program and let T and U be two traces with low-equivalent inputs. If

there are no order conflicts between any two low-observable operations, then all low-observable

operations executed by both T and U are executed in the same relative order.

Proof. Let o and o′ be two low-observable operations. We assume that T and U execute them,
but not in the same relative order, which means that their execution order is switched. According
to corollary 5.1, this can only be the case if o and o′ may happen in parallel. But then they form
an order conflict, which contradicts the assumption.

Now we have all necessary pieces together:

Theorem 5.1 (Security constraint LSOD enforces low-security observational determinism).
A program p is low-security observational deterministic if it satisfies security constraint 1.

Proof. Let t and u be two low-equivalent inputs, and let T and U be the resulting sets of possible
traces. We have to show that each pair of traces T,U in T∪U is low-equivalent.

Corollary 5.7 guarantees that T and U execute the shared low-observable operations in the
same relative order. We can apply lemma 5.2 to all low-observable operations o executed by
both T and U , so we also have S(o,T) = S(o,U). Since the potential influence of a low-
observable operation o does not contain operations reading or importing high input, this also
holds for the operations in S(o,T) and S(o,U). It remains to distinguish finite and infinite traces:

197

5. Information Flow Control For Concurrent Programs

1. T and U are finite
Corollary 5.6 guarantees that T and U execute the same low-observable operations be-
cause infinite delay would require infinite traces. The conditions of corollary 5.2 are
satisfied and T and U are low-equivalent.

2. T and U are infinite
Let obslow(T) be of equal length or longer than obslow(U) (switch the names if neces-
sary). Corollary 5.6 guarantees that T executes the same low-observable operations as U

and that U infinitely delays an operation b ∈ DCD(o) of all low-observable operations o

executed in T but not in U . Thus, the conditions of corollary 5.3 are satisfied and T and
U are low-equivalent.

3. T is finite and U is infinite
Corollary 5.6 guarantees that T executes the same low-observable operations as U does
and that U infinitely delays an operation b ∈ DCD(o) of all low-observable operations
o executed in T but not in U . Note that this means that obslow(T) has at least as many
events as obslow(U). Thus, the conditions of corollary 5.4 are satisfied and T and U are
low-equivalent.

4. T is infinite and U is finite
Switch the names and apply the previous case.

5.5.2. A Sound Approximation of LSOD via Slicing of CSDGs

Conveniently, the potential influence of an operation o can be conservatively approximated by
the slice for stmt(o) of the CSDG. We are able to show this claim on the basis of one assumption.
An operation q has a fixed calling context, which is encoded in DCD(q), because procedure calls
are branching points. Our assumption is that if there exists a dynamic dependence q 99K q′ in a
trace T , then there exists a context path from the context of q to the context of q′ in the CSDG.
This assumption is eligible, since it is the purpose of a CSDG to account for every possible
dependence which may appear in a program run. However, proving that property is beyond the
scope of this work, because it would require to prove a whole CSDG generator correct.

Theorem 5.2. Let p be a program and G its CSDG. Let o be an operation in Ops(p). The

following holds for every operation q ∈ Pot(o): There is a context-sensitive path from stmt(q)

to stmt(o) in G.

Proof. Since the case q = o is trivial, we assume q 6= o. Let c(r) denote the context of an
operation r. There exists a sequence of dynamic dependences q1 99K · · · 99K qk such that q =

198

5.6. Slicing-Based Verification of LSOD

q1 and qk = o. Our assumption states that for each dynamic dependence qi 99K qi+1 in that
sequence there exist a context path from c(qi) to c(qi+1). According to definition 3.15, these
paths can be successively concatenated to a a context path from c(q) to c(o). Thus, there exists
a context-sensitive path from stmt(q) to stmt(o) in G.

Since the context-sensitive slice of G for stmt(o) contains all nodes on context-sensitive paths
to stmt(o), it covers the potential influence of operation o. This means that our security con-
straint LSOD can be verified by slicing CSDGs. A suitable algorithm is presented in section
5.6.

5.5.3. Limitations

We made the following limitations in order to keep this part manageable:

Pointers In order to avoid modeling pointer indirection, our memories do not include pointers.
For pointer indirection an intermediate layer of locations has to be added, so that a variable
points to a location and the location to a value. Dynamic data dependences have to account for
changes of the location a variable points to. Lemma 5.1 can then be extended to show that each
variable of operation o undergoes equivalent changes of locations in both traces.

Sequential consistency In order to model traces as sequences of configurations, we assumed
that programs are sequentially consistent. Sequential consistency [82] is a relation between a
program and its effects on the memory, defining which effects correspond to valid program
executions. Sequential consistency requires that the effects of any program execution must be
in accordance with a sequential execution of the operations in which the operations of each
thread appear in the order specified by the program. This limits the validity of our proof to
concurrent programs that behave sequentially consistent, for example correctly synchronized
Java programs [48, §17.4.5].

5.6. Slicing-Based Verification of LSOD

In the following, we present an algorithm based on slicing of CSDGs that verifies whether
a program satisfies our security constraint LSOD. In order to detect data and order conflicts,
CSDGs are enriched with conflict edges.

Definition 5.14 (Data and order conflict edges). Let G be a CSDG and let m and n be two nodes

in G that may happen in parallel. There is a data conflict edge m →dconf n to G if m defines a

variable v that is used or defined by n. There is an order conflict edge m ↔oconf n to G if both

nodes are classified as sources or sinks.

199

5. Information Flow Control For Concurrent Programs

control dependence

data dependence

data confl ict

interference dependence

order confl ict

thread_2thread_1

x = 0

print(x)

y=inputPIN()

whi le(y !=0)

y--
x = 1

print(2)

Figure 5.5.: The CSDG of the program on the right side of Fig. 5.1, enriched with conflict edges. The
gray nodes denote the slice for node print(x). Note that the slice ignores conflict edges.

Figure 5.5 shows the CSDG of the program on the right side of Fig. 5.1, enriched with
conflict edges. The example assumes that the security lattice consists of two elements, l v h,
and that y = inputPIN() is classified as a source of h data and print(x) and print(2)

are classified as sinks of l data. The CSDG contains two order conflict edges, one between
print(x) and print(2) and one between print(x) and y = inputPIN(), and three data
conflict edges, from x = 0 to x = 1, from x = 1 to x = 0 and from x = 1 to print(x).

Note that data conflicts can be computed independently from the classification of sources and
sinks because they only depend on conflicting variable accesses. Conveniently, interference
dependences already represent the data conflicts between a read and a write. Joana’s CSDG
generator uses interference-write dependences to represent conflicts between two writes. These
special dependences are ignored by the hitherto presented slicing and chopping algorithms.

Definition 5.15 (Interference-write dependence). A statement n is interference-write-dependent

on statement m, abbreviated by m →iw n, if both statements may write to the same memory

location and may happen in parallel up to synchronization.

Order conflicts have to be determined after a user has classified the program and have to be
adjusted whenever the classification changes. Since order conflict edges are inserted between
every pair of sources or sinks that may happen in parallel, the IFC algorithm has to check later if
a certain order conflict is actually visible to the attacker in question: If the attacker has a level l,
then both nodes involved in the order conflict have to be classified with a level equal to or lower
than l. Otherwise, the conflict can be ignored because the attacker cannot observe the execution
of both nodes and thus not their relative ordering. We call an order conflict low-observable if it
is visible to the attacker.

The following algorithm verifies whether a program p is LSOD:

1.Retrieve a security lattice L and a classification of p (from a user).

200

5.6. Slicing-Based Verification of LSOD

2.Enrich the CSDG with order conflict edges.

3.Compute a slice for every source or sink s. Let l ∈ L be the level of s.

• If the traversal encounters a source of level h 6v l, then the program may leak data
of level h via explicit or implicit flow and is rejected.

• If the traversal encounters an incoming data conflict edge, the program may contain
a probabilistic data channel and is rejected.

• If the traversal encounters an order conflict edge, check if the order conflict is low-
observable. If so, the program may contain a probabilistic order channel and is
rejected.

As an example, consider Fig. 5.5. The slice for print(2) encounters the order conflict edge
between the nodes print(2) and print(x), so the program may contain a probabilistic order
channel. The slice for print(x), highlighted gray in Fig. 5.5, encounters all data conflict
edges, so the program may contain a probabilistic data channel as well, whereas its implicit and
explicit flow is secure.

5.6.1. Adding a Declassification Mechanism

The presented algorithm detects probabilistic channels and malicious explicit and implicit flow,
as desired. However, it is too restrictive in practice because it does not permit declassifica-
tion. The principle of non-occlusion [129, 130] (cf. section 5.1.3) aids us in integrating existing
declassification mechanisms into our algorithm. In order to satisfy non-occlusion, a declassi-
fication mechanism for implicit and explicit flow should not declassify probabilistic channels.
This requirement allows us to divide the security check into two independent phases, one that
inspects the implicit and explicit flow and one that scans the program for probabilistic channels.
The inspection of implicit and explicit flow can be done with already existing techniques, for
example, with the slicing-based IFC check of Hammer et al. [58] or even with a security-type
system, as long as our classification system can be mapped over. That way, it is possible to
reuse existing declassification mechanisms for implicit and explicit flow. The chosen technique
has to be extended to account for explicit flow resulting from shared-memory access. For exam-
ple, Hammer et al.’s IFC technique has to include concurrency edges in the predecessor relation
pred(n) used in the data flow equations (cf. sect. 5.1.4) and has to ignore conflict edges.

5.6.2. Optimizations

Low-security observational determinism has one hitch, programs can fail it even if they do not
work with any high data at all. We therefore use the following optimization: A conflict is

201

5. Information Flow Control For Concurrent Programs

considered harmless if there exists no source of high data that can execute before the nodes
forming the conflict. Our algorithm is extended as follows:

1.Retrieve a security lattice L and a classification of p (from a user).

2.Enrich the CSDG with order conflict edges.

3.Compute a slice for every source or sink s. Let l ∈ L be the level of s.

• If the traversal encounters a source of level h 6v l, then the program may leak data
of level h via explicit or implicit flow and is rejected.

• If the traversal encounters an incoming data conflict edge, check in the TCFG if any
node that can be executed before both conflicting nodes is a source of level h 6v l. If
so, the program may contain a probabilistic data channel and is rejected.

• If the traversal encounters an order conflict edge, check if the order conflict is low-
observable. If so, check in the TCFG if any node that can be executed before both
conflicting nodes is a source of level h 6v l. In that case the program may contain a
probabilistic order channel and is rejected.

Note that this optimization is not covered by our proofs in section 5.5 and should be used
with care.

5.6.3. Pseudocode

Algorithms 5.1, 5.3 and 5.2 present pseudocode for our IFC algorithm. It receives a CSDG
in which sources and sinks are already classified and which already contains the order conflict
edges, the corresponding TCFG and the security lattice in charge. It then runs an external check
of the implicit and explicit flow. If the program passes that check, it is scanned for probabilistic
channels. This is done by Alg. 5.3.

Algorithm 5.3 receives the CSDG, the TCFG, the security lattice and a source or sink s of
a certain security level l. The algorithm first checks whether s is involved in a low-observable
order conflict that can be preceded by a source of high data. This task is delegated to the
auxiliary procedure benign in Alg. 5.2. After that, it executes an extended I2P slicer (cf.
section 3.2) which additionally checks if s is potentially influenced by a data conflict whose
nodes can be preceded by a source of high data. This check is again delegated to procedure
benign.

Procedure benign first checks whether the given conflict is an order conflict and whether it is
low-observable, which it is if both nodes involved in the conflict are visible to the attacker. After
that, it checks for both order and data conflicts whether the involved nodes can be preceded by

202

5.6. Slicing-Based Verification of LSOD

Algorithm 5.1 Information flow control for concurrent programs.
Input: A classified CSDG G = (N,E), its TCFG C, a security lattice L.
Output: ‘true’ if the program is LSOD (up to declassification and harmless conflicts), ‘false’ otherwise.

Let src(n) be the source level of node n (=⊥ if n is not a source).
Let sink(n) be the the sink level of node n (=> if n is not a sink).

/* Inspect the implicit and explicit flow of the program. */
Let flow(G,C,L) be a function that returns false if G contains illicit implicit or explicit flow.
if flow(G,C,L) == false

return false

/* Scan the program for probabilistic channels. */
for all n ∈ N : src(n) 6=⊥ // check the sources of information

if prob(G,C,n,src(n),L) == false
return false

for all n ∈ N : sink(n) 6=> // check the sinks of information
if prob(G,C,n,sink(n),L) == false

return false

return true

Algorithm 5.2 Procedure benign identifies benign conflicts.
Input: A TCFG C = (N,E), two conflicting nodes a and b, the kind e of the conflict, a security lattice
L, a security level l ∈ L.

Output: ‘true’ if the conflict is harmless, ‘false’ otherwise.
Let reaches(m,n,C) return ‘true’ if there exists a realizable path from node m to node n in C.

/* Check visibility of order conflicts. */
if e == oconf

x = (src(a) 6=⊥∧src(a)v l)∨ (sink(a) 6=>∧sink(a)v l) // is ‘a’ visible?
y = (src(b) 6=⊥∧src(b)v l)∨ (sink(b) 6=>∧sink(b)v l) // is ‘b’ visible?
if ¬x ∨ ¬y // one of them is not visible

return true // the order conflict is not visible

/* Check if a source of high data may execute before the conflicting nodes. */
for all n ∈ N

if src(n) 6v l
if (reaches(n,a)∨n ‖ a)∧ (reaches(n,b)∨n ‖ b)

return false // the conflict is harmful

return true // the outcome of the conflict cannot be influenced by high data

a source n of high data. This is the case if n reaches them on realizable paths in the TCFG or if
it may happen in parallel to them.

The depicted pseudocode forgoes efficiency for clarity and therefore has a comparatively high
asymptotic running time: If we exclude the check of the implicit and explicit flow done by the
external procedure flow, the runtime complexity is dominated by the reachability check in in

203

5. Information Flow Control For Concurrent Programs

Algorithm 5.3 Procedure prob detects probabilistic channels.
Input: A CSDG G = (V,E), its TCFG C, a node s, its security level l, the security lattice L.
Output: ‘false’ if s leaks information through a probabilistic channel, ‘true’ otherwise.

/* Check G for probabilistic order channels. */
for all m ↔oconf s // inspect order conflicts

if benign(C,m,n,oconf ,L, l) == false // is the conflict harmless?
return false

/* Check G for probabilistic data channels. */
// initialize the modified I2P-slicer
W = {s} // a worklist
M = {s 7→ true} // maps visited nodes to true (phase 1) or false (phase 2)

repeat
remove first node n from W

// look for data conflicts
for all m →dconf n

if benign(C,m,n,dconf ,L, l) == false // is the conflict harmless?
return false // no, it is harmful

// proceed with standard I2P slicing
for all e = m → n such that e is not a conflict edge

// if m hasn’t been visited yet or we are in phase 1 and m has been visited in phase 2
if m 6∈ dom M∨ (¬M(m)∧ (M(n)∨ e is a concurrency edge))

// if we are in phase 1 or if e is not a call or parameter-in edge, add m to W
if M(n)∨ e is not a call or parameter-in edge}

W =W ∪{m}

/* determine how to mark m: */
if M(n)∧ e is a parameter-out edge

// we are in phase 1 and e is a param-out edge: mark m with phase 2
M = M∪{m 7→ false}

else if ¬M(n)∧ e is a concurrency edge
// we are in phase 2 and e is a concurrency edge: mark m with phase 1
M = M∪{m 7→ true}

else
// mark m with the same phase as n
M = M∪{m 7→ M(n)}

until W = /0

return true // we have found no probabilistic channels

procedure benign. For each conflict edge, O(|NCSDG|) complete traversals of the TCFG may
be necessary, and the number of conflict edges in the CSDG is bound by O(|NCSDG|2). This
means a worst case complexity of O(|ECSDG|+ |NCSDG|3 ∗ |ETCFG|) for one call of procedure

204

5.7. Evaluation

prob, the first summand being the upper bound for the costs of the extended I2P slicer, the
second summand, for procedure benign. Since prob can be called O(|NCSDG|) times in the
worst case, the complete IFC check has a worst case complexity of O(|NCSDG| ∗ |ECSDG|+
|NCSDG|4 ∗ |ETCFG|).

Several optimizations trading memory for speed are possible. The harmlessness of a con-
flict edge needs to be checked at most once for each security level in the lattice L and can
be cached and reused. It also can be precomputed which sources of information can reach
which conflicting nodes, which can be efficiently done in O(|NCSDG| ∗ |ETCFG|) by computing
a context-sensitive forward slice of the TCFG for each source. Both optimizations together
reduce the runtime complexity to O(|NCSDG|) slices of the CSDG in prob, O(|L| ∗ |NCSDG|2)
calls of benign and O(|NCSDG|) slices of the TCFG, summing up to a total complexity of
O(|NCSDG| ∗ |ECSDG|+ |L| ∗ |NCSDG|2 + |NCSDG| ∗ |ETCFG|).

5.7. Evaluation

We have implemented our IFC technique in Java and integrated it into the Valsoft/Joana project,
where it can be used to analyze the information flow in concurrent Java programs. Implicit
and explicit flow are investigated by an extension of Hammer et al.’s algorithm [52, 58] to con-
currency edges. This section presents an evaluation of our technique. First, we compare it
with Smith and Volpano’s weak probabilistic noninterference [135, 150], with Sabelfeld and
Sand’s strong security [128] and with different realizations of low-security observational deter-

minism [64, 98, 121, 160]. It follows a case study committed on a set of 10 programs, which
investigates the practicability of our technique. A stress test committed on a set of concurrent
Java programs, investigating the runtime behavior of our technique, completes the evaluation.

5.7.1. Weak Probabilistic Noninterference

Smith and Volpano’s security property weak probabilistic noninterference [135, 150] enforces
probabilistic noninterference via a variant of probabilistic bisimulation called weak probabilistic

bisimulation [135, 150]. A program is weakly probabilistic noninterferent if for each pair of
low-equivalent inputs each sequence of low-observable events caused by the one input can be
caused by the other input with the same probability. It is called ‘weak’ because the number of
steps between two events in the one run may differ from the number of steps between them in
the other run.

Weak probabilistic noninterference addresses illicit explicit and implicit flow and probabilis-
tic channels. Explicitly excluded are timing channels, which permits the probabilistic bisimu-
lation to be weak, and termination channels. This renders their interpretation of low-observable
behavior very similar to ours: It consists of a sequence of low-observable events, but lacks in-

205

5. Information Flow Control For Concurrent Programs

formation about the time at which such an event occurs. The major difference between their
definition of equivalent low-observable behavior and ours is that their definition disallows low-
observable events to be delayed infinitely in the one low-observable behavior and being exe-
cuted in the other. Thus, their definition is stricter with respect to termination channels and only
permits the sheer termination of the program to differ. A general advantage of weak probabilis-
tic noninterference over our security property determinism is that it accepts programs that do
not work on high data at all.

Whereas their idea of low-observable behavior is very similar to ours, its concrete definition
differs. The underlying classification mechanism partitions the variables of the program in
question into high and low variables, and the attacker is able to see all low variables at any
one time. Hence, the values of the low variables and their changes over time constitute the
low-observable behavior. This makes their attacker generally more powerful than ours, because
we cannot simulate that capability with our classification mechanism. Our mechanism aims to
classify I/O operations as high or low and to treat unclassified operations as invisible, which is
in turn not possible with Smith and Volpano’s mechanism.

Security constraint

Smith and Volpano present a security-type system that guarantees that well-typed programs are
weakly probabilistic noninterferent. Expressions are classified as high or low, dependent on
the variables appearing in the expression. An expression is low if it does not contain any high
variable, it is high otherwise. A program is weakly probabilistic noninterferent if

• only low expressions can be assigned to low variables,

• a conditional structure with a high guard cannot assign to a low variable and

• a conditional structure whose running time depends on high variables cannot be followed
sequentially by assignments to low variables.

The running time of a conditional structure is said to depend on high variables if it is a loop
with a high guard or an if-structure with a high guard whose branches have different numbers
of statements. A special language construct protect can be applied to subprograms which do
not contain loops and causes an atomic execution of that subprogram. The running time of a
protected if-structure with a high guard is by definition independent from the high guard.

A weakness of Smith and Volpano’s security-type system is that it lacks a detection of con-
flicts. Probabilistic channels are prevented by forbidding assignments to low variables sequen-
tially behind conditional structures whose running time depends on high variables, which is
very restrictive. The program on the left side of Fig. 5.6 is rejected by their security constraint,
because the running time of the if-structure depends on high data and is followed sequentially

206

5.7. Evaluation

void t h r e a d _ 1 () :
h = i n p u t P I N () ;
i f (h < 0)

h = h ∗ (−1) ;
l = 0 ;

void t h r e a d _ 2 () :
x = 1 ;

void t h r e a d _ 1 () :
h = i n p u t P I N () ;
i f (h == 0)

h = h + 2 ;
e l s e

h = h − 2 ;
l = 0 ;

void t h r e a d _ 2 () :
l = 1 ;

Figure 5.6.: Two examples comparing the restrictions of LSOD and weak probabilistic noninterference.
We assume that Smith and Volpano’s technique classifies variables h and x as high and l as
low, and that our technique classifies h = inputPIN() as a high source and l = 0 and
l = 1 as low sinks. The left program is accepted by our condition and rejected by theirs,
the right program is rejected by ours and accepted by theirs.

by l = 0. However, it does not contain a probabilistic channel because l = 0 is not involved
in an order conflict or influenced by a data conflict. It therefore satisfies our security constraint
LSOD. The protected construct produces relief, but it is non-standard and would have to be
integrated into the desired language.

The type system assumes that a single statement has a fixed running time, which is not neces-
sarily the case in presence of caching and pipelining. Based on this assumption, programs like
that on the right side of Fig. 5.6 are accepted by their type system, because the branches of the
if-structure have equal length and thus different values of h do not alter the probabilities of the
possible ways of interleaving of l = 0 and l = 1. We explicitly aim to reject such programs,
arguing that different running times of h = inputPIN() could already cause a probabilistic
channel, and our security constraint rejects the program because of the data conflict between
l = 0 and l = 1.

Smith and Volpano’s security-type system is restricted to probabilistic schedulers and breaks,
for example, in the presence of a round-robin scheduler, for which Smith provides an exam-
ple [135]. This a disadvantage compared with LSOD, which holds for every scheduler. Similar
to LSOD, the type system does not support a modular verification of programs and libraries.

5.7.2. Strong Security

Sabelfeld and Sands’ security property strong security [128] addresses implicit and explicit
flow, probabilistic channels and termination channels. It enforces probabilistic noninterference
for a large class of schedulers, namely all schedulers whose decisions are not influenced by
high data. It makes the following requirements to a program p and all possible pairs (t,u) of

207

5. Information Flow Control For Concurrent Programs

low-equivalent inputs: Let T and U be the set of possible program runs resulting from t and u.
For every T ∈ T, there must exist a low-equivalent program run U ∈ U.

Even though it looks like a possibilistic property, strong security is capable of preventing
probabilistic channels, the trick being the definition of low-equivalent program runs: Two pro-
gram runs are low-equivalent if they have the same number of threads and they produce the
same low-observable events and create or kill the same number of threads at each step under
any scheduler whose decisions are not influenced by high data. This ‘lockstep execution’ re-
quirement allows to ignore the concrete scheduling strategy.

Programs are classified by partitioning variables into high and low variables. The attacker
sees all low variables at any one time and is aware of program termination, so the values of
the low variables, their changes over time and the termination behavior constitute the low-
observable behavior. Strong security assumes that the attacker is not able to see which statement
is responsible for a low-observable event and is designed to identify whether two syntactically
different subprograms have equivalent semantic effects on the low-observable behavior, which
makes it possible to identify programs like that on the left side of Fig. 5.7 as secure. Even
though the assignments to the low variable l are influenced by high data via implicit flow,
strong security states that the low-observable behavior is not, because both branches lead to 0
being assigned to l. Our security property is not able to recognize this program as secure and
rejects it, the same holds for weak probabilistic noninterference.

Comparing their definition of low-observable behavior with ours and with the one of Smith
and Volpano shows typical disagreement on the capabilities of the attacker. Sabelfeld/Sands
and Smith/Volpano assume that the attacker is able to see low variables at any time, which we
do not, Smith/Volpano and we assume that the attacker cannot exploit termination channels and
is able to identify statements responsible for low-observable events, which is contrary seen by
Sabelfeld/Sands.

The requirement of lock-step execution renders strong security compositional with respect to
sequential and parallel composition, which means that strongly secure programs can be com-
bined sequentially or in parallel to a new strongly secure program. Sabelfeld [127] has proven
that strong security is the least restrictive security property that provides this degree of compo-
sitionality and scheduler-independence. Its compositionality is its outstanding property and an
advantage over our property, which is not compositional. On the other hand, lockstep execution
imposes serious restrictions to programs, and an investigation of its practicability remains an
important open issue.

The restriction to schedulers not working on high data means that any information possibly
used by the scheduler, for example thread priorities or the mere number of existing threads,
must be classified as low. This in turn means that the classification of a program becomes
scheduler-dependent, so the scheduler-independence of strong security is bought by making the

208

5.7. Evaluation

void main () :
h = i n p u t P I N () ;
i f (h < 0)

l = 0 ;
e l s e

l = 0 ;

void t h r e a d _ 1 () :
h = i n p u t P I N () ;
i f (h < 0)

h = h ∗ (−1) ;
e l s e

s k i p ;
l = 0 ;

void t h r e a d _ 2 () :
x = 1 ;

Figure 5.7.: Two examples demonstrating the capabilities of strong security. We assume that h and x are
classified as high and l as low. The left program is strongly secure, because both branches
assign the same value to l. The right program is a transformation of the program on the left
of Fig. 5.6, where the additional skip statement removes the probabilistic data channel.

classification scheduler-dependent. This makes it possible to break strong security by running
the program under a scheduler for which the attacker knows the classification of the program to
be inappropriate. This is a disadvantage compared with our technique, whose security property,
security constraint and classification mechanism are scheduler-independent.

Security constraint

Sabelfeld and Sands present a security-type system that ensures that a well-typed program is
strongly secure. The type system checks similarly to that of Smith and Volpano whether implicit
and explicit flow is secure and disallows loops with high guards completely in order to prevent
termination channels.

Similar to Smith and Volpano, the authors assume that a single statement has a fixed execution
time. Under that assumption, probabilistic channels may only appear if assignments to low
variables are sequentially preceded by if-structures with high guards (since they forbid loops
with high guards completely). The specific feature of their type system is that it transforms if-
structures with high guards such that they cannot cause probabilistic channels. For that purpose,
it pads the branches of such an if-structure with skip-statements until the branches have the
same number of statements. For example, the program on the left side of Fig. 5.6 would be
transformed to the program on the right side of Fig. 5.7 and would then be accepted.

The removal of probabilistic channels by padding if-structures with skip-statements is
clearly a proof of concept, as it assumes that the execution time of skip is equal to the one
of any other single statement. However, the idea of transforming out probabilistic channels is
very appealing and is hopefully investigated further. At the time being, a practical employment
of strong security would rather follow Smith and Volpano’s idea of identifying whether the
branches of if-structures have equal length.

209

5. Information Flow Control For Concurrent Programs

5.7.3. Low-Security Observational Determinism

Next, we compare our IFC technique with two recent approaches to enforce low-security obser-
vational determinism, provided by Zdancevic and Myers [160] and by Huisman et al. [64].

Low-security observational determinism by Zdancevic and Myers

Zdancevic and Myers [160] pointed out that conflicts are a necessary condition of probabilistic
channels. They suggested combining a security-type system for implicit and explicit flow with
a conflict analysis, arguing that programs without conflicts have no probabilistic channels.

The authors address implicit and explicit flow as well as probabilistic data channels, called
internal timing channels in [160]. They exclude termination channels and probabilistic order
channels and justify that by confining the attacker to be a program itself (e.g. a thread). Such
an attacker is not able to observe the relative order of low-observable events, because such an
observation requires a probabilistic data channel in which the differing relative orders manifest.

A program is classified by partitioning variables into high and low, hence the low-observable
behavior of a program run consists of the changes of low variables over time. Since the relative
order of low-observable events does not matter, each low variable can be inspected in isolation.
Let T be a program run and T (v) be the sequence of values a variable v has during the program
run, called the location trace of v. Two program runs T and U are low-equivalent if for every
low variable l the location traces T (l) and U(l) are equal up to the length of the shorter run and
up to stuttering, which means that up to the shorter sequence l undergoes the same changes in
both program runs, but not necessarily at the same time. For example, if T (l)= 〈0,0,0,1,1,2,3〉
and U(l) = 〈0,1,2〉, then T and U are equivalent with respect to l.

The authors demonstrate how to enforce their security property for λ PAR
SEC , a concurrent lan-

guage with message-passing communication. Choosing message-passing makes the detection
of data conflicts more specific: Data conflicts can only appear due to conflicting accesses to the
same communication channel. The language provides linear channels, communication chan-
nels that are used for transmitting exactly one message and thus guarantee conflict-free com-
munication. The authors present a security-type system for λ PAR

SEC that verifies the confidentiality
of implicit and explicit flow and that linear channels are used exactly once. The type system
guarantees that well-typed programs are low-security observational deterministic if they are ad-
ditionally free of data conflicts. However, a suitable analysis of data conflicts is not presented.

Comparison Zdancevic and Myers’ attacker is weaker than ours, as probabilistic order chan-
nels are excluded. It is explicitly designed to tackle malicious threads spying out confidential
information in the host system. It is possible to modify our analysis to comply with their at-
tacker, by simply skipping the detection of probabilistic order channels.

210

5.7. Evaluation

void main () :
h = i n p u t P I N () ;
l = 0 ;
whi le (h > 0)

l ++;
h−−;

void main () :
h = i n p u tP I N () ;
x = y ;
f o r k t h r e a d _ 1 () ;
f o r k t h r e a d _ 2 () ;

void t h r e a d _ 1 () :
x = 0 ;
p r i n t (x) ;

void t h r e a d _ 2 () :
y = 1 ;

Figure 5.8.: Two examples demonstrating the strengths and weaknesses of Huisman et al.’s security prop-
erty. Both programs are rejected, the first because it copies the PIN to the low variable l, the
second because the order of the assignments x = 0 and y = 1 depend on interleaving.

Their security constraint requires that programs are completely free of data conflicts, which
is much stricter than ours. This requirement virtually prevents an application to languages with
shared memory, because any program containing a data conflict would be rejected, even if the
conflict does not influence the low-observable behavior at all.

Huisman et al. [64] pointed out that Zdancevic and Myers’ security property contains a leak
because its definition of low-equivalent program runs is restricted to the length of the shorter
run. We describe that problem in the next part.

Low-security observational determinism by Huisman et al.

Huisman et al. [64] took up and improved the work of Zdancevic and Myers. Foremost, they
pointed out that Zdancevic and Myers’ security property contains a leak, because its definition
of low-equivalent program runs is restricted to the length of the shorter run. Consider the
program on the left of Fig. 5.8, taken from [64], which copies a secret PIN to variable l. It
is sequential and therefore free of conflicts. Because of the loop, no two program runs with
low-equivalent inputs and different input values for h have the same length. The additional
assignments to l in the longer run, after which h has been copied to l, always fall out of
the comparison. But up to the length of the shorter program run l has the same values in both
program runs after every step, hence the program is accepted by Zdancevic and Myers’ property.
Huisman et al. [64] close that leak by strengthening the definition of low-equivalent program
runs: Two program runs T and U are low-equivalent if for every low variable l the location
traces T (l) and U(l) are equal up to stuttering. This means that assignments to low variables
sequentially behind loops iterating over high data are forbidden.

The authors present an additional definition of low-equivalent program runs that closes ter-
mination channels. It additionally requires that either both program runs terminate or none of
them. They also describe the necessary measurements to encounter probabilistic order channels.
This can be achieved by extending location traces to the set L of low variables: In that case two
program runs T and U are low-equivalent if the set of low variables in T and U undergoes the
same sequence of changes in both program runs up to stuttering.

211

5. Information Flow Control For Concurrent Programs

The authors enforce their security property via model checking. They have formalized their
different security properties via two temporal logics, CTL∗ and the polyadic modal µ-calculus,
for which the model-checking problem is decidable if the program in question can be expressed
by a finite-state-machine. This permits a very precise detection of relevant data conflicts, such
that total freedom of data conflicts is not required. Hence, their approach can be applied to
languages with shared-memory communication.

Comparison Huisman et al.’s security property is very flexible, as it permits to include and
exclude termination channels and probabilistic order channels. However, it is also more restric-
tive than ours in several aspects. It is stricter towards termination channels, because it forbids
low-observable events sequentially behind loops iterating over high data. Furthermore, the
optional treatment of probabilistic order channels imposes severe restrictions on the analyzed
programs. Since a program is classified by partitioning variables into high and low, each assign-
ment to a low variable is regarded as a low-observable event. The security property addressing
probabilistic order channels requires that two low-equivalent program runs must make the same
sequence of changes to low variables. This means in effect that if two threads work on different
low variables, then the assignments to these variables must have a fixed interleaving order, even
if the variables are completely unrelated (apart from being ‘low’).

As an example, consider the program on the right side of Fig. 5.8. Its main thread reads a
PIN, assigns y to x and then forks both threads. Thread 1 sets x to 0 and then prints it, thread 2
sets y to 1. Assume that the PIN is high data and the output is low-observable. Using Huisman
et al.’s technique, h is classified as a high variable and x as a low variable. Now it is compulsory
that y is also classified as low because otherwise the assignment x = y would be illegal. This
means that the assignments x = 0 and y = 1 are low-observable. Since the order of these
assignments is not fixed, the program is rejected. Using our IFC technique, h = inputPIN()

is classified as a high source and print(x) as a low sink, and the program is accepted by our
security property. We therefore argue that our approach of classifying operations instead of
variables is better suited for low-security observational determinism, because it permits a much
less restrictive treatment of probabilistic order channels.

5.7.4. Case Study

We have applied our implementation to 10 concurrent programs in order to investigate its use-
fulness and practicability. We used the simple two-point lattice low v high to classify sources
and sinks in these programs and analyzed them with our implementation.

Two of the programs serve as example programs in the literature and contain different kinds
of probabilistic leaks and handicaps. The first program is taken from Smith and Volpano [136,
p. 3] and contains a probabilistic data channel. The second program is an example provided

212

5.7. Evaluation

by Mantel et al. [95, p. 10] and is probabilistic noninterferent, which is difficult to discover.
The third program is a self-written password check routine in which a malicious thread creates
a probabilistic order channel. We ported these programs to Java, the code can be found in
Appendix A. For these programs, we investigated whether our implementation is able to find
the known leaks.

The remaining 7 programs stem from our benchmark (Table 3.1), namely KnockKnock,
LaplaceGrid, SharedQueue, RayTracer, MonteCarlo, J2MESafe and Podcast. In these pro-
grams, we classified statements that intuitively looked like fitting sources and sinks and investi-
gated the reported leaks.

Program ‘SmithVolpano’

The first program, shown in section A.1, reads a PIN and employs three threads to compute
a value result, which is finally printed. There is no explicit or implicit flow from PIN to
result, so an IFC analysis considering only these kinds of information flow classifies the pro-
gram secure. But the assignments to result in threads Alpha and Beta are conflicting, and
the outcome of the conflict is influenced by the values of trigger0 and trigger1, which
in turn are changed dependent on PIN’s value in thread Gamma. Thus, this program contains
a probabilistic data channel which leaks information about PIN to result. And actually, ac-
cording to Smith and Volpano [136], if the input PIN is less twice the value of variable mask,
then PIN’s value is eventually copied into result and printed to the screen (provided that
scheduling is fair).

Conduction and Results We classified statement PIN = Integer.parseInt(args[0])

as a high source and statement System.out.println(result) as a low sink. Our algorithm
detected a probabilistic data channel from the source to the sink, as required.

Program ‘Mantel’

The second program, shown in section A.2, describes an application managing a stock port-
folio of Euro Stoxx 50 entries. It consists of four threads, coordinated by an additional main
thread. The program first runs the Portfolio and EuroStoxx50 threads concurrently, where
Portfolio reads the user’s stock portfolio from storage and EuroStoxx50 retrieves the cur-
rent stock rates. When these threads have finished, threads Statistics and Output are run
concurrently, where Statistics calculates the current profits and Output incrementally pre-
pares a statistics output. After these threads have finished, the statistics are displayed, together
with a pay-per-click commercial. An ID of that commercial is sent back to the commercials
provider to avoid receiving the same commercial twice. The portfolio data, pfNames and
pfNums, is secret, hence the Euro Stoxx request by EuroStoxx50 and the message sent to the

213

5. Information Flow Control For Concurrent Programs

commercials provider should not contain any information about the portfolio. As Portfolio
and EuroStoxx50 do not interfere, the Euro Stoxx request does not leak information about the
portfolio. The message sent to the commercials provider is not influenced by the values of the
portfolio, too, because there is no explicit or implicit flow from the secret portfolio values to the
sent message. Furthermore, the two outputs have a fixed relative ordering, as EuroStoxx50 is
joined before Output is started. Hence, the program should be considered secure.

Conduction and Results We classified the two statements reading the portfolio from storage,
pfNames = getPFNames() and pfNums = getPFNums(), as high sources and the flushes
of output stream nwOutBuf in EuroStoxx50 and at the end of the main procedure as low
sinks. The challenge of this program is to detect that EuroStoxx50 is joined before nwOutBuf
is flushed in the main procedure, because otherwise it cannot be determined that the two flushes
of nwOutBuf have a fixed execution order. An then the program would have to be rejected
because the resulting order conflict is influenced by both sources.

Our MHP analysis was able to detect that the joins of the threads are must-joins, which
enabled our IFC algorithm to identify that there is no order conflict between the two flushes of
nwOutBuf, therefore no probabilistic channel was reported. But surprisingly, it detected illicit
implicit flow from both sources to the flush of nwOutBuf in main. An inspection of the CSDG
and TCFG of the program revealed that these leaks result from possible exceptions, introduced
by converting the program to Java: The execution of the sink nwOutBuf.flush() in main

depends on the join-procedures being executed successfully – if they throw an exception, the
program is aborted. Thus, there is implicit flow from the call of join for thread Portfolio to
the sink. And since reading the portfolio from storage might cause an exception, there is also
an implicit flow from these statements to the call of join for the Portfolio thread, resulting
in the illicit implicit flow reported by our analysis.

Our CSDG generator permits to ignore exceptions during the construction of the CSDG.
If done so, the algorithm does not detect any information leaks and accepts the program.
If the treatment of joins in our MHP analysis is turned off, the analysis detects two proba-
bilistic order channels between the two flushes of nwOutBuf, one leaking information about
pfNames = getPFNames(), the other leaking information about pfNums = getPFNums().

Program ‘PasswordCheck’

The third investigated program is a password check routine that contains a probabilistic order
channel due to a malicious thread. Its code is shown in section A.3. The program is called with
a user name and a password, which are checked by procedure check in the main thread against
a password data base. The passwords array is considered secret data, whereas the output is
publicly visible, so the password check already leaks information, which we aim to permit by

214

5.7. Evaluation

declassifying the data at check’s return statement. The program contains a thread that executes
concurrently to check. This thread simulates check, except for accessing the passwords array,
where instead a string consisting of 8 chars is compared with itself. Finally, the thread performs
an output signaling it has finished the loop. The intuition behind that thread is that its output
conflicts with the output in the main thread and that the outcome of this conflict is influenced by
the length of the password. Assume that the scheduler schedules after each statement and picks
both threads with the same probability: If the password consists of 8 chars, then both check

and the thread need the same execution time on average, so both possible relative orderings are
balanced. If the password is shorter, the output in main more likely appears first; if it is longer,
it more likely appears last. This is valuable information for the preparation of a password attack.

Conduction and Results The program demonstrates that our analysis is able to find proba-
bilistic order channels and to declassify implicit and explicit flow without masking probabilistic
channels. We classified passwords = {"x", "y"} as a high source and the two outputs as
low sinks. Our analysis identified an illicit implicit flow from the source to the output in main

and a probabilistic order channel leaking information about the source via the order conflict
between the two outputs. In a second step, we defined statement return match to declassify
high information to low, legalizing the implicit flow from the source to the output in main. This
time, our analysis reported only the probabilistic order channel.

The other programs

In the remaining seven programs, we annotated statements printing to the System.out stream
as low sinks if they were located in exceptional code or served for logging or debugging pur-
poses. As high sources we chose the initializations of variables which contained the main data
processed by the programs or information such as passwords or hostnames.

Table 5.1 summarizes the results of our analysis. It reports the number of high sources, low
sinks, probabilistic data (PD) and order channels (PO). We additionally used timing-sensitive
slicing to see if it can be used to lower the number of reported probabilistic channels. Even
though it lowered the number of encountered data conflicts, it did not improve precision as much
as we expected. Only for J2MESafe it was able to reduce the number of reported channels. For
program RayTracer, the timing-sensitive slicer did not finish computation within reasonable
time.

Our implementation is able to collect the data and order conflicts responsible for a proba-
bilistic channel. We used that feature to manually inspect the reported channels. The reported
probabilistic order channels could be inspected and confirmed manually; the statements in-
volved in the underlying order conflicts can be executed concurrently. A manual inspection
of the probabilistic data channels was only possible for KnockKnock and for J2MESafe, be-

215

5. Information Flow Control For Concurrent Programs

Table 5.1.: The number of probabilistic data (PD) and order channels (PO) detected by our IFC algorithm.
The rightmost two columns show the effect of timing-sensitive slicing on the precision of the
results.

Name Sources Sinks Timing-insens. Timing-sens.
PD PO PD PO

LaplaceGrid 2 1 2 2 2 2
SharedQueue 1 3 3 6 3 6
KnockKnock 2 2 4 2 4 2
RayTracer 1 2 2 2 – –
MonteCarlo 2 2 4 4 4 4
J2MESafe 2 6 20 0 12 0
Podcast 1 1 1 1 1 1

cause the channels in the other programs involved too many data conflicts. The probabilistic
data channels reported for KnockKnock were induced by the same two data conflicts, which
could be identified as false positives. They connect the fields of two string arrays, which are not
shared between the involved threads. Program J2ME shows a similar result. Its probabilistic
data channels are based on the same 13 - 14 data conflicts, which connect local variables of
different threads, so these channels could also be identified as false positives.

5.7.5. Runtime Behavior

To complete our evaluation, we investigated how well our implementation scales with increasing
program sizes, lattice sizes and numbers of sources and sinks. We applied our algorithm to the
seven programs used in the previous part, KnockKnock, LaplaceGrid, SharedQueue, RayTracer,
MonteCarlo, J2MESafe and Podcast, and to our biggest program, Cellsafe. We used three
different security lattices: Lattice A is a simple chain of three elements, public v confidential

v secret. Lattice B consists of 22 elements, arranged in a lattice of height 9, resulting in many
incomparable pairs of elements. Lattice C is a huge lattice of height 7 with 254 elements.
For each program and lattice, we randomly chose 10 sources and 10 sinks, 33 sources and
33 sinks and finally 100 sources and 100 sinks of random security levels and analyzed the
classified programs with our algorithm. We thereby measured the execution times of the whole
algorithm, of the scan for probabilistic channels and of the scan for illicit and explicit flow.
Since the execution times are presumably heavily dependent on the randomly chosen sources
and sinks, the test was run ten times and the presented results are the average values.

Table 5.2 shows the average execution times of our IFC algorithm. It contains one row for
each combination of program and lattice, i.e. row ‘LG + A’ contains the results for LaplaceGrid
and lattice A. The numbers reveal that the most important factor influencing the runtime behav-

216

5.7. Evaluation

Table 5.2.: Average execution times of our IFC algorithm for different programs, lattices and numbers of
sources and sinks (in seconds).

Name + sources x sinks Name + sources x sinks
Lattice 10 x 10 33 x 33 100x 100 Lattice 10 x 10 33 x 33 100x 100
LG + A 1.6 4.8 21.2 MC + A 17.1 53.3 224.2
LG + B 1.6 5.8 29.7 MC + B 18.7 53.3 173.6
LG + C 2.0 9.5 170.7 MC + C 17.5 54.8 205.0
SQ + A 5.9 17.2 54.0 JS + A 2.2 5.2 18.8
SQ + B 5.5 17.3 68.0 JS + B 2.4 5.6 20.3
SQ + C 5.8 21.1 162.5 JS + C 2.4 5.8 40.7
KK + A 25.7 58.5 170.0 PO + A 6.4 18.1 54.6
KK + B 22.1 57.5 187.8 PO + B 7.4 19.1 66.8
KK + C 25.2 64.9 256.2 PO + C 7.0 20.4 89.8
RT + A 8.9 25.3 99.3 CS + A 19.4 52.5 153.3
RT + B 7.3 23.9 116.1 CS + B 21.5 52.1 160.2
RT + C 8.4 27.2 175.1 CS + C 21.0 53.6 177.3

Table 5.3.: The percentage share of the probabilistic channel detection among the overall execution times.

Name + sources x sinks Name + sources x sinks
Lattice 10 x 10 33 x 33 100x 100 Lattice 10 x 10 33 x 33 100x 100
LG + A 53 48 62 MC + A 45 38 38
LG + B 56 54 73 MC + B 43 38 39
LG + C 58 73 94 MC + C 44 40 47
SQ + A 44 39 44 JS + A 52 46 41
SQ + B 43 40 55 JS + B 46 46 46
SQ + C 43 50 80 JS + C 53 54 71
KK + A 57 45 43 PO + A 46 38 35
KK + B 58 46 45 PO + B 45 37 36
KK + C 58 48 58 PO + C 43 39 46
RT + A 44 40 44 CS + A 38 29 28
RT + B 49 41 50 CS + B 34 30 28
RT + C 47 46 67 CS + C 32 31 34

ior is, besides the sheer size of the program, the number of sources and sinks. If only 10 sources
and 10 sinks were selected, the size of the lattice in charge did not really matter. The runtime
for lattice C was in several cases faster than that for lattice B or A. The cause of that behavior
is that with 10 sources and 10 sinks the size of lattice C is not exhausted – the classification can
introduce at most 20 different security levels to the analysis, the same maximal number as with
lattice B. With 33 sources and 33 sinks the huge size of lattice C slowly became noticeable.
Here the analysis for a program with lattice C was in all cases the most expensive. With 100
sources and 100 sinks the size of lattice C eventually became the dominating cost factor.

217

5. Information Flow Control For Concurrent Programs

Table 5.3 shows the percentage share of the probabilistic channel detection among the overall
execution times. The remaining time was consumed by the algorithm of Hammer et al. [58],
which we employed for verifying the explicit and implicit flow. The results show that the two
checks were similarly fast. However, it should be noted that the performance of the detection
of probabilistic channels seems to decline stronger for huge lattices than Hammer et al.’s algo-
rithm. For lattice C and 100x100 sources and sinks, the detection of probabilistic channels was
in most cases more time-consuming. According to Hammer [52, 53], slicing-based IFC gets
along with comparatively few annotations, which is an encouraging diagnosis.

5.7.6. Study summary

Our evaluation confirms that our IFC technique is a convenient way to enforce probabilistic
noninterference for programs written in a contemporary language with threads. The power of
our security property and our security constraint is competitive to well-known security prop-
erties and constraints in the literature, its strong points being independence from the scheduler
and comparatively low restrictions.

Our algorithm based on slicing of CSDGs is capable of full Java bytecode, our case study
shows that it is able to analyze concurrent Java programs. The examined programs contain typ-
ical Java constructs such as objects, dynamic dispatch, forking and joining of multiple threads
and exception handling. Our technique needs only a few annotations per program – the user has
to identify sources and sinks of information and declassification points.

The case of the ‘Mantel’ program shows that detecting the causes of unexpected information
leaks remains complicated. It currently requires manual inspection of the dependence graph,
even though slicing and chopping can be used to narrow down the responsible program parts.
It remains future work to develop techniques that aid the user in identifying the program points
responsible for information leaks.

The investigation of the seven programs from our benchmark reveals that the precision of our
IFC technique suffers from many false positive data conflicts in the CSDGs, a problem that has
to be solved to make the technique practical. In section 3.12.1, we concluded that the context-
insensitive points-to analysis used in the Joana framework causes many spurious interference
and interference-write dependences. Future work should investigate methods that reduce that
imprecision, for example, thread-sensitive points-to analyses. The problem of timing-sensitivity
seems to come second at the moment.

Our stress test indicates that our algorithm is fast enough to analyze real-world programs.
However, its scalability depends strongly on the number of sources and sinks in the analyzed
program.

The weak point of our evaluation is that the used programs are no real security-sensitive
programs. The evaluation should be extended to a set of real security-sensitive programs for

218

5.8. Discussion and Future Work

which the security lattices and classifications can be derived from a specification. Important
questions besides practicability, precision and runtime performance are:

• Which sizes of security lattices and which numbers of sources and sinks are typical?

• What is the effort of transferring the security specifications of typical security-sensitive
programs to classifications? Is our classification mechanism practical?

• Can our technique be employed to guide the development of security-sensitive software?
Is such an employment of any use?

5.8. Discussion and Future Work

We want to propose several directions for future work.

Termination channels

Our security property excludes termination channels. This is common practice in IFC tech-
niques for sequential programs, because termination channels are assumed to be sufficiently
small, an assumption that does only hold as long as programs are seen as black boxes (see [16]
for a discussion). As soon as programs interact with a user, termination channels can be used
to leak an arbitrarily amount of information. We presented an example of such a program in
section 5.4.5, on the right side of Fig. 5.3. These channels can be prevented by forbidding low-
observable behavior behind loops with guards that may receive high data, but this is a too severe
restriction. A termination analysis [149] for loops could solve that problem: Low-observable
behavior behind such a loop can be permitted if its termination is underwritten by a static anal-
ysis.

Declassification of probabilistic channels

We currently do not provide a declassification mechanism for probabilistic channels. Instead
of declassifying probabilistic channels, we consider Zdancevic and Myers’ idea of using linear

channels for a deterministic communication between threads [160] more promising. Linear
channels can be integrated in form of a library into languages with shared memory. We have
recently a added such a library as a proof-of-concept implementation to Valsoft/Joana, but our
experiences with it are very preliminary and are not reported here.

Conditioned slicing

We suggest an investigation of how conditioned slicing [29] can be used for information flow
control. A conditioned slice of a program p is computed with respect to a first order formula F

219

5. Information Flow Control For Concurrent Programs

on a subset of the input variables of p and has only to consider the program executions feasi-
ble with respect to F . Conditioned slicing is able to yield much smaller slices than traditional
slicing, which are still correct with respect to F . An IFC technique built on conditioned slicing
could yield extremely precise, correct results. However, to the best of our knowledge, condi-
tioned slicing has not been extended to concurrent programs yet.

5.9. Related Work

Due to the vast amount of literature about language-based information flow control, we focus
on related work on probabilistic noninterference and slicing-based IFC. For information about
other topics of language-based information flow control we recommend the excellent survey
published by Sabelfeld and Myers [126]. A good summarization of declassification mechanisms
is presented in Sabelfeld and Sands’ recent publication [130].

Probabilistic noninterference

Probabilistic noninterference has its origins in McLean’s Flow Model [97], Gray’s P-Restrictive-

ness [50] and Gray’s probabilistic nondeducibility on strategy [51]. These security properties
are rather abstract and leave a gap between their system models and concrete source code,
which took some time to bridge. Smith and Volpano [136] were the first to bridge that gap and
presented a security-type system that guarantees that type-safe programs are probabilistic non-
interferent. Their work origins the usage of probabilistic bisimulation for security properties
based on probabilistic noninterference.

Important subsequent publications on that field are Smith and Volpano’s weak probabilistic
noninterference [133, 134, 135, 150], Sabelfeld and Sands’ strong security [128, 127], which we
have both described in section 5.7, and Boudol and Castellani’s work [28], who independently
from Smith and Volpano developed a security-type system that analyzes whether the execution
time of if-conditionals depends on high guards.

Mantel and Sudbrock [94] address and relieve strong securities’ requirement of lock-step-
execution by restricting the class of valid schedulers to robust schedulers, arguing that this class
comprises the most important schedulers, such as round-robin and priority-based scheduling.
Their approach assigns each thread a security level which is set to high as soon as the thread
executes a conditional structure with a high guard and cannot be reset to low. A scheduler is
robust if the probability of choosing a low thread among the set of low threads is not influenced
by the high threads. Their security property, FSI, is basically a relaxation of strong security
which requires lock-step execution only from low threads. However, a FSI-secure program is
not FSI-secure for the class of robust schedulers, but S-secure, which is another security prop-
erty defined in that work. S-security restricts probabilistic noninterference to finite program

220

5.9. Related Work

runs, which means that S-secure programs containing nonterminating loops may leak arbitrary
information. FSI-secure programs are disallowed to assign to low variables inside or sequen-
tially behind conditional structures with high guards, so this potential leak seems to be closed.
However, the gap between FSI-security and S-security needs a close investigation of possible
covert channels. Furthermore, it should be explored whether the class of robust schedulers
allows commonly used techniques for ensuring fairness and liveness.

Incorporating the scheduler Since scheduler-independence imposes many restrictions on
programs, several authors suggest incorporating the scheduler.

Russo and Sabelfeld [125] describe how cooperative scheduling can be used to realize Smith
and Volpano’s protect-construct. Cooperative scheduling is a kind of non-preemptive schedul-
ing, where the executing process has to yield the processor to allow the scheduler to choose an-
other process. The authors forbid these yield-commands inside conditional structures with high
guards and present a security-type system which transforms the protect-constructs in a pro-
gram typed with Smith and Volpano’s type system in [150] into appropriate yield-commands.

In a subsequent publication, Russo and Sabelfeld [124] show that if the employed scheduler
itself satisfies a noninterference property it is possible to enforce probabilistic noninterference
via a compositional yet permissive security property. The idea is that threads themselves receive
a security level, dependent on the security level of conditional structures. During the execution
of a conditional structure with a high guard a thread is considered high (and can be reset to low
afterwards). The scheduler has to distinguish between low and high threads and has to guarantee
that scheduling of low threads is independent from high threads. Under this assumption it is
possible to achieve probabilistic noninterference by a security-type system which only has to
ensure that the implicit and explicit flow is secure and that threads receive the security level of
the guard of the currently executed conditional structure. Barthe et al. [19] transfer Russo and
Sabelfeld’s approach to a simple assembly language with dynamic thread creation and argue
that a similar instantiation can be done for Java Bytecode.

Combining different security properties Mantel et al. [95] present the combining calculus, a
framework that allows to compose concurrent programs that are secure with respect to different
security properties to a new program which satisfies a form of possibilistic noninterference.
They define conditions secure programs additionally have to fulfill in order to be composable.
For example, two programs can be composed sequentially if the first program is main-surviving,
i.e. the last existing thread is always the main thread. They can be composed in parallel if the
sets of variables occurring in them are disjoint. The combining calculus permits to analyze sub-
programs with different IFC techniques, so the degree of security and the imposed restrictions
may vary.

221

5. Information Flow Control For Concurrent Programs

Low-security observational determinism

McLean [98] and Roscoe [121] were the first to propose observational determinism as a means
to avoid dealing with schedulers. McLean’s approach [98] ensures that implementations of
concurrent systems are low-security observational deterministic with respect to a trace-based
specification. Roscoe [121] uses the standard representation of determinism in the CSP calculus
and specifies an algorithm that checks whether a non-deterministic process p is low-security
observational deterministic.

Zdancevic and Myers [160] and later Huisman et al. [64] showed how low-security obser-
vational determinism can be enforced on the level of source code. Their techniques have been
described in section 5.7. Terauchi [145] continues their work and presents an improved security-
type system for a concurrent language with message-passing communication, which permits
data conflicts in program parts that do not contribute to the low-observable behavior. For that
purpose, the author integrates a fractional determinism checker for concurrent programs [146]
in his type system. The author’s definition of low-observable behavior differs from the ones of
Zdancevic and Myers and of Huisman et al. It is not based on trace-locations, but treats all low
variables at once, just as Huisman et al.’s proposed treatment of probabilistic order channels.
This strengthening enables their security property to detect probabilistic order channels, but
makes it much more restrictive, as we have pointed out in section 5.7.3. Furthermore, it does
not permit stuttering and requires in summary that two traces resulting from low-equivalent
inputs must make the same updates to the low variables at every step. In order to permit ter-
mination channels, low-equivalence of traces is only required up to the length of the shorter
trace. This limitation reintroduces the leak of Zdancevic and Myers’s condition, although Ter-
auchi argues that disallowing stuttering and treating all low variables as a whole closes that leak.
However, the program on the left side of Fig. 5.8 is accepted by his condition, even though it is
not secure.

IFC based on data flow analysis

Probably the first who connected data-flow analysis and IFC were Bergeretti and Carré [21].
They specify a data-flow analysis for a Pascal-like language without procedures that computes
which initial definitions of variables (i.e. input) may influence which final definitions of vari-
ables (i.e. output) and which statements are involved in transferring that information.

Abadi et al. [7] found that IFC and slicing share a common notion of dependency and present
the Dependency Core Calculus, an extension of the computational lambda calculus. The authors
show that slicing as well as a security-type system for possibilistic noninterference from Smith
and Volpano [136] can be translated into the DCC. These translations enable a direct comparison
between slicing and security-type systems. However, the authors model slicing through a type
system, hence the results are not representative for SDG-based slicing.

222

5.9. Related Work

Snelting [137] proposed to use slicing to verify the information flow in a program and to use
path conditions as witnesses for illicit information flow. A path condition between two state-
ments, s and t, is a necessary condition on the program state that a program run has to satisfy
in order to reach t, when coming from s. The path condition is composed of all predicates
influenced by s and influencing t. A path condition for an information leak enables to repro-
duce situations in which that leak occurs and thus possesses evidentiary value. Path conditions
also permit to render slicing-based IFC more precisely, because a path condition may reveal
unrealizable paths traversed by the slicing algorithm. In [138], Snelting et al. explain in detail
how path conditions can be realized for C-like languages. Hammer and Schaade [56] extend
path conditions to object-oriented languages and report a preliminary implementation for Java.
However, to date an integration of path conditions into slicing-based IFC has not been reported,
so its practicability remains to be demonstrated.

Wasserrab et al. [154] provide a machine-checked proof formalized in Isabelle\HOL that
intra-procedural slicing can be used to enforce noninterference. The proof is based on CFGs
and a set of wellformedness properties (which inspired ours in section 5.4), so that it holds for
every language and program whose CFGs fulfill these properties. Wasserrab and Lohner [153]
extend that proof to the two-phase slicer for interprocedural programs.

Yokomori et al. [159] show how a modified SDG generator can be used to compute the
information flow in a procedural language and report an implementation for Pascal. A user has
to mark the high input statements, then the system computes the security levels of the output
statements during the data flow analysis. The SDG generator is modified such that it does not
compute the program dependences but propagates the security levels through the control flow
graph. The analysis is not context-sensitive, as it takes the least upper bound of the results
of different invocations of one procedure. Furthermore, it is restricted to a two-point security
lattice, even though an extension to arbitrarily security lattice seems to be straightforward.

Kuninobu et al. [80] use abstract interpretation to compute the security levels of return values
of functions based on the security levels of the parameters of the functions. Their technique
permits arbitrary security lattices, but does not include a declassification mechanism. Their
approach has been implemented for a subset of C and is able to deal with recursion and global
variables.

Hammer et al.’s slicing-based IFC technique [52, 58] is currently the most sophisticated,
because it is able to handle full sequential Java bytecode and permits declassification. His
technique has been described in section 5.1.4. Preliminary versions of his technique have been
published in [54, 55].

Quantitative information flow control Data flow analysis can also be used for quantitative

information flow control, which measures the capacity of information leaks. Clark et al. [34]
define a sound set of rules computing the capacity of information leaks in a sequential while-

223

5. Information Flow Control For Concurrent Programs

language. These rules are based on control and data dependence. Chen and Malacaria’s ap-
proach [30] is able to compute the capacity of probabilistic channels: They transform a multi-
threaded program into a single-threaded one, where an outer while-loop together with prob-
abilistic operators simulates probabilistic scheduling, and apply an earlier developed formula
[92] able to measure the leakage of loops.

McCamant and Ernst [96] developed an analysis that dynamically measures the maximal
numbers of bits leaked by an information leak. The analysis creates a dependence graph for a
program execution and augments each edge with the number of high bits that are maximally
transferred by that edge. These numbers are determined by a bit capacity analysis, which marks
all bits of high data and tracks them during the program execution. Having built the augmented
dependence graph, the analysis proceeds by computing the maximum flow between the inputs
and the outputs of the program, which with a suitable classification of the program can be
translated to the size of possible information leaks. The analysis is dynamic and thus not con-
servative, but it allows to combine an arbitrary number of program runs. This analysis is an
important step towards a practical employment of IFC in the software engineering process, as
knowing the size of a leak permits to decide whether the leak is acceptable. It could also be
used to determine possible points for declassifications.

224

6. The Joana Framework

It follows a brief overview of the Joana framework. Several aspects have already been described
in Hammer’s PhD thesis [52] and in a conjoint publication [45], hence we focus on our share of
the framework.

Figure 6.1 provides a coarse overview of Joana’s architecture. The rectangle labeled as
‘Eclipse-Plugin’ contains those parts that are accessible via our plugin [45] for Eclipse, a pop-
ular software development environment1. All white colored parts can be used without Eclipse,
only the three graphical user interfaces depend on it.

The core of the system is the CSDG data structure, which is based on the public graph library
JGraphT2. The CSDG decouples our slicing, chopping and IFC algorithms from the algorithms
generating the dependence graphs. Joana currently supports CSDGs for Java and C programs.
The ‘JSDG + WALA’ module creates CSDGs for Java programs and is mainly maintained
by Jürgen Graf [49]. It builds on the IBM T.J. Watson Libraries for Analysis (WALA) [5]
and contains our MHP analysis. The ‘CodeSurfer + Plugin’ module consists of a plugin for
CodeSurfer [35], a commercial SDG generator for C, which converts CodeSurfer-SDGs in our
CSDG format. The plugin was developed by Bernd Nürnberger in his master thesis [108].
The ‘Slicing’ module contains a wide range of slicing and chopping algorithms, including all
algorithms presented in chapters 2, 3 and 4. The ‘Graphviewer’ is a stand-alone tool visualizing
our CSDGs, developed and maintained by several student assistants. The ‘IFC’ module contains
our IFC analyses. At the time being, it consists of Hammer et al’s IFC algorithm [58], our
algorithm and an improved IFC algorithm for sequential programs developed by Jens Krinke,
which has not been published yet.

Figure 6.2 shows the graphical user interface of our IFC analysis. The code in part (A)
is an excerpt of the PasswordCheck program investigated in section 5.7.4. Part (B) shows
the classification of the program, which is the one used in section 5.7.4 (the choice of the
security level is done in a pop-up menu and not shown here). The undermost annotation, which
declassifies the result of the password check, is deactivated. Therefore, the analysis reports
in part (C) the probabilistic order channel and the illicit flow from the passwords array to the
output of the result of the password check. In the source code, the chop from the source to the
sink of that leak is highlighted, depicting the paths over which the information flows to the sink.
Part (D) shows several statistics about the leak, which aid the user in estimating its severeness.

1http://www.eclipse.org/
2http://www.jgrapht.org/

225

6. The Joana Framework

CSDG

C Java

CodeSurfer
+ Plugin

JSDG +
WALA

Graphviewer Slicing

IFC GUI

GUI

Eclipse-Plugin

GUI

Figure 6.1.: A coarse overview of the architecture of ValSoft/Joana.

Figure 6.2.: An overview of the graphical user interface of our IFC analysis.

These statistics report how the leaks are positioned in the call graph, the number of dependences
forming the shortest path from the source to the sink and the smallest number of predicates that
the information has to flow through to reach the sink.

226

6.1. Related Work

Figure 6.3.: An overview of the graphical user interface of our slicing and chopping algorithms.

Figure 6.3 shows the graphical user interface by which our slicing and chopping algorithms
can be accessed. The code shown is an excerpt of the LaplaceGrid program used in our evalu-
ations. The picture shows the comparison of the slices for statement done.receive() com-
puted by three algorithms, our version of Nanda’s slicer, the iterated two-phase slicer and the
timing-aware slicer. Since slicing and chopping algorithms are not an end in themselves, this
user interface is intended for demonstration purposes and has no real application.

6.1. Related Work

There exist only a few complete realizations of slicing-based program analysis – implementa-
tions that provide everything from dependence graph computation over slicing algorithms to
applications, preferably accessible via a graphical user interface.

The CodeSurfer [14, 15, 35], a program analysis framework for C/C++ programs, is regarded
as the most advanced and mature realization. It is developed and maintained by Gramma-

227

6. The Joana Framework

Tech3 and the only known commercialized SDG generator. The tool is able to compute SDGs
for programs with 300.000 LOC if summary edges are turned off and an imprecise points-to
analysis is used. With summary edges enabled and a good points-to analysis programs it can
still analyze programs with 100.000 – 150.000 LOC4. The tool is shipped with the standard
slicing and chopping algorithms for sequential programs and provides an interface over which
queries on the SDG can be freely formulated via scheme scripts, for which reason CodeSurfer
is extremely extensible. It is therefore used as a basis by many research groups, an overview of
corresponding publications can be found on GrammaTech’s homepage.

The SAnToS Laboratory at the Kansas State University developed Indus/Kaveri [66, 118],
a general-purpose slicing framework for Java programs which particularly focuses on a con-
figurable CSDG generator. The user is able to choose among the standard intra- and interpro-
cedural dependences as well as among interference-, synchronization- and ready dependence.
However, summary edges are not supported. Context-sensitive slicing is done via a k-limited
call-string-based traversal similar to the IPDG slicer, and due to the k-limiting some context-
sensitivity is lost. Timing-sensitive slicing is not supported, but the tool also provides a context-
restricted slicer. Indus/Kaveri is realized as a plugin for the Eclipse framework and offers a nice
and user-friendly GUI.

3http://www.grammatech.com/
4This was stated by Paul Anderson, the Vice President of Engineering at GrammaTech, in his keynote at the

SCAM conference in 2008.

228

7. Conclusion

This thesis investigated slicing of concurrent programs with shared memory and threads and
its application to information flow control. The developed algorithms have been integrated into
the program analysis framework ValSoft/Joana, where they can be used to analyze concurrent
Java programs. They are capable of all features of Java bytecode, particularly of dynamic
thread creation inside loops and recursive procedures, and can be adapted to analyze likewise
languages.

We conducted the first realistic evaluation and comparison of timing-sensitive slicing al-
gorithms. The timing-sensitive algorithms are significant achievements in slicing technology,
being the only algorithms for pruning timing-insensitive paths in programs written in contempo-
rary languages. Nanda developed the restrictive state tuple optimization, which is essential for
applying these algorithms in practice. Unfortunately, their algorithm applies that optimization
at one point where it might prune valid dependences. We detected and explained that problem
and presented a correction. We have further applied several optimizations to the algorithms,
which provide a significant speedup and improved precision, and have extended the algorithms
to handle dynamic thread generation inside loops and recursion, which makes them capable of
full Java bytecode. Among the investigated timing-sensitive algorithms, our optimized version
of Nanda’s algorithm performed best.

We were the first to investigate chopping of concurrent programs and transferred the ideas
underlying timing-sensitive slicing to chopping. The resulting timing-sensitive chopping algo-
rithm is a powerful technique able to drastically reduce the chop sizes. Due to its high runtime
costs, we developed six different chopping algorithms for concurrent programs, ranging from
imprecise to context-sensitive to timing-sensitive. This enables a user to choose the chopping
algorithm whose ratio between precision and runtime costs suits best.

Since the chosen approach to timing-sensitive program analysis has a worst-case runtime
complexity exponential to the number of threads of the analyzed program, algorithms based
thereon may run into scalability problems. It seems that the high costs require a selective
employment of timing-sensitive slicing and chopping. A pragmatic approach would employ
a less precise algorithm first and apply the timing-sensitive algorithm to refine the results of
chosen cases. That way, one can greatly reduce analysis overhead and still benefit from the
precision of timing-sensitive program analysis.

Using our experiences with analyzing concurrent programs, we developed a technique for
detecting probabilistic channels in concurrent programs. It can be combined with Hammer et

229

7. Conclusion

al.’s algorithm for information flow control for sequential programs, resulting in an analysis
which is able to verify absence of illicit explicit and implicit flow and of probabilistic channels
in concurrent programs and permits declassification. The resulting information flow control
technique is based on observational determinism and a new, scheduler-independent security
property, which is capable of competing with existing ones in terms of permissiveness and
security guarantees. The whole technique has been integrated into ValSoft/Joana and is, to the
best of our knowledge, the first existing realization of information flow control for concurrent
programs written in a real-world language.

230

A. The Java Programs Of Our Case Study

A.1. Program ‘SmithVolpano’

The following program is an example from Smith and Volpano [136], converted to Java.

c l a s s SmithVolpano {
s t a t i c c l a s s Alpha ex tends Thread {

p u b l i c vo id run () {
whi le (mask != 0) {

whi le (t r i g g e r 0 == 0) ; /∗ busy w a i t ∗ /
r e s u l t = r e s u l t | mask ;
t r i g g e r 0 = 0 ;
m a i n t r i g g e r ++;
i f (m a i n t r i g g e r == 1) t r i g g e r 1 = 1 ;

}
}

}
s t a t i c c l a s s Beta ex tends Thread {

p u b l i c vo id run () {
whi le (mask != 0) {

whi le (t r i g g e r 1 == 0) ; /∗ busy w a i t ∗ /
r e s u l t = r e s u l t & ~mask ;
t r i g g e r 1 = 0 ;
m a i n t r i g g e r ++;
i f (m a i n t r i g g e r == 1) t r i g g e r 0 = 1 ;

}
}

}
s t a t i c c l a s s Gamma ex tends Thread {

p u b l i c vo id run () {
whi le (mask != 0) {

m a i n t r i g g e r = 0 ;
i f ((PIN & mask) == 0) t r i g g e r 0 = 1 ;
e l s e t r i g g e r 1 = 1 ;
whi le (m a i n t r i g g e r < 2) ; /∗ busy w a i t ∗ /
mask = mask / 2 ;

}
}

}

231

s t a t i c v o l a t i l e i n t m a i n t r i g g e r , t r i g g e r 0 , t r i g g e r 1 = 0 , PIN , r e s u l t = 0 ;
s t a t i c v o l a t i l e i n t mask = 2048 ; / / a power o f 2

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) throws E x c e p t i o n {
PIN = I n t e g e r . p a r s e I n t (a r g s [0]) ;
Thread a=new Alpha () ; Thread b=new Beta () ; Thread g=new Gamma () ;
g . s t a r t () ; a . s t a r t () ; b . s t a r t () ; / / s t a r t a l l t h r e a d s
g . j o i n () ; a . j o i n () ; b . j o i n () ; / / j o i n a l l t h r e a d s
System . o u t . p r i n t l n (r e s u l t) ;

}
}

232

A.2. Program ‘Mantel’

The following program is an example from Mantel et al [95], converted to Java. For brevity,
some methods are not shown.

c l a s s Mante l {
/ / t o a l l o w mutua l acces s , t h r e a d s are g l o b a l v a r i a b l e s
s t a t i c P o r t f o l i o p = new P o r t f o l i o () ;
s t a t i c EuroStoxx50 e = new EuroStoxx50 () ;
s t a t i c S t a t i s t i c s s = new S t a t i s t i c s () ;
s t a t i c Outpu t o = new Outpu t () ;

s t a t i c B u f f e r e d W r i t e r nwOutBuf =
new B u f f e r e d W r i t e r (new O u t p u t S t r e a m W r i t e r (System . o u t)) ;

s t a t i c B u f f e r e d R e a d e r nwInBuf =
new B u f f e r e d R e a d e r (new I n p u t S t r e a m R e a d e r (System . i n)) ;

s t a t i c S t r i n g [] o u t p u t = new S t r i n g [5 0] ;

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) throws E x c e p t i o n {
/ / g e t p o r t f o l i o and e u r o s t o x x 5 0
p . s t a r t () ; e . s t a r t () ;
p . j o i n () ; e . j o i n () ;
/ / compute s t a t i s t i c s and g e n e r a t e o u t p u t
s . s t a r t () ; o . s t a r t () ;
s . j o i n () ; o . j o i n () ;
/ / d i s p l a y o u t p u t
s t T a b P r i n t ("No . \ t | Name \ t | P r i c e \ t | P r o f i t ") ;
f o r (i n t n = 0 ; n < 5 0 ; n ++)

s t T a b P r i n t (o u t p u t [n]) ;
/ / show commerc ia l s
s t T a b P r i n t (e . c o S h o r t +" P r e s s # t o g e t more i n f o r m a t i o n ") ;
char key = (char) System . i n . r e a d () ;
i f (key == ’ # ’) {

System . o u t . p r i n t l n (e . c o F u l l) ;
nwOutBuf . append ("shownComm : "+e . coOld) ;
nwOutBuf . f l u s h () ; / / p u b l i c o u t p u t

}
}

}

233

c l a s s P o r t f o l i o ex tends Thread {
i n t [] e s O l d P r i c e s , pfNums ;
S t r i n g [] pfNames ; S t r i n g p f T a b P r i n t ;

p u b l i c vo id run () {
pfNames = getPFNames () ; / / s e c r e t i n p u t
pfNums = getPFNums () ; / / s e c r e t i n p u t
f o r (i n t i = 0 ; i < pfNames . l e n g t h ; i ++)

p f T a b P r i n t += pfNames [i] + " | " + pfNums [i] ;
}

i n t locPF (S t r i n g name) {
f o r (i n t i = 0 ; i < pfNames . l e n g t h ; i ++)

i f (pfNames [i] . e q u a l s (name)) re turn i ;
re turn −1;

}
}

c l a s s EuroStoxx50 ex tends Thread {
S t r i n g [] esName = new S t r i n g [5 0] ;
i n t [] e s P r i c e = new i n t [5 0] ;
S t r i n g c o S h o r t ;
S t r i n g c o F u l l ;
S t r i n g coOld ;

p u b l i c vo id run () {
t r y {

nwOutBuf . append (" getES50 ") ;
nwOutBuf . f l u s h () ; / / p u b l i c o u t p u t
S t r i n g nwIn = nwInBuf . r e a d L i n e () ;
S t r i n g [] s t r A r r = nwIn . s p l i t (" : ") ;
f o r (i n t j = 0 ; j < 5 0 ; j ++) {

esName [j] = s t r A r r [2∗ j] ;
e s P r i c e [j] = I n t e g e r . p a r s e I n t (s t r A r r [2∗ j + 1]) ;

}
/ / commerc ia l s
c o S h o r t = s t r A r r [1 0 0] ;
c o F u l l = s t r A r r [1 0 1] ;
coOld = s t r A r r [1 0 2] ;

} catch (IOExcep t ion ex) {}
}

}

234

c l a s s S t a t i s t i c s ex tends Thread {
i n t [] s t = new i n t [5 0] ;
v o l a t i l e i n t k = 0 ;

p u b l i c vo id run () {
k = 0 ;
whi le (k < 50) {

i n t i p f = p . locPF (e . esName [k]) ;
i f (i p f > 0)

s e t (k , (p . e s O l d P r i c e s [k] − e . e s P r i c e [k]) ∗ p . pfNums [i p f]) ;
e l s e

s e t (k , 0) ;
k ++;

}
}
p u b l i c synchronized void s e t (i n t k , i n t v a l u e) {

s t [k] = v a l u e ;
}
p u b l i c synchronized i n t g e t (i n t k) {

re turn s t [k] ;
}

}

c l a s s Outpu t ex tends Thread {
p u b l i c vo id run () {

f o r (i n t m = 0 ; m < 5 0 ; m++) {
whi le (s . k <= m) ; /∗ busy w a i t ∗ /
o u t p u t [m] = m+" | "+e . esName [m]+ " | " + e . e s P r i c e [m]+ " | "+s . g e t (m) ;

}
}

}

235

A.3. Program ‘PasswordCheck’

A malicious password checker.

p u b l i c c l a s s PasswordCheck ex tends Thread {
p r i v a t e S t r i n g u s e r ;
p r i v a t e S t r i n g [] names = { "A" , "B" } ;
p r i v a t e S t r i n g [] pas swords = { " x " , " y " } ;

p u b l i c boolean check (S t r i n g us r , S t r i n g pwd) {
boolean match = f a l s e ;
t r y {

f o r (i n t i =0 ; i <names . l e n g t h ; i ++) {
i f (names [i] . e q u a l s (u s r) && passwords [i] . e q u a l s (pwd)) {

match = t rue ;
break ;

}
}

}
ca tch (E x c e p t i o n e) { } ;
re turn match ;

}

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
PasswordCheck pw = new PasswordCheck () ;
pw . u s e r = a r g s [0] ;
pw . s t a r t () ; / / t h e m a l i c i o u s t h r e a d i s s t a r t e d
System . o u t . p r i n t l n (pw . check (a r g s [0] , a r g s [1])) ;

}

p u b l i c vo id run () {
boolean match = f a l s e ;
t r y {

f o r (i n t i =0 ; i <names . l e n g t h ; i ++) {
i f (names [i] . e q u a l s (u s e r) && "ABCDEFGH" . e q u a l s ("ABCDEFGH")) {

match = t rue ;
break ;

}
}

}
ca tch (E x c e p t i o n e) { } ;
System . o u t . p r i n t l n (" 8 c h a r s ") ;

}
}

236

B. Curriculum Vitae

In german

Name: Dennis Giffhorn
Geboren am: 29.08.1978 in Wolfsburg
Staatsangehörigkeit: deutsch

Bildungsweg
Juni 1997: Abitur am Ratsgymnasium Wolfsburg
März 2005: Diplom in Informatik mit Nebenfach Psychologie an der

Carl-von-Ossietzky-Universität Oldenburg

Beruflicher Werdegang
01.06.2005 - 31.03.2008: Wissenschaftl. Mitarbeiter am Lehrstuhl Softwaresysteme

von Prof. Snelting an der Universität Passau
01.04.2008 - 31.05.2011: Wissenschaftl. Mitarbeiter am Lehrstuhl Programmierparadigmen

von Prof. Snelting am Karlsruher Institut für Technologie

In english

Name: Dennis Giffhorn
Born: 29.08.1978 in Wolfsburg
Citizenship : german

Education
June 1997: Abitur (academic high school diploma) at the Ratsgymnasium Wolfsburg
March 2005: Diplom (MSc) of Computer Science at the

Carl-von-Ossietzky-Universität Oldenburg

Work Experience
01.06.2005 - 31.03.2008: PhD student at the Software Systems group

of Prof. Snelting at the University of Passau
01.04.2008 - 31.05.2011: PhD student at the Programming Paradigms group

of Prof. Snelting at the Karlsruhe Institute of Technology

237

238

C. List of Figures

1.1 Typical information leaks in sequential (left side) and concurrent programs (right
side). 1

1.2 Assume that the depicted program is scheduled by a Round-Robin scheduler
switching threads after each statement. If variable y is smaller than 1, 1 is
always printed after 2, otherwise, 2 is always printed after 1. 2

1.3 A simple program and its slice for variable c in statement 5. 5

1.4 The PDG for the program in Fig. 1.3. The highlighted nodes form a slice for
statement 5. 7

1.5 A concurrent program and its PDG. The highlighted nodes form a slice for state-
ment 7. 8

1.6 The highlighted chop chop(6,5), computed by collecting all nodes on paths
between nodes 5 and 6, is timing-insensitive. 10

2.1 An interprocedural control flow graph. 14

2.2 A system dependence graph. Parameter nodes are symbolized by rectangular
nodes, where the parameter nodes to the left of a call or start node are the actual-
in or formal-in nodes, the ones to the right are the actual-out or formal-out
nodes. The highlighted nodes form the context-sensitive slice for print j, as
computed by the two-phase slicer. The light gray nodes are visited in phase 1,
the dark gray nodes in phase 2. 18

2.3 A program fragment and its points-to graphs computed by Andersens’s (mid)
and Steensgaard’s algorithm (right side). 24

2.4 An example for object trees. Procedure foo changes field a.x of parameter b.
The slice for b.a.x = 1 is highlighted gray. 26

3.1 A producer-consumer program written in Java. 46

3.2 Interference dependences between two threads. 48

3.3 Timing-insensitivity is even more complicated for interprocedural programs. . . 49

3.4 Four cases distinguished by our thread invocation analysis. From top to bottom:
(1) Thread creation without loops or recursion. (2) Thread creation inside a
loop. (3) Thread creation inside a recursive procedure. (4) Two threads creating
each other recursively. 51

239

3.5 A TCFG of a program with two threads. 53

3.6 Thread regions of a threaded program. On the left side: thread regions without
synchronization. On the right side: thread regions with synchronization. 55

3.7 Two programs and their thread creation trees. 57

3.8 A concurrent program and its CSDG. The highlighted nodes are the slice for
print x computed by collecting all reaching nodes. 65

3.9 Two threads synchronizing their access to shared variable x. 66

3.10 Two concurrent threads and two possible ways of modeling the dependences
induced by synchronization. The upper CSDG fragment uses interference- and
control dependences to model these dependences, the lower one uses synchronization-
and ready dependences. 67

3.11 A small producer-consumer program and its CSDG. The two-phase slice for
print b is highlighted dark gray. It omits the light gray nodes, which belong
to a correct slice. 69

3.12 A CSDG of a concurrent program. In order to keep the graph as simple as
possible, the formal-in nodes of main and the formal-out nodes of thread_1
for x and y are not shown. The highlighted nodes form the context-sensitive
slice for node 14. 71

3.13 More precise MHP information results in more precise slices: The gray nodes
denote the timing-sensitive slice for node 14 in case all threads are deemed to
happen in parallel. The dark gray nodes denote the slice if the fork sites of the
threads are taken into account. 80

3.14 The prepending property allows to traverse path Φ = 3 → 6 → 8. In case the
threads are assumed to happen in parallel, Φ is timing-sensitive. More precise
MHP information revealing that node 3 and thread_2 are exclusive identifies
Φ as timing-insensitive. 81

3.15 Statement reordering at runtime may switch statements 2 and 3. 85

3.16 Folding strongly connected components removes information about calling con-
texts. 94

3.17 ISCR graph with folded context-sensitive cycles (mid) and with inlined proce-
dures (right). 95

3.18 An ICFG and its context graph. 96

3.19 Incorrect slice computed by Nanda’s algorithm. 100

3.20 Hot spots and gain of precision of 100 slices in ‘SharedQueue’ and ‘HyperM’.
The diagrams show that there are very few hot spots in these programs and that
they do not correlate with the slices which strongly increase the overall precision. 128

240

3.21 Hot spots and gain of precision of 100 slices in ‘Barcode’ and ‘Cellsafe’. Here
the hot spots are almost identical with the slices which strongly increase the
overall precision. 129

3.22 An example illustrating the happens-before relation. Dependent on which lock
action a program execution executes first either x = 1 happens-before y = x

or y = x happens-before x = 1. 132

4.1 A small example illustrating context-insensitive chopping. 137

4.2 Same-level vs unbound chopping: The unbound chop for (return x, x=x*x)
consists of the gray shaded nodes, the same-level chop is empty. Note that
the SDG contains special summary edges from call nodes to actual-out nodes,
which are needed for chopping. 139

4.3 Schematic overview of the Reps-Rosay chopper for chopping criterion (s, t).
The upper part shows step 1, the lower part shows steps 2 and 3. 143

4.4 Chops for chopping criterion (2,8). The highlighted nodes denote the chop
determined by computing the backward slice for node 8 on the forward slice for
node 2. The dark gray nodes denote the context-sensitive chop. 146

4.5 Fixed-point chopping is not context-sensitive in general. 148

4.6 The context-sensitive chop for chopping criterion (2,5). 152

4.7 Chops for chopping criterion (8,13). The gray shaded nodes mark the context-
sensitive chop, the dark gray shaded nodes mark the timing-sensitive chop. . . . 155

4.8 Intersecting timing-sensitive slices does not yield timing-sensitive chops. The
suchlike computed chop for chopping criterion (2,3) contains time travels. . . . 156

5.1 Examples for information leaks in sequential programs (left), for a possibilistic
channel (mid) and for probabilistic channels (right). The threads are meant to
execute concurrently. 172

5.2 A program and two possible traces. The first trace results from input (inputPIN()
= 0, input() = 0), the second from (inputPIN() = 1, input() = 0). 185

5.3 Three tough nuts for termination-insensitive definitions of low-equivalent traces.
The program on the left must be rejected because it gradually leaks the PIN, the
one in the mid could be accepted because its leak is a termination channel. The
program on the right exploits termination channels to leak the input PIN. 189

5.4 A program and two possible traces. The first trace results from input (inputPIN()
= 0, input() = 0), the second from (inputPIN() = 1, input() = 0). The shaded
nodes represent the low-observable behavior. 192

241

5.5 The CSDG of the program on the right side of Fig. 5.1, enriched with conflict
edges. The gray nodes denote the slice for node print(x). Note that the slice
ignores conflict edges. 200

5.6 Two examples comparing the restrictions of LSOD and weak probabilistic non-
interference. We assume that Smith and Volpano’s technique classifies vari-
ables h and x as high and l as low, and that our technique classifies h =

inputPIN() as a high source and l = 0 and l = 1 as low sinks. The left
program is accepted by our condition and rejected by theirs, the right program
is rejected by ours and accepted by theirs. 207

5.7 Two examples demonstrating the capabilities of strong security. We assume
that h and x are classified as high and l as low. The left program is strongly
secure, because both branches assign the same value to l. The right program
is a transformation of the program on the left of Fig. 5.6, where the additional
skip statement removes the probabilistic data channel. 209

5.8 Two examples demonstrating the strengths and weaknesses of Huisman et al.’s
security property. Both programs are rejected, the first because it copies the PIN
to the low variable l, the second because the order of the assignments x = 0

and y = 1 depend on interleaving. 211

6.1 A coarse overview of the architecture of ValSoft/Joana. 226
6.2 An overview of the graphical user interface of our IFC analysis. 226
6.3 An overview of the graphical user interface of our slicing and chopping algorithms.227

242

D. List of Tables

2.1 Statistics of our benchmark programs. 33

2.2 Average sizes, in number of nodes, of the context-insensitive (cont.-ins.) and
the context-sensitive slices (cont.-sens.). The percentage values denote the ratio
of context-sensitive to context-insensitive slice sizes. 34

2.3 Average execution time per slice in milliseconds (left side), average slowdown
compared with the two-phase slicer (mid), and average slowdown of dynamic
context representation compared with static context representation (right side). . 35

2.4 Maximal memory in Mbytes consumed by the algorithms I-dyn and I. The per-
centage values denote the ratio of I-dyn’s to I’s memory consumption. 36

2.5 Two-phase slicing (2P) vs context-restricted slicing (CR): Average slice sizes
(left side, number of nodes) and average execution times, (right side, in millisec-
onds). The values in brackets denote the size ratio (left side) and the speedup
(right side) of context-restricted slicing to two-phase slicing. 37

3.1 Statistics of our benchmark programs. 109

3.2 Costs and effects of our MHP analysis. 111

3.3 The number of interferences in the Java Grande benchmark computed by Ran-
ganath and Hatcliff [116], Hammer [52] and us. The Table has been taken from
page 167 of Hammer’s PhD thesis [52] and extended with our results. 112

3.4 Precision of the thread invocation analysis. 113

3.5 Runtime costs in seconds of the MHP analyses of Li and Verbrugge [87], of
Barik [18] and of us. 115

3.6 Table of features. 116

3.7 The programs of the benchmark. 117

3.8 Average size per slice in number of nodes. 118

3.9 Average execution time per slice in seconds. 119

3.10 Total number of elements visited via interference edges. 120

3.11 Average size per slice in number of nodes (left side), and average execution time
per slice in seconds (right side). 122

3.12 Average size ratio (in percent, left side), and slowdown (right side) per slice. . . 123

3.13 The size and computation time of the context graphs of our benchmark programs.126

243

4.1 Average size per chop (number of nodes). Column ‘RRC’ subsumes our three
RRC variants, which always computed the same chops. 149

4.2 Average execution time per chop (in milliseconds). 150
4.3 The state tuples for chop(2,3) in Fig. 4.8. 157
4.4 Average size per chop (number of nodes). 164
4.5 Average ratio of the chop sizes per part of the benchmark for chosen pairs of

chopping algorithms. Each column shows the ratio of the average slice sizes of
the first algorithm to those of the second algorithm given in the column title. . . 165

4.6 Average execution time per chop (in seconds). 166
4.7 Percentage rate of chops within our chopping criteria that the chopping algo-

rithms detected to be empty. 167

5.1 The number of probabilistic data (PD) and order channels (PO) detected by our
IFC algorithm. The rightmost two columns show the effect of timing-sensitive
slicing on the precision of the results. 216

5.2 Average execution times of our IFC algorithm for different programs, lattices
and numbers of sources and sinks (in seconds). 217

5.3 The percentage share of the probabilistic channel detection among the overall
execution times. 217

244

E. Bibliography

[1]The Bandera tool set. http://bandera.projects.cis.ksu.edu/.

[2]Java Card Technology.
http://www.oracle.com/technetwork/java/javacard/overview/index.html.

[3]The Java Grande forum multi-threaded benchmarks.
http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/threads.html.

[4]The Java Mobile Edition for mobile devices. http://java.sun.com/javame/index.jsp.

[5]The T.J. Watson Libraries for Analysis (WALA).
http://wala.sourceforge.net/wiki/index.php/Main_Page.

[6]ValSoft/Joana: Information flow control in program dependence graphs.
http://pp.info.uni-karlsruhe.de/project.php?id=30.

[7]M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus of dependency. In
POPL ’99: Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, pages 147–160, New York, NY, USA, 1999. ACM.

[8]J. Agat. Transforming out timing leaks. In 27th. ACM SIGPLAN Symposium on Princ.

of Prog. Lang., pages 40–53, 2000.

[9]G. Agrawal and L. Guo. Evaluating explicitly context-sensitive program slicing. In
PASTE ’01: Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program

analysis for software tools and engineering, pages 6–12, New York, NY, USA, 2001.
ACM.

[10]H. Agrawal, R. A. Demillo, and E. H. Spafford. Debugging with dynamic slicing and
backtracking. Softw. Pract. Exper., 23(6):589–616, 1993.

[11]H. Agrawal and J. R. Horgan. Dynamic program slicing. SIGPLAN Notices, 25(6):246–
256, June 1990.

[12]M. Allen and S. Horwitz. Slicing Java programs that throw and catch exceptions. SIG-

PLAN Notices, 38:44–54, June 2003.

245

[13]L. O. Andersen. Program Analysis and Specialization for the C Programming Language.
PhD thesis, 1994.

[14]P. Anderson. 90% perspiration: Engineering static analysis techniques for industrial
applications. In 8th IEEE International Working Conference on Source Code Analysis

and Manipulation, pages 3–12, 2008.

[15]P. Anderson, T. Reps, and T. Teitelbaum. Design and implementation of a fine-grained
software inspection tool. IEEE Trans. Softw. Eng., 29(8):721–733, 2003.

[16]A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive noninterfer-
ence leaks more than just a bit. In Computer Security - ESORICS 2008, volume 5283 of
Lecture Notes in Computer Science, pages 333–348. Springer Berlin / Heidelberg, 2008.

[17]J. P. Banning. An efficient way to find the side effects of procedure calls and the aliases of
variables. In POPL ’79: Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on

Principles of programming languages, pages 29–41, New York, NY, USA, 1979. ACM.

[18]R. Barik. Efficient computation of may-happen-in-parallel information for concurrent
Java programs. In Languages and Compilers for Parallel Computing, volume 4339 of
Lecture Notes in Computer Science, pages 152–169. Springer Berlin / Heidelberg, 2006.

[19]G. Barthe, T. Rezk, A. Russo, and A. Sabelfeld. Security of multithreaded programs by
compilation. In ESORICS, pages 2–18, 2007.

[20]S. Bates and S. Horwitz. Incremental program testing using program dependence graphs.
In POPL ’93: Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, pages 384–396, 1993.

[21]J.-F. Bergeretti and B. A. Carré. Information-flow and data-flow analysis of while-
programs. ACM Trans. Program. Lang. Syst., 7(1):37–61, 1985.

[22]K. J. Biba. Integrity considerations for secure computer systems. Technical report,
MITRE Corp., 04 1977.

[23]D. Binkley. Semantics guided regression test cost reduction. IEEE Trans. Softw. Eng.,
23:498–516, August 1997.

[24]D. Binkley, S. Danicic, T. Gyimóthy, M. Harman, A. Kiss, and B. Korel. A formalisation
of the relationship between forms of program slicing. Sci. Comput. Program., 62(3):228–
252, 2006.

246

[25]D. Binkley and M. Harman. A large-scale empirical study of forward and backward static
slice size and context sensitivity. In ICSM ’03: Proceedings of the International Confer-

ence on Software Maintenance, page 44, Washington, DC, USA, 2003. IEEE Computer
Society.

[26]D. Binkley and M. Harman. A survey of empirical results on program slicing. In Ad-

vances in Computers, 62:105-178, pages 105–178, 2004.

[27]D. Binkley, M. Harman, and J. Krinke. Empirical study of optimization techniques for
massive slicing. ACM Trans. Program. Lang. Syst., 30(1):3, 2007.

[28]G. Boudol and I. Castellani. Noninterference for concurrent programs and thread sys-
tems. Theor. Comput. Sci., 281(1-2):109–130, 2002.

[29]G. Canfora, A. Cimitile, and A. D. Lucia. Conditioned program slicing. Information and

Software Technology, 40(11-12):595 – 607, 1998.

[30]H. Chen and P. Malacaria. Quantitative analysis of leakage for multi-threaded programs.
In PLAS ’07: Proceedings of the 2007 workshop on Programming languages and analy-

sis for security, pages 31–40, New York, NY, USA, 2007. ACM.

[31]Z. Chen and B. Xu. Slicing concurrent Java programs. SIGPLAN Not., 36(4):41–47,
2001.

[32]J. Cheng. Slicing concurrent programs - a graph-theoretical approach. In AADEBUG

’93: Proceedings of the First International Workshop on Automated and Algorithmic

Debugging, pages 223–240, London, UK, 1993. Springer-Verlag.

[33]J. Cheng. Dependence analysis of parallel and distributed programs and its applications.
Advances in Parallel and Distributed Computing Conference, 0:370, 1997.

[34]D. Clark, S. Hunt, and P. Malacaria. Quantified interference for a while language. Pro-

ceedings of the Second Workshop on Quantitative Aspects of Programming Languages

(QAPL 2004), 112:149 – 166, January 2005.

[35]The CodeSurfer code browser for C/C++. http://www.grammatech.com/.

[36]R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph. ACM Trans-

actions on Programming Languages and Systems, 13(4):451–490, Oct 1991.

[37]D. E. Denning. A lattice model of secure information flow. Commun. ACM, 19(5):236–
243, 1976.

247

[38]D. E. Denning and P. J. Denning. Certification of programs for secure information flow.
Commun. ACM, 20(7):504–513, 1977.

[39]J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph and its
use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349, 1987.

[40]I. Forgács and T. Gyimóthy. An efficient interprocedural slicing method for large pro-
grams. In SEKE’97: Proceedings of the 9th International Conference on Software Engi-

neering and Knowledge Engineering, pages 279–287. Springer-Verlag, 1997.

[41]C. Fox, S. Danicic, M. Harman, and R. M. Hierons. CONSIT: A fully automated condi-
tioned program slicer. Softw. Pract. Exper., 34:15–46, January 2004.

[42]D. Giffhorn. Chopping concurrent programs. In 9th IEEE International Working Con-

ference on Source Code Analysis and Manipulation, pages 13–22, September 2009.

[43]D. Giffhorn. Advanced chopping of sequential and concurrent programs. Software Qual-

ity Journal, 19(2):239–294, 2011.

[44]D. Giffhorn and C. Hammer. An evaluation of slicing algorithms for concurrent pro-
grams. In 7th IEEE Int. Work. Conf. on Source Code Analysis and Manipulation, pages
17–26, 2007.

[45]D. Giffhorn and C. Hammer. Precise analysis of Java programs using Joana (tool demon-
stration). In 8th IEEE International Working Conference on Source Code Analysis and

Manipulation, 2008.

[46]D. Giffhorn and C. Hammer. Precise slicing of concurrent programs - An evaluation
of static slicing algorithms for concurrent programs. Journal of Automated Software

Engineering, 16(2):197–234, June 2009.

[47]J. Goguen and J. Meseguer. Security policies and security models. In IEEE Symposium

on Security and Privacy, pages 11–20, 1982.

[48]J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification. Addis-
onWesley Prof., 3 edition, 2005.

[49]J. Graf. Speeding up context-, object- and field-sensitive SDG generation. In 10th IEEE

International Working Conference on Source Code Analysis and Manipulation, pages
105–114, Los Alamitos, CA, USA, 2010. IEEE Computer Society.

[50]J. W. Gray. Probabilistic interference. Security and Privacy, IEEE Symposium on, 0:170,
1990.

248

[51]J. W. Gray. Toward a mathematical foundation for information flow security. Security

and Privacy, IEEE Symposium on, 0:21, 1991.

[52]C. Hammer. Information Flow Control for Java - A Comprehensive Approach based on

Path Conditions in Dependence Graphs. PhD thesis, Universität Karlsruhe (TH), July
2009. ISBN 978-3-86644-398-3.

[53]C. Hammer. Experiences with PDG-based IFC. In International Symposium on Engi-

neering Secure Software and Systems (ESSoS’10), volume 5965 of LNCS, pages 44–60.
Springer-Verlag, February 2010.

[54]C. Hammer, J. Krinke, and F. Nodes. Intransitive noninterference in dependence graphs.
In Proceedings of International Symposium on Leveraging Applications of Formal Meth-

ods (ISOLA’06), pages 136–145, 2006.

[55]C. Hammer, J. Krinke, and G. Snelting. Information flow control for Java based on path
conditions in dependence graphs. In IEEE International Symposium on Secure Software

Engineering, pages 87–96, 2006.

[56]C. Hammer, R. Schaade, and G. Snelting. Static path conditions for Java. In Proceedings

of the 3rd Workshop on Programming Languages and Analysis for Security, pages 55–66.
ACM, June 2008.

[57]C. Hammer and G. Snelting. An improved slicer for Java. In Proceedings of the 5th ACM

SIGPLAN- SIGSOFT workshop on Program analysis for software tools and engineering,
pages 17–22. ACM Press, 2004.

[58]C. Hammer and G. Snelting. Flow-sensitive, context-sensitive, and object-sensitive in-
formation flow control based on program dependence graphs. International Journal of

Information Security, 2009. Supersedes their publications at ISSSE 2006 and ISoLA
2006.

[59]M. Harman and S. Danicic. Amorphous program slicing. In Proceedings of the 5th

International Workshop on Program Comprehension (WPC ’97), pages 70–, Washington,
DC, USA, 1997. IEEE Computer Society.

[60]M. Harman, L. Hu, M. Munro, X. Zhang, D. Binkley, S. Danicic, M. Daoudi, and
L. Ouarbya. Syntax-directed amorphous slicing. Automated Software Engg., 11:27–61,
January 2004.

[61]J. Hatcliff, J. Corbett, M. Dwyer, S. Sokolowski, and H. Zheng. A formal study of
slicing for multi-threaded programs with JVM primitives. Static Analysis Symposium,
pages 1–18, 1999.

249

[62]J. Hogg, D. Lea, A. Wills, D. deChampeaux, and R. Holt. The geneva convention on the
treatment of object aliasing. SIGPLAN OOPS Mess., 3:11–16, April 1992.

[63]S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs.
ACM Trans. Program. Lang. Syst., 12(1):26–60, 1990.

[64]M. Huisman, P. Worah, and K. Sunesen. A temporal logic characterization of observa-
tional determinism. In 19th IEEE Computer Security Foundations Workshop, July 2006.

[65]The FLEX compiler infrastructure. http://flex.cscott.net/Harpoon/.

[66]The Indus slicer for Java. http://indus.projects.cis.ksu.edu/.

[67]D. Jackson and E. J. Rollins. A new model of program dependences for reverse engineer-
ing. In SIGSOFT ’94: Proceedings of the 2nd ACM SIGSOFT symposium on Foundations

of software engineering, pages 2–10, 1994.

[68]R. Jhala and R. Majumdar. Path slicing. In Proceedings of the 2005 ACM SIGPLAN

conference on Programming language design and implementation, PLDI ’05, pages 38–
47, New York, NY, USA, 2005. ACM.

[69]M. Kamkar, N. Shahmehri, and P. Fritzson. Bug localization by algorithmic debugging
and program slicing. In PLILP ’90: Proceedings of the 2nd International Workshop on

Programming Language Implementation and Logic Programming, pages 60–74, Lon-
don, UK, 1990. Springer-Verlag.

[70]P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In Proceedings of the 16th Annual International Cryptology Conference

on Advances in Cryptology, CRYPTO ’96, pages 104–113, London, UK, UK, 1996.
Springer-Verlag.

[71]R. Komondoor and S. Horwitz. Using slicing to identify duplication in source code.
In SAS ’01: Proceedings of the 8th International Symposium on Static Analysis, pages
40–56, London, UK, 2001. Springer-Verlag.

[72]B. Korel and J. Laski. Dynamic program slicing. Inf. Process. Lett., 29:155–163, October
1988.

[73]J. Krinke. Static slicing of threaded programs. In ACM SIGPLAN/SIGSOFT Workshop on

Program Analysis for Software Tools and Engineering (PASTE), pages 35–42, Montreal,
Canada, June 1998.

250

[74]J. Krinke. Evaluating context-sensitive slicing and chopping. In ICSM ’02: Proceedings

of the International Conference on Software Maintenance (ICSM’02), page 22, Washing-
ton, DC, USA, 2002. IEEE Computer Society.

[75]J. Krinke. Advanced Slicing of Sequential and Concurrent Programs. PhD thesis, Uni-
versität Passau, 2003.

[76]J. Krinke. Barrier slicing and chopping. In 3rd IEEE International Workshop on Source

Code Analysis and Manipulation (SCAM 2003), 2003.

[77]J. Krinke. Context-sensitive slicing of concurrent programs. In Proceedings of the 9th

European software engineering conference / 11th ACM SIGSOFT international sympo-

sium on Foundations of software engineering, pages 178–187. ACM Press, 2003.

[78]J. Krinke. Context-sensitivity matters, but context does not. In 4th IEEE International

Workshop on Source Code Analysis and Manipulation, pages 29–35, Washington, DC,
USA, 2004. IEEE Computer Society.

[79]J. Krinke. Effects of context on program slicing. J. Syst. Softw., 79(9):1249–1260, 2006.

[80]S. Kuninobu, Y. Takata, H. Seki, and K. Inoue. An information flow analysis of recursive
programs based on a lattice model of security classes. Electronics and Communications

in Japan (Part III: Fundamental Electronic Science), 87(9):48–61, 2004.

[81]P. Lammich and M. Müller-Olm. Conflict analysis of programs with procedures, dynamic
thread creation, and monitors. In Proceedings of the 15th international symposium on

Static Analysis, SAS ’08, pages 205–220, Berlin, Heidelberg, 2008. Springer-Verlag.

[82]L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Comput., 28:690–691, September 1979.

[83]B. W. Lampson. A note on the confinement problem. Commun. ACM, 16:613–615,
October 1973.

[84]K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. Inf. Comput.,
94:1–28, September 1991.

[85]L. Larsen and M. J. Harrold. Slicing object-oriented software. In ICSE ’96: Proceedings

of the 18th international conference on Software engineering, pages 495–505, Washing-
ton, DC, USA, 1996. IEEE Computer Society.

[86]T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flowgraph.
ACM Trans. Program. Lang. Syst., 1:121–141, January 1979.

251

[87]L. Li and C. Verbrugge. A practical MHP information analysis for concurrent Java pro-
grams. In Proceedings of the 17th International Workshop on Languages and Compilers

for Parallel Computing (LCPC’04), LNCS. Springer Verlag, Sept. 2004.

[88]D. Liang and M. J. Harrold. Slicing objects using system dependence graphs. In ICSM

’98: Proceedings of the International Conference on Software Maintenance, page 358,
Washington, DC, USA, 1998. IEEE Computer Society.

[89]T. Lindholm and F. Yellin. Java Virtual Machine Specification. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1999.

[90]J. R. Lyle, D. R. Wallace, J. R. Graham, K. B. Gallagher, J. P. Poole, and D. W. Bink-
ley. Unravel: A CASE tool to assist evaluation of high integrity software volume 1:
Requirements and design. Technical report, 1995.

[91]J. R. Lyle and M. Weiser. Automatic program bug location by program slicing. In 2nd

International Conference on Computers and Applications, pages 877–882, Peking, 1987.
IEEE Computer Society Press, Los Alamitos, California, USA.

[92]P. Malacaria. Assessing security threats of looping constructs. In POPL ’07: Proceedings

of the 34th annual ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, pages 225–235, 2007.

[93]J. Manson, W. Pugh, and S. V. Adve. The Java memory model. SIGPLAN Not., 40:378–
391, January 2005.

[94]H. Mantel and H. Sudbrock. Flexible scheduler-independent security. In Proceedings

of the 15th European conference on Research in computer security, ESORICS’10, pages
116–133, Berlin, Heidelberg, 2010. Springer-Verlag.

[95]H. Mantel, H. Sudbrock, and T. Kraußer. Combining different proof techniques for veri-
fying information flow security. In Logic-Based Program Synthesis and Transformation,
volume 4407 of Lecture Notes in Computer Science, pages 94–110. Springer Berlin /
Heidelberg, 2007.

[96]S. McCamant and M. Ernst. Quantitative information flow as network flow capacity.
In PLDI 2008, Proceedings of the ACM SIGPLAN 2008 Conference on Programming

Language Design and Implementation, pages 193–205, 2008.

[97]J. McLean. Security models and information flow. IEEE Symposium on Security and

Privacy, 0:180, 1990.

252

[98]J. McLean. Proving noninterference and functional correctness using traces. Journal of

Computer Security, 1(1):37–58, 1992.

[99]B. mo Chang and J. deok Choi. Thread-sensitive points-to analysis for multithreaded
Java programs. In In ISCIS’04: Proceedings of the 19th International Symposium on

Computer and Information Sciences, pages 945–954, 2004.

[100]D. P. Mohapatra, R. Mall, and R. Kumar. Computing dynamic slices of concurrent object-
oriented programs. Inf. Softw. Technol., 47:805–817, September 2005.

[101]M. Müller-Olm. Precise interprocedural dependence analysis of parallel programs.
Theor. Comput. Sci., 311:325–388, January 2004.

[102]M. Müller-Olm and H. Seidl. On optimal slicing of parallel programs. In STOC ’01:

Proceedings of the thirty-third annual ACM symposium on Theory of computing, pages
647–656, New York, NY, USA, 2001. ACM.

[103]A. C. Myers, L. Zheng, S. Zdancevic, S. Chong, and N. Nystrom. Jif: Java information
flow. http://ww.cs.cornell.edu/jif.

[104]M. G. Nanda. Slicing Concurrent Java Programs: Issues and Solutions. PhD thesis,
Indian Institute of Technology, Bombay, 2001.

[105]M. G. Nanda and S. Ramesh. Slicing concurrent programs. In ISSTA ’00: Proceedings

of the 2000 ACM SIGSOFT international symposium on Software testing and analysis,
pages 180–190, New York, NY, USA, 2000. ACM.

[106]M. G. Nanda and S. Ramesh. Interprocedural slicing of multithreaded programs with
applications to Java. ACM Trans. Program. Lang. Syst. (TOPLAS), 28(6):1088–1144,
2006.

[107]G. Naumovich, G. S. Avrunin, and L. A. Clarke. An efficient algorithm for computing
MHP information for concurrent Java programs. In ESEC/FSE-7: Proceedings of the 7th

European software engineering conference held jointly with the 7th ACM SIGSOFT in-

ternational symposium on Foundations of software engineering, pages 338–354, London,
UK, 1999. Springer-Verlag.

[108]B. Nürnberger. Slicing und Pfadbedingungen mit CodeSurfer. Master’s thesis, Univer-
sität Passau, 2008.

[109]K. Ottenstein and L. Ottenstein. The program dependence graph in a software develop-
ment environment. In SDE 1: Proceedings of the first ACM SIGSOFT/SIGPLAN soft-

ware engineering symposium on Practical software development environments, pages
177–184. ACM Press, 1984.

253

[110]A. Podgurski and L. A. Clarke. A formal model of program dependences and its im-
plications for software testing, debugging, and maintenance. IEEE Trans. Softw. Eng.,
16(9):965–979, 1990.

[111]X. Qi and B. Xu. An approach to slicing concurrent Ada programs based on program
reachability graphs. 2008.

[112]X. Qi, X. Zhou, X. Xu, and Y. Zhang. Slicing concurrent programs based on program
reachability graphs. In Proceedings of the 2010 10th International Conference on Qual-

ity Software, QSIC ’10, pages 248–253, Washington, DC, USA, 2010. IEEE Computer
Society.

[113]G. Ramalingam. The undecidability of aliasing. ACM Trans. Program. Lang. Syst.,
16:1467–1471, September 1994.

[114]G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecidable.
ACM Trans. Program. Lang. Syst., 22(2):416–430, 2000.

[115]V. Ranganath, T. Amtoft, A. Banerjee, M. Dwyer, and J. Hatcliff. A new foundation for
control-dependence and slicing for modern program structures, 2004.

[116]V. P. Ranganath and J. Hatcliff. Pruning interference and ready dependence for slicing
concurrent Java programs. In Proceedings of 13th International Conference on Compiler

Construction (CC’04), volume 2985 of LNCS, pages 39–56, Mar. 2004.

[117]V. P. Ranganath and J. Hatcliff. Pruning interference and ready dependence for slicing
concurrent Java programs (extended version), 2006.

[118]V. P. Ranganath and J. Hatcliff. Slicing concurrent Java programs using Indus and Kaveri.
Int. J. Softw. Tools Technol. Transf., 9:489–504, October 2007.

[119]T. Reps, S. Horwitz, M. Sagiv, and G. Rosay. Speeding up slicing. SIGSOFT Softw. Eng.

Notes, 19(5):11–20, 1994.

[120]T. Reps and G. Rosay. Precise interprocedural chopping. In SIGSOFT ’95: Proceedings

of the 3rd ACM SIGSOFT symposium on Foundations of software engineering, pages
41–52. ACM Press, 1995.

[121]A. W. Roscoe. CSP and determinism in security modelling. In SP ’95: Proceedings of

the 1995 IEEE Symposium on Security and Privacy, page 114. IEEE Computer Society,
1995.

[122]P. Rousseau. A new approach for concurrent program slicing. Formal Techniques for

Networked and Distributed Systems - FORTE 2006, 4229:228–242, 2006.

254

[123]E. Ruf. Effective synchronization removal for Java. SIGPLAN Not., 35(5):208–218,
2000.

[124]A. Russo and A. Sabelfeld. Securing interaction between threads and the scheduler. In
Proceedings of the 19th IEEE workshop on Computer Security Foundations, pages 177–
189, Washington, DC, USA, 2006. IEEE Computer Society.

[125]A. Russo and A. Sabelfeld. Security for multithreaded programs under cooperative
scheduling. In Proceedings of the 6th international Andrei Ershov memorial confer-

ence on Perspectives of systems informatics, PSI’06, pages 474–480, Berlin, Heidelberg,
2007. Springer-Verlag.

[126]A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE Journal

on Selected Areas in Communications, 21(1), 2003.

[127]A. Sabelfeld and A. Sabelfeld. Confidentiality for multithreaded programs via bisimu-
lation. In In Proc. Andrei Ershov International Conference on Perspectives of System

Informatics, volume 2890 of LNCS, pages 260–273. Springer-Verlag, 2003.

[128]A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded programs. In
CSFW ’00: Proceedings of the 13th IEEE workshop on Computer Security Foundations.
IEEE Computer Society, 2000.

[129]A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In CSFW

’05: Proceedings of the 18th IEEE workshop on Computer Security Foundations, pages
255–269, Washington, DC, USA, 2005. IEEE Computer Society.

[130]A. Sabelfeld and D. Sands. Declassification: Dimensions and principles. J. Comput.

Secur., 17:517–548, October 2009.

[131]M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In
Program Flow Analysis: Theory and Applications, 1981.

[132]V. Simonet. The Flow Caml system. http://cristal.inria.fr/ simonet/soft/flowcaml.

[133]G. Smith. A new type system for secure information flow. In CSFW ’01: Proceedings of

the 14th IEEE workshop on Computer Security Foundations, page 115. IEEE Computer
Society, 2001.

[134]G. Smith. Probabilistic noninterference through weak probabilistic bisimulation. In 16th

IEEE Computer Security Foundations Workshop (CSFW), pages 3–13, 2003.

[135]G. Smith. Improved typings for probabilistic noninterference in a multi-threaded lan-
guage. J. Comput. Secur., 14(6):591–623, 2006.

255

[136]G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative lan-
guage. In POPL ’98: Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pages 355–364. ACM Press, 1998.

[137]G. Snelting. Combining slicing and constraint solving for validation of measurement
software. In Static Analysis, pages 332–348. Springer-Verlag London, UK, September
1996.

[138]G. Snelting, T. Robschink, and J. Krinke. Efficient path conditions in dependence graphs
for software safety analysis. ACM Trans. Softw. Eng. Methodol., 15(4):410–457, 2006.

[139]G. Snelting and D. Wasserrab. A correctness proof for the volpano/smith security typing
system. In The Archive of Formal Proofs. http://afp.sf.net/entries/VolpanoSmith.shtml,
September 2008. Formal proof development.

[140]M. Sridharan, S. J. Fink, and R. Bodik. Thin slicing. SIGPLAN Not., 42(6):112–122,
2007.

[141]B. Steensgaard. Points-to analysis in almost linear time. In Proceedings of the 23rd

ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL
’96, pages 32–41, New York, NY, USA, 1996. ACM.

[142]M. Streckenbach and G. Snelting. Points-to for Java: A general framework and an em-
pirical comparison. Technical Report MIP-0011, Univerity Passau, November 2000.

[143]B. D. Sutter, L. Van Put, and K. D. Bosschere. A practical interprocedural dominance
algorithm. ACM Trans. Program. Lang. Syst., 29, August 2007.

[144]R. Taylor. Complexity of analyzing the synchronization structure of concurrent pro-
grams. In Acta Informatica, volume 19, pages 57–84, 1983.

[145]T. Terauchi. A type system for observational determinism. In Proceedings of the 2008

21st IEEE Computer Security Foundations Symposium, pages 287–300, Washington, DC,
USA, 2008. IEEE Computer Society.

[146]T. Terauchi and A. Aiken. A capability calculus for concurrency and determinism. ACM

Trans. Program. Lang. Syst., 30:27:1–27:30, September 2008.

[147]F. Tip. A survey of program slicing techniques. Journal of Prog. Lang., 1(3):121–189,
1995.

[148]P. Tonella, G. Antoniol, R. Fiutem, and E. Merlo. Flow insensitive C++ pointers and
polymorphism analysis and its application to slicing. In ICSE ’97: Proceedings of the

256

19th international conference on Software engineering, pages 433–443, New York, NY,
USA, 1997. ACM.

[149]A. Tsitovich, N. Sharygina, C. Wintersteiger, and D. Kroening. Loop Summarization
and Termination Analysis. In Tools and Algorithms for the Construction and Analysis

of Systems, volume 6605 of Lecture Notes in Computer Science, pages 81–95. Springer
Berlin / Heidelberg, Berlin, Heidelberg, 2011.

[150]D. Volpano and G. Smith. Probabilistic noninterference in a concurrent language. J.

Comput. Secur., 7(2-3):231–253, 1999.

[151]N. Walkinshaw. Partitioning Object-Oriented Software for Inspections. PhD thesis, The
University of Strathclyde., 2006.

[152]N. Walkinshaw, M. Roper, M. Wood, and N. W. M. Roper. The Java System Depen-
dence Graph. In In Third IEEE International Workshop on Source Code Analysis and

Manipulation, pages 5–5, 2003.

[153]D. Wasserrab and D. Lohner. Proving information flow noninterference by reusing a
machine-checked correctness proof for slicing. In 6th International Verification Work-

shop - VERIFY-2010, 2010.

[154]D. Wasserrab, D. Lohner, and G. Snelting. On PDG-based noninterference and its modu-
lar proof. In Proceedings of the 4th Workshop on Programming Languages and Analysis

for Security, pages 31–44. ACM, June 2009.

[155]M. Weiser. Program slicing. In ICSE ’81: Proceedings of the 5th international confer-

ence on Software engineering, pages 439–449. IEEE Press, 1981.

[156]M. Weiser. Program slicing. IEEE Trans. Software Eng., 10(4):352–357, 1984.

[157]B. Xin and X. Zhang. Efficient online detection of dynamic control dependence. In
ISSTA ’07: Proceedings of the 2007 international symposium on Software testing and

analysis, pages 185–195, 2007.

[158]B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A brief survey of program slicing.
SIGSOFT Softw. Eng. Notes, 30(2):1–36, 2005.

[159]R. Yokomori, F. Ohata, Y. Takata, H. Seki, and K. Inoue. An information-leak analysis
system based on program slicing. Information and Software Technology, 44(15):903 –
910, 2002.

[160]S. Zdancewic and A. Myers. Observational determinism for concurrent program security.
In Proceedings of the 16th IEEE Computer Security Foundations Workshop, 2003.

257

[161]X. Zhang and R. Gupta. Cost effective dynamic program slicing. In Proceedings of the

ACM SIGPLAN 2004 conference on Programming language design and implementation,
PLDI ’04, pages 94–106, New York, NY, USA, 2004. ACM.

[162]X. Zhang, R. Gupta, and Y. Zhang. Precise dynamic slicing algorithms. In Proceedings of

the 25th International Conference on Software Engineering, ICSE ’03, pages 319–329,
Washington, DC, USA, 2003. IEEE Computer Society.

[163]J. Zhao. Slicing concurrent Java programs. In In Proceedings of the 7th IEEE Interna-

tional Workshop on Program Comprehension, pages 126–133, 1999.

[164]J. Zhao, J. Cheng, and K. Ushijima. Static slicing of concurrent object-oriented pro-
grams. In Proceedings of the 20th IEEE Annual International Computer Software and

Applications Conference, pages 312–320. IEEE Computer Society Press, 1996.

258

F. Index

actual security level, 178

actual-in node, 17

actual-out node, 17

ATSC, 156

attacker model, 173

call edge, 14

call node, 14

call site, 14, 17

call string, 27

calling context graph, 29

CFC, 151

CFG, 13

chopping, 10, 137

almost timing-sensitive, 156

concurrent context-sensitive, 151

concurrent programs, 10

context-sensitive, 152

intra-procedural, 139

same-level, 138, 139

summary-merged, 141

timing-sensitive, 10, 155, 159

unbound, 138, 142

CIC, 151

classification, 173

concurrency edge, 70

concurrent system dependence graph, 64

configuration

IFC, 183

configuration (slicing), 76

conflict, 180

conflict edge, 199

context, 27

context edge, 74

context graph, 93, 96

context path, 74

control dependence, 6, 16

computation, 22

control flow graph, 13

call edge, 14

call node, 14

call site, 14

context-sensitive path, 15

interprocedural, 14

intra-procedural, 13

realizable path, 15

return edge, 14

return node, 14

threaded, 52

CSC, 152

CSDG, 64

data conflict, 180, 191

data conflict edge, 199

data dependence, 6, 16

computation, 22

data slice, 186

DCD(o), 185

declassification, 176

distributive data flow analysis framework, 22

dominator, 15

dynamic control dependence, 184

259

dynamic data dependence, 185

explicit flow, 172

fork edge, 52, 64
fork node, 52
fork site, 64
fork-in edge, 64
formal-in node, 17
formal-out node, 17

I2P, 72
I2PC, 151
ICFG, 14
immediate postdominator, 15
implicit flow, 172
import statement, 183
infinite delay, 187
information flow control, 1

concurrent programs, 10
interference dependence, 7, 47, 64

accounting for synchronization, 66
interference-write dependence, 200
interprocedural dependence graph, 27
IPDG, 27

join edge, 52
join node, 52
join site, 64
join-out edge, 64

low-equivalent
input, 174
program runs, 174
traces, 190

low-observable
behavior, 174, 188
event, 188
operation, 188
order conflict, 200

low-observational determinism, 181
low-security observational determinism, 181,

191

may-aliasing, 25
may-exist, 82
may-happen-in-parallel, 8, 54
memory, 183
MHP, 54
monotone data flow analysis framework, 22
multi-thread, 50
must-aliasing, 25
must-join, 58
must-synchronization, 56

non-occlusion, 176
noninterference, 4, 174
nonrestrictive state, 82

object graphs, 27
object trees, 25
observational determinism, 4
operation, 183
order conflict, 180, 191
order conflict edge, 199

parameter edge, 17
parameter node, 17
parameter-in edge, 17
parameter-out edge, 17
path, 14

context-sensitive, 15, 19
in CSDGs, 70

control flow, 14
realizable, 15
thread-insensitive, 52

path conditions, 10
PDG, 16
PDGs, 6
physical channel, 173

260

points-to analysis, 24
inclusion-based, 24
unification-based, 24

possibilistic channel, 172
postdominator, 15
potential influence, 186
prepending property, 76
probabilistic channel, 2, 172

threats of, 2
probabilistic data channel, 180
probabilistic noninterference, 181
probabilistic order channel, 180
provided security level, 178

required security level, 178
resource channel, 172
restrictive state tuples, 79
return edge, 14
return node, 14

SDG, 17
security constraint, 174
security lattice, 175
security policy, 173
security property, 173
security-type system, 177
sink level, 188
slicing, 4

call-string-based, 27
concurrent programs, 7
context-restricted, 30
context-sensitive, 19, 70
CSDGs

context-sensitive, 70
timing-sensitive, 75

forward slicing, 31
iterated two-phase, 72
PDGs, 17
precision, 6

SDGs, 19
slicing criterion, 4
timing-aware, 107
timing-insensitive, 48
timing-sensitive, 8, 75
two-phase slicing, 19

source level, 188
strict postdominator, 15
strong postdominator, 15
summary edge, 17

computation, 23
system dependence graph, 17

call site, 17
context-sensitive path, 19

TCFG, 52
TCT, 57
termination channel, 172
thread context, 50
thread creation tree, 57
threaded control flow graph, 52
time travel, 48
timing channel, 172
timing-insensitivity, 7
timing-sensitive path, 75
trace-slice, 186
TSC, 159

weak control dependence, 17

261

